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In this paper a detailed standard mo¢®@M) calculation of theD(«,) virtual corrections to the decay width
I'(b—sg) is presented d denotes a gluon Also the complete expressions for the correspondd{gys)
bremsstrahlung corrections b—sg are given. The combined result is free of infrared and collinear singu-
larities, in accordance with the KLN theorem. Taking into account the existing next-to-leading logarithmic
(NLL) result for the Wilson coefficien€S™, a complete NLL result for the branching ra@ - (b—sg) is
derived. Numerically, we obtaifsN"" = (5.0+1.0)x 10" %, which is more than a factor of two larger than the
leading logarithmic resulB'-=(2.2+0.8)x 10" 3. The NLL correction is large in spite of the naive suppres-
sion factorag¢(my)/ 7 due to an extra factor of,(m,)/Cg(my)~7. The impact of these corrections on the
inclusive charmless hadronic branching raigpof B mesons, which can be used to extraét,/Vp| in the
context of the SM, is shown to be of similar importance as NLL correctiomsgoark decay modes with three
quarks in the final state. Finally, the impact of the NLL corrections-tesg onEé is investigated in scenarios,
where the Wilson coefficientg is enhanced by new physics.
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[. INTRODUCTION calculated, together with NLL corrections to the Wilson co-
efficients. Later, Lenzt al. included in a first stef8] the

The theoretical predictions for inclusive decay rate8of contributions of the penguin diagrams associated with the
mesons rest on solid grounds due to the fact that these rateperatorsO, and O,, and in a second steff] the same
can be systematically expanded in powerd\gtp/my [1,2], authors also included one-loop penguin diagrams of the pen-
where the leading term corresponds to the decay width of thguin operatorDs, . .. ,QOg4; also the effects of the chromo-
underlying b-quark decay. As the power corrections only magnetic operato®g were taken into account to the relevant
start atO(AéCD/mﬁ), they affect these rates by at most a few precision needed for a NLL calculation. Up to contributions
percent. Theoretically, spectator effects of orderfrom current-current type corrections to the penguin opera-
16772(AQCD/mb)3 [3,4] could be largef4], but for the decay tors, the NLL calculation for the three quark final states is
rates ofB* andB° they are experimentally known to be at now complete.
the percent level as welb]. Thus the accuracy of the theo- In the numerical evaluations of the charmless hadronic
retical predictions is mainly controlled by our knowledge of branching ratio, the two body decay modes-qg were
the perturbative corrections to the free quark decays. added in Refs[8,6] at the LL precision, as the full NLL

The inclusive charmless hadronic dec#s>X¢, where  predictions were missing. To fill this gap, we recently wrote
X¢ denotes any hadronic charmless final state, are an integ short letter wher&lLL resultsfor the branching ratid3(b
esting subclass of the decays mentioned above; as pointedsg) were presentefB], which includes virtual- and gluon
out in Ref.[6], a measurement of the corresponding branchy e msstrahlung corrections t—sg. In the present work,
ing ratio would allow the extraction of the presently poorly we describe in detail the non-trivial two-lodgLL calcula-
known ratio|Vy/Vey|, whereVy, and Ve, are elements of o, “which led to the results if9]. As the NLL corrections
the Cabibbo-Kobayashi-MaskawcCKM) matrix. At the nhanceB(b—sg) by more than a factor of 2, we also ana-
quark level, there are decay modes with three-body flnaE/ze in the present paper their impact on the charmless had-
states, vizb—q'q’q, (9'=u,d,s;q=d,s) and the modes ronic branching ratio.
b—qg, with two-body final state topology, which contribute At this point, a clarifying remark concerning the terminol-
to the charmless decay width at leading logarithrlit)  ogy should be added: lexperimentalanalyses, the term
accuracy. In the very heavg-quark limit, b—qg would  “p—sg’ usually stands for all the electroweak penguin
form one of the dominant contributions to the two-jet decaycontributions to the inclusive charmless meson decay,
channel, whileb—q’q’g would mainly contribute to 3-jet which in the present paper will be denoted a8 “
hadronic final states. However, for the relevant value of the—~no charm.” In our workb— sg denotes d-quark decay-
b-quark mass, no jet separation can really be made. Theréag into ans-quark and an on-shell gluon, which is just one
fore, the decay modes with 2 and 3 partons in the final statparticular contribution t— no charm, as discussed above.
have a purely formal, perturbative meaning; physically, they The decayb—sg gained a lot of attention in the last
are “only” components of the charmless decay rate. years. For a long time the theoretical predictions for both, the

Calculations of next-to-leading logarithmibILL ) correc-  inclusive semileptonic branching ratiBy and the charm
tions to the three-body decay modes were started alreadwultiplicity n. in B-meson decays were considerably higher
some time ago in Ref7], where radiative corrections to the than the experimental valu¢$0]. An attractive hypothesis,
current-current diagrams of the operat@s and O, were  which would move the theoretical predictions for both ob-
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servables into the direction favored by the experiments, ass given by the tree-level matrix element 6(m,) Og(my,)
sumed the rare decay motle~sg to be enhanced by new alone; due to reasons of gauge invariance, there is no
physics. one-loop contribution o€,(m,)0,(m,). The LL branching
After the inclusion of the complete NLL corrections to the ratio is therefore proportional to the square of the

decay moded—cuq andb—ccq(g=d,s) [11], the theo- rather small Wilson coefficientCg(m;)|~0.15. At NLL
retical prediction for the semileptonic branching ratio and theorder, C,(m,)O,(m,) does contribute to the decay ampli-
charm multiplicity[4] are tude A(b—sg), leading to a term~ (ag/7)C,(m,) Cg(my)

at the level of the branching ratio. The naive suppression

Bh=(11.7£1.4+1.0%, n"=1.20x006, (1) factor ay(my)/7 is enhanced by an extra factor

|C,(my)/Cg(my)|~ 7; this explains the unusually large NLL
where the second error 1! takes into account the spectator correction. A more detailed discussion in Sec. IX indicates
effects estimated in Ref4]. The experimental results from that next order corrections should be under control; in
measurements at thé(4S) resonance and those from #fe  particular, the large NLL corrections do not signal the
resonance at the CER& e~ collider LEP and SLAC Large breakdown of renormalization group improved perturbation

Detector(SLD) were recently summarizgd2] to be theory.
The remainder of this paper is organized as follows:
85(43):(10_4&0_2])%' ngf(43): 1.14+0.06, In Sec. Il, we review the theoretical framework and discuss
the steps needed for a NLL calculation féi(b—sg).
Section Il is devoted to the calculation of the virtual

B§0=(10.79t0.25)%, n§0=1.17i0.04. 2) corrections to the matrix elementsg O, ,|b), including
renormalization, while Sec. IV deals with virtual corrections

We would like to stress that in the theoretical results theto (sg|Oglb). In Sec. V the virtual corrections to the
renormalization scale was taken in the interMal,/4,2m,].  decay widthI'(b—sg) are calculated. Sections VI and VI
If one only considerg. e [m,/2,2my ], the theoretical predic- deal with the gluon bremsstrahlung matrix elements
tions would only have marginal overlap with experimental<sgq0128|b> and the corresponding decay width,
data. This implies that there is still room for enhanded respectively. The analytic results for the NLL branching
—sg. We therefore also illustrate in this paper the influenceatig B(b—sg) can be found in Sec. VI, while the
of the NLL corrections td—sg on the charmless hadronic ,ymerical evaluations are presented in Sec. IX. Section X
branching ratio in scenarios where the Wilson coeffic@gt  yeoals with the impact of the NLL corrections &({b— sg)

is enhanced by new physics. on the charmless hadronic branching ratio in the standard

We also would like to mention that. the compondnt model, while in Sec. XI similar questions are addressed
—sg of the charmless hadronic decays is expected to MaNt, scenarios where the Wilson coefficieBt is enhanced
fest itself in kaons with high momentaf orderm,/2), due by new physics. We conclude with a short summary in
to its two body natur¢13]. Some indications for enhanced Sec. XII. An exblicit parametrization of the NLL Wilson
b—sg in this context were reported by the SLD Collabora- e o : .
tion [14]. For a review of other hints for enhanced-sg, coefficientCg’(my) is given in Appendix A.
the reader is referred {d.5].

Within the SM, the LL prediction for the branching
for b—sg is known to be B(b—sg)~0.2% [16]. The Il. THE EFFECTIVE HAMILTONIAN
proce;sb—>sgg, which gives a NLL contribution to the_ We use the framework of an effective low-energy theory
inclusive charmless decay width has already been studlevqli,[h five quarks, obtained by integrating out the heavy de-
in the Ii;[eratu(rje -[17’13-' In [%S]ha crc])mplete calculﬁti(r)]n rees of freedor,n which in the SM are thguark and the
was performed in regions of the phase space which ar C ) .
free of collinear an infrared singularities. Putting suitablesi;bgﬁgnwgvsuﬁke_ (I)ntolnafr?i(s)ugg)p(;giir;t;)tzznu?h(taoe(#gqcet}ir\w/selon
cuts, the branching ratio fob—sgg was found to be of L s o
the order 102 in t%ese phase sggce regions. A compIeteHam'Iton'am relevant for radiative decays ame-sg(g)
calculation requires the calculation of a regularized versior(eads
for the decay widthl'(b—sgg) in which infrared and
collinear singularities become manifest. Only after adding

the virtually corrected decay widthi(b—sg) a finite result 4G 8
is obtained. Hor=— — ViV, > Ci(1)Oi(w) 3
We anticipate, that we find large NLL corrections to of V2 R T RIRRR

the decay ratd’(b—sg). For the corresponding branching

ratio we obtain BN'-=(5.0+1.0)x10"3, which is

more than a factor of two larger than the leading logarithmicwhereGg is the Fermi coupling constant ai@j(w) are the
result B'-=(2.2+0.8)x1073. The reason for the large Wilson coefficients evaluated at the scalgV,, andV,s are
NLL correction can be explained as follows: At leading matrix elements of the Cabibbo-Kobayashi-Maskd@kKM)
logarithmic precision, the decay amplitudA(b—sg) matrix. The operator®; read[19]
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Olz(SLY,uTACL)(CLYMTAbL),

os=<§LyMbL>§ (qy“q),

OsI(ivﬂvyypr)% (ay“y"y"q),

oF My( ) (SLa*"bR)F .,

1672

In the dipole operator®; (Og), e andF ,, (gs and Gﬁ,,)
denote the electromagnetistrong coupling constant and
field strength tensor, respectivelyTA(A=1,...,8) are
SU(3) color generatorst=(1—vys5)/2 and R=(1+ v5)/2
stand for left- and right-handed projectors. The indéx the
sum X, runs over all quarks except theguark. In Eq.(4),
mp() is the runningd-quark mass in the modified minimal
subtraction MS) scheme at the renormalization scale

Henceforth,ﬁq(,u) and m denote MS running and pole

masses, respectively. To first orderdq, these masses are

related through

p? 3

2
my(w)=m 1+ T 2

PHYSICAL REVIEW D63 054025
Oz=(sLyucL)(cLy*by),

O4=(s7,T"00) 2 (@7T0),

06:(5_7M7v7pTAbL)% (qy“y"y’Thq),

Os —

Og= m
8= 6.2 b(4)

4

(sLo" TAbR)Gh, .

(3) the calculation of the decay matrix elements
(sgC;Oj|b) at the scaleu= u, to ordergs; u;, denotes a
scale of ordem,. We note that the matrix elements associ-
ated with the four Fermi operators£€1—6) can be ab-
sorbed into the effective Wilson coefficier@S", when
working at LL precision. In the naive dimensional regular-
ization schem&NDR), which we use in this paper, one ob-
tains[19]

CeM=Cqg+C3— £C4+20C5— ¥ Cs. (6)

From the analogous decdy—sy it is well-known that
next-to-leading logarithmi¢éNLL ) corrections drastically re-
duce the large renormalization scale dependence of the LL
branching ratio. This implies, in particular, that the NLL cor-
rections are relatively large, at least for certain scahgthin

It is well known that QCD corrections to the decay rate usually considered range,/2< u,<2m,). Motivated

for b— s+ bring in logarithms of the mass ratiag,/myy and
my/m;. The same is true for the procdss-sg: QCD cor-

by the situation in this analogous process, we present in this
paper a systematic calculation of the NLL corrections to

rections to this process induce terms of the formp o4

asal In™(m,/M), where M=m, or my, and m=<n (with
m,n=0,1,2...).

TABLE 1. Wilson coefficientsC(u)(i=1, .. .,8),Cs*", and

One can systematically resum these large terms by reNOEer [see Eq.(7) in the tex] at the matching scales=my,

malization group techniques. Usually, one matches the f

ulk 80.33 GeV and at three other scalgsy 9.6 GeV, u=4.8 GeV

standard model theory with the effective theory at a scale 0fng,,=2.4 GeV. Forag(x) (in theMS schemgwe used the two-

ordermy,. At this scale, the large logarithms generated byioop expression with 5 flavors anel(m;) =0.119. The entries cor-
matrix elements in the effective theory are the same ones &sspond to the pole top quark mass=175 GeV.

in the full theory. Consequently, the Wilson coefficients only
pick up formally small QCD corrections. Using the renor-
malization group equation, the Wilson coefficients are then

calculated at the scale= u,~my, at which the large loga-

rithms are contained in the Wilson coefficients, while theC

matrix elements of the operators are free of them.

So far the decay rate fdr—sg has been systematically c3

calculated only to leading logarithm{tL ) accuracy, i.e., for
m=n.

A consistent calculation fob—sg at LL precision re-
quires the following steps:

(1) the extraction of the Wilson coefficients from a match- c9

ing calculation of the full standard model theory with th
effective theory at the scaje= uy to orderag ; mw denotes
a scale of ordemyy or my;

(2) a renormalization group treatment of the Wilson coef-(;gff

ficients, using the anomalous-dimension matrix to oy

u=my w«=9.6GeV u=48GeV u=24GeV
as 0.121 0.182 0.218 0.271
9 0.0 -0.335 —0.497 -0.711
c9 1.0 1.012 1.025 1.048
0.0 —0.002 —0.005 —0.010
c§ 0.0 —0.042 —0.067 -0.103
c? 0.0 0.0002 0.0005 0.001
c? 0.0 0.0005 0.001 0.002
cd -0.192  —-0.285 —-0.324 -0.371
—-0.096  —0.136 —0.150 -0.166
ect™ -0196 —0.280 -0.314 —0.356
coem  —0.097 —0.135 —0.149 —0.165
cy™ -2166 -1.318 —1.098 —0.950
-0.118  —0.154 —0.168 -0.186
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The principal organization of such a calculation is Ill. VIRTUAL CORRECTIONS TO O; AND O,
straightforward: Each of the three steps listed above has to be
improved by going to the next order i : (1) The matching
has to be calculated includingg corrections;(2) the renor-
malization group treatment of the Wilson coefficients has to
be performed using the anomalous dimension matrix to orde

; (3) finally, the orderag corrections to the decay matrix
eIements have to be worked out. We note that this step in
volves both, the calculation ofirtual- and bremsstrahlung
corrections tdh—sg.

The first two steps are already available in the literature.
The orderag matching of the dipole operato@; and Og
was calculated in Ref$20], while the matching conditions
and the anomalous dimension matrix for the four Fermi op- For the following discussion it is useful to define the op-
erators have been calculated by several grq@ds These  gratorsO, andO,:
calculations were done in the “old operator basis,” intro-
duced Ey Grinsteiret al. [22]. The most dn‘fleult part, _the 0,=20,+10,: 0,=0,. (8)
order ag mixing of the four-Fermi operators into the dipole
operators requires the calculation of three loop diagram®; and O, are nothing but the current-current operators in
[19]. In order to perform a consistent naive dimensionalthe old basig22]:
regularization(NDR) calculation (i.e., with anticommuting

In this section we present the calculation of the matrix
elements of the operat@, andO, for b—sg up to orderag

n the NDR scheme. The one-loopY) matrix elements van-

h and we must consider several two-loop contributions.
ince they involve ultraviolet singularities also counterterm
contrlbutlons are needed. These are easy to obtain, because
the operator renormalization constats are known with
enough accuracy from the order; anomalous dimension
matrix [19].

A. Regularized two-loop matrix elements ofO, and O,

ys), the old operator basis was replaced by the new one O1=(SLa¥uCp)(CLpy*bLo),

displayed in Eq.(4). The full 8X8 anomalous dimension

matrix, the corresponding matching conditions and the defi- 62:(§I_B7;LCL,B)(ELQ')’MbLa)- 9)
nition of the evanescent operators is given in R&®] and is

repeated in Appendix A of the present paper. We now present the calculation of the matrix elements

Step(3), the calculation of the virtuaD(as) corrections 1, =(sg/O;|b): The dimensionally regularized matrix ele-

to_the matrix element!; =(sg|O;|b), as well as the evalu- ment M, is obtained by calculating the two-loop diagrams
ation of the gluon bremsstrahlung procdss sgg, is per- (a)—(h) shown in Fig. 1

formed the first t@me in the' preser(;t paper. Asoillustrated in We start with the calculation of the diagrarf@—(f) in
Table |, the LL W'IS%” coefﬁmengé?g(,ub), .- Cg(pb) @€ Fig 1 in which the virtual gluon connects the charm quark
much smaller tharC;(u,) and C5(up). We therefore only  j the joop with an external fermion IégThe main steps of
calculateM, M,, andMg together with the corresponding the calculation are the following: We first calculate the Fer-
bremsstrahlung corrections. A4, and M, vanish at one- mjon loops in the individual diagrams, i.e., the “building
loop (i.e., without QCD correctionsonly the leading order pjocks” | s andJ,z shown in Fig. 2,5 denotes the sum of
pieces C9(un) andC3(uy), appearing in the decomposition the the two diagrams on the right.
We work in d=4-—2¢ dimensions; the results of the
o) building blocks are presented as integrals over Feynman pa-
0 s\ Up rameters after integrating over tfghifted loop-momentum.
Cilpp) = Ci'(pp) + 47 Cl(pp) (™ Then we insert these building blocks into the full two-loop
diagrams. Using one more Feynman parametrization, we cal-
culate the integral over the second loop-momentum. As the
of the NLL Wilson coefficients C;(u,) and C,(up,)  remaining Feynman parameter integrals contain rather com-
are needed. On the other hand, the oper@grontributes  plicated denominators, we do not evaluate them directly. At
to Mg already at tree level. Consequently the full NLL
Wilson coefficientcgﬁ(,ub) is needed. The numerical value
of the NLL pieceC3*" [defined as in Eqg6) and(7)] is also The diagramgg) and(h) are much easier to calculate than those
given in Table |, while the analytic form is relegated to in (a)—(f), becausam, is the only scale in the corresponding inte-
Appendix A. grals.
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FIG. 2. Building blockl 5 (with an off-shell gluon for the diagramga), (b), (e), and(f) in Fig. 1 and building block 4 for the diagrams
(c) and(d) in Fig. 1.g* andg denote an off-shell and an on-shell gluon, respectively.

this level we also do not expand in the regulatoiThe heart The quantitiesT;rﬁ(q,r) andT ,4(q,r) read
of our procedure which will be explained more explicitly

below, is to represent these denominators as complex Mellin- 2
Barnes integral§23]. After inserting this representation and T;B(q,r)z E(a,B,r)Ais+E(a,B,0)Aig
interchanging the order of integration, the Feynman param- 2m?
eter integrals are reduced to well-known Euler beta func-
tions. Finally,_the residue t_heorem allows to write the resul_t —E(B,r,q) ——Aiy—E(a,r,q) ——Ai s
of the remaining complex integral as the sum over the resi- (qr) (qr)
dues taken at the pole positions of beta and gamma func-
tions; this naturally leads to an expansion in the ratio E(a,r,q) — Alze} (12
=(m./m)?, which numerically is about=0.1. (ar)

We express the diagram on the left in Fig(dznoted by
I 5) in a way convenient for inserting into the two-loop dia- B g§ ) . .
grams. As we will uséMS subtraction later on, we introduce Tap(Air)= Q FgapliztdgapAist vyl JAig
the renormalization scale in the forﬂ?a(_p(yE)/(47-r), where
ve~0.577 is the Euler constant. ThekS corresponds to
s;?tracting the poles ie. In the NDR schemel,; is given ol pAInt ydqﬁA'12+'( )A'15
b

aqﬁ aqﬁ .
A Os 2 M an A q(qr)A w5 gy At
lg=— —€)
Ax? (13

1 . . . .
Xex;n(iwe)TA(rBr‘—rzyﬁ)Lfo [X(1-x)]t¢ The matrixE in Eq. (12) is defined as

m2 e E(a=Bvr):’)/a/)/ﬁ"_/)/arﬂ—i_‘yﬁ'(ra)_'lgaﬁ- (14)
x[rz—— |5} : (10) , , .
X(1—Xx) In a four-dimensional context thege quantities can be re-

duced to expressions involving the Levi-Civitansor, i.e.,
wherer is the four-momentum of th@ff-shell) gluon,m¢is  E(a,8,y)=—lig,z,,¥"ys (in the Bjorken-Drell conven-
the mass of the charm quark propagating in the loop and théon). The dimensionally regularized expressions for ftie
termié is the “e-prescription.” The free index3 will be  functions read
contracted with the gluon propagator when inserting the
building block into the two-loop diagram@), (b), (e), and ) N e )
(fg in Fig. 1. Note that 4 is gauge invariant in the sense that Ais=—4B dedyC‘ [4(ar)x“ye—4(qr)xye
r?l,=0.

lflext we give the sum of the two diagrams on the right in —2r2x3e+3r?x%e—r?xe+3xC—C] (15
Fig. 2, using the decomposition [18]. The on-shell gluon
has momentung, color A and polarizationn (therefore we
drop the termsg? and q,), while the off-shell gluon has Aie:4B+J dxdyC ™ [4(qr)xy’e—4(qr)xye
momentumr, color B and polarizationg. This building s
block, denoted byl,2, can be decomposed with respect to —2r2x%ye+2r?x2e+r?xye—2r2xe+3yC—C]
the color structure as (16)

Ip=Tug(@OTATE T 0(a,)[TATEL (1)
Aizgz—Ai26=88+(qr)ef dxdyC 1~ ¢xy (17
S

2The fermion/gluon and the fermion/photon couplings are defined

according to the covariant derivativ®=d+igT°AB+ieQA Ai25=—88+(qr)ef dxdyC‘l_fx(l—x) (18
whereTB=\8/2 are the S(B) generators. s
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Ai2=4B‘j dxdyC 1 ¢(1—x)[4(qr)xye— 2r2x?e
s

+r2xe+C] (19

Ai3=4B*J dxdyC 1 [4(qr)xy?e—4(qr)xye
s

—2r°x%ye+ 2r’x?e+r2xye—2r’xe+yC—C]
(20)

Ai8=—4B‘f dxdyC 1 [4(qr)x?ye+2(qr)xye
S

—2r23e+r°x%e+r?xe+xC+C] (21)

Ai11=4B‘j dxdyC 1 €(1—x)[4(qr)xye—2(qr)xe
s

—2r’x%e+r?xe+C] (22

Ai12=4B*j dxdyC 1 [4(qr)xy?e+2(qr)xye
s

—2r°x%ye—2r?x?e+r?xye+2r’xe+yC+C]

(23)
Ail5=163-(qr)ef dxdyC 1 x?(1—x) (24)
S
Ail7=—88‘(qr)eJ dxdyC 1~ éxy(1—2x) (25)
S
Ai19=88‘(qr)ef dxdyC 1™ x(1—x—y+2xy)
S
(26)
Ai21=88’(qr)ef dxdyC * exy(1-2y) (27
S
whereC, C"1" ¢, andB™ are given by
C=m2-2xy(qr)—x(1—x)r?—is
C l e=—expime)x(1—x)] 1€
2y(qr)  mg o ]TE
2 _
X| 12 —— x(1—x)+'5 (28)
B =(1+e)l'(e)expl yge) u*,
B™=(e—1)T(e)expl yee) u**. (29)

The range of integration inx(y) is restricted to the simplex
S ie, 0sy=(1—x) and O=x=<1.

PHYSICAL REVIEW 363 054025

bp) ptr s(p”)

&
r\v‘%Q ¢

FIG. 3. Feynman diagram for the Mellin-Barnes example. The
momentum and the polarization vector of the emitted gluon are
denoted byq ande, respectively.

We are now ready to evaluate the two-loop diagrams.
Because of the absence of extra singularities in the limit of
vanishing strange quark mass, we sgt=0 from the very
beginning.

In Ref. [24] the detailed calculation of one of the dia-
grams in Fig. 1a) was presented fdi—sy. As all the other
diagrams, which involve the building blodk, i.e., (a), (b),

(e), and(f) in Fig. 1, can be computed in a very similar way,
we prefer to concentrate on the diagrams involving the build-
ing blockJ,z. As an example in this class, we concentrate
on the diagramgd) in Fig. 1, which we redisplay in Fig. 3 in
order to set up the notation for the momenta.

The sumM ,(d) of the two diagrams can be decomposed
into a color symmetric parlt7I2+(d) and a color antisymmet-

ric part M, (d) according to

M,(d)=M3 (d)+ M5 (d), (30)

with

. ee 1 d —
M, (d)=gs(—i) FABCTETC p? .—f u(p’
2 (d)=gs(—1) “ ame 1) 2y (p")

p+r1+my 1
YPu(p) =

X (T 46 %)
(Tuge )r2+2(pr) r

ddr _ ,
(zw)du(p )

. 3 e’ 1
M;r(d):leETA,LLZE(A”T)€ i_f
N p+r+

my
aﬁsa) 2 A
r<+2(pr)

1
x(T % u(p)r—, (3D
WhereT;8 andT .z are given in Eqs(12) and(13), respec-
tively. As the calculation 01\7I2+(d) is nothing but a repeti-

tion of the b—sy case, we concentrate d@lz‘(d) in the
following. All the Ai quantities inT,, contain the factor
C~1~¢, whose explicit form is given in Eq28). M, (d) can
be written in the form

3
g ] e’E 1
325 5 ( —ij )fABCTBTC/.LZE
ar

M (d)= e

xf P D)
(27T)d p p

[—explime)|[x(1-x)] "¢
X
D,D,D3*¢

: (32
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with D;=(r?+2(pr)), D,=r?, D3=r2+2(qr)y/(1—x)—mﬁ/(x(l—x)). The symbolP(r) is a matrix in Dirac space,
which depends in a polynomial way on the integration variable the next step, the three propagatbrs, D,, andDj in
the denominator are Feynman parametrized as

1 I'(3+e) dudww

D1D2D§“: F(1+e) Jg[r2+2(pryu+2(qr)yw/(1—x)—m2w/(x(1—x))+i 513" ¢

(33

with O0sw=1-u and Osu=<1. Then the integral over the The symboly denotes the integration path which is parallel
loop momentunt is performed. At this level, a four dimen- to the imaginary axigin the complexs-plane hitting the real
sional integral over the Feynman parametecs/(u,w) re-  axis somewhere between\ and 0. In this formula, the
mains. It is useful for the following to perform the substitu- “momentum squared’k? is understood to have a small posi-

tions tive imaginary part.
In our approach, we use formu(@8) in order to simplify
XXy (1=x")(1-w'=y") the remaining Feynman parameter integrals in E2p)
' w' ’ where we represent the factor<C?f and 1C**2¢ as Mellin-
Barnes integrals using the identifications
u—(l-wHu’; w—u'w’. (39
. _ _ —m2w
The new variables then run in the intervals k2<—>m§uy(1—w); M2 a ° % (39
X(1—x
x,u' w' e[0,1]; ye[l—-w']1]. (35

o ) ) . By interchanging the order of integration, we first carry out
Taking into account the corresponding Jac9b|an and omitting, o integrals over the Feynman parameters for any given
the primes () of the integration variablesVl, (d) can be fixed value ofs on the integration patly. These integrals are
cast into the form basically the same as for the massless ease 0 [in Egs.

. (36) and (37)] up to the factor

1 — _ gs __i\fABCTB Cf A
Mz(d)_32772( i) fARSTETS [ dxdydudwyp’) . o 2\ °
— . (40)
C 1 1 uy(1—w)x(1—x) mﬁ
X F1§+F2§+F3ﬁ u(p), (36)

Note that the function$,, F,, andF5; are such that the

whereF ;, F,, andF are matrices in Dirac space depending Feynman parameter integrals exist if the integration peith
on the Feynman parametexsy, u, w. Note that this ex- Properly chosen. In the terms involvirg, and F3 in Eq.
pression is understood to be written in such a way Ehgt ~ (36), the path must be chosen such thaé<Re(s)<0; in
F,, andF; are independent af,. The charm quark mass the terms involving=, the situation is slightly more compli-
then only enters throug8, which reads cated:C in the numerator should be replaced by the right-
hand side(RHS) of Eg. (37). For the terms proportional to
— 2 m? the path has to be chosen as for Bheand F 5 contribu-
C=mpuy(l=w)+ 3 W- (37 tions. The terms proportional 2, however, lead to Feyn-
man parameter integrals which do not converge for values of
In what follows, the ultraviolek regulator remains a fixed, Son this path. It turns out that the path has to be chosen such
small positive number. that —2e<Re(s)< — € in order to have convergent integrals
The central point of our procedure is to use now thefor these terms.
Mellin-Barnes representation of the denominators that look We would like to mention that the variable substitutions
like propagatorg1/(k?—M?)*) [25], which is given by & in Eq. (34) were constructed in such a way that all the Feyn-
>0) man parameter integrals are either elementary or of the form
[3dxxP(1—x)9=B(p+19+1).
1 1 1 1 For the s integration we use the residue theorem after
= 5 closing the integration path in the rigktalfplane. Accord-
(k=M (kA TN) 2 ing to the above discussion, the residuesat— e has to be
taken into account in the terms proportionalrd. In the
X f ds(—M?/k?)°T(=s)T' (A +5). other terms, however, the residue st —e must not be
k4 taken into account. The other poles inside the integration
(38) contour are located at
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s=0,123...

mg
— (42)

G=co+ > CynZ"InMz, z=
n,m mb
s=1-¢€¢,2—¢€¢3—€, ...
The powern in Eq. (42) is in general a natural multiple of
1/2 andm is a natural number including 0. In the explicit
s=1-2¢,2—-2€,3— 2¢, . .. calculation, the lowesh turns out to ben=1. This implies
the important fact that the limitn.—0 exists.
From the structure of the poles one can see that the power
m of the logarithm is bounded by 4, independent of the value
of n. For a detailed explanation, we refer[@4]. As in this
s=1—3¢2—3¢,3— 3¢, .. .. (41  reference, we retain all terms up tte=3 in our results.
Unlike in b—svy, the diagrams in the individual figures
. o are not gauge invariant. This statement holds even for the
The other two-loop diagrams are evaluated similarly. Thesym of all the diagrams ife)—(f) in Fig. 1. A gauge invari-
non-trivial Feynman integrals can always be reduced tant result is only obtained after including the diagramé&gin
B-functions after suitable substitutions. and(h).2 We would like to mention that the diagrams analo-
The sum over the residues naturally leads to an expansiogous to(g) also exist forbo—sy. Their sum, however, van-
in z=(m?2/m2) through the factor?/m2)® in Eq. (40). This  ishes in this case. As there are no gauge invariant subsets, we
expansion, however, is not a Taylor series; it also involve®nly present the result which is obtained by summing all
logarithms ofz, which are generated by the expansiorein  diagrams(a)—(h) in Fig. 1. The result foiM,=(sg/O,|b)
A generic diagram which we denote B/has then the form reads[usingz=(m./m,)? andL=In7]

s=1/2—2¢,3/2— 2¢€,5/2— 2, . ..

s my| %[ 384 ) ) ) ) .
7(sg|08|b>tre " —7—2170—5477 +2[ 48816- 25272+ (22680- 16207%) L +2808.2+ 612

>
N
Il

2592
— 6480 (3)]— 126727%2%%+ 7[ 66339+ 1872r% + ( — 40446+ 15127%) L + 6642.2— 10083+ 7776(3)]

+ 7% — 3420 607 — 6456 + 7884.2] + 24mi[ — 28+ (549 2472+ 153 + 72L.?)

+7%(— 432+ 30m%+ 54L — 90L?) + z3( — 259+ 192 )] ;.. (43
In this expression, the symbgldenotes the Riemann Zeta function, wiit8)~1.2021; The symbadlsg|Og|b)ecdenotes the
tree level matrix element of the operaf@g. As such, it contains the runnifgquark mass and the running strong coupling
constant, both evaluated at the scalésee Eq(4)]. However, as the corrections @, are explicitly proportional taxg, we
are allowed(modulo higher order termgo identify the runningo-quark mass with the pole mass, ; in the same spirit we

can identify the strong coupling constant withi(m,). With this interpretation, which we will use in the following,
(sgOg|b)yeeis @ scale independent quantity, reading

<Sg|o8|b>tree: mb%i(p,)éﬂRTAu(p)- (44)

We now turn to the matrix elements of the operadgr Due to the specific color structure it is straightforward to see that only
the diagramge) and (f) in Fig. 1 yield a non-vanishing contribution, which is generated by the color symmetric part of the

building blockJ,z in Eq. (11). The complete regularized result ft@rlz(sg@llb) reads
.1 oag mp| ~4¢( 18 ) ) )
M1=%?(sg|08|b>tre m —?—87+z[120— 1672+ (120-367%)L+12L2+4L3—144/(3)]
+72[84+ 3272 — 2472 L — 122+ 4. 3]+ 23 — 56— 1272+ 96L — 36L2]— 47i[ 3+ z( — 24+ 27— 6L — 6L?)

+72(—6+27%+ 12L—6L2)—1223]] : (45

3We thank M. Neubert for making us aware of these diagrams.

054025-8



CALCULATION OF NEXT-TO-LEADING QCD.. .. PHYSICAL REVIEW D63 054025

The regularized matrix elemenkd; and M, of O, andO, on_
in the operator basig) are related td/, in Eq. (45) andM, M2 <59|08|b>tree4 l2In—= “ +r2) (51)
in Eq. (43) as follows:
with
M,

M '\7'2, M2=,\7|2. (46)

NI!—‘
5’"—‘

70
=57 (52)

B. Counterterms to the O, and O, contributions

The operators mix under renormalization and thus the 5
counterterm contributions must be taken into account. As weR&(I2) = 648{ 2170~ 547" +2{ 48 816~ 2527
are interested in this section in contributionste- sg which
are proportional t«C; andC,, we have to include, in addi- +(22680- 16207%)L +2808.2+612.3

tion to the two-loop matrix elements @,0, and C,0,, _ _ 232 2 2
also the one-loop matrix elements of the four Fermi opera- 6480(3)] - 1267272+ 27 66 339+ 1872r

tors C;6Z;;0;(i=1,2;j=1,...,6) and thdree level contri- +(—40 446+ 15127%)L +6642.2—1008.3
bution of the magnetic operat@®; 6Z;gOg (i=1,2). In the

NDR scheme the only non-vanishing contributions tio +77767(3)]+2°[ — 3420~ 607°— 6456
—sg come fromj=4,8 only. The operator renormalization +7884.2])

constant;; are obtained from the Ieadlng order anomalous
dimension matrlx in the literaturgl9].* The entries needed

in our calculation are Im(r,)= 217{ —28+2[549—24m%+ 153 +72.2]
a 167 2 2 2
- =—_> + 2z —432+ 307+ 54L — 90L
P21~ " 3ome’ 719" 2500mc” @) [ :
+27%[— 259+ 192 1}. (53

ag 19

024 me’ %25 108me”

part of r,, respectively. The quantitg is defined asz
=(mZ/m3) andL=In(2).

Similarly, we obtain the renormalized version i, by
adding the regularized two-loop result in E@6) and the

M(it:<sg| 67,404+ 6Z,505|b) counterterm in Eq(49); we find

The counterterm contribution®§' and M$' proportional to
C, andC, are then given by

as 1({my\ "% ag 1671 ren_ My
:(m 2(7 +— p 2592 <Sg|08|b>tree M <Sg|08|b>tl’ee4 l In P +ryl, (54)
(49 with
=(89/6Z5404+ 6Z,40g|b) |1:1_;§ (55
_( as 1/my\ "2 ag 19 ) olb
“\"3reln +— 108 2/(59Oslb)iee- 1 2 i
(50 Re(ry)=— @{4877_ 547+ 362 1086+ 297
2 2 3
We note that there are no one-loop contributions to the +(360+3677)L +51L "+ 8L+ 1447(3) ]
matrix element forb—sg from the countertgrms _propor- — 12 672r27%2+ 97%[ 6615 8072
tional to the evanescent operatéts, and P, given in Ap-
pendix A of Ref.[19]. + (— 4494+ 3847%) L + 864L2— 1483+ 864/ (3)]

_ _ +127%93+ 7672 —1186_+900L 2]}
C. Renormalized matrix elements ofO; and O,
Adding the regularized two-loop result in E@.3) and the B
counterterm in Eq(50), we find the renormalized result for m(ry)=-— 324{
M, in the NDR scheme:

25+ 62[ 75+ 72+ 24L — 3L?]

+6Z°[ — 171+ 1972+ 72L —57L.%]

+27°[— 421+ 192 ]}. (56)
“Note that the effective anomalous dimension maube given

(48) Here, Re(,) and Im({,) denote the real and the imaginary

in [19] has to be converted intg®, before the relevanfZ-factors  In Figs. 4 and 5 we show the real and the imaginary parts of

can be read off. r, andrq, respectively. For=1/4 the imaginary parts must
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0 0.056 0.1 0.15 0.2 0.25 0 0.05 0.10 0.15 0.20 0.25

-5 L
z:m“c’/mg z=m;/mj
FIG. 4. Real and imaginary part of in the NDR scheméfrom FIG. 5. Real and imaginary part of in the NDR scheméfrom
Eq. (53)]. Eq. (56)].
vanish exactly; indeed we see from these plots that the ag
imaginary parts based on the expansion retaining terms up to MSZEf8<Sg|OB|b>treea (58)
Z® indeed vanish at=1/4 to high accuracy.
with
IV. VIRTUAL CORRECTIONS TO Og
. . . i -2
In this section we calculate the ordet virtual correc- fo—| i_ (4In(p)+9+9im) +1_1 ﬂ) ‘
tions to the matrix element 8 e 3eR 3e|l u
Mg=(sg|Og|b). 5 1[5972
5=(5904lb) 57 +§ 12 +l—8|n(p)+2|n2(p)—8iﬂ'}. (59

As the contributing Feynman graphs in Fig. 6 are one loop
diagrams, the computation Mg is straightforward. We use We would like to mention that we did not include dia-

dimensional regularization for both, the ultraviolet and they 4 ms with self energy insertions in the external legs. As we
infrared singularities. Singularities which appear in the situ-,rk in an on-shell renormalization scheme with respect to

ation where the virtual gluon becomes almost real and colg a1k and gluon fields, such diagrams are cancelled against
linear with the emitted gluon are also regulated dimensiong nterterm contributions.

ally; on the other hand, those singularities where the almost
real internal gluon is collinear with thequark, are regulated
with a small strange quark massg; the latter manifest
themselves in logarithmic terms of the form gh(wherep The counterterm is generated by expressing the bare
=(mg/my)2. quantities in the tree-level matrix element Of; by their

We were able to separate the ultraviole¢ poles from renormalized counterparts. It has the structure
those which are of infraretand/or collinear origin. For ul-
traviolet poles we use the symbollih the following, while Mg'=6R(sg Og|b) e, (60)
collinear and infrared poles are denoted by,A/

When working in Feynman gauge for the gluon propagawhere the factooR is given by
tor, the individual diagrams contributing ¥ s have the fol-
lowing infrared and collinear propertiéthe letters refer to SR=\Zy(mp) VZy(mMs) \/2—32g Zm Zgg— 1. (61
the diagrams in Fig. )6 (a) and (b) are free of infrared and s
coIIm_ear sm_g_ular|t|es(c) has combined infrared and collin- Z,(my), Zo(My), andZs
ear singularities of the form &?R or In(p)/ e as well as 14|g
poles;(d) has combined infrared and collinear singularities
of the form 1k,2R as well as 14|z poles;(e) has a collinear
singularity of the form Ing); (f) is free of infrared and col-
linear singularities{g) has a combined collinear and infrared
singularity of the form Ing)/er as well as collinear singu-
larities of the form IR(p) and Inp); (h) has an infrared sin-
gularity of the form 1¢z; more precisely, this diagram is
proportional to the combination (d+ 1/e|g). Coe

As the results of the individual diagrams are not very Zz(m)=1—$<m)
instructive, we only give their sum: 37\ p

A. Counterterms to the Og contribution

denote the on-shell wave function
renormalization factors of thb-quark, thes-quark and the
gluon, respectiverZgs andZmb denote theMS renormaliza-

tion constants for the strong coupling constggtand the
b-quark mass factor, which appear explicitly in the definition
of the operator§see Eq.(4)]. Finally, Zgg is the renormal-
ization factor of the operatdDg.

The explicit form ofZ,(m) reads
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1972 G0z
b Og s b Oz s b é@s oé) b (éGGos@%\)s
%) q ]
oS N 0 9 2
A 2k Q
a) c) ag €) %\ g %g
% FIG. 6. Diagrams associated with the operator
W Og. The real gluon can be attached to any of the
b Os s b Os s éﬁ b 3.,)3 . b O s circle-crosses on the fermion lines.
N SR~ I 7= 7=  J
20 e, 2 Oz %
209 3 28 TGS
b) dy 4B H = ny X
S8 ¢ Qe
e 9

where we again separated infrared and ultraviolet poles. Fdn Eqg. (68) the sum runs over the five flavors

Z3 we get in the on-shell scheme =u,d,c,s,b, andp=(mg/m,)2. We anticipate that the sin-
gular terms of the form &, 1/eiz and Inp in Eq. (68) will
cancel(at the level of the decay widthagainst the corre-
sponding singularities present in the gluon bremsstrahlung

(63  corrections tob—sg. On the other hand, the logarithmic
terms In(n;/w), which also represent some kind of singulari-

The sum in this formula run over the five flavorls ties for the light flavorf=u,d,s are not cancelled by the

=u,d,c,s,b. ForZ,, andZgg (see Ref[19]) one obtains gluon bremsstrahlung process. Keeping in mind that these
terms originate from the renormalization factdg of the
as 4 as gluon field, i.e., from gluon self energy diagrams in which
=1-——; Zgg=1+-——. (64)  these flavors propagate, it is expected that these logarithms
b 41 € 41 3e . . . )
will cancel against the logarithms present in the decay rate

Finally, the renormalization constant for the strong coupling! (P—Sff) with f=u,d,s. We will discuss this issue in
constant reads more detail at the end of the next section.

ag 5

2m2\e er/ 273

27 3 T

1 1) ag 1

23: 1+

€ €R €

Zm

1 V. VIRTUAL CORRECTIONS TO THE DECAY WIDTH

as . p—
o Ni=5. (65 FOR b—sg

- 11 N
9% " 4nm 3

z 2 3

We are now ready to write down the renormalized version
of the matrixM™(b—sg) element forb—sg, where the
virtual orderag corrections are included. We obtain

Inserting the varioug factors in Eq.(61), one obtains

ag 11 31 mb 2 mf
R=——|—+—-8In——= In—
47| 3€e beg mw 345 )% 4Ge] o m
M™Yb—sg)= ——V*V,p! CEM+—=| O 1, In—=+r,
16 \/E tsVt 8 A 1 w
+ 3—2 Inp|. (66)
m
+CY 1, In—=+r, +C§’eﬁf;§"H
B. Renormalized matrix element ofOg H
><<Sg|08(/~L)|b>tree- (69)

Adding the regularized matrix element 6f in Eq. (58)
and the counterterm contributitmgt in Eq. (60), one obtains
the renormalized result

The quantities,, rq, I, r,, andfg" are given in Eqs(55),

(56), (52), (53), and (68), respectively. As Eq(69) shows,
C&"is the only Wilson coefficient needed to NLL precision.

Ag
Méenzﬂfgen<59|08|b>tree- (67 For the following, it is useful to decompose it as
1 o
with ceff=coefly ﬁcée“. (70)
cen_| 3 (®In(p)+40+18m)|(m, —26_29I My, _
N 6er w 3 ”7 The sympol(sg|08(u)|b)t,ee in Eq. (69) denotes the tree
IR level matrix element oDg(x), which contains the running
2 m 592 2 8 b-quarks mass and the strong running coupling constant at
+3 2 In7—5+ 3 3net §|n2P— i the scaleu. In order to get expressions where theuark

mass enters as the pole mass, and the strong coupling con-
(68)  stant enters ag¢(my), we rewrite(sg|Og(u)|b)ee @S
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as My, 4 as well defined even within perturbation theory; only their sum,
(59 Og(1)[b)yree= (S Og|b) re I+ —In———o— the inclusive charmless hadronic decay width is a well-
T )72 T ) . . . .
defined physical quantity, as already discussed in the Intro-
ag my duction.
+El30|n7 . Bo=3 (71) Keeping in mind that the ultimate goal for the future

should be a completé)(aﬁ) calculation for the charmless
where we made use of Eg&5) and (A18). The symbol hadronic decay width, we decided to add @gcontribution
<sg|08|b)treet_hen stands for the tree level matrix element of ['y(b—sff) to I'(b—sg)+I'(b—sgg), in order to cancel
Og in which m,(x) andgs have to to be identified with the the Infr:/u) terms. From the explicit expression

pole massn, andgs(m,), respectively[See also the discus-

sion after Eq(43) and Eq.(44)]. Inserting Eqs(70) and(71)

into Eq. (69) we obtain . mﬁIGFV{‘SthCg’eﬁlz J omy 2
Tg(b—sff)= . olins>— =),
4Ggi * 0eff, &S| ~Leff fem f 74
re — , > )
M"Y b—sg) N7 VisVio) Cg™'+7—| C (74)
+(8+ By) |nﬂcg,eﬁ_ 1_6c;g,eff one immediately sees that the mentioned logarithms indeed
3 cancel. B
m, m, We would like to mention thal'g(b—sff) is dominated
+cC? I1In7+r1 +C9 I2In7+r2 by small values ofg?, whereq is the momentum of the

virtual gluon, decaying into théf-pair; therefore, it is rea-

(s6/Oglb) (72 sonable to absorb this part bf>sff into BN (b—sg).
9%sl0) vee- Another reasonable definition fét""-(b—sg) would be

to include the contributions of all the operatorshte-sff,
but to impose kinematical cutg.g. on the invariant mass of

the ff-pair). Numerically, the difference between these two
(M) mS N definitions forBN-(b—sg) are small for a reasonably small
FV"‘:$|GFVZ‘ th|2[ (ngeff)2+_scgveff cut, because the NLL corrections are by far dominated by the
247" ° 4m virtual corrections to th®, contribution tob—sg.
My 32 A third possibility is to totally omitb—sff and accepting
2C5™+2(8+ Bo) In— M- — e a logarithmic dependence of the results 8" on the light
M 3 quark masses. We checked numerically that this procedure
m, m, and the one we chose differ by less than 2% when the
+2Cg(|1|n7+Re(r1)) +2C2(I2In7+Re(r2)) massean; of the light quarks are assumed to be of order

AQCD'

+ Cg,eﬁf gen

To obtain the decay width'V™ from M™Y{b—sg) is
straightforward. We get

X

my —2e
+2C3*"Re(fEN) (1— e)(—>
H VI. MATRIX ELEMENTS FOR GLUON

} BREMSSTRAHLUNG

1
X 1+26—Z(772—16)62 (73

In this section we discuss the gluon bremsstrahlung cor-

We note that due to the infrared poles presentfil the rections tob—sg, i.e., the matrix element for the process
phase space integrations have been done consistendy inP— S99 associated with the operatdds, O,, andOg. For
=4—2¢ dimensions, which leads to the last two extra tac.literature on the analogous correctionsote»sy, we refer to
tors in the last term in Eq73). The other factor, (+¢€), in [26].

the last term in Eq(73), is due to the fact that all thed(

—2) possible transverse polarizations of the emitted gluon ) A R
were taken into account. A. Bremsstrahlung associated withO,; and O,

We already mentioned that the infrared singularities e first discuss the matrix element O%,. There are two
(1/€fR, l/er) and the collinear singularities @pInp) in diagrams contributing; they are displayed (& and (e) of
fg' in Eq. (73 cancel when adding gluon bremsstrahlung.Fig. 7. The sum of diagranid) and the one with the two

On the qtherrerr]]and, the unphysical logarithms of the formyons interchanged is denoted by, Its analytic form is
In(my/p) in Tg™ cancel against th®s contribution t0 the  gptained by putting?=0 andr ;=0 in the expression for

decay width forb—sff. Jup in EQ. (11):
The appearance of these singularities signals that indi- e = .
i -\ -
vidually the processels—sg, b—sgg, andb—sff are not Joap=Tap(A{TATE + T, 4(q,N[TAT®]. (75
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b Og s b O s b O s b s b s
v [l
2 g & % ¢
N & o i D270
E S » % =
& %, e
7
a) b) c) d) €) 3@ @%

FIG. 7. Bremsstrahlung diagrams associate@gcand@z. Circle-crosses denote possible gluon emissions. Note that pieusetually
represents four Feynman diagrafebtained by interchanging the glugrend the one ind) represents two diagrantagain: including the
interchange of the gluohs

This expression is understood to be contracted with the po- _ t+2G_ (1)
larization vectorse“(q) and sﬁ(r) of the gluons. The dia- Alps=— 1
gram (e) in Fig. 7, denoted b)Saﬁ, is color antisymmetric
and can be written as o 2 t+6G_ (1) — 12G(1)
i17=— = (83
ShE=S. L TA T, (76 I t
whereS, ; reads{t= (2qr)/m§] The explicit form ofG _4(t) andGO(t)_is giv_e_n in Appendix
B. Note that these results are ultraviolet finite. As the subse-
92 [4 w\2€1 4 quent phase space integrals do not generate infrared singu-
S;=——|z| =] ——5—8G(t)+8G,(t) larities, it is consistent to retain terms up to or@@ronly in
“f 3272|3\m 3 ! 2
32w c/ € Eq. (82).
X[gus—AGas— 274l ot 27.054]L. 77 Due to the specific color structure of the operaiyr, the
[79e=A8as= 275 Valls] diagram(e) in Fig. 7 does not contribute and the color anti-
The functionsG;(t)(i=—-1,0,1 .. .) aredefined as symmetric part encoded ifi,,, is also absent. The matrix
- element M2M=(sgg O, |b) is therefore proportional to
Gi(t)= fo dxx IN[1—tx(1—x)—id]. (78) T::ﬂ, reading
brems_ 5+ oAB cab.

The Ward |dent|t|e$3TaB q"T+ =0, stated irf24], imply M= Topd ™0™ (84)
that A,B and a,b are the color indices of the gluons and the

g2 quarks, respectively.

ws= E(a,B.r)~E(a,8,9)~ E(ﬂ,r,q)( r)
327 q B. Bremsstrahlung associated withOg

The Feynman diagrams contributing to the matrix element

q ) LAips. (79 MmBrems=(sggOg|b) are shown ina), (b), and(c) in Fig. 7.
Similar toM5®™in Eq. (82), one can decompodé©™into

General considerationgor a straightforward calculation a color symmetric- and a color antisymmetric part:

which makes use of the explicit expressions for the functions

J— b 5 —
G; andAi;) imply the Ward identities Mg =R TATE + R [ TA TR (85

+E(a,r,q)

rﬁ(?;ﬁ +S75)=0; qa(?;ﬁ +S,5)=0, (80) Thg diagrams shown ith) and.(c) only contriPute toR;Fﬁ,
while the diagrams i@ contribute to bottR,; andR,;.
which can be used to casf‘( +S_,) into the simple form As the calculation of these tree level diagrams is straightfor-
poTep ward, we do not give the explicit expressions ®f, and
R

— _ an aB
Ta,B+Sa'B ( _Q) _gaﬁ) LA|17 (81)
VII. DECAY WIDTH FOR b—sgg
To summarize, the matrix elemeKty™=(sggO,|b) can The total matrix elemen®®™{b—sgg) can be written
be written as as

MBS T {TATE + (T, 5+ S, ) [TATE], (82

|v|br(-:‘ms._4iE Vtthb[C Mbrems e Mgrems+ Cg,effM gremﬂ’
Whereifﬁ and (T;ﬂ+ S.p) are given in Eqs(79) and (81), (86)
respectively. The functiondi,; andAi4; occurring in these

expressions, can be written in terms @gy(t) and  where the three terms on the RHS, given in E&4), (82)
G_1(t) [t=(2qr)/m§] defined in Eq(78): and (85), correspond to the contributions of the operators
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0,, 0,, andOg, respectively. The coefficien§; and C, 1= C224 Ai 4 22mi mZ—2(qr)]
are understood to be the following linear combinations of the
Wilson coefficientsC; and C, appearing in the effective = 6523—8|Ki23|22m§[m§—2(qr)]

Hamiltonian(3):

&,=1C,;: &,=C,-ic,. 87) 75=C512/Ai 122[ 16(pg)®— 16(pa)(qr)

a2 2 4

We note that in Eq(86) only the leading order pieces of the 8my(Pa) +6my(qr)+mj ]

Wilson coefficients are needed. N A A ol 124202
The expression for the decay width readslidimensions: 71,=2C1C58| Al x4 “2my[ my—2(qr)]

1 715=2C,Co*"8Re Ai ,5) 16m2(qr)
drbremib_)sgg)zz_rnbj (277)d5d(p—p’—q—r) 18 1“8 23 bq

E— T25=2C,CO°M2 Re( Al 5) 16m2(qr)
X|Mbremﬁgdﬂz(p,)dﬂ(q)dﬂ(r), 28 2vg 3 23 b

(88) 735=2C,C3*M2Rd Al 1) (— 4m3)[mi(p)

where p, p’, g, r are the four-momenta of the-quark, +me(pr)—2mé(pg)2—2mé(pr)?
s-quark, and the gluongMP®™§2 is obtained by squaring o2 5

the matrix element ™ followed by summing(averag- 2ms(Pa)(pr)+4(pa)*(pr)

ing) over spins and color of the finaihitiall) state particles. +4(pn)2(pa1/[(pg)(pr)] (91)
The factor (1/2) due to the two gluons in the final state is

also absorbed there. were the functions\i,; and Ai,z are given in Eq(83). As

The phase space integrals are plagued with infrared anghese function are rather complicated, the integrals @er
collinear singularities. Configurations with one gluon flying 5n4E are done numerically
r .

collinear to thes-quark are regulated by a small strange We now turn to the Qg,0%) contribution, denoted by
guark massng, while configurations with two collinear glu- [brems 8 =6 ’

ons, or one soft gluon are dimensionally regularized. As ir. 88 _° Without going too much into the details, we would
' . 9 - ally reg o .r\ike to mention that some care has to be taken when sum-
the calculations of the virtual corrections, we write the di-

mension asd=4— 2¢. (Note thate has to be negative in ming over the —2) transverse polarizations of the gluons.
. These sums are of the form
order to regulate the phase space integrals.
When squaringM®®™in Eq. (86), nine terms are gener- d-2

ated, which we denote for obvious reasons Y, (0%), > eH(K)er (k)= —grr+kFEY+ KR, (92)

A oA A A A A =1
(0:.03), (01,05). (02.01). (02.0). (02.03), “
(0g,07), (0g,03), and ©g,0g). It tuns out that all where the vectof satisfies the conditionfk)=1, with k
terms exceptQg,03) are free of infrared and collinear sin- being the four-momentum of the gluon. It turns out that both

gularities. We therefore can pm =0 in these terms and terms involvingf on the RHS in Eq(92) contribute to the
evaluate the phase space integralsin4 dimensions. De- color antisymmetric part of g™, After a lengthy, but

noting this finite contribution to the decay width B}'®™,  straightforward calculation, we obtajwith p=(ms/my)?]
we get )
0,effy 2 —4e
o g TGV
brems:8|GFVtSV1b| i Qs dE.dE 88 96 o
fin 64r’m, 126472) O
T i W[EFANP 120161 pt 18- T
_ _ ———21In n -—
X (714 Topt Togt Tipt Tigt Togt Tog). (89 €R P P 3
(93

The superscripts) and (—) on the variousr-quantities
refer to color even and color odd contributions, respectivelyfor the color symmetric part, and
The result is represented as a two dimensional integral over

the energie€, andE, of the gluons in the rest frame of the adl(CY2M2/ 'm \ ~4¢ 24 80+6In
b-quark.E4 andE, vary in the range [ oemsi :M -2 il -31In?p
167 M elzR €IR
My My My
E,e|0—|; E,e|5=—Eq—=| (90

a 2 T2 T2 +9Inp+299— 2672 (94)
The variousr-quantities, in which all the scalar products are
understood to be expressed in termssgfandE, , read for the color antisymmetric par¥/ is defined as
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> contribution to the procesls—>sf? The explicit expressions

o mb
= 2;74 |GEViVip|%. (95  for Ig andrg (which is real by definitionread
_ . . 19 m;
The total decay width fob—sggis then given by lg=— 3 e 351-1972—-36In2+6 In—|.
m
Fbremi b—>sg g) — Fﬁ;ems_l_ Fggemsﬁr + Fggemsr , (96) (98)

We would like to stress that all scale dependent quantities in
Eq. (97) are understood to be evaluated at the sgalenless
indicated explicitly in the notation.

To prepare the discussion on the numerical size of the
NLL QCD corrections, it is useful to cast the final res@7)
into another form:

where the three terms on the RHS are given in E§9),
(93), and(94).

VIIl. COMBINED NLL BRANCHING RATIO FOR
AND b—sgg

b—sg

In this section we combine the decay widths for the vir-
tually corrected proceds—sg and the bremsstrahlung pro-
cessh—sgg to the decay width, which we callN't(b
—S(g). We also absorb in this quantity tl@&; induced con-

tribution to the proces®—sff, wheref=u,d,s, as dis- .
cussed at the end of Sec. V. The expressiorl ¥, which with
contains the lowest order contribution to the decay width for
b—sg, together with its virtual corrections, may be found in
Eq. (73). The result for the bremsstrahlung procd3¥®™sis
given in Eq.(96). From the explicit formulas fol’ V" and
I'Ms one can see that the infrared singularities and those
collinear singularities, which are regulated by cancel in

the sum. The same also happens with the collinear singulari-
ties which are regularized by the parameper (ms/my)?.

The terms containing logarithms of the light quark massesrhe modulus square dd is understood to be taken in the
my, present in the result fdr*'", are cancelled when com- same way as in the virtual contributions, i.e., by systemati-
bined withI'g(b—sff) in Eq. (74). Putting together the in- cally discarding theD(a?) term. In this sense, the quantity

arg(my)my =
T|GFV:§,VHJ|2|D|2+r

T

brems
fin

(99

N (b—sg)=

5: C(B),eff_i_;_:r 1eff_ 1_6

8 3

cge+C?

my
|1|n—+l’1
M

+C9

my 0e my
I2In7+r2 +Cg"| (Ig+8+By) In7+r8

(100

dividual pieces, we obtain

5
ag(my)mp

' (b—sg) :W|GFV:‘SV¢|2{ (C3eM2

ag 32
+Ecg~e"{ 2Cg*"- 5 Cg*'+2C]

My
m
+2C9 I2In7b+Re(r2) +2¢9ef
m
X (I8+8+B0)In7b—l—r8 +rprems
(97

wherel'2®™S given in Eq.(89), contains all the bremsstrah-

lung corrections except those originating from ti@; (O3 )
interference. The quantitids, rq, |,, andr, stem from the
virtual corrections; they are given in Eg&5), (56), (52),
and (53), respectively. On the other hanld, andrg contain
information from the real part of the virtual corrections, en-
coded in Refg"); the contributions from the@g,0%) in-

D can be viewed as an effective matrix element.

We would like to mention that,, I,, and (g+8+ Bp)
are identical to the anomalous dimension matrix elements
Y2 98 and y3£", respectively. This is of course what
has to happen: Only in this case the leading scale depen-
dence ofcg'e“(,u) gets compensated by the second term in
Eqg. (100.

The NNL branching ratiaB3N-(b—sg) is then obtained
as

FNLL(b—>Sg)

BN (b—sg)=
(b—s9) I

Bg®, (10D

whereBg® denotes the experimental semileptonic branching
ratio of theB-mesonlI stands for the theoretical expression
of the semileptonic decay width of ti&@meson. Neglecting
non-perturbative corrections of the orde/kchD/mb)z, Iy
reads{with x,=(m./my)]

2.5
Py~ T(b—cerg) =By 12 x)
S| e 19277_3 C C

ag(pp)

X |1+
2

he(Xe)+0(a?)|, (102

terference of the gluon bremsstrahlung process; an®the where the phase space functig(x;) reads
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i i 6 N .
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T ] 4t !
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C /// ] = _ NLL | T~ o
L ] e 2 | -~ _
L ] M L[ LL+ -
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2 4 6 8 10 [|--LL
scale u [GeV] 0 | ! | !
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FIG. 8. Scale 1) dependence of the functidn [see Eq(100]
. . < . i p [GeV]
in various approximations: The long-dashed line sh@@§ ; the
short-dashed line corresponds to putting-r,=rg=0; the dotted FIG. 9. Branching ratid3(b—sg) as a function of the scale
line is obtained by only putting,=0; the solid line shows the full in various approximations: The dashed and the solid lines show the
functionD. See text. LL and the NLL predictions, respectively; the dotted line is ob-
tained by putting1:r2=r8=l“[,"r‘ems:0 in the NLL expression for
9(Xe)=1—8x2—24x4 Inx,+8x8—x&. (103 ' (b—sg) in Eq. (99). See text.
The analytic expression fdrg(x.) can be found in Ref27].  (but keepingr,=0), the resulting curve, shown by the dot-
The approximation ted line, stays close to the short-dashed curve and the scale
dependence remains mild. However, when switching on also
hg(Xc) = —3.341+ 4.05x,— 0.3) — 4.3(x.— 0.3)2 r,, the situation changes drastically. The resulting solid line,

(104 which represents the full NLID function, implies that the

erm containing the two-loop quantity,, induces a large
LL correction. As this large correction term contains a fac-

tor ag(u)Co(u), it is of no surprise, that the NLL prediction

holds to an accuracy of 1 permille in the relevant range O.
=x.<0.4.

We note that in the numerical analysis Bf'"-(b—sg) g _
we systematically expand the expression for the branchinfP! the functionD suffers from a relatively large scale de-
ratio (101) in a, dropping terms oD(aﬁ). pendence, as illustrated by the solid line. B

A short remark concerning the LL branching ratio is in ~ The reason for the large NLL corrections in tBefunc-
order: For the decay widti'-(b—sg), we use the expres- tion can_be explained as follows: At leading logarithmic pre-
sion cision,D only gets a contribution from the matrix element of

Cg(my)Og(my); due to gauge invariance, there is no one-

loop contribution ofC,(m,)O,(my). The LL approximation

of D is therefore given byCg(my), which numerically is
(105  relatively small {Cg(mp)|[~0.15). At the NLL order,

C,(mp)O,(m,) does contribute, leading to a correction

The LL branching ratio fob—sg is then obtained as in EQ. ~ (ag(my)/7)Cy(my) in the D-function. The naive suppres-

a’s(M)mS

b
rtb—sg=—"—7 |GEVisVin|2(Cg™ ()2
7

(101, but by discarding the radiative correctionslig. sion factor a(m,)/7 is enhanced by an extra factor
|C,(my,)/Cg(my,)|~7. In other words, the large correction is
IX. NUMERICAL RESULTS FOR THE COMBINED due to the absence of th®, contribution at LL. In this
BRANCHING RATIO sense, a large NLL correction is not a surprise. The next-to-

, . NLL corrections are expected to have a normal behavior
Before we present the numerical result for the branchlng[i.e' a typical suppression of the order @f(my)/= with
ratio 8" (b—sg), we discuss the sizes of the various NLL respect to the NLL correctidnbecause there are no opera-
corrections at the level of the functioD, defined in Eq. tors left, which only start contributing at next-to-NLL order.
(100 [anticipating that the finite bremsstrahlung correctionswe therefore believe, that the large NLL corrections, found
in Eq. (99) are relatively sma]l We already mentioned that in this paper, are understood and certainly do not signal the

the terms containing the explicit logarithms of the ratio breakdown of renormalization group improved perturbation
(m,/u) get compensated by the scale dependence of the firgteory.

term on the RHS of E¢(100). This feature can be observed  The NLL branching ratic3N''(b—sg) is then obtained

in Fig. 8, when comparing the two dashed lines. The longas described in Sec. VIII. The result is shown by the solid
dashed line represents only the first te@& of the function  line in Fig. 9. For the input values, we taken,= (4.8

D, while the short-dashed line shovizs, in whichry, r,, +0.2) GeV, (m./mp)=0.29+0.02, ag(Mmy)=0.119
andrg are put to zero. As expected, the short-dashed line has 0.003, VAV p/Vep/?=0.95+0.03, BgP=(10.49

a milder u-dependence. When switching on alspandrg ~ +0.46)%, andmP®®=(175+5) GeV. As the scale depen-
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E_r(baxé)w(ﬁﬂié)

f exp

6 1 ¢ 2T Bat (109
=
— 4| i whereXy stands for the final states listed in E¢08). In the
ER N numerical results fo3¢ we will insert I'; as given in Eq.
2 31 i (102, i.e., we do not make arg expansion of I/ in Eq.
g 2+ y (109. The charmless hadronic decay r#gthen reads

]_ L — — -

B [GeV]

FIG. 10. NLL branching ratiddN"-(b—sg) as a function of the

scale for the three value of the rafig,=m./m, . See text. While theO(«y) corrections to semileptonic processes have

been known for a long timésee e.g., Refl27]), the NLL

dence is rather large, we did not take into account the errokrrections to the hadronic processes in EXP8 with 3

due to the uncertainties in the input parameters. Based Ofj arks in the final state had a long history and were com-
Fig. 9, we obtain the NLL branching ratio pleted to a large extent only recently by Leatal. [8,6];
NLL 3 . however, current-current type corrections to the penguin op-
B™(b—sg)=(5.0£1.0x10"". (106 erators are still missing. To briefly summarize the history, it
is useful to decompose the NLL expressions for the decay
We would like to stress that the NLL corrections drasticallywidths of these processes into various pieces. Taking as an

enhance the LL valuesee dashed line in Fig) Sor which  example the proceds—uud, we write as in Ref[8]:
one obtains

B (b—sg)=(2.2+0.8)x10 2. 10 —
(b=s0)=( ) (107 r(bﬁuud)=r<°>+Z—;[Arccwrpengmrgwrw].

As already mentioned in the discussion of the functibn (111
the main enhancement is due to the virtual and bremsstrah-

lung corrections tdb—sg, calculated in this paper. At the
level of the branching ratio, this fact is illustrated by the
dotted line in Fig. 9, which is obtained by discardifi§*™s

The first two terms in the square bracket in Efll)
describe the effect of current-current and penguin diagrams
oo ) . involving the operatorsO; andO,. AT'g likewise contains
and by switching offr,, r,, andrg in the expression for . e

NLL the matrix element of the operat@yg. The remaining part
I'™(b—sg) [see Eq(99)]. L 4
; C AT\, of the NLL contribution is made of the corrections to
The largest uncertainty due to the physical input param-

eters onBNt(b—sg) results from the charm quark mass. the ‘{}{;'SO” coefficients multiplying the tree-level amplitudes
'™, In this approximation, the matrix elements of the

The dependence &N (b—sg) onm, is illustrated in Fig.

. ; i tor®s3, ... ,0g Only enter at tree level. As
10, wherex,=m./m, is varied between 0.27 and 0.31. PENguin operators), '~ SO
Choosing MC:mbC tr?e resulting uncertainty amounts to the expressions for the RHS of EHd.11) are explicitly given

in Ref.[8], we do not give them here. For later reference, we

~*+6%. denote this approximatiofifor lack of a better worf by
“approxl1.”
X. NUMERICAL EVALUATION OF THE CHARMLESS Later, in Ref.[6], the same authors added the contribu-
DECAY RATE tions of the penguin diagrams associated with the penguin

In thi . . . he | f the NLL OCD operators to the decay matrix elements and took into account
n this section we investigate the impact of the QCD the interference with the tree level matrix element of the

corrections tob—sg on the inclusive hadronic charmless onerat6r0, in the decay width. In addition, they took into
decay rate of thd& meson. At the quark level, we take into account the square of the matrix element of the penguin dia-

account the hadronic processes gram associated witl,. Although being of next-to-NLL,
this term is numerically relatively large, as it is multiplied
bﬁqfafq; b—sg, (108 with C%. These new contributions can be absorbed into the

quantity AT, Which is understood to be added to the
whereq=d,s andq’=u,d,s. As we do not distinguish be-
tweenAS=0 and AS=1 contributions, we can safely ne-

glect the CKM suppressed decay mdae>dg. More pre- Note that the authors of Ref§3,6] use the old operator basis
cisely, we calculate th€ P-averaged branching ratio [22].
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TABLE II. Table for the charmless hadronic branching rafilo ~ The central value foV,,/V,l corresponds to théim-
(in %) in the various approximations discussed in the text. Unlesproved Wolfenstein parametelg= 0.20 and;= 0.37[28].
specified explicitly in the first column, the input parameters corre-The remaining entries of the CKM matrix are then obtained
spond to the central values in EG.12). as described in detail ifi29]. We note that the averaged
charmless hadronic branching ratio is practically indepen-

input approx0 approxl approx2 with Nlb—Sg  gen; of 5, as already observed in Ré6].

as in Eq.(112 1.32 1.50 1.62 1.88 The numbers in column “approx2” are very similar to
p=my/4 3.86 3.21 3.34 3.62 those in Table 1 of Ref6]. The small discrepancy is due to
w=my/2 206 209 218 243 the omission of the 2 power corrections in our work.
w=2m, 0.96 114 1.28 1.55 _ Staring from the numbers in column “approx0,” Table ||
IVo/Vep =0.06  0.94 113 1.24 1.50 illustrates, that the various improvements sholvn in the other
[Vyp/Vep =0.07  1.03 1.22 1.33 1.59 columns are relatively large, tending to incredke In par-
[Vip/Vep=0.08  1.14 1.32 1.44 1.69 ticular, the NLL corrections tdb—sg are of similar impor-
IVyo/Vep| =0.09  1.26 1.44 155 1.81 tance as the corrections calculated 86].

IVyo/Vey| =010 1.39 157 1.69 1.94 For |Vyp/Vcp| =0.095 we obtain the charmless hadronic
Vup/Ve|=0.11 154 172  1.83 2.09 branching ratio

[Vup/Vep =0.12 170 1.87 1.99 2.25 — _

Vyo/Vep|=0.13 1.87 205  2.16 2.42 By=(1.887539%, (113
Xc=0.25 114 1.32 1.45 1.69 where the error corresponds to a variationxg (m./my)
X.=0.27 122 141 1.53 1.78 and of the renormalization scaje in the ranges 0.25x,
x:=0.29 132 1.50 1.62 1.88 <0.33 and 0.5 u/m,=<2.0. The corresponding errors are
x.=0.31 144 161 172 1.99 added in quadrature. The experimental uncertaintygm,)
Xx.=0.33 1.57 1.74 1.84 2.12

has a smaller impact and the errors due to the remaining
input parameters in Eq112) are negligible. The large renor-
malization scale dependence of this result is expected to be
terms in the bracket in Eq111). As the extraction ofAI',e,  weakened once the current-current type corrections to the
from Ref.[6] is straightforward, we do not give the explicit penguin operators are included.

expression. This approximation, which contains—up to the o far, we have considered theharmless hadronic

current-current type corrections to the penguin operators— . hin ratioB: . To obtain thetotal charmlesbranchin
the full NLL contribution to the hadronic three body decays, g ¢ g

is called “approx2.” ratio §(B—>no charm), one has to add twice the charmless

We note that the approximation where only the current-Semileptonic branching rati®(B— Xl »), for |=e and|
current type correctionA I, were considered together with = [27] (the contribution forl = 7, as well as radiative de-
the shiftsAT'y, in the Wilson coefficients has existed for a &y modes can be safely negledted
long time[7]. We denote this approximation by “approx0”

2
in the numerical discussion. B(B— X, 1,)=(0.17+0.03 %X M)
In Table Il we present numerical results for the charmless 0.095
hadronic branching rati@¢ in the various approximations (114

mentioned above. The procdss-sg, encoded inBs¢in Eq.  For |V,,/Vy=0.095, we find

(110 is taken into account in the columns “approx0,” .

“approx1” and“approx2” at LL precision. The last column B(B—no charrr):(z_zzigg %. (115
includes in addition the NLL corrections to—sg which

were calculated in this paper. Table Il was produced with thef'he experimental result for the total charmless branching

following input parameters: ratio reads
mp=(4.8£0.2) GeV, u=my, B¥*(B—no charm=(0.2+4.1)%, (116
(m./m,)=0.29+0.04, a(m,)=0.119+0.003, obtained in Ref[30] from CLEO datg 31].
mPoe— (175+ 5) GeV XI. NUMERICAL PREDICTIONS IN THE PRESENCE OF
' ’ ENHANCED C¢
BJP=(10.49+0.46% As discussed in the Introduction, the theoretical prediction
of the semileptonic branching ratio and the charm muiltiplic-
|V, =0.22, |V¢,|=0.038, ity are compatible with the experimental findings if the
renormalization scale is allowed to be as lownag4. Both
|Vyp/Vep| =0.095+0.035, §=60°+30°. predictions are, however, at the lower side and therefore an

(112  enhancement of the charmless hadronic branching Btio
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FIG. 11. Branching ratioB(b—sg) as a function of f FIG. 12. Charmless hadronic branching rafijoas a function of

=Cg"(my)/C§"Y(my,). For the exact definition of, see Eq.  f=Cgf(m,)/C&"Mm,). For the exact definition of, see Eq.

(117). The dottedsolid) curve shows the LUNLL ) approximation.  (117). The dotted(solid) curve includes the LI(NLL) approxima-

The dashed curve is obtained by switching off the matrix elementsion for B(b—sg). The NLL corrections to the decay modes with

of the operator©; andO,. three quark in the final stafsee “approx2” in Sec. X are included
in both cases.

by new physics would lead to a better agreement. It is there-
fore still conceivable tha is considerably larger than in ©Obtained by switching off these matrix elements. The NLL

the standard modéBM). correctiongfor large enhancement factprsmount to almost
In the SM the initial conditions fo€;_g andCg are gen-  50% of the LL prediction.
erated at a scalge=0(my,) by the one-loopbsg vertex In Fig. 12, the impact of enhancegy on the charmless

function. Because of the fact that thé-boson only couples hadronic branching rati@, is illustrated. The dotted curve
to left-handed quarks, only chromomagnetic operators promncludes the NLL corrections to the decay modes with three
portional tom,, (andm,) are generated. In extensions of the quark in the final state and the LL result fB(b—sg) (see
SM, however, also chromomagnetic operators wheggor ~ “approx2” in Sec. X), while the solid curve also includes

ms) is replaced by the mass of a heavy particle propagatinghe NLL corrections ta3(b—sg). For a given value oB;

in the loop, can be generatE8P]. Such operators potentially (from an ideal measurementCg(my,) can be measured in
lead to large contributions tb—sg. In the following we  principle. To illustrate this, we take the hypothetical value
will perform a model independent analysis of the impact OfBéZS%. The two solutions for the enhancement faétare

enhancedCg on B¢, emphasizing the role of the NLL cor- f=7 andf=-9 when using the dotted curve; including
rections tob—sg. We assume that only chromomagnetic NLL corrections tob—sg (solid curve, enhancement fac-

operators with the same helicity structure@g in the SM  tors with smaller absolute values do the job, Vizz5 and
are generated which can then be described as a shfgin  f=—8.

For simplicity, we further assume that the CKM structure of
the new contribution is the same as in the SM, hence neglect-
ing the possibility of newC P-violating phases, by assuming Xll. SUMMARY
the shift inCg to be real.

In Fig. 11 we investigate the impact of enhanced
C&M(my) =C3*(my) + as/(47)CE*M(myy) on the branch-

In this paper we presented a detailed calculation of the
O(«y) virtual corrections to the decay widil(b—sg). The
. ; o - most difficult part, the two-loop diagrams associated with the
Ing ratio for p—>sg. '”Ogﬂe NLL apprloé(ﬁlmatlon for this operatorD, andO, which from the numerical point of view
branching ratio, bothCg™(my,) and Cg=(my) enter. I g0y 5 crycial role, was obtained by using Mellin-Barnes
general, it is expected that the two pieces get different newschnigues. Also complete expressions for the corresponding
physics shifts. Eor purpose of illustration, we assume hOWO(as) bremsstrahlung corrections lo—sg were given. The
ever that both pieces are the same multféthe SM coun- o mpined result is free of infrared and collinear singularities,
terparts; i.e., we assume that in accordance with the Kinoshita-Lee-NauenbditN)
theorem.

The renormalized virtually corrected matrix element
(sgOglb) contains logarithms of the form Im¢/w)(f
=u,d,s,c,b), which for the light flavors @,d,s) represent a
special kind of singularity. Keeping in mind that these terms
The dotted curve shows the LL prediction 8fb—sg) as a  Originate from the renormalization fact@; of the gluon
function of f, while the solid curve shows the NLL predic- field. i.e., from gluon self energy diagrams in which these
tion. It is expected that for large enhancement factors, théavors propagate, we argued that these singularities cancel
matrix elements of the operato®, and O, become unim- against the logarithms present in the decay atb—sff)
portant; this feature is illustrated by the dashed line, which isvith f=u,d,s. We therefore included th®g contribution to

Cae(my) =FCg*"Mmy);  C5*(my) =FC3*"Mmy).

(117)
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F(b_)sz) for f=u,d,s; we also mentioned other possib”i_ The LL Wilson coefficients at this scale are well known
ties to deal with these terms. 33,34

Taking into account the existing next-to-leading logarith-
mic (NLL) result for the Wilson coefficien€g", a complete
NLL result for the branching ratiddN*(b—sg) was ob- 0.6 .
tained. Numerically, we found3Mt=(5.0+1.0)x10°3, Ci" (uw)=0 (i=134,58
which is more than a factor of two Iarger than the leading
logarithmic resultB'-=(2.2+0.8)x 10" 3.

We then investigated the impact of these corrections of¢ 7" (rw) =5,

the inclusive charmless hadronic branching rdﬂp of B
mesons. We found that the NLL corrections calculated in
this paper are of similar importance as NLL corrections toco,eff(
b-quark decay modes with three quarks in the final state,
which were presented by Leret al. [8,6].

Finally, the impact of the NLL corrections to—sg on  The coefficientsC%®(u,y) and C3*(w\y) are functions of
B¢ was studied in scenarios, where the Wilson coefficgnt X= m2/m,. Note that there is nexplicit dependence of the

is enhanced by new physics. For a given valueBpffrom ~ Mmatching scaleuy, in these functions. Whether there is an
an ideal measurementCg(my,) can be measured in prin- IMplicit w, dependence via thiequark mass depends on the
ciple. To illustrate this, we took the hypothetical valﬁg precise Qeﬂnmon of this mass Wh'Ch has to be specified
— 50 The two solutions for the enhancement fadtare when going beyond leading logarithms. If one chooses to

f=7 and f=-9, using the LL approximation fo3(b ~ Work with my(w), then there is such an implicit,, depen-
—sg); including NLL corrections tob—sg, somewhat dence of the lowest order Wilson coefficient; in contrast,

smaller enhancement factors<5 andf=—8) are needed When working with the pole massg, there is no such depen-
to obtain the hypothetical vaILEFS%. dence. We choose to express our NLL results in terms of the
pole massam,.
The NLL piecesCil'eﬁ(,uW) of the Wilson coefficients
ACKNOWLEDGMENTS have an explicit dependence on the matching spgleand
We would like to thank A. Ali, A. Kagan, A. Lenz, P. fori=7,8 they also exp!ipitly depend on the actual (;Iefinition
Minkowski. M. Neubert, and U. Nierste for Helpful dis,cus of the t-quark mass. Initially, when the heavy particles are
sions. This work was partially supported by Schwelzerlsche'megrated olutﬁ it is convenient to work out the matching
Nationalfonds. conditionsC;"*(u) for i=7,8 in terms ofmt(,uw) Using
Eqg. (5), it is then straightforward to get the corresponding

result expressed in terms of the pole mags One obtains
APPENDIX A: NEXT-TO-LEADING ORDER WILSON fori=1,...,6:

COEFFICIENTS

2w =1

—8x3+3x%+12x— 7+ (18x*>—12X)In x
(x=1)*

—x34+6x2—3x—2—6xInx
(x=1)*

X
MW)—g

(A2)

2

In this appendix we present the explicit formulas which Ci,eﬁ(ﬂw):15+6 In—W,
m

allow to calculate the Wilson coefficients needed in this pa-

W
per.
In Sec. A1, we give the results for the Wilson coefficients 5 2
at the matching scalgy, which is usually taken to be of Céll,eff(MW)ZonL _|n’“_W,
ordermyy. Section A2 is devoted to the the Wilson coeffi- 3 mj
cients at the scalg,, wherepu,, is of orderm,,. We give an
explicit expression foICE"(u,) at NLL, which is new. To cil'eff(,uw)zo (i=2,3,5,6 (A3)

make this appendix self-contained, we also repeat the results
for the Wilson coefficient<C;(up) and C,(up,) wWhich are  with
needed only to LL precision in our application.

X(x?+11x—18) x?(4x%>—16x+15)

Eo= + In x
1. NLL Wilson coefficients at the matching scalguy 0 12(x— 1)3 6(x— 1)4
To give the results for the effective Wilson coefficients 2 2
C*™ at the matching scalg,y in a compact form, we wrife - §In X3 (A4)
eff _ ~0eff as(pw) 1,eff - - ~1eff :
i W/ i w. w. = 1,0, i .
C(mw) =G () +———C"(uw). (AL} Fori=7,8, we splitC;{"*'(uy) into three terms:
2 2
o m
CLM ) =W+ M, In 5 +T, |n—;—§ . (A5)
5Note thatCF”(M)=Ci(,u) by definition fori=1, ... ,6. My Mw
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The first two termsV; andM; would be the full result when aCY M )
working in terms ofm(uy). T; results when expressing TiZSXT- (AB)

ﬁ(,uw) in terms of the pole massy in the corresponding
lowest order coefficients. Thus, fo=7,8, the termT; is
obtained as The explicit form of the function®V,, M;, andT, reads

In2x

—16x*— 122+ 80x%— 8x ( 1) 6x*+46x>—28%?
= L|2
X

9(x—1)* X 3(x—1)°
s 102%°— 588* — 226 X3+ 32442 — 1364+ 208I 1646¢*+12205¢3 — 1074?+ 250% — 436

nx-+
81(x—1)° 486(x—1)*

n°x

— 44+ 403+ 4132+ x ( 1) —17x3-31x?
= |2 —_—_—
X

6(x—1)* “x] T 2(x—1)8
s 210x°+ 10864 + 48933+ 28572 — 1994 + 280 7374 — 14103 — 2820%%+ 61k — 508

Inx+
216x—1)° 1296 x—1)%
Moo 82x°+301x*+ 7033 — 21972+ 131K — 208— (162x*+ 12423 — 756¢?)In X
! 81(x—1)°
77X 475 — 1111°+ 607 + 104X — 140+ (918¢+ 1674¢%) In X
8 108 x—1)5
T X | 47x3—63x%+ 9x+ 7 — (18x3+ 30x%— 24x)In X
3 (x—1)5
—X —9x2+9x+1+(6x2+6x)lnx
Tg=2x (A7)
(x—=1)°
The dilogarithm Li(x) is defined by
_ xdt
L|2(x)=—f Tln(l—t). (A8)
0

2. NLL Wilson coefficients at the low scaley,

The evolution from the matching scalg, down to the low-energy scalg, is described by the renormalization group
equation

d eff eff
Md—C (1) =C{ (1) v§; (). (A9)

The initial cond|t|onsCe“(,uW) for this equation are given in Sec. A 1, while the anomalous dimension rr’gaffhup to order
as can be found in Ref.19]. For completeness we display the result here. The anomalous dimension matrix can be expanded
perturbatively as

S('u“) 0eff+ S('u“) 1eff

( )_ ]| (4 )2 ]| +O( s) (AlO)

where matrixy)*" is given by
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4 8 0 2 o o 208 173
3 9 243 162
4 416 70
12 0 0 _ 0 © — —
3 81 27
52 176 14
0 0 0o -2 o 2 _——= -
3 81 27
o 0 40 100 4 5 152 587
9 9 9 6 243 162
{yyeh= 256 6272 659 | - (A11)
: 0 0 0 _2X° o g0 _2¢ff =
3 81 27
- 256 56 40 2 4624 4772
9 9 9 3 243 81
32
0 0 0 0 0 O = 0
3
32 28
0 0 0 0o 0o o0 -—= -
9 3
and in theMS scheme with fully anticommutings, le, e
355 502 1412 1369 134 35 818 3779
9 27 243 243 243 162 243 324
35 28 416 1280 56 35 508 1841
3 3 - 81 81 81 27 81 108
0 0 4468 31469 400 3373 22348 10178
81 81 81 108 243 81
0 8158 59399 269 12899 17584 172471
243 243 486 648 243 648
{yi*M= 0 0 251680 128648 23836 6106 1183696 2901296|- (Al2)
81 81 81 27 729 243
0 58 640 26348 14324 2551 2480344 3296257
243 243 243 162 2187 729
4688
0 0 0 0 0 0 i 0
27
2192 4063
0 0 0 0 0 o -——/° —_
81 27

The solution of Eq(A9), obtained through the procedure describefi2ig, yields for the coefficienCS“(,ub), which we
decompose as

ag(mp)
C8 (1) = Cg*pap) +—5 —C5(ap), (AL3)
the LL term
Oeff(M )_ 14/23Cgeff +2 h CO eff /u‘W)a (A14)

and the NLL contribution
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1 eff(M )_ 37/2%1 eﬁ(/U'W) +6. 7441 ,)737/23 14/23)Cg,eff(MW)

+E (e nC3* (uw) + (] +k{ 1) CI* ) +1] nCT o)) 7. (A15)

The symboly is defined asy= as(uw)/ as(up); the vectorsa;, a/, h{, ¢/, f{, k{, andl read

{a}={%,%,%,— 1,0.4086;- 0.4230;- 0.8994,0.145p

{a/}=1{33,0.4086;- 0.4230;,- 0.8994,0.145p

{h/}={383%% —0.9135,0.0873; 0.0571,0.020p
{e/1={2.13990,0,0;- 2.6788,0.2318,0.3744,0.067Q
{f/}={-5.8157,0,1.4062; 3.9895,3.2850,3.685%,0.1424,0.6499
{k/}={3.7264,0,0,0; 3.2247,0.3359,0.3812,0.2968

{1/}={0.2169,0,0,0; 0.1793-- 0.0730,0.0240,0.01}3 (A16)

As already mentioned earlier, we neglect the contributions of the opef@tgrs. . ,Og in our analysis fob—sg, as their
Wilson coefficients are rather small. We therefore only list the results for the coeffi@é?(tﬁb) and CS”(,ub), which are
needed to LL precision only:

CY*M o) = (7*%= 5~ 23 CI* )

C*(w) =

2 1
7923+ = 3 n 12/23) Co% ). (A17)

When calculating NLL results in the numerical analysis, we use the NLL expression for the strong coupling constant:

as(mz) ,81 a’s(mz) InU(M)
TR L A v(m} (19)
with
o(w)=1- B4 S(mZ) n(f, (A19)

whereB,= 2% andB,=%° (for 5 flavors. However, for LL results we always use the LL expressiondg(u), i.e., 8, is put
to zero in Eq.(A18).

APPENDIX B: ONE-LOOP FUNCTIONS G_;(t) AND Gq(t)

In this appendix we give the explicit results for the functi@s;(t) andGy(t) needed in Eq(83). Evaluating the integral
in Eq. (78) for i=—1,0, one obtains

2 Jt+Jt—4 Jt+Jt—4
— =42l ———| -2iwIn| ——|; t=4
2 2 2
Cah=) [a=t 4t .
—7—2 arctard - +27-rarctar< T); ost<4

t—4
—2+2 T In
Gy(t)= B2
olt) 4—t 4t 4—t (62
—2-2 Tarcta . + T; Oost=<4.
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