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We consider the simplest and most economic version among the proposed nonminimal supersymmetric
models, in which thex parameter is promoted to a singlet superfield, whose self-couplings are all absent from
the renormalizable superpotential. Such a particularly simple form of the renormalizable superpotential may be
enforced by discret® symmetries which are extended to the gravity-induced nonrenormalizable operators as
well. We show explicitly that within the supergravity-mediated supersymmetry-breaking scenario, the poten-
tially dangerous divergent tadpoles associated with the presence of the gauge singlet first appear at loop levels
higher than 5 and therefore do not destabilize the gauge hierarchy. The model provides a natural explanation
for the origin of thew term, without suffering from the visible axion or the cosmological domain-wall problem.
Focusing on the Higgs sector of this minimal nonminimal supersymmetric standard model, we calculate its
effective Higgs potential by integrating out the dominant quantum effects due to top squarks. We then discuss
the phenomenological implications of the Higgs scalars predicted by the theory for the present and future
high-energy colliders. In particular, we find that our new minimal nonminimal supersymmetric model can
naturally accommodate a relatively light charged Higgs boson, with a mass close to the present experimental

lower bound.
DOI: 10.1103/PhysRevD.63.055003 PACS nuniger12.60.Jv
. INTRODUCTION well-measured SU(2)and U(1), gauge couplings,, and

g’'. As a consequence, the lightest neutral Higgs boson is
In the well-established standard mod8M), the genera-  always lighter than th& boson at the tree level. Neverthe-

tion of gauge-invariant renormalizable masses for the obtess, radiative corrections to the effective Higgs potential are
servable fermions, e.g., the electron andttiggiark, and for  significant and extend the above mass upper bound to 110
the W andZ bosons, is achieved through the so-called Higgg130) GeV for small (large values of the ratio of Higgs
mechanism. Most interestingly, the Higgs mechanism itsel{;acuum expectation value®/EV’s) tang~2 (>15) [3].
predicts inevitably the existence of a fundamental scalarrnys, a large portion of the parameter space of the MSSM
known as the Higgs boson. Recently, experiments at thgas peen already excluded by the current LEP2 experiments
CERN e*e™ collider LEP2 have intensified their searchesat CERN. Moreover, the upgraded Tevatron collider at Fer-
for directly observing the yet-elusive Higgs boson. Their Iat'milab will have a much higher reach in discovering heavier

est analyses show that its mass must be larger than 113l—ﬁggs bosons with SM-type couplings and masses up to 140

(_BeV at the 95% confl_d_ence leveC.L) [1]. At the same GeV and therefore will provide a unique test for the viability
time, electroweak precision data place an upper bound of the

. of the MSSM.
order of 240 GeV on the Higgs-boson m&g&% . .
So far, we do not have much evidence to suggest that th On the basis of the above strong experimental bounds on

underlying structure of the Higgs potential is indeed that oft%e lightest Higgs-boson mass in the MSSbkpecially for

: . low values of tarB), it would be rather premature to infer
the SM or that it already contains components of a MO hat realizations of low-energy SUSY in nature have a rather

fundamental theory which is about to be unraveled in th(:1‘imited range. In order to reach a more definite conclusion, it
next round of experiments. In particular, it is known that the, ge. '

SM cannot adequately address the problem of gauge hierdﬁv_ery"mpotrtagt éo furthe.r an?l}[ﬁe ;;‘SesmggAs s%(zjtg_rs Olf
chy, which is related to the perturbative stability of radiative " imally extended scenarios of the - An additiona
effects between the electroweak scale and the Planck ¢F2O" for going beyof‘d the MSSM is the so-(.:aldepro.b.-
grand unification scale. An appealing solution to this prob-em' TheA SLAJpe.rpotef]tlaI of the M_SSM contains a b.|I|near
lem may be achieved by means of supersymmestySy). tFrm —,szle involving the two Higgs-doublet superfields
In order that SUSY theories avoid reintroducing the problemH; andH,, known as theu term. Althoughy is naturally of
of gauge hierarchy, they must be softly broken at a relativelythe order of the Planck scaldp, it is actually required to be
low scaleM g,sy~m; of the order of 1 TeV, in agreement many orders of magnitude smaller of ordégsy for a suc-
with experimental observations. cessful Higgs mechanism at the electroweak scale. Many
The minimal supersymmetric extension of the SM, alsoscenarios have been proposed in the existing literature to
called the minimal supersymmetric standard m@$SM),  account for the origin of thes term, albeit all in extended
predicts a very constrained two-Higgs-doublet potential asettings[4].
the tree level, whose quartic couplings are determined by the A simple SUSY extension of the MSSM, which one
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might have thought of considering to address ghproblem,  izable superpotential and Ktr potential theZ, R symme-
would be to elevate thp parameter to a dynamical variable try of the cubic superpotential, under which all superfields as

by means of a gauge-singlet chiral superfi§ldcouple the ~Well as the superpotential flip sign. However, the desirable

. . An oA - form of the renormalizable superpotential was enforced by
latter toH,; andH, asA\SHH, and arrange th& somehow imposing a larger group, namely, the product of femat-

develops a VEV of the order dil sysy~m. However, this o1 parity with a2, R symmetry[11]. In the U(1)q case, a
minimally extended scenario possesses a glolfal Beccei-  z. R symmetry proved sufficient to enforce the desirable
Quinn (PQ symmetry, whose spontaneous breakdown givesenormalizable superpotential and postpone the appearance
rise to a phenomenologically excluded axion. The mosbf the harmful divergent tadpoles until the sixth loop order
popular way in the literature of removing the unwanted PQ[12]. Thus, in both cases the breaking of the unwanted sym-
symmetry is to break the latter explicitly by adding the cubicmetries was successfully implemented without jeopardizing
self-coupling 1« & to the superpotential. The resulting the stability of the electroweak scale and without generating

model has been termed the next-to-minimal supersymmetricc cosmological problems. . ,
standard modelNMSSM) [5]. Unfortunately thepNMySSM In the present paper, we shall study in detail the new

minimal supersymmetric extension of the MSSM, in which
is also plagued by its own problems. The cubic self- persy

couplinghe jinear, quadratic and cubic terms involving the singlet
of S leaves invariant a subgroup of(Upq, namely, the g perfieldS itself are absent from the renormalizable part of
discreteZ; symmetry, whose subsequent spontaneous brealhe superpotential. Hereafter, we shall call such a supersym-
down gives rise to the formation of cosmologically cata-metric extension the minimal nonminimal supersymmetric
strophic weak-scale domain wall, 7]. standard modeMNSSM). In particular, we shall explicitly
Another well-known problem that a model of low-energy show that with the imposition of the discre® and 2; R
physics involving light gauge singlets has to face is the desymmetries on the complete superpotential and on théeka
stabilization of the gauge hierarchy through the generation gfotential of the corresponding supergravity models, the po-
at least quadratically divergent tadpoles for the sin@étin - tentially dangerous tadpole divergences first appear at the
the context ofN=1 supergravity, which is spontaneously six- and seven-loop levels, respectively, and hence are natu-
broken by a set of hidden sector superfields, even if oneally suppressed to the order bf3 . S. Evidently, the re-
assumes no other scale betwedgysy andMp, the simple  sulting model constitutes the simplest and most economic
presence of gravity-induced nonrenormalizable operators igersion among the nonminimal supersymmetric models pro-
the superpotential and the Kler potential is able to generate posed in the literature. In order to properly study the proper-
such tadpole$9]. Using the Planck masislp as a physical ties of the Higgs bosons predicted by the theory, we will
cutoff energy, such divergences contribute tadpole terms dfalculate the effective Higgs potential by taking into account
order (1/167%)"M pM% ¢S to the effective potential, where the dominant top-squark loop effects. Finally, we shall ana-
n indicates the loop level at which the tadpole divergencdyze the phenomenological implications of the MNSSM for
appears. It is obvious that for small valuesmfe.g.,n<4, direct Higgs-boson searches at the LEP2 and the upgraded
the generated tadpole terms lead generically to unacceptablyevatron colliders.
large values for the VEV oS (the scalar component &), The organization of the paper is as follows. In Sec. Il we
thereby destabilizing the gauge hierarchy. describe the Higgs sector of the MNSSM and show that
In the case of the aforementioned extensions of thdarmful tadpole divergences first appear at the six- and
MSSM, the problem of destabilization does not occur as long€even-loop levels, after the aforementioned disc&eand
as the U(1)q or Z3 symmetries are imposed on the com- 27 R symmetries are respectively imposed on the theory.
plete set of nonrenormalizable operators as well. HoweverT echnical details of the argument are relegated to Appendix
any attempt to break these unwanted symmetries through4. In Sec. Ill we compute the effective Higgs potential by
subset of nonrenormalizable operators would, as an immedintegrating out the dominant radiative effects due to top
ate consequence, destabilize the weak scale. This aspect tilarks, from which we derive théP-even andCP-odd
been emphasized in Refg,10], in connection with theZ, Higgs-boson mass matrices. In Sec. IV we investigate the
symmetry of the NMSSM. theoretical differences of the Higgs-boson mass spectrum be-
Recently, it has been realized that the unwanggdand  tween the MNSSM under consideration and the frequently
U(1)po Symmetries present in the corresponding supersymdiscussed NMSSM. In Sec. V we present numerical esti-
metric extensions of the MSSM could be effectively brokenmates of the Higgs-boson masses and their couplings associ-
not by the nonrenormalizable operators themselves, buted with theZ boson in these two models, and discuss the
rather by the tadpoles generated by thEtf,17. For the Phenomenological implications of the MNSSM Higgs sector
Z;-symmetric extension of the MSSM, harmless tadpolefor the direct Higgs-boson searches at LEP2 and for the up-
terms of order (1/162)”M§usy& with 2<n=<4, were suf- coming §earches at the_ upgraded Tevatron collider. Section
ficient for the breaking of thez; symmetry. For the PQ- V! contains our conclusions.
symmetric extension instead, it was necessary that the harm-
ful tadpoles of order (1/16%)"M M éUSYS (usingMp as a
cutoff scalg be generated at a sufficiently high loop lewel
with 5=<n=8. In the Z; case, the harmful tadpoles were In this section we shall consider the simplest extension of
forbidden by imposing on the operators of the nonrenormalthe MSSM, the MNSSM, within the context &f=1 super-

IIl. MNSSM: SYMMETRIES AND STABILITY
OF THE ELECTROWEAK SCALE
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gravity spontaneously broken by a set of hidden sector fieldwill remain unbroken, unless a gravity-induced tadpole op-
at an intermediate scale. In the MNSSM, theparameter is  erator linear inS gets generated from the nonrenormalizable
promoted to a dynamical chiral superfiélayith the linear, sector of the theory. The tadpole operator generically con-
quadratic and cubic terms involving only the singlet super-ributes to the effective potential a term

field S being absent from the renormalizable superpotential.

Such a particularly simple form of the superpotential may be

enforced by discret® symmetries, e.g.ZX and 2%, which Viag™

are extended to the nonrenormalizable parts of the superpo-

tential and the Khler potential as well. Adopting the stan-

dard power counting ruld®,10], we shall show that in such wheren is the loop level at which the tadpole divergence

N=1 supergravity scenarios, the potentially dangerous tadeccurs, using the Planck mab%, as an energy cutoff. The

pole divergences are suppressed by loop factors #R)l6of  tadpole termV,,q together with the soft SUSY-breaking mass

ordern=6 and higher, and therefore do not destabilize theeermMZ,,5,S* Slead to a VEV for the singlet fielé of order

gauge hierarchy. Technical details are given in Appendix A(1/167%)"Mp. To avoid destabilizing the gauge hierarchy,
The renormalizable superpotential of the MNSSM underone must require[12] that (S>’“Msusv”(1/16772)nMP,

mMPMZSUSYSJr H.c., (2.4)

discussion is given by with M gysy~1 TeV. This requirement can only be fulfilled
. . . R . A for sufficiently high values oh, i.e., forn=5. Finally, we
Wien= hy Hii 7L E+hg Hii QD +h, QTi7,H,U should remark that the full renormalizable Lagrangian, in-
AnT A cluding the tadpole term, preserves tBeand L numbers.
+A SHyiTH,, (2.1) However, the quantum numbeBsandL may be violated by

. . . certain nonrenormalizable operators, which are hopefully of
where T2 1S t_he u§ual 2<% Pauli matrix. In Eq.2.1), the sufficiently high order in order not to upset the laboratory
Higgs superfieldsii; andH,, as well as the quark and lep- |imits on proton instability. We can therefore conclude that

ton chiral multiplets,Q and L, are SU(2) doublets, while the renormalizable superpotentl, of Eq. (2.1) supple-

the remaining superfieldS, U, D, andE are singlets under mented with a sufficiently suppressed tadpole for the singlet
SU(2), . The chiral multiplets also carry the following hy- Sleads to a model without any obvious phenomenological or

percharges: cosmological problem.
One may now wonder whether there exists a symmetry
U(1)y: |3|1(_1), |2|2(1), é(o), Q(l/g), giving rise to the above-described model that includes a tad-
pole term forS of the desirable order. To address this ques-
O(—4/3), D23, L(-1), E(2), tion, let us consider the global symmetry defined as a linear

(2.2) combinationR" =3R+PQ of U(1) and U(1)q, with

where the hypercharge of each superfield is indicated within oA - A A

the parentheses. In addition to the baryBhand lepton(L) U2 Hi(1), H2(1), S(4), Q(2),
numbers, the renormalizable superpotenfigl, respects the

global U1) PQ andR symmetries: U(3), D(3), L(2), E(3), Wien(6).

N N . . (2.5
UDpg Hi(1), Hp(1), S(=2), Q(—1),

Observe that the imposition of U(d) is sufficient to ensure

U(0), D(0), L(~1), E(O); the form (2.1 for W,,. We should now examine whether
. . . . U(1)g also allows the generation of a tadpole term. The
U(Dgr: H1(0), H2(0), S(2), Q(1), symmetry group U(1) is explicitly broken by the trilinear
soft SUSY-breaking interactions down to its maximal ri®n-
U (1), D(1), L(1), E(1), Wen(2). subgroupZg which is isomorph(equivalen} to the product

(2.3 group 2, X Z5. The symmetryZ, is essentially the ordinary
matter parity, under which the tadpole remains invariant. In-
Note thatW,, has charge 2 under U(d) The symmetry stead, the symmetrs; is broken by the tadpole & Con-
group U(1) is nonanomalous with respect to QCD interac-sequently, a tadpole term can only be generated if the whole
tions,_ but gets brok_en by t_he soft SUSY-breaking tri_IinearSymmetry group U(1) or one of its subgroups that includes
couplings down to its maximal noR- Z, subgroup which  z_ s violated by the higher-order nonrenormalizable opera-
becomes the known matter parity. Instead, the anomaloug s
symmetry U(1po remains unbroken by the soft SUSY-  The above arguments seem to suggest that the symmetry
breaking terms. Neglecting QCD-instanton effects, Wgl) we are looking for is likely to be a subgroup of Uk)
which is sufficiently large to enforce the form @, given
by Eqg. (2.1), but does not contain the; subgroup of
'An earlier suggestion along these lines was discussed iW(1)r: . Subgroups of U(1y obeying the above criteria are
Ref. [13]. the discreteR symmetrieszt [12] and Z5.
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From Eq.(2.9), it is easy to see that the tadpole term is of
order (1 TeV)?, e.g., fork,~k5~0.1, A\~0.6, andM gysy
~1 TeV, and does not destabilize the gauge hierarchy.

In the Z$ case, the harmful tadpole divergence occurs at
one loop-order higher, namely, at the seven-loop level, so the
generated tadpole terms can naturally be as low(1&®
GeV)®. In detail, under this new discref® symmetry, the
superfields andV,, transform in the following way:

ZR (AL A)—w (AL Ay,

(Q.D—w?(Q.L),
(a) (b) (U,D,E)—~w’(0,D,E),
FIG. 1. Typical harmful tadpole divergences at g six- and 308
(b) seven-loop levels. '
Wien— wBWren: (2.9

Let us first consider th&{ case. UndeZ§, the chiral
multiplets as well as the superpotentll., transform as  jith »=exp(2ri/7) andw’=1. Following the same line of

follows: steps as above, we impose the disciRteymmetry Z% on
. . the complete superpotential andtder potential. Based on
Z8 (Hy,Hp—w(Hy,Hy), standard power counting rules, we show in Appendix A that
the potentially harmful tadpole divergences first appear at the
0,0)—w?(O,0), Isevenjloo_p level. A typ'lcal harmful tadpole dla}gram at seven
oops is displayed in Fig.(b), and can be obtained by com-
R o bining the nonrenormalizable operators of thehka poten-
(U,D,E)—w*(U,D,E), tial
& 048 S*(AiTH,)
S—w S, K(l) (1) 11722
3 Mg -
Wier— @Wien, (2.6
. . . §* (H{imoHo)°
with w=exp(27i/5) and w®=1. The discreteR symmetry K= kg 5 +H.c., (2.10
Z? is imposed on the complete superpotential andl&a Mp

potential. By means of standard power counting rules gov- _ ) T
erning the harmful tadpole divergences, it can be shown thand four times the renormalizable teN18H ;i 7,H, of Wie.
harmful tadpoles first appear at the six-loop level. As can bd he size of the so-generated tadpole term may be estimated
seen from Fig. (@), a typical harmful six-loop tadpole dia- &S
gram can be induced by appropriately combining the non-

: - . (1), \4
renormalizable operators of the Kar potential K3 Kg\
@ 2y MpMZysyS+H.c.
SHGHEPEP) )
Ko= Kk, 2 : ~(1 TeV)xM3, s S+H.c., (2.11)

for k§~kg~1 and\~0.6. If k{P~kg~0.1 andM gysy

S(ATinA,)° ~1 TeV, the size oW,y can be as low af).2 TeV).
Ks=ks————=——+H.c, (2.7 We conclude this section by noticing that although the
P discreteR-symmetriesZ Y and 2% do not contain the usual

Z, matter parity, they still prohibit the presence of all dimen-
and four times the renormalizable temSH]ir,H, of the  sion d=4 B- and L-violating operators as well as the dan-
superpotential2.1). The analytic steps of the argument are gerousB- and L-violating operatorQQQL and UUDE of
presented in Appendix A. ThUS, the induced harmful diVer-dimension 5. However, the Symmetrl@éz andZ$ allow the
gent tadpole term has the form L-violating operatoi. LH,H, of d=5, which is able to gen-
erate Majorana masses for the light left-handed neutrinos.
Moreover, Z? allows the d=5 L-violating operators

SSLH,, SLLE, andSLQD, whereasz? allows thed=5

K2K5)\4

WMPMEUSY&I- H.c. (2.8)

tad”™
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B-violating operatorSUDD. Although these last operators With
are unable to lead by themselves to an observable proton

decay, they still render the lightest supersymmetric particle  ts=&sM3usy  Mi,=NEMEysy, (3.4
(LSP) unstable. However, estimates based on naive dimen-

sional analysis show that the LSP is very long lived with a g2+g'? 92—g'? 9z
lifetime larger than the age of the Universe and therefore N=Np=— — 8 AN3=— — 2 >\4=7-

safely qualifies to be a dark-matter candidate. Of course, the
LSP can be made absolutely stable by the additional impopgre G

"is the coupling constant of the gauge grou
sition of the Z, matter parity. (9) ping gauge group

SU(2). [U(1)y]. As was discussed in the previous section,
the tadpole prefactofg in Eq. (3.4) is of order unity. How-
lll. THE HIGGS SECTOR OF THE MNSSM ever, the size ofg crucially depends on the VEVs of the
scalar components of the hidden-sector superfields that break
In this section we shall study the low-energy Higgs sectorSUSY [9]. The VEVs remain unconstrained by the require-
of the MNSSM. After discussing its tree-level structure, wement that the breaking of SUSY takes place at some inter-
will then calculate the one-loop effective Higgs potential by mediate scale in the hidden sector, in which Ehéerms of
integrating out the dominant loop effects due to top squarkshe respective hidden-sector superfields are involved. In case
and top quarks, from which we derive analytic expressionghat some of the hidden-sector fields acquire VEVs of order
for the Higgs-boson masses and their respective mixind/lp, the tadpole prefactorkiy| and |ég could be compa-
angles. We shall then focus on the gaugino-Higgsino sectaiable. Otherwise, it i$&g|<|&g|. In the following, we shall
of the MNSSM, and briefly discuss possible laboratory limitstreat the ratig &¢|/|ég| as a free parameter which is always
on the would-beu-parameter due to the presence of a lightless than unity.
guasisinglet neutralino state. Finally, for our forthcoming We shall now derive the minimization conditions of the
phenomenological discussion in Sec. V, we shall present theliggs potential in Eq(3.3). Throughout the paper, we shall
effective Higgs-boson couplings to th andZ bosons. assume thaC P is a good symmetry of the theory. Under this
assumption, we can perform the following linear expansions

A. Higgs-boson masses at the tree level of the Higgs fields about their VEV's:

In addition to terms proportional t8, another effect of b7
the tadpole supergraphs of Fig. 1 is the generation of terms !
proportional toFg, namely, to the auxiliary scalar compo- o, =

nent of S. As a consequence, the effective renormalizable

1

— (v, + +iaq)
: ) \/5( 1t ¢ 1
Higgs superpotential of the MNSSM reads

+
W= N SHTi mH o+ EeMEus,S, (3.1 2
®,= .

where &g is a model-dependent constant. Moreover, the La- E(vz + ¢o+iay)
grangian describing the soft SUSY-breaking Higgs sector is
given by

1 .

— Looii= (M EyeyS+H.C)+mi DD, +m3 dld, S= E(v5+ $stias). @9

2 F, T
+mMsS* S+ (NA) SPyim o+ H.c), (3.2 The minimization conditions are then determined by the van-

_ ishing of the tadpole parameters
where®,=i7,®7 and®, are the physical bosonic degrees
of freedom ofl:|1 and I:|2, respectively. After including the dLy
relevantF- and D-term contributions in addition to the soft 6= (97,1 =T U1
SUSY-breaking terms, we obtain the complete renormaliz-

1 2
— )\A)\U S+ m12

V2

2
mi+

ty—Nvd

able Higgs potential of the model of interest 1 1
—5(\at AN us+5NE | (3
— LI=(tgS+H.c)+m DId,;+m3 dJd,+miS*S
2 4t T oL 1
+(mp,®;P,+H.c)+(NA, SP;P,+H.c) T¢25<r¢>\2/> =, m§+<ﬁ)\A)\US+ miz) t,gl
N P1D1)? Ao (B D)%~ Ng(P1D1)(PID)
1 1
— (A= N2 (DID,) (D)) —xzvg—§(x3+>\4—>\2)v§+§>\20§ ,
N2 S (DD, +DlD,), (3.3 (3.7
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ILy V105 are the would-be Goldstone bosons which constitute the lon-
T¢SE<_> =—vg| MEHAA—— gitudinal degrees of freedom of th&* and Z bosons, re-
Ids V2us spectively.
2 Let us first consider the charged Higgs sector. In the
E 2 2, V21s newly defined weak basis of E(.9), the tree-level mass of
+=\v+ , (3.8 ) ]
2 Us the charged Higgs boson may easily be computed by

with v = \/v12+022=2MW/gW andtg=v,/v,. Our earlier as-
sumption ofCP invariance entails that all kinematic param-

eters involved, e.g\ andA, , are real, namely, there are no
explicit sources ofCP violation in the theory. Also, it is where
important to remark that based on Romao’s no-go theorem

1 1
M= %( phA = M) +ME— 500?310

[14], CP invariance cannot be broken spontaneously at the 1
tree level in the MNSSM. w=—-—=N\vg (3.11)
It proves now convenient to perform a change of the weak 2

basis for the charged ar@P-odd scalars ] )
is the would-beu-parameter of the MSSM. Here and in the

o Cs —Sg G* a; Cs —Sg GY following, we adhere the superscript (0) to a specific kine-
o7 =ls c H+ ) al s c al’ matic quantity in order to emphasize its tree-level origin,
2 2(0)
2 s OB s Cp 39 ©9ML.

Since the would-be Goldstone bos@? does not mix
wheresz=v,/v andcg=v,/v, such thatH ™ becomes the with other fields, the tree-levél P-odd mass matrix takes on
mass eigenstate of the charged Higgs bosonGin@ndG®  the simple form in the reduced weak ba§isag}:

2(0 v
Mm2(0) U_s( sgcs M2+ m)
M2(O= , (3.12
2
v 2(0 2, VY 2(0 2 Ms
So(s6Cp M2O+ mZ)  — szep(spesMaD+me) +—
S US M

with trix contains a massless state, i.e., a PQ axion, as a result of

the spontaneous breakdown of the symmetry group k1)
Taking into account the tadpole constraints of EGs6)—

(3.9), the tree-levelC P-even mass matrix may be expressed

in the weak basi$®,,®,,ds} as follows:

In deriving the above form oM2(®), we have also consid-

ered the_ ta_ldpolg constraints given by E((j}s6)—(3.28). In t_he (M3©®) = Cfa M§+s§ M2 (3.15

MSSM limit, which is obtained fov g~ — \/Etslms>v with

the would-beu parameter being kept fixed (- 0), the mass

eigenvalues of theCP-odd mass matrix can easily be ap-

proximated by

1
MO =MD =M+ 5022 (3.13

(MED) 1= (MED) 1= — s5c(MZO+ MZ-N"?),

(M g(o))lsz (M %(0))31

At
2(0)__ np2(0 2(0) 'S
MAEI_ )NMa( )! Ile(2 )N_! (314) v 2 2(0) 2 2
K =—U—S(SBCBMa —2CpuP+ssmd,),
with Atg/u>M2  Furthermore, in the limit, in which the
tadpole parameters?, andtg vanish, theC P-odd mass ma- (ME©),,=s5MZ+c5 M2,

(M3®) 5= (MZ(?)5,

2We find that this property persists, everOf-conserving radia- v
tive effects mediated by large top squark mixing are included in our =——(s c2M2O)_ 25,24+ ¢c.m? )
model Us Fp A pH prazn
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02 A ts The above upper bound, which is saturated in the limit of Eq.
(M) 33=—s4C4( 553 M5O+ mi,) + —, (3.17), holds independently of the magnitudetgf Note that
vs K as opposed to the MSSM wheke=0, M(Hol) can be larger

ith M>= /g2 +9' 2v/2. In the MSSM limit, in which tha}nMZ in_th_e M_NSSM, e_sp_ecially for smallvalugs of}@n
w z %W 9 Y '  Imi%, In Whithos This prediction is very similar to the one obtained in the
~—\2ts/mg>v with 1 fixed, the Higgs-singlet compo- frequently discussed NMSSNK]. However, as tap in-
nents decouple from the tree-lev€lP-even mass matrix ' '

MZ© _In this case, the heaviest Higgs bosegis predomi- oo e o ©9- for tg8=5, the A-dependent term in Eg.

. ). i (3.18 becomes negligible. Thus, in the large-fawcase, the
nantly singlet and has a squared mM%s ~Ms/p; Hy upper bound on thel;-boson mass is almost identical to the

becomes mass degenerate with[see Eq(3.19]. one obtained in the MSSM.

Apart from the MSSM limit mentioned above, there exists  Finally, an important property of the MNSSM is that the
a novel nontrivial decoupling limit for the heavy Higgs sec- tree-level neutral Higgs-boson masses satisfy the equality
tor in the MNSSM. This decoupling limit is obtained for
large values of the tadpole parametby, where all other 2(0) 2(0) 2(0)_ pp2 2(0) 2(0)
kingematic parameters arr)e kegt fixed.tt%l this case, the Higgs M7+ ML+ M =Mz + Mg P+ M. (3.19
statesA, andHj are singlets, i.eA,=ag andH;=¢g, and
so decouple from the remaining Higgs sector while bein
degenerate in mass, i.M,,i(zo)~Mﬁ(3°)~)\tS/M. An immedi-

ate consequence of this is the relation

It is interesting to notice the striking similarity of the above
ass sum rule with the corresponding one in the MSSM
[16], in which case the mass terv>) andM3*) are not

present in Eq(3.19. The above observation allows us to

advocate that the structure of the MNSSM Higgs sector de-
Mi§°)~M§(°’, (3.16  parts indeed minimally from that of the MSSM. Neverthe-

less, exactly as happens in the MSSBI, the tree-level

whereMg(O) is defined in Eq.(3.13. Most importantly, in  Higgs sector receives sizable quantum corrections due to top

this limit the structure of the low-energy Higgs sector, al-squarks, leading to a violation of the mass sum (Gl&9).

though reminiscent of, isot identical to that of the MSSM.

For example, as opposed to the MSSM limit, the terms pro- B. One-loop effective potential

portional tox?v2, which occur in theC P-odd andC P-even hall lculate the domi | .

mass matrices of Eq$3.12 and(3.15, do not necessarily We sha r?ow caicu ‘f,ﬂet € dominant one-loop COI‘I’ECIIOI’]S

vanish in the decoupling limit due to a large tadpole. Thus!0 the effective potential due to toft) and scalar-top t)

contrary to the MSSM, Eq3.16) implies that for large val- quarks. As a good approximation, we neglect the one-loop

ues of\, e.g..\~g,,, the charged Higgs-boson mdvéfl D-term contributions as well as bottofin) and scalar-bottom

can become even smaller than the mk{é,gl) of the nonde-  (P) quark effects by assuming a vanishipgjuark Yukawa

. . . coupling, i.e.,h,=0. The above approximations are reason-
coupledCP-odd scalar. As we will see in Sec. V, this last ablep fo? reIati\[/Jer small values %’? ta8) e.g., tanB=10
fact plays a very important role in lowering the mass of thewhere the MNSSM predictions for the lightest Higgs sector

MNSSM charged Higgs boson up to its experimental lower, ; : :
. . are expected to deviate considerably from the ones obtained
bound, i.e., up tdMy+~80 GeV[1,15. Moreover, in Sec. P y

. = = in the MSSM.
v Wle shall sdee ﬁhat this neu\;v n;)ntr|V|aI|dec0LJ_pI|rl:1)g|; Il.mlthdue The interaction Lagrangians relevant for the computation
to a large tadpole parametets/w is only attainable in the _ : ; -
MNSSM, and no analogue of this exists in the NMSSM. of the one-loop effective potential are given by
As in the MSSM[16], an upper bound on the mass of the _
lightestC P-even Higgs boson in the MNSSM with largfe] ~ — Lermion= QLI 72®3 tr+ H.C., (3.20
may easily be derived in the decoupling limit of a heavy

charged Higgs boson, i.e., for —CFthZ |<I>Zi 726L|2+()\ht S~QIi TZCIDINtRJrH.c.)

At s T F*
f'»mﬂf&mi. (3.17 Thitr®; Ptk
In this limit, in addition toA, andHs, the Higgs scalars, ~ Loon=MZQ[QL+ Mtk TR
andH, decouple from the lightest Higgs sector as well, and _ _
are almost mass degenerate with the charged Higgs boson +(htAtQEirz¢§tR+ H.c.,

H*. After taking into consideration the heavy

H " -decoupling limit of Eq.(3.17), the mass of the lightest whereQ, =(t, ,b,)" andQ, =(t, ,b,)T are the bosonic and

CP-even Higgs statél, is found to satisfy the inequality ~ fermionic degrees of freedom of the third-generation left-
handed quark superfield.

)2 Equipped with the Lagrangians in E@.20, we can now
Mﬁf”sM% cos2B+————siP2B |. (3.18  derive the Higgs-dependertt and T masses. Thus, the
gwT9 squared-quark mass in the Higgs background is given by
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atzzhtz ‘195432- (3.2 may be determined from the >33 Equilrk mass matrix,
which is expressed in the weak ba&fg, ,tg} as

The corresponding background-dependent top squark masses

M3 1,+hZ (®10,1,— d,®))  hA(i7,®3 +\h; Sirp®F

M?= (3.22

—hA@JiT,—\h S*DJiT, M2+h2d]d,

The squared squark-mass matA¥? has three mass eigen- One-loop Coleman-Weinberg effective potenfitif] may be
values. For¢i,=0, these are given by the two squared expressed in terms of the relevant squared Higgs-dependent

Higgs-dependernt-quark masses massesn;, m; , m;, andm; as follows:
~2 _} M2+M2+2h2| 0|2 - ﬁﬁ 3
M, ()= 3 [Mo + M+2ht |4, —Ly=—L%—| 3 mim—=-2I
3272 | k=t tp.b, Q* 2
F(VMG — M2+ 4hF A p3H+\ S* ¢]2) w3
(3_23 —2mt |n§—§ , (324}

and by the squared left-handed bottom squark ma%Ls

=M%, where ¢ ;= (v1 .+ $1,+ia1,)/\2 are the neutral \with the help of£,,, we can now compute the radiatively

parts of @y . corrected mass of the charged Higgs boson by means of the
In the modified minimal subtraction (MSscheme, the relation

where — £ is the bare Higgs potential given by E@.3).

1 IL
M2, = —<—V> MZP+AM?

SgCs \ dpy I, "
~ 2
3 9°mg me
=Ma(f)—2—{ > +—k7 mE(In—Z—lH, (3.29
16m°spCp| k=tita.bL \ Iy b, Q
|
where M2 is the tree-level contribution antin) = mZ.  Then, the one-loop correction #},., AM{,., is given by
FoIIowmg the procedure outlined in RdfL8],%> we find
272 2 2
< "ML (t,) >_ (+) -2 tMAt AM2 3hZuA, (rrrtlrrrt2 ( 2 2) 5
— ) =— = +g(m ,my ) [+ ,
Iy b m; — M 322 sc, Qt ) I MMy | Srem
(3.27
h?ﬂzvlvz
+(_)2 2 2 22 )
(M Gy~ M) (M —mp) with
2
"M, hiuvivs 5
e 72 RN mi+ms (mi
A1 I, 2(rrrtl—m~bL)(n“rt2—mBL) g(m 2) m - ———In E -2. (3.28
(3.26 2 2
In Eqg. (3.27), the quantity 5., Summarizes the remaining
3A similar procedure was also followed in R¢19]. Q?-independent corrections
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2 1
_ 3h{p*v? M, MM M2=M2, = M2+ >\ 22— Sy (3.31
rem= 2 2 2 2__2.n 7 2
mt LmEmme) (o)
2 2 2 The one-loop Born-improve® P-odd mass matrixV 3
1 my, . my, I my, =M29+AM2, may be diagonalized through an orthogonal
— n — B .
m{z — m% m{z _mg m% _mg m% transformation of the weak fields
1 2 1 L 2 L 2
4 2 2 a A cosf,  Sinf,
~_ 3h, _rv (3.29 (a ):OA(A ) with OA:( sinf, cosh,)’ (3.32
2 2 2 " : S 2 - A A
32 m;1+ m;z

The CP-odd fieldsA; and A, are the mass eigenstates of

As we will see below, the presence 6f,,, gives rise to a M2, with squared masses

modification of the tree-level relation betwer'+ andM?
in Eg. (3.13. Nevertheless, it can be estimated from Eq. 1
(3.29 that this modification, which scales quadratically with 2 ay=5[TrM 2 (+)JTPMZ—4 detM2]. (3.33
the u parameter, is insignificant for almost all relevant val- "2 2
ues ofu of interest to us, i.e., fofu/m; [<2.

We now calculate the one-loop radiative siifi12 to the ~ The mixing angled, relating the weak to the mass eigen-
CP-odd Higgs-boson mass matrix. The analytic result mayStates is uniquely determined by
be completely expressed in terms /ol 2= AMﬁ+ — Orem &S

, [(MB):12)
v COSOp= y
b gosecs VM) [(MB) 1= M3 17
AMZ=AM2 ) : (3.30
v 2.2
v %% 2%6Ck (M)~ M |
S Sinf,= — - —.
It is easy to see that the one-loop radiative shift may be \/(MP)12+[(MP)11_MA1]
entirely absorbed into the tree-level mass matrix in Eg. (3.39
(3.12, after performing an one-loop redefinition d2(®),
namely,M2=M2(©+ AM2 . After this redefinition, the tree-  Finally, we calculate the radiative correctio#/ to the
level mass relation in Eq3.13 gets radiatively corrected as CP-even Higgs-boson mass matrix. The individual matrix
follows: elements ofAMé are given by
3hivy  p?X; 2 2
(AM3)11=55AMS— 5 g(m ,m?), (3.35
T L A
3h4 2 mg A X2
tU2 Xy t MAAL 2 2
(AM3) 1,=(AMZ) 1= —SgCg AME— 1 il Bl R e M) |
16 m;l—nrtz m (me t2) 1 b
v 3hiv?  p?Xt 2 2
(AMZ)15=(AMZ)a1= — —s5cs | AMI+ 5 9(m; ,my)
vs P ° 1672 ( T )2 R
3h 2 2
t UCB 2 t 2 2
— In m,m ) |,
16772( Us) [ ( Q* ) 9(me, M )]
42 me me me 242
(AM2) 2 AM24 3hiv5 | t L, 2A; X, | ty ALXS 5 )
:C n 5 NS L L
S/227— ~p a 1672 m? m% _m% m% (m% _m% )2 )ty
1 2 2 1 2
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2
v 3hiv? teu X M) 3hiv? teuAX? s
(AMZ) 5= (AMZ)50= — —s,c2| AM2+ In| — | — (mz,m7) |,
s)23 s)32 ve BUB a 672 m%—m;z m% 1672 (m;z—m%)z t 0,
1 2 2 1 2
2 4.2 2vy2
2y _ YV 20 2_3htv KX 2 2
1 2

whereX;=A;— ul/tg. Again, we find that almost the entire  The one-loop radiatively correctétlP-even mass matrix,
Q? dependence of the radiatively correct€®-even mass M2=M2(+AMZ, is diagonalized by means of a® or-
matrix given in Eq.(3.39 can be absorbed intM2 by an  thogonal matrixo", i.e.,
one-loop redefinition oM2(®). An exception to this is the
mass-matrix eIementA(Mé)lg. The Q? dependence of the
{13} element can be eliminated by thk,-wave-function (O")TMEO"=diag(M{; ,M{_MP ),  (3.39
counterterm(CT) which is contained in th@ parameter.

To make this last point explicit, we shall apply the non-
renormalization theorem of the superpotential to the couplingvith |\/|21g|\/|22s|\/|§|3. Under this orthogonal transforma-

N SH1iT,H, in Eq. (3.1). Since this operator does not re- tion, the weak states are related to the mass eigenstates
ceive any ultravioletUV) infinite radiative corrections to all  through

orders, the wave-functions & I:|1, andI:|2, denoted aZg,
Zy,, andZy, must cancel against the CT &S\, that is

d)l Hl
oN=(25"2;"z; 2~ 1)\ ¢2 | =0"| Hz |. (3.40
1 2
. bs Hs
=~ 5 (8Zs+ 52y, + 8Zp,) N, (3.39

The entries of0" can be calculated analytically by solving
wherezX?=1+16z,, with z=8, A, andH,. Since only the third-order characteristic equation ME. The procedure
of deriving analytic expressions for the elementsQdt is
very similar to the one presented in Appendix B of Ré&B|,
and we will not repeat it here.

the wave function ofi, receives quantum corrections due to
top quarks, Eq(3.36 becomes

2 C. The Higgsino sector

1
SN=—208Zg \=— —
2 3

(3.37) In addition to the Higgs sector, the Higgsifor neu-
tralino) sector of the MSSM gets minimally extended in the
Here, we have implicitly assumed that the couplingis = MNSSM due to the presence of the neutral SUSY partner of
renormalized at the scal®?=m{. Returning now to the the complex scalar singl& the singlinds. Instead, the tree-

bare Higgs potential in E¢(3.3), we see that the operator |evel chargino sector is identical to that of the MSSM. In the
A2 (S*S)(P1d,) induces the CT RS\, which gives rise to  weak basis

a corresponding CT in the tree-level mass-matrix element

(M3)1, Wo=(B,Ws,hy,h, 3), (3.4

AN 3h? [ve m?
(M §)13:4 (U_ﬁ) <_) ul=— _tz(v_ﬁ) ,ﬂm(—;)_ the Lagrangian describing the neutralino mass matrix in the
vs/ | A 8w\ Us Q MNSSM is given by
(3.38

Adding the CT 6M§)13 to the one-loop resultﬁ(Mg)B, we o 1 .

readily see thaQ? gets substituted byn? . Finally, it is not L mass — 5 VoMot H.e,

difficult to convince ourselves that there are no analogous (3.42

S\-dependent CTs for the operatox$ (S* S)(<I>£fl>2) and
A2 (PId,)(PID,), as they are exactly canceled by the
wave-function renormalization cb,. where

055003-10



HIGGS SCALARS IN THE MINIMAL NONMINIMAL . .. PHYSICAL REVIEW D 63 055003

mg 0 —MgzsyCp 7SwSg 0
0 my MzCuCp MzCySg 0
v
—Mgzs,cz  MzCycCp 0 - — —Sgu
Mo= ’ , (3.43
ZSWS,B Mzc\NSB - M 0 — _Cﬁﬂ
v v
0 0 - — - — 0
SB,M USCB/.L

with ¢,=1-s2=My/M;. In Eq. (3.41), B and W, are  at the 90% C.L., wherer,=g 2/(4m) is the SU2), weak
the U(1), and SU(2) neutral gauginos, respectively, and fine structure constant arid,=2.49 GeV is the total width
hl, h2 ands are the corresponding Higgsino states of thef the Z boson. Moreover, in the seesaw-type approximation
chiral multipletsH,, H,, and3. theaaz coupling is readily found to be

The neutralino mass matrix of the MNSSM given in Eq.

2 2 2
- - - - v W
(3.43 pred_lcts a relatively I_|ght state, Wlth mass smaller than Jamr~ _2(52_ cé) === (Sf%_ Cf;)- (3.46
70 GeV. Since the neutralino mass matrix is identical to that vE gy M

of the PQ- symmetric extension of the MSSM, we call this
light state axin. The axino is predominantly a singlet field 1he constraint in Eq(3.45, together with Eq(3.46), leads
for values of theu parameter in the phenomenologlcally
relevant range, i.e., fdi| =120 GeV. In order to have a first —
estimate of the axino mass, we assume that the gaugino mass ZL M_W

|cos 28| <0.122. (3.47
parametersng andmg, are very large, e.g., of order 500 GeV 92 u?

_ - w

and higher, such that the gaugirdsandW; decouple prac- . . . . )
tically from the neutralino sector. The reducedx3 This last inequality can be translated into the following
Higgsino-mass matrix, which is expressed in the subspacBound on thew parameter

spanned by, h, and's, can then be expanded in terms of |u|=250 Gev (3.49
vlvg, thus yielding the axino mass ' '

for A~g,, and tan3~2. The above exercise shows that in

the MNSSM the LEP limits on th&-boson invisible width
(3.49 . . X

give rise to a new exclusion range @f values 206s|u|

<250 GeV, forn~0.65. However, this additional exclusion
This last formula proves to be a good approximation forrange ofu exhibits a quadratic dependence »rand com-

2 2 2

2)\
—|usin2B|=—- | | |S|n 2B|.
Us

|| =200 GeV. pletely disappears for values nf<0.45.
There are strict collider limits on the axino-related param-
eters, which come from LEP2 and especially from the invis- D. Effective Higgs-boson couplings

ible width of theZ boson[15], in which case a new invisible

decay channel for th& boson into axino pairs opens up

kinematically whemm;=<M /2. Assuming that the gauginos . .

are decoupled from the neutralino mass matrity, we find a_nd z b_oso_ns are very essential for our phenomenqloglcal

numerically that the axino mass is smaller than 45 GeV ford'sc.USSIon In Sec. V. These effective couplings are given by

values ofl u| = 150 GeV and\ ~g,,~0.65. Of course, such a the interaction Lagrangians

numerical estimate crucially depends on the valuesnpf 3 1

andmg,. For example, for relatively low values ofig and Law=9wMw > guvy HiW;W_"“r —Hz,z*

mg, in the range 200-300 GeV, gaugino-Higgsino mixing i=1 (o

effects can no longer be neglected, and the upper limit on the (3.49

u parameter is estimated to increase by 40—-50 GeV. s o
On the other hand, the upper bound on the branching ratio Ow

of the Z-boson invisible width due to a new-physics decay *~HAZ™ CWE E

mode imposes the constrairits]

Apart from the Higgs-boson masses, the effective cou-
plings of theC P-even andC P-odd Higgs scalars to the/*

gHiAjZ(Hi g,uAj) ZH, (3.50

whered ,=d,— d, and
Ay

242F

B(Z—aa)= —Z|gm]?<1.x10°3, (3.45

9H,vv=Cp Ofi+s5 05, (3.5
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A H H
OHiAz= 07 (cp0%—5503;).
Here, we wish to remind the reader that the orthogonal m

trix O* (O") is related to the mixing of theCP-odd
(CP-even scalars and is defined in E.32 [Eq. (3.40].

PHYSICAL REVIEW D63 055003

IV. MNSSM VERSUS NMSSM

Here, we shall compare the generic predictions for the

8Higgs-boson mass spectrum in the NMSSM, which includes

the cubic singlet-superfield coupling, with those obtained in
the MNSSM. For this purpose, we shall only focus on the

It is now worth remarking that the effective couplings (ree-jevel structure of the Higgs sector of the NMSSM, as the

HiVV (with V=2Z,W) andH;A,Z satisfy the unitarity rela-
tions[20]

3 3 2
2 gl X 3 szl (353

In particular, in the limit in whichA, and H; decouple as
singlets, which is obtained for lardés| with the remaining

parameters kept fixed, one recovers the known MSSM

dominant top squark and top quark radiative effects are iden-
tical for both models and have already been computed in
Sec. llI B.

The often-discussed NMSSM is based on the Higgs su-
perpotential

A~ A K A
Wiiggs=\ SH]i oM+ 3 S, 4.1

complementarity relations among the effective Higgs-bosomg ysyal, the complete tree-level Higgs potential is obtained

couplings[16]
(3.59

2 2 2 2
= and = .
OH,vww=OH,A,2 Oh,vw=Oh,A,2

As an obvious consequence of the above decoupling Iimit,_

all couplings of the heavy Higgs scalaks andH 3 to theW
andZ bosons go to zero.
Another very important relation which involves the

CP-even Higgs-boson masses and the respective couplings

to theW andZ bosons is

3
izl gaivv M ﬁi C% (M%) 11+ 2s5C3(M Dot Sz(M 2
2

=M2 | cog 2B+ sir? 28

92+g'2

3h{v 254ﬁ

(3.595

This mass-coupling sum rule is very analogous to the ond , =

derived in Ref.[21] for the MSSM, where the right-hand
side(RHS) of Eq. (3.55 is the squared lightest Higgs-boson

mass in the decoupling limit of a heavy charged Higgs boson

[see also Eq(3.17)]. In this limit, only theH,; boson has
nonvanishing couplings to thé& andZ bosong 16]. Taking
Eg. (3.53 into account, the RHS of E¢3.55 constitutes an
upper bound om/lﬁ,l. As can be seen from E@3.59, the

by adding the relevanE- and D-term contributions to the
soft SUSY-breaking terms induced by the superpotential

LY=m2DID,+m3dID,+miS*S
K
3
Ny (PID )2 =Ny (DID,)— N (P]D ) (D ]D,)
~ (A= \H)(P]D,) (Db

+(NA, SOID,+H.c)+

A, S+ H.c.)

+ N2 S S(DID,+ DID,) + k% (SFS)?
+[ Ak S*3(PId,) +H.c.]. 4.2)

Furthermore, the minimization conditions are determined by
requiring that the following tadpole parameters vanish:

[ Ly ) 1 1 )
T¢1= T,ﬁl =—U1 ml+ E)\A)\Us‘i‘i}\KUS tﬁ
1 1
—)xlui—E(A3+A4—x2)u§+§>\2v§ ,
4.3
dLy ) 1 1 -
<?¢2>:—v2 m;+ E)\A)\US-FE)\KUS tg

1 1
—\v5— > (hat As—\?) v§+§>\2v§

(4.9

aL 1
mass-coupling sum rule is independent of the charged Higg$¢sz<—v> =—vg| m3+AA, Pab2 + E)\Zv2+ KAKE
boson mass, while it only weakly depends grat the one- Ibs \/Evs V2
loop order. The relation§3.53 and (3.55, which are obvi-
ously valid for the case of the NMSSM as well, are very F P02+ 4
useful to reduce the number of independent effective Higgs- KbsT A2 ] @9

boson couplings and so achieve a better control on the nu-
merical predictions for the Higgs-boson masses and cou#/e should remark again that spontane@B violation is
plings. absent in the NMSSM at the tree levd4,22. Also, CP
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appears to be still a good symmetry of the NMSSM, even ifM2(®) | it is now evident that the MSSM limit of the NMSSM
(CP-conserving large radiative top squark mixing effects is obtained forx, A — 0, while holdingx/\, u, A, , andA,
were to be taken into accouff2]. fixed.

Considering the vanishing of the tadpole parameters given Parenthetically, we should remark that the Higgsino sec-
in Egs.(4.3—(4.9), it is not difficult to compute the charged tor of the NMSSM is also different from the corresponding
Higgs-boson mass, and ti@&P-odd andCP-even mass ma- one in the MNSSM. Because of the presence of the operator
trices._ More explicitly, the squared charged Higgs-bosor(K/g) 83 in the superpotentialt.1), the {55}-matrix element
mass is given by of the neutralino mass matrix in E¢3.43 receives the ad-

ditional contribution

1 K 1
M= —( pA = = p? |+ M3~ S\202, (4.6
SpCp A 2
K
. . . =—2—u. 4.
where the would-beu parameter is defined in Eq¢3.11). (Mo)ss N “.9
The entries of the tree-lev€l P-odd mass matriM2(? are
found to be Note that if (M,)s5<0 with x<0,* this additional contribu-
tion to the predominantly singlet state in the NMSSM is
(M2, =M20) constructive, rendering its mass larger than the axino mass in

the MNSSM. However, for small positive values ©f e.g.,
k=<0.1, and|u|=200 GeV, with <0 and A\~0.65, the
2000 _ 20y Y 200, 2K 2 {55}-matrix element (M;)ss is positive and its contribution
(ME)12= (Mp™ )21 vs( SpCpMa " +3 T m ) to the would-be axino mass is destructive, leading to light
singlet masses smaller thamy .

It is now important to notice that unlike the MNSSM
case, the decoupledP-even andC P-odd scalar singlets are
no longer degenerate in the MSSM limit of the NMSSM.

4.7 This fact is a manifestation of the violation of the mass sum
rule (3.19 in the case of the NMSSM. Specifically, in the

where M2 is given by Eq.(3.13. Finally, the entries of NMSSM we find that

CP-even mass matri13© read

2

v K K
(M) 5= 288 ( spcpME@—3 K| T3 uAL
S

3 2 K v? k A

2(0)__ 2(0)__ 2 2| __ Tk

(M2©)1;,=c3 M2+5% M2, 2 M- 2 MRS M= ATkl | sty
(4.10

(M3?) 1= (M) 5= — SgCa(M 2O+ MZI-N%2),
It is obvious that the mass sum rul8.19 can be sizably
violated in the NMSSM for relatively large values |of| and
|u] or |A,|. In such cases, the violation of the mass sum rule
v K becomes much larger than the one caused by radiative top
=— —| s5csMAO—2¢,u2——spu? |, k effects.
Us( pLp Va BT\ SBM ) squark e : ' . '
The analytic expressions of the Higgs-boson masses in the
NMSSM coincide with those of the MNSSM only in the
(ME©) =55 M2+ c5 M@, PQ-symmetric limit, wherac/, tg, mi,—0. Although this
limit is unphysical as it leads to a theory with a visible axion,
its vicinity, however, could define an acceptable region of
parameter space where the predictions of the two models
v P exhibit reasonable agreement.
- —(sﬁcéMi(O)— ZSﬂ,uz—xcﬁ,uz ) An interesting property of the tree-lev€lP-even mass
Us matrix M2(% in the PQ-symmetric limit is that the interval of
the allowedu? values is rather small. This interval may be
determined by requiring that the determinant\b§(®,

(M é(o))laz (M é(o))al

(M3®) 5= (MZ(D)5,

2
v K
(ME®) 5= FSBC/; ( SpCp M2+ XMZ )
s

K K2 5 4Our choice of a negative parameter is mainly dictated by the
N MA+A— p (4.8)  fact thatb— sy imposes a stronger lower limit on positive values of
A wn [23] for relatively small charged Higgs-boson masses, close to
) the present experimental bound, i.e., ¥y, +~80 GeV[15]. In-

From the above analytic expressions Mﬁ+ , and the  gtead, for negative values gf, the bound orx can be dramatically
CP-odd andC P-even Higgs-boson mass matridd$® and  relaxed up to the present LEP2 limjt|=90 GeV[15].
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2 1
v 1
de(Mgwbz-;5[4[M2+ E“? l—M%)coéZB}#ﬁ MﬁfL¥M§WL%EA%ﬂco§2ﬂ
S
. 2 0 1
—2sirf 28 M2 M2(©),2 —(Ex22—M§)g¥2ﬂ
1 1
+ZgﬁzﬁM2M§W M?m—zx%z : 1
MAP~0, MEP~MZO+ a2, (4.16
(4.11
with M2= M2+ M2— 1x%p2=M2O+ M2— M2, be posi- 2™
tive. Neglecting terms proportional tg 202~ M2)cos 28 9% 27~9h az~1. (4.17)
next toM? in Eq. (4.11), we may approximate the determi- ? o
nant detM3®) as Thus, the lightH, and A, scalars decouple from the gauge

bosons, whilst thél, boson couples maximally to them with
v? SM strength. Moreover, according to the mass-coupling sum
de(Mg®)~— —ZMZ[ 4ut=2sirf 28 M5O u? rule (3.59, the H,-boson mass saturates the mass upper
Us bound obeyed by the SM-like Higgs boson. Given that the
length of the allowedu? interval is very small relative to
w24 for 6<1, one does not expect serious changes regard-
ing the heaviest Higgs-boson mas$ég_ andM,, and the
(4.12 qualitative features of the Higgs to gauge-boson couplings as
w takes all other allowed values.
A minimal deviation from the PQ-symmetric limit, in

1 1
+Zg#2ﬁM§W(M§m—§x%2)

Requiring now that deN12(?)) be positive gives the allowed

2 interval: : : ;

M which the NMSSM could easily be compared with the
1 1 MNSSM, is the limitk—0, with A, u, A,, andA, held
ZsiP 28 M2 (1— 8)= u2< —sirt 28 M2 (1+ 5 fixed. In fact, in this limit, the coupling. could be the larg-

4 AMTH J=u 4 AMLH ) est, thereby allowing for the largest possible value for the

(413 lightest Higgs-boson masd; . By the same token, the un-
wanted U(1)q symmetry gets broken by the trilinear soft

with SUSY-breaking self-couplingA . of the singletS. A corre-
sponding limit of the MNSSM, which has the same number
A2%p2 of independent parameters as in the NMSSM, is the one with
6= Tazl(oy (4.14 m3,—0, butX, u, A, , andts fixed. We should also bear in

mind that vanishing otg entails vanishing ofmZ, as well
Here, it is understood thas<1 or, equivalently,Mf,(f) which eliminates the possibility_ ak—0, with mfz fixeq. In
=M2,. Especially forM2®=M2,, for which the terms pro- this way, we compare essentially two models which only
w- ESpecially He — Mws Pro- differ in soft operators of dimensionality<3. An additional
portional to GA%v2—M3)cog 23 are no longer negligible reason that renders such a comparison very interesting is the
with respect taVi?=M2, the allowed range of.> becomes fact that the dimensionful parameters, suchAgsand tg,

remain unconstrained by perturbativity arguments, and hence

1 122p2—- M2 -1 could severely affect the structure of the mass matrices.
2" 2(0) 27 "z : . o .
0<u?<=sif2M32 1+ > cos28]| . The aforementioned physical limit allows for more direct
2 Mz comparisons of the NMSSM with the MNSSM. Equating the

(4.15 tadpole parameters, , T, and Ty pertinent to the two

Further insight into the predictions of the PQ-symmetricmOOIeIS yields, in this limit, the simple refation

limit may be gained by analyzing the kinematic situation
where M3?'>M3, (i.e., 6<1) and u?= p? 4= sicaM2©)
which is approximately the middle point of the allowgd
interval. In this case, we obtaiisee also Appendix B

Ms_% A 4.1
M_)\MK ('&

Moreover, in the same limit, except forM3®),, and
1 (M2, all other elements of the mass matrices coincide
MZO=~ —\%y?sir? 23, as well. In the MNSSMtg/u enters the elementd %)),
t 2 and M2),; in exactly the same way, whereas in the
NMSSM the corresponding parameteryA,)/\ appears in
M2~ M2 co 2/34‘}7\202 Si? 23 these two matrix elements with different coefficients, and
H2 z 2 ' most importantly, with different signs reflecting the violation
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of the tree-level mass sum ru(8.19. The fact that the de- a|ly diminishes the size of de¥(3(?)) irrespectively of the
terminants of theCP-odd Higgs-boson mass matrices in the sign of x/\. For |A, /|51, the first termuA, on the RHS
MNSSM and NMSSM are proportional tats/u and  of Eq. (4.19 becomes dominant. In this case, this term
(kuA)IN necessitates that the two parameters must be botéhould have the same sign ag\, in compliance with our
positive. As a result of this, the matrix elemen§®)3;  earlier requirement thatquA,)/\ be positive. However, as
will be enhanced in the MNSSM, but reduced in thE|AK/M| is getting smaller, the second teréqsin 2'3)\202
NMSSM. In addition, it is not difficult to see that the deter- within the parentheses on the RHS of E4.19 will then
minant of the tree-leveC P-even mass matrix de¥(3”) is  start playing an important role. Fa/A>0 (x/\<0), this

a monotonically increasing function 01\/@(0))33 and is al- second term provides a lowérppe) bound onuA, , which
ready negative if 12(%) 55 vanishes. This last property relies should not be saturated. In fact, the mass of the lightest
on the fact that the upper-left>22 submatrix is positive CP-odd scalar depends crucially on the difference between
definite. Therefore, the larger the mads, of the lightest these two first terms on the RHS of E@L.19. It is then
CP-odd scalar is the largesmalle) det(V %(0)) is in the ©Obvious that |ff</)\ is negatlve,u_AK _couId be negative, zero
MNSSM (NMSSM). On the other hand, a very small value or even a po§|t|ve quantl'ty \.Nh'Ch is bounded from. abovg.
for Nts/p or (kmA,)/\, which amounts to having a very Having gained some insight from the above discussion,

light A,, does not seriously affed é(o), and hence no es- let us now consider the most general case without resorting

sential difference in the predictions for the Higgs spectrumto specific assumptions or kinematic approximations. Then,

between the MNSSM and NMSSM can be observed. In thiéhe .requirement th_at dee(z"®) in Eq. (4.19 be positive
region, both models are close to the PQ-symmetric limit/MPlies the constraint
However, the difference between the two models becomes
appreciable, once the parametats/ux and (xuA,)/\ be-
come large. The first parameter has no upper bound, whereagth
the second one is limited by the fact thad §(©)) 35 should be X
ositive. Thus, only in the MNSSM case a significant depar- K a K -

Fure from the PQ-ysymmetric limit is possiblge, which mpay "“:(GX 52) [A,;sgr(ﬂ VA9 sm2,852;<)\v2},
change the situation drastically. For example, a (4.2
u-independent contribution toM3(?) 45, say T?, changes ,
the coefficient ofu? in the expressioi.11) for det(M2(®), ~ whereA>9 sin 28 £x\v”. We see again tha,=0 is only
and as a Consequence, the a”owed intervalljércan now allowed for k/\N<<0. In this Case/,l/z is constrained to be in
expand(or further shrink for T2 positive (negative. For the ~ the range
particular case tha‘tllﬁ(f)= M2,, the interval ofu? increases N
(decreasesby a factor 1 T?/(\%v2sir?28). As we just ob- 0<pu?<— =—sin28 M2, (4.22
served, such an unconstrain@mnstrainey positive (nega- 2x
tive) contribution is available in the MNSSMNMSSM),
i.e., T>=\tg/u [T?=—(xpA,)/\], wherets (A,) should
be regarded as a-dependent parameter.

At this point, it should be stressed that our discussion o

mo<pu<p, (4.20

Here, it is also important to reiterate the fact that the require-
ment for a positive deN12(?)) constrains by itself thé33}
plement ofMg®:

the NMSSM in the limitk—0, with N\, u, A,, and <A, 2
being kept fixed, by no means exhausts all possible predic- (Mé(o))33<v_zsﬁcﬁ S4Cs Mg(O)_zfﬂz
tions that the model offers for viable scenarios. Being close vg A

to the above limit requires thak/\ |<1<|A,/u|. However,

it is possible to considerably depart from this limit, even if
|k/\| is very small but nonzero, while avoiding the known
problem associated with the presence of a visible axion. In

order to better investigate alternative scenarios that avoid thehe constraint in Eq(4.23 seems to favor negative values
presence of a visible axion, we compute the exact determipf /), as the upper limit onNI2(%),; gets larger in this

2 K’ 2
H(4-38%) 0, 4.23

nant of theCP-odd Higgs-scalar mass matrix case. Furthermore, saturation of the upper bound in Eqg.
« 3 K (4.23 leads toM3©=0.
detM3®) :3X pA— Zsin 28 \22— 3X 5% u? ) M2(0), As the key parametdi/\ | increases, the situation is get-

ting more involved since new terms start playing a role. In
(4.19 . . : 9o
particular, a term which deserves special attention is the one

We shall now examine other possible deviations from theProportional tox?.?/\? that occurs in Eq(4.23. This term
PQ-symmetric limit, for which the. values, however, are becomes very important for larger values Mf,” which
not very different from those determined by the allowed lead to smaller values of and to larger values of? in
interval in Eq.(4.13. Under this assumption and the fact that accordance with Eqg4.13 and(4.14). In such a case, we
|k/\| is considered to be adequately small, the third term ormay hope for an enlargement of the allowed intervajgf

the RHS of Eq(4.19 remains always subdominant; it actu- values, for which det{! é(o)) is positive. Therefore, it would
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be interesting to investigate to which extent such a situation
can indeed be realized, especially for low vaIueMcﬁ]‘f) for 16772W: A
which & is not very small andN13(?)) ;3 appears to be more
severely constrained. To this end, we shall consider the spe-
cial case wherevi ﬁ(f)=M\2N, i.e., 6=1. Then, after taking
into account the constraint in E#.23 and making use of
the fact that det2(®) increases monotonically with wheret=In(Q¥M?). In writing the RG equation§4.26), we
(M2(?) 45, the following inequality may be derived: have ignored possible mass threshold effects of the SUSY
particles while running from the-quark-pole massM,

p =175 GeV up toM,~10' GeV. In the renormalization
1+ Xsin 2B group (RG) analysis, we use the value for the strong fine-
structure constanbzs(Mt)=g§(Mt)/(4w)m0.109. Further-
more, the running-quark Yukawa couplindp, is determined

3
K2+ 2)\2+ Ehtz ),
dx
16m°——=3k (k>+\?), (4.26

dt

de(M2O)< - \%2M2| 2

;)\202_ M2
+%COS" 2B ,LLZ—SinZZﬂ Mg(O) . by
Z (4.24 (M=~ .27
' oot v(Myp) sg(My)’ .
Assuming that the corresponding upper bound in BR3 _
is saturatedi.e., Mi(lo)=0), then Eq(4.24) and the fact that wherev(M)=174.1 GeV and
detM2(®)>0 lead to M,
my(My) = (4.28
1 1+ z—ayM
0<,u2<§sin2 2BM2© 37 (M
1,22 xp2 -1 is the known relation between the on-sHels mass and, .
<| 1+ Zsin 2ﬁ+#co§ 28| . For 3stanB(M;) <10, we find the approximate upper
s bounds
(4.25 IN(M)|=0.70,0.63,0.57,0.44,0.22, for
It is easy to see that fdw/\|<1, the double inequality in IK(My)|=0,0.3,0.4,05 and 0.6 4.29

Eq. (4.25 reduces to our previous result found in E4.15.

We observe now that fot/A >0, the allowed interval oft? respectively. Correspondingly, for t@n=2, we obtain

given by Eq.(4.25 shrinks ag «/\| increases. Instead, for

kIN<0 with |«/\| increasing, the allowed interval gets IN(M,)|=0.65,0.59,0.54,0.42,0.21. (4.30
larger and, especially for values bt/\| close to unity, it

may even become infinitely large. Of course, at this criticalThe results in Eqs(4.29 and(4.30 are in good agreement
kinematic region, radiative corrections are expected to playvith Refs.[19,26. From the above analysis, it is obvious
the dominant role. Notwithstanding this fact, our tree-levelthat the largest value fdin(M,)| is more naturally attained
results should still be indicative of the various tendenciesn the MNSSM[corresponding tac(M,)=0] rather than in
which govern the kinematic parameters of the theory. As wehe NMSSM, as one would generically expek(M,)

will see below, however, values pt/\|~1 are not compat- ~«(M)#0. This is another important difference between
ible with the largest possible value farand hence with the these two models. In particular, this implies that the MNSSM
largest value of the lightest Higgs-boson massg, . generically predicts higher masses for the lightest Higgs bo-

The Yukawa-type couplings and\ cannot be arbitrarily ~SON than the NMSSM. In the next section, _vve_shall study the
large, if we wish to preserve the good property of SUSY that1i9gs sector of the MNSSM more quantitatively and also
perturbation theory be applicable up to the gauge unificatioffOmpare our numerical predictions with those obtained in the
scaleM ,~ 1016 GeV [24]. Therefore, upper limits op\| and ~ NMSSM.
| k| can be obtained by studying their renormalization-group
(RG) evolution along with the corresponding ones of the V. PHENOMENOLOGICAL DISCUSSION
strong coupling constargs and thet-quark Yukawa cou-

oling h, [25.19,26: In this section, we shall discuss the phenomenology of the

Higgs bosons in the MNSSM, and make comparisons of our
dg 3 predictions with those obtained in the NMSSM. At LEP2,
2 —gg, the CP-even andCP-odd Higgs scalarsl; , 3andA, ,, are
dt 2 mainly produced through the Higgs-strahlung process™
—Z* —ZH; or in pairs viae*e*—>Z*—>HiAj. Analogous
16772ﬂ=h 3 h2+})\2— §gz Higgs-boson production mechanisms can take place at Fer-
dt " t2 3% ) milab, where instead of electrons the initial states areuthe

167
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andd quarks at the quark-parton levg27]. Therefore, the — 160 T
necessary ingredients for our numerical discussion following3 [ wanB=2, =065 M\ig/u=1TeV’

below are the analytic expressions for the radiatively-— ;14 [
corrected Higgs-boson masses and the effective Higgs-bosos™ r
couplings to the gauge bosons. These analytic expression :
pertaining to the MNSSM and NMSSM have been presentec 120 =

in Secs. Il and 1V, respectively. F

PRLPRG

. P
W e T P

There are several possible combinations in choosing the 100
independent kinematic parameters for the two supersymmet
ric extensions of the MSSM, the MNSSM and the NMSSM.

. . 80 -, . ' M

For definiteness, for the MNSSM case, we consider ; : : 1
2 Ms 2 60 _' : b : '. -
t'81 MH+’ My )\1 ) and m12! (51) -;I [T I [T I La 1 |§| i [ BT M :-

K 800 600 -400 -200 O 200 400 600 800
as free phenomenological parameters of the Higgs sector. A @ W [Gev]
for the NMSSM, we take as input parameters

2 K/-'LAK — 160 LELILEL I LELELELJ I LELILIL I LELELIL I LELILIL I LELILIL) I LELILIL) I Ty I LELILIL) I LELILIL)
tgr My, py N,k and ——. (5.2 3 [ wnB=2 A=065 Arg/u=004TeV ]
~umf 0 ) ” R
For both SUSY models, the top-squark-related parameterss” [ i H ]
are chosen to have the typical values 2ok Do HE H [ R
Mo=M,=0.5 Tev, A=1 TeV. (5.3 S Pk i3 Do
1000+ ;i 0 I S
Here, we should remark thatZ, in Eq. (5.1) could in prin- [ : H 2 I ]
ciple be absent, without spoiling the renormalizability of the 80 ! ; : : H 2]
theory. In this case, the U(ky symmetry of the MNSSM [ ; i ; : : ' : [
gets broken explicitly by the effectively generated tadpole = H : : : : :
parametertg, which corresponds to a term of the lowest 60 ' | | ' | : | EI : LE 7]

possible dimension, namely, of dimension 1. Such a reduc:
tion of the renormalizable parameters is not possible in the
NMSSM because of the presence 8 which violates (b)
U(l)_pQ_hard_Iy._Th2erefore, it'is fair to concluc_ie tha_t |n_the FIG. 2. Numerical predictions fdv,, as a function ofu in the
admissible limitm3,—0, the MNSSM under investigation e with m2,=0, for M- =0.1 (solid line), 0.3 (dashed ling
represents the most economic, renormalizable scenang 7 qotted ling, 1 (dash-dotted lineTeV.
among the proposed nonminimal supersymmetric standard '

models.

In Fig. 2 we display the dependence of the mass of the=|A—u/tang| which obviously result from large negative
lightest Higgs bosorhi; in the MNSSM withm$,=0 on the  values of u, provided |X,/max(Mq,M,)|=<6 [see Eq.
would-be n parameter, for different values of the charged(3.55].

Higgs-boson mass, i.e., fdy+=0.1, 0.3, 0.7, and 1 TeV. In Fig. 2(b) we consider a smaller value for the tadpole

In Fig. 2@, we choose the tadpole-parameter vakig/ u parameter, i.e.\ts/u=0.04 Te\’. As in Fig. 2a), we

=1 Te\2. As we are interested in maximal values for the present numerical estimates Mle as a function ofu, for
lightest Higgs-boson madd, which occur for low values the same discrete values of the charged Higgs-boson mass
of tang, i.e., for tan3=2, we consider the largest allowed My+=0.1, 0.3, 0.7, and 1 TeV. We find that the allowed
coupling\ =0.65, for which the MNSSM stays perturbative range ofu becomes much smaller, but the maximum values
up to the gauge unification scald ~ 10 GeV (see also  of My, are still very close to those obtained in FigaR
discussion in Sec. I/ As can be seen from Fig.(@, the  Most interestingly, we observe that the maximahbf, are

H;-boson mass varies between 120 and 145 GeV dependingqaieq at almost the same values found for the tadpole

on M+ for a wide range ofu yalues, which is significantly = 55 ameter of 1 Te¥ the maxima are practically independent
larger than the current_ experimental lower bound of 113. f the tadpole parameter, for all relevant valuesog/ u
GeV on the SM-type Higgs boson. Furthermore, we observe

: =0.01-1 TeV. This feature that the allowed range pf
an asymmetry of order 5 GeV M, for large | u[=300 values shrinks aatg/u gets smaller is in good agreement

GeV between positive and negative valuesuofThis is be-  with our discussion in Sec. IV concerning ti@P-even
cause top-squark-radiative effects bh, get enhanced for Higgs-boson mass matrix in the PQ-symmetric limit. Spe-

larger values of the top-squark-mixing parametét| cifically, for small values oftg/u, the allowed|u| ranges

-500 -400 -300 -200 -100 0 100 200 300 400 500
u[GeV]
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can be accurately determined by E¢$.13 and (4.15. In = P UL o e e e e

particular, the mean values of the allowed ranges, which & [ wanB=2, A=065 Aig/p=1TeV

are approximately given bgscz;M+ and are almost inde- E 180 _ ...................................................................................................

pendent oi\tg/w, appear to describe well the location of the = 160

maxima ofMy, . X L emmememmmmnemee]
It is now very interesting to analyze a scenario within the = 140 fo.cesnmsenss=m===r="""7"""

context of the MNSSM, in which the charged Higgs boson

has a relatively low mass, in the ranlyg,+=80-160 GeV, R0 T e

and may be accessed in next-round experiments at LEP: C

and/or at the upgraded Tevatron collider. For this purpose, ir 100 =

Fig. 3 we display numerical estimates of the masses of the %0 -

two lightest Higgs bosonkl; andH, and their correspond- &

ing squared couplings to th& boson as functions of the PN YoV A IR INET I A AT AT I I

parameteru, for M+=80, 120, and 160 GeV. The other 600 -500  -400  -300 200  -100 0

kinematic parameters are chosen to be the same as in Fi @ w[Gev]

2(a): tanB=2, A=0.65 and\tg/u=1 Te\2. Let us first

consider the lowest experimentally allowed value for the N

charged Higgs-boson masé,+=80 GeV[1,15]. Then, in B il Lt 0 4 s o 0 00 e o

Fig. 3(@ we notice that theH,-boson mass cannot become S FH o~ Tt .

larger than 105 GeV, while the next-to-lightéss bosoncan 'y [ IOt

be as heavy as 146 GeV. As can be seen from Flg, 8uch  "s& [ ‘

a scenario is not excluded experimentally, since th&Z
coupling gets suppressed, i.egﬁ,lzzso.z, for |u|=350

5
2412

GeV. In this scenario, thel, boson becomes SM typéd( Mg - -
=Hgy), and is much heavier tha#*. This novel prediction “ﬁ F e T
of the MNSSM for viable scenarios with =My, and O E :‘Hz ....................... :

low values of tapg<<5 cannot be realized within the MSSM, 5
even if CP-violating loop effects are included in the Higgs

sector of the MSSM28,18.° In fact, as we will see later on, H,

neither the NMSSM can naturally accommodate scenarios g 2losa s te oo by eyl by la0yy
with My+ =My, for the experimentally allowed values of -600 -500 -400 -300 -200 -100 0
|| =90 GeV[15]. WGVl

As the charged Higgs boson becomes heavier in the ®)

MNSSM, theH; boson also gets heavier and resembles the FIG. 3. Numerical estimates df) My, and My, and of (b)
SM Higgs bosonHg)y,. Thus, from Fig. 3 we see that for 95'122 andgﬁzzz, as functions ofu in the MNSSM withm?,=0,
My+=120 GeV,My =132 GeV, with gﬁlzz~0-5, while  for M,,+ =80 (solid line), 120 (dashed ling and 160(dotted ling
for My+=160 GeV, it isMy <142 GeV, withgﬁlzzml. GeV.
Furthermore, as we have already discussed in Sec. Il A, for
the considered values M+ much smaller thamtg/u, the ) 5 i .
Higgs states\, andH; decouple and are almost degenerate®S Well as forgy 7, and gi, 7, in the MNSSM, using the
with MZ ~M} ~\ts/x. In particular, our numerical esti- Same input parameters as i2n Fig. 3, but with an20, i.e.,
mates confirm the relationslli *Ma+—M\2N+%)\202 [see N=0.65 and\tg/u=1 TeV-. We enc_ounter a functional

) 5 1 A > dependence of the evaluated kinematic parameteys, dar
Eq.(3.16], andgy 7;~0h,a,z @3nd G}y 77~ 4,z [S€€ EQ.  \M,,. =80, 120, and 160 GeV, which is qualitatively similar
(3.54)], which are only valid in the above specific decouplingto the one presented in Fig. 3. Again, we see that the charged
regime of theA, andH3 bosons in the MNSSM. From Fig. Higgs bosorH* can be lighter than thel; boson, even for
3(a), we see finally that foM+=160 GeV, theH,-boson large values of taB. Yet, we observe that for larger
mass is nearly: independent and equals thg-boson mass H*-boson masses, the squandg-boson coupling to th&
Ma,~179 GeV. This result is just a consequence of the exboson gﬁlzz goes more rapidly to unity than in the tgn

pected decoupling property of a heavy charged Higgs boson=2 case. Here, we should emphasize again thaMas
with My +=160 Ge\>M;. becomes much larger tha,, the predicted values fdvl

approach the one given by the square root of the RHS of Eq.
(3.55, where, of course, the term proportionalXésir? 23
SUsing the codecpH [29] based on Ref(18], one finds that only IS negligible. Therefore, only in this kinematic regime where
for extreme values ofu|=5 TeV and for tan3>20, such a sce- both tan8 and My+ are large, the predictions of the
nario might be made viablgg0]. MNSSM will coincide with those of the MSSM.

In Fig. 4 we display predicted values fMHl and Mu,,
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FIG. 5. Numerical estimates df) My, and My, and of (b)
94,2z andgf, 77, as functions ofu in the MNSSM withmi,=0,

In our numerical analysis in connection with Fig. 3, we for My+=0.2(solid line), 0.4 (dashed ling 0.6 (dotted ling, and
have already observed that for large valuesnoé/u but 0.8 (dash-dotted lineTeV.
small values oM+, theH, boson does not couple strongly
to the Z boson, but it is rather thél, boson which is SM s gﬁlzz>gﬁ2zz, while this inequality of the squared cou-
type. Actually, this kind of behavior is encountered even forpIingS gets inverted foflu|>|u,|. If we now consider

larger VaIlIJeS (?Md“*' prov(ijded)\tS/;L is s#ﬁilciently sfrlnall. hsmaller values foM+=200 GeV for the chosen value of
As was alrea iscussed in Sec. IV, the latter reflects t .
y ?tsl,u, we observe from Fig. 5 that dg| grows,gf|1ZZ

fact that the model approaches the PQ-symmetric limit in } ) _ _
this case. In Fig. 5, we present numerically thelependence Starts higher thagy, 7, and the crossing point of these two

of the two lightestC P-even Higgs-boson massésy and  squared couplings is befol‘éHl reaches its highest value. If
My, and their respective couplings to tIZebosongﬁ1ZZ we now take larger values favl,+, e.9., My+=600,800
and gﬁZZZ’ in the MNSSM withm2,=0, for M,;+ =200, Ge€V, we see thagﬁlzz starts again higher, becomes almost

400, 600, and 800 GeV. In addition, we have selected thanity with MHl close to its largest allowed value, according
value of the tadpole parametits/u=0.01328 TeV. For  to the mass-coupling sum ru(d.55, and intersectgﬁzZZ at
this specific value of the tadpole parameter and Noi+ 3 smaller value oM, . The very special value oftg/u, for
=400 GeV, we see that there is a value @wfwhere the a given value ofM th for which My, and M, become

Higgs statesd; andH, interchange their couplings to the i . )
boson, while being nearly degenerate having a mass close f§u@l at the highest possible value fbt, and gy, 7,

the upper bound df/IHl. We shall denote by, this specific %9&222%0.5 should be regarded as a critical point. Generi-
value of u at which a level crossing in the couplingsidf  cally speaking, for values oftg/u lower than the one cor-
andH, occurs. Thus, for values ¢fc| smaller tharu, |, it  responding to the critical point, thd, boson couples pre-

FIG. 4. The same as in Fig. 3, but with t8s20.
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FIG. 6. Numerical predictions fa@) My, andMH2 and for(b)
94,2z andgf 77, as functions ofu in the MNSSM withm?,=0,
for My+=0.3(solid line), 0.5 (dashed ling 0.7 (dotted ling, and 1
(dash-dotted lineTeV.

dominantly to theZ boson. Instead, ikts/u is higher than

its critical value, it is then théd,; boson that couples with
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FIG. 7. Numerical predictions fa@) My , My,, andM, , and
for (b) gf ;; and g7, ;;, as functions ofu in the MNSSM, for

M +=80(solid ling), 120(dashed ling and 16Q(dotted ling GeV.
Numerical estimates d\‘/IA1 are indicated by dash-dotted lines.

this scenario of the MNSSM, thd, boson has always the

SM Strength. In addition, in F|g 5 we see that almost inde'strongest Coup”ng to th2 boson. A|though not d|sp|ayed in

pendently ofM,,+, the squared coupling&ﬂlZZ and gﬁzzz

remain comparable for a wide range pfvalues. The latter
is an indication of the fact that the critical value ®fs/u
depends only weakly on the charged Higgs-boson rivgss
and has a value close to 0.01 TgVor 0.3 Te\=My+=<1

TeV, where the remaining independent kinematic paramete

are held fixed.

We shall now analyze the predictions of the MNSSM fo

relatively small values of the tadpole parameteg/w. In
Fig. 6, we display numerical estimates Mle and My, as

well as ofgﬁ1ZZ andgﬁzzz, as functions of the. parameter,

for \tg/u=0.0026 Te\’. As for charged Higgs-boson

Fig. 6, the mass of the lighte§tP-odd scalaA, is found to
be MA1%50 GeV and is almost independent bfy+. In

addition, theCP-odd Higgs scala”; has suppressed cou-
plings to theZ andH, bosons, i.e.gﬁlAlzs 10 2, and there-

fore can escape detection at LEP2. In Fig. 6 we naotice finally
'hat the allowed intervals of. values become even shorter
than those found in the previous scenarios of the MNSSM.
These results are all consequences of our choice of a rela-
tively small value for the tadpole parameter and are in good
qualitative agreement with our discussion in Sec. IV pertain-
ing to the PQ-symmetric limit.

It is very interesting to examine the consequences of the

masses, we choodé,+=0.3, 0.5, 0.7 and 1 TeV. It is easy presence of a nonvanishing effective-tadpole terrrmi2 on
to see that, to a good approximation, the functional depenthe Higgs-boson mass spectrum of the MNSSM. Therefore,

dence of the masses of the two light€dP-even Higgs
bosonsH,; and H, are insensitive to the value &f,+. In

in Fig. 7 we plot the dependence of ti@P-even Higgs-
boson masse$!, and My, and the squared couplings
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FIG. 8. The maximal predicted value MH1 as a function of - '."
the charged Higgs-boson mak, in the MNSSM withm?,=0. i Voo v
0 - o v -
O%,zz andgf; 7, as functions of the: parameter, fots= L Vo
—1 TeV® andm3,=0.325 Te\?. Because of the close rela- T H': : u 7
tionship betweeng and mfz, we are now compelled to treat 1'; [ 1:_ ; !
tg as au-independent constant. In fact, fdtgysy=1 TeV, i i b ]
we can easily compute from E(B.4) that the adopted values e R TR I A Ny
for tgand m%z correspond to the typical values & and &g : 450  -400  -350  -300 250 200 -150  -100
és=—1 and&:=1/2. To enable a direct comparison with p[Gev]
Fig. 3, we choose the same values as in Fig. 3 for the re: (h)

maining kinematic parameters of the theory. From Fig. 7, we

see that the presence of a nonvanishing, positive tadpole FIG. 9. Numerical estimates d&) My, and M, and of (b)

term mZ, can shift the maxima oM h, and My towards  gf ;; andgf 2, as functions ofu in the NMSSM, forM,+=0.3

larger values of u|, whereas all other features found in Fig. (solid line), 0.5 (dashed ling 0.7 (dotted ling, and 1(dash-dotted
3 are retained. In Fig. (@), we have also displayed the de- line) TeV.

pendence of the madd of the lightestC P-odd scala’,,
as a function ofu. We see thatM, decreases Withu|

decreasing. This kinematic behavior originates from the fac ! ) .
that the contribution of the off-diagonal terms to @G&-odd mass of the charged Higgs boson increases, the maximum of

mass matrix becomes rather significant for smaller values oY, oceurs for larger values df|, which '_S a consequence
||. Instead, for larger values of|, the corresponding con- ©f the tree-level structure of th@P-even Higgs-boson mass
tribution of the off-diagonal terms is smaller, and leads to theMatrix in Eq.(3.15. On the other hand, the larger the value
mass relatiotM , ~M . of || becomes the larger the top-squark-mixing parameter
1 . . ~ ~

Unlike the MSSM, the charged Higgs bosbh cannot 1% =[A—wu/tg| is getting. Thus, whenX|/max(Mq,M)
be arbitrarily heavy in the MNSSM for fixed given values of = V6., the contributions of the top-squark-radiative effects to
tanp and\, and for natural choices ofts/u and the soft the lightest Higgs-boson mass, become negative, and so
squark masses, i.e., fats/u, M5, Mf<1 Te\?. Figure 8  drive max My ) to unphysical values. For the very same
displays the dependence of the maximum of the lightesteasons, a similar dependence of nix() on M+ is
Higgs-boson mass maM(, ) as a function ofMy+, for  found to apply to the NMSSM case as well.
tanB=2, A =0.65 and for two different values of the tadpole ~ For comparison, we shall now investigate a few represen-
parameteits/u=0.04 and 1 Te¥. The coupling of theH; tative scenarios within the context of the NMSSM. As a first
scalar to theZ boson becomes SM type, ff,+=150 GeV. example, we consider the scenario with g# 2, A =0.65,
From Fig. 8, it is then easy to see that the current LEP2=0.01, and &uA,)/\=0.0026 Te\. Figure 9 exhibits
lower bound on max{iy,) implies the approximate upper the numerical predictions for the two lightest Higgs-boson

limit on My+: My+=<2.7 TeV, almost independently of
%\tS/,u,. This result may be understood as follows. As the
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Sl MR AR AR IS U L L R I masses and couplings in the two models. The only visible
S 1m0k :_ ,~' ; P ; 3 difference between them is that in the MNSSM, the lightest
E 160 _ 5 D oanp=2 % CP-even Higgs bosorH, is consistently 30 GeV heavier
b3 150 3 Y 065 i /3 than the corresponding one in the NMSSM, while the mass
5 E _;f Dy 3 MAl of the lightestC P-odd scalar is about 30 GeV lower.
= 10 3 b , E These findings are in excellent agreement with our discus-
BOE  F Y KHAJA=00026TeV = sion in Sec. IV.
120 E P 3 We shall now analyze in Fig. 10 a second scenario of the
Ty E NMSSM, in which the Yukawa-type couplingis larger, but
100 E ! b o~ 3 with the expression£uA,)/\ being held fixed again, i.e.,
E ' D E k=0.1 and uA,)/A=0.0026 TeV. In Fig. 10, we also
90 ‘ ,-' R : '-_ /\‘ vary the charged Higgs-boson mass in the same way as in
0o Li -4'(";- . -3'50- L :3:)(; L -2‘5(; s :2'0‘; i '1'56 =2 Fig. 9:M:=0.3,05,0.7, and 1 TeV. In this scenario, the
W [GeV] ratio|A,/u| varies from 1.69 fofu|=100 GeV up to 0.096
(@) for |u|=420 GeV, namely the ratipA,/u| is no longer
much larger than 1 for all relevant values |pf|. Further-
- more, ag u| increases, the strong inequali#x, /w|>|«/\|
R H: '~ T 'H'Z' LRSS N '/\ gets gradually violated as well. As a consequence, as the
. [ aeeme S Hz ™ charged Higgs-boson mabk,+ takes higher values, the pic-
%E T ~ ;" . ture starts changing in comparison with Fig. 9. To be precise,

asMy+ becomes larger, we observe a progressive enhance-
ment of the maximum of thél;-boson mas# ™ and of its
respective squared coupling to tﬂ@osongﬁlzz; the values

of My, and g, ,, approach those ofy, and gf, ,;, re-
spectively. In particular, wheM + approaches 1 TeV, a
level crossing effect in the masses and couplings oftthe
andH, bosons takes place and thlg boson becomes SM

i type. In addition, the mass of the lighteStP-odd Higgs
SEEEE FETH SIS W W TS R scalarM,, gets very small, i.e.M ~15 GeV, resulting

10
<450 400 -350  -300 250 200 150 -100 _ _ _
u [GeV] from a partial cancellation of the first two terms on the RHS

--—_

10

=
=

e,
-
-
.

(b) of Eq. (4.19. It is obvious that with increasinge| and|u|,
h . _ the predictions of the NMSSM start slowly resembling those
FIG. 10. The same as in Fig. 9, but wik0.1. of the MNSSM with\ts/x being in the vicinity of its criti-
cal value.

m-asseS\/IHl andMy, imd their czorrespondlng squared cou On the other hand, as the charged Higgs-boson mass de-
plings to theZ bosong; 77 andgy 77 as functions of ther o256 we notice in Fig. 10 that viable scenarios occur for
parameter. We also vary the charged Higgs-boson mass inginaller values ofyu|. In fact, within the specific NMSSM
discrete manner, i.eM+=0.3, 0.5, 0.7, and 1 TeV. We it ,=0.1 that we have been considering here, the experi-
observe thaMy, and M, are practically independent of mental constraintu|=90 GeV[15] implies thatM .+ can-
My+, with My, consistently below 80 GeV. Such low val- not be lighter than 180 GeV. Of course, such a scenario
ues of|\/|Hl are still acceptable at LEP2, in the rangegof could be directly excluded from the fact that for small posi-

values wherg? ,,=0.07. In this scenario, the., boson has tiye _v'alues ofk~0.1, the Iight_e_st singlino state cont.ributes
G2z 2 significantly to theZ-boson invisible widtisee also discus-

a SM-type coupling to the boson. Also, the mass of the oy after Eq.(4.9)]. For this reason, we present in Fig. 11
lightestC P-odd Higgs scalaM, is almost independent of ,\merical estimates for a related scenario with negatiye
My+ and comes out to be slightly higher thah, . The je, «=-0.1. We also choose a smaller value for
NMSSM under discussion, with the chosen low valuexof (kuA,)/\, i.e., (kuA,)/N=—0.0021 TeV, so as to obtain
~0.01, may be considered to adequately describe the limita light CP-odd Higgs staté\;. In Fig. 11, we observe again

ing scenario wherec—0 and A, is held fixed. This last the same characteristics as in Fig. 10, namely, as the charged
fact enables one to directly compare the present scenario ¢figgs-boson mass decreases, viable scenarios take place for
the NMSSM with the MNSSM where the tadpole parametersmaller values of u|, leading to a similar lower bound of
A/ w is set to the same value with that of ¢A,)/\, i.e., about 180 GeV orM+. In fact, after having carefully ex-
Ms/u=0.0026 Te\?. Such a scenario in connection with plored all the relevant parameter space of the NMSSM with
the MNSSM has already been analyzed above in Fig. 6tang=2, we found that this is a general feature of the
Thus, if we now compare Fig. 9 with Fig. 6, we observe NMSSM for any perturbative value of and « (see also
resembling numerical predictions for the Higgs-bosondiscussion beloyv Consequently, as in the MSSM, the SM-
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type Higgs boson in the NMSSM is also predicted to be - 180 R PR I R IR (UL B R R
lighter than the charged Higgs boson. S 170 s i
To get a better understanding of this last phenomenologi-—, | tanf =2 v f N ]
cal feature of the NMSSM, it is very instructive to analyze a x° voA=065 % NS
scenario where the Yukawa-type couplingand\ are com- . 150 . Kk=-01
parable in size. Specifically, we choose=0.5 and k= S 140 S AL k= - 00020 TeV?

—0.45. According to our discussion in Sec. IV, the param- ;34
eters of this model have been chosen in a way such that th it
charged Higgs boson might be allowed to become lighter

than the one predicted in the previous scenarios of the 110 FA

NMSSM. Furthermore, in order to obtain the largest possible 199 Y

values for the masses of tl@@P-even Higgs scalars, we al- . L]

ways fix A, by the requirement that thA; boson be ex- Lo . | AN |
tremely lighf of the order of a few GeV. Having the above 80 o0 00 350 300 250 200 w150 100
in mind, we present in Fig. 12 numerical estimatesMbf, W [Gev]

andMy,, andgf ;; andgf, -7, as functions of thex pa- @)

rameter, for charged Higgs-boson massés+ =120, 400,
and 800 GeV. We observe that fou|=100 GeV, theH N U LI A B e o B B B L S =

S

120

-
Y

e
.,

o
[
T

JIT

Iy
a

H2ZZ
-

boson is always SM type. In addition, fof,+=120 GeV, 4, . eSS
the mass of théd, boson has a maximum ef113 GeV at .
|| =100 GeV Withgﬁlzz= 0.5, which is close to the present

experimental lower bound of LEHZA]. In this scenario, the i
next-to-lightesiC P-even Higgs bosohl, has a smaller cou-

pling to theZ boson and its mass varies between 120-130 10 |
GeV. For larger values df1,,+, theH; boson is always SM :

.....

Hizz’

.
v
’
1 ’
'
V
'

type, withMy ~120-130 GeV for a wide range §j| val-

ues, whilst theH, boson is very heavy and decoupled from Hy; Hp H)

the lightest Higgs sector. | : : |
Our numerical analysis as presented above in Fig. 12 ex: i i :

plicitly demonstrates that fdvl;+ = 120 GeV, the mashl o] W W I PPN & T IR H I I | O

of the lightestCP-even Higgs boson becomes acceptable A4S0 400 350 -300 250 200 150 -100

only within a very narrow interval dfu|, which is, however, ) WG]

close to its current lowest bound as set by LEPZ]. Thus,
even within this optimized scenario of the NMSSM with  FIG. 11. The same as in Fig. 9, but wita=-0.1 and
|k/IN|~1, the H,; boson cannot become heavier than thexuA,/\=—0.0021 Te\.
charged Higgs boson. Therefore, we reach the conclusion
that a possible discovery of a charged Higgs boson lightefionally by a set of hidden-sector superfields which break
than 120-130 GeV and a SM-type Higgs boson heavier thag— 1 "supergravity spontaneously. In such a supergravity
130-140 GeV can only be naturally accounted for within thescenario, the absence of harmful destabilizing tadpole diver-
MNSSM. gences at lower loop levels can be assured by forcing the
complete superpotential and Kar potential to respect spe-
VI. CONCLUSIONS cific discreteR symmetries. In particular, we have been able
_ _ _ ~ to show that with the imposition of the discrd®esymmetries
We have co-nS|dered the S|mple§t extension of the m|n|mag§ and Z%, the potentially dangerous tadpole divergences
supersymmetric standard model, in which theparameter first appear at the six- and seven-loop levels, respectively,
has been promoted to a dynamical variable by means of gnd hence are naturally suppressed to the order of the elec-
gauge-singlet superfiell, with the linear, quadratic and cu- troweak scale, without destabilizing the gauge hierarchy.
bic singlet-superfield term§, $2, and $%, absent from the The MNSSM we have been studying in this paper has a
superpotential. Moreover, we have assumed that the breakirfyymber of appealing field-theoretic and phenomenological

of SUSY in the observable sector is communicated gravitafeatures, which may be summarized as follows.
The model provides a natural solution to the so-called

u-problem of the MSSM, since the value of theparameter

can now be directly set by the VEV of the gauge-singlet
SDespite its similarity, our scenario differs from the one discussed y y gaug g

in Ref.[31] very recently. In our case, the tree-level valuesAgf superfieldS which is of the required order dlsysy, as a

R R :
andA,., required forM , ~0, are not forced to be suppressed. The CONsequence of th€g and Z7 symmetries.
latter turns out to be the case only within a very narrow range of The presence of the effectively generated tadpole terms

values close to the upper end of the interval given by B®R2. linear in S and Fg (or é) breaks explicitly the continuous
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= 130 pre e T mal supersymmetric extension of the MSSM. In the
S o tanB=2 A=050, x=-045 M, =0 E NMSSM, the violation of the mass sum rule can become
= 3 ; i 3 much larger than the one induced by the one-loop top-squark
s 130 \ or top-quark effects, especially for relatively large values of
L nof e 5 53 |&|, || and|A,].
s E e [y A generic prediction of the nonminimal supersymmetric
110 — - ] standard models is that for low values of f@nthe lightest
100 E = CP-even Higgs-boson massy, increases significantly with
90 _ growing |\| [see Eq.(3.18]. Since in the MNSSM\ can
F 13 take its maximum allowed value naturally corresponding to
S0 E the NMSSM withx=0, the value oM, is predicted to be
70 & i i the highest, after the dominant top-squark-loop effects have
PN SV AR FEETE FRETE FEETE ST P P P been included, i.eMy =145 GeV. Therefore, such a sce-
900 800 700 -600 -500 -400 -300 -200 -100 nario can only be decisively tested by the upgraded Tevatron
(a) u[Gev] collider at Fermilab and by the Large Hadron CollideHC)
at CERN.
The MNSSM can comfortably predict viable scenarios,
NNE U SRS RS R L LN NS I RN where the mass of the charged Higgs bosbh is in the
\ range 80 Ge¥My+=3 TeV, for phenomenologically rel-

\

evant values of u|=90 GeV. In particular, numerical esti-
mates in Sec. V reveal that a possible discovery of a charged
Higgs boson, wittM 4+=<120 GeV, and a neutral Higgs bo-
son, WithMle 130 GeV, can only be naturally accounted

for within the MNSSM, whereas the NMSSM would be
highly disfavored. This important phenomenological feature
of the MNSSM, which is very helpful to discriminate it from
the NMSSM, is a reflection of a new nontrivial decoupling
limit due to a large tadpolé&g|, which is only attainable in
the MNSSM{[see also discussion of the paragraph that in-

2 ||||||||||||||||||||||||||||||-:::||||||'||| CIUdeSEq(316)]

10 . . L
0 900 800 700 -60O -500 -400 -300 -200 -100 For scenarios withM,+=200 GeV, the distinction be-
n[GeV] tween the MNSSM and the NMSSM becomes more difficult.
(b) In this case, additional experimental information would be

necessary to distinguish the two SUSY extensions of the
MSSM, resulting from a precise determination of the masses,
the widths, the branching ratios and the production cross
sections of theC P-even andC P-odd Higgs bosons. Never-
theless, if the tadpole parametets/ u becomes much larger
than Ma+ with the remaining kinematic parameters held
U(1) poand its discrete subgroups. Thus, the model offers  fixed, the Higgs statesi; and A, will be predominantly
a natural solution to the visible axion and cosmologicalsinglets. As an important phenomenological consequence of
domain-wall problems. this, the complementarity relationé3.54 between the
Depending on the underlying mechanism of SUSY break+, .77 andH, ;A,Z couplings will then hold approximately
ing, the effective tadpole proportional ts could in prin-  true in the MNSSM. However, these relations will be generi-

Ciple be absent from the model. Such a reduction of thQ;a”y violated in the NMSSM, as there is no ana|ogous de-
renormalizable operators does not thwart the renormalizabilcoupling limit in the latter model, in which the statels and

ity of the theory. The resulting renormalizable low-energya, could decouple as singlets.

scenario has one parameter less than the frequently-discussedThe MNSSM also predicts the existence of a light neu-
NMSSM with the cubic singlet-superfield termx/8)S®  tralino, the axino. The axino is predominantly a singlet field,
present; it therefore represents the most economic, renormdbr |« |=120 GeV. LEP limits on th&-boson invisible width
izable version among the nonminimal supersymmetric modiead to the additional constraint 28Qu|=<250 GeV, fora
els proposed in the literature. ~0.65. However, such a constraint disappears completely
As opposed to the NMSSM, the MNSSM satisfies thefor smaller values of\, namely, forA=<0.45. In fact, the
tree-level mass sum rui@.19, which is very analogous to axino may become the LSP in the MNSSM. In this paper we
the corresponding one of the MSHI¥6]. This striking anal-  did not address the issues associated with the cosmological
ogy to the MSSM allows us to advocate that the Higgs sectoconsequences of the axino on the reheating temperature of
of the MNSSM differs indeed minimally from the one of the the Universd32] and on the dark-matter problem. A detailed
MSSM, i.e., the introduced model truly constitutes the mini-discussion of these issues may be given elsewhere.

FIG. 12. Numerical estimates ¢& M}, andM,, and of (b)
94,2z andgf ;, as functions ofu in the NMSSM, with the con-
straintMAlzo, for My+=120 (solid line), 400 (dashed ling and
800 (dotted ling GeV.
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The present study has shown that the MNSSM is a viableery last step in Eq(A2) shows that a tadpole contribution
scenario, which departs minimally from the MSSM, having ato the effective potential is proportional to one poweib
large number of appealing field-theoretic and phenomenoat most. Such tadpole contributions which remain propor-
logical features. Even though further refinements of outtional to Mp will be referred to as “harmful” to be distin-
treatment of loop effects might be very useful, such as theuished from the “harmless” ones in which the cutoff de-
inclusion of one-loopD-term contributions to the effective pendence disappears. In this context, an additional
potential and the computation of two-loop leading logarith-requirement for a tadpole graph to be harmful is thadte an
mic corrections, our predictions for the Higgs-boson massven integer. Finally, the degree of divergence can also be
spectrum as well as the results of our comparative analysidetermined by the number of loopsand superpotential ver-
between the MNSSM studied here and the frequently disticesV through the relation
cussed NMSSM are not expected to modify dramatically. In
particular, we find that the MNSSM can naturally predict _
viable scenarios in which the charged Higgs bosbh is D—2n—§ Va- (A3)
much lighter than the neutral Higgs boson with SM-type
coupling to theZ boson. The planned colliders, i.e., the up- In summary, one finds that a set of vertices produces a harm-
graded Tevatron collider and the LHC, have the potentiaful tadpole divergence if the following equalities are all si-
capabilities to test such interesting scenarios with a relativelynultaneously satisfied:
light H*, as well as probe large domains of the Higgs-sector

structure of this truly minimal supersymmetric extension of _ o _
the MSSM, the MNSSM. b 1+§ dvd+; dUg=2n % Va=even,

(A4)
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APPENDIX A: NONDESTABILIZING TADPOLE Z?-

DIVERGENCES

R
Employing standard power counting rulés10], we shall 1. The Zg case

show the absence of harmful tadpole divergences up to a Here, we shall show that the potentially harmful tadpole
sufficiently high loop orden, i.e., n<5, within the context divergences are absent up to five loops. Alternatively, we
of the supergravity scenarios described in Sec. Il. It is usefushall prove that it is impossible to construct a tadpole dia-
to briefly review first the sufficient conditions that govern thegram from the sets of vertices which satisfy the condition
absence of harmful tadpole divergences. To this end, let ugA4) for n<5, corresponding t® < 10. Suppose now that at
consider a supergraph with one external leg, i.e., a tadpol€ast one superpotential vertex is involved in a tadpole su-
graph. The tadpole graph may involve a numbgrof su-  pergraph. Based on E¢A3), we see that we need at least
perpotential vertices of dimensici+ 3, which are of the two superpotential vertices to form a tadpole graph vith
form z¢"3/M % wherez represents a generic chiral superfield, €ven, i.e..24Vy=2. Thus, forn=5, one hadD<8, and by

and a numbetJ, of Kahler-potential vertices of dimension Virtue of Eq.(A1), itis 24d V4=<7 andd<7. In the case that
d+2, which have the fornz®*%/MY. Then, the superficial N0 Superpotential vertices are involved, we have the relation

D=1+3,4dU4=<10 or 24dU4<9 on account of Eq(Al).
We consider it obvious that it is impossible to form a tadpole
graph with only one Khaler-potential vertex ofl=9. This
observation excludes Kéer-potential operators ofl=9.
D= 1+Z d Vd+2 d Uy, (A1) Furthermore, as we will see below, the impositionZ§ on

d d the complete Khaler potential does not permit operators of
d=1. If we now wish to satisfy the above constraint
>4dUy=<9 with two vertices, we then need one operator of
d=2 and another one ofl=7; the latter is the Kaler-

degree of divergence of the tadpole graph, e.g., th&, is
given by

which leads to a contribution to the effective potential

1 AD M3 D+ 2qd Vg+ 2qd Ug X - : _ .
Susy potential term of the highest dimensionality that could par-
(1672)" M Zad Va* Zad Ug ticipate into a harmful divergent tadpole graph witks5.

Consequently, we reach the conclusion that only superpoten-
5 tial and Kanler-potential vertices witld<7 will be of rel-
~ 5 MpMgysyStH.C, (A2)  evance here.

(1672)" . . . .
We shall confine ourselves to a minimal model, in which

wheren counts the number of loops adgysy is the soft  Only the superfield$i;, H,, andS are present and ignore
SUSY-breaking scale. In obtaining the last step of &g), ~ quark and lepton superfields, as they do not couple directly
we have used\ ~Mp as a natural energy cutoff scale. This to S; the inclusion of the fermion superfields is straightfor-
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ward and does not alter our results. Moreover, we shall not

include in the list of Kaler-potential terms those obtained by K@=
multiplying the latter with any power dfilH,, HJH,, $*S.

The reason is that the omitted terms generate graphs of

PHYSICAL REVIEW D63 055003

higher loop order than the included ones. (3)= +H.c.
Having the above in mind, we are now able to list all 3 Mg ’
superpotential and Kder-potential terms ofi<7, respect-
ing the discreteR symmetryZF [see Eq(2.6)]: < S(ATimH,)® e
5— &5 Edd]
o A M3
W: Wo=S(H;imH,) 6(0)+H.c., W, MP5(0)+H.C., ST )
Ke= 5 +H.c.,
(HI| TzFI 2)3 f— M P
W3E—35((9)+H.C., o a oA
Mp S'(HiiT,H))
Ky=———=—+H.c,
S(AlinA,? M
4 Mg a(0)+H.c., where §(60) is the usual Grassmann-valuédfunction. No-
tice that the term& (", K{?, andK§®) represent the usual
éG(HIi A, Higgs—superfield. propagators and have no direct effect on
Wg= ————— 8(8)+H.c., our power counting rules. These terms are merely needed to
P contract the superfields in propagator lines and so form a
A loop supergraph. Furthermore, from E¢a5) and(A6), we
B s observe thaZ EFf forbids the appearance of superpotential op-
WG:W‘S( )+H.c., erators ofd=2 (W,) and of Kaler-potential terms ofd
P =1,4 (K1,Ky).
S(ATir,A,)8 In_ the following, we shall sys.temati(.:ally analyze. _aII
=" 1 2% S56)+H.c. (A5)  Possible sets of vertices compatible with the conditions
MS in Eq. (A4) up to five loops. At the one-loop levehE 1),
with 4V4=0, we readily find from Eq(Al) that 2 4d Uy
K Kgl)EﬂIHL ng)zﬂ;ﬁz, K((f)zé*é, (A6) =1, entailing the absence of contributing operators. The

situation becomes increasingly more involved fiet 2, 3, 4

K,= SZ(HIil'sz) c. Kgl)E—Z-I—H.C.,
Mp Mp follows.
. Nn=2:
(a) D=2, %vdzz, %dvdJr; dUg=1:
{Wo, Wi}
(b) D=4, %vfo, %dud=3
{K}.
Il n=3:
(a) D=2, ;Vd=4. %dvtﬁ—; dUg=1:
{3Wo, Wy}

055003-26

and 5. More explicitly, our systematic search for the exis-
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(b) D=4, ; Vy=2, % dVd+§ dUy=3:
{Wo,Wa}, {Wo,Wy,Ka}, {2Wo,K§'};
(c) D=6, 2, V4=0, ; d Uy=5:

{Ks}, {Kz,K$}. (A8)

(a) D=2, 2, V4=6, % dvd+§ dUg=1:
{5Wo, W4 };

(b) D=4, Ed‘, Vy=4, §d‘, dvd+§ dUy=3:
{38Wo,Wa}, {Wo,3Wy}, {3Wo, Wy Ko}, {4Wo,KY};

(c) D=6, ; Vy=2, % dvd+§ d Uy=5:

{Wo,Ws}, {W1, Wy}, {Wo,W3,Ky}, {Wo,Wy,2K5},

{2w, KDY, [2Wo,Ks), {2Wo, Ko, KDY
@ D=8 3 V=0, I dU,7
{2K, KDY, 1K, Ks), {Ks). o

IV. n=5:

(a) D=2, %vfs, Ed)dvd+§d) dUg=1:

{7Wo, Wy}
(b) D=4, %vfe, % dvd+§ dUy=3:
{3W0,3W1}, {5W0,W3}, {5W0,W1,K2}, {GWO:KQ)};
(c) D=6, ;Vd:‘l: ; dVd+§ dUy=5:

{3Wo,Wa}, {2Wo, Wy, W,}, {Wo,2W;, Wa}, {3Wo,W3,Ko}, {Wo,3W;,Ky},
{2Wp,2W, KL, {3Wo, Wy, 2Ky}, {4Wo,Ks), {4Wq, Ko, K}
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(d D=8, gvfz, % dVd+§ dUy=7:

PHYSICAL REVIEW D63 055003

{W07W7}1 {W11W6}1 {W31W4}1 {W01W5!K2}! {W11W41K2}1

{Wo, W, KL, {Wy Wy, K}, {Wo,W3,2K,}, {2W; Ks},

{2W, K5, K9}, {Wo, Wy, Kg}, {Wo,Wy,3Ky}, {Wo,Wy K KDY,

{2Wy, K7}, {2Wo, Ky, Ks}, {2Wp,2K,,KE};
(ep D=10, 2 V4=0, z dUy=9:
d d

{K2,K7}, {2K5,Ks},

{3K,,KE}, {Ke K},

{K§ K KL

(A10)

Herei,j,k=1,2,3. The remaining task is to show that the
sets of vertices listed above do not produce tadpole graphs.
This can be best verified case by case algebraically in the
following manner. First, we multiply all the vertices belong-

ing to a set and formally substituté]H,, AJH,, and$*S
with 1 into the product of vertices. Then, we examine

whether terms linear i or $* survive in the resulting ex-
pression. In this way, we have carefully checked that there

are no such terms linear i or S for all sets of vertices
listed in Egs.(A7)—(Al10), thus implying the absence of
harmful tadpole graphs up to five loops.

At a higher loop level, we can construct tadpole super-
graphs by making free use of the renormalizable superpoten-
tial vertexW, in Eq. (A5) together with some of the above
vertices, e.g., the higher-dimensionalHer-potential verti-
cesK, andK; defined in Eq(A6). Specifically, we find that
the set of vertices

{4W, K, K5} (Al1)

leads to the typical six-loop tadpole graph depicted in Fig.
1(a). Also, it is not difficult to see that the above graph is
actually a harmful divergent one since the set of vertices in
Eqg. (All) satisfies the global constraint of EgA4), with n

=6, D=8=even, 243Vy4=4, and Z4dVy4+Z24dUyq4

= de Ud: 7

2. The Z% case

In this section we shall show that the symmeZy pro-
hibits the presence of all possible harmful tadpole diver-
gences up to six loops. Following a line of arguments similar
to the Z? case, we conclude that only superpotential and
Kahler-potential operators witd<9 are of interest in this
case. Therefore, we list all possible verticeslef9, respect-
ing the discreteR symmetryZ5 [see Eq(2.9)].

055003-28

Wo=S(HTir,H,) 8(6)+H.c.,

<5
WZE M—%a(a)-f-HC,

_ (AfimHy)°

3
Mz

8(6)+H.c.,

A54(|:|Ii Tz|:|2)2
W5E—5
Mp

5(0)+H.c.,

S(ATinfy)
Ew(xawuc.,

7
=]

S3(H{imH,)*
== 1 2% S6)+Hc.,

8 M|8;
g2
WQEW ( f)+H.c.

KM= H.c.,
M3
S*(ATiT,H,)?
K(32)E(1—322)+H.C.,
Mp
S*4(H{imH,)
Ky= — 2 +H.c,
Mp
S S(H]iT,Hy)3
Ks= —g+Hc, Ke=——2+Hc

(A12)
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K= +H.c.,
Mg
S*2(ATir,H,)

K(z) 1ti2ri2 H
8 — 8 y
Mp

S(HTiT,H,)®
KP="""22 4 Hc,
Mp
S*S(HTir,H,)
K(gz)_ 1h72h2 H

(A13)
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potential operators ofi=1,4,6 W;,W,,Wg) as well as of
Kahler-potential terms ofl=1,2,7 K,K,,K).

As we did for theZ{ case, we shall determine all possible
sets of vertices compatible with the conditions in E&¢) up
to six loops. Again, it is not difficult to see that at the one-
loop level h=1), with £4V4=0 and £4,dUg4=1, one is
unable to find contributing operators. Furthermore, the ab-
sence ofd=1 operators leads to the constraint

> dVg+ > dUy=D—-1>1, (A14)
d d

i.e.,, D>2. This observation simplifies further the search for
the existence of possible harmful tadpoles. Thusnpfe2, 3,
4, 5 and 6, we find the following sets of vertices.

. n=2:
(a) D=4, %vdzo, %dud 3:
K (A15)
. n=3:
(a) D=4, Ed)vdzz, édvdJr% d Uy=3:
{Wo,Wa}, {2Wo,KE};
(b) D=6, gvfo, édufs:
{Ks}. (A16)
. n=4
(a) D=4, ;Vd=4, ;dvde; dUyg=3:
{3Wo, W3}, {4W,,K§};
(b) D=6, ;Vd=2, gdvd+; dUy=5:
{Wo,Ws}, {Wo, W3}, {Wo,W,,K$}, {2Wq,Ks});
(c) D=8, gvdzo, gdudzr
{K$) Ky} (A17)
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IV. n=5:

(a) D=4, Ed)vd=6, % dvd+§d) dUy=3:
{5Wo,Wa}, {6Wo, K},

(b) D=6, % V=4, ; dvd+§d‘, d Uy=5:
{3Wo,Ws}, {2Wo, W, , W3}, {3W0,W2,Kg)}, {4Wo,Ks};

(c) D=8, gvdzz, ; dvd+; dUg=7:

{Wo, W}, {Wz,Ws}, {Wo,W>,Ks}, {Wo,Ws3,Ka},

{2W,, K, {2Wo,K$) K 4}
(d) D=10, X V4=0, > dUs=9:
d d

(K}, {Ka Ksh, {KE Keh, {KE K KEY

(a) D=4, gvfs, % dVd+§ dUy=3:
{7Wo, W3}, {8W07Kg)};

(b) D=6, gvfe, }d) dvd+§d) dUy=5:
{5Wo, Wa}, {4Wo,Wp,Wa}, {5Wo,W,,KE}, {6Wo,Ks};

(c) D=8, }djvd=4, Ed‘, dvd+§d: dUy=7:

{3Wp, Wy}, {2W,Wo, W}, {Wy,2W,, Wa}, {2Wy,2W,,KE},

{3Wp, W3, Ky}, {3Wo,W,,Ks}, {4W0,Kg),K4};

(d D=10, %vd=2, ; dvd+§ dUy=09:

{Wo,Wo}, {Wo,Wo}, {2Wo, K},  {Wo,W5,Ke},  {2W,,Ks},
{Wo,Ws,Kab,  {Wa,W3,Kgb, {2W5, K}, {Wo,W,, K Ky},

{2Wo, K Kg}, {2Wo,Ky K}, {Wo,Wa,KE KPS, {2Wo,KE) KY K
() D=12, > V4=0, >, dUg=11:
d d

{KP KPY {KsKeh, (K. 2Ka) (K KD Ke). (A18)
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The indicesi,j,k take admissible values according to Eq.two gauge-singlet SUSY extensions of the MSSM in the
(A13). Again, we have carefully checked that terms linear inPQ-symmetric limit, i_e_K/)\,tS,mfz—>0_ Of course, a kine-
S or § do not survive when the product of all vertices matic situation close to the PQ-symmetric limit can more
within each set listed in Eq9A15)—(Al18) is formed by naturally be realized in the NMSSM rather than in the
formally replacing the bilinearsl]H,, H3A,, andS*Swith  MNSSM wherets/u is expected to be unsuppressed of
1. order M%,s,. Additionally, we shall assume thatl-
Nevertheless, at the seven-loop level, we can still con>M,,. For notational simplicity, we have everywhere
struct tadpole supergraphs by combining the renormalizablgropped the superscrifd), e.g., fromM a(f), M2O etc., as
superpotential vertexW, four times with the higher- g quantities involved in this appendix are evaluated at the
dimensional Kaler-potential verticek$" and K¢ in Eq.  {ree level.

(A13). In other words, the set of vertices In the limit of a heavwy H*, the quantity

(1) . . .
{4Wo ,K3",Ke} (A19)  5—\\2p2/(2M?) defined in Eq(4.14) is much less than 1
gives rise to the typical seven-loop tadpole graph of Fig.and therefore serves as an expansion parameter in our calcu-

1(b). Finally, we can check that the global constraint of Eq.lations. In this limit, it is a reasonable approximation to get
(A4) is satisfied, withn=7, D=10=even,S4V4=4, and 10 its value in the middle of the allowed? interval deter-

S 4dVy+ S4dUg=S4d Ug=09. mined by Eq(4.13, i.e., u”= ufig=S5c5M3, at whichMy
is expected to approximately acquire its maximum. Then, the
APPENDIX B: THE PECCEI-QUINN-SYMMETRIC LIMIT tree-level CP-even Higgs-boson mass matrZ may be

In this appendix we shall derive the analytic expressiongast, up to terms of orde?M3, into the approximately di-
for the Higgs-boson masses and couplings pertinent to thagonal form

%)\szsgﬁ 0 0
(O"TMZ0M= 0 MZcs 5+ 3N 2v2s3, (30202 = M3%)S;4C5 , (B1)
0 (GN02=MDsyc Mo+ iN202ci,— (GNv2-M7)syy

by virtue of the orthogonal matri©@"

SON(Nw) 8S5Co5  Cp  —sp(1—306%C3,)
Of=| —sgn(Au) 8cpCop Sp  Ca(l—38%C3,) | +O(S°), (B2
—38%c3, 0  sgn(Au) 8Cyp

where we have used the short-hand notasign=sin28 and  (3.52, we obtain, up to orded?, all the coupling$H;ZZ and
Cop=CO0S . HiAZ:
Likewise, the orthogonal matri©”, which diagonalizes
the CP-odd Higgs-boson mass matrik/lé in the PQ-
symmetric limit, is easily found to be 9n,22=0, On,zz= 1, Ghyzz=0,

1 —sgnAu) & 1 . B3 OH,AZ= 8% Cap, Or,A,z= 0, Onoa,z=—SAN(A ) 6,
[1+ §2 -1 —Sgr()\,u,) )

or=

OH,A,2=SAN(A ) 6Cap,
In the PQ-symmetric limit, th€ P-odd mass matrit 3 has
one massless eigenstadg and one massive ong,, with
MZ, =M3+3 N2 o . 5 Li 84
Substituting Egs.(B2) and (B3) into Egs. (3.51) and Ohan,2=0r Ohpnz=17 5 (14 C3p). (B4)
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