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We study numerically the annihilation of awn-stabilized Skyrmion and an anti-Skyrmion in three spatial
dimensions. To our knowledge this is the first successful simulation of Skyrmion—anti-Skyrmion annihilation
which follows through to the point where the energy is carried by outgoing meson waves. We encounter
instabilities similar to those encountered is earlier calculations, but in our case these are not fatal and we are
able to simulate through this process with a global energy loss of less than 8% and to identify robust features
of the final radiation pattern. The system passes through a singular configuration at the time of half-
annihilation. This is followed by the onset of fast oscillations which are superimposed on the smoother process
which leads to the appearance of outgoing waves peaked at roughly 45° to the incident direction. We inves-
tigate the two prominent features of this process: the proliferation of small, fast oscillations and the singular
intermediate configuration. We find that our equations of motion allow for a regime in which the amplitude of
certain small perturbations increases exponentially. This regime is similar but not identical to the situation
pointed out earlier regarding the original Skyrme model. We argue that the singularity may be seen as the result
of a pinch effect similar to that encountered in plasmas.
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[. INTRODUCTION of the Skyrme term. We are able to follow the Skyrmions

The attractive idea of representing nucleons as solitons dfom incidence through annihilation to pion radiation. An
the effective pion field was proposed by Skyrme long beforénteresting phenomenon involving a possible pointlike singu-
the advent of QCO1]. In the context of QCD, the idea larity arises in our calculation that might actually simplify
remains equally attractive; moreover, the approach becomédbe analysis; however, our objective for now is to obtain a
exact in the largé\, limit [2]. The Skyrme approach gives a base line calculation using classical Skyrmion dynamics. We
classical, nonperturbative picture of hadrons in the context oivill return to a detailed discussion of the singularities in a
low-energy QCD. Many properties of nucleons are reob-subsequent publication.
tained using a model of quantized spinning solitons of the In this paper we present our results on Skyrmion—anti-
pion field [3], including the static nucleon-nucleon and Skyrmion annihilation using a modgd—11] which couples a
nucleon-antinucleofé] potentials. U(1) vector field (the w) to the winding number of the

The main difficulty in using the Skyrme approach as aSU(2) (pion) field. This coupling replaces the Skyrme term
starting point for an effective dynamical theory of nucleonsfor stabilizing the Skyrmion. The idea of replacing the highly
lies in the fact that all such enterprises must use numericaionlinear Skyrme term with a coupling to additional vector
calculations to describe the dynamics of the solitons. No andields, in particular to thew, goes back to Adkins and Nappi
lytic solutions are known. One path is to study the classical11]. It has been widely used in studies of the Skyrme model
dynamics of Skyrmions and use the results to build up thésee[3] for more details The configuration of the pion field
quantum dynamics of nucleons based on the model of thi the static hedgehog Skyrmion is similar to the traditional
static nucleon as a superposition of spinning Skyrmionsone. Thew field in this case has only aw, component.
Conceptually the simplest process one might study this wajNumerical studies of the static interaction of such Skyrmions
is low-energy nucleon-antinucleon annihilation since in this[4] have been performed earlier. We have studied the classi-
case there are no nucleons in the final state. At low energiezal scattering of two such Skyrmion9] for a variety of
the initial state is reasonably well described by Skyrmionsyelative groomings and impact parameters, and found that the
while in the final state there are only mesons which again areorresponding dynamics is very similar to that of traditional
well described by the effective theof§]. Skyrmions. The omega stabilization is gentler than the

Simulating soliton-antisoliton annihilation has proved to Skyrme term and should thus lead to less violent behavior in
be a difficult numerical problem. Previous attempts to simu-the simulations. We are able to follow through the annihila-
late the annihilation of a Skyrmion—anti-Skyrmion pair tion process to the point when the energy is carried by out-
[6—8] using the original Skyrme Lagrangian encountered nugoing sphericalpion andw) waves. We encountered signifi-
merical difficulties. The problem has be¢n] traced to a cant, but not fatal, numerical difficulties, and could ensure
deviation from the hyperbolic nature of the equations of mo-energy conservation to better than 8%. Our programs are set
tion, resulting from the contact nature of the Skyrme term.up for general initial conditions, and we will investigate the
Another possible concern is that the low-energy approximadependence on those separately. The results we present be-
tion becomes questionable during the annihilation proceskw refer only to the head-on annihilation process with fixed
when the energy tied up in the solitons is suddenly liberatednitial velocity. To our knowledge the annihilation process
Notwithstanding, below we present the first successful athas not been followed this far previously.
tempt at such a simulation using omega stabilization instead The annihilation itself, in the sense of the unwinding of
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the baryon number, takes place in a time comparable to the Il. MODEL
size of the Skyrmion;. IF pror_:eeds Fhrough an interm.ediary Our Lagrangian consists of the nonlinear sigma model
state which has a pointlike singularity, which results in thepiece

concentration of the total energy in a very small region

around the symmetry center. This is followed by fast oscil- 1, w1,

lations which last for a time comparable to the unwinding, Lo=7 15tr(d,U"UT) +5mefotr(U—1) 1)
and then gradually give way to outgoinguas)spherical

waves which are suppressed at small angles and peak arouadd the omega piece

45°,

i 1
. Fo.r. the original Skyrme modgl, the Skyrme term _vvas Ew:_Ea#wy(aﬂwy_&ywﬂHEMszwM, @)
identified as the source of numerical instabili]. Our ef

fective Lagrangian does not have a similar local self-

interaction term for the pion field. However, we have en-WhICh are coupled through the baryon current:

countered numerical problems similar to those expected 3g

when the equations are no longer purely hyperbolic— Lim=7wﬂ8”,

namely, the appearance of persistent fast oscillations of small 3
amplitude which make the simulation difficult. After a more 1 3
careful analysis, we found that our equations of motion also B = . e#mﬂtr[(ufavu)(uTaam(uTaﬁU)].

allow for nonhyperbolic solutiongi.e., plane waves with 127
imaginary wave numbegralbeit at a higher order than the i ) i )
Skyrme equations. Fortunately, in our case these oscillation-ghe SuU(2) f|eldbf is parametrized by the three real pion
are weak enough so as to not completely destroy the Iongf16|d5{7/:k}k=1,3:77 or by the four “Cartesian” components
wavelength features. Thus our central results seem to be 0 ={¥" =03
bust and independent of the violent short-wavelength behav- - s e s o aA
ior. U=expiT-m)=V+ir-T=5V" (A=0,...,3. (4

The most prominent feature of the annihilation process, oy previous calculation we have used theparametriza-
and probably the ultimate source of our numerical difficul-tion exclusively. For a detailed derivation of the equations of
when the original tips of the Skyrmion and the anti- method we refer the reader {®]. The more traditional
Skyrmion merge, the pion field has a singular configurationmethod is to use th& parametrization. That choice of vari-
The fields themselves are continuous, but the derivatives aigples has the advantage of being more transparent. Below we
singular. We do not yet have a complete, quantitative underderive the equations of motion in thi2 parametrization and
standing of this phenomenon, but it is clear that it consists ofjescribe a way to employ them in simulations without hav-
the axial baryon currentwhich carries out the annihilation ing to deal with Lagrange multipliers as dynamical variables.
being squeezed into a very small, probably pointlike crossye used this approach to perform numerical calculations to-
section. This feature is localized in tke=0 symmetry plane gether with another code based on theparametrization.
(the one that separates the Skyrmion and the anti-SkypmionThe equations of motion below are crucial for the analysis
and arises close to the moment of half-annihilation. presented in Sec. IV.

In the following section we define our model Lagrangian In the & parametrizaﬁon the baryon current is
and derive the equations of motion. The main part of this
paper is contained in Sec. lll, where we describe our numeri- 1
cal results on the phenomenology of axial-symmetric annihi- B#= >
lation and discuss our simulation. The first part of this sec- 127
tion describes our calculation, with emphasis on aspects n
already discussed if9]. The reader interested only in the
phenomenology of the annihilation may skip directly to Sec. 1 1
[l B and omit Sec. Ill C where we present numerical checks £U=Eff,aM‘PAa”\IfA+§miff,(\If°— 1). (6)
to assess the reliability of our results. In Sec. IV we investi-
gate the stability of our equations of motion against smallrheyA's are subject to the chiral constraint which is equiva-
plane-wave-like perturbations, in the spirit pf], and at-  |ant to the unitarity condition on thé’s:
tempt to identify signs of nonhyperbolicity in our results. In
Sec. V we discuss the appearance of a singularity in the pion UUT=1—=VAPA=1. (7)
field at the moment of half-annihilation. While we can un-
derstand qualitatively the mechanism that produces this phd&-o get meaningful equations of motion, we must impose this
nomenon, a full understanding will require more focused in-constraint separately on the componeWts. One way is to
vestigation. In Sec. VI we summarize our results and make atroduce a Lagrange multiplierh, adding a term
wish list of further work. The Appendix contains a more A/2(¥A¥”—1) to the Lagrangian. The physical meaning of
detailed description of our numerical algorithm. the multiplier is similar to that of “reaction” forces in me-

e BPBCOYAG By Wl P, (5)

%tnd the nonlineas piece is given by
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chanics, which enforce constraints without performing any Now we just project Eq(8) onto W and solve for:
work. Obviously, the equation of motion for is just the

constraint equatiorf7), which now has to be solved along N =f2PAg gupA

with the other equations of motion. i .

Our task is to solve formally the ordinary equations of g 5 _ABCD A 5 c o
motion for the dynamical variables and their derivatives. _Ff’”a € w, V9, V9, ¥, ¥
These will contain\. Then, one uses the result and the con- 77
straint equation to solve for. Below, this will turn out to be —m2f2(w0)2
straightforward.
To obtain the equations of motion fdr”, start with the =— 129, WAgHuA
derivatives ofL,+ L, :
g
_ uvaB ,ABCD \I,Aa \I/B(}’ \I,Cé, q,D
S(L,+L 2€ € ©u vE Ca @
(5 PA ) =m2f2 A 0w 0+ \ WA, 2m
o M2V (10
S(L,+L SLy+L L :
(—Ax):fi HpA, #(—AA): f29,0" WA, From the second form it is clear that we have indeed solved
6(a, ") 8(a, ™) for \. Remember that we have a set of second-order partial

differential equations. An initial condition specifies all the
fields and their first derivatives, so the right-hand side of the
second equation contains only known quantities. We can

The derivatives ofZ;,; are

5£int g

=T nvaB, EABCD%‘I’B%‘I’C&B‘I’D. now replace this expression far into the full equation of
S(PA) 872 a motion.
One more observation is necessary. Sifeis a unit
OL; 3 vector, all theg, W’s are perpendicular to it. Consider the
) |ntB _ 92{Eﬂmﬁw#eABCD&V\I,Aaaq,c&Bq,D quantity "
8(0,¥") 8w
+ e B9 ,0,erBPYAG W< WP}, e BehBCD) WBy WCh WP, (11)
A . . -
The W™ equation of motion is Each nonzero term in the sum over Lorentz indices is per-
3 pendicular (in isospin space to three distinct vectors
fi(gﬂa,u\I,A:_gzsaﬁ;weABCD[ 3,0, W89, WC WP 9, W, ..., all ofwhich are perpendicular . (Contracctlijng
8 with any of them would give zero because of tePCP)

Furthermore, the three vectors have to be linearly indepen-

20,0, W80, WCHZWP | + m2f2 500 dent in order to give a nonzero contribution. But there are

3~ four mutually perpendicular directions altogether in this
space; therefore the above quantity is necessarily parallel to
FATA, ® quantity yP
We can now proceed to eliminate The chiral condition yaB ABCD 1B c o
means thaWr={W¥*4} is a four-dimensional unit vector. This R % A
leads to constraints of its derivatives. The first derivative of
W with respect to any one of the four coordinates must be =WYAeHBeEBCDYE) w8y WwCh WP, (12

perpendicular to¥ and so on:

Now we are ready to replace in the equation of motion,
A\rA— A\ A
YPi=1—9,¥¥ and we obtain
=0— 2 (FZUHTA+ D (a¥*)2=0
A A 2 A A E E
f1 (0, 0" VA=WV =g,d W F)]
or, after summing ovep,

t?M(?’U‘\I’A\IfA—f— &M\I,Aa,u\PA: 0. (9) :% EaﬁMVGABCD(?Vw#\IIB(?a\IIC(?’B\I,D+ quffi-qfo( SAO
a

Geometrically this means that the componend p#*“W par- N
allel to W is not a dynamical variable, but rather it is deter- —vrwT). (13
mined by the constraint. The corresponding part of the equa-
tion of motion(8) therefore carries no information abalt. ~ The left-hand side is just the piece @f W which is per-
Instead, it tells us what should be in order to make sure Eq. pendicular toWw, (d,0*W), =4,0"W—-W¥(W¥-J,0*W¥). So
(9) and thus Eq(7) are verified. the equation of motion is written compactly:
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(9,0"WR) | —m2WO(S0—WOowh)

3
=8fzg S PRI eABCDy ) WBG, WCaLWP.  (14)
e

It is easy to derive th@ equation of motion
9"d,0"=0"d,0"—M2w*
1+ curap ABCD) yAYB) §Ch 0,
8772 v a B
(15

This completes the set of equations of motion in thepa-
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annihilation process. These require finer spatial grids and
smaller time steps than smoother processes such as soliton
scattering in order to avoid increasing numerical error which
ultimately can make a calculation meaningless. Our choice
of parameters is motivated by the desire to reduce this prob-
lem as much as possible.

We chose parameters close to those used in our previous
work on scattering9], but took a smaller mass for the vector
field. This choice leads to a softer dynamics, but a dynamics
which does not differ qualitatively from that for a physical
mass. Our choice of parameters is therefore the same as in
[9], with f_=64 MeV, m_=139 MeV, g=m,/f 2, but
m, =385 MeV. The Skyrmions in our case are slightly
smaller in spatial size (1.1 fm versus 1.4 fm in diamgter

rametrization. They have the virtue of being more transparand have a mass of 650 MeV.

ent than the ones based on thdields. We consider the special case of head-on annihilation. The
original direction of motion is along thg axis. The Skyr-
mion and the anti-Skyrmion are located symmetrically on

This section contains the central result of the paper. Thé ppos_ll_t;]a S;jfs OT thre_=0 plang, V(\j”t:: tcl;ewhcen;_e E on t?e
reader interested only in the physics of annihilation as w IS. The Skyrmion Is a standard hedgehog field configura-

understand it may skip the technical part of the first subsecion centered ax=—1.5 fm. The anti-Skyrmion is obtained
tion and the third subsection in its entirety. by charge conjugating a hedgehog conf!guratlon centered at
The purpose of the work reported here is to establish t&=1.5 fm and then performing a grooming of 180° around
which extent a numerical simulation of Skyrmion—anti-the 1 or x axis: (¥°,%!W? W% (W0 —¥! w2
Skyrmion annihilation can be performed in taestabilized — —¥®%)—(¥°,—W¥!, w2 ¥3 —altogether, the anti-Skyrmion
model. We will see below that this simulation can indeed bes obtained from the Skyrmion by changing the sign of the
performed successfully. or W1 component. This choice of grooming corresponds to
In the following subsection we describe our choice ofthe most attractive interaction between the Skyrmion and
parameters for the problem. These choices were driven bgnti-Skyrmion.
the fact that to our knowledge this is the first successful The central annihilation problem has an additional axial
calculation that follows through the annihilation of a stablesymmetry compared to the general case. However, our codes
three-dimensional soliton and its antisolitbtherefore our  take only partial advantage of the axial symmetry. We have
focus was on performing the most numerically accessiblgull three-dimensional programs which we plan to use to
calculation which has the important qualitative features ofperform a sweep of many initial conditions. We expect that
the general case. most of the features of off-center annihilatiomot head ohn
The second subsection contains a detailed description @fre encountered in the present setup, since the relative posi-
the phenomenology of the central annihilation calculationtion and orientation of the solitons in the general case are
The annihilation proceeds through a sequence of very fastzery similar to those in central annihilation.
varying intermediate configurations where most of the total We performed simulations of Skyrmion—anti-Skyrmion
energy is concentrated in a region of about half the lineaannihilation using both the algorithm presented9h and a
size of one Skyrmion. This is followed by outgoing waves, similar calculation based on the equations of motion from the
which we followed for about 5 fn@. Fast oscillations of previous section. Below and in the Appendix we describe the
small amplitude accompany the radiation phase. latter in more detail. The only major modification of the first
The third subsection reports numerical checks on the recalculation compared tf9] is the treatment of the» field
liability of our calculation. We compare results for the samewhich is similar to that described below. The two calcula-
calculation performed with different lattice spacings andtions give virtually identical results in the smooth regime,
show that while there are fluctuations, the macroscopic feawith small differences in the violent regime. In the next sub-
tures, such as the time dependence of the energy flow and i&ction we present the results of a calculation usingdthe
angular distribution, are robust. scheme. The scaling analysis runs in Sec. Il C usesthe
scheme. Since th# scheme is more transparent, it is used
for the study of the small oscillations and of the singularity

The main challenge of this calculation lies in coping with in the respective sections.

the fast spatial and temporal variations of the field in the One important modification compa_lred ], Wh'(.:h also
affects themr scheme, refers to the implementation of the

gauge fields. Taking the four-divergence of thequation of

motion, together with baryon current conservation, leads to
IA very interesting recent calculation of scattering of metastable

baby Skyrmiong12] reported results on annihilation as well.

Ill. NUMERICAL RESULTS

A. Simulation

M23, 0" =0, (16
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In other words, the nonzero mass breaks gauge symmetryis presented in Sec. lll C it is significantly smaller, only 6
enforcing the Lorentz gauge. We can drop #ie,w* term  x5x5 fm3. By taking advantage of the symmetry of the
in the equations of motion, which should not change the timgyroblem, we actually simulate only an eighth of the physical
evolution of our fields, provided the gauge condition is al-box. We used various grid sizes, from 8 to 20 points per fm,
ways verified. This is in principle the case if the initial con- 12 points/fm for the main runs. We used time steps varying
dition verifies the gauge condition. Numerically, the systemfrom 100 per fm to 3200 per fm in the violent regime. As
tends to drift away from this condition and one needs to takenitial conditions we use a static, spherically symmetric soli-
additional precautions to enforce the gauge condition at alilon whose profile we obtained in a separate calculation. We

times. N _ _ boost this configuration t@=0.5 towards its mirror image
To enhance stability, we introduce the “electric” and created by the appropriate boundary conditions at the sym-
“magnetic” fields of w, &= dwo— wy, M= €ximd @m, metry wall. The total initial energy of the two soliton system

and eliminatew, as a dynamical variable. The latter is pos- is then 1500 MeV, of which 1300 MeV is in the solitons and

sible because the mass enforces the gasged,wy leaving ~ approximately 200 MeV is kinetic energy. Our initial veloc-

only three dynamical degrees of freedom for théeld. This ity is slightly less than the one used in the previous study of

choice of variables allows us to use a local scheme, whicignhihilation[8] (3= 0.63) and the same used in our study of

gives the new time derivatives at a given spatial point as afivo-Skyrmion scattering, which was also in the range used

implicit function of the local time derivatives and spatial in the Caltech study of scatterir[d3]. The choice of the

derivatives only. initial separation is dictated by the need to minimize the
The ¥ equations of motion are in a form which ensuresOVerlap between the two solitons.

the chiral condition without having an explicit Lagrange

multiplier. Numerically we use a leapfrog scheme which is B. Results

discussed in further detail in the Appendix. We discretize the . I
. : . . : Below we describe the process of the central annihilation
fields on a uniform spatial grid. The values of all fields at a . ) . ; L

of a Skyrmion and an anti-Skyrmion which are initially

given time step are defined on each grid point. The tim .
derivatives of the fields are retarded with one half-time ste[;a.‘}’ -0 fim apart and are boosted towards each other with an

. : ' : . initial velocity of 8=0.5 each.
The time evolution of the fields themselves is thus straight The process is best illustrated by the time evolution of the

forward. The velocities are evolved using the second-order. .. . )
equations of motion. This involves solving locally a set of pion field. In Fig. 1 we plot the quantity (1'¥,) as a func-

coupled implicit equations, since the velocities also appear "1;10{1 of é'mﬁh-rht'.s c?olcgkls nz_att&ial_slnfelmt:eef. Seaﬁ@t
the interaction terms. =1 andat the ip of a Sskyrmiof¥o=—1. In the 1irst plo

: ; we have the essentially unmodified Skyrmion and anti-
In the V" scheme, our set of equations is Skyrmion, slightly superimposed. Thie, component of the
. _ ) pion field is identical for the two objects. Charge conjugation
WA= RUA—PAY (\IfE - 9 WE ) and grooming affects only the “spatial” components.
K E K In order to annihilate, the fields have to unwihthere-
fore the field in the center point has to pass through the value

+m2(5A0_\pA\If0)+3_g€ABCDq/B V¥ =(-1,0,0,0) (the highest point in our plotsIn other
T 8m?f2 words, the tips must merge before unwinding. The second
i frame illustrates a moment close to this situation. As will be
X (€mExd Vo WP +2 M W9, ¥P), discussed later, the axial dependence is rather sharp at this
moment. In our simulation the symmetry center is between
e _ M2 lattice points; therefore the crest in the second frame should
&=~ €miMm— Moy

be close to horizontal with a proper extrapolation.
39 ABCD A B+t o From this point on, the va_lue ov, apprpaches fast the
T —— €ume€ PPAYEH ¥, wP, vacuum value as the topological obstacle is now gone. After
8 another fm¢ the field is close to the vacuum value (1,0,0,0).
The variation is so fast that the field in the center “over-

Mkz €am?1Em turns” and increases again. Only after 3 firffom the pass-
ing of the peak do these large amplitude oscillations subside
0 =Et+ I w . 17) by propagating outwards as spherical waves. This outgoing

pion radiation is clearly seen in the final two frames of Fig-
In addition, we computev, using the gauge condition and ures 1, 5, and 6.
use it in the evaluation of the energy.
The technical setup of the calculations was the same as
described irf9]. We used clusters of typically six to ten IBM  2ggcayse of symmetry, on the central axis the field is always of

SP-2 .machines. For the final run we usgd a cluster of 26he formw =(cos6,sin6,0,0). As one passes through the center of
machines. Our parallel codes are writtenFDRTRAN9G We  a Skyrmion, the angle rotates through a full circle. For the anti-

use a variety of grid sizes. Our physical box isXIT0  Skyrmion, the winding is opposite. As the two objects approach, the
x 10 fm?® for the calculation itself, but for the scaling analy- center point unwinds.
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t=2.29 fm/c

FIG. 1. One component of the
pion field (1-¥,) at various mo-
ments during annihilation. The
fields are shown in thay plane.
The x axis is the direction closer
to horizontal. The length on the
axes is measured in fm. The quan-
tity we plot is dimensionless. Note
the different vertical and horizon-
tal scales in the last two frames.

15 t=3.35 fm/c

1.5 t=4.51 fm/ic 0.3 1=5.48 fm/c 0.05

0.025

The time evolution of the baryon number is illustrated in 1/ . . 3
Fig. 2. We compute the baryon number by integrating(&y. Ha=5 WAPAL D 9T A9 TA |
in one half-space. The baryon number in the other half-space k=1
is equal and opposite to this. The annihilation starts basically
when the Skyrmions touch, & 1.66 fm(pointA in Fig. 2). 13 1
In the absence of interactions, exactly half of the baryon Hy== > (M202+ M2+ ED)+ = M2w2.
number in one half-space should annihilate when the two 21 2
centers coincide, at=3.0 fm/c . Because of the attractive (18

interaction, this happens a little faster, at aroumnd

=2.3 fm/c (B). Along with the field, the remaining baryon The piece corresponding to the, field can be defined in
number decreases quickly to zerb=(2.85 fm/c, pointC),  tarms of our dynamical variables

continues to decrease for a short time, and then oscillates,

hitting an absolute minimum at poinD(). The baryon num-

ber oscillates along with the large amplitude oscillations of

the field and finally settles at zero=5.5 fm/c, pointE) in 1
the radiation regime.

Altogether, the unwinding of the fieldrom A to C) takes
approximately 1.2—1.3 fna/ but this is followed by local-
ized oscillations which take a longer amount of tiffrem C
to E, approximately 2.5 fmd), therefore the total process
from the moment when the Skyrmions touch to the complete
disappearance of the baryon number takes about 3.5, fm/
depending on the choice of the poiat

In Fig. 3 we plot the baryon density and tkeomponent
of the baryon current, integrated in tlye plane, as a func-
tion of thex coordinate. This also illustrates the progress of
the annihilation. The two charge concentrations practically Time [fm/c]
disappear aC. We can see that the current increases in the
center, starting from half-annihilatio, peaks shortly after FIG. 2. Evolution of the baryon number in one half-space during
total annihilationC, and then oscillates. a central annihilation process. The poitsE indicate particular

In Fig. 4 we plot the evolution of the energy as the sum ofmoments which are also indicated in Figs. 1, 4, and so on, and are
the energy in the pion field and the omega field. The dottegleferred to throughout the text. Note especially p@ntvhich cor-
lines and label#\—E in Fig. 4 indicate the same times as in responds to “half-annihilation.” It is associated with the merging
Fig. 2. Our definitions of the energy densities—which areof two topological centers and also marks the beginning of the
integrated numerically to give the quantities in Fig. 4—are violent part of the annihilation process.

Baryon number
in one half space

0.5

Baryon number

1 1 1 1 I 1 1 1 1 | 1 1 1

_0‘5 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1

(]
AV}
o~
o
[@2]
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15 = - .
0L P — Z L Energy components |
. s E_ t:|1.0 fm/c | | l ...... l _: 1500 C W —_
e ] L i
@ o1sf ! e ! ! L = i - ]
c o - 5 ) P Total
g 0 —— =T m = B — T ]
T -15F tTl.67 fm/cI Lo (A)I 3 — 1000 — e —
o H—— 1 B C /M 1
o E % . \/‘( : W«.ﬁ:‘_‘;_—-—-\_ ]
= O e . s:: I ey \ D ]
% _1'5 : I‘:Tzl'zlB flrrll/(|: 1 ] 1 1 I 1 Il 1 I Il 1 1 (IB)I Il F Lﬂ 500 I EME ]
} 1'5 i T | T T T T | T T I‘I/,+.\I\I T T l T T T T I T : : E E :
g ok : i ABc¢p E ]
S _y5f t=2851 c) 1 - .
5 1'5'=:'==r=n/=c'::::'::::':::(a)'ar ot———l
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& A FIG. 4. Evolution of the energy and its components during a
= 1'2 3 - E central annihilation process.
_15 F t=45 fm/c 3 ' o _ o
R S S S R S Y yields to oscillations which correspond in time to the large
-2 -1 0 1 2 . . . . . P . _
oscillations of the field, accompanied by significant oscilla
X [fm] tions of the baryon number around zero. During this regime,

when the net baryon number oscillates, the energy also flows
FIG. 3. The baryon number densitdotted line$ and thex back and forth between the two sectors. Eventually the two
component of the baryon current densisolid line, integrated ~ Sectors stabilize afteE at comparable values.
overy andz (in fm~! andc/fm, respectively, as a function of the A more detailed picture of the energy flow is given by
x coordinate, at various moments during the annihilation process.looking at the spatial distribution of the energy at various
moments. In Fig. 5 we plot the total energy density. In the
2 first three frames we see the two configurations approaching
. (19  each other, then merging. Starting from the third frame,
which roughly corresponds to half-annihilation, the energy
density in the center becomes very large, almbfinction-
The second |dent|ty follows from the equations of motion for"ke_ Eventua”y the energy starts to flow outwards in con-
wg, the definition ofé, and the gauge conditichWe also  centric waves. In the latter frames, even though there is stil
plot the total energy in Fig. 4. There is a loss of less thar spike in the center, most of the energy is in the outgoing
100 MeV from a total of 1500 MeV between the poifBs waves. This is seen better in Fig. 6 where we plot the total
andE, which corresponds to approximately 7%Ve assign  energy density multiplied by the distanpeto the symmetry
this loss to numerical dissipation which is significant in theaxis for the last three frames of Fig. 5. Plottipek dE/dV
fast-varying regime between half-annihilatioB)( and the  gives a better estimate of the relative amount of energy con-
onset of the radiation regimeE]. The further decay of the tained in different regions of space.
total energy simply corresponds to outgoing radiation which  The energy density plots reveal two important aspects.
leaves the simulation box. First is the fact that the energy density is extremely high in
The annihilation process is accompanied by the rearrangehe center betweeb=2.3 fm/c and t=>5.0 fm/c, which is
ment of the energy between the pion and omega sectorghe period between annihilation and the start of significant
Initially we have free-space propagation of the solitons. Theyutward radiation. The other important feature is the abun-
smooth part of the unwinding beginning a)(is accompa- dance of fast, small-amplitude oscillations which persist to
nied by the flow of energy from the pion field into the omegathe end of the time interval under consideration. These oscil-
sector. The net flow stops before full unwindin@)(and |ations originate in the period immediately following annihi-
lation when there is a very fast, global variation of the fields
confined to a small region of space. Most likely, numerical

SNumerically this identity is violated because the right-hand side€MTOr stemming from the large local variations has the role of
is the difference of two large numbers in the fast-varying regime @ source for these oscillations. However, as discussed in the
The identity relies on third-order derivatives of our dynamical N€Xt subsection on numerical stability, the persistence of the
quantities. However, using, computed from the gauge condition Small oscillations is also possibly due to properties of the
leads to reasonable energy conservation. exact, continuum equations of motion.

“The loss in the run presented in this section is less, actually closer Despite the presence of the small oscillations, there is a
to 5%, but the runs presented in the next section, which use well-defined pattern to the flow of energy, both in terms of
smaller physical box and slightly different initial conditions, lose the radial flow and angular distribution. Starting with
about 100 MeV. =2.5 fm/c, the energy is concentrated in a small region

1 1 [(3g
—M2,,2_ _
Hwo_ 2 MwwO 2M2 [( 2 BO) (&kgk)

w
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1200 1=1.00 fm/c 1200 1=1.67 fm/c M =220 fmsc

FIG. 5. The total energy den-
30000 1-4.00 fm/c sity at various moments during
‘ annihilation, in MeV/fnri. The
density is shown in th&y plane.
The x axis is the direction closer
to horizontal. The length on the
axes is measured in fm. Note the
different vertical and horizontal
scales in the various frames.

| t=2.85fm/c

1000 t=6.99 fm/c

\ t=4.51 fm/c

tially of radius 1 fm) around the center. The distribution dius. We can also understand how the decrease in total en-
becomes very strongly peaked in the time between halfergy (top panel, same line as in Fig) # really just flow
annihilation and complete unwinding. There is some outgoleaving the simulation box.
ing radiation as early as=3.5 fm/c but the strongly peaked Finally, in Fig. 8 we illustrate the angular distribution of
pattern eases up only after 5.0 fm/c when the bulk of the the energy during the annihilation process. We can see a
energy starts flowing outward. depletion of the small angle bins and a peak around 45°
The macroscopic flow of energy is nicely illustrated in which seems to be the preferred direction of the energy flow.
Fig. 7 by plotting the total energy contained in sphericallt should be noted that these angular distributions are in a
shells surrounding the center. Initially we have the two in-plane, but that the three-dimensional distribution has cylin-
coming solitons which move through bins in decreasing ordrical symmetry about the direction of collision. The axial
der of radius. Starting frorh=2.5 fm/c the energy accumu- symmetry precludes the formation of a torus intermediate
lates in the center bife sphere of radius 0.5 fro/ half the  state as seen in Skyrmion-Skyrmion scattering, and in fact
linear size of a Skyrmion The accumulation peaks at about we see no evidence in our calculation of such an intermediate
t=3 fm/c when this bin contains more than 2/3 of the total state. The suppression of small angle bins is reminiscent of
energy. Even though the outward flow starts as early as the pattern seen in baby Skyrmion annihilatjad], while an
=3.0 fm/c, it becomes significant only later. Approximately enhancement at 45° has not been previously noted to our
90% of the energy leaves the center spheraé=%.0 fm/c, knowledge. Given the fact that the dynamics of soliton scat-
or 3.0 fm after full unwinding. From then on, we can follow tering in two[15] versus three dimensiof$3,9] both allow
the energy moving outwards through bins of increasing rafor scattering at 90° but through qualitatively different inter-

600 t=4.51 fm/c 800 t=5.48 fm/c 300 1=6.99 fm/c

400

200

FIG. 6. The total energy density multiplied by the distance to the symmetry axis, in Méi//atmarious moments during the latter part
of annihilation. The density is shown in tixg plane. Thex axis is the direction closer to horizontal. The length on the axes is measured in
fm.
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FIG. 7. Total energy in spherical shells surrounding the annihi- 400 ==+ —— } —— I —— } —

lation as a function of time. C £t=6.99 fm

200 - -

mediate states, neither the suppression of the small angle: e
nor the peak around 45° is surprising. 0 0 20 40 60 80

Azimuthal angle [degrees]
C. Checks

In this subsection we investigate the extent to which our FIG. 8. Total energy in angular intervals measured from the
results are influenced by the details of the numerical calcySymmetry axis at various moments during annihilation.
lation. This aspect is particularly important because of the
presence of large time and spatial derivatives of the fieldsspacings. The results obtained with this algorithm with iden-
The macroscopic dynamics of the problem imposes a certaitical box size and initial conditions are very similar to those
minimum size for the simulation boa cube of size 5 fm). obtained with thel algorithm. The program based on the
We use a fixed grid. This limits the number of points per fmalgorithm has been readily available for a longer time, and
we can have to not much more than 20. Our typical calculawe used it for the very time consuming runs with larger
tions use 12 points per fm. numbers of points. Below we present results for 12, 16, and
One obvious concern stems from the fact that we wer@0 points per fm. The physical process in these runs is the
able to ensure energy conservation only to about 7%, at besame, i.e., head-on annihilation with the same parameters as
5%. Approximately 70—100 MeV of the total initial energy in the main run, initial separation of 3 fm, initial velocity of
of 1500 MeV is lost to numerical dissipation, as can be see8=0.5. However, we used the smallest possible simulation
in Figs. 4 and 7. This loss comes between poBendC in box, only 6x5x5 fm?, and a slightly different initial con-
the respective plots, and is a significant but not alarmindiguration. Using an even smaller box would have resulted in
energy loss. more energy dissipation outside the box and, most notably,
Numerical error is probably also responsible for the ap-eflection off the walls(which we are unable to eliminate
pearance of persistent but random oscillations. Starting witltompletely which would interfere with the “real” physics.
t=4.0 fm/c, the field configurations display oscillations on We then compared the results from these various runs. Ide-
the scale of a few lattice spacings. This is preceded by ally, the numerical artifacts should scale away as the lattice
configuration which is probably singular in the continuum spacing is decreased.
limit, at half-annihilation(we discuss this in a separate sec- In Fig. 9 we plot the total energy for three runs which are
tion). This raises the question of whether the continuumidentical(including the time step, which is decreased before
physics we wish to study mixes with lattice artifacts or,t=3.0 fm/c from 100 per fm to 3200 per fra} except for
rather, whether we are able to extract continuum physicshe lattice spacing which is, respectivelN+=12,16,20 points
reliably. per fm. We zoomed in on the interval between2.0 fm/c
To test the stability of our results, we performed severalandt=5.0 fm/c, when most of the dissipation takes place.
runs using ther algorithm for a number of different lattice The energy decreases as the system is squeezed into the
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FIG. 9. The total energy during the more violent part of the  FIG. 10. The baryon number in one half-space during the anni-
annihilation process, in three calculations which are identical exceptilation process, in three calculations which are identical except for
for the number of points per falN. Note that these runs are slightly the number of points per fni\.
different from the runs discussed in the preceding section. They are
performed in a smaller box using a slightly different initial configu-

ration The outward energy flow is perhaps the most important

quantitative result one may extract from a numerical calcu-
lation of Skyrmion—anti-Skyrmion annihilation. This result
small region around the center. The loss is likely caused byvould be the starting point for constructing the final pion and
discretization error. However, as the system expands, only 8mega states in a calculation of low-eneigi annihilation
fraction of the loss is recovered. The same run Witk 8  [5]. In Fig. 11 we plot the energy contained in centered
points per fm, which we cannot plot on the same graph withspherical shells, for the threé=12,16,20 calculations dis-
out making the graph completely unintelligible, gives worse

conservation than all three runs plotted here. The two larger ——T
spacings do give better energy conservation therNthel 2

run, as one would expect. However, there is no clear scaling, 1000 F Total
as the order of th&l=16 andN =20 results is reversed. As - ——N=12 otal
an argument for the reliability of our calculations, let us em- - N=16 ]
phasize that we are talking about differences of 30 MeV here F —-N=20 3
between calculations, i.e., 2% of the total energy. 0 F——+— I ,:, I ::: I T
A look at the comparative plot of the baryon number in =7 - 3
the same runs reveals a similar pictdfég. 10. In all three % C R < 0.5 fm 2
runs shown, the remarkable poimdsB, C, andE, i.e., the =.1000 F B
start of the unwinding, the point of half-annihilation, and full 5‘0 C ]
unwinding, as well as the end of the violent fluctuations, & y ]
practically coincide. However, the extent and duration of the Lﬁ 0 C o ]

L L I B e

excursion of the baryon number below zero varies. It is prac-
tically absent forN=8 but there is a large fluctuation later
on (again, not plotted For N=12 andN=16 we see a siz- 1000
able excursion, larger fad= 16, but again théd= 20 calcu-

lation is out of sequence and has only a small negative ex-

cursion. It could be that the time step choicame for all C e Ty

rung is too large forN=20. Even with this in mind, the e ——
overall evolution of the baryon number is very similar for the 0 2 4 6
four runs we discussed. The decay of the baryon number anc Time [fm/c]

the duration of the large oscillations is a robust feature of the
calculation. Furthermore, the small oscillations seem to be FIG. 11. Evolution of the energy contained in a few spherical
very noisy with little relationship from grid size to grid size. shells for various lattice spacings.
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800 we will use a separate grid in the spatial region where the
o violent behavior is concentrated, which should allow for sig-
600 3 nificantly smaller lattice spacings.
400 F
- IV. STABILITY ANALYSIS
200 . .
] One of the two most prominent features of our results is
800 FH—+—++—+—++++ 4+ the appearance of persistent, small-amplitude oscillations af-
ter unwinding. These oscillations are present practically to
600 the end of our calculations. In the early post-unwinding re-
— 400 gime they influence the total energy and baryon number.
> The frequency of the fluctuations of the total energy and
§ 200 baryon number increases with the number of lattice points,
— suggesting that these are numerical artifacts. We have been
g‘o 800 forced to use extremely small time steps in our r(h®u-
5 600 sands of time steps per jmHowever, the precautions we
=] took did not eliminate these oscillations. On the other hand,
= 400 we are able to perform our simulations to a robust end even
in the presence of these oscillations. Furthermore, the mac-
200 roscopic (long-wavelength aspects of the outputs are not
800 strongly influenced by the number of points, suggesting that
numerical artifacts do not overwhelm the continuum physics.
600 The lack of success of earlier attempts to simulate anni-
hilation [7,8,6] has been blamed on a situation which arises
400 in the Skyrme mod€]l7]. Because of the nonlinear nature of
200 the interaction term, the equations of motion may cease to be
of hyperbolic nature, i.e., have second time and spatial de-
0 rivative terms of opposite signs. Hyperbolic equations of mo-
0 20 40 60 80 tion ensure the existence of plane-wave-like soluti@ishe
Azimuthal angle [degrees] form e with real wave numbek=\k-K) which may

_ _ _ _ propagate as packets of quasiconstant amplitude. If the sign
FIG. 12. Evolution of the energy contained in angular bins for of the second time derivative reverses, the wave number may

various lattice spacings. become imaginary for a given wave vector resulting in
waves with exponentially increasing amplitude. A small
cussed above. The evolution of the energy contained in thgyctuation that excites this mode would then result in a large
shells is practically the same for the three runs. There ighange in the final result. In other words, if the equations of
some fluctuation, especially for the center bin, but the diﬁermotion are not hyperbolic, the system in unstable. For a de-
ences are not very large. In particular there is little differenceaijled derivation of the instability for the Skyrme model of
in the bins at larger distance, and that is where informatior}ust this sort, we refer t7].
would be extracted for the outgoing pion and omega states. |n the following we investigate the possibility of such an
In Fig. 12 we plot the energy contained in angular binsjnstability occurring in our model. Recall that we are using
measured from the axis. These plots show more variation stapilization rather than a Skyrme term in order to avoid the
W|th the Iattice SpaCing then the I’adial binS ShOWn in F|g 11damage brought on by the fourth_order interaction term.

but this is partla”y due to the way the energy in a giVenCOnsider our equations of motion
angular bin is determinetiStill, the significant differences

seen att=23.35 fm/c subside by the time the radiation re- 9, 0*VA—WA(WEY g WE)
gime starts. The suppression at small angles and the maxi-
mum around 45° are present in all three runs. 39
i i ” — pnvaB ABCD B C D
In conclusion, while our detailed results are somewhat 8f27726 € Iy, W59,V 0g¥
sensitive to the number of lattice points, the physically im- i

portant observables, energy conservation, the time evolution +m2 (50— TOpA),
of the baryon number, and the flow of energy are reasonably
well determined and do not depend strongly on variations in

the number of lattice points. In future studies of annihilation a”apw“:%e””“ﬁeABCDaV‘IfA‘IfBaa‘IICaB\PD
ar

—M2w*, (20
SThis is done here by extrapolating the energy density fronxthe
plane of points closest to the symmetry center, assuming cylindricaConsider now a solution of these equations and a small, fast-
symmetry. varying perturbation added to it:
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'\IIA_,'\II'S+ e, |3#¢A|>|aﬂqﬁ, sarily positive definite. This in itself doesot imply the ap-
pearance of an instability, since in the static case, which is
wh—woteot, 9,0,|>]0,0,], (21)  free of instabilities against small oscillations}, <0. We

should of course take the sign bf, into account when we
wheree is a small real number. We study the stability of the analyze the characteristic equation.
equations of motion by analyzing the behavior of these small Let us solve the second equation for the polarization vec-
perturbations in the background field given by” w”}.  tor 3# and substitute into the first equation. The result can be
First, we substitute the ansd2l) into the equations of mo- rearranged as follows:
tion and expand to first order iex
e N (—k,k“+M?)(—k kP +M2 +2m2W°)
d,0"¢"+ ¢" (9, VEHWE)+2W (9, p=0"VF)

39 2
39 = 2 kvkpewa'geﬁw\/aﬁvw
_ eHaBeRBCD 5 o By pCy D 8mf,
8772f§T o “ P )
39
+9,0,($P9, VWP +2WBg,4C9,¥P)} :—(m) k,k,S"'S, (26)
—2m2(pAPO+WAGO),

where we have defined,, ;= e*8PoA W8, ¥C9,¥P and

SHr=ehraby
39 ABCD o - -
ava”oﬂz—ze#”“ﬁe As for any Lorentz tensor of rank 2, there are two invari-
8w ants one may construct from the componentsStf: A

1 =S, .S,z and B=S*"S,,. If A=0, then using the
x| a9, VBt 2 9" WAB|9,WCa,WP. (22)  appropriate Lorentz boost, the tensor can be either brought to

3 a form where the “electric” componen&’ vanish or it can
be brought to a form where the “magnetic” compone8t3
vanish. Only one of these situations is possible, depending
on the sign of the other invariant. B<O, the tensor is
(PA+ ed™) (W p+ edpp)=1+O(2)— p*PA=0. (23)  “electric,” and if B>0, it is “magnetic.” Let us compute

the first invariant:

We must again remember that the variation®fis con-
strained:

Therefore the quantitye"®P9,W"$%9,¥C3,¥° has to

vanish since it is the quadruple product of four isospin vec- A= e Pe g€ VPV
tors which are all perpendicular oH. _ _ —2¢ . \JHPWAT
We now assume that small perturbations are well approxi- HVNT
mated by plane waves, =2 NBCDEFCHQAYBRHEYF gnrab
Ph= DR, o= ek, (24) X9, V9,00, o0, (27

and attempt to obtain equations for the wave Vek;pr If Consider one set of values for the eight isospin indices on the
the equations have solutions which correspond to an imagfight-hand side. For a nonvanishing term, the labels
nary ko=, then we conclude that our equations of motion{C,D,G,H} must be all different: otherwise we would have
are unstable, since they allow for the exponential increase giymmetry in two Greek indices. For simplicity let

a small perturbation. After substituting the ans&) into  {C,D,G,H}={0,1,2,3. The Lorentz sum remaining to be
Eq. (22) and contracting the first equation widi® we obtain ~ Performed can be rearranged:

—k, k“+M$+2m2 w0 €012, W09, W19, W29,W¥3
39 = EABCD60123(90\1;A(91\PBaz\PCasf\ljD
— H vafB _ABCDF Ay B C D
_8772f2 |k,,2,uEM € (O3l 8a\I’ (95\1, y =0. (28)

m

The term on the right-hand side vanishes because it contains
four isovectors perpendicular #. Hence the first invariant
vanishes. The second invariant is

(—k, K"+ M2~

39
— H vaf _ABCDg Ay B C D
_—8772”(]/6/” € (2N (9a\lf 0731[’ . (25) B:S’MVS’MV
= G’LWBEWPUVQBVP”
Here we took advantage repeatedly of the perpendicularity of - 2vaﬁvaﬁ
® to W. We also defined? =g, WEs*WE. Note that this
quantity originates in the constraint 6k and is not neces- =2[VoVok= VimVim]
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ABCD EFGHor At B Bt From b y Here,p? and Pf are, respectively, the square and the square
=2¢ € A A L S B of one component of the arbitrary wave vecfor k associ-
— 9, WCg, WPy W, WP]. (290  ated with the plane-wave perturbation. The quantkiésand
. o K2 are positive real numbers, and soM&=M?2 . The only
In the last line we have lowered all _Lorentz |ndlcéWe exception isMgzMf+2miq,0%Mf:(9#q,Ean,E_ As we
remind the reader of our conventioA,=(Aq,A), A  have mentioned\? is negative for a static field configura-
=(Ao,—A).] Itis clear that if the time derivatives are small, tion such as a Skyrmion at rest, which does not exhibit a
B<0, and if they are large, i.e., for fast-varying fields, proliferation of small-wavelength perturbations!® be-
B>0. . . . __ comes positive when the time derivatives become large. This
Let us consider the case with small time derivatives.s the case in the center between the momeBjsand E)
'Ehen, B<0 and the tensob may be boosted so th&n (a5 defined in Sec. Iij when most of the violent behavior
=0 . The characteristic equation is then takes place. It is clear from the sign BF? , as well as from

(M2— kﬂk“)(Mf + meT\IfO— k, k") the following discussi.on, that the characterigtic equatipns al-
low for a complexw in a number of dynamical situations.
= —2C?{KokoS'0SP + k kS SO™, We will focus on tzhe regime between the mqmerBs) and
(E) and assumé1{ >0, and look for the conditions that are
(M?+ p?— w?)( Mf + 2m721_\110+ p2— w?) consistent with a negative?.

In both casesB>0 or B<0) we have a quadratic equa-
o 22 5 tion for w?. We may solve the characteristic equation for the
=2 o ] (So1) = PiPm(SoiSom) (- (30 fme constantw=k, using any givenp. We remind the
reader that we are studying the possibility of having a com-
plex time constant. Such a perturbation would grow or de-
Only the component op parallel to the electric field vector crease exponentially with time. When the right-hand side
{Ex=Su} contributes to the right-hand side. Denoting that(RHS) is small, both solutionsn®=M3,M3 are real and

component byp;, we have finally positive, leading to stable oscillations.
s o oo 20 o o In the B<O0 case, the RHS has the effect of increasing
(Me+p =) (M +2mIV7+p°— ) both the coefficient ofw? (in absolute valueand the free
a2 2 2 term. Considering the solutions of a quadratic equa#id®@
=2C(SoSo) (@~ P2).- BD  Tpxic=0 (all coefficients are positive hereX,,=[(—b

When the time derivatives dominate, we h&e 0 and we + \/b2—4ac]/2a, it is clear that increasing (if both a andc

may choose a reference frame wh&g=0. The corre- &€ positivg¢ can make the positive real roots neither negative
sponding characteristic equation is nor complex. Increasing actually has the effect of bringing

the roots closer together, therefore increasing the lower one.

(MZ—kMk“)(Mf+2mi‘If°—kyk”) This may lead to trouble if the coefficient=b?/4a; how-
' ever, this is not possible as is obvious if one writes the dis-
= —2C2k|km§'S}n criminant out explicitly. We conclude that in this case both
9 solutions forw? are real and positive, leading only to stable
=2€2p|pm5,-|51m=2€22 (E p|S,-|) modes. . -
i I In the B>0 case there is no term containing on the

right-hand side. However, the free term has the opposite sign
compared to the previous case. It may not make the discrimi-
nant negative since it decreagedHowever, if large enough

The matrix Wim =S Sy can be diagonalizedVim=5imw; magnitude, this term may change the signcpthus al-
and its eigenvalues will be real and positive as is Obv'ousfowing for a negative solution fow?

from the preceding equation. In that basis, the characteristic We conclude that iMi>0, modes with purely imaginary

equation is w? may occur in theB>0 case. This makes sense, because
this case is associated with large time derivatives, exactly
(M2+p?— 0?) (M2 +2m2 WO+ p?— w?)=2C2>, piw,. what characterizes our violent regime. The latter is also con-
' 33 sistent with the assumptioMf>0. The sign ofB is not
immediately obvious, since it also depends on the polariza-

The characteristic equations in tBe<0 andB>0 cases can tion vector of the supposed perturbationp?: B

=0. (32

be summarized as follows: :(DACI)B'ZVAB, where all the baCkgrOUnd-ﬁeId'dependent fac-
tors are contained in the tens@rIf all eigenvalues ofl are
(M2+p2— w?)(M3+ p?— w?) =K3(w?- P?) [B<0], negative, B<0 for any polarization. If there is one positive
eigenvalue, then it is possible to haBe-0. If all eigenval-
(M2+p2—w?)(M3+p?— w?)=K3PZ [B>0]. (34)  ues are positiveB>0 for any polarization vector. In Fig. 13

we plot the highest and the lowest eigenvalued difefore,
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3e+08

t=1.67 fm/c

+=3.35 fm/c t=5.48 fm/c

FIG. 13. The highesttop row)
and the lowest(bottom row ei-
genvalue of the tensof at se-
lected moments during annihila-
tion. The unit for the eigenvalues
is c?/fm*. Note the large differ-
ences in the vertical scales. We
plot the quantities in they plane.
The x axis is the direction closer
to horizontal. The length on the
axes is measured in fm.
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1e+08

2e+06 10000

1=3.35 fm/c

during, and after the violent oscillation regime. This illus- The fields at this point and shortly afterwards are singular, or
trates that during free propagation the negative eigenvaluadose to that. This is the single most prominent feature of the
dominate, while during the violent regime, the eigenvalueshead-on annihilation process. The few off-center calculations
and alsoB become very large in absolute value, and thewe performed show very similar features.

positive eigenvalues dominate. Towards the end of the pro- Our choice of grooming8] allows a smooth unwinding
cess, theB>0 regime lingers close to the center but is notof the pion field, without any singularity or discontinuity
present in the outgoing radiation. In Fig. 14 we plot theinvolved. However, it appears that the radial dependence of
absolute values of the largest and lowest eigenvaluésinf  the field components becomes singular as a result of the dy-
the whole simulation box as a function of time. The momentamics, in thex=0 plane close to the moment of half-
of half-annihilation 8) marks a significant increase in the annihilation. This is the underlying feature that generates the
magnitude of the positive eigenvalues, which dominate in thdarge energy densities in the center seen in Fig. 5. Below we
center region through the remainder of the calculation. describe this in more detail.

In summary, the equations of motion allow in principle  The head-on annihilation process has axial symmetry. In
for the appearance of exponentially growing perturbationsthis case, the four “Cartesian” components of the pion field
The conditions for this are rather specific. We are able tare of the form
show that such conditions accompany the violent, fast-
varying regime that follows the unwinding and persist until Yo(x,Y,z,t) =f(X,p,1):¥4(X,y,2,t)=g(X,p,t),
the outgoing radiation phase. However, we cannot establish a
clear, causal connection between 20 regime and the y 7
fluctuations. Ty(X,y,z,t)= ;h(x,p,t):\lf3(x,y,z,t)= Eh(x,p,t),

(35
V. SINGULAR BEHAVIOR

The source of the persistent small oscillations is the fastwhere p=\y?+2z” and the chiral constraint i§°+ g+ h?

varying behavior that follows the point of half-annihilation. =1. The components ab, have a similar dependence. The
three components off have additional symmetry con-

straints; namely, they are all even functionsxofThe radial
dependence gi— 0 inherits the symmetry properties ®f,
¥, andW¥, being even functions of andz while ¥,(—vy)
=—W,(y) andW¥3(—2)=—V;(2) . Thereforef andg are
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FIG. 15. Pion field (¥ ) close to half-annihilation. Extrapo-
FIG. 14. The absolute values of the lowéstually negative  lating the field to the center would result in a discontinuity in the

and highest(usually positive eigenvalue of the tensdf overall derivative. The fields are shown in tixg plane. Thex axis is the
during annihilation, inc?/fm*. We associate the presence of large direction closer to horizontal. The length on the axes is measured in
positive eigenvalues df with instability against perturbations. fm. The quantity we plot is dimensionless.
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MeV/fmq) close to the point of half-annihilation. The fields are shown inxfi@lane. Thex axis is the direction closer to horizontal. The

length on the axes is measured in fm.

“even” and h is and “odd” function of p, in the sense that
hj,=0=0 and d,f,-0=39,9,,-0=0 when the respective
functions are continuous.

Let us consider the=0 axis, where onlyf andg can be
nonzero. Atx=*« , in free space, we have=1. As one

achieved this implies thatf(p) is a Heaviside function and

the baryon current is a delta function, i.e., is all concentrated
in the centel. What is clear is that as the overturn is ap-
proached the baryon current concentrates more and more in
the center, and that close to that moment, the dependence of

passes through a Skyrmion, the two components “rotate, the field components is consistent with a small power behav-

so that in the center of the Skyrmion we hafre 1. Simi-
larly, if we choose to move through thedirection through
the center of the same Skyrmion, tihecomponent would

ior, which in itself leads to infinite derivatives, hence locally
infinite energy density.
A precise understanding of the singular phenomenon de-

have to vanish by symmetry and the rotation would happenrined above requires a more focused investigation. At this

in the fh plane.

The moment of half-annihilation corresponds to the situ
ation when the centers of the Skyrmion and the anti

Skyrmion coincide, i.e.f=—1 atx=0 . Now let us con-
sider the radial dependence in tkee O plane at this moment.
At p=0 we havef =—1, g=0, andh=0. At p=0o we have

againf=1, g=0, h=0 . In this case, however, the rotation

happens involving mostly thé and theh components. At
least close tp=0, g must be much smaller thdn since its
first p derivative must vanish.

In Fig. 15 we plot[1—¥(x,y)]/2=(1—f)/2, at a mo-

stage we have a qualitative explanation. Recall thatwur

“field, apart from its mass, is an Abelian gauge field similar to

the electromagnetic field. It couples to the respective compo-
nents of the baryon curreit which, in axial geometry, has
only three independent components: the baryon density the
component, and a radial component. Théeld mediated all
interactions in our model. Solitons in the pure nonlinear
sigma model collapse because their energy scales as the first
power of their linear size. The omega field couples to the

baryon (winding numbey density. The fact that this stabi-

ment close to half-annihilation. The field at the center pointizes the Skyrmions against collapse may be interpreted as a

is close tof = — 1. As we move outwards along tlgeradial
axis, 1—f decreases. Notice that the variationf & concen-
trated for the most part in a small region aroume 0. In
apparent contradiction with the requirement thigt) should
be an even functiorthence,d,f=0 aty=0), d,f=4,f in-
creases in magnitude §s-~0. Thep dependence dfin Fig.
15 is well approximated by a* with «=0.2-0.3. The en-

consequence of electrostatic repulsion of the baryon charge
mediated by théomega electric field.

The annihilation process consists of the flow of charges of
opposite signs towards the center plaxe=Q in our nota-
tion), i.e., the presence of a larg@' component. The fact
that the fields vary fast in the center plane means that the
baryon current is concentrated in the center or vice Versa.

ergy density and the baryon current are both determined byhe baryon current is very large in the center and is pushed
the first derivatives of’A. The effect is more dramatic in Into a small cross section in analogy with the electromag-

terms of these quantities.
In Fig. 16 we plot the baryon number density, theom-

netic “pinch” effect encountered in plasmas. This is a con-
sequence of the attractive interaction between parallel elec-

ponent of the baryon current density’ and the energy densitViC currents. This effect competes with the electrostatic

in thexy plane. The baryon current is concentrated in a very'€pulsion of the charge density. The static charge density
narrow region in thex=0 plane, and the energy density has Must vanish in the center plane, by symmefagtually, all

a steep peak that will grow dramatically during the fast-derivatives of the pion fields with respect toare zero by
varying regime. We wish to point out that this situation oc-Symmetry. Therefore here the pinch effect is the strongest.
curs at ha|f-annihi|ation' jusbefore the messy part of the At the time of half-annihilation there is a further depletion of
annihilation process. It seems very plausible that this quasigtatic charge from thex=0 region, which would explain
ingular configuration is the ultimate source of the turbulenceVhy the pinch effect occurs first at or close half-annihilation.
that follows. Because of the presence of this feature we have

been forced to place our grid points so that the symmetry

center falls halfway between them in all directions, in order oy instance, if thé component behaves like a Heaviside func-
to avoid having to deal with infinite derivatives. We most tion, then the baryon current is proportional to a delta function as

likely miss the exact moment of the overturfi={1 at x
=p=0). Hence we cannot tell whether tle—0 limit is

can be seen from its expression which contains préyndt deriva-
tives.
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are robust and independent of the details of the turbulent
behavior.

In this first attempt we only calculate Skyrmion anti-
Skyrmion annihilation for head-on collisions and only in the
most attractive grooming. Our numerical code permits other
initial configurations and we plan to come back to them. We
find that annihilation happens very rapidly and is accompa-
1 ; nied by a shargsingula) concentration of the energy density

FIG. 17. One component of the pion field {¥°) close to and _baryon current. This causes short-wavelength, noisy 0s-
half-annihilation, during the true annihilation process and during aC|IIat|0ns bu.t we are able to |nt_eg_rate through them. We find
calculation where the kinetic energy is periodically depleted by set@ Purst of pion and omega radiation peaked in a cone at 45°
ting time derivatives to zero. The second plot shows no pinching ifVith respect to the incident direction. We find turbulent be-
the middle, indicating that the presence of a baryon current is nedd@vior but the calculated outgoing meson field radiation car-
essary in order to have a pinch. The fields are shown inxthe ries the total incident energy to within 8%. We show ana-
plane. Thex axis is the direction closer to horizontal. The length on lytically that our equations of motion allow for a regime
the axes is measured in fm. The quantity we plot is dimensionlesavhich is unstable with respect to the appearance of exponen-

tially increasing(in time) perturbations. However, these con-

To test whether we indeed are looking at an electromagditions are met only in a spatially and temporally limited part
netic effect, we performed a “sticky slope” calculation, in Of the system under study. This is one possible reason that
which we periodically set the time derivatives of the pionthe instability does not compromise the simulation. We find
field, as well as the magnetic fields, to zero. This also canceléat the singular concentration of baryon current associated
the baryon current, but not the baryon Charge, and the annWith annihilation is analogous to the pinch effect in electro-
hilation proceeds “quasistatically.” We followed this pro- magnetism. Our theory with a vector field coupled to the
cess to the points where the baryon number in one half-spadd@irrent is like electromagnetism, but with a mass. We are
was 0.55. In Fig. 17 we plot ¥ at this moment in the studying ways to exploit, analytically, the nature of the sin-
sticky slope calculation and, for comparison, the Configura.gularity to control its contribution. It would be interesting to
tion with the same baryon number in a calculation with thestudy whether similar singular behavior involving a peaked
same parameters which proceeds normally. The pinching alaryon current occurs in theories such as the standard
but disappears in the “quasistatic” calculation. This obser-Skyrme model, where there is no relation to electromagne-
vation is consistent with the contention that the baryon curilsm.
rent is responsible for the pinching, since in the sticky slope In the future we plan to study Skyrmion—anti-Skyrmion
case there is no current, and as a result the pinching is absefflllisions that are not head on and to calculate for other
as well. groomings and incident energies. From this we will develop

While the electromagnetic effects offer a qualitative ex-results that can be used to extract predictions for nucleon-
planation, one would like to have an approach that leads t@ntinucleon physics. We also plan to study the singularities
quantitative understanding, perhaps allowing for an analytiwe encountered to see if their analytic form can be exploited.
cal description of the singular part. Furthermore, one mayt is sometimes the case that in the vicinity of singular be-
ask the question whether this effect is specific to the omega?avior one can make precise, analytic statements about solu-

stabilized model or is a general feature of dynamically stations to problems that can otherwise only be addressed nu-
bilized solitons. merically. It will be interesting to see if that is the case here

and to examine how general that approach is. Thus our re-
sults suggest ample opportunities for further work both in

Sticky

VI. CONCLUSION AND OUTLOOK nucleon annihilation physics and in mathematical physics.
We have studied the classical process of annihilation of a
Skyrmion and an anti-Skyrmion, in a nonlinear sigma model ACKNOWLEDGMENTS

Lagrangian which couples the SU(2) winding number to a
vector field @). This coupling stabilizes the Skyrmion with- National Science Foundation. The calculations have been

out slofme t?]f th; st;ogt-wavi:lengtg proll)tl_em? mherle_nttln th?)erformed mostly on the National Scalable Cluster Center at
usual fourth-order Skyrme term. Lur uitimate goal 1S 10 ré-,q University of Pennsylvania. We are grateful to R. Holle-
late classical annihilation to the physical process of nucleonbeek for his continued support. We also thank the Eniac
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state of outgoing pion and omega radiation. We do encounter
some violent behavior in our calculation, but it seems to be
tamer than the fatal fluctuations previously encountered in
Skyrmion annihilation calculation¥,8]. We are able to fol- Here we describe in more detail the numerical algorithm
low the calculations from beginning to end with results thatused in the main calculation, which uses the Cartesian com-
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APPENDIX: NUMERICAL METHOD

054020-16



SKYRMION—-ANTI-SKYRMION ANNIHILATION WITH «» MESONS PHYSICAL REVIEW D 63 054020

ponentsV¥ to parametrize the pion field. We use a leapfrogig realized at the discretized level by enforcidg. (Wt* 12

algorithm, based on the equations of motid7). The time o . .
derivatives of theV' components as well as the electric field +W 1% =0. Some additional precautions are taken to wrap

& and the time derivatives of the, components are defined the variation vecto’At around the unit sphere. Also, we
at half-time steps. The spatial derivatives are calculated a®und that locally performing a rotation in SU(2) space so
simple centered differences. The discretized equations dhat the currenW is close to the equator on the unit sphere
motion are written using centered differences in time. For{and modifying the equations of motion—in particular, the
example, equations of the forfidv/dt=f(x,v);dx/dt=v} pion mass term—accordinglyenhances the stability of the
are discretized as calculation. This rotation in similar to the one we perform in
the = scheme. For details of that schertike algorithm is

t+1/2_  t—1/2 tH12,  t-1/2 s
v L v ) very simila)y we refer to[9].
At ’ 2 In addition to the regular points in the simulation box we
1 ot also have a layer of ten points in each spatial direction on the
X=X —ptt12 (A1) exterior walls. The spacing of these points increases from the
At ' regular spacing up to several times that. The fields at the

The initial condition is propagated forward in time by solv- final points are set to zero. This simulates an absorbing
ing the implicit equations for the velocities &+ 1/2 and the  boundary, which was tested and worked satisfactorily in our
fields att. scattering papef9]. However, those calculations were per-

The continuum equations of motion formally preserve theformed with larger simulation boxes. In the scaling runs we
chiral conditionW-Ww=1. We ensure this by normalizing refer to in this paper, we do see some effect of the walls for

the updated? and also using the conditiolf- =0 which  times larger than 5 fno.
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