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Hadronic Regge trajectories: Problems and approaches
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We scrutinize hadronic Regge trajectories in the framework of two different models — string and potential.
Our results are compared with a broad spectrum of existing theoretical quark models and experimental data
from PDG98. It was recognized that Regge trajectories for mesons and baryons deviate from straight and
parallel lines in general in the current resonance region both experimentally and theoretically. They very often
have appreciable curvature, which is flavor dependent. For a set of baryon Regge trajectories this fact is well
described in the considered potential model. The standard string models predict linear trajectories at high
angular momentd with some form of nonlinearity at low. This model is also adequate for the majority of
orbitally excited hadron states.
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INTRODUCTION sions about deviation of both experimental and theoretical
RT from linearity and description of experimental data by

In the past few years Regge trajectori@T) have at- various models.
tracted the interest of many authors, who build quark models
of baryons, mesons, glueballs and hybrids-19. Quite @ | ReGGE TRAJECTORIES IN THE POTENTIAL QUARK
number of approaches have been used to attack this problem: MODEL
the WKB approach1,2], the Wilson loop model3,4], the
h-expansion techniqui], the g-deformed algebra approach  In our recent series of papeis0], based on Hamiltonian
[6], the 1N, approach7], the spectrum generating algebra (1) and the method of hyperspherical functiditt) [20], a
(SGA) model [8], the Filipponi-Pancheri-Srivastau@PS  description ofN, A, ) resonance spectra and partial widths
model [9], the nonrelativistic quark modgNRQM) [10],  was given
string models[11-15, the extended covariant oscillator
quark model for glueball§16], N/D method[17], and oth- H=Hg+Hpyp,
ers.

Probably, the most interesting questions which are under
investigation are the followinga) Are the RT really straight 3 3 P-2 2
lines in the entire energy interval, or is this only true asymp- Z 2 2m, 3 Z ( -
totically? (b) Do the trajectories for mesons, baryons, glue-
balls and hybrids have the same slope?WVhat is the flavor
dependence of RT@) What is the intrinsic connection be- 2
tween kinematics, the type of the potential, and the straight- Hhyp= 3 Z:]
ness of RTAe) When does the asymptotic regimé= ?)
really start for baryons, mesons, glueballs, hybrids for both 2C,
parent and daughtdancestor trajectories?f) What is the +Z 3
dependence of the character of RT on the scalar or vector <] 3mm;r;
structure of the confinement potential?

Different groups pursued variety of models and different Following Ref.[21], we introduce the constanis;, C,,,
aspects of this problem. It was established long ago, that thendC,, which determine the strength of the Coulomb, con-
experimental RT forN, A baryons are not strictly straight tact and tensor potentials, respectively. The use of the Hamil-
lines[18]. The authors of this seminal review and Hendry intonian (1) allows us to obtain better agreement with experi-
Ref. [19] considered the facts of nonlinear behavior of thement for resonances of positive and negative parity, and also
RT in mass squared. Rather, as Hendry concludes, barydn describe resonances with both large@nd M, and with
resonances seem more linear as a function of c.m. momesmallJ andM.
tum. We showed[10] that it was appropriate for such a de-

In this paper we will consider this problem from the point scription to take advantage of the concept of yrast states and
of view of two different models — potenti@ll0] (Secs. I,I)  yrast lines from the theory of atomic nuclei rotational spec-
and string[15] (Sec. Ill). Then we will contrast our results tra, as well as to make use of the concept of RT. One of the
with broad spectrum of existing theoretical models and eximain results was that both theoretical and experimental spec-
perimental data for different flavors and draw the conclu-tra are nonlinear trajectories in Chew-Frautschi plots
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TABLE |. Masses of the predicted, A resonances in the model TABLE II. Input parameters in the modgl10].
[10].
as=C,=1 Ci=0.2 b=350 MeV/fm
N 11/2" (2.39 N 13/2° (2.90 N 15/2° (3.00 Vo=—513 MeV m,=330 MeV my= 330 MeV
N 17/2° (3.4H N 19/2" (3.4 N 21/2° (3.9 ms=607 MeV m.= 1500 MeV mp=5170 MeV
A 15/2° (3.48 A 17/2° (3.49 A 19/2° (4.00

II. MASS SPECTRA AND RT IN THE POTENTIAL QUARK

throughout the experimental region. Our model predicts a MODEL

whole series of high-lyindN, A resonances, represented in  Now let us discuss our results for mass spectra and RT of
Table I. . baryons. The method of numerical solution of the SE was
The present paper generalizes the m¢@6] to u, d, s, ¢, gescribed in detail in Ref10], but we will briefly recapitu-
b flavors (it is impossible to create top baryons and me$ons|ate it here. The system of differential equatiq®DE) was
and a wider range of angular mometta 0—-20. We obtain  reduced to a system of first-order differential equations,
the spectra of baryon resonances in the same way [d9]n  which we integrated by determining a full set of Cauchy
by solving Schrdinger equatioSE) with the HF method.  splutions. We then constructed the required solution by im-
When the hadron wave functidiVF) is expanded in the posing the following boundary conditions on the RWF:
HF basis and substituted in the SE, one generally finds af.(p=0)=0 and F,(p=R.)=0. The eigenvaluegEV)
infinite system of differential quations for the radial WF \yere determined by zeroing the determinant constructed
(RWF). However, as was shown in R¢20] for a system of  from the fundamental system of solutions for SDE. For the
identicalu, d quarks, the coupling of channels is weak, there‘parameteRoc we always choose a much larger value than the
fore it is sufficient to include only several termsky grand | a4ius of the corresponding excited st4té;, which grows
orbital momentum, in the WF expansion. With increasingyitn L and N, (the radial quantum numberWe always
excitation energy, the contribution &ty , vanishes, hence chooseR. such that if we takeR,=2R.,, then the corre-
the coupling of channels in general can be neglected. On th:,eponding EV of any excited state will not change more than
pther hand, as we will consider only symmetric ba}ryons with1 o4 We use in our computation the following set of param-
increasing quark massi( s, ¢, b), the abovementioned ar- eterg(Table Il). With this input we have calculated the mass
guments will apply even more strongly. _ _spectra, RT, mean radiip); and slopes fou, d, s, c, b
Now, let us introduce Jacobi and hyperspherical Coord'TIavors,Nr=0,1,2, and momenta range=0—20.
nates for a three-body problem. The Jacobi coordinates are \ye note that the solution of the SE in the single-channel
defined as usudplease see Ref10] for all the detailg approximation with the centrifugal potentiaV.= (K

+3/2) (K +5/2)/(2mp?) is equivalent from the mathematical

R=(ry+1a413)/3, 9=(r1—r2)/\2, point of view to the Davydov-Chaban modél2], in which
the rotational spectrum of a nonspherical nucleus with vari-
E=(N2I3)[(ry+12)/2-13]. (2)  able moment of inertia is calculated. Because the moment of

inertia is not constant but varies linearly with the angular
momentum] of the nucleus, the rotational spectrum, instead
of the quadratic behaviar(J+1), it would have for a con-
stant moment of inertia, approaches one lineal.in
Approximately the same thing happens with the hadron:
for large excitation energies the spectrum becomes linear in
J, and the hadron becomes a strongly extended system along
p=(n*+E)1%  0<p<e. (3)  its symmetry axis. This should lead to a linear nature of the
baryonic mass spectra along yrast lines. Our predictions are
So, our WF andy-q potentials will depend on new variables in accord with findings by Hey18] and Hendry[19].
nandé. Let us start a detailed, sector by sector comparison of our
We will work in the hypercentral approximatiofiCA),  results for different flavors. Note that RM?=M?(J)] for
where only that part of the interaction which is invariant baryons have different types of curvatures: some are convex;
under rotation in six-dimensional spage {2s) is taken into  others are concave functions df(see Fig. 1 Theu-d (N,
account. Because in HCA baryons are promational states A) trajectories are concave ftd,=0,1,2, whereas strange
in six-dimensional space, and because a very soft potential (ss§ RT for N,=0,1,2 are ‘“stereotypical’” — they are
used in our model, no strong correlations generating a saiearly straight lines with slowly varying slopes (Fig. 2).
called quark-diquark state can occur. So, we will neglect the&Charmed ¢cc) and bottom bbb) trajectories are convex
0 dependence of oug-q potential. The introduction o  for N,=0,1,2.
dependence in the potential mixes the states belonging to one When we analyze the mass spedita= M (J) for u-d, s,
value ofL, and slightly shifts their positions in the baryonic c, b baryons, they are all convex functionshfwith a rather
mass spectrum. As was proved by Rich§2@)], the most complex dependence am, (flavor) and N, . If we fix m,
commonly used potentials in hadron spectrosc@pgiuding  and look at the Chew-Frautschi plot fof,=0,1,2, we can
ours are very close to hypercentral. see that these three curves generally are nonpatBlel 1),

The hyperspherical anglé and radiusp are defined as
follows:

n=pcCosh, &=psing, 0<O<7/2,
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FIG. 1. Parent and two daughters RT in the potential quark model.

that strongly contradicts the conventional picture of the parto 0.504 GeV ?). Daughter slopes foN,=2 fluctuate, but

allel RT. It is noteworthy that Olssoet al. [13] recently  still increase withL.

examined the meson sector, using a relativistic flux-tube For convenience, we present the set of median values

model, and noticed nonlinearity of RT at low angular mo-(a’); for the whole flavor multiplet(see Table lIJ. It is

mentaJ. But it remains unclear whether their model accountsinteresting to note that the median valuesagf are almost

adequately for physical observables, because it describesirdependent oN, for the u-d ands families.

very limited number of states in the mesonic sector. The expectation values of the hyperradiys; are basi-
Slopes for theu-d family start above 1 GeV?, with the  cally smooth increasing functions bfandN,, and decreas-

largest value foN,=2; the curves decrease almost mono-ing functions ofmj.

tonically with changing the rate of decreasing near4, for We proved that the slope of the trajectories decreases with

N,=0,1,2 (see Fig. 2 increasing quark mass in the mass region ofltivegestexci-
Slopes for thes family differ from all the other cases, tations. This is due to the contribution of the color Coulomb

because they are rather weak functionsLofSlopes for interaction that increases with mass and results aura-

daughtersN,=1,2 start just above unity, then slowly de- ture of RT near the ground state. In the asymptotic regime

crease to 0.87 and 0.78 Ge¥, respectively, whereas the the trajectories for all flavors are linear and have the same

parent slope fluctuates slightly over the interval, spanning thelopea’=0.9 GeV 2.

range 0.97-0.91 GeV (see Fig. 2 After careful numerical evaluation of baryon and meson
Slopes for the charm family are highly nonlinear func- spectra for all flavors we have shown that the point of estab-

tions ofL. TheN,=0,1, slopes increase monotonically, start-lishment of linear RT depends on the exponenin the

ing from 0.39 and 0.55 GeV? and approaching 0.889 and

0.893 GeV'2, respectively. The\, =2 slope has a dip dt TABLE Ill. Median values (a'); for trajectories with N,

=4, and grows continuously, reaching 0.897 GéVThese =0.1.2.

\;zgjrﬁ;ti;ifl[n;gfdentlcal to Olsson’s results for mesons for N, Up-down Strange Charm Bottom
Bottom baryon slopes diffesharply from the u-d-s-c 0.90 0.95 0.73 0.31

0
sector, first, by their small magnitude, and second, by the 1 0.87 0.95 0.77 0.34
significant increase of the slopes along the trajecttmg B 2 0.84 0.94 0.81 0.37
slopes increase by about an order of magnitude, from 0.055
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power law potential in Hamiltoniafil), and occurs at larger massive end§l11] results in the more complicated behavior
L with larger v. The linear regime started only from>20  of RT. For this model the relatiof®) takes place only in the
for the oscillator confinementy=2) and it started froni high-energy limit[11,12.
>18 for the linear confinementvE&1). String models of baryon were suggested in four variants
We proved that for mesons linear RT is established earliediffering from each other in the topology of spatial junction
than for baryons as a function &f The reason lies in cen- of three massive pointguarks by relativistic strings(a) the
trifugal energy term, which hds(L+ 1) dependence for me- quark-diquark modefj-qq [12] (on the classical level it co-
sons and I( +3/2)(L +5/2) dependence for baryons. As we incides with the mentioned meson modéfL,23); (b) the
see, three-dimensional correctionslt¢L +1)-law are im- linear configurationg-g-q with quarks connected in series
portant for baryons. [15,25; (c) the “three-string” model or Y configuration
with three strings joined in the fourth massless pdjatc-
tion) [26,27]; and (d) the “triangle” model orA configura-
tion that could be regarded as a closed string carrying three
The string models are widely used for describing orbitally pointlike masse$28,29.
excited hadron states by virtue of some remarkable features: The classical equations of motion and the boundary con-
(a) the direct analogy between the string with linearly grow-ditions on the quarktrajectories in these models are deduced
ing energy and the QCD confinement mechanism of connecby variation and minimization of action for each of men-
ing quarks(antiquark$ by the gluon field tub¢23]; (b) the  tioned string hadron mode[41,15,23,28,3D In particular,
strings are relativistic by definitioh;c) the energyE=M under the conditions of orthonormalitithey may be ob-
and the angular momentuthof a rotating oper{massless  tained for all configurationg23,28)) the equations of motion
string are connected by the Nambu relatj@d] become linear

Ill. STRING MODELS

J=a'M?, a'=2my) % (4) PPXH - PPXH
- =0, )
prs o2

wherev is the string tension. This fact allows us to apply the
string models to describing the RT. and the boundary conditions take the simplest form
The massless string generates the strictly linear(®T

But more realistic meson model of relativistic string with d Vi e
m,— - =F[. (6)
dr |Vl
The relativistic string dynamics results from the extremization of
a world surface area swept by the string in Minkowski space. 2The term “quark” here is equivalent to “material point.”
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Here x“=X*(r,0) is the string world surface in stitutiondby J(J+1) and=] ;s; by the phenomenological
d-dimensional Minkowski spacen; are masses of the mate- parameterm, . The valuesa, (different for various RT are
rial points (quarks, V= (d/d7)X*[r,0;(7)] is the tangent calculated by fitting.

vector to theith quark trajectoryoc=oc;(7); the tension The rotational motionguniform rotations about the sys-
forcesF{‘=iyY{‘|ng for a quark at an end of the string, tem center of magsfor the “triangle” baryon model
but F#*= yY{‘|0=0i+o— 7Yiﬂ|0=0r0 for a quark in the “tri- [15,28,29 may be presented in the form

angle” model and for the middle quark in tlieq-g system T _
[28], Y= 3,X*+ ol (1)3,X*. The derivatives ofX*(r,0o) X0=7— oo X+iX?=u(o)-e'“". (10
are not continuous at= o; in general. Some additional clo-
sure conditions for the configurations [28,29 and Y  Here the values;, D= 03— 0, V?, 7 — 7=T are the con-
[26,27) (for the junction are required. _ __ stants,X*(r,00) =X*(7*,03) is the closure condition, the
The string models are successfully applied to descnbmgzommex function  u(o)=A, coswo+B; sinwa, o
the main or parent RT. For this RT, that is for the orbitally e[a;,01.4] is continuous Mo, a5]. Expression(10) is
exgited hadrons_ the rotatiqnal motions of all string configu-ihe solution of Eq(5) and satisfies the orthonormality, clo-
rations (flat uniform rotations of the systémare used gyre and boundar(6) conditions if six complex constants
[12,14,15,29 The solution of this type satisfying E¢5), A ,B; and the parameters of the motitk0) o, D, T, o, v;,
conditions (6), and describing the uniform rotation of the ml /ylare connected by a set of relatiqﬂ§,2§—31. Astrir;g
rectilinear gtring is. well known for the meson string model pcl)sition for this statéa sectiort = const of the surfacél10)]
[11,23 (or its equivalentq-qq mode) and for theq-d-a s the closed curve composed of three segments of a hypo-
baryon configuration. It may be represented as cycloid.
XO=t=7, X'4iX2=w lsinwo-e*". @) The energy and the angular momentum of the sth@
are[28,29
Here X!'=x, X?=y, w is the angular velocity, o .
eloq,0n], oj=const,c,<0<oy, N=2 for the meson. T? m
For the linearg-g-q configuration hereN=3 and the M=+D 1_§ +i:1\/:2
middle quark is at rest at=o,=0. But this motion is un- 1=
stable with respect to centrifugal moving away of the middle

+AM,

3 2
quark that results in the complicated quasiperiodical motion 3= 1 ol 1- T? +2 m;v; +5
[25] but without transforming into the configuratianqg. cwl” 2| & \/1——v|2 '

So theg-g-q system is probably applicable not to pure or-
bital excitations but to radial ones. The rotational motion of
the “three-string” model with the junction at rest and with

rectilinear string segments joined in a plane of rotation at th - e ; ; : .
angles 120 (26,27 is described by the expression similar tng:n |sb;/: Iaﬁg‘gg'”;ﬁ;ﬁ;’;& It ;3 eicrizﬁs:’hm g;rtur:lu
Eq. (7). i - S .
For the meson string model and for the baryonic configu- Mo D/(‘_Tl 70), k=nliMy,_oT/D. The states with
n=3, k=1 (simple state§29,31]) are used below for de-

scribing the RT. It was shown in Ref32] that they are

wherev; are the quark velocities.
A set of topologically different configurations of the sys-

rationsg-qq (N=2), g-g-q, and Y (N=3) the energyE
=M and the angular momentuthof the considered rota-

tional motions aré11,12,15 stable (unlike in the g-g-q case[25]), in particular, with
respect to transformation into theg“qq” state withn=2,
y m, k=0.
M=, | —arcsin; +———| +AM, (8) In the two variants of describing RT with the help of
i=1| @ 1-v? string models in Refd.12] and[15] the spin-orbit correction

to the energy

N [ 2
1 /vy m;v;
J=E —| —arcsinv; + - +5;
i-1| 20\ w 1_Ui2

) AMSL=Ei B(v)(ws) (11

where v;=sinwo;|=(Mw/2y)?>+1-mw/2y are the ve- were used in the two different forms. In Rg12] the expres-
locities of moving quarks. The presence of quark spins witrsion B(v;) = —[(1—vi2)_1/2— 1] is due to the Thomas pre-
projectionss; (EiN=lsi=S) is taken into account as the cor- cession of the quark spins. It is obtained under the assump-
rection AM to the energy of the classic motion. In Refs. tion that in the quark rest frame the field is pure
[12,15 this correction is due to the spin-orbit interactithe ~ chromoelectric[12,33. The alternative assumption about
spin-spin correction is assumed to be small in comparisoipure chromoelectric field in the rotational center rest frame
with the spin-orbit one at high). results inB(v;))=1—(1—v?)*?[15,33.

Soloviev[14] considers the dynamics of rectilinear meson  The ultrarelativistic asymptotic behavior of the depen-
string with some form of spin terms in the action and obtainsgdenceJ(M) for the g-qqg or mesonic string with massive
the expressions similar to Eq®),(9) with AM =0, the sub- ends[11,34,33, Y and A configurations has the form
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TABLE IV. Input parameters in the string model. '

Y= Yq-qq=0.175 GeV w=5y Ya=387 or |
m,=my=130 MeV mg=300 MeV m.=1600 MeV
5
N

J:a’,MZ_VMlIZE mi3/2+AJ, Ui_71, (12) al
=t N(1990)
where o’ =(27y) ! for the meson andj-qq models, «’
=2(2my) tforY anda'=n(n?—k?) " 1(2mwy) lfor A (v
also different for these configuratioh5,30]). The termAJ 2r
equalsAJ== ,s[1— B(v;)] for the spin-orbit correction
(11) [15,30 and AJ=a,—1/2 for the meson string model  1¢
[14]. .
The Regge slopa’=0.9 GeV ? is close for mesons and . . . s . . . .
baryons. So the effective value of string tensigrnis to be ¢! P e e
different for the baryon models Y, “triangle”(simple

state$, andg-qq. The following values of the parameters are ~ FIG. 4. RT forN baryons with)”=1/2",3/2%,5/2",7/2*, . . . .

used heréfor this values the baryon configuratiogsqq, Y,

andA result in very close RL The dependencd=J(M?) for the string models “tri-

In Refs.[12] the g-qq model with the valuesn,q=340 angle” and “three-string” is shown in Figs. 3—7 as solid
MeV, mg=440 MeV is used. But the Thomas precessionlines (under the conditions in Table IV these curves practi-
term in Eq.(11) results in the strong dependen@®m 220  cally coincidg. Dots correspond to thg-qq model and they
to 550 MeV) of the diquark mass on the spin state. On theare very close to the previous curves. String hadron models
other hand in Ref.14] the current quark masses are used forf12—15 at the modern stage ateemiclassical and do not
describing mesons. describe the isospin and parity. So in this paper we use only

In this paper we use the string modets-¢§q, Y, andA  the spin projectionS=Xs; (here J=L+S) for modelling
for baryons with the parameters in Table IV and the spin- various RT. For example, in Fig. 3 tiN:states with positive
orbit correction(11) with B(v;)=1— (1—vi2) Y2 for describ-  and negative parity may be described as two different RT in
ing parent RT. The results for light baryonsl @ndA RT)  all (potential and stringmodels. In the string models the
are shown in Figs. 3-5. The particle data are taken from thepin state$=1/2 andS= — 1/2 are used for these two RT —
PDG98 issud36]. In Fig. 3 theN-baryon states withl®  the curvesl=J(M?) are close to rectilinear and fit the ma-
=1/2*, 3/27, 5/2%, 7/2", ..., areplaced and described by jority of states, except for the nucleoh € 0) and the states
our two models as two different RT. The dotted line showswith M >3000 MeV which need confirmatidri9] (they are
the potential moddl10] predictions for the RT with positive omitted from the summary tab|&86]). But the latter baryons

A, Y string models; S =1/2
——————— potential model, P =1

————— potential model, P=-1

parity p1/2*, N(1680)5/2, . . . ; thedash-dotted line corre- are described in the potential modéD] rather well.
sponds to the states with negative parity. The same notations For the A resonances in Figs a similar picture takes
are used in Figs. 4-8. place. The states on th#&(1232) trajectory with positive

T T T T T ———
/N:“W: ; : : : :
- Wy
9 3500 /// e E 101 a) =172, 3027, 82,727 ... A37005 " A(/OB)
- - £
) . ) ——i
= P - A, Y string models e =3
8 P i 1 i p— potential model, P =1 7 e 1
- - P
o7 —— - potential model, P=-1 - _-“A(3300)
- i N(3500) 8| o s g
7L = J A(2950) A
e /_/
- 7+ . -
6 4
6 _
51 4 J
J st /-
~ A(2300)
s J
s
3 N(1680Y 1 3
/ — A Y string models
2 AE S dieee. q-qq string model E 2+
----- potential model, P =1
Ww 2,  mee- potential model, P=-1 R
° L S=-312 * A(1910)
0 L 1 Il L 1 Il L 0 4 ] 0
0 2 4 6 8 10 12 14 16 M2, Gev?: 1 2 3 4 5 6 7
M2, Gev? M2, Gev?
FIG. 3. RT forN baryons withd®?=1/2",3/27,5/2",7/2", ... . FIG. 5. RT forA baryons.
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A(2585)

string models

A(2350) [ === potential model

A(2100)

A(1820)

A(1890) =(1820)

=(1315)

ot PPt FIG. 6. RT for strange baryons.

4
*0(1672)

R

4
M2, GeV

parity are supposed to haw=3/2. In Fig. 4 theN-baryon V. DISCUSSION AND CONCLUSION
. P_ . + . .
states with)™=1/2", 3/2", 5/7°, .. ., aredescribed by wo During the last two decades, a number of authors have

d|fferen.t RT in the potential modglLO] or by one RT. with shed some light on the problem of RT in the meson, baryon,
S=1/2in the string models. Remember that the string mOd'and glueball sectors. Our approach in this paper is to analyze
els are not applicable to the states with sndadir L. Other- '

. . ; both pure experimentaRT and predict properties of the RT
wise, the potential mod¢lL0] is the most adequate for small in twg differ(gnt models: stringpand pcﬁenﬁial This way we
L. It describes the strongly nonlinear RT generated b ' ' .
N(1535) 1/2 (Fig. 4 and A(1910) 1/Z [Fig. 5b)]. The yhope to understand better the fundamental property of RT

string models do not predict such nonlinear behayian- its linearity and when it idroken In particular, our analysis
ng predict su ! of all available data from PDG9R36] reveals that the fol-
vexity) at smallJ.

. . lowing RT are essentially nonlineésee Table V.
. In Fig. 6 the results of the string modelsand Y 9'qq So, in total we have six baryon and ten meson experimen-
is close to themfor the strange baryond, 3, andE are

ted. Th tential aD dicti | tal RT, which we consider asssentially nonlinearWe defi-
represented. The potential mod@D] predictions are calcu- nitely witness the fundamental fact, that RT are not linear as

lated for() baryons. The string models are the most adequatg rule — it depends on intrinsic quark-gluon dynamics. One

for the particles, whosg Spin state may be mterprete& S can observe nonlinearity for various RT in all current reso-
= =*1/2 or for the RT withS=3/2 and with large] (Fig. 5).

In the charmed sectdFig. 7) we know only a few states
with J=3/2 and only one of them -A };(2625) — may be ¢ - ' ' ' - ' '
interpreted as the orbital excitation ij . In Fig. 7 these | ........ quark - diquark
particles are described by tlgeqq, Y andA string configu-
rations with the spin stat8=1/2 and the summary spin of
the light quarkss,+sy= 0 (the upper curves in Fig.) &imi- . .
lar to the strangeé\ RT in Fig. 6. For the stat& . the trajec- 25| )
tories with S= —1/2 ands,+sy= —1 are suggested. J Ry

For any string baryon model the corresponding meson- 2 RN .
like model with the saméor correspondingstring tension, A2625) )
effective quark masses, types of spin correction must de- 15 -
scribe the RT in the meson sector. The results of this “me-
son test” for the string moddl15] are represented in Fig. 8  'f
for light and strange mesons in comparison with the results
of the string meson modé¢lL4]. The latter model contains
more fitting parameter&@ set ofa, in addition toy andm;)

three - string

triangle

05

so it describes some mesons better. But the results of thi 2 3 ¢ s S et 8 0 TR
model [15] are satisfactory for the majority of light and P
strange meson states. FIG. 7. RT for charmed baryons in string models.
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a) light mesons b) strange mesons

— — - Soloviev [14]
—_8=1
—— §=0

Sharov [15]

M2, Gev?

nance region — for low or large moment&lopes for the
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FIG. 8. RT for mesons in string models.

recently have noticed weak nonlinearityof the mesonic RT

experimental RT in Table V strongly differ from the standard[4] using MVC.

a'=0.9 GeV ? and vary significantly along the given RT Dey et al. [6] described RT for mesons and baryons in

(o0~1 GeV?). g-deformed model and found a strong effect of nonlinearity
Now we return to theoretical predictions and interpreta-for these RT, for rotational and radial excitations, including

tions of RT for hadrons. In the series of papg8} the au- ~ daughters. They study—b, p—a, K, K*, ¢, o—f, Y, ¥

thors introduced a new procedure for the solution of the SENeson families andl, A, A, X baryon families, computing

for mesons, that is based on the expansion in the PlanckPectra up ta=17/2.

constant. In contrast to a number of papers, which em-
ployed a WKB approximation, the authors of R€5] as-
sumed that their procedure will work for large as well as for
small valuesN,, and that this method is complementary to
the WKB method. The authors of R€f5] investigatedp
—a,, J/V¥, andY parent and daughter RT and show that all

usually employed potentials lead to nonlinear RT in the reso- TABLE V. Slopes for nonlinear ba

. ) | X ’ FAti H 2
nance region. However, they did not consider baryonic syst®')» mean square deviation in GeV™?).

In his seminal pap€]7] 't Hooft developed an N, rela-
tivistic, toy model for mesons, and he got a RT possessing
some nonlinearity: “... deviations from the straight line are
expected near the origin as a consequence of the finiteness of
the region of integration and the contribution of the mass

ryon, meson R&'( average

tems and did not show that the model adequately describes

the experimentameson spectrum. RT for baryons  slopeg’ for neighbor pairs (a’) o
The authors of Refl3] investigated the baryon's RT in N 3/2- parent  0.80 1.02 0.702 0.45 074 0.20
the relativistic approach, based on the method of vacuuma 1/2* parent  3.53 1.20 0.40 171 133
correlators(MVC). Deriving the solutions of the dynamic  n 1/~ parent  4.44 0.89 267 1.78
equations the authors neglected the spin, isospin, Pauli prin-y /o~ radial 273 0.61 167 1.06
ciple, and one-gluon exchange potential, and thereby de-\ 3/~ adial 1.72 0.70 121 051
duced that the RT were linear and found tNe A mass A 1/2° parent  1.82 0.98 1.11 0.60 0.34 097 051
spectrum up t& =6. They found that slopes of baryonic and
mesonic RT are equalaf =0.75 GeV ?). It is interesting RT for meson | , (a’
that the authors compare these results with the previous pa- or mesons slopes ) 7
per of one of the author$.R) [2], where the nonrelativistic ~ f(0™*) parent ~ 3.00 0.78 0.94 158 1.01
SE with the power law confinement potentidl® was used. K(0") parent  0.73 1.14 0.34 1.25 0.87 0.36
The authors of Ref[3] concluded that both methods gave ,—a, parent 0.87 0.90 0.82 0.69 2.08 1.07 051
very close spectra and linear RT. However, the above-cited vy radial 0.09 0.15 0.21 0.16 0.30 0.18 0.070
_authors[S] sharply criticized the papég] for misrepresent-  , (1p) parent  1.58 2.37 197 0.40
ing the real picture in the resonance region, where the trajec-), (2p) parent  2.02 3.66 284 082
tories have a nonlinear character. Simonov lends support to - j;y adial 0.25 1.60 2.11 1.03 0.46 109  0.69
our thesis in his collaboration with new authors; they very f, radial 1.09 2.68 0.55 6.1 1.68 242 197
f, radial 2.39 2.48 4.27 1.64 1.82 2.88 1.39
49519142513
3But the data for the upper states with the largkste not reliable xc(1P) parent 1.54 3.15 234 0.80

in some casefg36].
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terms - - .” Mostly, the results of numerical analysis are de- creasing with increasing quark mass. Martin’s formulas are
scribed by the WKB mass formula with nonlinear logarith- very different from the FP$9], and he also noticed nonlin-
mic term. earity effects for RT in the resonance region.

We want to stress that few groups of authors simulta- Goldman and co-workefg2] used an unquenched lattice
neously noted and discussed the nonlinearity of the experpotential and computed the bottomonium spectrum. They
mental RT forJ/¥ andY families and its interplay with demonstrated numerically that the effect of color screening is
current theoretical quark models, namely lachflh Semay to producetermination of nonlinear hadronic parent and
[37], StepanoV{5], Dey [6], and Sergeenk$38]. Johnson daughter's RT. These results are supported by recent lattice
et al.[39] used a semiclassical relativistic model for the or-calculations, which obsenaring breaking 43]. It would be
bital spectra of mesons, based on the assumption of a uninteresting to study the effect of color screening on light
versal, flavor-independent linear confining interaction. Theyquarkonia and baryon’s RT.
consideredyrast linesfor the familiesw, 7, 7', p, o, K, The results of our string and potential model fits and pre-
K*, ¢, D,D*, Dg, D¥, and, in particular, noted that and  dictions for baryon and meson spectra and RT reveals dis-
K families do not lie on linear Chew-Frautschi plots. Johnsorfinctive feature — RT in many cases arenlinearfunctions
also found that thé&<* family and p family have different of J. This fundamental feature is in accord with analysis of
slopes. pure experimentaRT from PDG98(Table V), and with pre-

Durandet al. [40] also obtained varying slopes, describ- dictions of different quark models, reviewed in this paper.
ing spin-averaged spectra of strange, charmed and bottofRégge trajectories for mesons and baryans not straight
mesons in the Bethe-Salpeter approach. Their range of varig@nd parallel lines in general in treairrent resonance region
tion for the slopes is very similar to that of tiieexpansion both experimentally and theoretically, buéry oftenhave
technique5]. appreciable curvature, which is flavor-dependent. The effect

lachello[41] analyzed parity doubling phenomena in the of nonlinearity for a set oN andA baryon RT is described
meson and baryon sectors. He has found out that parity dodpere in the frameworks of the considered potential model
bling definitely takes place at low momenta, maximally pro-[10] (Figs. 3—5. This model predicts various forms of non-
nounced at)J=5/2, both experimentally and theoretically. linear behavior for the RT with various flavo(Bigs. 1,2.
Then, only at higher momenta linear RT appeared. It is mar- On the other hand, the string models of hadrph,15
velous, that our moddl10] practically reproduces indepen- With the standard action generate asymptotically linear RT
dently Figs. 10,11 from Ref41]. with some form of nonlinearity at small (only modifica-

An attempt to describe analytically the quark-mass depentions of the action result in nonlinear RTNevertheless, on
dence in the meson RT for all flavors was made in Rgf. the basis of the considered string modi&b] one can de-
where the simple phenomenological model was built. Thescribe the majority of the light and strange RT for baryons
authors definitely got the gross feature of decreasing slop@nd mesonsFigs. 3—8. The adequacy of this description is
with increasing quark mass. The major drawback of R&f.  better for the most linear RT.
is that the authors did not account fdrdependence of the

slopes. In spite of this oversimplification, the trend of their ACKNOWLEDGMENTS
results roughly resembled that of our Table IIl for median
values{a'); . A.l. is very grateful to G. Khaskin and Simon Fraser Uni-

Martin [1] also considered parent RT for mesons andversity, Burnaby, Canada for the help with computing facili-
baryons in the WKB approach and has derived singsla-  ties. G.S. is grateful for support by the Russian Foundation
lytical formulas for flavor-dependent slopes, which are de-of Basic Researckgrant 00-02-17359
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