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The QCD potential at O„1Õm2
…: Complete spin-dependent and spin-independent result

Antonio Pineda*
Theory Division, CERN, 1211 Geneva 23, Switzerland

Antonio Vairo†

Institut für Theoretische Physik, Universita¨t Heidelberg, Philosophenweg 16, D-69120 Heidelberg, Germany
~Received 12 September 2000; published 1 February 2001!

Within an effective field theory framework, we obtain an expression, withO(1/m2) accuracy, for the
energies of the gluonic excitations between heavy quarks, which holds beyond perturbation theory. For the
singlet heavy-quark–antiquark energy, in particular, we also obtain an expression in terms of Wilson loops.
This provides, twenty years after the seminal work of Eichten and Feinberg, the first complete expression for
the heavy quarkonium potential up toO(1/m2) for pure gluodynamics. Several errors present in the previous
literature~also in the work of Eichten and Feinberg! have been corrected. We also briefly discuss the power
counting of NRQCD in the nonperturbative regime.
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I. INTRODUCTION

Measured spectroscopy suggests that the charm and
tom quark masses are large enough to consider their he
quark–antiquark bound-state systems~generically denoted a
heavy quarkonia:c, Y, Bc , . . . ) asnonrelativistic~NR!.
These systems are, therefore, characterized by, at least,
widely separated scales: hard~the massm of the heavy
quarks!, soft ~the relative momentum of the heavy-quark
antiquarkupu;mv, v!1), and ultrasoft~the typical kinetic
energyE;mv2 of the heavy quark in the bound-state sy
tem!. Inspired by this NR behavior, the investigation
heavy quarkonia has been traditionally performed by all s
of potential models, where an ansatz potential is introdu
in a Schro¨dinger equation~for some reviews see@1–3#!. The
phenomenological success of these suggests that, to s
extent, a potential picture may, in fact, be appropriate a
justified from QCD. This triggered attempts to derive the
potentials from QCD by relating them to Wilson loop
These standard derivations used an expansion in 1/m ~also
named adiabatic or Born-Oppenheimer approximatio!.
However, a full derivation of the potential from QCD, a
well as a study of the validity of the potential picture itse
has not yet been done in the nonperturbative regime, wh
most of the heavy quarkonium spectrum lies. It is the aim
this paper to explicitly derive the complete nonperturbat
1/m2 QCD potential for pure gluodynamics within an effe
tive field theory framework@4,5#, where higher order poten
tials in 1/m and nonpotential effects could also be incorp
rated in a systematic way.

Since the derivation of the potential has a long story
may be useful to summarize its main steps. The expres
for the leading spin-independent potential, ofO(1/m0), cor-
responds to the static Wilson loop and was derived and
cussed in the seminal works of Wilson@6# and Susskind@7#.
Expressions for the leading spin-dependent potentials in
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1/m expansion, ofO(1/m2), were given in Refs.@8–10#. The
procedure followed in these works proved to be very diffic
to extend beyond these leading-order potentials. Indeed
first attempts@11#, using tools similar to those in Ref.@8#,
failed to obtain suitable finite expressions. In Ref.@12#, a
new method to calculate the potentials was proposed, wh
new spin-independent~some of them momentum-dependen!
potentials atO(1/m2) were obtained. In these original work
the potentials obtained did not correctly reproduce the ul
violet behavior expected from perturbative QCD~the hard
logs ; logm). This was first implemented in the framewor
of QCD effective field theories, for both spin-dependent a
spin-independent potentials, in@13–15#. At that point, the set
of potentials obtained atO(1/m2) seemed to be complete an
the timely study of the different Wilson loop operators d
scribing the nonperturbative dynamics of the potenti
started. For instance, a lattice study was performed in@14#
and a study in the framework of QCD vacuum models w
done in@16#.

Nevertheless, this view has been recently challenged
Ref. @5# where ~i! a systematic study of the potentials h
been started within an effective field theory framework
potential NRQCD~pNRQCD! @4#—and ~ii ! the O(1/m) po-
tential, previously missed in the literature, has been ca
lated. It is the aim of this paper to explain in more detail t
Hamiltonian formalism, sketched in Ref.@5#, and to compute
the O(1/m2) potentials. The formalism appears to be qu
powerful and suitable to obtain the quarkonium potenti
and the energies of any gluonic excitation at any finite or
in 1/m. A similar idea, but in the Coulomb gauge and on
for the leading spin-dependent quarkonium potentials,
also been used in@17#. We will give an expression in term
of quantum-mechanical corrections to the energies of
gluonic excitations between static quarks, valid for all t
gluonic excitations up toO(1/m2). For the quarkonium state
~the ground state!, we will express our complete 1/m2 result
in terms of Wilson loops eventually calculable on the latti
or by means of QCD vacuum models, concluding in this w
an ideal journey started over twenty years ago.

The theoretical framework of our work is NRQCD@18#
©2001 The American Physical Society07-1
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and pNRQCD, suitable effective field theories for syste
made up by two heavy quarks. NRQCD has proved to
extremely successful in studying heavy-quark–antiquark s
tems near threshold. It is obtained from QCD by integrat
out the hard scalem. It is characterized by an ultraviole
cutoff much smaller than the massm and much larger than
any other scale, in particular much larger thanLQCD. This
means that the matching from QCD to NRQCD can alwa
be done perturbatively, as well as within an expansion in 1m
@19,20#. The Lagrangian of NRQCD can also be organized
powers of 1/m, thus making explicit the nonrelativistic na
ture of the physical systems. So far, NRQCD and pNRQ
have only been studied in detail in the perturbative situat
@21,4#.

By integrating out degrees of freedom with energ
larger thanmv2, one is left with a new effective field theor
called pNRQCD where the soft and ultrasoft scales h
been disentangled and where the connection betw
NRQCD and a NR quantum-mechanical description of
system can be formalized in a systematic way. pNRQCD
two ultraviolet cut-offs,L1 andL2. The former satisfies the
relationmv2 !L1! mv and is the cut-off of the energy o
the quarks, and of the energy and the momentum of
gluons, whereas the latter satisfiesmv!L2!m and is the
cutoff of the relative momentum of the quark-antiquark s
tem, p. In the nonperturbative situation~we understand by
nonperturbative a typical situation wheremv;LQCD, i.e.,
where the potential cannot be computed perturbatively!, we
will assume that the matching between NRQCD a
pNRQCD can be performed, as in the perturbative case
der by order in the 1/m expansion. We will present, for th
general situationLQCD&mv, the matching of NRQCD to
pNRQCD atO(1/m2) for the singlet sector~to be defined
later!. This will prove to be equivalent to computing th
on
n

-
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heavy quarkonium potential that we can now derive fro
QCD by a systematic procedure. Moreover, the express
for the potential that we obtain will also be correct at a
power inas in the perturbative regime.

A pure potential picture emerges in pure gluodynam
under the condition that all gluonic excitations have a g
larger thanmv2. Extra ultrasoft degrees of freedom such
hybrids and pions can be systematically included and m
eventually affect the leading potential picture~as ultrasoft
gluons in the perturbative regime@4#!.

In this paper we consider the general situation of partic
with different masses. Therefore, our results, in addition
the traditionalQ-Q̄ systems, may be applied to theBc sys-
tem, which, after its recent discovery by the Collider Dete
tor at Fermilab~CDF! Collaboration@22#, has received a lot
of attention in theoretical investigations@23#.

The paper is organized in the following way. In Sec. II w
introduce NRQCD up toO(1/m2). In Sec. III, using a
Hamiltonian formulation of NRQCD, we explicitly calculat
up to O(1/m2) the energies of the gluonic excitations b
tween heavy quarks. In Sec. IV we define what pNRQC
will be in the present context. In Sec. V we write the hea
quarkonium potential up toO(1/m2) in terms of Wilson
loops and compare with previous results. In Sec. VI we d
cuss the power counting of pNRQCD in the nonperturbat
regime and in Sec. VII we give our conclusions and outlo

II. NRQCD

After integrating out the hard scalem, one obtains
NRQCD @18#. Neglecting operators that involve light quar
fields @24#, the most general NRQCD Lagrangian~up to field
redefinitions! for a quark of massm1 and an antiquark of
massm2 up to O(1/m2) is given by
LNRQCD5c†H iD 01
D2

2m1
1cF

(1) g
s•B

2m1
1cD

(1) g
@D•,E#

8m1
2

1 icS
(1) g

s•@D3,E#

8m1
2 J c

1x†H iD 02
D2

2m2
2cF

(2) g
s•B

2m2
1cD

(2) g
@D•,E#

8m2
2

1 icS
(2) g

s•@D3,E#

8m2
2 J x

1
dss

m1m2
c†cx†x1

dsv

m1m2
c†scx†sx1

dvs

m1m2
c†Tacx†Tax1

dvv

m1m2
c†Tascx†Tasx

2
1

4
Gmn

a Ga mn1S d2
(1)

m1
2

1
d2

(2)

m2
2 D Gmn

a D2Ga mn1S d3
(1)

m1
2

1
d3

(2)

m2
2 D g fabcGmn

a Gma
b Gna

c , ~1!
he
di-
wherec is the Pauli spinor field that annihilates the fermi
and x is the Pauli spinor field that creates the antifermio
iD 05 i ]02gA0, iD5 i“1gA, @D•,E#5D•E2E•D and
@D3,E#5D3E2E3D. This Lagrangian is sufficient to ob
tain theO(1/m2) potentials. The coefficientscF , cD , cS , d2
,
andd3 can be found in Ref.@19# anddi j ( i , j 5s,v) in @20#
for the modified minimal subtraction (MS) scheme.

Some words of caution are in order here. Even if t
above matching coefficients have been computed using
mensional regularization and theMS scheme, there could
7-2
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still remain some ambiguity depending on the different p
scriptions for thee i jk tensors and the definition of the Pau
matricess. For instance, the use of a scheme where thee i jk

only takes values for dimension equal to three~’t Hooft–
Veltmann-like scheme! in the computation of Ref.@20#
would change the value ofdvv as dvv→@2/(D22)#dvv ,
where D is the number of space-time dimensions. O
should therefore be careful and make sure that the matc
coefficients one is working with really are computed in t
same scheme. A deep study of these ambiguities in
framework of NRQCD remains to be done. This may
especially important for higher order calculations. See a
Refs.@25,26#, where the authors have to deal with equivale
problems.

We are interested in the Hamiltonian of the above L
grangian. The construction of the Hamiltonian of one effe
tive ~nonrenormalizable! Lagrangian may be complicate
~for a related discussion we refer to@27#!; in particular be-
cause there are higher time derivatives acting on the diffe
fields. In order to get rid of those atO(1/m2) we have to
eliminate the termGmn

a D2Ga mn from the Lagrangian. This
can be achieved by a field redefinition as follows. We co
sider the field redefinition of the gluon field (c;1/m2):

Am→Am1c@Da,Gam#1O~c2!, ~2!

where c is real. This transformation preserves the gau
transformation properties and the hermiticity of theAm field.
Equation ~2! produces the following change in the gluo
Lagrangian~at the order of interest!:

2
1

4
Gmn

a Ga mn→2
1

4
Gmn

a Ga mn2
c

2
Gmn

a D2Ga mn

2cg fabcGmn
a Gma

b Gna
c 1O~c2!. ~3!

We can therefore cancel theGD2G term by fixing

c5
2d2

(1)

m1
2

1
2d2

(2)

m2
2

. ~4!

This changes the value ofd3 to d38 :

d3
(1)85d3

(1)22d2
(1) , d3

(2)85d3
(2)22d2

(2). ~5!

Let us now see the modifications that the above field red
nition will produce in other sectors of the theory, in partic
lar, in the heavy fermion bilinear Lagrangian. Since we ha
the following change for theD0 covariant derivative tha
appears atO(1/m0),

iD 0→ iD 02cg@D•,E#, ~6!

the matching coefficients change, atO(1/m2), as ~all the
others remain unchanged!

cD
(1)85cD

(1)216d2
(1)216

m1
2

m2
2 d2

(2),
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cD
(2)85cD

(2)216d2
(2)216

m2
2

m1
2 d2

(1). ~7!

In summary, eliminating the termGmn
a D2Ga mn, up to order

1/m2, is equivalent to the redefinition of the matching coe
ficients d3→d38 and cD→cD8 found above. We will assume
this field redefinition in the following.

III. GLUONIC EXCITATIONS IN A HAMILTONIAN
FORMULATION

The Hamiltonian associated to the Lagrangian~1! is, up to
order 1/m2,

H5H (0)1
1

m1
H (1,0)1

1

m2
H (0,1)1

1

m1
2 H (2,0)

1
1

m2
2 H (0,2)1

1

m1m2
H (1,1), ~8!

H (0)5E d3x
1

2
~PaPa1BaBa!, ~9!

H (1,0)52
1

2E d3xc†~D21gcF
(1)s•B!c,

H (0,1)5
1

2E d3xx†~D21gcF
(2)s•B!x, ~10!

H (2,0)5E d3x c†H 2cD
(1) 8 g

@D•,E#

8
2 icS

(1) g
s•@D3,E#

8 J c

2E d3x d3
(1) 8g fabcGmn

a Gma
b Gna

c , ~11!

H (0,2)5H (2,0)~c↔x;1↔2!, ~12!

H (1,1)52E d3x~dssc
†cx†x1dsvc†scx†sx

1dvsc
†Tacx†Tax1dvvc†Tascx†Tasx!,

~13!

wherePa is the canonical momentum conjugated toAa and
the physical states are constrained to satisfy the Gauss

D•Pauphys&5g~c†Tac1x†Tax!uphys&. ~14!

SincePa5Ea1O(1/m2), in Eqs.~11!–~12! and in the rest
of the paper, we will use the chromoelectric field instead
the canonical momentum where, to the order we are in
ested in, it does not affect our results.

A. The static limit

We are interested in the one-quark–one-antiquark se
of the Fock space. In the static limit the one-quark–on
antiquark sector of the Fock space can be spanned by
7-3
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un;x1 ,x2&
(0)[c†~x1!xc

†~x2!un;x1 ,x2&
(0), ;x1 ,x2 ,

~15!

where un;x1 ,x2&
(0) is a gauge-invariant eigenstate~up to a

phase! of H (0), as a consequence of the Gauss law, w
energyEn

(0)(x1 ,x2). For convenience, we use here the fie
xc(x)5 is2x* (x), instead ofx(x), because it is the one t
which a particle interpretation can be easily given: it cor
sponds to a Pauli spinor that annihilates a fermion in the*
representation of color SU~3! with the standard, particlelike
spin structure.un;x1 ,x2&

(0) encodes the gluonic content o
the state; namely, it is annihilated byxc(x) andc(x) (;x).
It transforms as a 3x1

^ 3x2
* under color SU~3!. The normal-

izations are taken as follows:

(0)^m;x1 ,x2un;x1 ,x2&
(0)5dnm ,

(0)^m;x1 ,x2un;y1 ,y2&
(0)5dnmd (3)~x12y1!d (3)~x22y2!.

We have made it explicit that the positionsx1 andx2 of the
quark and antiquark respectively are good quantum num
for the static solutionun;x1 ,x2&

(0), whereasn generically de-
notes the remaining quantum numbers, which are class
by the irreducible representations of the symmetry gro
D`h ~substituting the parity generator byCP). We also
choose the basis such thatTun;x1,x2&

(0)5un;x1,x2&
(0) where

T is the time-inversion operator. The ground-state ene
E0

(0)(x1 ,x2) can be associated to the static potential of
heavy quarkonium under some circumstances~see Sec. IV!.
The remaining energiesEn

(0)(x1 ,x2), nÞ0, are usually asso
ciated to the potential used in order to describe heavy
brids or heavy quarkonium~or other heavy hybrids! plus
glueballs~see Sec. IV!. They can be computed on the lattic
~see for instance@28#!. Translational invariance implies tha
En

(0)(x1 ,x2)5En
(0)(r ), wherer5x12x2.
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B. Beyond the static limit

Beyond the static limit, but still working order by order i
1/m, the normalized eigenstatesun;x1 ,x2& and eigenvalues
En(x1 ,x2 ;p1 ,p2) of the HamiltonianH satisfy the equations

Hun;x1 ,x2&5E d3x18d
3x28un;x18 ,x28&En~x18 ,x28 ;p18 ,p28!

3d (3)~x182x1!d (3)~x282x2!, ~16!

^m;x1 ,x2un;y1 ,y2&5dnmd (3)~x12y1!d (3)~x22y2!. ~17!

Note that the positionsx1 and x2 of the static solution still
label the states even if the position operator does not c
mute withH beyond the static limit. We are interested in th
eigenvaluesEn , which should be understood as operato
~instead of numbers, even though we call them energi!.
This will match the operator interpretation within a quantu
mechanical formulation that we will give to them i
pNRQCD in the next section. In particular, we will see th
E0 corresponds to the quantum-mechanical Hamiltonian
the heavy quarkonium~in some specific situation!. The other
energies,En for n.0, are related to the quantum-mechanic
Hamiltonians of the heavy hybrids or heavy quarkonium~or
other heavy hybrids! plus glueballs.

Since the derivation of the corrections toEn may not be
familiar to the reader, since they are operators, we expla
in some detail. We will work in the same way as in standa
quantum mechanics, but taking into account the fact t
they are operators. Analogously to standard quantum
chanics, we define a stateuñ;x1,x2& such that
Huñ;x1 ,x2&5E d3x18d
3x28uñ;x18 ,x28&Ẽn~x18 ,x28 ;p18 ,p28!d (3)~x182x1!d (3)~x282x2!,

(0)^n;x1 ,x2uñ;y1 ,y2&5d (3)~x12y1!d (3)~x22y2!.

Splitting the Hamiltonian asH5H01HI we have

uñ;x1 ,x2&5un;x1 ,x2&
(0)1

1

En
(0)~x!2H (0) (

mÞn
E d3x18d

3x28um;x18 ,x28&
(0) (0)^m;x18 ,x28u

3 HHI uñ;x1 ,x2&2E d3x18d
3x28uñ;x18 ,x28&DẼn~x18 ,x28 ;p18 ,p28!d (3)~x182x1!d (3)~x282x2!J ,

and

DẼn~x1 ,x2 ;p1 ,p2!d (3)~x12y1!d (3)~x22y2!5 (0)^n;x1 ,x2uHI uñ;y1 ,y2&.

From these formulas we can obtainẼn order by order in the expansion parameter ofHI . Moreoverun;x1 ,x2& andEn are given
by
7-4
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un;x1 ,x2&5E d3x18d
3x28uñ;x18 ,x28&Nn

21/2~x18 ,x28 ;p18 ,p28!d (3)~x182x1!d (3)~x282x2!

and

En5Nn
1/2ẼnNn

21/2,

where

^ñ;x1 ,x2uñ;y1 ,y2&5Nn~x1 ,x2 ;p1 ,p2!d (3)~x12y1!d (3)~x22y2!.

By using the above results, we get forEn up to O(1/m2),

En~x1 ,x2 ;p1 ,p2!d (3)~x12x18!d (3)~x22x28!

5En
(0)~x1 ,x2!d (3)~x12x18!d (3)~x22x28!1 (0)^n;x1 ,x2u

H (1,0)

m1
1

H (0,1)

m2
1

H (2,0)

m1
2

1
H (0,2)

m2
2

1
H (1,1)

m1m2
un;x18 ,x28&

(0)

2
1

2 (
kÞn

E d3y1 d3y2
(0)^n;x1 ,x2u

H (1,0)

m1
1

H (0,1)

m2
uk;y1 ,y2&

(0) (0)^k;y1 ,y2u
H (1,0)

m1
1

H (0,1)

m2
un;x18 ,x28&

(0)

3S 1

Ek
(0)~y1 ,y2!2En

(0)~x18 ,x28!
1

1

Ek
(0)~y1 ,y2!2En

(0)~x1 ,x2!
D . ~18!

The expansion ofEn in inverse powers of the mass can be organized up toO(1/m2) as follows:

En5En
(0)1

En
(1,0)

m1
1

En
(0,1)

m2
1

En
(2,0)

m1
2

1
En

(0,2)

m2
2

1
En

(1,1)

m1m2
. ~19!

From Eq. ~18! and Eqs.~10!–~13!, by using the identities~here and in the rest of the paper, if not explicitly stated,
dependence onx1 andx2 is understood!

~a! (0)^nuD1un& (0)5“1 , (0)^nuDc 2un& (0)5“2 ,

~b! (0)^nuD1u j & (0)5
(0)^nugE1u j & (0)

En
(0)2Ej

(0)
, (0)^nuDc 2u j & (0)52

(0)^nugE2
Tu j & (0)

En
(0)2Ej

(0)
; nÞ j ,

~c! (0)^nugE1un& (0)52~“1En
(0)!, (0)^nugE2

Tun& (0)5~“2En
(0)!,

whereF j[F(xj ), “ j5“xj
, Dc j5“ j1 igA j

T , and the transpose refers to the color matrices, we obtain, atO(1/m),

En
(1,0)5

1

2 (
kÞn

U (0)^kugE1un& (0)

En
(0)2Ek

(0) U2

, En
(0,1)5

1

2 (
kÞn

U (0)^kugE2
Tun& (0)

En
(0)2Ek

(0) U2

. ~20!

By using translational invariance one can see thatEn
(1,0) andEn

(0,1) only depend on the relative distancer. Moreover, by using
the symmetries of the static solutions, we can also see thatEn

(1,0)5En
(0,1) . The expressions~20! were first derived in Ref.@5#.

At O(1/m2), we obtain

En
(2,0)52

cD
(1) 8

8
(0)^nu@D1•,gE1#un& (0)1

cF
(1) 2

4 (
kÞn

(0)^nugB1uk& (0)
•

(0)^kugB1un& (0)

En
(0)2Ek

(0)

1
1

2 (
kÞn

F H p1
i p1

j ,
(0)^nugE1

i uk& (0) (0)^kugE1
j un& (0)

~En
(0)2Ek

(0)!3 J 1S ¹1
i ¹1

j
(0)^nugE1

i uk& (0) (0)^kugE1
j un& (0)

~En
(0)2Ek

(0)!3 D
12 (

j ,lÞn

(0)^nugE1
i u j & (0) (0)^ j ugE1

i uk& (0) (0)^kugE1
j u l & (0) (0)^ l ugE1

j un& (0)

~En
(0)2Ek

(0)!3~En
(0)2Ej

(0)!~En
(0)2El

(0)!
054007-5
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12S ¹1
i (

j Þn

(0)^nugE1
i uk& (0) (0)^kugE1u j & (0)

•

(0)^ j ugE1un& (0)

~En
(0)2Ek

(0)!3~En
(0)2Ej

(0)!
D 2S ¹1

i
(0)^nugE1

i uk& (0) (0)^ku@D1•,gE1#un& (0)

~En
(0)2Ek

(0)!3 D
13S ¹1

i
(0)^nugE1

i uk& (0) (0)^kugE1un& (0)
•~“1En

(0)!

~En
(0)2Ek

(0)!4 D 22(
j Þn

(0)^nugE1u j & (0)
•

(0)^ j ugE1uk& (0) (0)^ku@D1•,gE1#un& (0)

~En
(0)2Ek

(0)!3~En
(0)2Ej

(0)!

16(
j Þn

(0)^nugE1u j & (0)
•

(0)^ j ugE1uk& (0) (0)^kugE1un& (0)
•~“1En

(0)!

~En
(0)2Ek

(0)!4~En
(0)2Ej

(0)!
23

(0)^nu@D1•,gE1#uk& (0) (0)^kugE1un& (0)
•~“1En

(0)!

~En
(0)2Ek

(0)!4

14
~“1En

(0)!• (0)^nugE1uk& (0) (0)^kugE1un& (0)
•~“1En

(0)!

~En
(0)2Ek

(0)!5
1

1

2

(0)^nu@D1•,gE1#uk& (0) (0)^ku@D1•,gE1#un& (0)

~En
(0)2Ek

(0)!3 G
2d3

(1)8 f abcE d3x g (0)^nuGmn
a ~x!Gma

b ~x!Gna
c ~x!un& (0)1

cF
(1)

2 (
kÞn

H ¹1
i ,

(0)^nugE1
i uk& (0) (0)^kus1•gB1un& (0)

~En
(0)2Ek

(0)!2 J
2 i

cS
(1)

4

1

r

d En
(0)

dr
s1•~r3“1!, ~21!

En
(0,2)5En

(2,0)~gE1→2gE2
T ,gB1→2gB2

T ,s1→s2 ,“1→“2 ,D1→Dc 2 ,m1↔m2!, ~22!

and

En
(1,1)5 (

kÞn
F2H p1

i p2
j ,

(0)^nugE1
i uk& (0) (0)^kugE2

j Tun& (0)

~En
(0)2Ek

(0)!3 J 2S ¹1
i ¹2

j
(0)^nugE1

i uk& (0) (0)^kugE2
j Tun& (0)

~En
(0)2Ek

(0)!3 D
12 (

j ,lÞn

(0)^nugE1
i u j & (0) (0)^ j ugE1

i uk& (0) (0)^kugE2
j Tu l & (0) (0)^ l ugE2

j Tun& (0)

~En
(0)2Ek

(0)!3~En
(0)2Ej

(0)!~En
(0)2El

(0)!

1S ¹1
i (

j Þn

(0)^nugE1
i uk& (0) (0)^kugE2

Tu j & (0)
•

(0)^ j ugE2
Tun& (0)

~En
(0)2Ek

(0)!3~En
(0)2Ej

(0)!
D

2S ¹2
i (

j Þn

(0)^nugE1u j & (0)
•

(0)^ j ugE1uk& (0) (0)^kugE2
i Tun& (0)

~En
(0)2Ek

(0)!3~En
(0)2Ej

(0)!
D 1

1

2 S ¹1
i

(0)^nugE1
i uk& (0) (0)^ku@Dc 2•,gE2

T#un& (0)

~En
(0)2Ek

(0)!3 D
1

1

2 S ¹2
i

(0)^0u@D1•,gE1#uk& (0) (0)^kugE2
i Tun& (0)

~En
(0)2Ek

(0)!3 D 2
3

2 S ¹1
i

(0)^nugE1
i uk& (0) (0)^kugE2

Tun& (0)
•~“2En

(0)!

~En
(0)2Ek

(0)!4 D
2

3

2 S ¹2
i
~“1En

(0)!• (0)^nugE1uk& (0) (0)^kugE2
i Tun& (0)

~En
(0)2Ek

(0)!4 D 1(
j Þn

(0)^nugE1u j & (0)
•

(0)^ j ugE1uk& (0) (0)^ku@Dc 2•,gE2
T#un& (0)

~En
(0)2Ek

(0)!3~En
(0)2Ej

(0)!

2(
j Þn

(0)^nu@D1•,gE1#uk& (0) (0)^kugE2
Tu j & (0)

•

(0)^ j ugE2
Tun& (0)

~En
(0)2Ek

(0)!3~En
(0)2Ej

(0)!

23(
j Þn

(0)^nugE1u j & (0)
•

(0)^ j ugE1uk& (0) (0)^kugE2
Tun& (0)

•~“2En
(0)!

~En
(0)2Ek

(0)!4~En
(0)2Ej

(0)!

13(
j Þn

~“1En
(0)!• (0)^nugE1uk& (0) (0)^kugE2

Tu j & (0)
•

(0)^ j ugE2
Tun& (0)

~En
(0)2Ek

(0)!4~En
(0)2Ej

(0)!

1
3

2

(0)^nu@D1•,gE1#uk& (0) (0)^kugE2
Tun& (0)

•~“2En
(0)!

~En
(0)2Ek

(0)!4
1

3

2

~“1En
(0)!• (0)^nugE1uk& (0) (0)^ j u@Dc 2•,gE2

T#un& (0)

~En
(0)2Ek

(0)!4
054007-6
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24
~“1En

(0)!• (0)^nugE1uk& (0) (0)^kugE2
Tun& (0)

•~“2En
(0)!

~En
(0)2Ek

(0)!5
2

1

2

(0)^nu@D1•,gE1#uk& (0) (0)^ku@Dc 2•,gE2
T#un& (0)

~En
(0)2Ek

(0)!3 G
1~dss1dvs

(0)^nuT1
aT2

a Tun& (0)! d (3)~x12x2!2
cF

(1)

2 (
kÞn

H ¹2
i ,

(0)^nugE2
i Tuk& (0) (0)^kus1•gB1un& (0)

~En
(0)2Ek

(0)!2 J
2

cF
(2)

2 (
kÞn

H ¹1
i ,

(0)^nugE1
i uk& (0) (0)^kus2•gB2

Tun& (0)

~En
(0)2Ek

(0)!2 J 2
cF

(1)cF
(2)

2 (
kÞn

(0)^nus1•gB1uk& (0) (0)^kus2•gB2
Tun& (0)

En
(0)2Ek

(0)

2~dsvs1•s21dvv
(0)^nuT1

as1•T2
a Ts2un& (0)! d (3)~x12x2!. ~23!
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The above equations~20!–~23! give the energies of the glu
onic excitations between heavy quarks within an expans
in 1/m up toO(1/m2). From these expressions, in the case
the ground state (n50), we will derive, in Sec. V, the
equivalent Wilson loop expressions.

A similar approach has been used in Ref.@17# in order to
derive, from the QCD Hamiltonian in the Coulomb gaug
the spin-dependent part of the potential up toO(1/m2).
However, the behavior at scales ofO(m) was not correctly
incorporated there. If we take our NRQCD matching coe
cients at the tree level and neglect the tree-level annihila
contributions in the equal-mass case, we find agreemen
the spin-dependent potentials~up to some transpose colo
matrices!. Nevertheless, our general expression~18! differs
from the one used in@17#, which, in general, will not give the
correct spin-independent potentials. This has to do, in
opinion, with the fact that in order to derive Eq.~18! one has
to deal with operators rather than with numbers.

IV. PNRQCD

In the previous section we have studied the static limit
NRQCD and its corrections within a 1/m expansion. Let us
now connect those results with pNRQCD.

In the static limit, the gap between different states at fix
r will depend on the dimensionless parameterLQCDr . In a
general situation, there will be a set of states$nus% such that
Enus

(0)(r );mv2 for the typicalr of the actual physical system

We denote these states as ultrasoft. The aim of pNRQC
to describe the behavior of the ultrasoft states. Therefore
the physical degrees of freedom with energies larger t
mv2 will be integrated out from NRQCD in order to obta
pNRQCD. It is in this context that one may work order b
order in 1/m ~in particular for the kinetic energy!, and the
calculation of the previous section becomes the match
calculation between NRQCD and pNRQCD and provide
rigorous connection with the adiabatic approximation~this
approximation is implicit in all the attempts at deriving th
nonperturbative potentials from QCD we are aware o!.
Whereas this can be justified within a perturbative fram
work, in the nonperturbative case, we cannot, in gene
guarantee the validity of the 1/m expansion and one ma
think of examples where certain degrees of freedom can
be integrated out in the 1/m expansion~see@29#!. We believe
05400
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that this possibility, which, to our knowledge, has never be
mentioned before, except in Ref.@5#, deserves further study
Note that this does not have to do with the consideration
ultrasoft effects, which, unlike in earlier approaches, can
readily incorporated within our formalism.

In the perturbative situationLQCDr !1, which has been
studied in detail in@4#, $nus% corresponds to a heavy-quark
antiquark state, in either a singlet or an octet configurati
plus gluons and light fermions, all of them with energies
O(mv2). In a nonperturbative situation, which we will ge
nerically denote byLQCDr;1, it is not so clear what$nus%
is. One can think of different possibilities. Each of them w
give, in principle, different predictions and, therefore,
should be possible to experimentally discriminate amo
them. In particular, one could consider the situation whe
because of a mass gap in QCD, the energy splitting betw
the ground state and the first gluonic excitation is larger th
mv2 and, because of chiral symmetry breaking of QC
Goldstone bosons~pions and kaons! appear. Hence, in this
situation,$nus% would be the ultrasoft excitations about th
static ground state~i.e., the solutions of the correspondin
Schrödinger equation!, which will be named the singlet, plu
the Goldstone bosons. If one switches off the light fermio
~pure gluodynamics!, only the singlet survives and pNRQCD
reduces to a pure two-particle NR quantum-mechanical s
tem, usually referred as a pure potential model.

In this paper, we will study the pure singlet sector, w
no reference to further ultrasoft degrees of freedom. In t
situation, pNRQCD only describes the ultrasoft excitatio
about the static ground state of NRQCD. In terms of sta
NRQCD eigenstates, this means that onlyu0;x1 ,x2&

(0) is
kept as an explicit degree of freedom whereasun;x1 ,x2&

(0)

with nÞ0 are integrated out.1 This provides the only dy-

1In fact, we are only integrating out states with energies lar
thanmv2 and all the states withnÞ0 will be understood in this way
throughout the paper. Since, in practice, we are integrating ove
the states, if we are in the situation where some states, diffe
from the singlet, are ultrasoft, these have to be subtracted late
This is analogous to what happens in the perturbative situat
where the subtraction is done order by order in the multipole
pansion. In this situation our calculation should be understood
the leading term in the multipole expansion.
7-7
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namical degree of freedom of the theory. It is described
means of a bilinear color singlet fieldS(x1 ,x2 ,t), which has
the same quantum numbers and transformation prope
under symmetries as the static ground state of NRQCD in
one-quark–one-antiquark sector. In the above situation,
Lagrangian of pNRQCD reads

LpNRQCD5S†@ i ]02hs~x1 ,x2 ,p1 ,p2!#S, ~24!

wherehs is the Hamiltonian of the singlet~actuallyhs is only
a function of r , p1 , p2, which is analytic in the two las
operators but typically contains nonanalyticities inr !, p15
2 i“x1

, andp252 i“x2
. It has the following expansion up t

order 1/m2:

hs~x1 ,x2 ,p1 ,p2!5
p1

2

2m1
1

p2
2

2m2
1V(0)1

V(1,0)

m1
1

V(0,1)

m2

1
V(2,0)

m1
2

1
V(0,2)

m2
2

1
V(1,1)

m1m2
. ~25!

The integration of higher excitations is trivial using th
basisun;x1 ,x2& since, in this case, they are decoupled fro
u0;x1 ,x2&. Then, the matching of NRQCD to pNRQCD co
sists in renaming things in a way such that pNRQCD rep
duces the matrix elements of NRQCD for the ground st
and, in particular, the energy. This fixes the matching con
tion

E0~x1 ,x2 ,p1 ,p2!5hs~x1 ,x2 ,p1 ,p2!. ~26!

Although our main concern in this paper is to provide
well-controlled derivation of the potential for the heav
quarkonium, we would like to say a few words about t
expressionsEn (nÞ0) we have found in the previous se
tion. In the static limit, the differentEn

(0) (nÞ0) are identi-
fied with the static potentials to be used in a Schro¨dinger
equation to obtain the spectra of the bound systems c
posed of a heavy quark and an antiquark~plus glueballs!
different from the heavy quarkonium such as, for instan
heavy hybrids. This assignment is argued within the ad
batic approximation and corresponds to what is actually d
in lattice simulations@28#. In this respect, since we hav
given a systematic method to obtain the corrections to
energy within a 1/m expansion, the energiesEn correspond
to the quantum-mechanical Hamiltonians of the differe
bound systems made by a heavy quark and an antiquark~up
to glueballs! and the 1/m and 1/m2 terms should be under
stood as the relativistic corrections to the static potentials
is still an open problem if this procedure is the sensible th
to do for heavy hybrids, if~and whichever! other possibilities
may occur, and if these potentials, like the heavy quar
nium potential, may eventually be written in terms of Wilso
loops. We will not deal with these problems here, whic
however, deserve further investigations. We refer to@3# for
related discussions.
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V. HEAVY QUARKONIUM POTENTIAL
AND WILSON LOOPS

In this section we express the heavy quarkonium poten
in terms of Wilson loop operators. These kinds of expr
sions are quite convenient for lattice simulations or for QC
vacuum-model studies~see, for instance,@14,16#!. We shall
use the following definitions. The angular brackets^•••&
will stand for the average value over the Yang-Mills actio
Wh for the rectangular static Wilson loop of dimensionsr
3TW ,

Wh[P expH 2 ig R
r 3TW

dzmAm~z!J ,

and ^̂ •••&&[^•••Wh&/^Wh&; P is the path-ordering opera
tor. Moreover, we define theconnectedWilson loop with
O1(t1), O2(t2), . . . , On(tn) operator insertions forTW/2
>t1>t2>•••>tn>2TW/2 by

^̂ O1~ t1!O2~ t2!•••On~ tn!&&c

5 ^̂ O1~ t1!O2~ t2!•••On~ tn!&&

2 (
j 51

n21

^̂ O1~ t1!O2~ t2!•••Oj~ t j !&&c

3 ^̂ Oj 11~ t j 11!•••On~ tn!&&c, ~27!

^̂ Oj~ t j !&&c5 ^̂ Oj~ t j !&&. ~28!

We also define in a shorthand notation

lim
T→`

[ lim
T→`

lim
TW→`

, ~29!

whereTW is the time length of the Wilson loop andT the
time length appearing in the time integrals. By performi
first theTW→`, the averageŝ̂•••&& become independent o
TW and thus invariant under global time translations.

By using the matching condition~26! and the quantum-
mechanical expressions~20!, it has already been proved i
@5# that the quarkonium singlet static potential and t
O(1/m) potential can be expressed in terms of Wilson loo
with field strength insertions in it as

V(0)~r !5 lim
T→`

i

T
ln^Wh&, ~30!

V(1,0)~r !52
1

2
lim

T→`
E

0

T

dt t ^̂ gE1~ t !•gE1~0!&&c .

~31!

Owing to invariance under charge conjugation plusm1↔m2
transformation we have

V(1,0)~r !5V(0,1)~r !.

The way to prove the equivalence of Eq.~31! and Eq.~20!
has been discussed in Ref.@5#, where more details can b
found. Here we only mention that this equivalence proof
7-8
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well as the following ones can be done straightforwardly
inserting complete sets of intermediate states in the Wil
loop operators and by explicitly computing the time int
grals.

Let us now consider the terms ofO(1/m2). It is conve-
nient to split them into a spin-dependent and a sp
independent part. For theV(2,0) andV(0,2) potentials we de-
fine

V(2,0)5VSD
(2,0)1VSI

(2,0) , V(0,2)5VSD
(0,2)1VSI

(0,2) . ~32!

The spin-independent terms can be written as

VSI
(2,0)5

1

2
$p1

2 ,Vp2
(2,0)

~r !%1
VL2

(2,0)
~r !

r 2
L1

21Vr
(2,0)~r ! ~33!

and

VSI
(0,2)5

1

2
$p2

2 ,Vp2
(0,2)

~r !%1
VL2

(0,2)
~r !

r 2
L2

21Vr
(0,2)~r !, ~34!

whereL1[r3p1 and L2[r3p2. Note that neitherL1 nor
L2 corresponds to the orbital angular momentum of the p
05400
y
n

-

r-

ticle and antiparticle. By using invariance under charge c
jugation plusm1↔m2 transformation, we obtain

Vp2
(2,0)

~r !5Vp2
(0,2)

~r !, VL2
(2,0)

~r !5VL2
(0,2)

~r !,

Vr
(2,0)~r !5Vr

(0,2)~r ;m2↔m1!. ~35!

The spin-dependent part ofV(2,0) is of the type

VSD
(2,0)5VLS

(2,0)~r !L1•S1 . ~36!

Analogously, for theV(0,2) potential we can write

VSD
(0,2)52VLS

(0,2)~r !L2•S2 . ~37!

From invariance under charge conjugation plusm1↔m2
transformation, we obtain

VLS
(2,0)~r !5VLS

(0,2)~r ;m2↔m1!.

By using Eqs.~26! and~21! we get, in terms of Wilson loop
operators,
Vp2
(2,0)

~r !5
i

2
r̂ i r̂ j lim

T→`
E

0

T

dt t2^̂ gE1
i ~ t !gE1

j ~0!&&c , ~38!

VL2
(2,0)

~r !5
i

4
~d i j 23r̂ i r̂ j ! lim

T→`
E

0

T

dt t2^̂ gE1
i ~ t !gE1

j ~0!&&c , ~39!

Vr
(2,0)~r !52

cD
(1)8

8
lim

TW→`
^̂ @D1 ,gE1#~ t !&&c2

icF
(1) 2

4
lim

T→`
E

0

T

dt^̂ gB1~ t !•gB1~0!&&c1
1

2
~“ r

2Vp2
(2,0)

!

2
i

2
lim

T→`
E

0

T

dt1E
0

t1
dt2E

0

t2
dt3 ~ t22t3!2^̂ gE1~ t1!•gE1~ t2!gE1~ t3!•gE1~0!&&c

1
1

2S“ r
i lim
T→`

E
0

T

dt1E
0

t1
dt2 ~ t12t2!2^̂ gE1

i ~ t1!gE1~ t2!•gE1~0!&&cD
2

i

2
~“ r

i V(0)! lim
T→`

E
0

T

dt1E
0

t1
dt2 ~ t12t2!3^̂ gE1

i ~ t1!gE1~ t2!•gE1~0!&&c2
1

2
lim

T→`
E

0

T

dt1E
0

t1
dt2 ~ t12t2!2

3 ^̂ @D1 .,gE1#~ t1!gE1~ t2!•gE1~0!&&c1
i

8
lim

T→`
E

0

T

dt t2^̂ @D1 .,gE1#~ t !@D1 .,gE1#~0!&&c

2
i

4S“ r
i lim
T→`

E
0

T

dt t2^̂ gE1
i ~ t !@D1 .,gE1#~0!&&cD 2

1

4
lim

T→`
E

0

T

dt t3^̂ @D1 .,gE1#~ t !gE1
j ~0!&&c~“ r

j V(0)!

1
1

4S“ r
i lim
T→`

E
0

T

dt t3^̂ gE1
i ~ t !gE1

j ~0!&&c~“ r
j V(0)! D 2

i

12
lim

T→`
E

0

T

dt t4^̂ gE1
i ~ t !gE1

j ~0!&&c~“ r
i V(0)!~“ r

j V(0)!

2d3
(1)8 f abcE d3x lim

TW→`

g^̂ Gmn
a ~x!Gma

b ~x!Gna
c ~x!&& ~40!
7-9
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~note that, although formally the first and last terms depend on the time where the operator insertion is made, this is no
doing theTW→` limit 2!,

VLS
(2,0)~r !52

cF
(1)

r 2
i r• lim

T→`
E

0

T

dt t ^̂ gB1~ t !3gE1~0!&&1
cS

(1)

2r 2
r•~“ rV

(0)!. ~41!

For theV(1,1) potential we define

V(1,1)5VSD
(1,1)1VSI

(1,1) . ~42!

The spin-independent part can be written as

VSI
(1,1)52

1

2
$p1•p2 ,Vp2

(1,1)
~r !%2

VL2
(1,1)

~r !

2r 2
~L1•L21L2•L1!1Vr

(1,1)~r !, ~43!

while the spin-dependent part contains the following operators:

VSD
(1,1)5VL1S2

(1,1)~r !L1•S22VL2S1

(1,1)~r !L2•S11VS2
(1,1)

~r !S1•S21VS12

(1,1)~r !S12~ r̂ !, ~44!

whereS12( r̂ )[3r̂•s1 r̂•s22s1•s2. Because of the invariance under charge conjugation plusm1↔m2 transformation, we
have

VL1S2

(1,1)~r !5VL2S1

(1,1)~r ;m1↔m2!.

By using Eqs.~26! and ~23! we get, in terms of Wilson loop operators,

Vp2
(1,1)

~r !5 i r̂ i r̂ j lim
T→`

E
0

T

dt t2^̂ gE1
i ~ t !gE2

j ~0!&&c , ~45!

VL2
(1,1)

~r !5 i
d i j 23r̂ i r̂ j

2
lim

T→`
E

0

T

dt t2^̂ gE1
i ~ t !gE2

j ~0!&&c , ~46!

Vr
(1,1)~r !52

1

2
~“ r

2Vp2
(1,1)

!2 i lim
T→`

E
0

T

dt1E
0

t1
dt2E

0

t2
dt3 ~ t22t3!2^̂ gE1~ t1!•gE1~ t2!gE2~ t3!•gE2~0!&&c

1
1

2S“ r
i lim
T→`

E
0

T

dt1E
0

t1
dt2~ t12t2!2^̂ gE1

i ~ t1!gE2~ t2!•gE2~0!&&cD 1
1

2S“ r
i lim
T→`

E
0

T

dt1E
0

t1
dt2~ t12t2!2

3 ^̂ gE2
i ~ t1!gE1~ t2!•gE1~0!&&cD 2

i

2
~“ r

i V(0)! lim
T→`

E
0

T

dt1E
0

t1
dt2~ t12t2!3^̂ gE1

i ~ t1!gE2~ t2!•gE2~0!&&c

2
i

2
~“ r

i V(0)! lim
T→`

E
0

T

dt1E
0

t1
dt2~ t12t2!3^̂ gE2

i ~ t1!gE1~ t2!•gE1~0!&&c2
1

2
lim

T→`
E

0

T

dt1E
0

t1
dt2~ t12t2!2

3 ^̂ @D1 .,gE1#~ t1!gE2~ t2!•gE2~0!&&c1
1

2
lim

T→`
E

0

T

dt1E
0

t1
dt2~ t12t2!2^̂ @D2•,gE2#~ t1!gE1~ t2!•gE1~0!&&c

2
i

4
lim

T→`
E

0

T

dt t2^̂ @D1•,gE1#~ t !@D2•,gE2#~0!&&c1
i

4S“ r
i lim
T→`

E
0

T

dt t2$^̂ gE1
i ~ t !@D2•,gE2#~0!&&c

2V(0) could also be written in a similar way:

V(0)5
1

2Ed3x lim
TW→`

^̂ ~PaPa1BaBa!~x!&&.
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2 ^̂ gE2
i ~ t !@D1•,gE1#~0!&&c% D 2

1

4
lim

T→`
E

0

T

dt t3$^̂ @D1•,gE1#~ t !gE2
j ~0!&&c2 ^̂ @D2•,gE2#~ t !gE1

j ~0!&&c%~“ r
j V(0)!

1
1

4S“ r
i lim
T→`

E
0

T

dt t3$^̂ gE1
i ~ t !gE2

j ~0!&&c1 ^̂ gE2
i ~ t !gE1

j ~0!&&c%~“ r
j V(0)! D

2
i

6
lim

T→`
E

0

T

dt t4^̂ gE1
i ~ t !gE2

j ~0!&&c~“ r
i V(0)!~“ r

j V(0)!1~dss1dvs lim
TW→`

^̂ T1
aT2

a&&! d (3)~x12x2! ~47!
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~here and in the following formulas the two color matrices
^̂ T1

aT2
a&& are inserted in the Wilson loop at the same tim

2TW/2<t<TW/2; the t dependence disappears in theTW
→` limit !,

VL2S1

(1,1)~r !52
cF

(1)

r 2
i r• lim

T→`
E

0

T

dt t ^̂ gB1~ t !3gE2~0!&&,

~48!

VS2
(1,1)

~r !5
2cF

(1)cF
(2)

3
i lim
T→`

E
0

T

dt ^̂ gB1~ t !•gB2~0!&&

24~dsv1dvv lim
TW→`

^̂ T1
aT2

a&&! d (3)~x12x2!,

~49!

VS12

(1,1)~r !5
cF

(1)cF
(2)

4
i r̂ i r̂ j lim

T→`
E

0

T

dt F ^̂ gB1
i ~ t !gB2

j ~0!&&

2
d i j

3
^̂ gB1~ t !•gB2~0!&&G . ~50!

We now compare our results with previous ones. For
spin-dependent potentials we find agreement with
Eichten-Feinberg results@8# ~once the NRQCD matching co
efficients have been taken into account! except for the
1/m1m2 spin-orbit potential VL2S1

(1,1) . Since the Eichten-

Feinberg results have been checked by, at least, three
pendent groups@10,12,13#, we perform a more detailed com
parison in Appendix B. We show that our expression
terms of Wilson loops and theirs give different results
terms of intermediate states and, more important, we s
that they give different perturbative results at leading or
in as. Ours coincides with the well-known tree-level calc
lation, whereas the Eichten-Feinberg expression gives
the expected result. Moreover, our perturbative result sa
fies the Gromes relation@10#. The fact that the same mistak
has been done by several groups can only be explained
systematic error. We believe that their systematic error ha
do with the common assumption in the literature that o
may neglect,in general, the dependence of the Wilson loop
on the gluonic strings or on any other gluonic operator at
56TW/2. An analysis of the calculation done by Eichte
and Feinberg in@8# supports this belief. Finally, we would
like to mention that several different expressions for
05400
:

e
e

e-

w
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2,
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to
e

e

spin-dependent potentials, in particular the correct one,
be found in the literature dealing with the lattice evaluati
of them@30–32,3,14#. All these refer to the work of Eichten
and Feinberg@8# for the derivation. We believe that our re
sult makes mandatory a clarification of all previous latti
evaluations of the spin-dependent potentials.

The spin-independent potentials have only been compu
before by Barchielliet al. @12# ~the analysis done in@11#,
which appears to be inconclusive, has never been publish!.
We agree~once the NRQCD matching coefficients have be
taken into account! with their results for the momentum
dependent terms, but not for the momentum-independ
terms, where we find new contributions. Moreover, since
potential we get here iscompleteup to order 1/m2, it is not
affected by the ordering ambiguity, which affects the deriv
tion in @12#. In this context, we would like to mention tha
our result may be of particular relevance for the study of
properties of the QCD vacuum in the presence of he
sources. So far the lattice data for the spin-dependent
spin-independent potentials are consistent with a flux-t
picture, whereas it is only for the spin-dependent terms t
the so-called ‘‘scalar confinement’’ is consistent with latti
data@1,33# ~however, the lattice data are still not conclusive!.
It will be interesting to see how these pictures compare w
the new momentum- and spin-independent potentials, o
lattice data will be available for them. We note that some
them are not simply expressed by two field insertions o
static Wilson loop, such as the spin- or momentu
dependent terms. In particular, an extended object com
from the Yang-Mills sector is required~similar extended ob-
jects would also show up by taking into account operat
with light quarks!.

Gauss law and further identities

The above results may be simplified and rewritten in s
eral ways. For instance, by using the quantum-mechan
identities~a!–~c! given in Sec. III, we obtain

lim
TW→`

^̂ @D1 ,gE1#~ t !&&c

52S“ r
2V(0)12i lim

T→`
E

0

T

dt ^̂ gE1~ t !•gE1~0!&&cD ,

~51!

changing the expression of the Darwin term~which now
7-11
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looks similar to the analogous expression given in Ref.@12#!.
In fact, by using the quantum-mechanical identities~a!–~c!
of Sec. III, we could systematically transform@D,gE# in
terms of normal derivatives acting on matrix elements or
static energies.

Another possibility, which turns out to be more powerfu
is the use of the Gauss law~14!. It allows us to write all the
terms of the type@D,gE# in terms of d (3)(x12x2) times
some color matrices@up to some terms proportional t
d (3)(0) that vanish in dimensional regularization#. More in-
formation can be obtained by using the behavior of the W
05400
n

-

son loops~or of the states! at short distances for the term
proportional to the deltas~assuming they are regula
enough!. It follows that all the original terms with@D,gE#
disappear except the Darwin term. Moreover, we have@Cf

5(Nc
221)/(2Nc)#

lim
TW→`

^̂ T1
aT2

a&&d (3)~x12x2!5Cfd
(3)~x12x2!.

Therefore, some potentials get simplified into the followi
expressions:
Vr
(2,0)~r !5

pCfascD
(1)8

2
d (3)~x12x2!2

icF
(1) 2

4
lim

T→`
E

0

T

dt^̂ gB1~ t !•gB1~0!&&c1
1

2
~“ r

2Vp2
(2,0)

!

2
i

2
lim

T→`
E

0

T

dt1E
0

t1
dt2E

0

t2
dt3 ~ t22t3!2^̂ gE1~ t1!•gE1~ t2!gE1~ t3!•gE1~0!&&c

1
1

2S“ r
i lim
T→`

E
0

T

dt1E
0

t1
dt2 ~ t12t2!2^̂ gE1

i ~ t1!gE1~ t2!•gE1~0!&&cD
2

i

2
~“ r

i V(0)! lim
T→`

E
0

T

dt1E
0

t1
dt2 ~ t12t2!3^̂ gE1

i ~ t1!gE1~ t2!•gE1~0!&&c

1
1

4S“ r
i lim
T→`

E
0

T

dt t3^̂ gE1
i ~ t !gE1

j ~0!&&c~“ r
j V(0)! D 2

i

12
lim

T→`
E

0

T

dt t4^̂ gE1
i ~ t !gE1

j ~0!&&c~“ r
i V(0)!~“ r

j V(0)!

2d3
(1)8 f abcE d3x lim

TW→`

g^̂ Gmn
a ~x!Gma

b ~x!Gna
c ~x!&&, ~52!

Vr
(1,1)~r !52

1

2
~“ r

2Vp2
(1,1)

!2 i lim
T→`

E
0

T

dt1E
0

t1
dt2E

0

t2
dt3 ~ t22t3!2^̂ gE1~ t1!•gE1~ t2!gE2~ t3!•gE2~0!&&c

1
1

2S“ r
i lim
T→`

E
0

T

dt1E
0

t1
dt2~ t12t2!2^̂ gE1

i ~ t1!gE2~ t2!•gE2~0!&&cD
1

1

2S“ r
i lim
T→`

E
0

T

dt1E
0

t1
dt2~ t12t2!2^̂ gE2

i ~ t1!gE1~ t2!•gE1~0!&&cD
2

i

2
~“ r

i V(0)! lim
T→`

E
0

T

dt1E
0

t1
dt2~ t12t2!3^̂ gE1

i ~ t1!gE2~ t2!•gE2~0!&&c

2
i

2
~“ r

i V(0)! lim
T→`

E
0

T

dt1E
0

t1
dt2~ t12t2!3^̂ gE2

i ~ t1!gE1~ t2!•gE1~0!&&c

1
1

4S“ r
i lim
T→`

E
0

T

dt t3$^̂ gE1
i ~ t !gE2

j ~0!&&c1 ^̂ gE2
i ~ t !gE1

j ~0!&&c%~“ r
j V(0)! D

2
i

6
lim

T→`
E

0

T

dt t4^̂ gE1
i ~ t !gE2

j ~0!&&c~“ r
i V(0)!~“ r

j V(0)!1~dss1dvsCf ! d (3)~x12x2! ~53!
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VS2
(1,1)

~r !5
2cF

(1)cF
(2)

3
i lim
T→`

E
0

T

dt ^̂ gB1~ t !•gB2~0!&&24~dsv1dvvCf ! d (3)~x12x2!. ~54!
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Similar considerations also apply to the results in terms
states of Sec. III.

VI. POWER COUNTING

The standard power counting of NRQCD~organized in
powers ofv andas) used to assess the relative importance
the different matrix elements, as discussed, for instance
@34#, can only be proved in the perturbative regime. Even
this regime, owing to the different dynamical scales still
volved, the matrix elements of NRQCD do not have a uniq
power counting inv. In the nonperturbative regime the pro
lem of the power counting of NRQCD is still open. In prin
ciple, it is possible that a different power counting may
appropriate in this situation and this would influence,
instance, the studies of the charmonium system or of hig
bottomonium states.3 We believe that our result, through th
connection between NRQCD and the quantum-mechan
picture, will eventually help to better understand the hier
chy of the different matrix elements in NRQCD, as well as
get a much deeper understanding of the underlying dyn
ics. This is due to the fact that, by going to a NR quantu
mechanical formulation, we have made the dynamics of
heavy quarks explicit, transferring the problem of the pow
counting of NRQCD into the problem of obtaining the pow
counting of the different potentials in pNRQCD. These m
be expressed in terms of Wilson loops where only gluo
and light quarks appear as dynamical entities and for wh
there are or there will be direct lattice measurements. Mo
over, it is in this formulation that statements such as
virial theorem have a more rigorous, gauge-independ
meaning.

Here, we only say a few words about the expected beh
ior of the potentials using arguments of naturalness on
scalemv, i.e., assuming that the potentials scale withmv.
We first considerV(0). In principle,V(0) counts asmv, but,
by definition, the kinetic energy counts asmv2. Therefore,
the virial theorem constrainsV(0) also to count asmv2. The
extraO(v) suppression has to come on dynamical groun
In the perturbative case, it originates from the factoras;v in
the potential. In the nonperturbative case little can be s
and other mechanisms must be responsible. Using nat
ness,V(1,0)/m scales likemv2. Therefore, it could in prin-
ciple be as large asV(0). This makes a lattice calculation or
model evaluation of this potential urgent. Perturbatively, o
ing to the factoras

2 , it is of O(mv4). For what concerns the

3A different, nonstandard, power counting of the matrix eleme
of NRQCD may explain the apparent difficulties that NRQCD
facing to explain the polarization of promptJ/c data and to accu-
rately determine the different matrix elements~see@35#!.
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1/m2 potentials, the naturalness argument suggests that
are of O(mv3). However, also here several constraints a
ply. Terms involving“V(0);m2v3 are suppressed by an ex
tra factorv, due to the virial theorem. The Gromes relatio
@10,36#

1

2r

dV(0)

dr
1VLS

(2,0)2VL2S1

(1,1)50 ~55!

suppresses by an extra factorv the combinationVLS
(2,0) 2

VL2S1

(1,1) . Similar constraints also exist for the spin-independ

potentials@12#. Perturbatively the 1/m2 potentials count at
most asO(mv4), because of the extraas suppression. Fi-
nally, it is important to consider that some of the potenti
are O(as) suppressed because of the matching coefficie
inherited from NRQCD. This is, for instance, the case of t
terms coming from the 1/m2 corrections to the purely glu
onic sector of the NRQCD Lagrangian or of the terms co
ing from the four-fermion sector.

Terms involving two field-strength insertions in the sta
Wilson loop are known from lattice measurements@14# and
have been studied in some QCD vacuum models@16#. For
them a parametrization is possible and some supplemen
information can be extracted. However, terms involvi
more than two field insertions in the static Wilson loop ha
not been studied so far, to our knowledge, by lattice simu
tions or within models. Consistency with the experimen
data will further constrain any possible power-counting ru
In any case, a detailed study of the potentials using the ab
information ~as well as new lattice or model-dependent
sults! should be performed in order to obtain the size~and
thus the power-counting rules! of the different potentials for
the charmonium and bottomonium systems.

VII. CONCLUSIONS AND OUTLOOK

A new formalism with which to obtain the QCD potentia
at arbitrary orders in 1/m has been explained in detail. W
have obtained expressions for the energies of the gluo
excitations between heavy quarks valid beyond perturba
theory atO(1/m2). In particular, for the heavy quarkonium
we have also obtained the complete spin-dependent and
independent potentials atO(1/m2) for pure gluodynamics in
terms of Wilson loops. For the spin-dependent piece our
sults correct the expressions given in@8,10,12#. For the spin-
independent potentials, we agree with the momentu
dependent potentials obtained in@12#, but not for the
momentum-independent terms, where new contributions
found. We have also briefly discussed the power counting
the nonperturbative regime.

We conclude, commenting on two possible developme

s
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of the present work. First, it is worthwhile to explore th
possibility of expressing the potentials associated with hig
gluonic excitations in terms of Wilson loop operators as do
here for the heavy quarkonium ground state. The correspo
ing quantum-mechanical expressions are given in Eqs.~20!–
~23!. Second, our results are complete atO(1/m2) in the case
of pure gluodynamics. If we want to incorporate light ferm
ons, the procedure to be followed is analogous and our
sults still remain valid~considering now matrix elements an
Wilson loops with dynamical light fermions incorporated!,
except for new terms appearing in the energies atO(1/m2)
due to operators involving light fermions that appear in
NRQCD Lagrangian atO(1/m2) @24#. They may be incorpo-
rated along the same lines as the terms discussed here
will be explicitly worked out elsewhere.
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APPENDIX A: THE PARAMETRIZATION OF †12‡

In this appendix, for ease of comparison, we write t
spin-independent potentials in the parameterization give
@12#. They read

VSI
(2,0)5

1

2 H p1
i p 1

j ,d i j Vd~r !1S d i j

3
2 r̂ i r̂ j DVe~r !J

1
1

8
~“ r

2@V(0)1Va# !, ~A1!

VSI
(1,1)5

1

2 H p1
i p 2

j ,d i j Vb~r !1S d i j

3
2 r̂ i r̂ j DVc~r !J

1Vf~r !. ~A2!

Let us note that in@12# the 1/m1m2 potential contained only
momentum-dependent pieces. Therefore, the momen
independent potential, which we nameVf , was missing. Our
calculation also substantially modifies the result forVa given
in @12#. The above potentials read

Vd5
i

6
lim

T→`
E

0

T

dt t2^̂ gE1~ t !•gE1~0!&&c , ~A3!

S d i j

3
2 r̂ i r̂ j DVe5

i

2
lim

T→`
E

0

T

dt t2H ^̂ gE1
i ~ t !gE1

j ~0!&&c

2
d i j

3
^̂ gE1~ t !•gE1~0!&&cJ , ~A4!
05400
r
e
d-

e-

e

and

s
a

n-

in

m-

1

8
~“ r

2@V(0)1Va# !

5Vr
(2,0)~r !2

1

2
~“ r

2Vp2
(2,0)

!

1
i

4 S ¹ r
i ¹ r

j lim
T→`

E
0

T

dt t2^̂ gE1
i ~ t !gE1

j ~0!&&cD ,

~A5!

Vb52
i

3
lim

T→`
E

0

T

dt t2^̂ gE1~ t !•gE2~0!&&c ,

~A6!

S d i j

3
2 r̂ i r̂ j DVc52 i lim

T→`
E

0

T

dt t2H ^̂ gE1
i ~ t !gE2

j ~0!&&c

2
d i j

3
^̂ gE1~ t !•gE2~0!&&cJ , ~A7!

Vf~r !5Vr
(1,1)~r !1

1

2
~“ r

2Vp2
(1,1)

!

1
i

2 S¹ r
i ¹ r

j lim
T→`

E
0

T

dt t2^̂ gE1
i ~ t !gE2

j ~0!&&cD .

~A8!

APPENDIX B: COMPARISON WITH THE
EICHTEN-FEINBERG SPIN-ORBIT POTENTIAL

In order to compare our results with the Eichten-Feinb
ones properly, we setcF

(1)5cF
(2)51. Then, our Eq.~48! reads

VL2S1

(1,1)~r !52
i

r 2 r• lim
T→`

E
0

T

dt t ^̂ gB1~ t !3gE2~0!&&

5
i

r 2 r•(
kÞ0

(0)^0ugB1uk& (0)3 (0)^kugE2
Tu0& (0)

~E0
(0)2Ek

(0)!2

5
pert

Cfas

r 3
1O~as

2!. ~B1!

On the other hand, Eichten and Feinberg obtain~we actually
use the expression in Minkowski space given in Ref.@12#!
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VL2S1

(1,1)~r !5
i

2r 2 lim
TW→`

1

TW
E

2TW/2

TW/2

dt E
2TW/2

TW/2

dt8 t8r• ^̂ gB1~ t !3gE2~ t8!&&

5
i

2r 2 r• (
mÞ0

(
kÞ0,m

a0am

a0
2

(0)^0ugB1uk& (0)3 (0)^kugE2
Tum& (0)

~E0
(0)2Ek

(0)!~E0
(0)2Em

(0)!

2
i

2r 2 r• (
mÞ0

(
kÞ0,m

a0am

a0
2

(0)^mugB1uk& (0)3 (0)^kugE2
Tu0& (0)

~E0
(0)2Ek

(0)!~E0
(0)2Em

(0)!
1

i

2r 2 r•(
kÞ0

(0)^0ugB1uk& (0)3 (0)^kugE2
Tu0& (0)

~E0
(0)2Ek

(0)!2

5
pert

Cfas

2r 3
1O~as

2!, ~B2!

where thean(x1 ,x2) are defined by

c†~x1!f~x1 ,x2!x~x2!uvac&5(
n

an~x1 ,x2!un;x1 ,x2&
(0),

here

f~y,x![P expH igE
0

1

ds~y2x!•A@x2s~x2y!#J ~B3!

being the end-point string used in the Wilson loop operators. Note that we have fixedTW5T in Eq. ~B2!, as corresponds to th
procedure followed by Eichten and Feinberg.

The above calculation makes manifest the disagreement of Eq.~B1! with Eq. ~B2! both at the perturbative level as well a
in the representation in terms of intermediate states. A possible source of disagreement may be traced back in th
paper of Eichten and Feinberg@8# to their Eq.~4.9b!, which seems to be incorrect. Finally, the reason for this last error se
to be the improper treatment of the Wilson loops in the large-time limit.
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