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Higgs scalars in the minimal nonminimal supersymmetric standard model
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We consider the simplest and most economic version among the proposed nonminimal supersymmetric
models, in which them parameter is promoted to a singlet superfield, whose self-couplings are all absent from
the renormalizable superpotential. Such a particularly simple form of the renormalizable superpotential may be
enforced by discreteR symmetries which are extended to the gravity-induced nonrenormalizable operators as
well. We show explicitly that within the supergravity-mediated supersymmetry-breaking scenario, the poten-
tially dangerous divergent tadpoles associated with the presence of the gauge singlet first appear at loop levels
higher than 5 and therefore do not destabilize the gauge hierarchy. The model provides a natural explanation
for the origin of them term, without suffering from the visible axion or the cosmological domain-wall problem.
Focusing on the Higgs sector of this minimal nonminimal supersymmetric standard model, we calculate its
effective Higgs potential by integrating out the dominant quantum effects due to top squarks. We then discuss
the phenomenological implications of the Higgs scalars predicted by the theory for the present and future
high-energy colliders. In particular, we find that our new minimal nonminimal supersymmetric model can
naturally accommodate a relatively light charged Higgs boson, with a mass close to the present experimental
lower bound.

DOI: 10.1103/PhysRevD.63.055003 PACS number~s!: 12.60.Jv
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I. INTRODUCTION

In the well-established standard model~SM!, the genera-
tion of gauge-invariant renormalizable masses for the
servable fermions, e.g., the electron and thet quark, and for
theW andZ bosons, is achieved through the so-called Hig
mechanism. Most interestingly, the Higgs mechanism its
predicts inevitably the existence of a fundamental sca
known as the Higgs boson. Recently, experiments at
CERN e1e2 collider LEP2 have intensified their search
for directly observing the yet-elusive Higgs boson. Their l
est analyses show that its mass must be larger than 1
GeV at the 95% confidence level~C.L.! @1#. At the same
time, electroweak precision data place an upper bound of
order of 240 GeV on the Higgs-boson mass@2#.

So far, we do not have much evidence to suggest that
underlying structure of the Higgs potential is indeed that
the SM or that it already contains components of a m
fundamental theory which is about to be unraveled in
next round of experiments. In particular, it is known that t
SM cannot adequately address the problem of gauge hie
chy, which is related to the perturbative stability of radiati
effects between the electroweak scale and the Planc
grand unification scale. An appealing solution to this pro
lem may be achieved by means of supersymmetry~SUSY!.
In order that SUSY theories avoid reintroducing the probl
of gauge hierarchy, they must be softly broken at a relativ
low scaleMSUSY;mt of the order of 1 TeV, in agreemen
with experimental observations.

The minimal supersymmetric extension of the SM, a
called the minimal supersymmetric standard model~MSSM!,
predicts a very constrained two-Higgs-doublet potential
the tree level, whose quartic couplings are determined by
0556-2821/2001/63~5!/055003~33!/$15.00 63 0550
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well-measured SU(2)L and U(1)Y gauge couplingsgw and
g8. As a consequence, the lightest neutral Higgs boso
always lighter than theZ boson at the tree level. Neverthe
less, radiative corrections to the effective Higgs potential
significant and extend the above mass upper bound to
~130! GeV for small ~large! values of the ratio of Higgs
vacuum expectation values~VEV’s! tanb'2 (.15) @3#.
Thus, a large portion of the parameter space of the MS
has been already excluded by the current LEP2 experim
at CERN. Moreover, the upgraded Tevatron collider at F
milab will have a much higher reach in discovering heav
Higgs bosons with SM-type couplings and masses up to
GeV and therefore will provide a unique test for the viabili
of the MSSM.

On the basis of the above strong experimental bounds
the lightest Higgs-boson mass in the MSSM~especially for
low values of tanb), it would be rather premature to infe
that realizations of low-energy SUSY in nature have a rat
limited range. In order to reach a more definite conclusion
is very important to further analyze the Higgs sectors
minimally extended scenarios of the MSSM. An addition
reason for going beyond the MSSM is the so-calledm prob-
lem. The superpotential of the MSSM contains a biline
term 2mĤ1Ĥ2 involving the two Higgs-doublet superfield
Ĥ1 andĤ2, known as them term. Althoughm is naturally of
the order of the Planck scaleMP, it is actually required to be
many orders of magnitude smaller of orderMSUSY for a suc-
cessful Higgs mechanism at the electroweak scale. M
scenarios have been proposed in the existing literature
account for the origin of them term, albeit all in extended
settings@4#.

A simple SUSY extension of the MSSM, which on
©2001 The American Physical Society03-1
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might have thought of considering to address them problem,
would be to elevate them parameter to a dynamical variab

by means of a gauge-singlet chiral superfieldŜ, couple the

latter toĤ1 andĤ2 aslŜĤ1Ĥ2 and arrange thatŜ somehow
develops a VEV of the order ofMSUSY;mt . However, this
minimally extended scenario possesses a global U~1! Peccei-
Quinn ~PQ! symmetry, whose spontaneous breakdown gi
rise to a phenomenologically excluded axion. The m
popular way in the literature of removing the unwanted P
symmetry is to break the latter explicitly by adding the cub

self-coupling 1
3 k Ŝ3 to the superpotential. The resultin

model has been termed the next-to-minimal supersymme
standard model~NMSSM! @5#. Unfortunately, the NMSSM
is also plagued by its own problems. The cubic self-coupl

of Ŝ leaves invariant a subgroup of U~1! PQ, namely, the
discreteZ3 symmetry, whose subsequent spontaneous br
down gives rise to the formation of cosmologically ca
strophic weak-scale domain walls@6,7#.

Another well-known problem that a model of low-energ
physics involving light gauge singlets has to face is the
stabilization of the gauge hierarchy through the generatio
at least quadratically divergent tadpoles for the singlet@8#. In
the context ofN51 supergravity, which is spontaneous
broken by a set of hidden sector superfields, even if
assumes no other scale betweenMSUSY andMP, the simple
presence of gravity-induced nonrenormalizable operator
the superpotential and the Ka¨hler potential is able to generat
such tadpoles@9#. Using the Planck massMP as a physical
cutoff energy, such divergences contribute tadpole term
order (1/16p2)nM PMSUSY

2 S to the effective potential, where
n indicates the loop level at which the tadpole divergen
appears. It is obvious that for small values ofn, e.g.,n<4,
the generated tadpole terms lead generically to unaccep
large values for the VEV ofS ~the scalar component ofŜ),
thereby destabilizing the gauge hierarchy.

In the case of the aforementioned extensions of
MSSM, the problem of destabilization does not occur as lo
as the U(1)PQ or Z3 symmetries are imposed on the com
plete set of nonrenormalizable operators as well. Howe
any attempt to break these unwanted symmetries throu
subset of nonrenormalizable operators would, as an imm
ate consequence, destabilize the weak scale. This aspec
been emphasized in Refs.@7,10#, in connection with theZ3
symmetry of the NMSSM.

Recently, it has been realized that the unwantedZ3 and
U(1)PQ symmetries present in the corresponding supers
metric extensions of the MSSM could be effectively brok
not by the nonrenormalizable operators themselves,
rather by the tadpoles generated by them@11,12#. For the
Z3-symmetric extension of the MSSM, harmless tadp
terms of order (1/16p2)nMSUSY

3 S, with 2<n<4, were suf-
ficient for the breaking of theZ3 symmetry. For the PQ-
symmetric extension instead, it was necessary that the h
ful tadpoles of order (1/16p2)nMPMSUSY

2 S ~using MP as a
cutoff scale! be generated at a sufficiently high loop leveln,
with 5<n<8. In the Z3 case, the harmful tadpoles we
forbidden by imposing on the operators of the nonrenorm
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izable superpotential and Ka¨hler potential theZ2 R symme-
try of the cubic superpotential, under which all superfields
well as the superpotential flip sign. However, the desira
form of the renormalizable superpotential was enforced
imposing a larger group, namely, the product of theZ2 mat-
ter parity with aZ4 R symmetry@11#. In the U(1)PQ case, a
Z5 R symmetry proved sufficient to enforce the desirab
renormalizable superpotential and postpone the appear
of the harmful divergent tadpoles until the sixth loop ord
@12#. Thus, in both cases the breaking of the unwanted s
metries was successfully implemented without jeopardiz
the stability of the electroweak scale and without generat
new cosmological problems.

In the present paper, we shall study in detail the n
minimal supersymmetric extension of the MSSM, in whi
the linear, quadratic and cubic terms involving the sing
superfieldŜ itself are absent from the renormalizable part
the superpotential. Hereafter, we shall call such a supers
metric extension the minimal nonminimal supersymmet
standard model~MNSSM!. In particular, we shall explicitly
show that with the imposition of the discreteZ5 and Z7 R
symmetries on the complete superpotential and on the Ka¨hler
potential of the corresponding supergravity models, the
tentially dangerous tadpole divergences first appear at
six- and seven-loop levels, respectively, and hence are n
rally suppressed to the order ofMSUSY

3 S. Evidently, the re-
sulting model constitutes the simplest and most econo
version among the nonminimal supersymmetric models p
posed in the literature. In order to properly study the prop
ties of the Higgs bosons predicted by the theory, we w
calculate the effective Higgs potential by taking into accou
the dominant top-squark loop effects. Finally, we shall a
lyze the phenomenological implications of the MNSSM f
direct Higgs-boson searches at the LEP2 and the upgra
Tevatron colliders.

The organization of the paper is as follows. In Sec. II w
describe the Higgs sector of the MNSSM and show t
harmful tadpole divergences first appear at the six- a
seven-loop levels, after the aforementioned discreteZ5 and
Z7 R symmetries are respectively imposed on the theo
Technical details of the argument are relegated to Appen
A. In Sec. III we compute the effective Higgs potential b
integrating out the dominant radiative effects due to t
squarks, from which we derive theCP-even andCP-odd
Higgs-boson mass matrices. In Sec. IV we investigate
theoretical differences of the Higgs-boson mass spectrum
tween the MNSSM under consideration and the frequen
discussed NMSSM. In Sec. V we present numerical e
mates of the Higgs-boson masses and their couplings as
ated with theZ boson in these two models, and discuss
phenomenological implications of the MNSSM Higgs sec
for the direct Higgs-boson searches at LEP2 and for the
coming searches at the upgraded Tevatron collider. Sec
VI contains our conclusions.

II. MNSSM: SYMMETRIES AND STABILITY
OF THE ELECTROWEAK SCALE

In this section we shall consider the simplest extension
the MSSM, the MNSSM, within the context ofN51 super-
3-2
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HIGGS SCALARS IN THE MINIMAL NONMINIMA L . . . PHYSICAL REVIEW D 63 055003
gravity spontaneously broken by a set of hidden sector fie
at an intermediate scale. In the MNSSM, them parameter is
promoted to a dynamical chiral superfield,1 with the linear,
quadratic and cubic terms involving only the singlet sup
field Ŝ being absent from the renormalizable superpoten
Such a particularly simple form of the superpotential may
enforced by discreteR symmetries, e.g.,Z 5

R andZ7
R , which

are extended to the nonrenormalizable parts of the supe
tential and the Ka¨hler potential as well. Adopting the stan
dard power counting rules@9,10#, we shall show that in such
N51 supergravity scenarios, the potentially dangerous
pole divergences are suppressed by loop factors 1/(16p2)n of
order n56 and higher, and therefore do not destabilize
gauge hierarchy. Technical details are given in Appendix

The renormalizable superpotential of the MNSSM und
discussion is given by

Wren5hl Ĥ1
Ti t2L̂Ê1hd Ĥ1

Ti t2Q̂D̂1hu Q̂Ti t2Ĥ2Û

1l ŜĤ1
Ti t2Ĥ2 , ~2.1!

where t2 is the usual 232 Pauli matrix. In Eq.~2.1!, the
Higgs superfields,Ĥ1 andĤ2, as well as the quark and lep
ton chiral multiplets,Q̂ and L̂, are SU(2)L doublets, while
the remaining superfieldsŜ, Û, D̂, andÊ are singlets unde
SU~2! L . The chiral multiplets also carry the following hy
percharges:

U~1!Y : Ĥ1 ~21!, Ĥ2 ~1!, Ŝ~0!, Q̂ ~1/3!,

Û ~24/3!, D̂ ~2/3!, L̂ ~21!, Ê ~2!,
~2.2!

where the hypercharge of each superfield is indicated wi
the parentheses. In addition to the baryon~B! and lepton~L!
numbers, the renormalizable superpotentialWren respects the
global U~1! PQ andR symmetries:

U~1!PQ: Ĥ1 ~1!, Ĥ2 ~1!, Ŝ~22!, Q̂~21!,

Û ~0!, D̂ ~0!, L̂ ~21!, Ê ~0!;

U~1!R: Ĥ1 ~0!, Ĥ2 ~0!, Ŝ~2!, Q̂ ~1!,

Û ~1!, D̂ ~1!, L̂ ~1!, Ê ~1!, Wren~2!.

~2.3!

Note thatWren has charge 2 under U(1)R . The symmetry
group U(1)R is nonanomalous with respect to QCD intera
tions, but gets broken by the soft SUSY-breaking triline
couplings down to its maximal non-R Z2 subgroup which
becomes the known matter parity. Instead, the anoma
symmetry U(1)PQ remains unbroken by the soft SUSY
breaking terms. Neglecting QCD-instanton effects, U(1)PQ

1An earlier suggestion along these lines was discussed
Ref. @13#.
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will remain unbroken, unless a gravity-induced tadpole o
erator linear inS gets generated from the nonrenormalizab
sector of the theory. The tadpole operator generically c
tributes to the effective potential a term

Vtad;
1

~16p2!n
MPM SUSY

2 S1H.c., ~2.4!

where n is the loop level at which the tadpole divergen
occurs, using the Planck massMP as an energy cutoff. The
tadpole termVtad together with the soft SUSY-breaking ma
termMSUSY

2 S* S lead to a VEV for the singlet fieldSof order
(1/16p2)nMP. To avoid destabilizing the gauge hierarch
one must require@12# that ^S&;MSUSY;(1/16p2)nMP,
with M SUSY;1 TeV. This requirement can only be fulfille
for sufficiently high values ofn, i.e., for n>5. Finally, we
should remark that the full renormalizable Lagrangian,
cluding the tadpole term, preserves theB and L numbers.
However, the quantum numbersB andL may be violated by
certain nonrenormalizable operators, which are hopefully
sufficiently high order in order not to upset the laborato
limits on proton instability. We can therefore conclude th
the renormalizable superpotentialWren of Eq. ~2.1! supple-
mented with a sufficiently suppressed tadpole for the sin
S leads to a model without any obvious phenomenologica
cosmological problem.

One may now wonder whether there exists a symme
giving rise to the above-described model that includes a
pole term forS of the desirable order. To address this que
tion, let us consider the global symmetry defined as a lin
combinationR853R1PQ of U(1)R and U(1)PQ, with

U~1!R8 : Ĥ1 ~1!, Ĥ2 ~1!, Ŝ~4!, Q̂ ~2!,

Û ~3!, D̂ ~3!, L̂ ~2!, Ê ~3!, Wren~6!.
~2.5!

Observe that the imposition of U(1)R8 is sufficient to ensure
the form ~2.1! for Wren. We should now examine whethe
U(1)R8 also allows the generation of a tadpole term. T
symmetry group U(1)R8 is explicitly broken by the trilinear
soft SUSY-breaking interactions down to its maximal nonR
subgroupZ6 which is isomorph~equivalent! to the product
groupZ23Z3. The symmetryZ2 is essentially the ordinary
matter parity, under which the tadpole remains invariant.
stead, the symmetryZ3 is broken by the tadpole ofS. Con-
sequently, a tadpole term can only be generated if the wh
symmetry group U(1)R8 or one of its subgroups that include
Z3 is violated by the higher-order nonrenormalizable ope
tors.

The above arguments seem to suggest that the symm
we are looking for is likely to be a subgroup of U(1)R8
which is sufficiently large to enforce the form ofWren given
by Eq. ~2.1!, but does not contain theZ3 subgroup of
U(1)R8 . Subgroups of U(1)R8 obeying the above criteria ar
the discreteR symmetriesZ5

R @12# andZ 7
R .

in
3-3
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Let us first consider theZ 5
R case. UnderZ 5

R , the chiral
multiplets as well as the superpotentialWren transform as
follows:

Z 5
R: ~Ĥ1 ,Ĥ2!→v ~Ĥ1 ,Ĥ2!,

~Q̂,L̂ !→v2 ~Q̂,L̂ !,

~Û,D̂,Ê!→v3 ~Û,D̂,Ê!,

Ŝ→v4Ŝ,

Wren→vWren, ~2.6!

with v5exp(2pi/5) and v551. The discreteR symmetry
Z 5

R is imposed on the complete superpotential and Ka¨hler
potential. By means of standard power counting rules g
erning the harmful tadpole divergences, it can be shown
harmful tadpoles first appear at the six-loop level. As can
seen from Fig. 1~a!, a typical harmful six-loop tadpole dia
gram can be induced by appropriately combining the n
renormalizable operators of the Ka¨hler potential

K25k2

Ŝ2 ~Ĥ1
Ti t2Ĥ2!

MP
2

1H.c.,

K55k5

Ŝ~Ĥ1
Ti t2Ĥ2!3

MP
5

1H.c., ~2.7!

and four times the renormalizable terml ŜĤ1
Ti t2Ĥ2 of the

superpotential~2.1!. The analytic steps of the argument a
presented in Appendix A. Thus, the induced harmful div
gent tadpole term has the form

Vtad;
k2k5l4

~16p2!6
MPMSUSY

2 S1H.c. ~2.8!

FIG. 1. Typical harmful tadpole divergences at the~a! six- and
~b! seven-loop levels.
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From Eq.~2.8!, it is easy to see that the tadpole term is
order ~1 TeV)3, e.g., fork2;k5;0.1, l;0.6, andMSUSY
;1 TeV, and does not destabilize the gauge hierarchy.

In the Z 7
R case, the harmful tadpole divergence occurs

one loop-order higher, namely, at the seven-loop level, so
generated tadpole terms can naturally be as low as~100
GeV)3. In detail, under this new discreteR symmetry, the
superfields andWren transform in the following way:

Z 7
R: ~Ĥ1 ,Ĥ2!→v ~Ĥ1 ,Ĥ2!,

~Q̂,L̂ !→v2 ~Q̂,L̂ !,

~Û,D̂,Ê!→v3 ~Û,D̂,Ê!,

Ŝ→v4Ŝ,

Wren→v6Wren, ~2.9!

with v5exp(2pi/7) andv751. Following the same line of
steps as above, we impose the discreteR symmetryZ 7

R on
the complete superpotential and Ka¨hler potential. Based on
standard power counting rules, we show in Appendix A th
the potentially harmful tadpole divergences first appear at
seven-loop level. A typical harmful tadpole diagram at sev
loops is displayed in Fig. 1~b!, and can be obtained by com
bining the nonrenormalizable operators of the Ka¨hler poten-
tial

K3
(1)5k3

(1)
Ŝ3 ~Ĥ1

Ti t2Ĥ2!

MP
3

1H.c.,

K65k6

Ŝ2 ~Ĥ1
Ti t2Ĥ2!3

MP
6

1H.c., ~2.10!

and four times the renormalizable terml ŜĤ1
Ti t2Ĥ2 of Wren.

The size of the so-generated tadpole term may be estim
as

Vtad;
k3

(1)k6l4

~16p2!7
MPMSUSY

2 S1H.c.

;~1 TeV!3MSUSY
2 S1H.c., ~2.11!

for k3
(1);k6;1 and l;0.6. If k3

(1);k6;0.1 andM SUSY

;1 TeV, the size ofVtad can be as low as~0.2 TeV)3.
We conclude this section by noticing that although t

discreteR-symmetriesZ 5
R andZ 7

R do not contain the usua
Z2 matter parity, they still prohibit the presence of all dime
sion d54 B- and L-violating operators as well as the da
gerousB- and L-violating operatorsQ̂Q̂Q̂L̂ and ÛÛD̂Ê of
dimension 5. However, the symmetriesZ 5

R andZ 7
R allow the

L-violating operatorL̂L̂Ĥ2Ĥ2 of d55, which is able to gen-
erate Majorana masses for the light left-handed neutrin
Moreover, Z 5

R allows the d55 L-violating operators

ŜŜL̂Ĥ2 , ŜL̂L̂Ê, and ŜL̂Q̂D̂, whereasZ 7
R allows thed55
3-4
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B-violating operatorŜÛD̂D̂. Although these last operator
are unable to lead by themselves to an observable pr
decay, they still render the lightest supersymmetric part
~LSP! unstable. However, estimates based on naive dim
sional analysis show that the LSP is very long lived with
lifetime larger than the age of the Universe and theref
safely qualifies to be a dark-matter candidate. Of course,
LSP can be made absolutely stable by the additional im
sition of theZ2 matter parity.

III. THE HIGGS SECTOR OF THE MNSSM

In this section we shall study the low-energy Higgs sec
of the MNSSM. After discussing its tree-level structure, w
will then calculate the one-loop effective Higgs potential
integrating out the dominant loop effects due to top squa
and top quarks, from which we derive analytic expressio
for the Higgs-boson masses and their respective mix
angles. We shall then focus on the gaugino-Higgsino se
of the MNSSM, and briefly discuss possible laboratory lim
on the would-bem-parameter due to the presence of a lig
quasisinglet neutralino state. Finally, for our forthcomi
phenomenological discussion in Sec. V, we shall present
effective Higgs-boson couplings to theW andZ bosons.

A. Higgs-boson masses at the tree level

In addition to terms proportional toS, another effect of
the tadpole supergraphs of Fig. 1 is the generation of te
proportional toFS , namely, to the auxiliary scalar compo
nent of Ŝ. As a consequence, the effective renormaliza
Higgs superpotential of the MNSSM reads

WHiggs
eff 5l ŜĤ1

Ti t2Ĥ21jFMSUSY
2 Ŝ, ~3.1!

wherejF is a model-dependent constant. Moreover, the
grangian describing the soft SUSY-breaking Higgs secto
given by

2 Lsoft5~jSMSUSY
3 S1H.c.!1m1

2 F̃1
†F̃11m2

2 F2
†F2

1mS
2 S* S1 ~lAl SF̃1

†i t2F21H.c.!, ~3.2!

whereF̃15 i t2F1* andF2 are the physical bosonic degre

of freedom ofĤ1 and Ĥ2, respectively. After including the
relevantF- andD-term contributions in addition to the so
SUSY-breaking terms, we obtain the complete renorma
able Higgs potential of the model of interest

2 L V
05~ tS S1H.c.!1m1

2 F1
†F11m2

2 F2
†F21mS

2 S* S

1~m12
2 F1

†F21H.c.!1~lAl SF1
†F21H.c.!

2l1~F1
†F1!22l2 ~F2

†F2!22l3~F1
†F1!~F2

†F2!

2 ~l42l2!~F1
†F2!~F2

†F1!

1l2 S* S~F1
†F11F2

†F2!, ~3.3!
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tS5jS MSUSY
3 , m12

2 5ljFMSUSY
2 , ~3.4!

l15l252
gw

2 1g8 2

8
, l352

gw
2 2g8 2

4
, l45

gw
2

2
.

Here, gw (g8)is the coupling constant of the gauge gro
SU(2)L @U(1)Y#. As was discussed in the previous sectio
the tadpole prefactorjS in Eq. ~3.4! is of order unity. How-
ever, the size ofjF crucially depends on the VEVs of th
scalar components of the hidden-sector superfields that b
SUSY @9#. The VEVs remain unconstrained by the requir
ment that the breaking of SUSY takes place at some in
mediate scale in the hidden sector, in which theF terms of
the respective hidden-sector superfields are involved. In c
that some of the hidden-sector fields acquire VEVs of or
MP, the tadpole prefactorsujFu and ujSu could be compa-
rable. Otherwise, it isujFu!ujSu. In the following, we shall
treat the ratioujFu/ujSu as a free parameter which is alway
less than unity.

We shall now derive the minimization conditions of th
Higgs potential in Eq.~3.3!. Throughout the paper, we sha
assume thatCP is a good symmetry of the theory. Under th
assumption, we can perform the following linear expansio
of the Higgs fields about their VEV’s:

F15S f1
1

1

A2
~v1 1 f1 1 ia1!D ,

F25S f2
1

1

A2
~v2 1 f2 1 ia2!D ,

S5
1

A2
~vS1fS1 iaS!. ~3.5!

The minimization conditions are then determined by the v
ishing of the tadpole parameters

Tf1
[ K ]LV

]f1
L 52 v1 F m1

21S 1

A2
lAlvS1m12

2 D tb2l1v1
2

2
1

2
~l31l42l2! v2

21
1

2
l2vS

2 G , ~3.6!

Tf2
[ K ]LV

]f2
L 52 v2 F m2

21S 1

A2
lAlvS1m12

2 D tb
21

2l2v2
22

1

2
~l31l42l2! v1

21
1

2
l2vS

2 G ,

~3.7!
3-5
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TfS
[ K ]LV

]fS
L 52 vS S mS

21lAl

v1v2

A2 vS

1
1

2
l2 v21

A2 tS

vS
D , ~3.8!

with v5Av1
21v2

252MW /gw andtb5v2 /v1. Our earlier as-
sumption ofCP invariance entails that all kinematic param
eters involved, e.g.,l andAl , are real, namely, there are n
explicit sources ofCP violation in the theory. Also, it is
important to remark that based on Romao’s no-go theo
@14#, CP invariance cannot be broken spontaneously at
tree level in the MNSSM.2

It proves now convenient to perform a change of the we
basis for the charged andCP-odd scalars

S f1
1

f2
1D 5S cb 2sb

sb cb
D S G1

H1D , S a1

a2
D 5S cb 2sb

sb cb
D S G0

a D ,

~3.9!

wheresb5v2 /v and cb5v1 /v, such thatH1 becomes the
mass eigenstate of the charged Higgs boson, andG1 andG0
-

p-

ou

05500
m
e

k

are the would-be Goldstone bosons which constitute the
gitudinal degrees of freedom of theW1 and Z bosons, re-
spectively.

Let us first consider the charged Higgs sector. In
newly defined weak basis of Eq.~3.9!, the tree-level mass o
the charged Higgs boson may easily be computed by

MH1
2(0)

5
1

sbcb
~ mAl2m12

2 !1MW
2 2

1

2
l2 v2, ~3.10!

where

m52
1

A2
l vS ~3.11!

is the would-bem-parameter of the MSSM. Here and in th
following, we adhere the superscript (0) to a specific kin
matic quantity in order to emphasize its tree-level orig
e.g.,MH1

2(0) .
Since the would-be Goldstone bosonG0 does not mix

with other fields, the tree-levelCP-odd mass matrix takes o
the simple form in the reduced weak basis$a,aS%:
M P
2(0)5S Ma

2(0) v
vS

~ sbcb Ma
2(0)1 m12

2 !

v
vS

~ sbcb Ma
2(0)1 m12

2 !
v2

vS
2

sbcb~sbcb Ma
2(0)1m12

2 !1
l tS

m

D , ~3.12!
lt of

ed
with

Ma
2(0)5MH1

2(0)
2MW

2 1
1

2
l2v2. ~3.13!

In deriving the above form ofM P
2(0) , we have also consid

ered the tadpole constraints given by Eqs.~3.6!–~3.8!. In the
MSSM limit, which is obtained forvS'2A2 tS /mS

2@v with
the would-bem parameter being kept fixed (l→0), the mass
eigenvalues of theCP-odd mass matrix can easily be a
proximated by

MA1

2(0)'Ma
2(0) , MA2

2(0)'
ltS

m
, ~3.14!

with ltS /m.Ma
2(0) . Furthermore, in the limit, in which the

tadpole parametersm12
2 andtS vanish, theCP-odd mass ma-

2We find that this property persists, even ifCP-conserving radia-
tive effects mediated by large top squark mixing are included in
model.
trix contains a massless state, i.e., a PQ axion, as a resu
the spontaneous breakdown of the symmetry group U(1)PQ.

Taking into account the tadpole constraints of Eqs.~3.6!–
~3.8!, the tree-levelCP-even mass matrix may be express
in the weak basis$f1 ,f2 ,fS% as follows:

~MS
2(0)!115cb

2 MZ
21sb

2 Ma
2(0) , ~3.15!

~MS
2(0)!125~MS

2(0)!2152 sbcb~Ma
2(0)1MZ

22l2v2 !,

~MS
2(0)!135~MS

2(0)!31

52
v
vS

~sb
2cb Ma

2(0)22cbm21sbm12
2 !,

~MS
2(0)!225sb

2 MZ
21cb

2 Ma
2(0) ,

~MS
2(0)!235~MS

2(0)!32

52
v
vS

~sbcb
2 Ma

2(0)22sbm21cbm12
2 !,r
3-6
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~MS
2(0)!335

v2

vS
2

sbcb~ sbcb Ma
2(0)1 m12

2 !1
l tS

m
,

with MZ5Agw
2 1g8 2 v/2. In the MSSM limit, in whichvS

'2A2 tS /mS
2@v with m fixed, the Higgs-singlet compo

nents decouple from the tree-levelCP-even mass matrix
MS

2(0) . In this case, the heaviest Higgs bosonH3 is predomi-
nantly singlet and has a squared massMH3

2(0)'ltS /m; H3

becomes mass degenerate withA2 @see Eq.~3.14!#.
Apart from the MSSM limit mentioned above, there exis

a novel nontrivial decoupling limit for the heavy Higgs se
tor in the MNSSM. This decoupling limit is obtained fo
large values of the tadpole parameterutSu, where all other
kinematic parameters are kept fixed. In this case, the H
statesA2 andH3 are singlets, i.e.,A2[aS andH3[fS , and
so decouple from the remaining Higgs sector while be
degenerate in mass, i.e.,MA2

2(0)'MH3

2(0)'ltS /m. An immedi-

ate consequence of this is the relation

MA1

2(0)'Ma
2(0) , ~3.16!

whereMa
2(0) is defined in Eq.~3.13!. Most importantly, in

this limit the structure of the low-energy Higgs sector,
though reminiscent of, isnot identical to that of the MSSM.
For example, as opposed to the MSSM limit, the terms p
portional tol2v2, which occur in theCP-odd andCP-even
mass matrices of Eqs.~3.12! and ~3.15!, do not necessarily
vanish in the decoupling limit due to a large tadpole. Th
contrary to the MSSM, Eq.~3.16! implies that for large val-
ues ofl, e.g.,l;gw , the charged Higgs-boson massMH1

(0)

can become even smaller than the massMA1

(0) of the nonde-

coupledCP-odd scalar. As we will see in Sec. V, this la
fact plays a very important role in lowering the mass of t
MNSSM charged Higgs boson up to its experimental low
bound, i.e., up toMH1;80 GeV @1,15#. Moreover, in Sec.
IV we shall see that this new nontrivial decoupling limit du
to a large tadpole parameterltS /m is only attainable in the
MNSSM, and no analogue of this exists in the NMSSM.

As in the MSSM@16#, an upper bound on the mass of th
lightestCP-even Higgs boson in the MNSSM with largeutSu
may easily be derived in the decoupling limit of a hea
charged Higgs boson, i.e., for

l tS

m
@MH1

2(0)
@MZ

2 . ~3.17!

In this limit, in addition toA2 andH3, the Higgs scalarsA1
andH2 decouple from the lightest Higgs sector as well, a
are almost mass degenerate with the charged Higgs b
H1. After taking into consideration the heav
H1-decoupling limit of Eq.~3.17!, the mass of the lightes
CP-even Higgs stateH1 is found to satisfy the inequality

MH1

2(0)<MZ
2 S cos2 2b1

2l2

gw
2 1g8 2

sin2 2b D . ~3.18!
05500
s

g

-

-

,

r

d
on

The above upper bound, which is saturated in the limit of E
~3.17!, holds independently of the magnitude oftS . Note that
as opposed to the MSSM wherel50, MH1

(0) can be larger

thanMZ in the MNSSM, especially for small values of tanb.
This prediction is very similar to the one obtained in t
frequently discussed NMSSM@5#. However, as tanb in-
creases, e.g., for tanb*5, the l-dependent term in Eq
~3.18! becomes negligible. Thus, in the large-tanb case, the
upper bound on theH1-boson mass is almost identical to th
one obtained in the MSSM.

Finally, an important property of the MNSSM is that th
tree-level neutral Higgs-boson masses satisfy the equalit

MH1

2(0)1MH2

2(0)1MH3

2(0)5MZ
21MA1

2(0)1MA2

2(0) . ~3.19!

It is interesting to notice the striking similarity of the abov
mass sum rule with the corresponding one in the MSS
@16#, in which case the mass termsMH3

2(0) andMA2

2(0) are not

present in Eq.~3.19!. The above observation allows us
advocate that the structure of the MNSSM Higgs sector
parts indeed minimally from that of the MSSM. Neverth
less, exactly as happens in the MSSM@3#, the tree-level
Higgs sector receives sizable quantum corrections due to
squarks, leading to a violation of the mass sum rule~3.19!.

B. One-loop effective potential

We shall now calculate the dominant one-loop correctio
to the effective potential due to top~t! and scalar-top (t̃ )
quarks. As a good approximation, we neglect the one-lo
D-term contributions as well as bottom~b! and scalar-bottom
(b̃) quark effects by assuming a vanishingb-quark Yukawa
coupling, i.e.,hb50. The above approximations are reaso
able for relatively small values of tanb, e.g., tanb<10,
where the MNSSM predictions for the lightest Higgs sec
are expected to deviate considerably from the ones obta
in the MSSM.

The interaction Lagrangians relevant for the computat
of the one-loop effective potential are given by

2Lfermion5htQ̄Li t2F2* tR1H.c., ~3.20!

2LF5ht
2 uF2

Ti t2Q̃Lu21~lht SQ̃L
†i t2F1* t̃ R1H.c.!

1ht
2 t̃ RF2

†F2 t̃ R* ,

2Lsoft5M̃Q
2 Q̃L

†Q̃L1M̃ t
2 t̃R* t̃ R

1~htAt Q̃L
†i t2F2* t̃ R1H.c.!,

whereQ̃L5( t̃ L ,b̃L)T andQL5(tL ,bL)T are the bosonic and
fermionic degrees of freedom of the third-generation le
handed quark superfield.

Equipped with the Lagrangians in Eq.~3.20!, we can now
derive the Higgs-dependentt and t̃ masses. Thus, the
squaredt-quark mass in the Higgs background is given b
3-7
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m̄t
25ht

2 F2
†F2 . ~3.21!

The corresponding background-dependent top squark ma
-
ed

l

05500
ses

may be determined from the 333 squark mass matrix

which is expressed in the weak basis$Q̃L , t̃ R% as
M̃25S M̃Q
2 121ht

2 ~F2
†F2122F2F2

†! htAt i t2F2* 1lht Sit2F1*

2htAt F2
Ti t22lht S* F1

Ti t2 M̃ t
21ht

2 F2
†F2

D . ~3.22!
dent

y
f the
The squared squark-mass matrixM̃2 has three mass eigen
values. Forf1,2

6 50, these are given by the two squar

Higgs-dependentt̃ -quark masses

m̃t1 (t2)
2 5

1

2
@M̃Q

2 1 M̃ t
212ht

2 uf2
0u2

1~2 !A~M̃Q
2 2 M̃ t

2!214ht
2uAt f2

01l S* f1
0u2#

~3.23!

and by the squared left-handed bottom squark massmb̃L

2

5M̃Q
2 , where f1,2

0 5(v1,21f1,21 ia1,2)/A2 are the neutra
parts ofF1,2.

In the modified minimal subtraction (MS̄) scheme, the
one-loop Coleman-Weinberg effective potential@17# may be
expressed in terms of the relevant squared Higgs-depen
massesm̄t

2 , m̃t1
2 , m̃t2

2 andm̃bL

2 as follows:

2LV52L V
01

3

32p2 F (
k5t1 ,t2 ,bL

m̃k
4 S ln

m̃k
2

Q2
2

3

2 D
22m̄t

4 S ln
m̄t

2

Q2
2

3

2 D G , ~3.24!

where2L V
0 is the bare Higgs potential given by Eq.~3.3!.

With the help ofLV , we can now compute the radiativel
corrected mass of the charged Higgs boson by means o
relation
MH1
2

5
1

sbcb
K ]2L V

]f1
1 ]f2

2 L 5MH1
2(0)

1DMH1
2

5MH1
2(0)

2
3

16p2 sbcb
F (

k5t1 ,t2 ,bL
K ]2m̃k

2

]f1
1 ]f2

2 L mk̃
2 S ln

mk̃
2

Q2
21 D G , ~3.25!
g

where MH1
2(0) is the tree-level contribution and̂m̃k

2&5mk̃
2 .

Following the procedure outlined in Ref.@18#,3 we find

K ]2m̃t1(t2)
2

]f1
1]f2

2 L 52~1 !
ht

2mAt

mt̃ 1

2
2mt̃ 2

2

1~2 !
ht

4m2v1v2

2 ~mt̃ 1( t̃ 2)
2

2mb̃L

2
! ~mt̃ 1

2
2mt̃ 2

2
!
,

K ]2m̃bL

2

]f1
1]f2

2 L 5
ht

4m2v1v2

2 ~mt̃ 1

2
2mb̃L

2
! ~mt̃ 2

2
2mb̃L

2
!
.

~3.26!

3A similar procedure was also followed in Ref.@19#.
Then, the one-loop correction toMH1
2 , DMH1

2 , is given by

DMH1
2

5
3ht

2mAt

32p2 sbcb

F lnS mt̃ 1

2
mt̃ 2

2

Q4 D 1g~mt̃ 1

2 ,mt̃ 2

2
! G1d rem,

~3.27!

with

g~m1
2 ,m2

2!5
m1

21m2
2

m1
22m2

2
lnS m1

2

m2
2D 22. ~3.28!

In Eq. ~3.27!, the quantityd rem summarizes the remainin
Q2-independent corrections
3-8
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d rem5
3ht

4m2v2

64p2 F mb̃L

2

~mt̃ 1

2
2mb̃L

2
! ~mt̃ 2

2
2mb̃L

2
!
lnS mt̃ 1

2
mt̃ 2

2

mb̃L

4 D
2

1

mt̃ 1

2
2mt̃ 2

2 S mt̃ 1

2

mt̃ 1

2
2mb̃L

2 1
mt̃ 2

2

mt̃ 2

2
2mb̃L

2 D lnS mt̃ 1

2

mt̃ 2

2 D G
'2

3ht
4

32p2

m2v2

mt̃ 1

2
1mt̃ 2

2 . ~3.29!

As we will see below, the presence ofd rem gives rise to a
modification of the tree-level relation betweenMH1

2 andMa
2

in Eq. ~3.13!. Nevertheless, it can be estimated from E
~3.29! that this modification, which scales quadratically wi
the m parameter, is insignificant for almost all relevant va
ues ofm of interest to us, i.e., forum/mt̃ 1

u&2.

We now calculate the one-loop radiative shiftDM P
2 to the

CP-odd Higgs-boson mass matrix. The analytic result m
be completely expressed in terms ofDMa

25DMH1
2

2d rem as

DM P
2 5DMa

2 S 1
v
vS

sbcb

v
vS

sbcb

v2

vS
2

sb
2cb

2 D . ~3.30!

It is easy to see that the one-loop radiative shift may
entirely absorbed into the tree-level mass matrix in E
~3.12!, after performing an one-loop redefinition ofMa

2(0) ,
namely,Ma

25Ma
2(0)1DMa

2 . After this redefinition, the tree
level mass relation in Eq.~3.13! gets radiatively corrected a
follows:
05500
.

y

e
.

Ma
25MH1

2
2MW

2 1
1

2
l2v22d rem. ~3.31!

The one-loop Born-improvedCP-odd mass matrixM P
2

5M P
2(0)1DM P

2 , may be diagonalized through an orthogon
transformation of the weak fields

S a

aS
D 5OA S A1

A2
D , with OA5S cosuA sinuA

2 sinuA cosuA
D . ~3.32!

The CP-odd fieldsA1 and A2 are the mass eigenstates
M P

2 , with squared masses

MA1(A2)
2 5

1

2
@Tr M P

2 2~1 !ATr2 M P
2 24 detM P

2 #. ~3.33!

The mixing angleuA relating the weak to the mass eige
states is uniquely determined by

cosuA5
u~M P

2 !12u

A~M P
2 !12

2 1@~M P
2 !112MA1

2 #2
,

sinuA5

u~M P
2 !112MA1

2 u

A~M P
2 !12

2 1@~M P
2 !112MA1

2 #2
.

~3.34!

Finally, we calculate the radiative correctionsDMS
2 to the

CP-even Higgs-boson mass matrix. The individual mat
elements ofDMS

2 are given by
~DMS
2!115sb

2 DMa
22

3ht
4v2

2

16p2

m2 Xt
2

~mt̃ 1

2
2mt̃ 2

2
!2

g~mt̃ 1

2 ,mt̃ 2

2
!, ~3.35!

~DMS
2!125~DMS

2!2152sbcb DMa
22

3ht
4v2

2

16p2 F mXt

mt̃ 1

2
2mt̃ 2

2 lnS mt̃ 1

2

mt̃ 2

2 D 2
mAtXt

2

~mt̃ 1

2
2mt̃ 2

2
!2

g~mt̃ 1

2 ,mt̃ 2

2
! G ,

~DMS
2!135~DMS

2!3152
v
vS

sb
2cb F DMa

21
3ht

4v2

16p2

m2 Xt
2

~mt̃ 1

2
2mt̃ 2

2
!2

g~mt̃ 1

2 ,mt̃ 2

2
! G

1
3ht

2

16p2 S vcb

vS
D m2 F lnS mt̃ 1

2
mt̃ 2

2

Q4 D 1g~mt̃ 1

2 ,mt̃ 2

2
! G ,

~DMS
2!225cb

2 DMa
21

3ht
4v2

2

16p2 F lnS mt̃ 1

2
mt̃ 2

2

mt
4 D 1

2At Xt

mt̃ 1

2
2mt̃ 2

2 lnS mt̃ 1

2

mt̃ 2

2 D 2
At

2Xt
2

~mt̃ 1

2
2mt̃ 2

2
!2

g~mt̃ 1

2 ,mt̃ 2

2
! G ,
3-9
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~DMS
2!235~DMS

2!3252
v
vS

sbcb
2 F DMa

21
3ht

4v2

16p2

tbm Xt

mt̃ 1

2
2mt̃ 2

2 lnS mt̃ 1

2

mt̃ 2

2 D 2
3ht

4v2

16p2

tbmAt Xt
2

~mt̃ 1

2
2mt̃ 2

2
!2

g~mt̃ 1

2 ,mt̃ 2

2
! G ,

~DMS
2!335

v2

vS
2

sb
2cb

2 F DMa
22

3ht
4v2

16p2

m2 Xt
2

~mt̃ 1

2
2mt̃ 2

2
!2

g~mt̃ 1

2 ,mt̃ 2

2
!G ,
e

n-
lin
-

l

to

r

e

ou

e

-

tates

g

e
r of

he

the
whereXt5At2m/tb . Again, we find that almost the entir
Q2 dependence of the radiatively correctedCP-even mass
matrix given in Eq.~3.35! can be absorbed intoMa

2 by an
one-loop redefinition ofMa

2(0) . An exception to this is the
mass-matrix element (DMS

2)13. The Q2 dependence of the
$13% element can be eliminated by theF2-wave-function
counterterm~CT! which is contained in thel parameter.

To make this last point explicit, we shall apply the no
renormalization theorem of the superpotential to the coup
l ŜĤ1

Ti t2Ĥ2 in Eq. ~3.1!. Since this operator does not re
ceive any ultraviolet~UV! infinite radiative corrections to al
orders, the wave-functions ofŜ, Ĥ1, andĤ2, denoted asZŜ ,
ZĤ1

, andZĤ2
must cancel against the CT ofl,dl, that is

dl5~ ZŜ
21/2

ZĤ1

21/2
ZĤ2

21/2
21 !l

52
1

2
~ dZŜ1dZĤ1

1dZĤ2
! l, ~3.36!

whereZz
1/2511 1

2 dZz , with z5Ŝ, Ĥ1, and Ĥ2. Since only

the wave function ofĤ2 receives quantum corrections due
top quarks, Eq.~3.36! becomes

dl52
1

2
dZĤ2

l52
3lht

2

32p2
lnS mt

2

Q2D .

~3.37!

Here, we have implicitly assumed that the couplingl is
renormalized at the scaleQ25mt

2 . Returning now to the
bare Higgs potential in Eq.~3.3!, we see that the operato
l2 (S* S)(F1

†F1) induces the CT 2ldl, which gives rise to
a corresponding CT in the tree-level mass-matrix elem
(MS

2)13,

~dMS
2!1354 S vcb

vS
D S dl

l D m252
3ht

2

8p2 S vcb

vS
D m2 lnS mt

2

Q2D .

~3.38!

Adding the CT (dMS
2)13 to the one-loop result (DMS

2)13, we
readily see thatQ2 gets substituted bymt

2 . Finally, it is not
difficult to convince ourselves that there are no analog
dl-dependent CTs for the operatorsl2 (S* S)(F2

†F2) and
l2 (F1

†F1)(F2
†F2), as they are exactly canceled by th

wave-function renormalization ofF2.
05500
g

nt

s

The one-loop radiatively correctedCP-even mass matrix,
MS

25MS
2(0)1DMS

2 , is diagonalized by means of a 333 or-
thogonal matrixOH, i.e.,

~OH!T MS
2 OH5diag~MH1

2 ,MH2

2 ,MH3

2 !, ~3.39!

with MH1

2 <MH2

2 <MH3

2 . Under this orthogonal transforma

tion, the weak states are related to the mass eigens
through

S f1

f2

fS

D 5OH S H1

H2

H3

D . ~3.40!

The entries ofOH can be calculated analytically by solvin
the third-order characteristic equation ofMS

2 . The procedure
of deriving analytic expressions for the elements ofOH is
very similar to the one presented in Appendix B of Ref.@18#,
and we will not repeat it here.

C. The Higgsino sector

In addition to the Higgs sector, the Higgsino~or neu-
tralino! sector of the MSSM gets minimally extended in th
MNSSM due to the presence of the neutral SUSY partne
the complex scalar singletS, the singlinos̃. Instead, the tree-
level chargino sector is identical to that of the MSSM. In t
weak basis

C0
T5~B̃,W̃3 ,h̃1 ,h̃2 ,s̃!, ~3.41!

the Lagrangian describing the neutralino mass matrix in
MNSSM is given by

L mass
0 52

1

2
C0

TM0C01H.c.,

~3.42!

where
3-10
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M051
mB̃ 0 2MZswcb MZswsb 0

0 mW̃ MZcwcb 2MZcwsb 0

2MZswcb MZcwcb 0 2m 2
v
vS

sbm

MZswsb 2MZcwsb 2m 0 2
v
vS

cbm

0 0 2
v
vS

sbm 2
v
vS

cbm 0

2 , ~3.43!
d
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with cw5A12sw
2 5MW /MZ . In Eq. ~3.41!, B̃ and W̃3 are

the U(1)Y and SU(2)L neutral gauginos, respectively, an
h̃1 , h̃2 and s̃ are the corresponding Higgsino states of t
chiral multipletsĤ1 , Ĥ2, andŜ.

The neutralino mass matrix of the MNSSM given in E
~3.43! predicts a relatively light state, with mass smaller th
70 GeV. Since the neutralino mass matrix is identical to t
of the PQ-symmetric extension of the MSSM, we call th
light state axinoã. The axino is predominantly a singlet fiel
for values of them parameter in the phenomenological
relevant range, i.e., forumu*120 GeV. In order to have a firs
estimate of the axino mass, we assume that the gaugino
parametersmB̃ andmW̃ are very large, e.g., of order 500 Ge
and higher, such that the gauginosB̃ andW̃3 decouple prac-
tically from the neutralino sector. The reduced 333
Higgsino-mass matrix, which is expressed in the subsp
spanned byh̃1 , h̃2 and s̃, can then be expanded in terms
v/vS , thus yielding the axino mass

mã'
v2

vS
2

um sin 2bu5
2l2

gw
2

MW
2

umu
usin 2bu. ~3.44!

This last formula proves to be a good approximation
umu*200 GeV.

There are strict collider limits on the axino-related para
eters, which come from LEP2 and especially from the inv
ible width of theZ boson@15#, in which case a new invisible
decay channel for theZ boson into axino pairs opens u
kinematically whenmã&MZ/2. Assuming that the gaugino
are decoupled from the neutralino mass matrixM0, we find
numerically that the axino mass is smaller than 45 GeV
values ofumu*150 GeV andl'gw'0.65. Of course, such a
numerical estimate crucially depends on the values ofmB̃
and mW̃ . For example, for relatively low values ofmB̃ and
mW̃ in the range 200–300 GeV, gaugino-Higgsino mixi
effects can no longer be neglected, and the upper limit on
m parameter is estimated to increase by 40–50 GeV.

On the other hand, the upper bound on the branching r
of the Z-boson invisible width due to a new-physics dec
mode imposes the constraint@15#

B~Z→ãã!5
aw

24cw
2

MZ

GZ
ugããZu2,1.31023, ~3.45!
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at the 90% C.L., whereaw5gw
2 /(4p) is the SU~2! L weak

fine structure constant andGZ52.49 GeV is the total width
of theZ boson. Moreover, in the seesaw-type approximat
the ããZ coupling is readily found to be

gããZ'
v2

vS
2 ~sb

22cb
2 !5

2l2

gw
2

MW
2

m2
~sb

22cb
2 !. ~3.46!

The constraint in Eq.~3.45!, together with Eq.~3.46!, leads
to

2l2

gw
2

MW
2

m2
ucos 2bu,0.122. ~3.47!

This last inequality can be translated into the followin
bound on them parameter

umu*250 GeV, ~3.48!

for l'gw and tanb'2. The above exercise shows that
the MNSSM the LEP limits on theZ-boson invisible width
give rise to a new exclusion range ofm values 200&umu
&250 GeV, forl'0.65. However, this additional exclusio
range ofm exhibits a quadratic dependence onl and com-
pletely disappears for values ofl&0.45.

D. Effective Higgs-boson couplings

Apart from the Higgs-boson masses, the effective c
plings of theCP-even andCP-odd Higgs scalars to theW6

and Z bosons are very essential for our phenomenolog
discussion in Sec. V. These effective couplings are given
the interaction Lagrangians

LHVV5gw MW (
i 51

3

gHiVV S HiWm
1W2,m1

1

cw
2

HiZmZm D ,

~3.49!

LHAZ5
gw

2 cw
(
i 51

3

(
j 51

2

gHiAjZ
~Hi ]JmAj ! Zm, ~3.50!

where]Jm[ ]Jm2 ]Jm and

gHiVV5cb O1i
H 1sb O2i

H , ~3.51!
3-11
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gHiAjZ
5O1 j

A ~ cb O2i
H 2sb O1i

H !. ~3.52!

Here, we wish to remind the reader that the orthogonal m
trix OA (OH) is related to the mixing of theCP-odd
(CP-even! scalars and is defined in Eq.~3.32! @Eq. ~3.40!#.

It is now worth remarking that the effective coupling
HiVV ~with V5Z,W) and HiAjZ satisfy the unitarity rela-
tions @20#

(
i 51

3

gHiVV
2 51, (

i 51

3

(
j 51

2

gHiAjZ
2 51. ~3.53!

In particular, in the limit in whichA2 and H3 decouple as
singlets, which is obtained for largeutSu with the remaining
parameters kept fixed, one recovers the known MS
complementarity relations among the effective Higgs-bo
couplings@16#

gH1VV
2 5gH2A1Z

2 and gH2VV
2 5gH1A1Z

2 . ~3.54!

As an obvious consequence of the above decoupling li
all couplings of the heavy Higgs scalarsA2 andH3 to theW
andZ bosons go to zero.

Another very important relation which involves th
CP-even Higgs-boson masses and the respective coup
to theW andZ bosons is

(
i 51

3

gHiVV
2 MHi

2 5cb
2 ~MS

2!1112sbcb ~MS
2!121sb

2~MS
2!22

5MZ
2 S cos2 2b1

2l2

gw
2 1g82

sin2 2b D
1

3ht
4v2sb

4

16p2 F lnS mt̃ 1

2
mt̃ 2

2

mt
4 D

1
2Xt

2

mt̃ 1

2
2mt̃ 2

2 lnS mt̃ 1

2

mt̃ 2

2 D 2
Xt

4g~mt̃ 1

2 ,mt̃ 2

2
!

~mt̃ 1

2
2mt̃ 2

2
!2 G .

~3.55!

This mass-coupling sum rule is very analogous to the
derived in Ref.@21# for the MSSM, where the right-han
side~RHS! of Eq. ~3.55! is the squared lightest Higgs-boso
mass in the decoupling limit of a heavy charged Higgs bo
@see also Eq.~3.17!#. In this limit, only the H1 boson has
nonvanishing couplings to theW andZ bosons@16#. Taking
Eq. ~3.53! into account, the RHS of Eq.~3.55! constitutes an
upper bound onMH1

2 . As can be seen from Eq.~3.55!, the

mass-coupling sum rule is independent of the charged H
boson mass, while it only weakly depends onm at the one-
loop order. The relations~3.53! and ~3.55!, which are obvi-
ously valid for the case of the NMSSM as well, are ve
useful to reduce the number of independent effective Hig
boson couplings and so achieve a better control on the
merical predictions for the Higgs-boson masses and c
plings.
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IV. MNSSM VERSUS NMSSM

Here, we shall compare the generic predictions for
Higgs-boson mass spectrum in the NMSSM, which includ
the cubic singlet-superfield coupling, with those obtained
the MNSSM. For this purpose, we shall only focus on t
tree-level structure of the Higgs sector of the NMSSM, as
dominant top squark and top quark radiative effects are id
tical for both models and have already been computed
Sec. III B.

The often-discussed NMSSM is based on the Higgs
perpotential

WHiggs5l ŜĤ1
Ti t2Ĥ21

k

3
Ŝ3. ~4.1!

As usual, the complete tree-level Higgs potential is obtain
by adding the relevantF- and D-term contributions to the
soft SUSY-breaking terms induced by the superpotential

2 L V
05m1

2 F1
†F11m2

2 F2
†F21mS

2 S* S

1~lAl SF1
†F21H.c.!1S k

3
Ak S31H.c.D

2 l1~F1
†F1!22l2 ~F2

†F2!22l3 ~F1
†F1!~F2

†F2!

2~l42l2!~F1
†F2!~F2

†F1!

1 l2 S* S~F1
†F11F2

†F2!1k2 ~S* S!2

1@ lk S* 2~F1
†F2!1H.c.#. ~4.2!

Furthermore, the minimization conditions are determined
requiring that the following tadpole parameters vanish:

Tf1
[ K ]LV

]f1
L 52 v1 F m1

21S 1

A2
lAlvS1

1

2
lk vS

2 D tb

2l1v1
22

1

2
~l31l42l2! v2

21
1

2
l2vS

2 G ,

~4.3!

Tf2
[ K ]LV

]f2
L 52 v2 Fm2

21S 1

A2
lAlvS1

1

2
lk vS

2 D tb
21

2l2v2
22

1

2
~l31l42l2! v1

21
1

2
l2vS

2 G ,

~4.4!

TfS
[ K ]LV

]fS
L 52 vS S mS

21lAl

v1v2

A2 vS

1
1

2
l2 v21kAk

vS

A2

1k2 vS
21 lk v1v2 D . ~4.5!

We should remark again that spontaneousCP violation is
absent in the NMSSM at the tree level@14,22#. Also, CP
3-12
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appears to be still a good symmetry of the NMSSM, eve
(CP-conserving! large radiative top squark mixing effec
were to be taken into account@22#.

Considering the vanishing of the tadpole parameters gi
in Eqs.~4.3!–~4.5!, it is not difficult to compute the charge
Higgs-boson mass, and theCP-odd andCP-even mass ma
trices. More explicitly, the squared charged Higgs-bos
mass is given by

MH1
2(0)

5
1

sbcb
S mAl2

k

l
m2 D1MW

2 2
1

2
l2 v2, ~4.6!

where the would-bem parameter is defined in Eq.~3.11!.
The entries of the tree-levelCP-odd mass matrixM P

2(0) are
found to be

~M P
2(0)!115Ma

2(0) ,

~M P
2(0)!125~M P

2(0)!215
v
vS

S sbcb Ma
2(0)13

k

l
m2 D ,

~M P
2(0)!225

v2

vS
2

sbcb S sbcb Ma
2(0)23

k

l
m2 D13

k

l
mAk ,

~4.7!

where Ma
2(0) is given by Eq.~3.13!. Finally, the entries of

CP-even mass matrixMS
2(0) read

~MS
2(0)!115cb

2 MZ
21sb

2 Ma
2(0) ,

~MS
2(0)!125~MS

2(0)!2152 sbcb~Ma
2(0)1MZ

22l2v2 !,

~MS
2(0)!135~MS

2(0)!31

52
v
vS

S sb
2cb Ma

2(0)22cbm22
k

l
sbm2 D ,

~MS
2(0)!225sb

2 MZ
21cb

2 Ma
2(0) ,

~MS
2(0)!235~MS

2(0)!32

52
v
vS

S sbcb
2 Ma

2(0)22sbm22
k

l
cbm2 D ,

~MS
2(0)!335

v2

vS
2

sbcb S sbcb Ma
2(0)1

k

l
m2 D

2
k

l
mAk14

k2

l2
m2. ~4.8!

From the above analytic expressions forMH1
2(0) , and the

CP-odd andCP-even Higgs-boson mass matricesM P
2(0) and
05500
if

n

n

MS
2(0) , it is now evident that the MSSM limit of the NMSSM

is obtained fork, l→0, while holdingk/l, m, Al , andAk
fixed.

Parenthetically, we should remark that the Higgsino s
tor of the NMSSM is also different from the correspondin
one in the MNSSM. Because of the presence of the oper
(k/3) Ŝ3 in the superpotential~4.1!, the $55%-matrix element
of the neutralino mass matrix in Eq.~3.43! receives the ad-
ditional contribution

~M0!5552 2
k

l
m. ~4.9!

Note that if (M0)55,0 with m,0,4 this additional contribu-
tion to the predominantly singlet state in the NMSSM
constructive, rendering its mass larger than the axino mas
the MNSSM. However, for small positive values ofk, e.g.,
k&0.1, and umu&200 GeV, with m,0 and l'0.65, the
$55%-matrix element (M0)55 is positive and its contribution
to the would-be axino mass is destructive, leading to lig
singlet masses smaller thanmã .

It is now important to notice that unlike the MNSSM
case, the decoupledCP-even andCP-odd scalar singlets are
no longer degenerate in the MSSM limit of the NMSSM
This fact is a manifestation of the violation of the mass s
rule ~3.19! in the case of the NMSSM. Specifically, in th
NMSSM we find that

(
i 51

3

MHi

2(0)2(
i 51

2

MAi

2(0)2MZ
254

k

l
m2 S v2

vS
2

sbcb1
k

l
2

Ak

m D .

~4.10!

It is obvious that the mass sum rule~3.19! can be sizably
violated in the NMSSM for relatively large values ofuku and
umu or uAku. In such cases, the violation of the mass sum r
becomes much larger than the one caused by radiative
squark effects.

The analytic expressions of the Higgs-boson masses in
NMSSM coincide with those of the MNSSM only in th
PQ-symmetric limit, wherek/l, tS , m12

2 →0. Although this
limit is unphysical as it leads to a theory with a visible axio
its vicinity, however, could define an acceptable region
parameter space where the predictions of the two mo
exhibit reasonable agreement.

An interesting property of the tree-levelCP-even mass
matrix MS

2(0) in the PQ-symmetric limit is that the interval o
the allowedm2 values is rather small. This interval may b
determined by requiring that the determinant ofMS

2(0) ,

4Our choice of a negativem parameter is mainly dictated by th
fact thatb→sg imposes a stronger lower limit on positive values
m @23# for relatively small charged Higgs-boson masses, close
the present experimental bound, i.e., forMH1;80 GeV @15#. In-
stead, for negative values ofm, the bound onm can be dramatically
relaxed up to the present LEP2 limitumu*90 GeV @15#.
3-13
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det~MS
2(0)!52

v2

vS
2 H 4 F M21S 1

2
l2v22MZ

2 D cos2 2b G m4

22 sin2 2b M2 Ma
2(0)m2

1
1

4
sin4 2b M2 Ma

2(0)S Ma
2(0)2

1

2
l2v2 D J ,

~4.11!

with M25Ma
2(0)1MZ

22 1
2 l2v25MH1

2(0)
1MZ

22MW
2 , be posi-

tive. Neglecting terms proportional to (1
2 l2v22 MZ

2)cos2 2b
next toM2 in Eq. ~4.11!, we may approximate the determ
nant det(MS

2(0)) as

det~MS
2(0)!'2

v2

vS
2

M2 F 4m422 sin2 2b Ma
2(0)m2

1
1

4
sin4 2b Ma

2(0)S Ma
2(0)2

1

2
l2v2 D G .

~4.12!

Requiring now that det(MS
2(0)) be positive gives the allowed

m2 interval:

1

4
sin2 2b Ma

2(0) ~12d!&m2&
1

4
sin2 2b Ma

2(0) ~11d!

~4.13!

with

d5A l2v2

2Ma
2(0)

. ~4.14!

Here, it is understood thatd<1 or, equivalently,MH1
2(0)

>MW
2 . Especially forMH1

2(0)
5MW

2 , for which the terms pro-

portional to (12 l2v22MZ
2)cos2 2b are no longer negligible

with respect toM25MZ
2 , the allowed range ofm2 becomes

0,m2,
1

2
sin2 2b Ma

2(0) S 11

1
2 l2v22MZ

2

MZ
2 cos2 2b D 21

.

~4.15!

Further insight into the predictions of the PQ-symmet
limit may be gained by analyzing the kinematic situati
where MH1

2(0)
@MW

2 ~i.e., d!1) and m25mmid
2 5sb

2cb
2Ma

2(0)

which is approximately the middle point of the allowedm2

interval. In this case, we obtain~see also Appendix B!

MH1

2(0)'
1

2
l2v2 sin2 2b,

MH2

2(0)'MZ
2 cos2 2b1

1

2
l2v2 sin2 2b,
05500
MH3

2(0)'Ma
2(0)1

1

2
l2v2 cos2 2b

2S 1

2
l2v22MZ

2 D sin2 2b,

MA1

2(0)'0, MA2

2(0)'Ma
2(0)1

1

2
l2v2, ~4.16!

and

gH2ZZ
2 'gH3A2Z

2 '1. ~4.17!

Thus, the lightH1 and A1 scalars decouple from the gaug
bosons, whilst theH2 boson couples maximally to them wit
SM strength. Moreover, according to the mass-coupling s
rule ~3.55!, the H2-boson mass saturates the mass up
bound obeyed by the SM-like Higgs boson. Given that
length of the allowedm2 interval is very small relative to
mmid

2 for d!1, one does not expect serious changes reg
ing the heaviest Higgs-boson massesMH3

andMA2
and the

qualitative features of the Higgs to gauge-boson coupling
m takes all other allowed values.

A minimal deviation from the PQ-symmetric limit, in
which the NMSSM could easily be compared with th
MNSSM, is the limitk→0, with l, m, Al , andkAk held
fixed. In fact, in this limit, the couplingl could be the larg-
est, thereby allowing for the largest possible value for
lightest Higgs-boson massMH1

. By the same token, the un

wanted U(1)PQ symmetry gets broken by the trilinear so
SUSY-breaking self-couplingkAk of the singletS. A corre-
sponding limit of the MNSSM, which has the same numb
of independent parameters as in the NMSSM, is the one w
m12

2 →0, butl, m, Al , andtS fixed. We should also bear in
mind that vanishing oftS entails vanishing ofm12

2 as well
which eliminates the possibility oftS→0, with m12

2 fixed. In
this way, we compare essentially two models which on
differ in soft operators of dimensionalityd<3. An additional
reason that renders such a comparison very interesting is
fact that the dimensionful parameters, such asAk and tS ,
remain unconstrained by perturbativity arguments, and he
could severely affect the structure of the mass matrices.

The aforementioned physical limit allows for more dire
comparisons of the NMSSM with the MNSSM. Equating t
tadpole parametersTf1

, Tf2
, and TfS

pertinent to the two
models yields, in this limit, the simple relation

ltS

m
5

k

l
mAk . ~4.18!

Moreover, in the same limit, except for (M P
2(0))22 and

(MS
2(0))33, all other elements of the mass matrices coinc

as well. In the MNSSMltS /m enters the elements (M P
2(0))22

and (MS
2(0))33 in exactly the same way, whereas in th

NMSSM the corresponding parameter (kmAk)/l appears in
these two matrix elements with different coefficients, a
most importantly, with different signs reflecting the violatio
3-14
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of the tree-level mass sum rule~3.19!. The fact that the de-
terminants of theCP-odd Higgs-boson mass matrices in t
MNSSM and NMSSM are proportional toltS /m and
(kmAk)/l necessitates that the two parameters must be
positive. As a result of this, the matrix element (MS

2(0))33

will be enhanced in the MNSSM, but reduced in t
NMSSM. In addition, it is not difficult to see that the dete
minant of the tree-levelCP-even mass matrix det(MS

2(0)) is
a monotonically increasing function of (MS

2(0))33 and is al-
ready negative if (MS

2(0))33 vanishes. This last property relie
on the fact that the upper-left 232 submatrix is positive
definite. Therefore, the larger the massMA1

of the lightest

CP-odd scalar is the larger~smaller! det(MS
2(0)) is in the

MNSSM ~NMSSM!. On the other hand, a very small valu
for ltS /m or (kmAk)/l, which amounts to having a ver
light A1, does not seriously affectMS

2(0) , and hence no es
sential difference in the predictions for the Higgs spectr
between the MNSSM and NMSSM can be observed. In
region, both models are close to the PQ-symmetric lim
However, the difference between the two models becom
appreciable, once the parametersltS /m and (kmAk)/l be-
come large. The first parameter has no upper bound, whe
the second one is limited by the fact that (MS

2(0))33 should be
positive. Thus, only in the MNSSM case a significant dep
ture from the PQ-symmetric limit is possible, which ma
change the situation drastically. For example,
m-independent contribution to (MS

2(0))33, say T2, changes
the coefficient ofm2 in the expression~4.11! for det(MS

2(0)),
and as a consequence, the allowed interval form2 can now
expand~or further shrink! for T2 positive~negative!. For the
particular case thatMH1

2(0)
5MW

2 , the interval ofm2 increases
~decreases! by a factor 11T2/(l2v2sin2 2b). As we just ob-
served, such an unconstrained~constrained! positive ~nega-
tive! contribution is available in the MNSSM~NMSSM!,
i.e., T2[ltS /m @T2[2(kmAk)/l#, where tS (Ak) should
be regarded as am-dependent parameter.

At this point, it should be stressed that our discussion
the NMSSM in the limitk→0, with l, m, Al , and kAk
being kept fixed, by no means exhausts all possible pre
tions that the model offers for viable scenarios. Being clo
to the above limit requires thatuk/lu!1!uAk /mu. However,
it is possible to considerably depart from this limit, even
uk/lu is very small but nonzero, while avoiding the know
problem associated with the presence of a visible axion
order to better investigate alternative scenarios that avoid
presence of a visible axion, we compute the exact dete
nant of theCP-odd Higgs-scalar mass matrix

det~M P
2(0)!53

k

l S mAk2
3

4
sin 2b l2v223

k

l
d2m2 D Ma

2(0) .

~4.19!

We shall now examine other possible deviations from
PQ-symmetric limit, for which them values, however, are
not very different from those determined by the allowedm
interval in Eq.~4.13!. Under this assumption and the fact th
uk/lu is considered to be adequately small, the third term
the RHS of Eq.~4.19! remains always subdominant; it act
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ally diminishes the size of det(M P
2(0)) irrespectively of the

sign of k/l. For uAk /mu@1, the first termmAk on the RHS
of Eq. ~4.19! becomes dominant. In this case, this te
should have the same sign ask/l, in compliance with our
earlier requirement that (kmAk)/l be positive. However, as
uAk /mu is getting smaller, the second term34 sin 2bl2v2

within the parentheses on the RHS of Eq.~4.19! will then
start playing an important role. Fork/l.0 (k/l,0), this
second term provides a lower~upper! bound onmAk , which
should not be saturated. In fact, the mass of the ligh
CP-odd scalar depends crucially on the difference betw
these two first terms on the RHS of Eq.~4.19!. It is then
obvious that ifk/l is negative,mAk could be negative, zero
or even a positive quantity which is bounded from above

Having gained some insight from the above discussi
let us now consider the most general case without resor
to specific assumptions or kinematic approximations. Th
the requirement that det(M P

2(0)) in Eq. ~4.19! be positive
implies the constraint

m2,m,m1 ~4.20!

with

m65S 6
k

l
d2D 21 F Ak6sgnS k

l D AAk
229 sin 2b d2klv2G ,

~4.21!

whereAk
2.9 sin 2b d2klv2. We see again thatAk50 is only

allowed fork/l,0. In this case,m2 is constrained to be in
the range

0,m2,2
l

2k
sin 2b Ma

2(0) . ~4.22!

Here, it is also important to reiterate the fact that the requ
ment for a positive det(M P

2(0)) constrains by itself the$33%
element ofMS

2(0) :

~MS
2(0)!33,

v2

vS
2

sbcb S sbcb Ma
2(0)22

k

l
m2 D

1~423d2!
k2

l2
m2. ~4.23!

The constraint in Eq.~4.23! seems to favor negative value
of k/l, as the upper limit on (MS

2(0))33 gets larger in this
case. Furthermore, saturation of the upper bound in
~4.23! leads toMA1

2(0)50.

As the key parameteruk/lu increases, the situation is ge
ting more involved since new terms start playing a role.
particular, a term which deserves special attention is the
proportional tok2m2/l2 that occurs in Eq.~4.23!. This term
becomes very important for larger values ofMH1

2(0) which
lead to smaller values ofd and to larger values ofm2 in
accordance with Eqs.~4.13! and ~4.14!. In such a case, we
may hope for an enlargement of the allowed interval ofm2

values, for which det(MS
2(0)) is positive. Therefore, it would
3-15
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be interesting to investigate to which extent such a situa
can indeed be realized, especially for low values ofMH1

2(0) for
which d is not very small and (MS

2(0))33 appears to be more
severely constrained. To this end, we shall consider the
cial case whereMH1

2(0)
5MW

2 , i.e., d51. Then, after taking
into account the constraint in Eq.~4.23! and making use of
the fact that det(MS

2(0)) increases monotonically with
(MS

2(0))33, the following inequality may be derived:

det~MS
2(0)!,2 l2v2 MZ

2 F 2S 11
k

l
sin 2b

1

1
2 l2v22MZ

2

MZ
2

cos2 2b D m22sin2 2b Ma
2(0) G .

~4.24!

Assuming that the corresponding upper bound in Eq.~4.23!
is saturated~i.e., MA1

2(0)50), then Eq.~4.24! and the fact that

det(MS
2(0)).0 lead to

0,m2,
1

2
sin2 2b Ma

2(0)

3S 11
k

l
sin 2b1

1
2 l2v22MZ

2

MZ
2

cos2 2b D 21

.

~4.25!

It is easy to see that foruk/lu!1, the double inequality in
Eq. ~4.25! reduces to our previous result found in Eq.~4.15!.
We observe now that fork/l.0, the allowed interval ofm2

given by Eq.~4.25! shrinks asuk/lu increases. Instead, fo
k/l,0 with uk/lu increasing, the allowed interval ge
larger and, especially for values ofuk/lu close to unity, it
may even become infinitely large. Of course, at this criti
kinematic region, radiative corrections are expected to p
the dominant role. Notwithstanding this fact, our tree-le
results should still be indicative of the various tendenc
which govern the kinematic parameters of the theory. As
will see below, however, values ofuk/lu;1 are not compat-
ible with the largest possible value forl and hence with the
largest value of the lightest Higgs-boson massMH1

.

The Yukawa-type couplingsk andl cannot be arbitrarily
large, if we wish to preserve the good property of SUSY t
perturbation theory be applicable up to the gauge unifica
scaleMU;1016 GeV @24#. Therefore, upper limits onulu and
uku can be obtained by studying their renormalization-gro
~RG! evolution along with the corresponding ones of t
strong coupling constantgs and thet-quark Yukawa cou-
pling ht @25,19,26#:

16p2
dgs

dt
52

3

2
gs

3 ,

16p2
dht

dt
5ht S 3 ht

21
1

2
l22

8

3
gs

2 D ,
05500
n

e-

l
y
l
s
e

t
n

p

16p2
dl

dt
5l S k212l21

3

2
ht

2 D ,

16p2
dk

dt
53k ~k21l2!, ~4.26!

wheret5 ln(Q2/Mt
2). In writing the RG equations~4.26!, we

have ignored possible mass threshold effects of the SU
particles while running from thet-quark-pole massMt
5175 GeV up toMU;1016 GeV. In the renormalization
group ~RG! analysis, we use the value for the strong fin
structure constantas(Mt)5gs

2(Mt)/(4p)'0.109. Further-
more, the runningt-quark Yukawa couplinght is determined
by

ht~Mt!5
mt~Mt!

v~Mt! sb~Mt!
, ~4.27!

wherev(Mt)5174.1 GeV and

mt~Mt!5
Mt

11
4

3p
as~Mt!

~4.28!

is the known relation between the on-shellMS mass andMt .
For 3&tanb(Mt),10, we find the approximate uppe
bounds

ul~Mt!u&0.70, 0.63, 0.57, 0.44, 0.22, for

uk~Mt!u50, 0.3, 0.4, 0.5 and 0.6, ~4.29!

respectively. Correspondingly, for tanb'2, we obtain

ul~Mt!u&0.65, 0.59, 0.54, 0.42, 0.21. ~4.30!

The results in Eqs.~4.29! and ~4.30! are in good agreemen
with Refs. @19,26#. From the above analysis, it is obviou
that the largest value forul(Mt)u is more naturally attained
in the MNSSM@corresponding tok(Mt)50] rather than in
the NMSSM, as one would generically expectl(Mt)
;k(Mt)Þ0. This is another important difference betwe
these two models. In particular, this implies that the MNSS
generically predicts higher masses for the lightest Higgs
son than the NMSSM. In the next section, we shall study
Higgs sector of the MNSSM more quantitatively and al
compare our numerical predictions with those obtained in
NMSSM.

V. PHENOMENOLOGICAL DISCUSSION

In this section, we shall discuss the phenomenology of
Higgs bosons in the MNSSM, and make comparisons of
predictions with those obtained in the NMSSM. At LEP
the CP-even andCP-odd Higgs scalarsH1,2,3 andA1,2, are
mainly produced through the Higgs-strahlung processe1e2

→Z* →ZHi or in pairs viae1e2→Z* →HiAj . Analogous
Higgs-boson production mechanisms can take place at
milab, where instead of electrons the initial states are thu
3-16
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and d quarks at the quark-parton level@27#. Therefore, the
necessary ingredients for our numerical discussion follow
below are the analytic expressions for the radiative
corrected Higgs-boson masses and the effective Higgs-b
couplings to the gauge bosons. These analytic express
pertaining to the MNSSM and NMSSM have been presen
in Secs. III and IV, respectively.

There are several possible combinations in choosing
independent kinematic parameters for the two supersymm
ric extensions of the MSSM, the MNSSM and the NMSS
For definiteness, for the MNSSM case, we consider

tb , MH1
2 , m, l,

ltS

m
, and m12

2 , ~5.1!

as free phenomenological parameters of the Higgs sector
for the NMSSM, we take as input parameters

tb , MH1
2 , m, l, k, and

kmAk

l
. ~5.2!

For both SUSY models, the top-squark-related parame
are chosen to have the typical values

M̃Q5M̃ t50.5 TeV, At51 TeV. ~5.3!

Here, we should remark thatm12
2 in Eq. ~5.1! could in prin-

ciple be absent, without spoiling the renormalizability of t
theory. In this case, the U(1)PQ symmetry of the MNSSM
gets broken explicitly by the effectively generated tadp
parametertS , which corresponds to a term of the lowe
possible dimension, namely, of dimension 1. Such a red
tion of the renormalizable parameters is not possible in
NMSSM because of the presence ofŜ3 which violates
U(1)PQ hardly. Therefore, it is fair to conclude that in th
admissible limitm12

2 →0, the MNSSM under investigation
represents the most economic, renormalizable scen
among the proposed nonminimal supersymmetric stand
models.

In Fig. 2 we display the dependence of the mass of
lightest Higgs bosonH1 in the MNSSM withm12

2 50 on the
would-be m parameter, for different values of the charg
Higgs-boson mass, i.e., forMH150.1, 0.3, 0.7, and 1 TeV
In Fig. 2~a!, we choose the tadpole-parameter valueltS /m
51 TeV2. As we are interested in maximal values for t
lightest Higgs-boson massMH1

which occur for low values

of tanb, i.e., for tanb52, we consider the largest allowe
couplingl50.65, for which the MNSSM stays perturbativ
up to the gauge unification scaleMU;1016 GeV ~see also
discussion in Sec. IV!. As can be seen from Fig. 2~a!, the
H1-boson mass varies between 120 and 145 GeV depen
on MH1 for a wide range ofm values, which is significantly
larger than the current experimental lower bound of 11
GeV on the SM-type Higgs boson. Furthermore, we obse
an asymmetry of order 5 GeV inMH1

for large umu*300

GeV between positive and negative values ofm. This is be-
cause top-squark-radiative effects onMH1

get enhanced for

larger values of the top-squark-mixing parameteruXtu
05500
g
-
on
ns
d

e
t-

.

As

rs

e

c-
e

rio
rd

e

ng

3
e

5uAt2m/tanbu which obviously result from large negativ
values of m, provided uXt /max(M̃Q ,M̃ t)u&A6 @see Eq.
~3.55!#.

In Fig. 2~b! we consider a smaller value for the tadpo
parameter, i.e.,ltS /m50.04 TeV2. As in Fig. 2~a!, we
present numerical estimates ofMH1

as a function ofm, for
the same discrete values of the charged Higgs-boson m
MH150.1, 0.3, 0.7, and 1 TeV. We find that the allowe
range ofm becomes much smaller, but the maximum valu
of MH1

are still very close to those obtained in Fig. 2~a!.

Most interestingly, we observe that the maxima ofMH1
are

located at almost the samem values found for the tadpole
parameter of 1 TeV2; the maxima are practically independe
of the tadpole parameter, for all relevant values ofltS /m
50.01–1 TeV2. This feature that the allowed range ofm
values shrinks asltS /m gets smaller is in good agreeme
with our discussion in Sec. IV concerning theCP-even
Higgs-boson mass matrix in the PQ-symmetric limit. Sp
cifically, for small values ofltS /m, the allowedumu ranges

FIG. 2. Numerical predictions forMH1
as a function ofm in the

MNSSM with m12
2 50, for MH150.1 ~solid line!, 0.3 ~dashed line!,

0.7 ~dotted line!, 1 ~dash-dotted line! TeV.
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can be accurately determined by Eqs.~4.13! and ~4.15!. In
particular, the mean values of the allowedumu ranges, which
are approximately given bysbcbMH1 and are almost inde
pendent ofltS /m, appear to describe well the location of th
maxima ofMH1

.

It is now very interesting to analyze a scenario within t
context of the MNSSM, in which the charged Higgs bos
has a relatively low mass, in the rangeMH1580–160 GeV,
and may be accessed in next-round experiments at L
and/or at the upgraded Tevatron collider. For this purpose
Fig. 3 we display numerical estimates of the masses of
two lightest Higgs bosonsH1 andH2 and their correspond
ing squared couplings to theZ boson as functions of the
parameterm, for MH1580, 120, and 160 GeV. The othe
kinematic parameters are chosen to be the same as in
2~a!: tanb52, l50.65 andltS /m51 TeV2. Let us first
consider the lowest experimentally allowed value for t
charged Higgs-boson massMH1580 GeV @1,15#. Then, in
Fig. 3~a! we notice that theH1-boson mass cannot becom
larger than 105 GeV, while the next-to-lightestH2 boson can
be as heavy as 146 GeV. As can be seen from Fig. 3~b!, such
a scenario is not excluded experimentally, since theH1ZZ
coupling gets suppressed, i.e.,gH1ZZ

2 &0.2, for umu&350

GeV. In this scenario, theH2 boson becomes SM type (H2
[HSM), and is much heavier thanH1. This novel prediction
of the MNSSM for viable scenarios withMH1&MHSM

and

low values of tanb,5 cannot be realized within the MSSM
even if CP-violating loop effects are included in the Hig
sector of the MSSM@28,18#.5 In fact, as we will see later on
neither the NMSSM can naturally accommodate scena
with MH1&MHSM

, for the experimentally allowed values o

umu*90 GeV @15#.
As the charged Higgs boson becomes heavier in

MNSSM, theH1 boson also gets heavier and resembles
SM Higgs bosonHSM. Thus, from Fig. 3 we see that fo
MH15120 GeV, MH1

&132 GeV, with gH1ZZ
2 ;0.5, while

for MH15160 GeV, it isMH1
&142 GeV, withgH1ZZ

2 '1.

Furthermore, as we have already discussed in Sec. III A,
the considered values ofMH1 much smaller thanltS /m, the
Higgs statesA2 andH3 decouple and are almost degener
with MA2

2 'MH3

2 'ltS /m. In particular, our numerical esti

mates confirm the relations:MA1

2 'MH1
2

2MW
2 1 1

2 l2v2 @see

Eq. ~3.16!#, andgH1ZZ
2 'gH2A1Z

2 andgH2ZZ
2 'gH1A1Z

2 @see Eq.

~3.54!#, which are only valid in the above specific decoupli
regime of theA2 andH3 bosons in the MNSSM. From Fig
3~a!, we see finally that forMH15160 GeV, theH2-boson
mass is nearlym independent and equals theA1-boson mass
MA1

'179 GeV. This result is just a consequence of the
pected decoupling property of a heavy charged Higgs bo
with MH15160 GeV@MZ .

5Using the codeCPH @29# based on Ref.@18#, one finds that only
for extreme values ofumu*5 TeV and for tanb.20, such a sce-
nario might be made viable@30#.
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In Fig. 4 we display predicted values forMH1
and MH2

,

as well as forgH1ZZ
2 and gH2ZZ

2 in the MNSSM, using the

same input parameters as in Fig. 3, but with tanb520, i.e.,
l50.65 andltS /m51 TeV2. We encounter a functiona
dependence of the evaluated kinematic parameters onm, for
MH1580, 120, and 160 GeV, which is qualitatively simila
to the one presented in Fig. 3. Again, we see that the cha
Higgs bosonH1 can be lighter than theH1 boson, even for
large values of tanb. Yet, we observe that for large
H1-boson masses, the squaredH1-boson coupling to theZ
bosongH1ZZ

2 goes more rapidly to unity than in the tanb

52 case. Here, we should emphasize again that asMH1

becomes much larger thanMZ , the predicted values forMH1

approach the one given by the square root of the RHS of
~3.55!, where, of course, the term proportional tol2 sin2 2b
is negligible. Therefore, only in this kinematic regime whe
both tanb and MH1 are large, the predictions of th
MNSSM will coincide with those of the MSSM.

FIG. 3. Numerical estimates of~a! MH1
and MH2

and of ~b!

gH1ZZ
2 andgH2ZZ

2 , as functions ofm in the MNSSM withm12
2 50,

for MH1580 ~solid line!, 120 ~dashed line!, and 160~dotted line!
GeV.
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In our numerical analysis in connection with Fig. 3, w
have already observed that for large values ofltS /m but
small values ofMH1, theH1 boson does not couple strong
to the Z boson, but it is rather theH2 boson which is SM
type. Actually, this kind of behavior is encountered even
larger values ofMH1, providedltS /m is sufficiently small.
As was already discussed in Sec. IV, the latter reflects
fact that the model approaches the PQ-symmetric limit
this case. In Fig. 5, we present numerically them dependence
of the two lightestCP-even Higgs-boson massesMH1

and

MH2
, and their respective couplings to theZ bosongH1ZZ

2

and gH2ZZ
2 , in the MNSSM with m12

2 50, for MH15200,

400, 600, and 800 GeV. In addition, we have selected
value of the tadpole parameterltS /m50.01328 TeV2. For
this specific value of the tadpole parameter and forMH1

5400 GeV, we see that there is a value ofm where the
Higgs statesH1 andH2 interchange their couplings to theZ
boson, while being nearly degenerate having a mass clos
the upper bound ofMH1

. We shall denote bym* this specific

value ofm at which a level crossing in the couplings ofH1
andH2 occurs. Thus, for values ofumu smaller thanum* u, it

FIG. 4. The same as in Fig. 3, but with tanb520.
05500
r

e
n

e

to

is gH1ZZ
2 .gH2ZZ

2 , while this inequality of the squared cou

plings gets inverted forumu.um* u. If we now consider
smaller values forMH15200 GeV for the chosen value o
ltS /m, we observe from Fig. 5 that asumu grows, gH1ZZ

2

starts higher thangH2ZZ
2 , and the crossing point of these tw

squared couplings is beforeMH1
reaches its highest value. I

we now take larger values forMH1, e.g., MH15600,800
GeV, we see thatgH1ZZ

2 starts again higher, becomes almo

unity with MH1
close to its largest allowed value, accordin

to the mass-coupling sum rule~3.55!, and intersectsgH2ZZ
2 at

a smaller value ofMH1
. The very special value ofltS /m, for

a given value ofMH1, for which MH1
and MH2

become

equal at the highest possible value forMH1
and gH1ZZ

2

'gH2ZZ
2 '0.5 should be regarded as a critical point. Gene

cally speaking, for values ofltS /m lower than the one cor-
responding to the critical point, theH2 boson couples pre

FIG. 5. Numerical estimates of~a! MH1
and MH2

and of ~b!

gH1ZZ
2 andgH2ZZ

2 , as functions ofm in the MNSSM withm12
2 50,

for MH150.2 ~solid line!, 0.4 ~dashed line!, 0.6 ~dotted line!, and
0.8 ~dash-dotted line! TeV.
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dominantly to theZ boson. Instead, ifltS /m is higher than
its critical value, it is then theH1 boson that couples with
SM strength. In addition, in Fig. 5 we see that almost ind
pendently ofMH1, the squared couplingsgH1ZZ

2 and gH2ZZ
2

remain comparable for a wide range ofm values. The latter
is an indication of the fact that the critical value ofltS /m
depends only weakly on the charged Higgs-boson massMH1

and has a value close to 0.01 TeV2, for 0.3 TeV&MH1&1
TeV, where the remaining independent kinematic parame
are held fixed.

We shall now analyze the predictions of the MNSSM f
relatively small values of the tadpole parameterltS /m. In
Fig. 6, we display numerical estimates ofMH1

andMH2
, as

well as ofgH1ZZ
2 andgH2ZZ

2 , as functions of them parameter,

for ltS /m50.0026 TeV2. As for charged Higgs-boson
masses, we chooseMH150.3, 0.5, 0.7 and 1 TeV. It is eas
to see that, to a good approximation, the functional dep
dence of the masses of the two lightestCP-even Higgs
bosonsH1 and H2 are insensitive to the value ofMH1. In

FIG. 6. Numerical predictions for~a! MH1
andMH2

and for~b!

gH1ZZ
2 andgH2ZZ

2 , as functions ofm in the MNSSM withm12
2 50,

for MH150.3 ~solid line!, 0.5 ~dashed line!, 0.7 ~dotted line!, and 1
~dash-dotted line! TeV.
05500
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rs

n-

this scenario of the MNSSM, theH2 boson has always the
strongest coupling to theZ boson. Although not displayed in
Fig. 6, the mass of the lightestCP-odd scalarA1 is found to
be MA1

'50 GeV and is almost independent ofMH1. In

addition, theCP-odd Higgs scalarA1 has suppressed cou
plings to theZ andH1 bosons, i.e.,gH1A1Z

2 &1022, and there-

fore can escape detection at LEP2. In Fig. 6 we notice fin
that the allowed intervals ofm values become even shorte
than those found in the previous scenarios of the MNSS
These results are all consequences of our choice of a
tively small value for the tadpole parameter and are in go
qualitative agreement with our discussion in Sec. IV perta
ing to the PQ-symmetric limit.

It is very interesting to examine the consequences of
presence of a nonvanishing effectiveFS-tadpole termm12

2 on
the Higgs-boson mass spectrum of the MNSSM. Therefo
in Fig. 7 we plot the dependence of theCP-even Higgs-
boson massesMH1

and MH2
and the squared coupling

FIG. 7. Numerical predictions for~a! MH1
, MH2

, andMA1
, and

for ~b! gH1ZZ
2 and gH2ZZ

2 , as functions ofm in the MNSSM, for
MH1580 ~solid line!, 120~dashed line!, and 160~dotted line! GeV.
Numerical estimates ofMA1

are indicated by dash-dotted lines.
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gH1ZZ
2 andgH2ZZ

2 , as functions of them parameter, fortS5

21 TeV3 andm12
2 50.325 TeV2. Because of the close rela

tionship betweentS andm12
2 , we are now compelled to trea

tS as am-independent constant. In fact, forMSUSY51 TeV,
we can easily compute from Eq.~3.4! that the adopted value
for tS andm12

2 correspond to the typical values ofjS andjF :
jS521 and jF51/2. To enable a direct comparison wi
Fig. 3, we choose the same values as in Fig. 3 for the
maining kinematic parameters of the theory. From Fig. 7,
see that the presence of a nonvanishing, positive tad
term m12

2 can shift the maxima ofMH1
and MH2

towards

larger values ofumu, whereas all other features found in Fi
3 are retained. In Fig. 7~a!, we have also displayed the de
pendence of the massMA1

of the lightestCP-odd scalarA1,

as a function ofm. We see thatMA1
decreases withumu

decreasing. This kinematic behavior originates from the f
that the contribution of the off-diagonal terms to theCP-odd
mass matrix becomes rather significant for smaller value
umu. Instead, for larger values ofumu, the corresponding con
tribution of the off-diagonal terms is smaller, and leads to
mass relationMA1

'Ma .

Unlike the MSSM, the charged Higgs bosonH1 cannot
be arbitrarily heavy in the MNSSM for fixed given values
tanb and l, and for natural choices ofltS /m and the soft
squark masses, i.e., forltS /m, M̃Q

2 , M̃ t
2&1 TeV2. Figure 8

displays the dependence of the maximum of the ligh
Higgs-boson mass max(MH1

) as a function ofMH1, for

tanb52, l50.65 and for two different values of the tadpo
parameterltS /m50.04 and 1 TeV2. The coupling of theH1
scalar to theZ boson becomes SM type, forMH1*150 GeV.
From Fig. 8, it is then easy to see that the current LE
lower bound on max(MH1

) implies the approximate uppe

FIG. 8. The maximal predicted value ofMH1
as a function of

the charged Higgs-boson massMH1 in the MNSSM withm12
2 50.
05500
e-
e
le

ct

of

e

st

2

limit on MH1: MH1&2.7 TeV, almost independently o
ltS /m. This result may be understood as follows. As t
mass of the charged Higgs boson increases, the maximu
MH1

occurs for larger values ofumu, which is a consequenc

of the tree-level structure of theCP-even Higgs-boson mas
matrix in Eq.~3.15!. On the other hand, the larger the valu
of umu becomes the larger the top-squark-mixing parame
uXtu5uAt2m/tbu is getting. Thus, whenuXtu/max(M̃Q ,M̃ t)
*A6, the contributions of the top-squark-radiative effects
the lightest Higgs-boson massMH1

become negative, and s

drive max (MH1
) to unphysical values. For the very sam

reasons, a similar dependence of max(MH1
) on MH1 is

found to apply to the NMSSM case as well.
For comparison, we shall now investigate a few repres

tative scenarios within the context of the NMSSM. As a fi
example, we consider the scenario with tanb52, l50.65,
k50.01, and (kmAk)/l50.0026 TeV2. Figure 9 exhibits
the numerical predictions for the two lightest Higgs-bos

FIG. 9. Numerical estimates of~a! MH1
and MH2

and of ~b!

gH1ZZ
2 andgH2ZZ

2 as functions ofm in the NMSSM, forMH150.3
~solid line!, 0.5 ~dashed line!, 0.7 ~dotted line!, and 1~dash-dotted
line! TeV.
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massesMH1
andMH2

and their corresponding squared co

plings to theZ bosongH1ZZ
2 andgH2ZZ

2 as functions of them

parameter. We also vary the charged Higgs-boson mass
discrete manner, i.e.,MH150.3, 0.5, 0.7, and 1 TeV. We
observe thatMH1

and MH2
are practically independent o

MH1, with MH1
consistently below 80 GeV. Such low va

ues ofMH1
are still acceptable at LEP2, in the range ofm

values wheregH1ZZ
2 &0.07. In this scenario, theH2 boson has

a SM-type coupling to theZ boson. Also, the mass of th
lightestCP-odd Higgs scalarMA1

is almost independent o

MH1 and comes out to be slightly higher thanMH1
. The

NMSSM under discussion, with the chosen low value ofk
'0.01, may be considered to adequately describe the li
ing scenario wherek→0 and kAk is held fixed. This last
fact enables one to directly compare the present scenar
the NMSSM with the MNSSM where the tadpole parame
ltS /m is set to the same value with that of (kmAk)/l, i.e.,
ltS /m50.0026 TeV2. Such a scenario in connection wit
the MNSSM has already been analyzed above in Fig
Thus, if we now compare Fig. 9 with Fig. 6, we obser
resembling numerical predictions for the Higgs-bos

FIG. 10. The same as in Fig. 9, but withk50.1.
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masses and couplings in the two models. The only visi
difference between them is that in the MNSSM, the light
CP-even Higgs bosonH1 is consistently 30 GeV heavie
than the corresponding one in the NMSSM, while the m
MA1

of the lightestCP-odd scalar is about 30 GeV lowe

These findings are in excellent agreement with our disc
sion in Sec. IV.

We shall now analyze in Fig. 10 a second scenario of
NMSSM, in which the Yukawa-type couplingk is larger, but
with the expression (kmAk)/l being held fixed again, i.e.
k50.1 and (kmAk)/l50.0026 TeV2. In Fig. 10, we also
vary the charged Higgs-boson mass in the same way a
Fig. 9: MH150.3, 0.5, 0.7, and 1 TeV. In this scenario, th
ratio uAk /mu varies from 1.69 forumu5100 GeV up to 0.096
for umu5420 GeV, namely the ratiouAk /mu is no longer
much larger than 1 for all relevant values ofumu. Further-
more, asumu increases, the strong inequalityuAk /mu@uk/lu
gets gradually violated as well. As a consequence, as
charged Higgs-boson massMH1 takes higher values, the pic
ture starts changing in comparison with Fig. 9. To be prec
asMH1 becomes larger, we observe a progressive enha
ment of the maximum of theH1-boson massMH1

and of its

respective squared coupling to theZ bosongH1ZZ
2 ; the values

of MH1
and gH1ZZ

2 approach those ofMH2
and gH2ZZ

2 , re-

spectively. In particular, whenMH1 approaches 1 TeV, a
level crossing effect in the masses and couplings of theH1

and H2 bosons takes place and theH1 boson becomes SM
type. In addition, the mass of the lightestCP-odd Higgs
scalar MA1

gets very small, i.e.,MA1
;15 GeV, resulting

from a partial cancellation of the first two terms on the RH
of Eq. ~4.19!. It is obvious that with increasinguku and umu,
the predictions of the NMSSM start slowly resembling tho
of the MNSSM withltS /m being in the vicinity of its criti-
cal value.

On the other hand, as the charged Higgs-boson mass
creases, we notice in Fig. 10 that viable scenarios occur
smaller values ofumu. In fact, within the specific NMSSM
with k50.1 that we have been considering here, the exp
mental constraintumu*90 GeV @15# implies thatMH1 can-
not be lighter than 180 GeV. Of course, such a scena
could be directly excluded from the fact that for small po
tive values ofk;0.1, the lightest singlino state contribute
significantly to theZ-boson invisible width@see also discus
sion after Eq.~4.9!#. For this reason, we present in Fig. 1
numerical estimates for a related scenario with negativek,
i.e., k520.1. We also choose a smaller value f
(kmAk)/l, i.e., (kmAk)/l520.0021 TeV2, so as to obtain
a light CP-odd Higgs stateA1. In Fig. 11, we observe again
the same characteristics as in Fig. 10, namely, as the cha
Higgs-boson mass decreases, viable scenarios take plac
smaller values ofumu, leading to a similar lower bound o
about 180 GeV onMH1. In fact, after having carefully ex-
plored all the relevant parameter space of the NMSSM w
tanb52, we found that this is a general feature of t
NMSSM for any perturbative value ofl and k ~see also
discussion below!. Consequently, as in the MSSM, the SM
3-22



be

og
a

m
t t
te
th

ibl
l-

e

t

-
3

m

e

bl

th
he
sio
te

ha
th

m

of
-

ki
ita

ak
vity
er-
the
-
le

es
ely,
lec-

s a
ical

led

let

rms

se

he
f

HIGGS SCALARS IN THE MINIMAL NONMINIMA L . . . PHYSICAL REVIEW D 63 055003
type Higgs boson in the NMSSM is also predicted to
lighter than the charged Higgs boson.

To get a better understanding of this last phenomenol
cal feature of the NMSSM, it is very instructive to analyze
scenario where the Yukawa-type couplingsk andl are com-
parable in size. Specifically, we choosel50.5 and k5
20.45. According to our discussion in Sec. IV, the para
eters of this model have been chosen in a way such tha
charged Higgs boson might be allowed to become ligh
than the one predicted in the previous scenarios of
NMSSM. Furthermore, in order to obtain the largest poss
values for the masses of theCP-even Higgs scalars, we a
ways fix Ak by the requirement that theA1 boson be ex-
tremely light6 of the order of a few GeV. Having the abov
in mind, we present in Fig. 12 numerical estimates ofMH1

and MH2
, and gH1ZZ

2 and gH2ZZ
2 , as functions of them pa-

rameter, for charged Higgs-boson massesMH15120, 400,
and 800 GeV. We observe that forumu*100 GeV, theH1
boson is always SM type. In addition, forMH15120 GeV,
the mass of theH1 boson has a maximum of;113 GeV at
umu5100 GeV withgH1ZZ

2 50.5, which is close to the presen

experimental lower bound of LEP2@1#. In this scenario, the
next-to-lightestCP-even Higgs bosonH2 has a smaller cou
pling to theZ boson and its mass varies between 120–1
GeV. For larger values ofMH1, theH1 boson is always SM
type, withMH1

'120–130 GeV for a wide range ofumu val-

ues, whilst theH2 boson is very heavy and decoupled fro
the lightest Higgs sector.

Our numerical analysis as presented above in Fig. 12
plicitly demonstrates that forMH15120 GeV, the massMH1

of the lightestCP-even Higgs boson becomes accepta
only within a very narrow interval ofumu, which is, however,
close to its current lowest bound as set by LEP2@15#. Thus,
even within this optimized scenario of the NMSSM wi
uk/lu;1, the H1 boson cannot become heavier than t
charged Higgs boson. Therefore, we reach the conclu
that a possible discovery of a charged Higgs boson ligh
than 120–130 GeV and a SM-type Higgs boson heavier t
130–140 GeV can only be naturally accounted for within
MNSSM.

VI. CONCLUSIONS

We have considered the simplest extension of the mini
supersymmetric standard model, in which them parameter
has been promoted to a dynamical variable by means
gauge-singlet superfieldŜ, with the linear, quadratic and cu
bic singlet-superfield termsŜ, Ŝ2, and Ŝ3, absent from the
superpotential. Moreover, we have assumed that the brea
of SUSY in the observable sector is communicated grav

6Despite its similarity, our scenario differs from the one discus
in Ref. @31# very recently. In our case, the tree-level values ofAl

andAk , required forMA1
'0, are not forced to be suppressed. T

latter turns out to be the case only within a very narrow range om
values close to the upper end of the interval given by Eq.~4.22!.
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tionally by a set of hidden-sector superfields which bre
N51 supergravity spontaneously. In such a supergra
scenario, the absence of harmful destabilizing tadpole div
gences at lower loop levels can be assured by forcing
complete superpotential and Ka¨hler potential to respect spe
cific discreteR symmetries. In particular, we have been ab
to show that with the imposition of the discreteR symmetries
Z 5

R andZ 7
R , the potentially dangerous tadpole divergenc

first appear at the six- and seven-loop levels, respectiv
and hence are naturally suppressed to the order of the e
troweak scale, without destabilizing the gauge hierarchy.

The MNSSM we have been studying in this paper ha
number of appealing field-theoretic and phenomenolog
features, which may be summarized as follows.

The model provides a natural solution to the so-cal
m-problem of the MSSM, since the value of them parameter
can now be directly set by the VEV of the gauge-sing
superfieldŜ which is of the required order ofMSUSY, as a
consequence of theZ 5

R andZ 7
R symmetries.

The presence of the effectively generated tadpole te
linear in S and FS ~or Ŝ) breaks explicitly the continuous

d

FIG. 11. The same as in Fig. 9, but withk520.1 and
kmAk /l520.0021 TeV2.
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U~1! PQ and its discrete subgroupZ3. Thus, the model offers
a natural solution to the visible axion and cosmologi
domain-wall problems.

Depending on the underlying mechanism of SUSY bre
ing, the effective tadpole proportional toFS could in prin-
ciple be absent from the model. Such a reduction of
renormalizable operators does not thwart the renormaliza
ity of the theory. The resulting renormalizable low-ener
scenario has one parameter less than the frequently-discu
NMSSM with the cubic singlet-superfield term (k/3)Ŝ3

present; it therefore represents the most economic, renor
izable version among the nonminimal supersymmetric m
els proposed in the literature.

As opposed to the NMSSM, the MNSSM satisfies t
tree-level mass sum rule~3.19!, which is very analogous to
the corresponding one of the MSSM@16#. This striking anal-
ogy to the MSSM allows us to advocate that the Higgs se
of the MNSSM differs indeed minimally from the one of th
MSSM, i.e., the introduced model truly constitutes the mi

FIG. 12. Numerical estimates of~a! MH1
and MH2

and of ~b!

gH1ZZ
2 and gH2ZZ

2 as functions ofm in the NMSSM, with the con-
straint MA1

50, for MH15120 ~solid line!, 400 ~dashed line!, and
800 ~dotted line! GeV.
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mal supersymmetric extension of the MSSM. In t
NMSSM, the violation of the mass sum rule can beco
much larger than the one induced by the one-loop top-squ
or top-quark effects, especially for relatively large values
uku, umu and uAku.

A generic prediction of the nonminimal supersymmet
standard models is that for low values of tanb, the lightest
CP-even Higgs-boson massMH1

increases significantly with

growing ulu @see Eq.~3.18!#. Since in the MNSSMl can
take its maximum allowed value naturally corresponding
the NMSSM withk50, the value ofMH1

is predicted to be
the highest, after the dominant top-squark-loop effects h
been included, i.e.,MH1

&145 GeV. Therefore, such a sce
nario can only be decisively tested by the upgraded Teva
collider at Fermilab and by the Large Hadron Collider~LHC!
at CERN.

The MNSSM can comfortably predict viable scenario
where the mass of the charged Higgs bosonH1 is in the
range 80 GeV,MH1&3 TeV, for phenomenologically rel-
evant values ofumu*90 GeV. In particular, numerical esti
mates in Sec. V reveal that a possible discovery of a char
Higgs boson, withMH1&120 GeV, and a neutral Higgs bo
son, with MH1

*130 GeV, can only be naturally accounte
for within the MNSSM, whereas the NMSSM would b
highly disfavored. This important phenomenological featu
of the MNSSM, which is very helpful to discriminate it from
the NMSSM, is a reflection of a new nontrivial decouplin
limit due to a large tadpoleutSu, which is only attainable in
the MNSSM @see also discussion of the paragraph that
cludes Eq.~3.16!#.

For scenarios withMH1*200 GeV, the distinction be-
tween the MNSSM and the NMSSM becomes more difficu
In this case, additional experimental information would
necessary to distinguish the two SUSY extensions of
MSSM, resulting from a precise determination of the mass
the widths, the branching ratios and the production cr
sections of theCP-even andCP-odd Higgs bosons. Never
theless, if the tadpole parameterltS /m becomes much large
than MH1

2 with the remaining kinematic parameters he
fixed, the Higgs statesH3 and A2 will be predominantly
singlets. As an important phenomenological consequenc
this, the complementarity relations~3.54! between the
H1,2ZZ andH2,1A1Z couplings will then hold approximately
true in the MNSSM. However, these relations will be gene
cally violated in the NMSSM, as there is no analogous d
coupling limit in the latter model, in which the statesH3 and
A2 could decouple as singlets.

The MNSSM also predicts the existence of a light ne
tralino, the axino. The axino is predominantly a singlet fie
for umu*120 GeV. LEP limits on theZ-boson invisible width
lead to the additional constraint 200&umu&250 GeV, forl
'0.65. However, such a constraint disappears comple
for smaller values ofl, namely, forl&0.45. In fact, the
axino may become the LSP in the MNSSM. In this paper
did not address the issues associated with the cosmolo
consequences of the axino on the reheating temperatur
the Universe@32# and on the dark-matter problem. A detaile
discussion of these issues may be given elsewhere.
3-24
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HIGGS SCALARS IN THE MINIMAL NONMINIMA L . . . PHYSICAL REVIEW D 63 055003
The present study has shown that the MNSSM is a via
scenario, which departs minimally from the MSSM, having
large number of appealing field-theoretic and phenome
logical features. Even though further refinements of o
treatment of loop effects might be very useful, such as
inclusion of one-loopD-term contributions to the effective
potential and the computation of two-loop leading logari
mic corrections, our predictions for the Higgs-boson m
spectrum as well as the results of our comparative anal
between the MNSSM studied here and the frequently
cussed NMSSM are not expected to modify dramatically
particular, we find that the MNSSM can naturally pred
viable scenarios in which the charged Higgs bosonH1 is
much lighter than the neutral Higgs boson with SM-ty
coupling to theZ boson. The planned colliders, i.e., the u
graded Tevatron collider and the LHC, have the poten
capabilities to test such interesting scenarios with a relativ
light H1, as well as probe large domains of the Higgs-sec
structure of this truly minimal supersymmetric extension
the MSSM, the MNSSM.
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APPENDIX A: NONDESTABILIZING TADPOLE
DIVERGENCES

Employing standard power counting rules@9,10#, we shall
show the absence of harmful tadpole divergences up
sufficiently high loop ordern, i.e., n<5, within the context
of the supergravity scenarios described in Sec. II. It is us
to briefly review first the sufficient conditions that govern t
absence of harmful tadpole divergences. To this end, le
consider a supergraph with one external leg, i.e., a tad
graph. The tadpole graph may involve a numberVd of su-
perpotential vertices of dimensiond13, which are of the
form zd13/M P

d wherez represents a generic chiral superfie
and a numberUd of Kähler-potential vertices of dimensio
d12, which have the formzd12/MP

d . Then, the superficia

degree of divergence of the tadpole graph, e.g., that ofŜ, is
given by

D511(
d

d Vd1(
d

d Ud , ~A1!

which leads to a contribution to the effective potential

Vtad;
1

~16p2!n

LD MSUSY
32D1(dd Vd1(dd Ud

MP
(dd Vd1(dd Ud

S1H.c.

;
1

~16p2!n
MPMSUSY

2 S1H.c., ~A2!

wheren counts the number of loops andMSUSY is the soft
SUSY-breaking scale. In obtaining the last step of Eq.~A2!,
we have usedL;MP as a natural energy cutoff scale. Th
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very last step in Eq.~A2! shows that a tadpole contributio
to the effective potential is proportional to one power ofMP
at most. Such tadpole contributions which remain prop
tional to MP will be referred to as ‘‘harmful’’ to be distin-
guished from the ‘‘harmless’’ ones in which the cutoff d
pendence disappears. In this context, an additio
requirement for a tadpole graph to be harmful is thatD be an
even integer. Finally, the degree of divergence can also
determined by the number of loopsn and superpotential ver
ticesVd through the relation

D52n2(
d

Vd . ~A3!

In summary, one finds that a set of vertices produces a ha
ful tadpole divergence if the following equalities are all s
multaneously satisfied:

D511(
d

d Vd1(
d

d Ud52n2(
d

Vd5even,

~A4!

with D>2.
In the next two subsections, we shall apply the pow

counting rule of superficial divergences, stated in Eq.~A4!,
to the two models based on the discreteR symmetriesZ5

R and
Z7

R .

1. The Z5
R case

Here, we shall show that the potentially harmful tadpo
divergences are absent up to five loops. Alternatively,
shall prove that it is impossible to construct a tadpole d
gram from the sets of vertices which satisfy the conditi
~A4! for n<5, corresponding toD<10. Suppose now that a
least one superpotential vertex is involved in a tadpole
pergraph. Based on Eq.~A3!, we see that we need at lea
two superpotential vertices to form a tadpole graph withD
even, i.e.,(dVd>2. Thus, forn55, one hasD<8, and by
virtue of Eq.~A1!, it is (dd Vd<7 andd<7. In the case that
no superpotential vertices are involved, we have the rela
D511(ddUd<10 or (ddUd<9 on account of Eq.~A1!.
We consider it obvious that it is impossible to form a tadpo
graph with only one Ka¨hler-potential vertex ofd59. This
observation excludes Ka¨hler-potential operators ofd59.
Furthermore, as we will see below, the imposition ofZ 5

R on
the complete Ka¨hler potential does not permit operators
d51. If we now wish to satisfy the above constrai
(ddUd<9 with two vertices, we then need one operator
d52 and another one ofd57; the latter is the Ka¨hler-
potential term of the highest dimensionality that could p
ticipate into a harmful divergent tadpole graph withn<5.
Consequently, we reach the conclusion that only superpo
tial and Kähler-potential vertices withd<7 will be of rel-
evance here.

We shall confine ourselves to a minimal model, in whi
only the superfieldsĤ1 , Ĥ2, and Ŝ are present and ignor
quark and lepton superfields, as they do not couple dire
to Ŝ; the inclusion of the fermion superfields is straightfo
3-25



n
y

s

al

l
on

d to
a

p-

ll
ns

he

is-
as
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ward and does not alter our results. Moreover, we shall
include in the list of Ka¨hler-potential terms those obtained b
multiplying the latter with any power ofĤ1

†Ĥ1 , Ĥ2
†Ĥ2 , Ŝ* Ŝ.

The reason is that the omitted terms generate graph
higher loop order than the included ones.

Having the above in mind, we are now able to list
superpotential and Ka¨hler-potential terms ofd<7, respect-
ing the discreteR symmetryZ 5

R @see Eq.~2.6!#:

W: W0[Ŝ~Ĥ1
Ti t2Ĥ2! d~ ū !1H.c., W1[

Ŝ4

MP
d~ū !1H.c.,

W3[
~Ĥ1

Ti t2Ĥ2!3

MP
3

d~ū !1H.c.,

W4[
Ŝ3~Ĥ1

Ti t2Ĥ2!2

MP
4

d~ū !1H.c.,

W5[
Ŝ6~Ĥ1

Ti t2Ĥ2!

M P
5

d~ū !1H.c.,

W6[
Ŝ9

MP
6

d~ū !1H.c.,

W7[
Ŝ2~Ĥ1

Ti t2Ĥ2!4

MP
7

d~ū !1H.c. ~A5!

K: K0
(1)[Ĥ1

†Ĥ1 , K0
(2)[Ĥ2

†Ĥ2 , K0
(3)[Ŝ* Ŝ, ~A6!

K2[
Ŝ2~Ĥ1

Ti t2Ĥ2!

MP
2

1H.c., K3
(1)[

Ŝ5

MP
3

1H.c.,
05500
ot
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K3
(2)[

Ŝ* 3~Ĥ1
Ti t2Ĥ2!

MP
3

1H.c.,

K3
(3)[

Ŝ* ~Ĥ1
Ti t2Ĥ2!2

MP
3

1H.c.,

K5[
Ŝ~Ĥ1

Ti t2Ĥ2!3

MP
5

1H.c.,

K6[
Ŝ4~Ĥ1

Ti t2Ĥ2!2

MP
6

1H.c.,

K7[
Ŝ7~Ĥ1

Ti t2Ĥ2!

MP
7

1H.c.,

whered( ū) is the usual Grassmann-valuedd function. No-
tice that the termsK0

(1) , K0
(2) , andK0

(3) represent the usua
Higgs-superfield propagators and have no direct effect
our power counting rules. These terms are merely neede
contract the superfields in propagator lines and so form
loop supergraph. Furthermore, from Eqs.~A5! and~A6!, we
observe thatZ 5

R forbids the appearance of superpotential o
erators ofd52 (W2) and of Kähler-potential terms ofd
51,4 (K1 ,K4).

In the following, we shall systematically analyze a
possible sets of vertices compatible with the conditio
in Eq. ~A4! up to five loops. At the one-loop level (n51),
with (dVd50, we readily find from Eq.~A1! that (ddUd
51, entailing the absence of contributing operators. T
situation becomes increasingly more involved forn52, 3, 4
and 5. More explicitly, our systematic search for the ex
tence of possible harmful tadpoles may be summarized
follows.
I. n52:

~a! D52, (
d

Vd52, (
d

d Vd1(
d

d Ud51:

$W0 ,W1%;

~b! D54, (
d

Vd50, (
d

d Ud53:

$K3
( i )%. ~A7!

II. n53:

~a! D52, (
d

Vd54, (
d

d Vd1(
d

d Ud51:

$3W0 ,W1%;
3-26
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~b! D54, (
d

Vd52, (
d

d Vd1(
d

d Ud53:

$W0 ,W3%, $W0 ,W1 ,K2%, $2W0 ,K3
( i )%;

~c! D56, (
d

Vd50, (
d

d Ud55:

$K5%, $K2 ,K3
( i )%. ~A8!

III. n54:

~a! D52, (
d

Vd56, (
d

d Vd1(
d

d Ud51:

$5W0 ,W1%;

~b! D54, (
d

Vd54, (
d

d Vd1(
d

d Ud53:

$3W0 ,W3%, $W0 ,3W1%, $3W0 ,W1 ,K2%, $4W0 ,K3
( i )%;

~c! D56, (
d

Vd52, (
d

d Vd1(
d

d Ud55:

$W0 ,W5%, $W1 ,W4%, $W0 ,W3 ,K2%, $W0 ,W1 ,2K2%,

$2W1 ,K3
( i )%, $2W0 ,K5%, $2W0 ,K2 ,K3

( i )%;

~d! D58, (
d

Vd50, (
d

d Ud57:

$2K2 ,K3
( i )%, $K2 ,K5%, $K7%. ~A9!

IV. n55:

~a! D52, (
d

Vd58, (
d

d Vd1(
d

d Ud51:

$7W0 ,W1%;

~b! D54, (
d

Vd56, (
d

d Vd1(
d

d Ud53:

$3W0 ,3W1%, $5W0 ,W3%, $5W0 ,W1 ,K2%, $6W0 ,K3
( i )%;

~c! D56, (
d

Vd54, (
d

d Vd1(
d

d Ud55:

$3W0 ,W5%, $2W0 ,W1 ,W4%, $W0 ,2W1 ,W3%, $3W0 ,W3 ,K2%, $W0 ,3W1 ,K2%,

$2W0 ,2W1 ,K3
( i )%, $3W0 ,W1 ,2K2%, $4W0 ,K5%, $4W0 ,K2 ,K3

( i )%;
055003-27
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~d! D58, (
d

Vd52, (
d

d Vd1(
d

d Ud57:

$W0 ,W7%, $W1 ,W6%, $W3 ,W4%, $W0 ,W5 ,K2%, $W1 ,W4 ,K2%,

$W0 ,W4 ,K3
( i )%, $W1 ,W3 ,K3

( i )%, $W0 ,W3 ,2K2%, $2W1 ,K5%,

$2W1 ,K2 ,K3
( i )%, $W0 ,W1 ,K6%, $W0 ,W1 ,3K2%, $W0 ,W1 ,K3

( i ) ,K3
( j )%,

$2W0 ,K7%, $2W0 ,K2 ,K5%, $2W0 ,2K2 ,K3
( i )%;

~e! D510, (
d

Vd50, (
d

d Ud59:

$K2 ,K7%, $2K2 ,K5%, $3K2 ,K3
( i )%, $K6 ,K3

( i )%, $K3
( i ) ,K3

( j ) ,K3
(k)%. ~A10!
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Here i , j ,k51,2,3. The remaining task is to show that t
sets of vertices listed above do not produce tadpole gra
This can be best verified case by case algebraically in
following manner. First, we multiply all the vertices belon

ing to a set and formally substituteĤ1
†Ĥ1 , Ĥ2

†Ĥ2, and Ŝ* Ŝ
with 1 into the product of vertices. Then, we exami

whether terms linear inŜ or Ŝ* survive in the resulting ex-
pression. In this way, we have carefully checked that th

are no such terms linear inŜ or Ŝ* for all sets of vertices
listed in Eqs. ~A7!–~A10!, thus implying the absence o
harmful tadpole graphs up to five loops.

At a higher loop level, we can construct tadpole sup
graphs by making free use of the renormalizable superpo
tial vertexW0 in Eq. ~A5! together with some of the abov
vertices, e.g., the higher-dimensional Ka¨hler-potential verti-
cesK2 andK5 defined in Eq.~A6!. Specifically, we find that
the set of vertices

$4W0 ,K2 ,K5% ~A11!

leads to the typical six-loop tadpole graph depicted in F
1~a!. Also, it is not difficult to see that the above graph
actually a harmful divergent one since the set of vertices
Eq. ~A11! satisfies the global constraint of Eq.~A4!, with n
56, D585even, (dVd54, and (ddVd1(ddUd
5(dd Ud57.

2. The Z7
R case

In this section we shall show that the symmetryZ7
R pro-

hibits the presence of all possible harmful tadpole div
gences up to six loops. Following a line of arguments sim
to the Z5

R case, we conclude that only superpotential a
Kähler-potential operators withd<9 are of interest in this
case. Therefore, we list all possible vertices ofd<9, respect-
ing the discreteR symmetryZ 7

R @see Eq.~2.9!#.
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W: W0[Ŝ~Ĥ1
Ti t2Ĥ2! d~ ū !1H.c.,

W2[
Ŝ5

MP
2

d~ū !1H.c.,

W3[
~Ĥ1

Ti t2Ĥ2!3

MP
3

d~ū !1H.c.,

W5[
Ŝ4~Ĥ1

Ti t2Ĥ2!2

MP
5

d~ū !1H.c.,

W7[
Ŝ8~Ĥ1

Ti t2Ĥ2!

M P
7

d~ū !1H.c.,

W8[
Ŝ3~Ĥ1

Ti t2Ĥ2!4

MP
8

d~ū !1H.c.,

W9[
Ŝ12

MP
9

d~ū !1H.c. ~A12!

K: K0
(1)[Ĥ1

†Ĥ1 , K0
(2)[Ĥ2

†Ĥ2 , K0
(3)[Ŝ* Ŝ,

K3
(1)[

Ŝ3~Ĥ1
Ti t2Ĥ2!

MP
3

1H.c.,

K3
(2)[

Ŝ* ~Ĥ1
Ti t2Ĥ2!2

MP
3

1H.c.,

K4[
Ŝ* 4~Ĥ1

Ti t2Ĥ2!

MP
4

1H.c.,

K5[
Ŝ7

MP
5

1H.c., K6[
Ŝ2~Ĥ1

Ti t2Ĥ2!3

MP
6

1H.c.,
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K8
(1)[

Ŝ6~Ĥ1
Ti t2Ĥ2!2

MP
8

1H.c.,

K8
(2)[

Ŝ* 2~Ĥ1
Ti t2Ĥ2!4

MP
8

1H.c.,

K9
(1)[

Ŝ~Ĥ1
Ti t2Ĥ2!5

MP
9

1H.c.,

K9
(2)[

Ŝ* 5~Ĥ1
Ti t2Ĥ2!3

MP
9

1H.c.. ~A13!

Note that the symmetryZ 7
R forbids the occurrence of supe
05500
potential operators ofd51,4,6 (W1 ,W4 ,W6) as well as of
Kähler-potential terms ofd51,2,7 (K1 ,K2 ,K7).

As we did for theZ5
R case, we shall determine all possib

sets of vertices compatible with the conditions in Eq.~A4! up
to six loops. Again, it is not difficult to see that at the on
loop level (n51), with (dVd50 and (ddUd51, one is
unable to find contributing operators. Furthermore, the
sence ofd51 operators leads to the constraint

(
d

d Vd1(
d

d Ud5D21.1, ~A14!

i.e., D.2. This observation simplifies further the search f
the existence of possible harmful tadpoles. Thus, forn52, 3,
4, 5 and 6, we find the following sets of vertices.
I. n52:

~a! D54, (
d

Vd50, (
d

d Ud53:

$K3
( i )%. ~A15!

II. n53:

~a! D54, (
d

Vd52, (
d

d Vd1(
d

d Ud53:

$W0 ,W3%, $2W0 ,K3
( i )%;

~b! D56, (
d

Vd50, (
d

d Ud55:

$K5%. ~A16!

III. n54:

~a! D54, (
d

Vd54, (
d

d Vd1(
d

d Ud53:

$3W0 ,W3%, $4W0 ,K3
( i )%;

~b! D56, (
d

Vd52, (
d

d Vd1(
d

d Ud55:

$W0 ,W5%, $W2 ,W3%, $W0 ,W2 ,K3
( i )%, $2W0 ,K5%;

~c! D58, (
d

Vd50, (
d

d Ud57:

$K3
( i ) ,K4%. ~A17!
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IV. n55:

~a! D54, (
d

Vd56, (
d

d Vd1(
d

d Ud53:

$5W0 ,W3%, $6W0 ,K3
( i )%;

~b! D56, (
d

Vd54, (
d

d Vd1(
d

d Ud55:

$3W0 ,W5%, $2W0 ,W2 ,W3%, $3W0 ,W2 ,K3
( i )%, $4W0 ,K5%;

~c! D58, (
d

Vd52, (
d

d Vd1(
d

d Ud57:

$W0 ,W7%, $W2 ,W5%, $W0 ,W2 ,K5%, $W0 ,W3 ,K4%,

$2W2 ,K3
( i )%, $2W0 ,K3

( i ) ,K4%;

~d! D510, (
d

Vd50, (
d

d Ud59:

$K9
~ i !%, $K4 ,K5%, $K3

( i ) ,K6%, $K3
( i ) ,K3

( j ) ,K3
(k)%;

V. n56:

~a! D54, (
d

Vd58, (
d

d Vd1(
d

d Ud53:

$7W0 ,W3%, $8W0 ,K3
( i )%;

~b! D56, (
d

Vd56, (
d

d Vd1(
d

d Ud55:

$5W0 ,W5%, $4W0 ,W2 ,W3%, $5W0 ,W2 ,K3
( i )%, $6W0 ,K5%;

~c! D58, (
d

Vd54, (
d

d Vd1(
d

d Ud57:

$3W0 ,W7%, $2W0 ,W2 ,W5%, $W0 ,2W2 ,W3%, $2W0 ,2W2 ,K3
( i )%,

$3W0 ,W3 ,K4%, $3W0 ,W2 ,K5%, $4W0 ,K3
( i ) ,K4%;

~d! D510, (
d

Vd52, (
d

d Vd1(
d

d Ud59:

$W0 ,W9%, $W2 ,W7%, $2W0 ,K9
( i )%, $W0 ,W3 ,K6%, $2W2 ,K5%,

$W0 ,W5 ,K4%, $W2 ,W3 ,K4%, $2W3 ,K3
( i )%, $W0 ,W2 ,K3

( i ) ,K4%,

$2W0 ,K3
( i ) ,K6%, $2W0 ,K4 ,K5%, $W0 ,W3 ,K3

( i ) ,K3
( j )%, $2W0 ,K3

( i ) ,K3
( j ) ,K3

(k)%;

~e! D512, (
d

Vd50, (
d

d Ud511:

$K3
( i ) ,K8

( j )%, $K5 ,K6%, $K3
( i ) ,2K4%, $K3

( i ) ,K3
( j ) ,K5%. ~A18!
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The indicesi , j ,k take admissible values according to E
~A13!. Again, we have carefully checked that terms linear
Ŝ or Ŝ* do not survive when the product of all vertice
within each set listed in Eqs.~A15!–~A18! is formed by
formally replacing the bilinearsĤ1

†Ĥ1 , Ĥ2
†Ĥ2, andŜ* Ŝ with

1.
Nevertheless, at the seven-loop level, we can still c

struct tadpole supergraphs by combining the renormaliza
superpotential vertexW0 four times with the higher-
dimensional Ka¨hler-potential verticesK3

(1) and K6 in Eq.
~A13!. In other words, the set of vertices

$4W0 ,K3
(1) ,K6% ~A19!

gives rise to the typical seven-loop tadpole graph of F
1~b!. Finally, we can check that the global constraint of E
~A4! is satisfied, withn57, D5105even, (dVd54, and
(ddVd1(ddUd5(dd Ud59.

APPENDIX B: THE PECCEI-QUINN-SYMMETRIC LIMIT

In this appendix we shall derive the analytic expressio
for the Higgs-boson masses and couplings pertinent to
05500
.

-
le

.
.

s
e

two gauge-singlet SUSY extensions of the MSSM in t
PQ-symmetric limit, i.e.,k/l,tS ,m12

2 →0. Of course, a kine-
matic situation close to the PQ-symmetric limit can mo
naturally be realized in the NMSSM rather than in t
MNSSM whereltS /m is expected to be unsuppressed
order MSUSY

2 . Additionally, we shall assume thatMH1

@MW . For notational simplicity, we have everywhe
dropped the superscript~0!, e.g., fromMH1

2(0) , Ma
2(0) , etc., as

all quantities involved in this appendix are evaluated at
tree level.

In the limit of a heavy H1, the quantity

d5Al2v2/(2Ma
2) defined in Eq.~4.14! is much less than 1

and therefore serves as an expansion parameter in our c
lations. In this limit, it is a reasonable approximation to setm
to its value in the middle of the allowedm2 interval deter-
mined by Eq.~4.13!, i.e.,m25mmid

2 5sb
2cb

2Ma
2 , at whichMH1

is expected to approximately acquire its maximum. Then,
tree-level CP-even Higgs-boson mass matrixMS

2 may be
cast, up to terms of orderd2Ma

2 , into the approximately di-
agonal form
~OH!TMS
2OH5S 1

2 l2v2s2b
2 0 0

0 MZ
2c2b

2 1 1
2 l2v2s2b

2 ~ 1
2 l2v22MZ

2!s2bc2b

0 ~ 1
2 l2v22MZ

2!s2bc2b Ma
21 1

2 l2v2c2b
2 2~ 1

2 l2v22MZ
2!s2b

2
D , ~B1!

by virtue of the orthogonal matrixOH

OH5S sgn~lm! dsbc2b cb 2sb~12 1
2 d2c2b

2 !

2sgn~lm! dcbc2b sb cb~12 1
2 d2c2b

2 !

12 1
2 d2c2b

2 0 sgn~lm! dc2b

D 1O~d3!, ~B2!
where we have used the short-hand notations2b5sin 2b and
c2b5cos 2b.

Likewise, the orthogonal matrixOA, which diagonalizes
the CP-odd Higgs-boson mass matrixM P

2 in the PQ-
symmetric limit, is easily found to be

OA5
1

A11d2
S 2sgn~lm! d 1

21 2sgn~lm! d D . ~B3!

In the PQ-symmetric limit, theCP-odd mass matrixM P
2 has

one massless eigenstateA1 and one massive oneA2, with
MA2

2 5Ma
21 1

2 l2v2.

Substituting Eqs.~B2! and ~B3! into Eqs. ~3.51! and
~3.52!, we obtain, up to orderd2, all the couplingsHiZZ and
HiAjZ:

gH1ZZ50, gH2ZZ51, gH3ZZ50,

gH1A1Z52 d2 c2b , gH2A1Z50, gH3A1Z52sgn~lm! d,

gH1A2Z5sgn~lm! d c2b ,

gH2A2Z50, gH3A2Z512
d2

2
~11c2b

2 !. ~B4!
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