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Calculation of next-to-leading QCD corrections tob\sg
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In this paper a detailed standard model~SM! calculation of theO(as) virtual corrections to the decay width
G(b→sg) is presented (g denotes a gluon!. Also the complete expressions for the correspondingO(as)
bremsstrahlung corrections tob→sg are given. The combined result is free of infrared and collinear singu-
larities, in accordance with the KLN theorem. Taking into account the existing next-to-leading logarithmic
~NLL ! result for the Wilson coefficientC8

eff , a complete NLL result for the branching ratioB NLL(b→sg) is
derived. Numerically, we obtainB NLL5(5.061.0)31023, which is more than a factor of two larger than the
leading logarithmic resultB LL5(2.260.8)31023. The NLL correction is large in spite of the naive suppres-
sion factoras(mb)/p due to an extra factor ofC2(mb)/C8(mb);7. The impact of these corrections on the

inclusive charmless hadronic branching ratioB̄c” of B mesons, which can be used to extractuVub /Vcbu in the
context of the SM, is shown to be of similar importance as NLL corrections tob-quark decay modes with three

quarks in the final state. Finally, the impact of the NLL corrections tob→sg on B̄c” is investigated in scenarios,
where the Wilson coefficientC8 is enhanced by new physics.

DOI: 10.1103/PhysRevD.63.054025 PACS number~s!: 12.38.Bx, 13.25.Hw
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I. INTRODUCTION

The theoretical predictions for inclusive decay rates oB
mesons rest on solid grounds due to the fact that these
can be systematically expanded in powers ofLQCD/mb @1,2#,
where the leading term corresponds to the decay width of
underlying b-quark decay. As the power corrections on
start atO(LQCD

2 /mb
2), they affect these rates by at most a fe

percent. Theoretically, spectator effects of ord
16p2(LQCD/mb)3 @3,4# could be larger@4#, but for the decay
rates ofB6 andB0 they are experimentally known to be
the percent level as well@5#. Thus the accuracy of the theo
retical predictions is mainly controlled by our knowledge
the perturbative corrections to the free quark decays.

The inclusive charmless hadronic decaysB→Xc” , where
Xc” denotes any hadronic charmless final state, are an in
esting subclass of the decays mentioned above; as po
out in Ref.@6#, a measurement of the corresponding bran
ing ratio would allow the extraction of the presently poor
known ratiouVub /Vcbu, whereVub andVcb are elements of
the Cabibbo-Kobayashi-Maskawa~CKM! matrix. At the
quark level, there are decay modes with three-body fi
states, viz.b→q8q̄8q, (q85u,d,s;q5d,s) and the modes
b→qg, with two-body final state topology, which contribu
to the charmless decay width at leading logarithmic~LL !
accuracy. In the very heavyb-quark limit, b→qg would
form one of the dominant contributions to the two-jet dec
channel, whileb→q8q̄8q would mainly contribute to 3-jet
hadronic final states. However, for the relevant value of
b-quark mass, no jet separation can really be made. Th
fore, the decay modes with 2 and 3 partons in the final s
have a purely formal, perturbative meaning; physically, th
are ‘‘only’’ components of the charmless decay rate.

Calculations of next-to-leading logarithmic~NLL ! correc-
tions to the three-body decay modes were started alre
some time ago in Ref.@7#, where radiative corrections to th
current-current diagrams of the operatorsO1 and O2 were
0556-2821/2001/63~5!/054025~24!/$15.00 63 0540
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calculated, together with NLL corrections to the Wilson c
efficients. Later, Lenzet al. included in a first step@8# the
contributions of the penguin diagrams associated with
operatorsO1 and O2, and in a second step@6# the same
authors also included one-loop penguin diagrams of the p
guin operatorsO3 , . . . ,O6; also the effects of the chromo
magnetic operatorO8 were taken into account to the releva
precision needed for a NLL calculation. Up to contributio
from current-current type corrections to the penguin ope
tors, the NLL calculation for the three quark final states
now complete.

In the numerical evaluations of the charmless hadro
branching ratio, the two body decay modesb→qg were
added in Refs.@8,6# at the LL precision, as the full NLL
predictions were missing. To fill this gap, we recently wro
a short letter whereNLL resultsfor the branching ratioB(b
→sg) were presented@9#, which includes virtual- and gluon
bremsstrahlung corrections tob→sg. In the present work,
we describe in detail the non-trivial two-loopNLL calcula-
tion, which led to the results in@9#. As the NLL corrections
enhanceB(b→sg) by more than a factor of 2, we also an
lyze in the present paper their impact on the charmless h
ronic branching ratio.

At this point, a clarifying remark concerning the termino
ogy should be added: Inexperimentalanalyses, the term
‘‘ b→sg’’ usually stands for all the electroweak pengu
contributions to the inclusive charmlessB meson decay,
which in the present paper will be denoted as ‘B
→no charm.’’ In our work,b→sg denotes ab-quark decay-
ing into ans-quark and an on-shell gluon, which is just on
particular contribution toB→no charm, as discussed abov

The decayb→sg gained a lot of attention in the las
years. For a long time the theoretical predictions for both,
inclusive semileptonic branching ratioBsl and the charm
multiplicity nc in B-meson decays were considerably high
than the experimental values@10#. An attractive hypothesis
which would move the theoretical predictions for both o
©2001 The American Physical Society25-1
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servables into the direction favored by the experiments,
sumed the rare decay modeb→sg to be enhanced by new
physics.

After the inclusion of the complete NLL corrections to th
decay modesb→cūq and b→cc̄q(q5d,s) @11#, the theo-
retical prediction for the semileptonic branching ratio and
charm multiplicity @4# are

Bsl
th5~11.761.461.0!%, nc

th51.2060.06, ~1!

where the second error inBsl
th takes into account the spectat

effects estimated in Ref.@4#. The experimental results from
measurements at theY(4S) resonance and those from theZ0

resonance at the CERNe1e2 collider LEP and SLAC Large
Detector~SLD! were recently summarized@12# to be

Bsl
Y(4S)5~10.4560.21!%, nc

Y(4S)51.1460.06,

Bsl
Z0

5~10.7960.25!%, nc
Z0

51.1760.04. ~2!

We would like to stress that in the theoretical results
renormalization scale was taken in the interval@mb/4,2mb#.
If one only considersmP@mb/2,2mb#, the theoretical predic-
tions would only have marginal overlap with experimen
data. This implies that there is still room for enhancedb
→sg. We therefore also illustrate in this paper the influen
of the NLL corrections tob→sg on the charmless hadroni
branching ratio in scenarios where the Wilson coefficientC8
is enhanced by new physics.

We also would like to mention that the componentb
→sg of the charmless hadronic decays is expected to m
fest itself in kaons with high momenta~of ordermb/2), due
to its two body nature@13#. Some indications for enhance
b→sg in this context were reported by the SLD Collabor
tion @14#. For a review of other hints for enhancedb→sg,
the reader is referred to@15#.

Within the SM, the LL prediction for the branchin
for b→sg is known to be B(b→sg)'0.2% @16#. The
processb→sgg, which gives a NLL contribution to the
inclusive charmless decay width has already been stu
in the literature @17,18#. In @18# a complete calculation
was performed in regions of the phase space which
free of collinear an infrared singularities. Putting suitab
cuts, the branching ratio forb→sgg was found to be of
the order 1023 in these phase space regions. A compl
calculation requires the calculation of a regularized vers
for the decay widthG(b→sgg) in which infrared and
collinear singularities become manifest. Only after add
the virtually corrected decay widthG(b→sg) a finite result
is obtained.

We anticipate, that we find large NLL corrections
the decay rateG(b→sg). For the corresponding branchin
ratio we obtain B NLL5(5.061.0)31023, which is
more than a factor of two larger than the leading logarithm
result B LL5(2.260.8)31023. The reason for the large
NLL correction can be explained as follows: At leadin
logarithmic precision, the decay amplitudeA(b→sg)
05402
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is given by the tree-level matrix element ofC8(mb)O8(mb)
alone; due to reasons of gauge invariance, there is
one-loop contribution ofC2(mb)O2(mb). The LL branching
ratio is therefore proportional to the square of t
rather small Wilson coefficientuC8(mb)u;0.15. At NLL
order, C2(mb)O2(mb) does contribute to the decay amp
tudeA(b→sg), leading to a term;(as /p)C2(mb)C8(mb)
at the level of the branching ratio. The naive suppress
factor as(mb)/p is enhanced by an extra facto
uC2(mb)/C8(mb)u;7; this explains the unusually large NL
correction. A more detailed discussion in Sec. IX indica
that next order corrections should be under control;
particular, the large NLL corrections do not signal th
breakdown of renormalization group improved perturbat
theory.

The remainder of this paper is organized as follow
In Sec. II, we review the theoretical framework and discu
the steps needed for a NLL calculation forB(b→sg).
Section III is devoted to the calculation of the virtu
corrections to the matrix elementŝsguO1,2ub&, including
renormalization, while Sec. IV deals with virtual correctio
to ^sguO8ub&. In Sec. V the virtual corrections to th
decay widthG(b→sg) are calculated. Sections VI and VI
deal with the gluon bremsstrahlung matrix eleme
^sgguO1,2,8ub& and the corresponding decay widt
respectively. The analytic results for the NLL branchin
ratio B(b→sg) can be found in Sec. VIII, while the
numerical evaluations are presented in Sec. IX. Section
deals with the impact of the NLL corrections toB(b→sg)
on the charmless hadronic branching ratio in the stand
model, while in Sec. XI similar questions are address
in scenarios where the Wilson coefficientC8 is enhanced
by new physics. We conclude with a short summary
Sec. XII. An explicit parametrization of the NLL Wilson
coefficientC8

eff(mb) is given in Appendix A.

II. THE EFFECTIVE HAMILTONIAN

We use the framework of an effective low-energy theo
with five quarks, obtained by integrating out the heavy d
grees of freedom, which in the SM are thet-quark and the
W-boson. We take into account operators up to dimens
six and we putms50. In this approximation the effective
Hamiltonian relevant for radiative decays andb→sg(g)
reads

Heff52
4GF

A2
Vts* Vtb(

i 51

8

Ci~m!Oi~m!, ~3!

whereGF is the Fermi coupling constant andCi(m) are the
Wilson coefficients evaluated at the scalem; Vtb andVts are
matrix elements of the Cabibbo-Kobayashi-Maskawa~CKM!
matrix. The operatorsOi read@19#
5-2
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O15~ s̄LgmTAcL!~ c̄LgmTAbL!, O25~ s̄LgmcL!~ c̄LgmbL!,

O35~ s̄LgmbL!(
q

~ q̄gmq!, O45~ s̄LgmTAbL!(
q

~ q̄gmTAq!,

O55~ s̄LgmgngrbL!(
q

~ q̄gmgngrq!, O65~ s̄LgmgngrTAbL!(
q

~ q̄gmgngrTAq!,

O75
e

16p2
m̄b~m!~ s̄LsmnbR!Fmn , O85

gs

16p2
m̄b~m!~ s̄LsmnTAbR!Gmn

A . ~4!
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In the dipole operatorsO7 (O8), e and Fmn (gs and Gmn
A )

denote the electromagnetic~strong! coupling constant and
field strength tensor, respectively.TA(A51, . . . ,8) are
SU(3) color generators;L5(12g5)/2 and R5(11g5)/2
stand for left- and right-handed projectors. The indexq in the
sum (q runs over all quarks except thet-quark. In Eq.~4!,
m̄b(m) is the runningb-quark mass in the modified minima
subtraction (MS) scheme at the renormalization scalem.
Henceforth,m̄q(m) and mq denoteMS running and pole
masses, respectively. To first order inas , these masses ar
related through

m̄q~m!5mqS 11
as~m!

p
ln

mq
2

m2
2

4

3

as~m!

p D . ~5!

It is well known that QCD corrections to the decay ra
for b→sg bring in logarithms of the mass ratiosmb /mW and
mb /mt . The same is true for the processb→sg: QCD cor-
rections to this process induce terms of the fo
asas

n lnm(mb /M), where M5mt or mW and m<n ~with
m,n50,1,2, . . . ).

One can systematically resum these large terms by re
malization group techniques. Usually, one matches the
standard model theory with the effective theory at a scale
order mW . At this scale, the large logarithms generated
matrix elements in the effective theory are the same one
in the full theory. Consequently, the Wilson coefficients on
pick up formally small QCD corrections. Using the reno
malization group equation, the Wilson coefficients are th
calculated at the scalem5mb'mb , at which the large loga-
rithms are contained in the Wilson coefficients, while t
matrix elements of the operators are free of them.

So far the decay rate forb→sg has been systematicall
calculated only to leading logarithmic~LL ! accuracy, i.e., for
m5n.

A consistent calculation forb→sg at LL precision re-
quires the following steps:

~1! the extraction of the Wilson coefficients from a matc
ing calculation of the full standard model theory with th
effective theory at the scalem5mW to orderas

0 ; mW denotes
a scale of ordermW or mt ;

~2! a renormalization group treatment of the Wilson co
ficients, using the anomalous-dimension matrix to orderas

1 ;
05402
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~3! the calculation of the decay matrix elemen
^sguCiOi ub& at the scalem5mb to ordergs ; mb denotes a
scale of ordermb . We note that the matrix elements asso
ated with the four Fermi operators (i 5126) can be ab-
sorbed into the effective Wilson coefficientC8

eff , when
working at LL precision. In the naive dimensional regula
ization scheme~NDR!, which we use in this paper, one ob
tains @19#

C8
eff5C81C32 1

6 C4120C52 10
3 C6 . ~6!

From the analogous decayb→sg it is well-known that
next-to-leading logarithmic~NLL ! corrections drastically re-
duce the large renormalization scale dependence of the
branching ratio. This implies, in particular, that the NLL co
rections are relatively large, at least for certain scales~within
the usually considered rangemb/2<mb<2mb). Motivated
by the situation in this analogous process, we present in
paper a systematic calculation of the NLL corrections
b→sg.

TABLE I. Wilson coefficientsCi
0(m)( i 51, . . . ,8), C8

1,eff , and
C8

eff @see Eq. ~7! in the text# at the matching scalem5mW

580.33 GeV and at three other scales,m59.6 GeV, m54.8 GeV
andm52.4 GeV. Foras(m) ~in theMS scheme! we used the two-
loop expression with 5 flavors andas(mZ)50.119. The entries cor-
respond to the pole top quark massmt5175 GeV.

m5mW m59.6 GeV m54.8 GeV m52.4 GeV

as 0.121 0.182 0.218 0.271
C1

0 0.0 20.335 20.497 20.711
C2

0 1.0 1.012 1.025 1.048
C3

0 0.0 20.002 20.005 20.010
C4

0 0.0 20.042 20.067 20.103
C5

0 0.0 0.0002 0.0005 0.001
C6

0 0.0 0.0005 0.001 0.002
C7

0 20.192 20.285 20.324 20.371
C8

0 20.096 20.136 20.150 20.166
C7

0,eff 20.196 20.280 20.314 20.356
C8

0,eff 20.097 20.135 20.149 20.165
C8

1,eff 22.166 21.318 21.098 20.950
C8

eff 20.118 20.154 20.168 20.186
5-3
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FIG. 1. Graphs associated with the operato

Ô1 andÔ2. The wavy lines represent gluons; th
real gluons are understood to be attached to
circle-crosses.
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The principal organization of such a calculation
straightforward: Each of the three steps listed above has t
improved by going to the next order inas : ~1! The matching
has to be calculated includingas corrections;~2! the renor-
malization group treatment of the Wilson coefficients has
be performed using the anomalous dimension matrix to o
as

2 ; ~3! finally, the orderas corrections to the decay matri
elements have to be worked out. We note that this step
volves both, the calculation ofvirtual- and bremsstrahlung
corrections tob→sg.

The first two steps are already available in the literatu
The orderas matching of the dipole operatorsO7 and O8
was calculated in Refs.@20#, while the matching conditions
and the anomalous dimension matrix for the four Fermi
erators have been calculated by several groups@21#. These
calculations were done in the ‘‘old operator basis,’’ intr
duced by Grinsteinet al. @22#. The most difficult part, the
orderas

2 mixing of the four-Fermi operators into the dipo
operators requires the calculation of three loop diagra
@19#. In order to perform a consistent naive dimension
regularization~NDR! calculation ~i.e., with anticommuting
g5), the old operator basis was replaced by the new
displayed in Eq.~4!. The full 838 anomalous dimension
matrix, the corresponding matching conditions and the d
nition of the evanescent operators is given in Ref.@19# and is
repeated in Appendix A of the present paper.

Step~3!, the calculation of the virtualO(as) corrections
to the matrix elementsMi5^sguOi ub&, as well as the evalu
ation of the gluon bremsstrahlung processb→sgg, is per-
formed the first time in the present paper. As illustrated
Table I, the LL Wilson coefficientsC3

0(mb), . . . ,C6
0(mb) are

much smaller thanC1
0(mb) andC2

0(mb). We therefore only
calculateM1 , M2, andM8 together with the correspondin
bremsstrahlung corrections. AsM1 and M2 vanish at one-
loop ~i.e., without QCD corrections!, only the leading order
pieces,C1

0(mb) andC2
0(mb), appearing in the decompositio

Ci~mb!5Ci
0~mb!1

as~mb!

4p
Ci

1~mb! ~7!

of the NLL Wilson coefficients C1(mb) and C2(mb)
are needed. On the other hand, the operatorO8 contributes
to M8 already at tree level. Consequently the full NL
Wilson coefficientC8

eff(mb) is needed. The numerical valu
of the NLL pieceC8

1,eff @defined as in Eqs.~6! and~7!# is also
given in Table I, while the analytic form is relegated
Appendix A.
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III. VIRTUAL CORRECTIONS TO O1 AND O2

In this section we present the calculation of the mat
elements of the operatorO1 andO2 for b→sg up to orderas

in the NDR scheme. The one-loop (as
0) matrix elements van-

ish and we must consider several two-loop contributio
Since they involve ultraviolet singularities also counterte
contributions are needed. These are easy to obtain, bec
the operator renormalization constantsZi j are known with
enough accuracy from the orderas anomalous dimension
matrix @19#.

A. Regularized two-loop matrix elements ofO1 and O2

For the following discussion it is useful to define the o
eratorsÔ1 andÔ2:

Ô152O11 1
3 O2 ; Ô25O2 . ~8!

Ô1 and Ô2 are nothing but the current-current operators
the old basis@22#:

Ô15~ s̄LagmcLb!~ c̄LbgmbLa!,

Ô25~ s̄LbgmcLb!~ c̄LagmbLa!. ~9!

We now present the calculation of the matrix eleme
M̂ i5^sguÔi ub&: The dimensionally regularized matrix ele
ment M̂2 is obtained by calculating the two-loop diagram
~a!–~h! shown in Fig. 1.

We start with the calculation of the diagrams~a!–~f! in
Fig. 1, in which the virtual gluon connects the charm qua
in the loop with an external fermion leg.1 The main steps of
the calculation are the following: We first calculate the F
mion loops in the individual diagrams, i.e., the ‘‘buildin
blocks’’ I b andJab shown in Fig. 2;Jab denotes the sum o
the the two diagrams on the right.

We work in d5422e dimensions; the results of th
building blocks are presented as integrals over Feynman
rameters after integrating over the~shifted! loop-momentum.
Then we insert these building blocks into the full two-loo
diagrams. Using one more Feynman parametrization, we
culate the integral over the second loop-momentum. As
remaining Feynman parameter integrals contain rather c
plicated denominators, we do not evaluate them directly.

1The diagrams~g! and~h! are much easier to calculate than tho
in ~a!–~f!, becausemc is the only scale in the corresponding int
grals.
5-4
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FIG. 2. Building blockI b ~with an off-shell gluon! for the diagrams~a!, ~b!, ~e!, and~f! in Fig. 1 and building blockJab for the diagrams
~c! and ~d! in Fig. 1. g* andg denote an off-shell and an on-shell gluon, respectively.
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this level we also do not expand in the regulatore. The heart
of our procedure which will be explained more explicit
below, is to represent these denominators as complex Me
Barnes integrals@23#. After inserting this representation an
interchanging the order of integration, the Feynman para
eter integrals are reduced to well-known Euler beta fu
tions. Finally, the residue theorem allows to write the res
of the remaining complex integral as the sum over the r
dues taken at the pole positions of beta and gamma fu
tions; this naturally leads to an expansion in the ratioz
5(mc /mb)2, which numerically is aboutz50.1.

We express the diagram on the left in Fig. 2~denoted by
I b) in a way convenient for inserting into the two-loop di
grams. As we will useMS subtraction later on, we introduc
the renormalization scale in the formm2exp(gE)/(4p), where
gE'0.577 is the Euler constant. Then,MS corresponds to
subtracting the poles ine. In the NDR scheme,I b is given
by2

I b
A52

gs

4p2
G~e!m2eexp~gEe!~12e!

3exp~ ipe!TA~r br”2r 2gb!LE
0

1

@x~12x!#12e

3F r 22
mc

2

x~12x!
1 idG2e

, ~10!

wherer is the four-momentum of the~off-shell! gluon,mc is
the mass of the charm quark propagating in the loop and
term id is the ‘‘e-prescription.’’ The free indexb will be
contracted with the gluon propagator when inserting
building block into the two-loop diagrams~a!, ~b!, ~e!, and
~f! in Fig. 1. Note thatI b is gauge invariant in the sense th
r bI b50.

Next we give the sum of the two diagrams on the right
Fig. 2, using the decomposition in@18#. The on-shell gluon
has momentumq, color A and polarizationa ~therefore we
drop the termsq2 and qa), while the off-shell gluon has
momentum r, color B and polarizationb. This building
block, denoted byJab

AB , can be decomposed with respect
the color structure as

Jab
AB5Tab

1 ~q,r !$TA,TB%1Tab
2 ~q,r !@TA,TB#. ~11!

2The fermion/gluon and the fermion/photon couplings are defi
according to the covariant derivativeD5]1 igsT

BAB1 ieQA
whereTB5lB/2 are the SU~3! generators.
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The quantitiesTab
1 (q,r ) andTab

2 (q,r ) read

Tab
1 ~q,r !5

gs
2

32p2 FE~a,b,r !D i 51E~a,b,q!D i 6

2E~b,r ,q!
r a

~qr !
D i 232E~a,r ,q!

r b

~qr !
D i 25

2E~a,r ,q!
qb

~qr !
D i 26GL, ~12!

Tab
2 ~q,r !5

gs
2

32p2 F r”gabD i 21q”gabD i 31gbr aD i 8

1gar bD i 111gaqbD i 121r”
r ar b

~qr !
D i 15

1r”
r aqb

~qr !
D i 171q”

r ar b

~qr !
D i 191q”

r aqb

~qr !
D i 21GL.

~13!

The matrixE in Eq. ~12! is defined as

E~a,b,r !5gagbr”2gar b1gb~r a!2r”gab . ~14!

In a four-dimensional context theseE quantities can be re
duced to expressions involving the Levi-Civita` tensor, i.e.,
E(a,b,g)52 i«abgmgmg5 ~in the Bjorken-Drell conven-
tion!. The dimensionally regularized expressions for theD i
functions read

D i 5524B1E
S
dxdyC212e@4~qr !x2ye24~qr !xye

22r 2x3e13r 2x2e2r 2xe13xC2C# ~15!

D i 654B1E
S
dxdyC212e@4~qr !xy2e24~qr !xye

22r 2x2ye12r 2x2e1r 2xye22r 2xe13yC2C#

~16!

D i 2352D i 2658B1~qr !eE
S
dxdyC212exy ~17!

D i 25528B1~qr !eE
S
dxdyC212ex~12x! ~18!

d

5-5
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D i 254B2E
S
dxdyC212e~12x!@4~qr !xye22r 2x2e

1r 2xe1C# ~19!

D i 354B2E
S
dxdyC212e@4~qr !xy2e24~qr !xye

22r 2x2ye12r 2x2e1r 2xye22r 2xe1yC2C#

~20!

D i 8524B2E
S
dxdyC212e@4~qr !x2ye12~qr !xye

22r 2x3e1r 2x2e1r 2xe1xC1C# ~21!

D i 1154B2E
S
dxdyC212e~12x!@4~qr !xye22~qr !xe

22r 2x2e1r 2xe1C# ~22!

D i 1254B2E
S
dxdyC212e@4~qr !xy2e12~qr !xye

22r 2x2ye22r 2x2e1r 2xye12r 2xe1yC1C#

~23!

D i 15516B2~qr !eE
S
dxdyC212ex2~12x! ~24!

D i 17528B2~qr !eE
S
dxdyC212exy~122x! ~25!

D i 1958B2~qr !eE
S
dxdyC212ex~12x2y12xy!

~26!

D i 2158B2~qr !eE
S
dxdyC212exy~122y! ~27!

whereC, C212e, andB6 are given by

C5mc
222xy~qr !2x~12x!r 22 id

C212e52exp~ ipe!@x~12x!#212e

3F r 21
2y~qr !

12x
2

mc
2

x~12x!
1 idG212e

~28!

B15~11e!G~e!exp~gEe!m2e,

B25~e21!G~e!exp~gEe!m2e. ~29!

The range of integration in (x,y) is restricted to the simplex
S, i.e., 0<y<(12x) and 0<x<1.
05402
We are now ready to evaluate the two-loop diagram
Because of the absence of extra singularities in the limit
vanishing strange quark mass, we setms50 from the very
beginning.

In Ref. @24# the detailed calculation of one of the dia
grams in Fig. 1~a! was presented forb→sg. As all the other
diagrams, which involve the building blockI b , i.e., ~a!, ~b!,
~e!, and~f! in Fig. 1, can be computed in a very similar wa
we prefer to concentrate on the diagrams involving the bu
ing block Jab . As an example in this class, we concentra
on the diagrams~d! in Fig. 1, which we redisplay in Fig. 3 in
order to set up the notation for the momenta.

The sumM̂2(d) of the two diagrams can be decompos
into a color symmetric partM̂2

1(d) and a color antisymmet

ric part M̂2
2(d) according to

M̂2~d!5M̂2
1~d!1M̂2

2~d!, ~30!

with

M̂2
2~d!5gs~2 i ! f ABCTBTCm2e

eegE

~4p!e

1

i E ddr

~2p!d
ū~p8!

3~Tab
2 «a!

p”1r”1mb

r 212~pr !
gbu~p!

1

r 2

M̂2
1~d!5gs

3

2
TAm2e

eegE

~4p!e

1

i E ddr

~2p!d
ū~p8!

3~Tab
1 «a!

p”1r”1mb

r 212~pr !
gbu~p!

1

r 2
, ~31!

whereTab
1 andTab

2 are given in Eqs.~12! and ~13!, respec-

tively. As the calculation ofM̂2
1(d) is nothing but a repeti-

tion of the b→sg case, we concentrate onM̂2
2(d) in the

following. All the D i quantities inTab
2 contain the factor

C212e, whose explicit form is given in Eq.~28!. M̂2
2(d) can

be written in the form

M̂2
2~d!5

gs
3

32p2
~2 i ! f ABCTBTCm2e

eegE

~4p!e

1

i

3E ddr

~2p!d
ū~p8!P~r !u~p!

3
@2exp~ ipe!#@x~12x!#212e

D1D2D3
11e

, ~32!

FIG. 3. Feynman diagram for the Mellin-Barnes example. T
momentum and the polarization vector of the emitted gluon
denoted byq and«, respectively.
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with D15„r 212(pr)…, D25r 2, D35r 212(qr)y/(12x)2mc
2/„x(12x)…. The symbolP(r ) is a matrix in Dirac space

which depends in a polynomial way on the integration variabler. In the next step, the three propagatorsD1 , D2, andD3 in
the denominator are Feynman parametrized as

1

D1D2D3
11e

5
G~31e!

G~11e!
E

S

dudwwe

@r 212~pr !u12~qr !yw/~12x!2mc
2w/„x~12x!…1 id#31e

~33!
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with 0<w<12u and 0<u<1. Then the integral over the
loop momentumr is performed. At this level, a four dimen
sional integral over the Feynman parameters (x,y;u,w) re-
mains. It is useful for the following to perform the substit
tions

x→x8; y→2
~12x8!~12w82y8!

w8
;

u→~12w8!u8; w→u8w8. ~34!

The new variables then run in the intervals

x8,u8,w8P@0,1#; yP@12w8,1#. ~35!

Taking into account the corresponding Jacobian and omit
the primes (8) of the integration variables,M̂2

2(d) can be
cast into the form

M̂2
2~d!5

gs
3

32p2
~2 i ! f ABCTBTCE dxdydudwū~p8!

3FF1

C̄

C̄2e
1F2

1

C̄2e
1F3

1

C̄112eGu~p!, ~36!

whereF1 , F2, andF3 are matrices in Dirac space dependi
on the Feynman parametersx, y, u, w. Note that this ex-
pression is understood to be written in such a way thatF1 ,
F2, andF3 are independent ofmc . The charm quark mas
then only enters throughC̄, which reads

C̄5mb
2uy~12w!1

mc
2

x~12x!
w. ~37!

In what follows, the ultraviolete regulator remains a fixed
small positive number.

The central point of our procedure is to use now t
Mellin-Barnes representation of the denominators that lo
like propagators„1/(k22M2)l

… @25#, which is given by (l
.0)

1

~k22M2!l
5

1

~k2!l

1

G~l!

1

2p i

3E
g
ds~2M2/k2!sG~2s!G~l1s!.

~38!
05402
g

k

The symbolg denotes the integration path which is paral
to the imaginary axis~in the complexs-plane! hitting the real
axis somewhere between2l and 0. In this formula, the
‘‘momentum squared’’k2 is understood to have a small pos
tive imaginary part.

In our approach, we use formula~38! in order to simplify
the remaining Feynman parameter integrals in Eq.~36!

where we represent the factors 1/C̄2e and 1/C̄112e as Mellin-
Barnes integrals using the identifications

k2↔mb
2uy~12w!; M2↔

2mc
2w

x~12x!
. ~39!

By interchanging the order of integration, we first carry o
the integrals over the Feynman parameters for any gi
fixed value ofs on the integration pathg. These integrals are
basically the same as for the massless casemc50 @in Eqs.
~36! and ~37!# up to the factor

F w

uy~12w!x~12x!G
sS mc

2

mb
2D s

. ~40!

Note that the functionsF1 , F2, and F3 are such that the
Feynman parameter integrals exist if the integration pathg is
properly chosen. In the terms involvingF2 and F3 in Eq.
~36!, the path must be chosen such that2e,Re(s),0; in
the terms involvingF1 the situation is slightly more compli
cated:C̄ in the numerator should be replaced by the rig
hand side~RHS! of Eq. ~37!. For the terms proportional to
mb

2 the path has to be chosen as for theF2 andF3 contribu-
tions. The terms proportional tomc

2 , however, lead to Feyn
man parameter integrals which do not converge for value
s on this path. It turns out that the path has to be chosen s
that22e,Re(s),2e in order to have convergent integra
for these terms.

We would like to mention that the variable substitutio
in Eq. ~34! were constructed in such a way that all the Fey
man parameter integrals are either elementary or of the f
*0

1dxxp(12x)q5b(p11,q11).
For the s integration we use the residue theorem af

closing the integration path in the rights-halfplane. Accord-
ing to the above discussion, the residue ats52e has to be
taken into account in the terms proportional tomc

2 . In the
other terms, however, the residue ats52e must not be
taken into account. The other poles inside the integrat
contour are located at
5-7
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s50,1,2,3, . . .

s512e,22e,32e, . . .

s5122e,222e,322e, . . .

s51/222e,3/222e,5/222e, . . .

s5123e,223e,323e, . . . . ~41!

The other two-loop diagrams are evaluated similarly. T
non-trivial Feynman integrals can always be reduced
b-functions after suitable substitutions.

The sum over the residues naturally leads to an expan
in z5(mc

2/mb
2) through the factor (mc

2/mb
2)s in Eq. ~40!. This

expansion, however, is not a Taylor series; it also invol
logarithms ofz, which are generated by the expansion ine.
A generic diagram which we denote byG has then the form
05402
e
o

on

s

G5c01(
n,m

cnmzn lnmz, z5
mc

2

mb
2

. ~42!

The powern in Eq. ~42! is in general a natural multiple o
1/2 andm is a natural number including 0. In the explic
calculation, the lowestn turns out to ben51. This implies
the important fact that the limitmc→0 exists.

From the structure of the poles one can see that the po
m of the logarithm is bounded by 4, independent of the va
of n. For a detailed explanation, we refer to@24#. As in this
reference, we retain all terms up ton53 in our results.

Unlike in b→sg, the diagrams in the individual figure
are not gauge invariant. This statement holds even for
sum of all the diagrams in~a!–~f! in Fig. 1. A gauge invari-
ant result is only obtained after including the diagrams in~g!
and~h!.3 We would like to mention that the diagrams anal
gous to~g! also exist forb→sg. Their sum, however, van
ishes in this case. As there are no gauge invariant subsets
only present the result which is obtained by summing
diagrams~a!–~h! in Fig. 1. The result forM̂25^sguÔ2ub&
reads@usingz5(mc /mb)2 andL5 ln z]
ng

,

nly
f the
M̂25
1

2592

as

p
^sguO8ub& treeS mb

m D 24eH 2
384

e
22170254p21z@488162252p21~2268021620p2!L12808L21612L3

26480z~3!#212672p2z3/21z2@6633911872p21~24044611512p2!L16642L221008L317776z~3!#

1z3@23420260p226456L17884L2#124p i @2281z~549224p21153L172L2!

1z2~2432130p2154L290L2!1z3~22591192L !#J . ~43!

In this expression, the symbolz denotes the Riemann Zeta function, withz(3)'1.2021; The symbol̂sguO8ub& treedenotes the
tree level matrix element of the operatorO8. As such, it contains the runningb-quark mass and the running strong coupli
constant, both evaluated at the scalem @see Eq.~4!#. However, as the corrections toO2 are explicitly proportional toas , we
are allowed~modulo higher order terms! to identify the runningb-quark mass with the pole massmb ; in the same spirit we
can identify the strong coupling constant withgs(mb). With this interpretation, which we will use in the following
^sguO8ub& tree is a scale independent quantity, reading

^sguO8ub& tree5mb

gs~mb!

8p2
ū~p8!«”q”RTAu~p!. ~44!

We now turn to the matrix elements of the operatorÔ1. Due to the specific color structure it is straightforward to see that o
the diagrams~e! and ~f! in Fig. 1 yield a non-vanishing contribution, which is generated by the color symmetric part o
building blockJab in Eq. ~11!. The complete regularized result forM̂15^sguÔ1ub& reads

M̂15
1

96

as

p
^sguO8ub& treeS mb

m D 24eH 2
18

e
2871z@120216p21~120236p2!L112L214L32144z~3!#

1z2@84132p2224p2L212L214L3#1z3@256212p2196L236L2#24p i @31z~22412p226L26L2!

1z2~2612p2112L26L2!212z3#J . ~45!

3We thank M. Neubert for making us aware of these diagrams.
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The regularized matrix elementsM1 and M2 of O1 andO2

in the operator basis~4! are related toM̂1 in Eq. ~45! andM̂2
in Eq. ~43! as follows:

M15 1
2 M̂12 1

6 M̂2 ; M25M̂2 . ~46!

B. Counterterms to the O1 and O2 contributions

The operators mix under renormalization and thus
counterterm contributions must be taken into account. As
are interested in this section in contributions tob→sg which
are proportional toC1 andC2, we have to include, in addi
tion to the two-loop matrix elements ofC1O1 and C2O2,
also the one-loop matrix elements of the four Fermi ope
tors CidZi j Oj ( i 51,2;j 51, . . . ,6) and thetree level contri-
bution of the magnetic operatorCidZi8O8 ( i 51,2). In the
NDR scheme the only non-vanishing contributions tob
→sg come from j 54,8 only. The operator renormalizatio
constantsZi j are obtained from the leading order anomalo
dimension matrix in the literature@19#.4 The entries needed
in our calculation are

dZ1452
as

36pe
, dZ185

167as

2592pe
. ~47!

dZ245
as

6pe
, dZ285

19as

108pe
. ~48!

The counterterm contributionsM1
ct and M2

ct proportional to
C1 andC2 are then given by

M1
ct5^sgudZ14O41dZ18O8ub&

5X as

216p

1

e S mb

m D 22e

1
as

p

167

2592

1

e
C^sguO8ub& tree.

~49!

M2
ct5^sgudZ24O41dZ28O8ub&

5X2 as

36p

1

e S mb

m D 22e

1
as

p

19

108

1

e
C^sguO8ub& tree.

~50!

We note that there are no one-loop contributions to
matrix element forb→sg from the counterterms propor
tional to the evanescent operatorsP11 andP12 given in Ap-
pendix A of Ref.@19#.

C. Renormalized matrix elements ofO1 and O2

Adding the regularized two-loop result in Eq.~43! and the
counterterm in Eq.~50!, we find the renormalized result fo
M2 in the NDR scheme:

4Note that the effective anomalous dimension matrixg0,eff given
in @19# has to be converted intog0, before the relevantdZ-factors
can be read off.
05402
e
e

-

s

e

M2
ren5^sguO8ub& tree

as

4p S l 2 ln
mb

m
1r 2D , ~51!

with

l 25
70

27
~52!

Re~r 2!5
1

648
$22170254p21z@48 8162252p2

1~22 68021620p2!L12808L21612L3

26480z~3!#212 672p2z3/21z2@66 33911872p2

1~240 44611512p2!L16642L221008L3

17776z~3!#1z3@23420260p226456L

17884L2#%

Im~r 2!5
p

27
$2281z@549224p21153L172L2#

1z2@2432130p2154L290L2#

1z3@22591192L#%. ~53!

Here, Re(r 2) and Im(r 2) denote the real and the imagina
part of r 2, respectively. The quantityz is defined asz
5(mc

2/mb
2) andL5 ln(z).

Similarly, we obtain the renormalized version ofM1 by
adding the regularized two-loop result in Eq.~46! and the
counterterm in Eq.~49!; we find

M1
ren5^sguO8ub& tree

as

4p S l 1 ln
mb

m
1r 1D , ~54!

with

l 15
173

162
~55!

Re~r 1!52
1

3888
$4877254p2136z@1086129p2

1~360136p2!L151L218L31144z~3!#

212 672p2z3/219z2@6615280p2

1~244941384p2!L1864L22148L31864z~3!#

112z3@93176p221186L1900L2#%

Im~r 1!52
p

324
$2516z@751p2124L23L2#

16z2@2171119p2172L257L2#

12z3@24211192L#%. ~56!

In Figs. 4 and 5 we show the real and the imaginary parts
r 2 andr 1, respectively. Forz>1/4 the imaginary parts mus
5-9
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vanish exactly; indeed we see from these plots that
imaginary parts based on the expansion retaining terms u
z3 indeed vanish atz51/4 to high accuracy.

IV. VIRTUAL CORRECTIONS TO O8

In this section we calculate the orderas virtual correc-
tions to the matrix element

M85^sguO8ub&. ~57!

As the contributing Feynman graphs in Fig. 6 are one lo
diagrams, the computation ofM8 is straightforward. We use
dimensional regularization for both, the ultraviolet and t
infrared singularities. Singularities which appear in the si
ation where the virtual gluon becomes almost real and
linear with the emitted gluon are also regulated dimensi
ally; on the other hand, those singularities where the alm
real internal gluon is collinear with thes-quark, are regulated
with a small strange quark massms ; the latter manifest
themselves in logarithmic terms of the form ln(r), wherer
5(ms /mb)2.

We were able to separate the ultraviolet 1/e poles from
those which are of infrared~and/or collinear! origin. For ul-
traviolet poles we use the symbol 1/e in the following, while
collinear and infrared poles are denoted by 1/e IR .

When working in Feynman gauge for the gluon propa
tor, the individual diagrams contributing toM8 have the fol-
lowing infrared and collinear properties~the letters refer to
the diagrams in Fig. 6!: ~a! and ~b! are free of infrared and
collinear singularities;~c! has combined infrared and collin
ear singularities of the form 1/e IR

2 or ln(r)/eIR as well as 1/e IR

poles; ~d! has combined infrared and collinear singulariti
of the form 1/e IR

2 as well as 1/e IR poles;~e! has a collinear
singularity of the form ln(r); ~f! is free of infrared and col-
linear singularities;~g! has a combined collinear and infrare
singularity of the form ln(r)/eIR as well as collinear singu
larities of the form ln2(r) and ln(r); ~h! has an infrared sin-
gularity of the form 1/e IR ; more precisely, this diagram i
proportional to the combination (1/e21/e IR).

As the results of the individual diagrams are not ve
instructive, we only give their sum:

FIG. 4. Real and imaginary part ofr 2 in the NDR scheme@from
Eq. ~53!#.
05402
e
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M85
as

4p
f 8^sguO8ub& tree, ~58!

with

f 85F2
3

e IR
2

2
~4 ln~r!1919ip!

3e IR
1

11

3eG S mb

m D 22e

1
1

3 F59p2

12
1128 ln~r!12 ln2~r!28ipG . ~59!

We would like to mention that we did not include dia
grams with self energy insertions in the external legs. As
work in an on-shell renormalization scheme with respect
quark and gluon fields, such diagrams are cancelled aga
counterterm contributions.

A. Counterterms to the O8 contribution

The counterterm is generated by expressing the b
quantities in the tree-level matrix element ofO8 by their
renormalized counterparts. It has the structure

M8
ct5dR^sguO8ub& tree, ~60!

where the factordR is given by

dR5AZ2~mb!AZ2~ms!AZ3Zgs
Zmb

Z8821. ~61!

Z2(mb), Z2(ms), andZ3 denote the on-shell wave functio
renormalization factors of theb-quark, thes-quark and the
gluon, respectively.Zgs

andZmb
denote theMS renormaliza-

tion constants for the strong coupling constantgs and the
b-quark mass factor, which appear explicitly in the definiti
of the operators@see Eq.~4!#. Finally, Z88 is the renormal-
ization factor of the operatorO8.

The explicit form ofZ2(m) reads

Z2~m!512
as

3p S m

m D 22eF1

e
1

2

e IR
14G ~62!

FIG. 5. Real and imaginary part ofr 1 in the NDR scheme@from
Eq. ~56!#.
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FIG. 6. Diagrams associated with the opera
O8. The real gluon can be attached to any of t
circle-crosses on the fermion lines.
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where we again separated infrared and ultraviolet poles.
Z3 we get in the on-shell scheme

Z3511
as

2p

5

2 S 1

e
2

1

e IR
D2

as

2p

1

3 (
f

F1

e
22 ln

mf

m G .
~63!

The sum in this formula run over the five flavorsf
5u,d,c,s,b. For Zmb

andZ88 ~see Ref.@19#! one obtains

Zmb
512

as

4p

4

e
; Z88511

as

4p

14

3e
. ~64!

Finally, the renormalization constant for the strong coupl
constant reads

Zgs
512

as

4p F11

2
2

Nf

3 G 1

e
; Nf55. ~65!

Inserting the variousZ factors in Eq.~61!, one obtains

dR52
as

4p F 11

3e
1

31

6e IR
28 ln

mb

m
2

2

3 (
f

ln
mf

m

1
16

3
22 lnrG . ~66!

B. Renormalized matrix element ofO8

Adding the regularized matrix element ofO8 in Eq. ~58!
and the counterterm contributionM8

ct in Eq. ~60!, one obtains
the renormalized result

M8
ren5

as

4p
f 8

ren^sguO8ub& tree, ~67!

with

f 8
ren5F2

3

e IR
2

2
„8 ln~r!149118ip…

6e IR
G S mb

m D 22e

2
29

3
ln

mb

m

1
2

3 (
f

ln
mf

m
251

59p2

36
2

2

3
ln r1

2

3
ln2r2

8

3
ip.

~68!
05402
or
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In Eq. ~68! the sum runs over the five flavorsf
5u,d,c,s,b, andr5(ms /mb)2. We anticipate that the sin
gular terms of the form 1/e IR

2 , 1/e IR and lnr in Eq. ~68! will
cancel ~at the level of the decay width! against the corre-
sponding singularities present in the gluon bremsstrahl
corrections tob→sg. On the other hand, the logarithmi
terms ln(mf /m), which also represent some kind of singula
ties for the light flavorf 5u,d,s are not cancelled by the
gluon bremsstrahlung process. Keeping in mind that th
terms originate from the renormalization factorZ3 of the
gluon field, i.e., from gluon self energy diagrams in whi
these flavors propagate, it is expected that these logarit
will cancel against the logarithms present in the decay r
G(b→s f f̄) with f 5u,d,s. We will discuss this issue in
more detail at the end of the next section.

V. VIRTUAL CORRECTIONS TO THE DECAY WIDTH
FOR b\sg

We are now ready to write down the renormalized vers
of the matrix M ren(b→sg) element forb→sg, where the
virtual orderas corrections are included. We obtain

M ren~b→sg!5
4GFi

A2
Vts* VtbH C8

eff1
as

4p FC1
0S l 1 ln

mb

m
1r 1D

1C2
0S l 2 ln

mb

m
1r 2D1C8

0,efff 8
renG J

3^sguO8~m!ub& tree. ~69!

The quantitiesl 1 , r 1 , l 2 , r 2, and f 8
ren are given in Eqs.~55!,

~56!, ~52!, ~53!, and ~68!, respectively. As Eq.~69! shows,
C8

eff is the only Wilson coefficient needed to NLL precisio
For the following, it is useful to decompose it as

C8
eff5C8

0,eff1
as

4p
C8

1,eff. ~70!

The symbol^sguO8(m)ub& tree in Eq. ~69! denotes the tree
level matrix element ofO8(m), which contains the running
b-quarks mass and the strong running coupling constan
the scalem. In order to get expressions where theb-quark
mass enters as the pole mass, and the strong coupling
stant enters asgs(mb), we rewrite^sguO8(m)ub& tree as
5-11
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^sguO8~m!ub& tree5^sguO8ub& treeF11
2as

p
ln

mb

m
2

4

3

as

p

1
as

4p
b0 ln

mb

m G ; b05
23

3
, ~71!

where we made use of Eqs.~5! and ~A18!. The symbol
^sguO8ub& tree then stands for the tree level matrix element
O8 in which m̄b(m) andgs have to to be identified with the
pole massmb andgs(mb), respectively.@See also the discus
sion after Eq.~43! and Eq.~44!#. Inserting Eqs.~70! and~71!
into Eq. ~69! we obtain

M ren~b→sg!5
4GFi

A2
Vts* VtbH C8

0,eff1
as

4p FC8
1,eff

1~81b0! ln
mb

m
C8

0,eff2
16

3
C8

0,eff

1C1
0S l 1 ln

mb

m
1r 1D1C2

0S l 2 ln
mb

m
1r 2D

1C8
0,efff 8

renG J ^sguO8ub& tree. ~72!

To obtain the decay widthGvirt from M ren(b→sg) is
straightforward. We get

Gvirt5
as~mb!mb

5

24p4
uGFVts* Vtbu2H ~C8

0,eff!21
as

4p
C8

0,eff

3F2C8
1,eff12~81b0! ln

mb

m
C8

0,eff2
32

3
C8

0,eff

12C1
0S l 1 ln

mb

m
1Re~r 1! D12C2

0S l 2 ln
mb

m
1Re~r 2! D

12C8
0,effRe~ f 8

ren!~12e!S mb

m D 22e

3S 112e2
1

4
~p2216!e2D G J . ~73!

We note that due to the infrared poles present inf 8
ren the

phase space integrations have been done consistentlyd
5422e dimensions, which leads to the last two extra fa
tors in the last term in Eq.~73!. The other factor, (12e), in
the last term in Eq.~73!, is due to the fact that all the (d
22) possible transverse polarizations of the emitted glu
were taken into account.

We already mentioned that the infrared singularit
(1/e IR

2 , 1/e IR) and the collinear singularities (ln2r, ln r) in
f 8

ren in Eq. ~73! cancel when adding gluon bremsstrahlun
On the other hand, the unphysical logarithms of the fo
ln(mf /m) in f 8

ren cancel against theO8 contribution to the

decay width forb→s f f̄.
The appearance of these singularities signals that i

vidually the processesb→sg, b→sgg, andb→s f f̄ are not
05402
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well defined even within perturbation theory; only their su
the inclusive charmless hadronic decay width is a we
defined physical quantity, as already discussed in the In
duction.

Keeping in mind that the ultimate goal for the futu
should be a completeO(as

2) calculation for the charmles
hadronic decay width, we decided to add theO8 contribution
G8(b→s f f̄) to G(b→sg)1G(b→sgg), in order to cancel
the ln(mf /m) terms. From the explicit expression

G8~b→s f f̄!5
mb

5uGFVts* VtbC8
0,effu2

72p5
as

2F ln
mb

2mf
2

2

3G ,
~74!

one immediately sees that the mentioned logarithms ind
cancel.

We would like to mention thatG8(b→s f f̄) is dominated
by small values ofq2, where q is the momentum of the
virtual gluon, decaying into thef f̄ -pair; therefore, it is rea-
sonable to absorb this part ofb→s f f̄ into B NLL(b→sg).

Another reasonable definition forB NLL(b→sg) would be
to include the contributions of all the operators tob→s f̄f ,
but to impose kinematical cuts~e.g. on the invariant mass o
the f f̄ -pair!. Numerically, the difference between these tw
definitions forB NLL(b→sg) are small for a reasonably sma
cut, because the NLL corrections are by far dominated by
virtual corrections to theO2 contribution tob→sg.

A third possibility is to totally omitb→s f f̄ and accepting
a logarithmic dependence of the results forB NLL on the light
quark masses. We checked numerically that this proced
and the one we chose differ by less than 2% when
massesmf of the light quarks are assumed to be of ord
LQCD.

VI. MATRIX ELEMENTS FOR GLUON
BREMSSTRAHLUNG

In this section we discuss the gluon bremsstrahlung c
rections tob→sg, i.e., the matrix element for the proces
b→sgg, associated with the operatorsÔ1 , Ô2, andO8. For
literature on the analogous corrections tob→sg, we refer to
@26#.

A. Bremsstrahlung associated withÔ1 and Ô2

We first discuss the matrix element ofÔ2. There are two
diagrams contributing; they are displayed in~d! and ~e! of
Fig. 7. The sum of diagram~d! and the one with the two
gluons interchanged is denoted byJ̄ab . Its analytic form is
obtained by puttingr 250 and r b50 in the expression for
Jab in Eq. ~11!:

J̄ab
AB5T̄ab

1 ~q,r !$TA,TB%1T̄ab
2 ~q,r !@TA,TB#. ~75!
5-12
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FIG. 7. Bremsstrahlung diagrams associated toO8 andÔ2. Circle-crosses denote possible gluon emissions. Note that picture~a! actually
represents four Feynman diagrams~obtained by interchanging the gluons! and the one in~d! represents two diagrams~again: including the
interchange of the gluons!.
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This expression is understood to be contracted with the
larization vectors«a(q) and «b(r ) of the gluons. The dia-
gram ~e! in Fig. 7, denoted bySab

AB , is color antisymmetric
and can be written as

Sab
AB5Sab

2 @TA,TB#, ~76!

whereSab
2 reads@ t5(2qr)/mc

2#

Sab
2 5

gs
2

32p2 F4

3 S m

mc
D 2e 1

e
2

4

3
28G1~ t !18G2~ t !G

3@r”gab2q”gab22gbr a12gaqb#L. ~77!

The functionsGi(t)( i 521,0,1, . . . ) aredefined as

Gi~ t !5E
0

1

dxxi ln@12tx~12x!2 id#. ~78!

The Ward identitiesr bT̄ab
1 5qaT̄ab

1 50, stated in@24#, imply
that

T̄ab
1 5

gs
2

32p2 FE~a,b,r !2E~a,b,q!2E~b,r ,q!
r a

~qr !

1E~a,r ,q!
qb

~qr !GLD̄ i 23. ~79!

General considerations~or a straightforward calculation
which makes use of the explicit expressions for the functi
Gi and D̄ i i) imply the Ward identities

r b~ T̄ab
2 1Sab

2 !50; qa~ T̄ab
2 1Sab

2 !50, ~80!

which can be used to cast (T̄ab
2 1Sab

2 ) into the simple form

T̄ab
2 1Sab

2 5
gs

2

32p2
~r”2q” !S r aqb

qr
2gabDLD̄ i 17. ~81!

To summarize, the matrix elementM̂2
brems5^sgguÔ2ub& can

be written as

M̂2
brems5T̄ab

1 $TA,TB%1~ T̄ab
2 1Sab

2 !@TA,TB#, ~82!

whereT̄ab
1 and (T̄ab

2 1Sab
2 ) are given in Eqs.~79! and~81!,

respectively. The functionsD̄ i 23 andD̄ i 17 occurring in these
expressions, can be written in terms ofG0(t) and
G21(t) @ t5(2qr)/mc

2# defined in Eq.~78!:
05402
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D̄ i 23522
t12G21~ t !

t
;

D̄ i 1752
2

3

t16G21~ t !212G0~ t !

t
. ~83!

The explicit form ofG21(t) andG0(t) is given in Appendix
B. Note that these results are ultraviolet finite. As the sub
quent phase space integrals do not generate infrared si
larities, it is consistent to retain terms up to ordere0 only in
Eq. ~82!.

Due to the specific color structure of the operatorÔ1, the
diagram~e! in Fig. 7 does not contribute and the color an
symmetric part encoded inT̄ab

2 is also absent. The matrix

element M̂1
brems5^sgguÔ1ub& is therefore proportional to

T̄ab
1 , reading

M̂1
brems5T̄ab

1 dABdab; ~84!

A,B and a,b are the color indices of the gluons and th
quarks, respectively.

B. Bremsstrahlung associated withO8

The Feynman diagrams contributing to the matrix elem
M8

brems5^sgguO8ub& are shown in~a!, ~b!, and~c! in Fig. 7.

Similar toM̂2
bremsin Eq. ~82!, one can decomposeM8

bremsinto
a color symmetric- and a color antisymmetric part:

M8
brems5Rab

1 $TA,TB%1Rab
2 @TA,TB#. ~85!

The diagrams shown in~b! and ~c! only contribute toRab
2 ,

while the diagrams in~a! contribute to bothRab
2 and Rab

1 .
As the calculation of these tree level diagrams is straight
ward, we do not give the explicit expressions forRab

1 and
Rab

2 .

VII. DECAY WIDTH FOR b\sgg

The total matrix elementMbrems(b→sgg) can be written
as

Mbrems5
4GFi

A2
Vts* Vtb@Ĉ1M̂1

brems1Ĉ2M̂2
brems1C8

0,effM8
brems#,

~86!

where the three terms on the RHS, given in Eqs.~84!, ~82!
and ~85!, correspond to the contributions of the operato
5-13
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Ô1 , Ô2, andO8, respectively. The coefficientsĈ1 and Ĉ2
are understood to be the following linear combinations of
Wilson coefficientsC1 and C2 appearing in the effective
Hamiltonian~3!:

Ĉ15 1
2 C1 ; Ĉ25C22 1

6 C1 . ~87!

We note that in Eq.~86! only the leading order pieces of th
Wilson coefficients are needed.

The expression for the decay width reads ind dimensions:

dGbrems~b→sgg!5
1

2mb
E ~2p!ddd~p2p82q2r !

3uMbremsuS
2 dm~p8!dm~q!dm~r !,

~88!

where p, p8, q, r are the four-momenta of theb-quark,
s-quark, and the gluons.uMbremsuS

2 is obtained by squaring
the matrix elementMbrems, followed by summing~averag-
ing! over spins and color of the final~initial! state particles.
The factor (1/2) due to the two gluons in the final state
also absorbed there.

The phase space integrals are plagued with infrared
collinear singularities. Configurations with one gluon flyin
collinear to thes-quark are regulated by a small stran
quark massms , while configurations with two collinear glu
ons, or one soft gluon are dimensionally regularized. As
the calculations of the virtual corrections, we write the
mension asd5422e. ~Note thate has to be negative in
order to regulate the phase space integrals.!

When squaringMbrems in Eq. ~86!, nine terms are gener
ated, which we denote for obvious reasons by (Ô1 ,Ô1* ),

(Ô1 ,Ô2* ), (Ô1 ,O8* ), (Ô2 ,Ô1* ), (Ô2 ,Ô2* ), (Ô2 ,O8* ),

(O8 ,Ô1* ), (O8 ,Ô2* ), and (O8 ,O8* ). It turns out that all
terms except (O8 ,O8* ) are free of infrared and collinear sin
gularities. We therefore can putms50 in these terms and
evaluate the phase space integrals ind54 dimensions. De-
noting this finite contribution to the decay width byGfin

brems,
we get

Gfin
brems5

8uGFVts* Vtbu2

64p3mb

1

12

as
2

64p2E dEqdEr

3~t11
1 1t22

1 1t22
2 1t12

1 1t18
1 1t28

1 1t28
2 !. ~89!

The superscripts (1) and (2) on the varioust-quantities
refer to color even and color odd contributions, respective
The result is represented as a two dimensional integral o
the energiesEq andEr of the gluons in the rest frame of th
b-quark.Eq andEr vary in the range

EqPF0,
mb

2 G ; ErPFmb

2
2Eq ,

mb

2 G . ~90!

The varioust-quantities, in which all the scalar products a
understood to be expressed in terms ofEq andEr , read
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t11
1 5Ĉ1

224uD̄ i 23u22mb
2@mb

222~qr !#

t22
1 5Ĉ2

2 28
3 uD̄ i 23u22mb

2@mb
222~qr !#

t22
2 5Ĉ2

212uD̄ i 17u22@16~pq!2216~pq!~qr !

28mb
2~pq!16mb

2~qr !1mb
4#

t12
1 52Ĉ1Ĉ28uD̄ i 23u22mb

2@mb
222~qr !#

t18
1 52Ĉ1C8

0,eff8Re~D̄ i 23!16mb
2~qr !

t28
1 52Ĉ2C8

0,eff28
3 Re~D̄ i 23!16mb

2~qr !

t28
2 52Ĉ2C8

0,eff12Re~D̄ i 17!~24mb
2!@mb

4~pq!

1mb
4~pr !22mb

2~pq!222mb
2~pr !2

22mb
2~pq!~pr !14~pq!2~pr !

14~pr !2~pq!#/@~pq!~pr !# ~91!

were the functionsD̄ i 17 and D̄ i 23 are given in Eq.~83!. As
these function are rather complicated, the integrals overEq
andEr are done numerically.

We now turn to the (O8 ,O8* ) contribution, denoted by
G88

brems. Without going too much into the details, we wou
like to mention that some care has to be taken when s
ming over the (d22) transverse polarizations of the gluon
These sums are of the form

(
r 51

d22

« r
m~k!« r*

n~k!52gmn1km f n1kn f m, ~92!

where the vectorf satisfies the condition (f k)51, with k
being the four-momentum of the gluon. It turns out that bo
terms involvingf on the RHS in Eq.~92! contribute to the
color antisymmetric part ofG88

brems. After a lengthy, but
straightforward calculation, we obtain@with r5(ms /mb)2]

G88
brems,15

7as~C8
0,eff!2V

96p S mb

m D 24e

3F814 lnr

e IR
22 ln2r16 lnr1182

4p2

3 G
~93!

for the color symmetric part, and

G88
brems,25

as~C8
0,eff!2V

16p S mb

m D 24eF 24

e IR
2

1
8016 lnr

e IR
23 ln2r

19 lnr1299226p2G ~94!

for the color antisymmetric part.V is defined as
5-14
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V5
asmb

5

24p4
uGFVts* Vtbu2. ~95!

The total decay width forb→sgg is then given by

Gbrems~b→sgg!5Gfin
brems1G88

brems,11G88
brems,2 , ~96!

where the three terms on the RHS are given in Eqs.~89!,
~93!, and~94!.

VIII. COMBINED NLL BRANCHING RATIO FOR b\sg
AND b\sgg

In this section we combine the decay widths for the v
tually corrected processb→sg and the bremsstrahlung pro
cessb→sgg to the decay width, which we callGNLL(b
→sg). We also absorb in this quantity theO8 induced con-
tribution to the processb→s f f̄, where f 5u,d,s, as dis-
cussed at the end of Sec. V. The expression forGvirt, which
contains the lowest order contribution to the decay width
b→sg, together with its virtual corrections, may be found
Eq. ~73!. The result for the bremsstrahlung process,Gbremsis
given in Eq. ~96!. From the explicit formulas forGvirt and
Gbrems one can see that the infrared singularities and th
collinear singularities, which are regulated bye IR cancel in
the sum. The same also happens with the collinear singu
ties which are regularized by the parameterr5(ms /mb)2.
The terms containing logarithms of the light quark mas
mf , present in the result forGvirt, are cancelled when com
bined withG8(b→s f f̄) in Eq. ~74!. Putting together the in-
dividual pieces, we obtain

GNLL~b→sg!5
as~mb!mb

5

24p4
uGFVts* Vtbu2H ~C8

0,eff!2

1
as

4p
C8

0,effF2C8
1,eff2

32

3
C8

0,eff12C1
0

3F l 1 ln
mb

m
1Re~r 1!G

12C2
0F l 2 ln

mb

m
1Re~r 2!G12C8

0,eff

3F ~ l 8181b0! ln
mb

m
1r 8G G J 1Gfin

brems,

~97!

whereGfin
brems, given in Eq.~89!, contains all the bremsstrah

lung corrections except those originating from the (O8 ,O8* )
interference. The quantitiesl 1 , r 1 , l 2, andr 2 stem from the
virtual corrections; they are given in Eqs.~55!, ~56!, ~52!,
and ~53!, respectively. On the other hand,l 8 and r 8 contain
information from the real part of the virtual corrections, e
coded in Re(f 8

ren); the contributions from the (O8 ,O8* ) in-
terference of the gluon bremsstrahlung process; and theO8
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contribution to the processb→s f f̄: The explicit expressions
for l 8 and r 8 ~which is real by definition! read

l 852
19

3
; r 85

1

18F351219p2236 ln 216 ln
mc

2

mb
2G .

~98!

We would like to stress that all scale dependent quantitie
Eq. ~97! are understood to be evaluated at the scalem, unless
indicated explicitly in the notation.

To prepare the discussion on the numerical size of
NLL QCD corrections, it is useful to cast the final result~97!
into another form:

GNLL~b→sg!5
as~mb!mb

5

24p4
uGFVts* Vtbu2uD̄u21Gfin

brems,

~99!

with

D̄5C8
0,eff1

as

4p
FC8

1,eff2
16

3
C8

0,eff1C1
0F l 1 ln

mb

m
1r 1G

1C2
0F l 2 ln

mb

m
1r 2G1C8

0,effF ~ l 8181b0! ln
mb

m
1r 8G G.

~100!

The modulus square ofD̄ is understood to be taken in th
same way as in the virtual contributions, i.e., by system
cally discarding theO(as

2) term. In this sense, the quantit

D̄ can be viewed as an effective matrix element.
We would like to mention thatl 1 , l 2, and (l 8181b0)

are identical to the anomalous dimension matrix eleme
g18

0,eff , g28
0,eff , andg88

0,eff , respectively. This is of course wha
has to happen: Only in this case the leading scale dep
dence ofC8

0,eff(m) gets compensated by the second term
Eq. ~100!.

The NNL branching ratioB NLL(b→sg) is then obtained
as

B NLL~b→sg!5
GNLL~b→sg!

Gsl
Bsl

exp, ~101!

whereBsl
exp denotes the experimental semileptonic branch

ratio of theB-meson.Gsl stands for the theoretical expressio
of the semileptonic decay width of theB-meson. Neglecting
non-perturbative corrections of the order (LQCD/mb)2, Gsl
reads@with xc5(mc /mb)]

Gsl'G~b→cen̄e!5
GF

2mb
5

192p3
uVcbu2g~xc!

3F11
as~mb!

2p
hsl~xc!1O~as

2!G , ~102!

where the phase space functiong(xc) reads
5-15
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g~xc!5128xc
2224xc

4 ln xc18xc
62xc

8 . ~103!

The analytic expression forhsl(xc) can be found in Ref.@27#.
The approximation

hsl~xc!523.34114.05~xc20.3!24.3~xc20.3!2

~104!

holds to an accuracy of 1 permille in the relevant range
<xc<0.4.

We note that in the numerical analysis ofB NLL(b→sg)
we systematically expand the expression for the branch
ratio ~101! in as , dropping terms ofO(as

2).
A short remark concerning the LL branching ratio is

order: For the decay widthGLL(b→sg), we use the expres
sion

GLL~b→sg!5
as~m!mb

5

24p4
uGFVts* Vtbu2„C8

LL, eff~m!…2.

~105!

The LL branching ratio forb→sg is then obtained as in Eq
~101!, but by discarding the radiative corrections inGsl .

IX. NUMERICAL RESULTS FOR THE COMBINED
BRANCHING RATIO

Before we present the numerical result for the branch
ratio B NLL(b→sg), we discuss the sizes of the various NL
corrections at the level of the functionD̄, defined in Eq.
~100! @anticipating that the finite bremsstrahlung correctio
in Eq. ~99! are relatively small#. We already mentioned tha
the terms containing the explicit logarithms of the ra
(mb /m) get compensated by the scale dependence of the
term on the RHS of Eq.~100!. This feature can be observe
in Fig. 8, when comparing the two dashed lines. The lo
dashed line represents only the first termC8

0 of the function

D̄, while the short-dashed line showsD̄, in which r 1 , r 2,
andr 8 are put to zero. As expected, the short-dashed line
a milder m-dependence. When switching on alsor 1 and r 8

FIG. 8. Scale (m) dependence of the functionD̄ @see Eq.~100!#
in various approximations: The long-dashed line showsC8

0,eff ; the
short-dashed line corresponds to puttingr 15r 25r 850; the dotted
line is obtained by only puttingr 250; the solid line shows the ful

function D̄. See text.
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~but keepingr 250), the resulting curve, shown by the do
ted line, stays close to the short-dashed curve and the s
dependence remains mild. However, when switching on a
r 2, the situation changes drastically. The resulting solid li
which represents the full NLLD̄ function, implies that the
term containing the two-loop quantityr 2, induces a large
NLL correction. As this large correction term contains a fa
tor as(m)C2(m), it is of no surprise, that the NLL prediction
for the functionD̄ suffers from a relatively large scale de
pendence, as illustrated by the solid line.

The reason for the large NLL corrections in theD̄ func-
tion can be explained as follows: At leading logarithmic pr
cision,D̄ only gets a contribution from the matrix element
C8(mb)O8(mb); due to gauge invariance, there is no on
loop contribution ofC2(mb)O2(mb). The LL approximation
of D̄ is therefore given byC8(mb), which numerically is
relatively small (uC8(mb)u;0.15). At the NLL order,
C2(mb)O2(mb) does contribute, leading to a correctio
;(as(mb)/p)C2(mb) in the D̄-function. The naive suppres
sion factor as(mb)/p is enhanced by an extra facto
uC2(mb)/C8(mb)u;7. In other words, the large correction
due to the absence of theO2 contribution at LL. In this
sense, a large NLL correction is not a surprise. The next
NLL corrections are expected to have a normal behav
@i.e., a typical suppression of the order ofas(mb)/p with
respect to the NLL correction#, because there are no oper
tors left, which only start contributing at next-to-NLL orde
We therefore believe, that the large NLL corrections, fou
in this paper, are understood and certainly do not signal
breakdown of renormalization group improved perturbat
theory.

The NLL branching ratioB NLL(b→sg) is then obtained
as described in Sec. VIII. The result is shown by the so
line in Fig. 9. For the input values, we take:mb5(4.8
60.2) GeV, (mc /mb)50.2960.02, as(mZ)50.119
60.003, uVts* Vtb /Vcbu250.9560.03, Bsl

exp5(10.49
60.46)%, andmt

pole5(17565) GeV. As the scale depen

FIG. 9. Branching ratioB(b→sg) as a function of the scalem
in various approximations: The dashed and the solid lines show
LL and the NLL predictions, respectively; the dotted line is o
tained by puttingr 15r 25r 85Gbrems

fin 50 in the NLL expression for
GNLL(b→sg) in Eq. ~99!. See text.
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dence is rather large, we did not take into account the e
due to the uncertainties in the input parameters. Based
Fig. 9, we obtain the NLL branching ratio

B NLL~b→sg!5~5.061.0!31023. ~106!

We would like to stress that the NLL corrections drastica
enhance the LL value~see dashed line in Fig. 9! for which
one obtains

B LL~b→sg!5~2.260.8!31023. ~107!

As already mentioned in the discussion of the functionD̄,
the main enhancement is due to the virtual and bremsst
lung corrections tob→sg, calculated in this paper. At th
level of the branching ratio, this fact is illustrated by th
dotted line in Fig. 9, which is obtained by discardingGfin

brems

and by switching offr 1 , r 2, and r 8 in the expression for
GNLL(b→sg) @see Eq.~99!#.

The largest uncertainty due to the physical input para
eters onB NLL(b→sg) results from the charm quark mas
The dependence ofB NLL(b→sg) on mc is illustrated in Fig.
10, where xc5mc /mb is varied between 0.27 and 0.3
Choosing m5mb , the resulting uncertainty amounts
;66%.

X. NUMERICAL EVALUATION OF THE CHARMLESS
DECAY RATE

In this section we investigate the impact of the NLL QC
corrections tob→sg on the inclusive hadronic charmles
decay rate of theB̄ meson. At the quark level, we take int
account the hadronic processes

b→q8q̄8q; b→sg, ~108!

whereq5d,s andq85u,d,s. As we do not distinguish be
tween DS50 and DS51 contributions, we can safely ne
glect the CKM suppressed decay modeb→dg. More pre-
cisely, we calculate theCP-averaged branching ratio

FIG. 10. NLL branching ratioB NLL(b→sg) as a function of the
scalem for the three value of the ratioxc5mc /mb . See text.
05402
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B̄c”5
G~b→Xc” !1G~ b̄→X̄c” !

2Gsl
Bsl

exp, ~109!

whereXc” stands for the final states listed in Eq.~108!. In the
numerical results forB̄c” we will insert Gsl as given in Eq.
~102!, i.e., we do not make anas expansion of 1/Gsl in Eq.
~109!. The charmless hadronic decay rateB̄c” then reads

B̄c”5B̄sg1 (
q5d,s

q85u,d,s

B̄q8q̄8q . ~110!

While theO(as) corrections to semileptonic processes ha
been known for a long time~see e.g., Ref.@27#!, the NLL
corrections to the hadronic processes in Eq.~108! with 3
quarks in the final state had a long history and were co
pleted to a large extent only recently by Lenzet al. @8,6#;
however, current-current type corrections to the penguin
erators are still missing. To briefly summarize the history
is useful to decompose the NLL expressions for the de
widths of these processes into various pieces. Taking a
example the processb→uūd, we write as in Ref.@8#:

G~b→uūd!5G (0)1
as

4p
@DGcc1DGpeng1DG81DGW#.

~111!

The first two terms in the square bracket in Eq.~111!
describe the effect of current-current and penguin diagra
involving the operators5 O1 andO2 . DG8 likewise contains
the matrix element of the operatorO8. The remaining part
DGW of the NLL contribution is made of the corrections
the Wilson coefficients multiplying the tree-level amplitud
in G (0). In this approximation, the matrix elements of th
penguin operatorsO3 , . . . ,O6 only enter at tree level. As
the expressions for the RHS of Eq.~111! are explicitly given
in Ref. @8#, we do not give them here. For later reference,
denote this approximation~for lack of a better word! by
‘‘approx1.’’

Later, in Ref.@6#, the same authors added the contrib
tions of the penguin diagrams associated with the peng
operators to the decay matrix elements and took into acco
the interference with the tree level matrix element of t
operatorO2 in the decay width. In addition, they took int
account the square of the matrix element of the penguin
gram associated withO2. Although being of next-to-NLL,
this term is numerically relatively large, as it is multiplie
with C2

2. These new contributions can be absorbed into
quantity DGnew, which is understood to be added to th

5Note that the authors of Refs.@8,6# use the old operator basi
@22#.
5-17
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terms in the bracket in Eq.~111!. As the extraction ofDGnew
from Ref. @6# is straightforward, we do not give the explic
expression. This approximation, which contains—up to
current-current type corrections to the penguin operator
the full NLL contribution to the hadronic three body decay
is called ‘‘approx2.’’

We note that the approximation where only the curre
current type correctionsDGcc were considered together wit
the shiftsDGW in the Wilson coefficients has existed for
long time @7#. We denote this approximation by ‘‘approx0
in the numerical discussion.

In Table II we present numerical results for the charml
hadronic branching ratioB̄c” in the various approximation
mentioned above. The processb→sg, encoded inB̄sg in Eq.
~110! is taken into account in the columns ‘‘approx0,
‘‘approx1’’ and‘‘approx2’’ at LL precision. The last column
includes in addition the NLL corrections tob→sg which
were calculated in this paper. Table II was produced with
following input parameters:

mb5~4.860.2! GeV, m5mb ,

~mc /mb!50.2960.04, as~mZ!50.11960.003,

mt
pole5~17565! GeV,

Bsl
exp5~10.4960.46!%

uVusu50.22, uVcbu50.038,

uVub /Vcbu50.09560.035, d560 °630 °.
~112!

TABLE II. Table for the charmless hadronic branching ratioB̄c”

~in %) in the various approximations discussed in the text. Unl
specified explicitly in the first column, the input parameters cor
spond to the central values in Eq.~112!.

input approx0 approx1 approx2 with NLLb→sg

as in Eq.~112! 1.32 1.50 1.62 1.88
m5mb/4 3.86 3.21 3.34 3.62
m5mb/2 2.06 2.09 2.18 2.43
m52mb 0.96 1.14 1.28 1.55
uVub /Vcbu50.06 0.94 1.13 1.24 1.50
uVub /Vcbu50.07 1.03 1.22 1.33 1.59
uVub /Vcbu50.08 1.14 1.32 1.44 1.69
uVub /Vcbu50.09 1.26 1.44 1.55 1.81
uVub /Vcbu50.10 1.39 1.57 1.69 1.94
uVub /Vcbu50.11 1.54 1.72 1.83 2.09
uVub /Vcbu50.12 1.70 1.87 1.99 2.25
uVub /Vcbu50.13 1.87 2.05 2.16 2.42
xc50.25 1.14 1.32 1.45 1.69
xc50.27 1.22 1.41 1.53 1.78
xc50.29 1.32 1.50 1.62 1.88
xc50.31 1.44 1.61 1.72 1.99
xc50.33 1.57 1.74 1.84 2.12
05402
e

,
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The central value foruVub /Vcbu corresponds to the~im-
proved! Wolfenstein parametersr̄50.20 andh̄50.37 @28#.
The remaining entries of the CKM matrix are then obtain
as described in detail in@29#. We note that the average
charmless hadronic branching ratio is practically indep
dent ofd, as already observed in Ref.@6#.

The numbers in column ‘‘approx2’’ are very similar t
those in Table 1 of Ref.@6#. The small discrepancy is due t
the omission of the 1/mb

2 power corrections in our work.
Staring from the numbers in column ‘‘approx0,’’ Table

illustrates, that the various improvements shown in the ot
columns are relatively large, tending to increaseB̄c” . In par-
ticular, the NLL corrections tob→sg are of similar impor-
tance as the corrections calculated in@8,6#.

For uVub /Vcbu50.095 we obtain the charmless hadron
branching ratio

B̄c”5~1.8820.38
10.60!%, ~113!

where the error corresponds to a variation ofxc5(mc /mb)
and of the renormalization scalem in the ranges 0.25<xc
<0.33 and 0.5<m/mb<2.0. The corresponding errors a
added in quadrature. The experimental uncertainty inas(mZ)
has a smaller impact and the errors due to the remain
input parameters in Eq.~112! are negligible. The large renor
malization scale dependence of this result is expected to
weakened once the current-current type corrections to
penguin operators are included.

So far, we have considered thecharmless hadronic

branching ratioB̄c” . To obtain thetotal charmlessbranching
ratio B̄(B→no charm), one has to add twice the charmle
semileptonic branching ratioB(B→Xul n̄ l), for l 5e and l
5m @27# ~the contribution forl 5t, as well as radiative de
cay modes can be safely neglected!:

B~B→Xul n̄ l !5~0.1760.03!%3S uVub /Vcbu
0.095 D 2

.

~114!

For uVub /Vcbu50.095, we find

B̄~B→no charm!5~2.2220.38
10.60!%. ~115!

The experimental result for the total charmless branch
ratio reads

B̄exp~B→no charm!5~0.264.1!%, ~116!

obtained in Ref.@30# from CLEO data@31#.

XI. NUMERICAL PREDICTIONS IN THE PRESENCE OF
ENHANCED C8

eff

As discussed in the Introduction, the theoretical predict
of the semileptonic branching ratio and the charm multipl
ity are compatible with the experimental findings if th
renormalization scale is allowed to be as low asmb/4. Both
predictions are, however, at the lower side and therefore
enhancement of the charmless hadronic branching ratioB̄c”

s
-
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by new physics would lead to a better agreement. It is the
fore still conceivable thatB̄c” is considerably larger than in
the standard model~SM!.

In the SM the initial conditions forC326 andC8 are gen-
erated at a scalem5O(mW) by the one-loopbsg vertex
function. Because of the fact that theW-boson only couples
to left-handed quarks, only chromomagnetic operators p
portional tomb ~andms) are generated. In extensions of th
SM, however, also chromomagnetic operators wheremb ~or
ms) is replaced by the mass of a heavy particle propaga
in the loop, can be generated@32#. Such operators potentiall
lead to large contributions tob→sg. In the following we
will perform a model independent analysis of the impact
enhancedC8 on B̄c” , emphasizing the role of the NLL cor
rections tob→sg. We assume that only chromomagne
operators with the same helicity structure asO8 in the SM
are generated which can then be described as a shift inC8.
For simplicity, we further assume that the CKM structure
the new contribution is the same as in the SM, hence neg
ing the possibility of newCP-violating phases, by assumin
the shift inC8 to be real.

In Fig. 11 we investigate the impact of enhanc
C8

eff(mW)5C8
0,eff(mW)1as /(4p)C8

1,eff(mW) on the branch-
ing ratio for b→sg. In the NLL approximation for this
branching ratio, both,C8

0,eff(mW) and C8
1,eff(mW) enter. In

general, it is expected that the two pieces get different n
physics shifts. For purpose of illustration, we assume ho
ever that both pieces are the same multiplef of the SM coun-
terparts; i.e., we assume that

C8
0,eff~mW!5 f C8

0,eff,SM~mW!; C8
1,eff~mW!5 f C8

1,eff,SM~mW!.
~117!

The dotted curve shows the LL prediction ofB(b→sg) as a
function of f, while the solid curve shows the NLL predic
tion. It is expected that for large enhancement factors,
matrix elements of the operatorsO1 and O2 become unim-
portant; this feature is illustrated by the dashed line, which

FIG. 11. Branching ratioB(b→sg) as a function of f
5C8

eff(mW)/C8
eff,SM(mW). For the exact definition off, see Eq.

~117!. The dotted~solid! curve shows the LL~NLL ! approximation.
The dashed curve is obtained by switching off the matrix eleme
of the operatorsO1 andO2.
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obtained by switching off these matrix elements. The N
corrections~for large enhancement factors! amount to almost
50% of the LL prediction.

In Fig. 12, the impact of enhancedC8 on the charmless
hadronic branching ratioB̄c” is illustrated. The dotted curve
includes the NLL corrections to the decay modes with th
quark in the final state and the LL result forB(b→sg) ~see
‘‘approx2’’ in Sec. X!, while the solid curve also include
the NLL corrections toB(b→sg). For a given value ofB̄c”

~from an ideal measurement!, C8(mW) can be measured in
principle. To illustrate this, we take the hypothetical val
B̄c”55%. The two solutions for the enhancement factorf are
f 57 and f 529 when using the dotted curve; includin
NLL corrections tob→sg ~solid curve!, enhancement fac
tors with smaller absolute values do the job, viz.f 55 and
f 528.

XII. SUMMARY

In this paper we presented a detailed calculation of
O(as) virtual corrections to the decay widthG(b→sg). The
most difficult part, the two-loop diagrams associated with
operatorsO1 andO2 which from the numerical point of view
play a crucial role, was obtained by using Mellin-Barn
techniques. Also complete expressions for the correspon
O(as) bremsstrahlung corrections tob→sg were given. The
combined result is free of infrared and collinear singulariti
in accordance with the Kinoshita-Lee-Nauenberg~KLN !
theorem.

The renormalized virtually corrected matrix eleme
^sguO8ub& contains logarithms of the form ln(mf /m)(f
5u,d,s,c,b), which for the light flavors (u,d,s) represent a
special kind of singularity. Keeping in mind that these term
originate from the renormalization factorZ3 of the gluon
field. i.e., from gluon self energy diagrams in which the
flavors propagate, we argued that these singularities ca
against the logarithms present in the decay rateG(b→s f f̄)
with f 5u,d,s. We therefore included theO8 contribution to

ts

FIG. 12. Charmless hadronic branching ratioB̄c” as a function of
f 5C8

eff(mW)/C8
eff,SM(mW). For the exact definition off, see Eq.

~117!. The dotted~solid! curve includes the LL~NLL ! approxima-
tion for B(b→sg). The NLL corrections to the decay modes wi
three quark in the final state~see ‘‘approx2’’ in Sec. X! are included
in both cases.
5-19
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G(b→s f f̄) for f 5u,d,s; we also mentioned other possibil
ties to deal with these terms.

Taking into account the existing next-to-leading logari
mic ~NLL ! result for the Wilson coefficientC8

eff , a complete
NLL result for the branching ratioB NLL(b→sg) was ob-
tained. Numerically, we foundB NLL5(5.061.0)31023,
which is more than a factor of two larger than the lead
logarithmic resultB LL5(2.260.8)31023.

We then investigated the impact of these corrections
the inclusive charmless hadronic branching ratioB̄c” of B
mesons. We found that the NLL corrections calculated
this paper are of similar importance as NLL corrections
b-quark decay modes with three quarks in the final sta
which were presented by Lenzet al. @8,6#.

Finally, the impact of the NLL corrections tob→sg on
B̄c” was studied in scenarios, where the Wilson coefficientC8

is enhanced by new physics. For a given value ofB̄c” ~from
an ideal measurement!, C8(mW) can be measured in prin
ciple. To illustrate this, we took the hypothetical valueB̄c”

55%. The two solutions for the enhancement factorf are
f 57 and f 529, using the LL approximation forB(b
→sg); including NLL corrections tob→sg, somewhat
smaller enhancement factors (f 55 and f 528) are needed
to obtain the hypothetical valueB̄c”55%.
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APPENDIX A: NEXT-TO-LEADING ORDER WILSON
COEFFICIENTS

In this appendix we present the explicit formulas whi
allow to calculate the Wilson coefficients needed in this
per.

In Sec. A 1, we give the results for the Wilson coefficien
at the matching scalemW , which is usually taken to be o
ordermW . Section A 2 is devoted to the the Wilson coef
cients at the scalemb , wheremb is of ordermb . We give an
explicit expression forC8

eff(mb) at NLL, which is new. To
make this appendix self-contained, we also repeat the re
for the Wilson coefficientsC1(mb) and C2(mb) which are
needed only to LL precision in our application.

1. NLL Wilson coefficients at the matching scaleµW

To give the results for the effective Wilson coefficien
Ci

eff at the matching scalemW in a compact form, we write6

Ci
eff~mW!5Ci

0,eff~mW!1
as~mW!

4p
Ci

1,eff~mW!. ~A1!

6Note thatCi
eff(m)5Ci(m) by definition for i 51, . . . ,6.
05402
-

n

n

e,

r

-

lts

The LL Wilson coefficients at this scale are well know
@33,34#:

C2
0,eff~mW!51

Ci
0,eff~mW!50 ~ i 51,3,4,5,6!

C7
0,eff~mW!5

x

24F28x313x2112x271~18x2212x!ln x

~x21!4 G
C8

0,eff~mW!5
x

8 F2x316x223x2226x ln x

~x21!4 G . ~A2!

The coefficientsC7
0,eff(mW) and C8

0,eff(mW) are functions of
x5mt

2/mW
2 . Note that there is noexplicit dependence of the

matching scalemW in these functions. Whether there is a
implicit mW dependence via thet-quark mass depends on th
precise definition of this mass which has to be specifi
when going beyond leading logarithms. If one chooses
work with m̄t(mW), then there is such an implicitmW depen-
dence of the lowest order Wilson coefficient; in contra
when working with the pole massmt there is no such depen
dence. We choose to express our NLL results in terms of
pole massmt .

The NLL piecesCi
1,eff(mW) of the Wilson coefficients

have an explicit dependence on the matching scalemW and
for i 57,8 they also explicitly depend on the actual definiti
of the t-quark mass. Initially, when the heavy particles a
integrated out, it is convenient to work out the matchi
conditionsCi

1,eff(mW) for i 57,8 in terms ofm̄t(mW). Using
Eq. ~5!, it is then straightforward to get the correspondi
result expressed in terms of the pole massmt . One obtains
for i 51, . . . ,6:

C1
1,eff~mW!51516 ln

mW
2

mW
2

,

C4
1,eff~mW!5E01

2

3
ln

mW
2

mW
2

,

Ci
1,eff~mW!50 ~ i 52,3,5,6! ~A3!

with

E05
x~x2111x218!

12~x21!3
1

x2~4x2216x115!

6~x21!4
ln x

2
2

3
ln x2

2

3
. ~A4!

For i 57,8, we splitCi
1,eff(mW) into three terms:

Ci
1,eff~mW!5Wi1Mi ln

mW
2

mW
2

1TiS ln
mt

2

mW
2

2
4

3D . ~A5!
5-20
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The first two termsWi andMi would be the full result when
working in terms ofm̄t(mW). Ti results when expressin
m̄t(mW) in terms of the pole massmt in the corresponding
lowest order coefficients. Thus, fori 57,8, the termTi is
obtained as
05402
Ti58x
]Ci

0, eff~mW!

]x
. ~A6!

The explicit form of the functionsWi , Mi , andTi reads
p

panded
W75
216x42122x3180x228x

9~x21!4
Li 2S 12

1

xD1
6x4146x3228x2

3~x21!5
ln2x

1
2102x52588x422262x313244x221364x1208

81~x21!5
ln x1

1646x4112205x3210740x212509x2436

486~x21!4

W85
24x4140x3141x21x

6~x21!4
Li 2S 12

1

xD1
217x3231x2

2~x21!5
ln2x

1
2210x511086x414893x312857x221994x1280

216~x21!5
ln x1

737x4214102x3228209x21610x2508

1296~x21!4

M75
82x51301x41703x322197x211319x22082~162x411242x32756x2!ln x

81~x21!5

M85
77x52475x421111x31607x211042x21401~918x311674x2! ln x

108~x21!5

T75
x

3 F47x3263x219x172~18x3130x2224x!ln x

~x21!5 G
T852xF2x329x219x111~6x216x!ln x

~x21!5 G . ~A7!

The dilogarithm Li2(x) is defined by

Li2~x!52E
0

xdt

t
ln~12t !. ~A8!

2. NLL Wilson coefficients at the low scaleµb

The evolution from the matching scalemW down to the low-energy scalemb is described by the renormalization grou
equation

m
d

dm
Ci

eff~m!5Cj
eff~m!g j i

eff~m!. ~A9!

The initial conditionsCi
eff(mW) for this equation are given in Sec. A 1, while the anomalous dimension matrixg i j

eff up to order
as

2 can be found in Ref.@19#. For completeness we display the result here. The anomalous dimension matrix can be ex
perturbatively as

g j i
eff~m!5

as~m!

4p
g j i

0,eff1
as

2~m!

~4p!2
g j i

1,eff1O~as
3! ~A10!

where matrixg j i
0,eff is given by
5-21
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$g j i
0,eff%5

¨

24
8

3
0 2

2

9
0 0 2

208

243

173

162

12 0 0
4

3
0 0

416

81

70

27

0 0 0 2
52

3
0 2 2

176

81

14

27

0 0 2
40

9
2

100

9

4

9

5

6
2

152

243
2

587

162

0 0 0 2
256

3
0 20 2

6272

81

6596

27

0 0 2
256

9

56

9

40

9
2

2

3

4624

243

4772

81

0 0 0 0 0 0
32

3
0

0 0 0 0 0 0 2
32

9

28

3

©
, ~A11!

and in theMS scheme with fully anticommutingg5 , g j i
1,eff is

$g j i
1,eff%5

¨

2
355

9
2

502

27
2

1412

243
2

1369

243

134

243
2

35

162
2

818

243

3779

324

2
35

3
2

28

3
2

416

81

1280

81

56

81

35

27

508

81

1841

108

0 0 2
4468

81
2

31 469

81

400

81

3373

108

22 348

243

10 178

81

0 0 2
8158

243
2

59 399

243

269

486

12 899

648
2

17 584

243
2

17 247 1

648

0 0 2
25 168 0

81
2

12 864 8

81

23 836

81

6106

27

11 836 96

729

29 012 96

243

0 0
58 640

243
2

26 348

243
2

14 324

243
2

2551

162

24 803 44

2187
2

32 962 57

729

0 0 0 0 0 0
4688

27
0

0 0 0 0 0 0 2
2192

81

4063

27

©
. ~A12!

The solution of Eq.~A9!, obtained through the procedure described in@29#, yields for the coefficientC8
eff(mb), which we

decompose as

C8
eff~mb!5C8

0,eff~mb!1
as~mb!

4p
C8

1,eff~mb!, ~A13!

the LL term

C8
0,eff~mb!5h14/23C8

0,eff~mW!1(
i 51

5

hi8h
ai8C2

0,eff~mW!, ~A14!

and the NLL contribution
054025-22
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C8
1,eff~mb!5h37/23C8

1,eff~mW!16.7441~h37/232h14/23!C8
0,eff~mW!

1(
i 51

8

„ei8hC4
1,eff~mW!1~ f i81ki8h!C2

0,eff~mW!1 l i8hC1
1,eff~mW!…hai. ~A15!

The symbolh is defined ash5as(mW)/as(mb); the vectorsai , ai8 , hi8 , ei8 , f i8 , ki8 , and l i8 read

$ai%5$ 14
23 , 16

23 , 6
23 ,2 12

23 ,0.4086,20.4230,20.8994,0.1456%

$ai8%5$ 14
23 ,0.4086,20.4230,20.8994,0.1456%

$hi8%5$ 313063
363036,20.9135,0.0873,20.0571,0.0209%

$ei8%5$2.1399,0,0,0,22.6788,0.2318,0.3741,20.0670%

$ f i8%5$25.8157,0,1.4062,23.9895,3.2850,3.6851,20.1424,0.6492%

$ki8%5$3.7264,0,0,0,23.2247,0.3359,0.3812,20.2968%

$ l i8%5$0.2169,0,0,0,20.1793,20.0730,0.0240,0.0113%. ~A16!

As already mentioned earlier, we neglect the contributions of the operatorsO3 , . . . ,O6 in our analysis forb→sg, as their
Wilson coefficients are rather small. We therefore only list the results for the coefficientsC1

eff(mb) andC2
eff(mb), which are

needed to LL precision only:

C1
0,eff~mb!5~h6/232h212/23!C2

0,eff~mW!

C2
0,eff~mb!5S 2

3
h6/231

1

3
h212/23DC2

0,eff~mW!. ~A17!

When calculating NLL results in the numerical analysis, we use the NLL expression for the strong coupling const

as~m!5
as~mZ!

v~m! F12
b1

b0

as~mZ!

4p

ln v~m!

v~m! G , ~A18!

with

v~m!512b0

as~mZ!

2p
lnS mZ

m D , ~A19!

whereb05 23
3 andb15 116

3 ~for 5 flavors!. However, for LL results we always use the LL expression foras(m), i.e.,b1 is put
to zero in Eq.~A18!.

APPENDIX B: ONE-LOOP FUNCTIONS GÀ1„t… AND G0„t…

In this appendix we give the explicit results for the functionsG21(t) andG0(t) needed in Eq.~83!. Evaluating the integral
in Eq. ~78! for i 521,0, one obtains

G21~ t !55 2
p2

2
12 ln2SAt1At24

2 D 22ip lnSAt1At24

2 D ; t>4

2
p2

2
22 arctan2SA42t

t D 12p arctanSA42t

t D ; 0<t<4

~B1!

G0~ t !55 2212At24

t
lnSAt1At24

2 D 2 ipAt24

t
; t>4

2222A42t

t
arctanSA42t

t D 1pA42t

t
; 0<t<4.

~B2!
054025-23
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