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Skyrmion–anti-Skyrmion annihilation with v mesons
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Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396

~Received 21 September 2000; published 7 February 2001!

We study numerically the annihilation of anv-stabilized Skyrmion and an anti-Skyrmion in three spatial
dimensions. To our knowledge this is the first successful simulation of Skyrmion–anti-Skyrmion annihilation
which follows through to the point where the energy is carried by outgoing meson waves. We encounter
instabilities similar to those encountered is earlier calculations, but in our case these are not fatal and we are
able to simulate through this process with a global energy loss of less than 8% and to identify robust features
of the final radiation pattern. The system passes through a singular configuration at the time of half-
annihilation. This is followed by the onset of fast oscillations which are superimposed on the smoother process
which leads to the appearance of outgoing waves peaked at roughly 45° to the incident direction. We inves-
tigate the two prominent features of this process: the proliferation of small, fast oscillations and the singular
intermediate configuration. We find that our equations of motion allow for a regime in which the amplitude of
certain small perturbations increases exponentially. This regime is similar but not identical to the situation
pointed out earlier regarding the original Skyrme model. We argue that the singularity may be seen as the result
of a pinch effect similar to that encountered in plasmas.

DOI: 10.1103/PhysRevD.63.054020 PACS number~s!: 12.39.Dc, 11.10.Lm, 13.75.Cs
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I. INTRODUCTION

The attractive idea of representing nucleons as soliton
the effective pion field was proposed by Skyrme long bef
the advent of QCD@1#. In the context of QCD, the idea
remains equally attractive; moreover, the approach beco
exact in the largeNc limit @2#. The Skyrme approach gives
classical, nonperturbative picture of hadrons in the contex
low-energy QCD. Many properties of nucleons are reo
tained using a model of quantized spinning solitons of
pion field @3#, including the static nucleon-nucleon an
nucleon-antinucleon@4# potentials.

The main difficulty in using the Skyrme approach as
starting point for an effective dynamical theory of nucleo
lies in the fact that all such enterprises must use numer
calculations to describe the dynamics of the solitons. No a
lytic solutions are known. One path is to study the class
dynamics of Skyrmions and use the results to build up
quantum dynamics of nucleons based on the model of
static nucleon as a superposition of spinning Skyrmio
Conceptually the simplest process one might study this w
is low-energy nucleon-antinucleon annihilation since in t
case there are no nucleons in the final state. At low ener
the initial state is reasonably well described by Skyrmio
while in the final state there are only mesons which again
well described by the effective theory@5#.

Simulating soliton-antisoliton annihilation has proved
be a difficult numerical problem. Previous attempts to sim
late the annihilation of a Skyrmion–anti-Skyrmion pa
@6–8# using the original Skyrme Lagrangian encountered
merical difficulties. The problem has been@7# traced to a
deviation from the hyperbolic nature of the equations of m
tion, resulting from the contact nature of the Skyrme ter
Another possible concern is that the low-energy approxim
tion becomes questionable during the annihilation proc
when the energy tied up in the solitons is suddenly libera
Notwithstanding, below we present the first successful
tempt at such a simulation using omega stabilization inst
0556-2821/2001/63~5!/054020~17!/$15.00 63 0540
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of the Skyrme term. We are able to follow the Skyrmio
from incidence through annihilation to pion radiation. A
interesting phenomenon involving a possible pointlike sing
larity arises in our calculation that might actually simpli
the analysis; however, our objective for now is to obtain
base line calculation using classical Skyrmion dynamics.
will return to a detailed discussion of the singularities in
subsequent publication.

In this paper we present our results on Skyrmion–a
Skyrmion annihilation using a model@9–11# which couples a
U(1) vector field ~the v) to the winding number of the
SU(2) ~pion! field. This coupling replaces the Skyrme ter
for stabilizing the Skyrmion. The idea of replacing the high
nonlinear Skyrme term with a coupling to additional vect
fields, in particular to thev, goes back to Adkins and Napp
@11#. It has been widely used in studies of the Skyrme mo
~see@3# for more details!. The configuration of the pion field
in the static hedgehog Skyrmion is similar to the tradition
one. Thev field in this case has only anv0 component.
Numerical studies of the static interaction of such Skyrmio
@4# have been performed earlier. We have studied the cla
cal scattering of two such Skyrmions@9# for a variety of
relative groomings and impact parameters, and found tha
corresponding dynamics is very similar to that of tradition
Skyrmions. The omega stabilization is gentler than
Skyrme term and should thus lead to less violent behavio
the simulations. We are able to follow through the annihi
tion process to the point when the energy is carried by o
going spherical~pion andv) waves. We encountered signifi
cant, but not fatal, numerical difficulties, and could ensu
energy conservation to better than 8%. Our programs are
up for general initial conditions, and we will investigate th
dependence on those separately. The results we presen
low refer only to the head-on annihilation process with fix
initial velocity. To our knowledge the annihilation proce
has not been followed this far previously.

The annihilation itself, in the sense of the unwinding
©2001 The American Physical Society20-1
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the baryon number, takes place in a time comparable to
size of the Skyrmions. It proceeds through an intermedi
state which has a pointlike singularity, which results in t
concentration of the total energy in a very small regi
around the symmetry center. This is followed by fast os
lations which last for a time comparable to the unwindin
and then gradually give way to outgoing~quasi!spherical
waves which are suppressed at small angles and peak ar
45°.

For the original Skyrme model, the Skyrme term w
identified as the source of numerical instability@7#. Our ef-
fective Lagrangian does not have a similar local se
interaction term for the pion field. However, we have e
countered numerical problems similar to those expec
when the equations are no longer purely hyperbolic
namely, the appearance of persistent fast oscillations of s
amplitude which make the simulation difficult. After a mo
careful analysis, we found that our equations of motion a
allow for nonhyperbolic solutions~i.e., plane waves with
imaginary wave number! albeit at a higher order than th
Skyrme equations. Fortunately, in our case these oscillat
are weak enough so as to not completely destroy the lo
wavelength features. Thus our central results seem to be
bust and independent of the violent short-wavelength beh
ior.

The most prominent feature of the annihilation proce
and probably the ultimate source of our numerical diffic
ties, is the fact that close to the point of half-annihilatio
when the original tips of the Skyrmion and the an
Skyrmion merge, the pion field has a singular configurati
The fields themselves are continuous, but the derivatives
singular. We do not yet have a complete, quantitative und
standing of this phenomenon, but it is clear that it consists
the axial baryon current~which carries out the annihilation!
being squeezed into a very small, probably pointlike cr
section. This feature is localized in thex50 symmetry plane
~the one that separates the Skyrmion and the anti-Skyrmi!,
and arises close to the moment of half-annihilation.

In the following section we define our model Lagrangi
and derive the equations of motion. The main part of t
paper is contained in Sec. III, where we describe our num
cal results on the phenomenology of axial-symmetric ann
lation and discuss our simulation. The first part of this s
tion describes our calculation, with emphasis on aspects
already discussed in@9#. The reader interested only in th
phenomenology of the annihilation may skip directly to S
III B and omit Sec. III C where we present numerical chec
to assess the reliability of our results. In Sec. IV we inve
gate the stability of our equations of motion against sm
plane-wave-like perturbations, in the spirit of@7#, and at-
tempt to identify signs of nonhyperbolicity in our results.
Sec. V we discuss the appearance of a singularity in the p
field at the moment of half-annihilation. While we can u
derstand qualitatively the mechanism that produces this p
nomenon, a full understanding will require more focused
vestigation. In Sec. VI we summarize our results and mak
wish list of further work. The Appendix contains a mo
detailed description of our numerical algorithm.
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II. MODEL

Our Lagrangian consists of the nonlinear sigma mo
piece

Ls5
1

4
f p

2 tr~]mU]mU †!1
1

2
mp

2 f p
2 tr~U21! ~1!

and the omega piece

Lv52
1

2
]mvn~]mvn2]nvm!1

1

2
M2vmvm, ~2!

which are coupled through the baryon current:

Lint5
3g

2
vmBm,

~3!

Bm5
1

12p2
emnabtr@~U †]nU!~U †]aU!~U †]bU!#.

The SU(2) fieldU is parametrized by the three real pio
fields $pk%k51,35pW or by the four ‘‘Cartesian’’ components
C5$CA%A50,3:

U5exp~ i tW•pW !5C01 i tW•CW 5SACA ~A50, . . . ,3!. ~4!

In our previous calculation we have used thep parametriza-
tion exclusively. For a detailed derivation of the equations
motion and a description of the corresponding numeri
method we refer the reader to@9#. The more traditional
method is to use theC parametrization. That choice of var
ables has the advantage of being more transparent. Below
derive the equations of motion in theC parametrization and
describe a way to employ them in simulations without ha
ing to deal with Lagrange multipliers as dynamical variabl
We used this approach to perform numerical calculations
gether with another code based on thep parametrization.
The equations of motion below are crucial for the analy
presented in Sec. IV.

In the C parametrization the baryon current is

Bm5
1

12p2
emnabeABCDCA]nCB]aCC]bCD, ~5!

and the nonlinears piece is given by

Ls5
1

2
f p

2 ]mCA]mCA1
1

2
mp

2 f p
2 ~C021!. ~6!

TheCA’s are subject to the chiral constraint which is equiv
lent to the unitarity condition on theU’s:

UU †51→CACA51. ~7!

To get meaningful equations of motion, we must impose t
constraint separately on the componentsCA. One way is to
introduce a Lagrange multiplierl, adding a term
l/2(CACA21) to the Lagrangian. The physical meaning
the multiplier is similar to that of ‘‘reaction’’ forces in me
0-2
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chanics, which enforce constraints without performing a
work. Obviously, the equation of motion forl is just the
constraint equation~7!, which now has to be solved alon
with the other equations of motion.

Our task is to solve formally the ordinary equations
motion for the dynamical variables and their derivative
These will containl. Then, one uses the result and the co
straint equation to solve forl. Below, this will turn out to be
straightforward.

To obtain the equations of motion forCA, start with the
derivatives ofLs1Ll :

d~Ls1Ll!

d~CA!
5mp

2 f p
2 dA0C01lCA,

d~Ls1Ll!

d~]mCA!
5 f p

2 ]mCA, ]m

d~Ls1Ll!

d~]mCA!
5 f p

2 ]m]mCA.

The derivatives ofLint are

dLint

d~CA!
5

g

8p2
emnabvmeABCD]nCB]aCC]bCD,

]n

dLint

d~]nCB!
5

3g

8p2
$emnabvmeABCD]nCA]aCC]bCD

1emnab]nvmeABCDCA]aCC]bCD%.

The CA equation of motion is

f p
2 ]m]mCA5

3g

8p2
eabmneABCDH ]nvmCB]aCC]bCD

1
4

3
vm]nCB]aCC]bCDJ 1mp

2 f p
2 dA0C0

1lCA. ~8!

We can now proceed to eliminatel. The chiral condition
means thatC5$CA% is a four-dimensional unit vector. Thi
leads to constraints of its derivatives. The first derivative
C with respect to any one of the four coordinates must
perpendicular toC and so on:

CACA51→]mCACA

50→(
A

~]m
2 CA!CA1(

A
~]CA!250

or, after summing overm,

]m]mCACA1]mCA]mCA50. ~9!

Geometrically this means that the component of]m]mC par-
allel to C is not a dynamical variable, but rather it is dete
mined by the constraint. The corresponding part of the eq
tion of motion~8! therefore carries no information aboutC.
Instead, it tells us whatl should be in order to make sure E
~9! and thus Eq.~7! are verified.
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Now we just project Eq.~8! onto C and solve forl:

l5 f p
2 CA]m]mCA

2
g

2p2
emnabeABCDvmCA]nCB]aCC]aCD

2mp
2 f p

2 ~C0!2

52 f p
2 ]mCA]mCA

2
g

2p2
emnabeABCDvmCA]nCB]aCC]aCD

2mp
2 f p

2 ~C0!2. ~10!

From the second form it is clear that we have indeed sol
for l. Remember that we have a set of second-order pa
differential equations. An initial condition specifies all th
fields and their first derivatives, so the right-hand side of
second equation contains only known quantities. We
now replace this expression forl into the full equation of
motion.

One more observation is necessary. SinceC is a unit
vector, all the]mC’s are perpendicular to it. Consider th
quantity

emnabeABCD]nCB]aCC]bCD. ~11!

Each nonzero term in the sum over Lorentz indices is p
pendicular ~in isospin space! to three distinct vectors
]nC, . . . , all of which are perpendicular toC. ~Contracting
with any of them would give zero because of theeABCD.!
Furthermore, the three vectors have to be linearly indep
dent in order to give a nonzero contribution. But there a
four mutually perpendicular directions altogether in th
space; therefore the above quantity is necessarily paralle
C:

emnabeABCD]nCB]aCC]bCD

5CAemnabeEBCDCE]nCB]aCC]bCD. ~12!

Now we are ready to replacel in the equation of motion,
and we obtain

f p
2 F ~]m]mCA2CA~CE]m]mCE!#

5
3g

8p2
eabmneABCD]nvmCB]aCC]bCD1mp

2 f p
2 C0~dA0

2CAC0!. ~13!

The left-hand side is just the piece of]m]mC which is per-
pendicular toC, (]m]mC)'5]m]mC2C(C•]m]mC). So
the equation of motion is written compactly:
0-3
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~]m]mCA!'2mp
2 C0~dA02C0CA!

5
3g

8 f p
2 p2

eabmneABCD]nvmCB]aCC]bCD. ~14!

It is easy to derive thev equation of motion

]n]nvm5]m]nvn2M2vm

1
g

8p2
emnabeABCD]nCACB]aCC]bCD.

~15!

This completes the set of equations of motion in theC pa-
rametrization. They have the virtue of being more transp
ent than the ones based on thep fields.

III. NUMERICAL RESULTS

This section contains the central result of the paper. T
reader interested only in the physics of annihilation as
understand it may skip the technical part of the first subs
tion and the third subsection in its entirety.

The purpose of the work reported here is to establish
which extent a numerical simulation of Skyrmion–an
Skyrmion annihilation can be performed in thev-stabilized
model. We will see below that this simulation can indeed
performed successfully.

In the following subsection we describe our choice
parameters for the problem. These choices were driven
the fact that to our knowledge this is the first success
calculation that follows through the annihilation of a stab
three-dimensional soliton and its antisoliton;1 therefore our
focus was on performing the most numerically access
calculation which has the important qualitative features
the general case.

The second subsection contains a detailed descriptio
the phenomenology of the central annihilation calculati
The annihilation proceeds through a sequence of very f
varying intermediate configurations where most of the to
energy is concentrated in a region of about half the lin
size of one Skyrmion. This is followed by outgoing wave
which we followed for about 5 fm/c. Fast oscillations of
small amplitude accompany the radiation phase.

The third subsection reports numerical checks on the
liability of our calculation. We compare results for the sam
calculation performed with different lattice spacings a
show that while there are fluctuations, the macroscopic
tures, such as the time dependence of the energy flow an
angular distribution, are robust.

A. Simulation

The main challenge of this calculation lies in coping w
the fast spatial and temporal variations of the field in

1A very interesting recent calculation of scattering of metasta
baby Skyrmions@12# reported results on annihilation as well.
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annihilation process. These require finer spatial grids
smaller time steps than smoother processes such as so
scattering in order to avoid increasing numerical error wh
ultimately can make a calculation meaningless. Our cho
of parameters is motivated by the desire to reduce this p
lem as much as possible.

We chose parameters close to those used in our prev
work on scattering@9#, but took a smaller mass for the vecto
field. This choice leads to a softer dynamics, but a dynam
which does not differ qualitatively from that for a physic
mass. Our choice of parameters is therefore the same a
@9#, with f p564 MeV, mp5139 MeV, g5mv / f pA2, but
mv5385 MeV. The Skyrmions in our case are slight
smaller in spatial size (1.1 fm versus 1.4 fm in diamete!,
and have a mass of 650 MeV.

We consider the special case of head-on annihilation.
original direction of motion is along thex axis. The Skyr-
mion and the anti-Skyrmion are located symmetrically
opposite sides of thex50 plane, with their centers on thex
axis. The Skyrmion is a standard hedgehog field configu
tion centered atx521.5 fm. The anti-Skyrmion is obtaine
by charge conjugating a hedgehog configuration centere
x51.5 fm and then performing a grooming of 180° arou
the 1 or x axis: (C0,C1,C2,C3)→(C0,2C1,2C2,
2C3)→(C0,2C1,C2,C3)—altogether, the anti-Skyrmion
is obtained from the Skyrmion by changing the sign of thex
or C1 component. This choice of grooming corresponds
the most attractive interaction between the Skyrmion a
anti-Skyrmion.

The central annihilation problem has an additional ax
symmetry compared to the general case. However, our co
take only partial advantage of the axial symmetry. We ha
full three-dimensional programs which we plan to use
perform a sweep of many initial conditions. We expect th
most of the features of off-center annihilation~not head on!
are encountered in the present setup, since the relative p
tion and orientation of the solitons in the general case
very similar to those in central annihilation.

We performed simulations of Skyrmion–anti-Skyrmio
annihilation using both the algorithm presented in@9# and a
similar calculation based on the equations of motion from
previous section. Below and in the Appendix we describe
latter in more detail. The only major modification of the fir
calculation compared to@9# is the treatment of thev field
which is similar to that described below. The two calcu
tions give virtually identical results in the smooth regim
with small differences in the violent regime. In the next su
section we present the results of a calculation using theC
scheme. The scaling analysis runs in Sec. III C use thep
scheme. Since theC scheme is more transparent, it is us
for the study of the small oscillations and of the singular
in the respective sections.

One important modification compared to@9#, which also
affects thep scheme, refers to the implementation of t
gauge fields. Taking the four-divergence of thev equation of
motion, together with baryon current conservation, leads

M2]mvm50. ~16!
e

0-4
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In other words, the nonzero mass breaks gauge symm
enforcing the Lorentz gauge. We can drop the]n]mvm term
in the equations of motion, which should not change the ti
evolution of our fields, provided the gauge condition is
ways verified. This is in principle the case if the initial co
dition verifies the gauge condition. Numerically, the syst
tends to drift away from this condition and one needs to t
additional precautions to enforce the gauge condition at
times.

To enhance stability, we introduce the ‘‘electric’’ an
‘‘magnetic’’ fields of v, Ek5]kv02v̇k, Mk5eklm] lvm ,
and eliminatev0 as a dynamical variable. The latter is po
sible because the mass enforces the gaugev̇05]kvk leaving
only three dynamical degrees of freedom for thev field. This
choice of variables allows us to use a local scheme, wh
gives the new time derivatives at a given spatial point as
implicit function of the local time derivatives and spati
derivatives only.

The C equations of motion are in a form which ensur
the chiral condition without having an explicit Lagrang
multiplier. Numerically we use a leapfrog scheme which
discussed in further detail in the Appendix. We discretize
fields on a uniform spatial grid. The values of all fields a
given time step are defined on each grid point. The ti
derivatives of the fields are retarded with one half-time st
The time evolution of the fields themselves is thus straig
forward. The velocities are evolved using the second-or
equations of motion. This involves solving locally a set
coupled implicit equations, since the velocities also appea
the interaction terms.

In the C scheme, our set of equations is

C̈A5(
k

]k
2CA2CA(

E
S ĊE2

2(
k

]kC
E2D

1mp
2 ~dA02CAC0!1

3g

8p2f p
2

eABCDCB

3~eklmEk] lC
C]mCD12M kĊ

C]kC
D!,

Ėk52eklm] lMm2M2vk

1
3g

8p2
eklmeABCDCAĊB] lC

C]mCD,

Ṁk5eklm] lEm ,

v̈k5 Ėk1]k] lvk . ~17!

In addition, we computev0 using the gauge condition an
use it in the evaluation of the energy.

The technical setup of the calculations was the same
described in@9#. We used clusters of typically six to ten IBM
SP-2 machines. For the final run we used a cluster of
machines. Our parallel codes are written inFORTRAN90. We
use a variety of grid sizes. Our physical box is 10310
310 fm3 for the calculation itself, but for the scaling anal
05402
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sis presented in Sec. III C it is significantly smaller, only
3535 fm3. By taking advantage of the symmetry of th
problem, we actually simulate only an eighth of the physi
box. We used various grid sizes, from 8 to 20 points per
12 points/fm for the main runs. We used time steps vary
from 100 per fm to 3200 per fm in the violent regime. A
initial conditions we use a static, spherically symmetric so
ton whose profile we obtained in a separate calculation.
boost this configuration tob50.5 towards its mirror image
created by the appropriate boundary conditions at the s
metry wall. The total initial energy of the two soliton syste
is then 1500 MeV, of which 1300 MeV is in the solitons an
approximately 200 MeV is kinetic energy. Our initial veloc
ity is slightly less than the one used in the previous study
annihilation@8# (b50.63) and the same used in our study
two-Skyrmion scattering, which was also in the range us
in the Caltech study of scattering@13#. The choice of the
initial separation is dictated by the need to minimize t
overlap between the two solitons.

B. Results

Below we describe the process of the central annihilat
of a Skyrmion and an anti-Skyrmion which are initial
3.0 fm apart and are boosted towards each other with
initial velocity of b50.5 each.

The process is best illustrated by the time evolution of
pion field. In Fig. 1 we plot the quantity (12C0) as a func-
tion of time. This choice is natural since in free spaceC0
51 and at the tip of a SkyrmionC0521. In the first plot
we have the essentially unmodified Skyrmion and an
Skyrmion, slightly superimposed. TheC0 component of the
pion field is identical for the two objects. Charge conjugati
and grooming affects only the ‘‘spatial’’ components.

In order to annihilate, the fields have to unwind;2 there-
fore the field in the center point has to pass through the va
C5(21,0,0,0) ~the highest point in our plots!. In other
words, the tips must merge before unwinding. The sec
frame illustrates a moment close to this situation. As will
discussed later, the axial dependence is rather sharp at
moment. In our simulation the symmetry center is betwe
lattice points; therefore the crest in the second frame sho
be close to horizontal with a proper extrapolation.

From this point on, the value ofC0 approaches fast the
vacuum value as the topological obstacle is now gone. A
another fm/c the field is close to the vacuum value (1,0,0,0
The variation is so fast that the field in the center ‘‘ove
turns’’ and increases again. Only after 3 fm/c from the pass-
ing of the peak do these large amplitude oscillations subs
by propagating outwards as spherical waves. This outgo
pion radiation is clearly seen in the final two frames of F
ures 1, 5, and 6.

2Because of symmetry, on the central axis the field is always
the formC5(cosu,sinu,0,0). As one passes through the center
a Skyrmion, the angle rotates through a full circle. For the a
Skyrmion, the winding is opposite. As the two objects approach,
center point unwinds.
0-5
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FIG. 1. One component of the
pion field (12C0) at various mo-
ments during annihilation. The
fields are shown in thexy plane.
The x axis is the direction closer
to horizontal. The length on the
axes is measured in fm. The quan
tity we plot is dimensionless. Note
the different vertical and horizon
tal scales in the last two frames.
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The time evolution of the baryon number is illustrated
Fig. 2. We compute the baryon number by integrating Eq.~5!
in one half-space. The baryon number in the other half-sp
is equal and opposite to this. The annihilation starts basic
when the Skyrmions touch, att51.66 fm~point A in Fig. 2!.
In the absence of interactions, exactly half of the bary
number in one half-space should annihilate when the
centers coincide, att53.0 fm/c . Because of the attractiv
interaction, this happens a little faster, at aroundt
52.3 fm/c (B). Along with the field, the remaining baryo
number decreases quickly to zero (t52.85 fm/c, point C),
continues to decrease for a short time, and then oscilla
hitting an absolute minimum at point (D). The baryon num-
ber oscillates along with the large amplitude oscillations
the field and finally settles at zero (t55.5 fm/c, point E) in
the radiation regime.

Altogether, the unwinding of the field~from A to C) takes
approximately 1.2–1.3 fm/c, but this is followed by local-
ized oscillations which take a longer amount of time~from C
to E, approximately 2.5 fm/c), therefore the total proces
from the moment when the Skyrmions touch to the comp
disappearance of the baryon number takes about 3.5 fmc,
depending on the choice of the pointE.

In Fig. 3 we plot the baryon density and thex component
of the baryon current, integrated in theyz plane, as a func-
tion of thex coordinate. This also illustrates the progress
the annihilation. The two charge concentrations practica
disappear atC. We can see that the current increases in
center, starting from half-annihilationB, peaks shortly after
total annihilationC, and then oscillates.

In Fig. 4 we plot the evolution of the energy as the sum
the energy in the pion field and the omega field. The dot
lines and labelsA–E in Fig. 4 indicate the same times as
Fig. 2. Our definitions of the energy densities—which a
integrated numerically to give the quantities in Fig. 4—ar
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Hp5
1

2 S ĊAĊA1 (
k51

3

]kC
A]kC

AD ,

Hv5
1

2 (
k51

3

~Mv
2 vk

21M k
21E k

2!1
1

2
Mv

2 v0
2 .

~18!

The piece corresponding to thev0 field can be defined in
terms of our dynamical variables

FIG. 2. Evolution of the baryon number in one half-space dur
a central annihilation process. The pointsA–E indicate particular
moments which are also indicated in Figs. 1, 4, and so on, and
referred to throughout the text. Note especially pointB, which cor-
responds to ‘‘half-annihilation.’’ It is associated with the mergin
of two topological centers and also marks the beginning of
violent part of the annihilation process.
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Hv0
5

1

2
Mv

2 v0
25

1

2Mv
2 F S 3g

2
B0D2~]kEk!G2

. ~19!

The second identity follows from the equations of motion
v0, the definition ofEk , and the gauge condition.3 We also
plot the total energy in Fig. 4. There is a loss of less th
100 MeV from a total of 1500 MeV between the pointsB
andE, which corresponds to approximately 7%.4 We assign
this loss to numerical dissipation which is significant in t
fast-varying regime between half-annihilation (B) and the
onset of the radiation regime (E). The further decay of the
total energy simply corresponds to outgoing radiation wh
leaves the simulation box.

The annihilation process is accompanied by the rearran
ment of the energy between the pion and omega sec
Initially we have free-space propagation of the solitons. T
smooth part of the unwinding beginning at (A) is accompa-
nied by the flow of energy from the pion field into the ome
sector. The net flow stops before full unwinding (C) and

3Numerically this identity is violated because the right-hand s
is the difference of two large numbers in the fast-varying regim
The identity relies on third-order derivatives of our dynamic
quantities. However, usingv0 computed from the gauge conditio
leads to reasonable energy conservation.

4The loss in the run presented in this section is less, actually cl
to 5%, but the runs presented in the next section, which us
smaller physical box and slightly different initial conditions, lo
about 100 MeV.

FIG. 3. The baryon number density~dotted lines! and thex
component of the baryon current density~solid lines!, integrated
overy andz ~in fm21 andc/fm, respectively!, as a function of the
x coordinate, at various moments during the annihilation proce
05402
r

n

h

e-
rs.
e

yields to oscillations which correspond in time to the lar
oscillations of the field, accompanied by significant oscil
tions of the baryon number around zero. During this regim
when the net baryon number oscillates, the energy also fl
back and forth between the two sectors. Eventually the
sectors stabilize afterE at comparable values.

A more detailed picture of the energy flow is given b
looking at the spatial distribution of the energy at vario
moments. In Fig. 5 we plot the total energy density. In t
first three frames we see the two configurations approach
each other, then merging. Starting from the third fram
which roughly corresponds to half-annihilation, the ener
density in the center becomes very large, almostd-function-
like. Eventually the energy starts to flow outwards in co
centric waves. In the latter frames, even though there is
a spike in the center, most of the energy is in the outgo
waves. This is seen better in Fig. 6 where we plot the to
energy density multiplied by the distancer to the symmetry
axis for the last three frames of Fig. 5. Plottingr3dE/dV
gives a better estimate of the relative amount of energy c
tained in different regions of space.

The energy density plots reveal two important aspe
First is the fact that the energy density is extremely high
the center betweent52.3 fm/c and t55.0 fm/c, which is
the period between annihilation and the start of signific
outward radiation. The other important feature is the ab
dance of fast, small-amplitude oscillations which persist
the end of the time interval under consideration. These os
lations originate in the period immediately following annih
lation when there is a very fast, global variation of the fiel
confined to a small region of space. Most likely, numeric
error stemming from the large local variations has the role
a source for these oscillations. However, as discussed in
next subsection on numerical stability, the persistence of
small oscillations is also possibly due to properties of
exact, continuum equations of motion.

Despite the presence of the small oscillations, there
well-defined pattern to the flow of energy, both in terms
the radial flow and angular distribution. Starting witht
52.5 fm/c, the energy is concentrated in a small region~ini-

e
.

l

er
a

.

FIG. 4. Evolution of the energy and its components during
central annihilation process.
0-7



-

e
l
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FIG. 5. The total energy den
sity at various moments during
annihilation, in MeV/fm3. The
density is shown in thexy plane.
The x axis is the direction closer
to horizontal. The length on the
axes is measured in fm. Note th
different vertical and horizonta
scales in the various frames.
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tially of radius 1 fm) around the center. The distributio
becomes very strongly peaked in the time between h
annihilation and complete unwinding. There is some out
ing radiation as early ast53.5 fm/c but the strongly peaked
pattern eases up only aftert55.0 fm/c when the bulk of the
energy starts flowing outward.

The macroscopic flow of energy is nicely illustrated
Fig. 7 by plotting the total energy contained in spheric
shells surrounding the center. Initially we have the two
coming solitons which move through bins in decreasing
der of radius. Starting fromt52.5 fm/c the energy accumu
lates in the center bin~a sphere of radius 0.5 fm/c, half the
linear size of a Skyrmion!. The accumulation peaks at abo
t53 fm/c when this bin contains more than 2/3 of the to
energy. Even though the outward flow starts as early at
53.0 fm/c, it becomes significant only later. Approximate
90% of the energy leaves the center sphere byt56.0 fm/c,
or 3.0 fm after full unwinding. From then on, we can follo
the energy moving outwards through bins of increasing
05402
f-
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l
-
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l
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dius. We can also understand how the decrease in tota
ergy ~top panel, same line as in Fig. 4! is really just flow
leaving the simulation box.

Finally, in Fig. 8 we illustrate the angular distribution o
the energy during the annihilation process. We can se
depletion of the small angle bins and a peak around
which seems to be the preferred direction of the energy fl
It should be noted that these angular distributions are i
plane, but that the three-dimensional distribution has cy
drical symmetry about the direction of collision. The axi
symmetry precludes the formation of a torus intermedi
state as seen in Skyrmion-Skyrmion scattering, and in
we see no evidence in our calculation of such an intermed
state. The suppression of small angle bins is reminiscen
the pattern seen in baby Skyrmion annihilation@14#, while an
enhancement at 45° has not been previously noted to
knowledge. Given the fact that the dynamics of soliton sc
tering in two@15# versus three dimensions@13,9# both allow
for scattering at 90° but through qualitatively different inte
rt
ed in
FIG. 6. The total energy density multiplied by the distance to the symmetry axis, in MeV/ fm2, at various moments during the latter pa
of annihilation. The density is shown in thexy plane. Thex axis is the direction closer to horizontal. The length on the axes is measur
fm.
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mediate states, neither the suppression of the small an
nor the peak around 45° is surprising.

C. Checks

In this subsection we investigate the extent to which
results are influenced by the details of the numerical ca
lation. This aspect is particularly important because of
presence of large time and spatial derivatives of the fie
The macroscopic dynamics of the problem imposes a cer
minimum size for the simulation box~a cube of size 5 fm).
We use a fixed grid. This limits the number of points per
we can have to not much more than 20. Our typical calcu
tions use 12 points per fm.

One obvious concern stems from the fact that we w
able to ensure energy conservation only to about 7%, at
5%. Approximately 70–100 MeV of the total initial energ
of 1500 MeV is lost to numerical dissipation, as can be s
in Figs. 4 and 7. This loss comes between pointsB andC in
the respective plots, and is a significant but not alarm
energy loss.

Numerical error is probably also responsible for the a
pearance of persistent but random oscillations. Starting w
t54.0 fm/c, the field configurations display oscillations o
the scale of a few lattice spacings. This is preceded b
configuration which is probably singular in the continuu
limit, at half-annihilation~we discuss this in a separate se
tion!. This raises the question of whether the continu
physics we wish to study mixes with lattice artifacts o
rather, whether we are able to extract continuum phys
reliably.

To test the stability of our results, we performed seve
runs using thep algorithm for a number of different lattice

FIG. 7. Total energy in spherical shells surrounding the ann
lation as a function of time.
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spacings. The results obtained with this algorithm with ide
tical box size and initial conditions are very similar to tho
obtained with theC algorithm. The program based on thep
algorithm has been readily available for a longer time, a
we used it for the very time consuming runs with larg
numbers of points. Below we present results for 12, 16, a
20 points per fm. The physical process in these runs is
same, i.e., head-on annihilation with the same parameter
in the main run, initial separation of 3 fm, initial velocity o
b50.5. However, we used the smallest possible simulat
box, only 63535 fm3, and a slightly different initial con-
figuration. Using an even smaller box would have resulted
more energy dissipation outside the box and, most nota
reflection off the walls~which we are unable to eliminat
completely! which would interfere with the ‘‘real’’ physics.
We then compared the results from these various runs.
ally, the numerical artifacts should scale away as the lat
spacing is decreased.

In Fig. 9 we plot the total energy for three runs which a
identical~including the time step, which is decreased befo
t53.0 fm/c from 100 per fm to 3200 per fm/c) except for
the lattice spacing which is, respectively,N512,16,20 points
per fm. We zoomed in on the interval betweent52.0 fm/c
and t55.0 fm/c, when most of the dissipation takes plac
The energy decreases as the system is squeezed int

i-

FIG. 8. Total energy in angular intervals measured from
symmetry axis at various moments during annihilation.
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small region around the center. The loss is likely caused
discretization error. However, as the system expands, on
fraction of the loss is recovered. The same run withN58
points per fm, which we cannot plot on the same graph w
out making the graph completely unintelligible, gives wor
conservation than all three runs plotted here. The two lar
spacings do give better energy conservation then theN512
run, as one would expect. However, there is no clear sca
as the order of theN516 andN520 results is reversed. A
an argument for the reliability of our calculations, let us e
phasize that we are talking about differences of 30 MeV h
between calculations, i.e., 2% of the total energy.

A look at the comparative plot of the baryon number
the same runs reveals a similar picture~Fig. 10!. In all three
runs shown, the remarkable pointsA,B, C, and E, i.e., the
start of the unwinding, the point of half-annihilation, and fu
unwinding, as well as the end of the violent fluctuation
practically coincide. However, the extent and duration of
excursion of the baryon number below zero varies. It is pr
tically absent forN58 but there is a large fluctuation late
on ~again, not plotted!. For N512 andN516 we see a siz-
able excursion, larger forN516, but again theN520 calcu-
lation is out of sequence and has only a small negative
cursion. It could be that the time step choice~same for all
runs! is too large forN520. Even with this in mind, the
overall evolution of the baryon number is very similar for t
four runs we discussed. The decay of the baryon number
the duration of the large oscillations is a robust feature of
calculation. Furthermore, the small oscillations seem to
very noisy with little relationship from grid size to grid size

FIG. 9. The total energy during the more violent part of t
annihilation process, in three calculations which are identical ex
for the number of points per fm,N. Note that these runs are slightl
different from the runs discussed in the preceding section. They
performed in a smaller box using a slightly different initial config
ration.
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The outward energy flow is perhaps the most import
quantitative result one may extract from a numerical cal
lation of Skyrmion–anti-Skyrmion annihilation. This resu
would be the starting point for constructing the final pion a
omega states in a calculation of low-energyNN̄ annihilation
@5#. In Fig. 11 we plot the energy contained in center
spherical shells, for the threeN512,16,20 calculations dis

pt

re

FIG. 10. The baryon number in one half-space during the an
hilation process, in three calculations which are identical except
the number of points per fm,N.

FIG. 11. Evolution of the energy contained in a few spheri
shells for various lattice spacings.
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cussed above. The evolution of the energy contained in
shells is practically the same for the three runs. There
some fluctuation, especially for the center bin, but the diff
ences are not very large. In particular there is little differen
in the bins at larger distance, and that is where informat
would be extracted for the outgoing pion and omega sta

In Fig. 12 we plot the energy contained in angular b
measured from thex axis. These plots show more variatio
with the lattice spacing then the radial bins shown in Fig.
but this is partially due to the way the energy in a giv
angular bin is determined.5 Still, the significant differences
seen att53.35 fm/c subside by the time the radiation re
gime starts. The suppression at small angles and the m
mum around 45° are present in all three runs.

In conclusion, while our detailed results are somew
sensitive to the number of lattice points, the physically i
portant observables, energy conservation, the time evolu
of the baryon number, and the flow of energy are reasona
well determined and do not depend strongly on variations
the number of lattice points. In future studies of annihilati

5This is done here by extrapolating the energy density from thexy
plane of points closest to the symmetry center, assuming cylind
symmetry.

FIG. 12. Evolution of the energy contained in angular bins
various lattice spacings.
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we will use a separate grid in the spatial region where
violent behavior is concentrated, which should allow for s
nificantly smaller lattice spacings.

IV. STABILITY ANALYSIS

One of the two most prominent features of our results
the appearance of persistent, small-amplitude oscillations
ter unwinding. These oscillations are present practically
the end of our calculations. In the early post-unwinding
gime they influence the total energy and baryon number

The frequency of the fluctuations of the total energy a
baryon number increases with the number of lattice poin
suggesting that these are numerical artifacts. We have b
forced to use extremely small time steps in our runs~thou-
sands of time steps per fm!. However, the precautions w
took did not eliminate these oscillations. On the other ha
we are able to perform our simulations to a robust end e
in the presence of these oscillations. Furthermore, the m
roscopic ~long-wavelength! aspects of the outputs are n
strongly influenced by the number of points, suggesting t
numerical artifacts do not overwhelm the continuum physi

The lack of success of earlier attempts to simulate an
hilation @7,8,6# has been blamed on a situation which aris
in the Skyrme model@7#. Because of the nonlinear nature
the interaction term, the equations of motion may cease to
of hyperbolic nature, i.e., have second time and spatial
rivative terms of opposite signs. Hyperbolic equations of m
tion ensure the existence of plane-wave-like solutions~of the

form eikmxm
with real wave numberk5AkW•kW ) which may

propagate as packets of quasiconstant amplitude. If the
of the second time derivative reverses, the wave number
become imaginary for a given wave vectorkW , resulting in
waves with exponentially increasing amplitude. A sm
fluctuation that excites this mode would then result in a la
change in the final result. In other words, if the equations
motion are not hyperbolic, the system in unstable. For a
tailed derivation of the instability for the Skyrme model
just this sort, we refer to@7#.

In the following we investigate the possibility of such a
instability occurring in our model. Recall that we are usingv
stabilization rather than a Skyrme term in order to avoid
damage brought on by the fourth-order interaction ter
Consider our equations of motion

]m]mCA2CA~CE]m]mCE!

5
3g

8 f p
2 p2

emnabeABCD]nvmCB]aCC]bCD

1mp
2 ~dA02C0CA!,

]n]nvm5
g

8p2
emnabeABCD]nCACB]aCC]bCD

2M2vm. ~20!

Consider now a solution of these equations and a small, f
varying perturbation added to it:

al

r
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CA→C0
A1efA, u]mfAu@u]mCA,

vm→v01esm, u]msnu@u]mvnu, ~21!

wheree is a small real number. We study the stability of t
equations of motion by analyzing the behavior of these sm
perturbations in the background field given by$CA,vn%.
First, we substitute the ansatz~21! into the equations of mo
tion and expand to first order ine:

]m]mfA1fA~]mCE]mCE!12CA~]mfE]mCE!

5
3g

8p2f p
2

emnabeABCD$]nsmCB]aCC]bCD

1]nvm~fB]aCC]bCD12CB]afC]bCD!%

22mp
2 ~fAC01CAf0!,

]n]nsm5
3g

8p2
emnabeABCD

3S ]nfACB1
1

3
]nCAfBD ]aCC]bCD. ~22!

We must again remember that the variation ofC is con-
strained:

~CA1efA!~CA1efA!511O~e2!→fACA50. ~23!

Therefore the quantityeABCD]nCAfB]aCC]bCD has to
vanish since it is the quadruple product of four isospin v
tors which are all perpendicular onC.

We now assume that small perturbations are well appr
mated by plane waves,

fA5FAeikmxm
, sn5Sneikmxm

, ~24!

and attempt to obtain equations for the wave vectorkm . If
the equations have solutions which correspond to an im
nary k05V, then we conclude that our equations of moti
are unstable, since they allow for the exponential increas
a small perturbation. After substituting the ansatz~24! into
Eq. ~22! and contracting the first equation withFA we obtain

2kmkm1M'
2 12mp

2 C0

5
3g

8p2f p
2

iknSmemnabeABCDFACB]aCC]bCD,

~2knkn1M2!Sm

5
3g

8p2
iknemnabeABCDFACB]aCC]bCD. ~25!

Here we took advantage repeatedly of the perpendicularit
F to C. We also definedM'

2 5]mCE]mCE. Note that this
quantity originates in the constraint onC and is not neces
05402
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-

i-

i-
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of

sarily positive definite. This in itself doesnot imply the ap-
pearance of an instability, since in the static case, which
free of instabilities against small oscillations,M',0. We
should of course take the sign ofM' into account when we
analyze the characteristic equation.

Let us solve the second equation for the polarization v
tor Sm and substitute into the first equation. The result can
rearranged as follows:

~2kmkm1M2!~2krkr1M'
2 12mp

2 C0!

52S 3g

8p2f p
D 2

knkremnaben
rstVabVst

52S 3g

8p2f p
D 2

knkrSmnSm
r , ~26!

where we have definedVab5eABCDFACB]aCC]bCD and
Smn5emnabVab .

As for any Lorentz tensor of rank 2, there are two inva
ants one may construct from the components ofSmn: A
5emnabSmnSab and B5SmnSmn . If A50, then using the
appropriate Lorentz boost, the tensor can be either broug
a form where the ‘‘electric’’ componentsS0k vanish or it can
be brought to a form where the ‘‘magnetic’’ componentsSlm

vanish. Only one of these situations is possible, depend
on the sign of the other invariant. IfB,0, the tensor is
‘‘electric,’’ and if B.0, it is ‘‘magnetic.’’ Let us compute
the first invariant:

A5emnabeabrsemnltV
rsVlt

52emnltV
mnVlt

52eABCDeEFGHFACBFECFemnab

3]mCC]nCD]aCG]bCH. ~27!

Consider one set of values for the eight isospin indices on
right-hand side. For a nonvanishing term, the lab
$C,D,G,H% must be all different: otherwise we would hav
symmetry in two Greek indices. For simplicity le
$C,D,G,H%5$0,1,2,3%. The Lorentz sum remaining to b
performed can be rearranged:

e0123e
mnab]mC0]nC1]aC2]bC3

5eABCDe0123]0CA]1CB]2CC]3CD

50. ~28!

The term on the right-hand side vanishes because it cont
four isovectors perpendicular toC. Hence the first invariant
vanishes. The second invariant is

B5SmnSmn

5emnabemnrsVabVrs

522VabVab

52@V0kV0k2VlmVlm#
0-12
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52eABCDeEFGHFACBFECF@2ḞC]kC
DḞG]kC

H

2] lC
C]kC

D] lC
C]kC

D#. ~29!

In the last line we have lowered all Lorentz indices.@We
remind the reader of our conventionAm5(A0 ,AW ), Am

5(A0 ,2AW ).# It is clear that if the time derivatives are sma
B,0, and if they are large, i.e., for fast-varyingC fields,
B.0.

Let us consider the case with small time derivativ
Then, B,0 and the tensorS may be boosted so thatSlm
50 . The characteristic equation is then

~M22kmkm!~M'
2 12mp

2 C02knkn!

522C 2$k0k0Sl0Sl
01klkmS0lS0m%,

~M21p22v2!~M'
2 12mp

2 C01p22v2!

52C 2H v2(
l

~S0l
2 !2plpm~S0lS0m!J . ~30!

Only the component ofpW parallel to the electric field vecto
$Ek5S0k% contributes to the right-hand side. Denoting th
component byp1, we have finally

~M21p22v2!~M'
2 12mp

2 C01p22v2!

52C 2~S0kS0k!~v22p1
2!. ~31!

When the time derivatives dominate, we haveB.0 and we
may choose a reference frame whereS0k50. The corre-
sponding characteristic equation is

~M22kmkm!~M'
2 12mp

2 C02knkn!

522C 2klkmSjl Sj
m

52C 2plpmSjl Sjm52C 2(
j

S (
l

plSjl D 2

>0. ~32!

The matrix Wlm5Sjl Sjm can be diagonalizedW̃lm5d lmwl
and its eigenvalues will be real and positive as is obvio
from the preceding equation. In that basis, the character
equation is

~M21p22v2!~M'
2 12mp

2 C01p22v2!52C 2(
l

pl
2wl .

~33!

The characteristic equations in theB,0 andB.0 cases can
be summarized as follows:

~M1
21p22v2!~M2

21p22v2!5K1
2~v22P1

2! @B,0#,

~M1
21p22v2!~M2

21p22v2!5K2
2P1

2 @B.0#. ~34!
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Here,p2 andP1
2 are, respectively, the square and the squ

of one component of the arbitrary wave vectorpW 5kW associ-
ated with the plane-wave perturbation. The quantitiesK1

2 and
K2

2 are positive real numbers, and so isM1
25Mv

2 . The only
exception isM2

25M'
2 12mp

2 C0'M'
2 5]mCE]mCE. As we

have mentioned,M'
2 is negative for a static field configura

tion such as a Skyrmion at rest, which does not exhibi
proliferation of small-wavelength perturbations.M'

2 be-
comes positive when the time derivatives become large. T
is the case in the center between the moments (B) and (E)
~as defined in Sec. III!, when most of the violent behavio
takes place. It is clear from the sign ofM'

2 , as well as from
the following discussion, that the characteristic equations
low for a complexv in a number of dynamical situations
We will focus on the regime between the moments (B) and
(E) and assumeM'

2 .0, and look for the conditions that ar
consistent with a negativev2.

In both cases (B.0 or B,0) we have a quadratic equa
tion for v2. We may solve the characteristic equation for t
time constantv5k0 using any givenpW . We remind the
reader that we are studying the possibility of having a co
plex time constant. Such a perturbation would grow or d
crease exponentially with time. When the right-hand s
~RHS! is small, both solutionsv25M1

2 ,M2
2 are real and

positive, leading to stable oscillations.
In the B,0 case, the RHS has the effect of increasi

both the coefficient ofv2 ~in absolute value! and the free
term. Considering the solutions of a quadratic equationaX2

2bX1c50 ~all coefficients are positive here!, X125@(2b
6Ab224ac#/2a, it is clear that increasingb ~if both a andc
are positive! can make the positive real roots neither negat
nor complex. Increasingc actually has the effect of bringing
the roots closer together, therefore increasing the lower o
This may lead to trouble if the coefficientc>b2/4a; how-
ever, this is not possible as is obvious if one writes the d
criminant out explicitly. We conclude that in this case bo
solutions forv2 are real and positive, leading only to stab
modes.

In the B.0 case there is no term containingv on the
right-hand side. However, the free term has the opposite
compared to the previous case. It may not make the discr
nant negative since it decreasesc. However, if large enough
in magnitude, this term may change the sign ofc, thus al-
lowing for a negative solution forv2 .

We conclude that ifM'
2 .0, modes with purely imaginary

v2 may occur in theB.0 case. This makes sense, becau
this case is associated with large time derivatives, exa
what characterizes our violent regime. The latter is also c
sistent with the assumptionM'

2 .0. The sign ofB is not
immediately obvious, since it also depends on the polar
tion vector of the supposed perturbation,FA: B
5FAFBT AB, where all the background-field-dependent fa
tors are contained in the tensorT. If all eigenvalues ofT are
negative,B,0 for any polarization. If there is one positiv
eigenvalue, then it is possible to haveB.0. If all eigenval-
ues are positive,B.0 for any polarization vector. In Fig. 13
we plot the highest and the lowest eigenvalues ofT before,
0-13
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FIG. 13. The highest~top row!
and the lowest~bottom row! ei-
genvalue of the tensorT at se-
lected moments during annihila
tion. The unit for the eigenvalues
is c2/fm4. Note the large differ-
ences in the vertical scales. W
plot the quantities in thexy plane.
The x axis is the direction closer
to horizontal. The length on the
axes is measured in fm.
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during, and after the violent oscillation regime. This illu
trates that during free propagation the negative eigenva
dominate, while during the violent regime, the eigenvalu
and alsoB become very large in absolute value, and t
positive eigenvalues dominate. Towards the end of the p
cess, theB.0 regime lingers close to the center but is n
present in the outgoing radiation. In Fig. 14 we plot t
absolute values of the largest and lowest eigenvalues ofT in
the whole simulation box as a function of time. The mome
of half-annihilation (B) marks a significant increase in th
magnitude of the positive eigenvalues, which dominate in
center region through the remainder of the calculation.

In summary, the equations of motion allow in princip
for the appearance of exponentially growing perturbatio
The conditions for this are rather specific. We are able
show that such conditions accompany the violent, fa
varying regime that follows the unwinding and persist un
the outgoing radiation phase. However, we cannot establi
clear, causal connection between theB.0 regime and the
fluctuations.

V. SINGULAR BEHAVIOR

The source of the persistent small oscillations is the fa
varying behavior that follows the point of half-annihilatio

FIG. 14. The absolute values of the lowest~usually negative!
and highest~usually positive! eigenvalue of the tensorT overall
during annihilation, inc2/fm4. We associate the presence of lar
positive eigenvalues ofT with instability against perturbations.
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The fields at this point and shortly afterwards are singular
close to that. This is the single most prominent feature of
head-on annihilation process. The few off-center calculati
we performed show very similar features.

Our choice of grooming@8# allows a smooth unwinding
of the pion field, without any singularity or discontinuit
involved. However, it appears that the radial dependenc
the field components becomes singular as a result of the
namics, in thex50 plane close to the moment of hal
annihilation. This is the underlying feature that generates
large energy densities in the center seen in Fig. 5. Below
describe this in more detail.

The head-on annihilation process has axial symmetry
this case, the four ‘‘Cartesian’’ components of the pion fie
are of the form

C0~x,y,z,t !5 f ~x,r,t !:C1~x,y,z,t !5g~x,r,t !,

C2~x,y,z,t !5
y

r
h~x,r,t !:C3~x,y,z,t !5

z

r
h~x,r,t !,

~35!

where r5Ay21z2 and the chiral constraint isf 21g21h2

51. The components ofvm have a similar dependence. Th
three components ofC have additional symmetry con
straints; namely, they are all even functions ofx. The radial
dependence atr→0 inherits the symmetry properties ofC,
C0 andC1 being even functions ofy andz while C2(2y)
52C2(y) and C3(2z)52C3(z) . Thereforef and g are

FIG. 15. Pion field (12C0) close to half-annihilation. Extrapo
lating the field to the center would result in a discontinuity in t
derivative. The fields are shown in thexy plane. Thex axis is the
direction closer to horizontal. The length on the axes is measure
fm. The quantity we plot is dimensionless.
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FIG. 16. The baryon number density~in fm23), the x component of the baryon current density~in c/fm3), and the energy density~in
MeV/fm3) close to the point of half-annihilation. The fields are shown in thexy plane. Thex axis is the direction closer to horizontal. Th

length on the axes is measured in fm.
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‘‘even’’ and h is and ‘‘odd’’ function of r, in the sense tha
hur5050 and ]r f ur505]rgur5050 when the respective
functions are continuous.

Let us consider ther50 axis, where onlyf andg can be
nonzero. Atx56` , in free space, we havef 51. As one
passes through a Skyrmion, the two components ‘‘rotat
so that in the center of the Skyrmion we havef 51. Simi-
larly, if we choose to move through ther direction through
the center of the same Skyrmion, theg component would
have to vanish by symmetry and the rotation would hap
in the f h plane.

The moment of half-annihilation corresponds to the si
ation when the centers of the Skyrmion and the a
Skyrmion coincide, i.e.,f 521 at x50 . Now let us con-
sider the radial dependence in thex50 plane at this moment
At r50 we havef 521, g50, andh50. At r5` we have
again f 51, g50, h50 . In this case, however, the rotatio
happens involving mostly thef and theh components. At
least close tor50, g must be much smaller thanh, since its
first r derivative must vanish.

In Fig. 15 we plot@12C0(x,y)#/25(12 f )/2, at a mo-
ment close to half-annihilation. The field at the center po
is close tof 521. As we move outwards along they ~radial!
axis, 12 f decreases. Notice that the variation off is concen-
trated for the most part in a small region aroundr50. In
apparent contradiction with the requirement thatf (y) should
be an even function~hence,]yf 50 at y50), ]r f 5]yf in-
creases in magnitude asy→0. Ther dependence off in Fig.
15 is well approximated by ara with a50.2–0.3. The en-
ergy density and the baryon current are both determined
the first derivatives ofCA. The effect is more dramatic in
terms of these quantities.

In Fig. 16 we plot the baryon number density, thex com-
ponent of the baryon current density, and the energy den
in thexy plane. The baryon current is concentrated in a v
narrow region in thex50 plane, and the energy density h
a steep peak that will grow dramatically during the fa
varying regime. We wish to point out that this situation o
curs at half-annihilation, justbefore the messy part of the
annihilation process. It seems very plausible that this qua
ingular configuration is the ultimate source of the turbulen
that follows. Because of the presence of this feature we h
been forced to place our grid points so that the symme
center falls halfway between them in all directions, in ord
to avoid having to deal with infinite derivatives. We mo
likely miss the exact moment of the overturn (f 51 at x
5r50). Hence we cannot tell whether thea→0 limit is
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achieved@this implies thatf (r) is a Heaviside function and
the baryon current is a delta function, i.e., is all concentra
in the center#. What is clear is that as the overturn is a
proached the baryon current concentrates more and mo
the center, and that close to that moment, the dependenc
the field components is consistent with a small power beh
ior, which in itself leads to infinite derivatives, hence loca
infinite energy density.

A precise understanding of the singular phenomenon
scribed above requires a more focused investigation. At
stage we have a qualitative explanation. Recall that ouv
field, apart from its mass, is an Abelian gauge field similar
the electromagnetic field. It couples to the respective com
nents of the baryon currentB which, in axial geometry, has
only three independent components: the baryon density, tx
component, and a radial component. Thev field mediated all
interactions in our model. Solitons in the pure nonline
sigma model collapse because their energy scales as the
power of their linear size. The omega field couples to
baryon ~winding number! density. The fact that this stabi
lizes the Skyrmions against collapse may be interpreted
consequence of electrostatic repulsion of the baryon cha
mediated by the~omega! electric field.

The annihilation process consists of the flow of charges
opposite signs towards the center plane (x50 in our nota-
tion!, i.e., the presence of a largeB1 component. The fact
that the fields vary fast in the center plane means that
baryon current is concentrated in the center or vice ver6

The baryon current is very large in the center and is pus
into a small cross section in analogy with the electrom
netic ‘‘pinch’’ effect encountered in plasmas. This is a co
sequence of the attractive interaction between parallel e
tric currents. This effect competes with the electrosta
repulsion of the charge density. The static charge den
must vanish in the center plane, by symmetry~actually, all
derivatives of the pion fields with respect tox are zero by
symmetry!. Therefore here the pinch effect is the stronge
At the time of half-annihilation there is a further depletion
static charge from thex50 region, which would explain
why the pinch effect occurs first at or close half-annihilatio

6For instance, if thef component behaves like a Heaviside fun
tion, then the baryon current is proportional to a delta function
can be seen from its expression which contains onlyr andt deriva-
tives.
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To test whether we indeed are looking at an electrom
netic effect, we performed a ‘‘sticky slope’’ calculation,
which we periodically set the time derivatives of the pi
field, as well as the magnetic fields, to zero. This also can
the baryon current, but not the baryon charge, and the a
hilation proceeds ‘‘quasistatically.’’ We followed this pro
cess to the points where the baryon number in one half-sp
was 0.55. In Fig. 17 we plot 12C0 at this moment in the
sticky slope calculation and, for comparison, the configu
tion with the same baryon number in a calculation with t
same parameters which proceeds normally. The pinching
but disappears in the ‘‘quasistatic’’ calculation. This obs
vation is consistent with the contention that the baryon c
rent is responsible for the pinching, since in the sticky slo
case there is no current, and as a result the pinching is ab
as well.

While the electromagnetic effects offer a qualitative e
planation, one would like to have an approach that lead
quantitative understanding, perhaps allowing for an anal
cal description of the singular part. Furthermore, one m
ask the question whether this effect is specific to the ome
stabilized model or is a general feature of dynamically s
bilized solitons.

VI. CONCLUSION AND OUTLOOK

We have studied the classical process of annihilation o
Skyrmion and an anti-Skyrmion, in a nonlinear sigma mo
Lagrangian which couples the SU(2) winding number to
vector field (v). This coupling stabilizes the Skyrmion with
out some of the short-wavelength problems inherent in
usual fourth-order Skyrme term. Our ultimate goal is to
late classical annihilation to the physical process of nucle
antinucleon annihilation. In this paper our goal in more mo
est. It is to show, for the first time, that annihilation in th
classical model can be followed numerically from the init
state of separated Skyrmion and anti-Skyrmion to the fi
state of outgoing pion and omega radiation. We do encou
some violent behavior in our calculation, but it seems to
tamer than the fatal fluctuations previously encountered
Skyrmion annihilation calculations@7,8#. We are able to fol-
low the calculations from beginning to end with results th

FIG. 17. One component of the pion field (12C0) close to
half-annihilation, during the true annihilation process and durin
calculation where the kinetic energy is periodically depleted by
ting time derivatives to zero. The second plot shows no pinchin
the middle, indicating that the presence of a baryon current is
essary in order to have a pinch. The fields are shown in thexy
plane. Thex axis is the direction closer to horizontal. The length
the axes is measured in fm. The quantity we plot is dimensionl
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are robust and independent of the details of the turbu
behavior.

In this first attempt we only calculate Skyrmion an
Skyrmion annihilation for head-on collisions and only in th
most attractive grooming. Our numerical code permits ot
initial configurations and we plan to come back to them. W
find that annihilation happens very rapidly and is accom
nied by a sharp~singular! concentration of the energy densi
and baryon current. This causes short-wavelength, noisy
cillations but we are able to integrate through them. We fi
a burst of pion and omega radiation peaked in a cone at
with respect to the incident direction. We find turbulent b
havior but the calculated outgoing meson field radiation c
ries the total incident energy to within 8%. We show an
lytically that our equations of motion allow for a regim
which is unstable with respect to the appearance of expon
tially increasing~in time! perturbations. However, these co
ditions are met only in a spatially and temporally limited pa
of the system under study. This is one possible reason
the instability does not compromise the simulation. We fi
that the singular concentration of baryon current associa
with annihilation is analogous to the pinch effect in electr
magnetism. Our theory with a vector field coupled to t
current is like electromagnetism, but with a mass. We
studying ways to exploit, analytically, the nature of the s
gularity to control its contribution. It would be interesting t
study whether similar singular behavior involving a peak
baryon current occurs in theories such as the stand
Skyrme model, where there is no relation to electromag
tism.

In the future we plan to study Skyrmion–anti-Skyrmio
collisions that are not head on and to calculate for ot
groomings and incident energies. From this we will deve
results that can be used to extract predictions for nucle
antinucleon physics. We also plan to study the singulari
we encountered to see if their analytic form can be exploit
It is sometimes the case that in the vicinity of singular b
havior one can make precise, analytic statements about s
tions to problems that can otherwise only be addressed
merically. It will be interesting to see if that is the case he
and to examine how general that approach is. Thus our
sults suggest ample opportunities for further work both
nucleon annihilation physics and in mathematical physics
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APPENDIX: NUMERICAL METHOD

Here we describe in more detail the numerical algorith
used in the main calculation, which uses the Cartesian c
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ponentsC to parametrize the pion field. We use a leapfr
algorithm, based on the equations of motion~17!. The time
derivatives of theC components as well as the electric fie
E and the time derivatives of thevk components are define
at half-time steps. The spatial derivatives are calculated
simple centered differences. The discretized equations
motion are written using centered differences in time. F
example, equations of the form$dv/dt5 f (x,v);dx/dt5v%
are discretized as

v t11/22v t21/2

Dt
5 f S xt,

v t11/21v t21/2

2 D
xt112xt

Dt
5v t11/2. ~A1!

The initial condition is propagated forward in time by sol
ing the implicit equations for the velocities att11/2 and the
fields att.

The continuum equations of motion formally preserve
chiral conditionC•C51. We ensure this by normalizin
the updatedC and also using the conditionĊ•C50 which
G

W
,

05402
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is realized at the discretized level by enforcingCt
•(Ċt11/2

1Ċt21/2)50. Some additional precautions are taken to wr

the variation vectorĊDt around the unit sphere. Also, w
found that locally performing a rotation in SU(2) space
that the currentC is close to the equator on the unit sphe
~and modifying the equations of motion—in particular, th
pion mass term—accordingly! enhances the stability of th
calculation. This rotation in similar to the one we perform
the p scheme. For details of that scheme~the algorithm is
very similar! we refer to@9#.

In addition to the regular points in the simulation box w
also have a layer of ten points in each spatial direction on
exterior walls. The spacing of these points increases from
regular spacing up to several times that. The fields at
final points are set to zero. This simulates an absorb
boundary, which was tested and worked satisfactorily in
scattering paper@9#. However, those calculations were pe
formed with larger simulation boxes. In the scaling runs
refer to in this paper, we do see some effect of the walls
times larger than 5 fm/c.
in,
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d.
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