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The QCD potential at O(1/m?): Complete spin-dependent and spin-independent result
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Within an effective field theory framework, we obtain an expression, @i{i/m?) accuracy, for the
energies of the gluonic excitations between heavy quarks, which holds beyond perturbation theory. For the
singlet heavy-quark—antiquark energy, in particular, we also obtain an expression in terms of Wilson loops.
This provides, twenty years after the seminal work of Eichten and Feinberg, the first complete expression for
the heavy quarkonium potential up @(1/m?) for pure gluodynamics. Several errors present in the previous
literature (also in the work of Eichten and Feinbgrgave been corrected. We also briefly discuss the power
counting of NRQCD in the nonperturbative regime.
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I. INTRODUCTION 1/m expansion, oD(1/m?), were given in Refd.8—10]. The
procedure followed in these works proved to be very difficult
Measured spectroscopy suggests that the charm and bdb extend beyond these leading-order potentials. Indeed, the
tom quark masses are large enough to consider their heaviirst attempts11], using tools similar to those in Reff8],
quark—antiquark bound-state systefgenerically denoted as failed to obtain suitable finite expressions. In Rgf2], a
heavy quarkoniais, Y, B., ...) asnonrelativistic(NR). new method to calculate the potentials was proposed, where
These systems are, therefore, characterized by, at least, thneew spin-independetisome of them momentum-dependent
widely separated scales: hafthe massm of the heavy potentials aD(1/m?) were obtained. In these original works,
quarks, soft (the relative momentum of the heavy-quark— the potentials obtained did not correctly reproduce the ultra-
antiquark|p|~muv, v<1), and ultrasofithe typical kinetic  violet behavior expected from perturbative QGfbe hard
energyE~mu? of the heavy quark in the bound-state sys-logs ~logm). This was first implemented in the framework
tem). Inspired by this NR behavior, the investigation of of QCD effective field theories, for both spin-dependent and
heavy quarkonia has been traditionally performed by all sortspin-independent potentials, [ih3—15. At that point, the set
of potential models, where an ansatz potential is introducedf potentials obtained @(1/m?) seemed to be complete and
in a Schradinger equatiortfor some reviews sef—3]). The  the timely study of the different Wilson loop operators de-
phenomenological success of these suggests that, to sorseribing the nonperturbative dynamics of the potentials
extent, a potential picture may, in fact, be appropriate andtarted. For instance, a lattice study was performepl#]
justified from QCD. This triggered attempts to derive theseand a study in the framework of QCD vacuum models was
potentials from QCD by relating them to Wilson loops. done in[16].
These standard derivations used an expansionmmn (&lso Nevertheless, this view has been recently challenged in
named adiabatic or Born-Oppenheimer approximation Ref. [5] where (i) a systematic study of the potentials has
However, a full derivation of the potential from QCD, as been started within an effective field theory framework—
well as a study of the validity of the potential picture itself, potential NRQCD(pNRQCD) [4]—and (ii) the O(1/m) po-
has not yet been done in the nonperturbative regime, wherential, previously missed in the literature, has been calcu-
most of the heavy quarkonium spectrum lies. It is the aim oflated. It is the aim of this paper to explain in more detail the
this paper to explicitly derive the complete nonperturbativeHamiltonian formalism, sketched in R¢&], and to compute
1/m? QCD potential for pure gluodynamics within an effec- the O(1/m?) potentials. The formalism appears to be quite
tive field theory framework4,5], where higher order poten- powerful and suitable to obtain the quarkonium potentials
tials in 1/m and nonpotential effects could also be incorpo-and the energies of any gluonic excitation at any finite order
rated in a systematic way. in 1/m. A similar idea, but in the Coulomb gauge and only
Since the derivation of the potential has a long story, itfor the leading spin-dependent quarkonium potentials, has
may be useful to summarize its main steps. The expressioalso been used ifiL7]. We will give an expression in terms
for the leading spin-independent potential,@f1/m°), cor-  of quantum-mechanical corrections to the energies of the
responds to the static Wilson loop and was derived and disgluonic excitations between static quarks, valid for all the
cussed in the seminal works of Wils@@] and Susskind7].  gluonic excitations up t@(1/m?). For the quarkonium state
Expressions for the leading spin-dependent potentials in théhe ground stade we will express our complete f result
in terms of Wilson loops eventually calculable on the lattice
or by means of QCD vacuum models, concluding in this way
*Email address: antonio.pineda@cern.ch an ideal journey started over twenty years ago.
TEmail address: antonio.vairo@cern.ch The theoretical framework of our work is NRQCS8]
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and pNRQCD, suitable effective field theories for systemsheavy quarkonium potential that we can now derive from
made up by two heavy quarks. NRQCD has proved to b&CD by a systematic procedure. Moreover, the expression
extremely successful in studying heavy-quark—antiquark sysfor the potential that we obtain will also be correct at any
tems near threshold. It is obtained from QCD by integratingpower in a in the perturbative regime.

out the hard scalen. It is characterized by an ultraviolet A pure potential picture emerges in pure gluodynamics
cutoff much smaller than the massand much larger than under the condition that all gluonic excitations have a gap
any other scale, in particular much larger th&gcp. This  larger thanmu?. Extra ultrasoft degrees of freedom such as
means that the matching from QCD to NRQCD can alwayshybrids and pions can be systematically included and may
be done perturbatively, as well as within an expansioniim 1/ eventually affect the leading potential pictufas ultrasoft
[19,20. The Lagrangian of NRQCD can also be organized ingluons in the perturbative reginid]).

powers of I, thus making explicit the nonrelativistic na- In this paper we consider the general situation of particles
ture of the physical systems. So far, NRQCD and pNRQCDwith different masses. Therefore, our results, in addition to

have only been studied in detail in the perturbative situationthe traditionalQ-Q systems, may be applied to tiB sys-
[21,4]. tem, which, after its recent discovery by the Collider Detec-
By mtegratmg out degrees of freedom with energiestor at Fermilab(CDF) Collaboration[22], has received a lot
larger thanmw?, one is left with a new effective field theory of attention in theoretical investigation23].
called pPNRQCD where the soft and ultrasoft scales have The paper is organized in the following way. In Sec. Il we
been disentangled and where the connection betweghtroduce NRQCD up toO(1/m?). In Sec. lll, using a
NRQCD and a NR quantum-mechanical description of theqamiltonian formulation of NRQCD, we explicitly calculate
system can be formalized in a systematic way. pNRQCD hagp to O(1/m?) the energies of the gluonic excitations be-
two uItraV|oIet cut-offs,A; andA,. The former satisfies the tween heavy quarks. In Sec. IV we define what pNRQCD
relationmu? <A< mu and is the cut-off of the energy of will be in the present context. In Sec. V we write the heavy
the quarks, and of the energy and the momentum of thguarkonium potential up t®(1/m?) in terms of Wilson
gluons, whereas the latter satisfie® <A,<m and is the |oops and compare with previous results. In Sec. VI we dis-
cutoff of the relative momentum of the quark-antiquark sys-cuss the power counting of pPNRQCD in the nonperturbative
tem, p. In the nonperturbative situatiofwe understand by regime and in Sec. VII we give our conclusions and outlook.
nonperturbative a typical situation whemw ~Aqcp, i.€.,
where the potential cannot be computed perturbatjyele Il. NRQCD
will assume that the matching between NRQCD and
pPNRQCD can be performed, as in the perturbative case, or- After integrating out the hard scalen, one obtains
der by order in the 1 expansion. We will present, for the NRQCD [18]. Neglecting operators that involve light quark
general situationA ocp<mv, the matching of NRQCD to fields[24], the most general NRQCD Lagrangiéip to field
PNRQCD atO(1/m?) for the singlet sectofto be defined redefinitiong for a quark of massn; and an antiquark of
laten). This will prove to be equivalent to computing the massm, up to O(1/m?) is given by

D? o-B D-,E o-[DX,E
Lyroco= ¥4 iD +—+c(1)g—+c(1)g[ ]+icg1’g[—2]
2m 8ms? 8m?
D? o-B [D-,E] o-[DX,E]
+y1 iDg— o —c@ @ ric@q T tPE
X [ 0 2m2 gzm g m2 S g smg
+klﬂ*¢f}(*x+ O proyxTox+ Gos YTy Ty + s Y Toyx Toy
m;m, m;m, m;m, m;m,
1 (21) (22) dgl) d:(32)
_ZGZVGaMV+ _+_ Ga ZGa#V"_ _+ gfabc zyezaeia’ (1)
m1 m2 m1 m2

where is the Pauli spinor field that annihilates the fermionandd; can be found in Refl19] andd;; (i,j=s,v) in [20]
and y is the Pauli spinor field that creates the antifermion,for the modified minimal subtractiorMS) scheme.
iD%=ig,—gA°, iD=iV+gA, [D-,E]=D-E—E-D and Some words of caution are in order here. Even if the
[DX,E]=DXE—EXD. This Lagrangian is sufficient to ob- above matching coefficients have been computed using di-
tain theO(1/m?) potentials. The coefficients-, cp, Cg, d, mensional regularization and tHdS scheme, there could
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still remain some ambiguity depending on the different pre- m2

- ijk i - ) _ (2 2 24@)
scriptions for thee' tensors and the definition of the Pauli cy’ =cp’—1ledy”— 16r?zd2 . (7)
matriceso. For instance, the use of a scheme whereetffe 1

only takes values for dimension equal to thigeHooft— In summary, eliminating the terl@inZGaﬂy, up to order

veltmann-like ‘schemein the computation of Ref{20] 1/m?, is equivalent to the redefinition of the matching coef-

would change the value of,, asd,,—[2/(D—2)]d,,, o p , .
where D is the number of space-time dimensions. Onef'c'entSd?’—>d3 andcp—Cp found above. We will assume

should therefore be careful and make sure that the matchintg's field redefinition in the following.
coefficients one is working with really are computed in the
same scheme. A deep study of these ambiguities in the !ll. GLUONIC EXCITATIONS IN A HAMILTONIAN
framework of NRQCD remains to be done. This may be FORMULATION
especially important for higher order calculations. See also PP : :
Refs.[25,26], where the authors have to deal with equivalentordz;elﬁ]?mmoman associated to the Lagrang(an's, up to
problems. '

We are interested in the Hamiltonian of the above La- 1 1 1
grangian. The construction of the Hamiltonian of one effec- H=H®+ —H®9+ — QO (20
tive (nonrenormalizable Lagrangian may be complicated My il my
(for a related discussion we refer f@a7]); in particular be- 1 1
cause there are higher time derivatives acting on the different + —HO2+
fields. In order to get rid of those &(1/m?) we have to m;
eliminate the ternGiVDzGa“” from the Lagrangian. This 1
can be achieved by a field redefinition as follows. We con- H(O):f d3x= (1112 + B2B?) (9
sider the field redefinition of the gluon field ¢ 1/m?): 2

(1)
o HOD, ®

—A + @ + 2 1
A,u A/L C[D ,Gau] O(C )1 (2) H(l,O):_Ef d3Xl,/IT(D2+gC|(:l)0'~ B)djl
where ¢ is real. This transformation preserves the gauge
transformation properties and the hermiticity of #g field. 1
Equation (2) produces the following change in the gluon H(°’1)=§f d3xxT(D?*+gc?a-B)y, (10)
Lagrangian(at the order of interekt

, [D-,E] o-[DX,E]
1 1 c (2,0):f 3y 1t _ (1) [__- 1) t=7 =]
_ ZGiVGaMV%_ ZGZVGa,uV_ EszDzGa#V H d°x P [ Chb” 0 3 ICs'g 8
_ a b [ 2 '
Cgfabc Mvaana+O(C ) (3) _j d3Xd(31) gfabCG;aLVG,?LaG(I:/a’ (11)
We can therefore cancel tf@D?G term by fixin
Y HOD=HEI o y;10:2), 12
2d$)  2d(?)
c= + . 4
mi m% @ HED= — f d3x(dss'r//Tl/fXTX+d5v ’r//TO'l/fXTO'X
This changes the value of; to dj: +d, 0 T2y T2y +d,, ¢ TRoyx T2oy),
d) =dP—-2dH, dP'=dP-2d?. (5) 9

wherelIl? is the canonical momentum conjugatedAtd and
Let us now see the modifications that the above field redefithe physical states are constrained to satisfy the Gauss law:
nition will produce in other sectors of the theory, in particu-
lar, in the heavy fermion bilinear Lagrangian. Since we have D~Ha|phy$=g(¢*Ta¢+ x'T2x)|phys. (14
the following change for thé, covariant derivative that
appears aO(1/m°), SinceII?=E3+ 0(1/m?), in Egs.(11)—(12) and in the rest
of the paper, we will use the chromoelectric field instead of
iDg—iDy—cg[D-,E], (6)  the canonical momentum where, to the order we are inter-
ested in, it does not affect our results.
the matching coefficients change, @(1/m?), as (all the
others remain unchanged A. The static limit

m?2 We are interested in the one-quark—one-antiquark sector
c(Dl)/=c(Dl)—16d(21)—16—éd(2), of t_he Fock space. In the static limit the one-quark—one-
mz antiquark sector of the Fock space can be spanned by
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|Q;X1,X2>(O)E ¢T(X1)XZ(X2)|H§X1 ’X2>(0)’ VX1, X5, B. Beyond the static limit

Beyond the static limit, but still working order by order in
where |n;x;,%,)(®) is a gauge-invariant eigenstatep to a  1/m, the normalized eigenstatés;x; ,x,) and eigenvalues
phasg of H(®, as a consequence of the Gauss law, WithE (x,,x,;p;,p,) of the HamiltonianH satisfy the equations
energyE(”(x, ,x,). For convenience, we use here the field
Xc(X)=ic2x* (x), instead ofy(x), because it is the one to

which a particle interpretation can be easily given: it corre- ng;xl,x2>=f d3x1d3%5|N; X1, X5) En(X1,X5;P1,P5)
sponds to a Pauli spinor that annihilates a fermion in the 3
representation of color SB) with the standard, particlelike, X 8®(x, —x1) 6@ (X}~ xy), (16)

spin structure/n;x;,x,)(®) encodes the gluonic content of
the state; namely, it is annihilated ky(x) and ¢(x) (Vx).
It transforms as a ,3® 3;‘2 under color S). The normal-

L (M;Xq, %o N;y1,Y2) = 5nm5(3)(X1—Y1) 5(3)(x2—y2). (17
izations are taken as follows: - -

Ofm;xy,%o|N;Xq , %) (0= 6, L . . .
(MiXy,Xp[Nix3 o) nm> Note that the positiong; andx, of the static solution still

(0)/ - . (0)_ By _ 3)(y. — label the states even if the position operator does not com-
(mixa Xoln:Y,¥2) = om0 =y2) 000% = ). mute withH beyond the static limit. We are interested in the

We have made it explicit that the positiorg andx, of the  eigenvaluest,, which should be understood as operators
quark and antiquark respectively are good quantum numbefinstead of numbers, even though we call them energies
for the static solutiorn;x; ,x,)(®), whereas generically de-  This will match the operator interpretation within a quantum-
notes the remaining quantum numbers, which are classifieschechanical formulation that we will give to them in
by the irreducible representations of the symmetry grouppNRQCD in the next section. In particular, we will see that
D.n (substituting the parity generator b@P). We also E, corresponds to the quantum-mechanical Hamiltonian of
choose the basis such tHEN; x3,%,)(®=|n;x,%,)(® where  the heavy quarkoniurtin some specific situationThe other
T is the time-inversion operator. The ground-state energgnergiesg, for n>0, are related to the quantum-mechanical
E®(x1,x,) can be associated to the static potential of theHamiltonians of the heavy hybrids or heavy quarkonitem
heavy quarkonium under some circumstan@ee Sec. Iy,  other heavy hybridsplus glueballs.
The remaining energidéﬁo)(xl,xz), n+0, are usually asso- Since the derivation of the corrections 3 may not be
ciated to the potential used in order to describe heavy hyfamiliar to the reader, since they are operators, we explain it
brids or heavy quarkoniuntor other heavy hybrigsplus in some detail. We will work in the same way as in standard
glueballs(see Sec. IY. They can be computed on the lattice quantum mechanics, but taking into account the fact that
(see for instanc€28]). Translational invariance implies that they are operators. Analogously to standard quantum me-
EQ@(x;,%) =E(r), wherer =x; —x,. chanics, we define a stafe;x;,x,) such that

HIN;xy, %) = f d¥x; A5 (M5, X2 En(X1, X P1,P2) 6 (X1 —Xq) 6 (X3 — %),

(O)<E§X1 ,X2|Ei Y1.Y2) = 5(3)(X1_ Y1) 5(3)(X2_ Y2).

Splitting the Hamiltonian asl=Hy+H, we have

it 1 ’ ’ ’ ’ ’ ’
A% %) =N Xg , X0) O+ > fd3X1d3X2|m;Xl!X2>(0)(0)<T;X1'X2|

EW(x) —H© i

X

T [ 6500t 1) ARk 140422506~ x) 8905 )
and
AE, (X1 ,X2;P1,P2) 8P (X1 —y1) 8D (xy—y,) = ©Xn;xq ,%a|H, |E;Y1 Ya)-

From these formulas we can obtain order by order in the expansion parameteHgf Moreover]| n;x;,Xp) andE, are given
by
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In;Xq %) = J d3xqd3xg|n;x; x5)N, YAX] x50, p3) 0] — 1) 63N (x)— Xy)

and

E,=NYE N, 2,

where

(n3xq, %2[N;Y1,Y2) = Np(X1 X231, P2) 8P (X1~ y1) 8P~ yo).
By using the above results, we get fé, up to O(1/m?),
En(X1,X2;P1,P2) 83 (%= X7) 83 (x3—x5)

H@O  HOLH  HEO  HO2) (L1

=EQ(x1,%0) 8@ (x1— x}) 8 (xo— x5) + O(n;x; ,x + + - - n;x;,x;)©
n ( 1 2) ( 1 1) ( 2 2) <_ 1 2| ml m2 m% m% mlm2|_ 1 2>
1 H@0  HO1) H(@0)  H(01)
- = d3y, d3y, O(n;x;,x + kiyq,y,) (@ Oy, + n;x, ,x5)©
Zgnf y1d%y, On;xg %, my m, 1K;y1,Y2) (k;y1,Yal My m, n;x7,%3)
x( ! + ! (18
EV(y1,Y2) —EX(x1x5)  EX(y1,Y2) —EP (X1 %) |

The expansion oE, in inverse powers of the mass can be organized up(ttm?) as follows:

g0 gO1n g0 g02 g1
En=E§1°)+r:1+” e k

: (19
1 M m2 om3 MM

From Eg.(18) and Egs.(10)—(13), by using the identitiegshere and in the rest of the paper, if not explicitly stated, the
dependence or; andx, is understoog

(@  On|Dyn)@=V,, O(n|D;,yn)O=v,,

©nlgEglj)©

. On|Dg )@=~ TEO_EO Vn#j,
n J

©nlgE,|j)®

(b)  OXn|D,|j) @)=
EEIO)_ EJ(O)

(©) (°)<n|gE1|n>(0)=—(VlEgo)), (0)(n|gEZ|n>(°)=(V2Ef10)),

whereF;=F(x;), V,:VXJ_, D, ]-=V]-+igA-T, and the transpose refers to the color matrices, we obta@(Bim),

2

1
, {0 —
>

(O)(K|gE, |n)(© ?

0 0
EQ—gQ

©)(k|gEz[n)!*

1
Egl,o):_ E
0 0
2 Eg )_ E(k )

k#n

(20

By using translational invariance one can see EféP) and Ego'l) only depend on the relative distanceMoreover, by using

the symmetries of the static solutions, we can also see&fi&t=E(Y. The expression&0) were first derived in Ref5].
At O(1/m?), we obtain

(OON 12 (0) (0), (0) (0)
Cp C¢ (n|gBy|k)®- Xk|gB4|n)
EO=— —5—Anl[Dy gE, ]I+ —— 2 S oD
n k

Ly [ [ - <°><n|gEi1|k><°><°><k|gE£|n><°>]
+3 P1P1, +
2 (EP)—E)?

o g IGEYR) @ OkigE]n)©
1'1
(B -EQ)?

#n

> ©Xn|gEali)* ©XjlgEaIk)® OXkgE® X1 gE}In)
+
i1 (ER—E)(EP - E)(E-E(")
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5 AnlgElk)® OXKIgEs[j)(- ©)j[gEy[n)* . OXnlgEy k)@ OXK|[D; - ,gE4]Im)®
+2 V% (E@—E©)3EO_EO) |V (EO—E)3
n k n j n k
X nlgE k)@ O k|gEy|n)©@- (V,EP) ©OnlgE4]j)@- ©XjlgEy[k)® XK|[D; - ,gE,][n)*
+3| Vy 0 0 -2 0 0 0 0
(EQ—EQ)4 7 (EP-EQ)}EQ-EP)
s On|gEy]j)(- O] |gEs[k)@ OXk|gE[n) @ (VLEP)  ©On|[Dy-,gE4][k) @ OXK|gEs[n)*- (V,E)
i#n (EgO)_E(kO))‘l(EgO)_EJ(O)) 9 (Ego)_E(kO))ll

+4(V1E510))'(0)<n|gE1|k>(0) (0)<k|9E1|n>(0)'(V1E§10)) T 1 (0)<n|[D1',9E1]|k>(O) (O)<k|[D1',9E1]|n>(O)1
ET-EP)® 2 ET P

cf | i <°><n|gEa|k><°><°><k|al-gsl|n><°>]
10

_ 4@ 3y q (0) a b c 0),
A5 e | 070 V015,006, (065,001 O+ - 3 o

(1) (0)
cs’1dE
> - - (21

EPA=EPO(gE;— —gE],gB;— —gBJ, 00— 03,V V,,D;— D¢ p,mye>my), (22

and

i XnlgELlk)® <°><k|gEiJ|n><°>)
2
' (EP-E)?

=3

& (B -E)?

o AnlgEqlk)® ©XKIgELT|n)®
=1 p1pb, -
©(n|gE} 1)@ OjIgEy k)@ O(k|gELT1)@ ©X1|gELT|n)®
i (EP-EUEP-EM)(EP-Ef)
7S O)(n|gEy|k)© <°><k|gE£|j>‘°>-<°><J|gE£|n><°’)
= (EQ-EP)EP-E)
OX(n|gE4]j)(©- O)j[gE4] k) OXk|gE} [n)(©) T ©)(n|gE}|k)©@ OXK|[D - ,gE;]|n)
' (E-EP)?

+2

+

_ ViE
i (EQ-E)}ED-EM)
 ©(0I[Dy- GELII) <°><k|gE;T|n><°>) 3(Vi nlgE4 k) <°><k|gE£|n><°>~<v2E<n°>>)

VI
’ (EP—ER)? ' (E@—E0)4
(VLED) - O)(n|gE,|k)© O)k|gE}T| ”>(°)) ©O(n|gE4]j)@- Oj|gE,|k) @ OYK|[D 2+ ,gE;]|n)(

2 ©)_ (04 +2 ©)_ 2013 =(0)_ £(0)
(En’—Ex”) j#n (En'—E(Ey—E)Y)

2

=

2

N

w

N

©O(n|[D;-,gE; ][k O(k|gE;|j)@- O)(j|gE;|n)(®
(EP-EP)ED-E)

Iy
=]

_gy UG- UGl AIGEn) - (V.E)
7n (EP—EEP—E)

(VAER) - On|gE| k)@ K| gE3l ) - O |gEIm)©

+3>
f7n (EP-EMEP-E)

3 An|[Dy-,gE I XKIGEZN) - (VoE) | 3 (V1ER)- XnlgEil k)@ OXIIDe o gE]In)

2 (B -E)* 2 (BB
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_ (VAER) - OnlgEq[ 0@ k|G M@ (VoE) 1 O(ni[Dy- GBIk} (KI[Dg,- GES]Im)®
(EY-EP)° 2 (B —E)?

1)
CE _
+ (dsstdy | TET3 TIN) (@) 630 (xy —xp) = == > [ Va,

(0)<n|9Ei2T|k>(O) (O)<k| o1 gBl|n>(0)}

2 in (E%O)_E(ko))z
L g [ PnIgEIOO Oz gBIIN @) el Onlo-gBiJ XK - gBFIn) @
2 (#n b (EEP)—E(ko))2 2 & Ego)_E(kO)
—(dgy 0y 0+ d,, (N[ Tioy - T3 Tara|n) @) 53 (x;, = x,). (23)

The above equation®0)—(23) give the energies of the glu- that this possibility, which, to our knowledge, has never been
onic excitations between heavy quarks within an expansiomentioned before, except in R¢g], deserves further study.
in 1/m up toO(1/m?). From these expressions, in the case ofNote that this does not have to do with the consideration of
the ground staten(=0), we will derive, in Sec. V, the ultrasoft effects, which, unlike in earlier approaches, can be
equivalent Wilson loop expressions. readily incorporated within our formalism.

A similar approach has been used in Réf7] in order to In the perturbative situation ocpr <1, which has been
derive, from the QCD Hamiltonian in the Coulomb gzauge,studied in detail if4], {n,d corresponds to a heavy-quark—
the spin-dependent part of the potential up @§1/m*).  antiquark state, in either a singlet or an octet configuration,
However, the behavior at scales ©{m) was not correctly piys gluons and light fermions, all of them with energies of
incorporated there. If we take our NRQCD matching coeffi-o(my2). In a nonperturbative situation, which we will ge-
cients at_the tree level and neglect the treejlevel ann|h|Iat|orr1|erica||y denote by oopf ~ 1, it is not so clear whafn,g
contributions in the equal-mass case, we find agreement fog one can think of different possibilities. Each of them will
the spln-dependent potentialgp to some transpose color give, in principle, different predictions and, therefore, it
matrices. Nevertheless, our general expressia8) differs  gho1q pe possible to experimentally discriminate among
from the one used ifiL7], which, in general, will not give the  them_ In particular, one could consider the situation where,
correct spyn—mdependent_potentlals. Thls has to do, in OUpecause of a mass gap in QCD, the energy splitting between
opinion, with the fact that in order to derive Ed.8) one has  {he ground state and the first gluonic excitation is larger than
to deal with operators rather than with numbers. mu? and, because of chiral symmetry breaking of QCD,

Goldstone boson§pions and kaonsappear. Hence, in this
IV. PNRQCD situation,{n,¢ would be the ultrasoft excitations about the
) , ) ... . static ground statéi.e., the solutions of the corresponding

In the previous section we haye studied the_statlc limit OfSchr"cdinger equation which will be named the singlet, plus
NRQCD and its corrections within ar/expansion. Let Us  he Goldstone bosons. If one switches off the light fermions
now connect those results with pNRQCD. _ (pure gluodynamids only the singlet survives and pPNRQCD

In the static limit, the gap between different states at fixedgqyces to a pure two-particle NR quantum-mechanical sys-
r will depend on the dimensionless paramet&jcor- In @ e, ysually referred as a pure potential model.
geoneral situation, there WI|| be a set of sta{e§s}_ such that In this paper, we will study the pure singlet sector, with
E%u)s(r)va2 for the typicalr of the actual physical system. ng reference to further ultrasoft degrees of freedom. In this
We denote these states as ultrasoft. The aim of pNRQCD isituation, pNRQCD only describes the ultrasoft excitations
to describe the behavior of the ultrasoft states. Therefore, alibout the static ground state of NRQCD. In terms of static
the physical degrees of freedom with energies larger thalNRQCD eigenstates, this means that o@qxl,xz)(o) is
mov? will be integrated out from NRQCD in order to obtain kept as an explicit degree of freedom wher@_ayl,xz)(o)
pPNRQCD. It is in this context that one may work order by with n#0 are integrated odt.This provides the only dy-
order in 1m (in particular for the kinetic energyand the
calculation of the previous section becomes the matching—

C.alcmatlon betwe.en NRQCD anq pNRQCD an.d pr.OVI.deS ay fact, we are only integrating out states with energies larger
rigorous co_nne_ctpn V,V',th, the adiabatic apprOX|m§t(¢lms thanmu? and all the states with+ 0 will be understood in this way
apprOXImatlo.n IS ImplIC!t in all the attempts at deriving the throughout the paper. Since, in practice, we are integrating over all
nonperturbative potentials from QCD we are awarg. of e states, if we are in the situation where some states, different
Whereas this can be justified within a perturbative frame-rom the singlet, are ultrasoft, these have to be subtracted later on.
work, in the nonperturbative case, we cannot, in generalrhis is analogous to what happens in the perturbative situation,
guarantee the validity of the iy expansion and one may where the subtraction is done order by order in the multipole ex-
think of examples where certain degrees of freedom canngfansion. In this situation our calculation should be understood as
be integrated out in the i/ expansion(see[29]). We believe  the leading term in the multipole expansion.
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namical degree of freedom of the theory. It is described by V. HEAVY QUARKONIUM POTENTIAL
means of a bilinear color singlet fiels(x,,x,,t), which has AND WILSON LOOPS
the same quantum numbers and transformation properties . . . .
. . . In this section we express the heavy quarkonium potential
under symmetries as the static ground state of NRQCD in th% terms of Wilson loob operators. These kinds of expres-
one-quark—one-antiquark sector. In the above situation, the. . P Op S . P
Lagrangian of pNRQCD reads Sions are quite convenient for lattice simulations or for QCD-
grang P vacuum-model studietsee, for instancg,14,16]). We shall
. use the following definitions. The angular brackéts -)
Lonroeo= S'[1do—hs(X1,X2,P1,P2) 1S, (24)  will stand for the average value over the Yang-Mills action,
W, for the rectangular static Wilson loop of dimensians

wherehg is the Hamiltonian of the singléactuallyhgis only X Tw,
a function ofr, p;, p,, which is analytic in the two last

operators but typically contains nonanalyticitiesrin p;= Wo=P exg —ig é dz“A(2)},
—iVXl, andp,= —isz- It has the following expansion up to rX Ty "
order 1m?:

and{(---»=(---Wg)/(Wg); P is the path-ordering opera-
tor. Moreover, we define theonnectedWilson loop with

2 2 . .
Vv(L0)  \(0.1)
hs(XlsXerlrpZ):£+ &+V(°)+ N Sl(t>1), 0,(t,), .. a O,(t,) operator insertions foil,/2
Zml 2m2 ml m2 /‘tl/tz2 T 2tl’l2 TW/2 by
VO 02y (O1(t1)Oa(ta) - - Oplto)e
t—+t—5+ . (25
my m; MMy ={(O4(t1)Oa(t2) - - - On(ty) )
n—-1
The integration of higher excitations is trivial using the - (O1(t1)Ox(ty) - - - O;(t) e
=1

basis|n;x;,X,) since, in this case, they are decoupled from
|0;X1,%2). Then, the matching of NRQCD to pNRQCD con-

x . . oo
sists in renaming things in a way such that pPNRQCD repro- €O+1(tj+1) -~ Onlta) e, @)
duces the matrix elements of NRQCD for the ground state O.(t)).= (O (. 28
and, in particular, the energy. This fixes the matching condi- (0i(t))e=(0,(1y))- (28
tion We also define in a shorthand notation
Eo(X1,X2,P1,P2) = hs(X1,X2,P1,P2)- (26) lim = fim _lim , 29

T—oo T—o TW"OC

Although our main concern in this paper is to provide awhereTy is the time length of the Wilson loop arid the
well-controlled derivation of the potential for the heavy time length appearing in the time integrals. By performing
quarkonium, we would like to say a few words about thefirst theT,,— =, the average§- - - )) become independent of
expression€, (n#0) we have found in the previous sec- Ty and thus invariant under global time translations.
tion. In the static limit, the differenE(”) (n#0) are identi- By using the matching conditio26) and the quantum-
fied with the static potentials to be used in a Scimger ~mechanical expressior(&0), it has already been proved in
equation to obtain the spectra of the bound systems coni5] that the quarkonium singlet static potential and the
posed of a heavy quark and an antiquépkus glueballs ~ O(1/m) potential can be expressed in terms of Wilson loops
different from the heavy quarkonium such as, for instanceWith field strength insertions in it as
heavy hybrids. This assignment is argued within the adia-

batic e}ppro'ximati.on and corresponds to What' is actually done VO(r)= lim I—In<WD>, (30)
in lattice simulations[28]. In this respect, since we have Too

given a systematic method to obtain the corrections to the

energy within a Irh expansion, the energids, correspond 1 T

to the gquantum-mechanical Hamiltonians of the different V(l’o)(f)z—z lim fo dtt{gE(t)-gE1(0))c-

bound systems made by a heavy quark and an antiquark T
to glueball$ and the Ih and 1m? terms should be under- (3D
stood as the relativistic corrections to the static potentials. I, ; ; ; ion pius

is still an open problem if this procedure is the sensible thinqbr;\ggfg(l)::)n:;;/cjzaglevr;c?];vneder charge conjugation Mz

to do for heavy hybrids, ifand whicheverother possibilities

may occur, and if these potentials, like the heavy quarko- VL0(r) = vy,

nium potential, may eventually be written in terms of Wilson

loops. We will not deal with these problems here, which,The way to prove the equivalence of E§1) and Eq.(20)
however, deserve further investigations. We refef3pfor  has been discussed in R¢&], where more details can be
related discussions. found. Here we only mention that this equivalence proof as
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well as the following ones can be done straightforwardly byticle and antiparticle. By using invariance under charge con-
inserting complete sets of intermediate states in the Wilsojugation plusm;« m, transformation, we obtain

loop operators and by explicitly computing the time inte-

grals. V(N =v?mn, viEn=vFm),

Let us now consider the terms @f(1/m?). It is conve-
nient to split them into a spin-dependent and a spin-
independent part. For thé(>9 and V(®?) potentials we de-
fine

VEA D) =V my—my). (39

The spin-dependent part 2 is of the type
(2,0)_\/(2,0) 4 \/(2,0) (0,2)_\/(0,2) 4 1/(0.,2)
VTV, VEEEVSS VST, (32 VED=VEO(r)L,-S,. (36)
The spin-independent terms can be written as

20 Analogously, for thev(®? potential we can write

VZ7(r)
V20— ,V(Z 0) + L L2+ \/(20) 33
Sl {pl (r )} r2 1 e (33 Vgobz): _V(Los'z)(r)LZ' S,. (37

and From invariance under charge conjugation plug— m,
transformation, we obtain
(O 2)(

VSI 2{p2 V(O 2)( )}+ L§+V$0Y2)(r)v (34) V(LZS’O)(I’)ZV(LOS’Z)(I' ;Mo ml)'

whereL;=rXp; andL,=rXp,. Note that neithet.; nor By using Eqs(26) and(21) we get, in terms of Wilson loop
L, corresponds to the orbital angular momentum of the pareperators,

VGO =57 im [ dte(aE0gEL 0., (@)
T ) .
v3o(r)= (5'1—3rr1)||mf dt t2(gEL (1) gEL(0)), (39)
T—xJO
(l)’ (1)2
VE2'°><r)=——nm ([D1,9E11())e— —;—lim f dt(gB1(1)-gB1(0) )+ 5 (VAVEY)
Tw—® T—oo

__“mf dtlf dtzf dtz (t,—t3)%(gE1(t1) - 9E1(t2) 9E(t3) - GE1(0) e

T~>oc

T ty )
V Ilmf dtlfO dtz(tl_tz)z«gEll(tl)gEl(tz)'gEl(O)»C)

T*)UJ

T ty ) 1 T ty
(V V@) lim f dtlJ'O dt2(tl_t2)3<<gE|1(tl)gEl(t2)'gEl(O)»C_E"mf dtlfo dt (t1—t2)?

T T—o

X{[Dy.,9E1](t1)gE1(tp) - gE1(0) )+ |'mJ' dt t*([D;.,9E;1(t)[Ds.,9E11(0) )¢

T*}OC

——(V lim f a4t 2(gEL(1D; GEL](O) )——hm f dt 3([D;. .gEL (D GEL(0))o( VIV(®)

T— TA)OO

V lim f dt t°(gEL (1) 0>>>C<V1v<°>))——hm f dt t'(gEL () GEL(0) ) (Vi VO)(VIV(®)
T~>°° Tﬂw
0 fane | % lim 062,006, (065,00 (40)
TW‘)OO
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(note that, although formally the first and last terms depend on the time where the operator insertion is made, this is not so after
doing theTy— limit?),

c T e
va(ry=— r—zi r- lim Jo dtt(gB(t) X gE4(0)) + Pyrie (V, V). (41)
T—o
For theV(*Y potential we define
VAD=vED+vED. (42)
The spin-independent part can be written as

(1 Dy

VD= — —{pl P2 Vi (r)} - (Ly-Lop+LlyLy)+VEDr), (43)

while the spin-dependent part contains the following operators:
VE=VNL 1 S~ V(Lo S+ VG S, S+ VED () S 1), (44)

whereS;(r)=3r- o, 1 - 05— 0 0,. Because of the invariance under charge conjugation mls m, transformation, we
have

V() =V{g(r;mi—m,).

By using Eqs(26) and(23) we get, in terms of Wilson loop operators,

V(1) =i 1 lim fo dt 2(gEL (VGES(0))c. (49
T—oe
(11) o1 -3r'r! Tt U gE j
(=i tim | "ate(oE0gEk )., (48
T—oJ0

1
VEl'l)(r):_E(VrZVéll) )i “mf dtlf dtzf dts (t;—t3) *(9E4(t1) - GE4(t2) 9Ea(ts) - 9E2(0) )

T—o

T ty _
=4 “mf dtlfo dty(t; —t2) 2 9EL(t1)9EL(ty) - 9EL(0) ) | +

T~>oc

T ty
V Ilmf dtlf dty(t;—t,)?
T~>°° 0

X (9EL(t1)gE1(t,) - gE4(0) >>) v V@) lim f dt, f dty(t;—t5)3(gE(t1) gEL(t2) - GE2(0) ).

T—ow

_—(V () ||mf dtlf dty(t;— o) (gEL(t1)gE(t2) - GE1(0) ) — “mf dtlf dty(t;—ty)?

T—o THOO

X{[Dy.,9E1](t1)gEx(tp) - gE(0) )+ “mf dtlf dty(t;—t2)([ Dz, 9E,](t1)gE (t) - 9E1(0) )

T*)OC

- Llim [ ategio, gm0, 0B 0+

T~>oo

) T )
2| viim [ atei(oE 0D, - gE-1(0).
T—-wJ0

2/ could also be written in a similar way:

VO=2 f B lim (IR + B2B%)(x) ).

Tw—
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A 1 T . . .
~(9EX(DID1 - GE](0) )} | — 7 lim fo dt (D1, gE1](DEL(0) ho— ([D2 gEI(DGEL(0))H(ViV(?)

1/ . T . : ) ) )
+ 7| Vi lim fo dt t*{{gEL(H)gEL(0) ) e+ {IER(DGEL(0) ) H(VIV(D)

T—oo

- 5lim JOTdtt“<<gEi1<t)gE£<0>>>C<Viv<°>><v1;v<°>>+<dss+dus lim (T5T2)) 601 =) (47)

T

TW*\ 0

(here and in the following formulas the two color matrices inspin-dependent potentials, in particular the correct one, can
(TITS) are inserted in the Wilson loop at the same time:be found in the literature dealing with the lattice evaluation
—Tw/2<t<T/2; the t dependence disappears in tfig,  of them[30-32,3,14 All these refer to the work of Eichten
— oo limit), and Feinberd8] for the derivation. We believe that our re-
sult makes mandatory a clarification of all previous lattice
- c® T evaluations of the spin-dependent potentials.
Vg =——5ir-lim f dtt(gBy(t) X gE,(0)), The spin-independent potentials have only been computed
r T 0 before by Barchielliet al. [12] (the analysis done ifi11],
(48) which appears to be inconclusive, has never been published

PICORE) . We agregonce the NRQCD matching coefficients have been
V(Slz’l)(r)= CrCr iIimj dt(gB,(t)-gB,(0)) taken into accountwith their results for the mqmentum—
3 Tt O dependent terms, but not for the momentum-independent
. . . terms, where we find new contributions. Moreover, since the
—4(dg, +d,, lim (TITE)) 590 —xa), potential we get here isompleteup to order 1h?, it is not

Tw—2 affected by the ordering ambiguity, which affects the deriva-
(49)  tion in [12]. In this context, we would like to mention that
our result may be of particular relevance for the study of the
: : properties of the QCD vacuum in the presence of heavy
(gBi(t)gBL(0)) sources. So far the lattice data for the spin-dependent and
spin-independent potentials are consistent with a flux-tube
ij picture, whereas it is only for the spin-dependent terms that
- ?<<gBl(t)~ng(O)>>}. (500  the so-called “scalar confinement” is consistent with lattice
data[1,33] (however, the lattice data are still not conclusive
dt will be interesting to see how these pictures compare with
he new momentum- and spin-independent potentials, once
attice data will be available for them. We note that some of
them are not simply expressed by two field insertions on a
: : (LD : ; static Wilson loop, such as the spin- or momentum-
1/m1m2 spin-orbit potential VLle' Since the Elchten-. dependent terms. In particular, an extended object coming
Feinberg results have been checked by, at least, three indggym the Yang-Mills sector is requireimilar extended ob-

pendent groupl0,12,13, we perform a more detailed com- jects would also show up by taking into account operators
parison in Appendix B. We show that our expression inith light quarks.

terms of Wilson loops and theirs give different results in
terms of intermediate states and, more important, we show
that they give different perturbative results at leading order
in ag. Ours coincides with the well-known tree-level calcu-  The above results may be simplified and rewritten in sev-
lation, whereas the Eichten-Feinberg expression gives 1/&ral ways. For instance, by using the quantum-mechanical
the expected result. Moreover, our perturbative result satigdentities(a)—(c) given in Sec. Ill, we obtain

fies the Gromes relatigri0]. The fact that the same mistake .

has been done by several groups can only be explained by a T"m ([D1,9E1](D) )

systematic error. We believe that their systematic error has to W

do with the common assumption in the literature that one (

1)(2)
c®c® T
Ve ()= F4F ir'rJIimf dt

T—oo

We now compare our results with previous ones. For th
spin-dependent potentials we find agreement with th
Eichten-Feinberg resul{8] (once the NRQCD matching co-
efficients have been taken into accoumxcept for the

Gauss law and further identities

may neglectjn general the dependence of the Wilson loops =
on the gluonic strings or on any other gluonic operatot at

=*Tw/2. An analysis of the calculation done by Eichten (51
and Feinberg ir{8] supports this belief. Finally, we would

like to mention that several different expressions for thechanging the expression of the Darwin tefmhich now

VAV 21 lim [ dt (9,0 gEL(O)..
0

T—oo

054007-11



ANTONIO PINEDA AND ANTONIO VAIRO PHYSICAL REVIEW D 63 054007

looks similar to the analogous expression given in RET]). son loops(or of the statesat short distances for the terms
In fact, by using the quantum-mechanical identitias—(c) proportional to the deltas(assuming they are regular

of Sec. Ill, we could systematically transforpD,gE] in  enough. It follows that all the original terms witfiD,gE]
terms of normal derivatives acting on matrix elements or ordisappear except the Darwin term. Moreover, we hg@e
static energies. =(N2—1)/(2N,)]

Another possibility, which turns out to be more powerful,
is the use of the Gauss laji4). It allows us to write all the lim ((T?T‘é‘))a“)(xl—xz)=Cf5(3)(x1—x2).
terms of the typeg D,gE] in terms of 83)(x;—x,) times Ty

some color matricegup to some terms proportional to

5%)(0) that vanish in dimensional regularizatioiore in-  Therefore, some potentials get simplified into the following
formation can be obtained by using the behavior of the Wil-expressions:

'rrCfaSC(Dl) (1) 2

V)= 8 (x1—xp) =

lim J dt{gBy(t)-gB1(0) )+ = (v Vi)

T—ox

__“mf dtlf dtzf dtz (t,—t3)%(9E1(t1) - 9E1(t2)9E(t3) - GE1(0) e

T*)OO

T ty )
o voim [ dt i woRi R - gE 0

T~>oc

I2( Vv ||mf dtlf dt, (t;—t2) 3 gEL(t1)gE1(t,) - E1(0) e

T—o

.- 2| Vi lim f "dt (gL (1) gEL(0) >>c(v'v<°>>)——nm f it £ (gEL (D GEL(0))o( VI V) (VIVO)
T—»oc T—;oc
0 e | @ _lim 0630068, 0065, 00), 2
TW*’OO

1
e (e (V V(l M) |||mJ' dtlf dtzf dtz (t,—t3)%(gEL(t1) - 9E1(t2) 9E,(t3) - GE(0) e

T—oo

T—»oo

T ty )
o vhim ot [ ettt (oE e 00

T~>oc

T t _
V “mf dtlfo dtz(tl_t2)2<<gElz(t1)gE1(t2)'9E1(0)>>c)

T 4 _
- _(V V@) lim f dtlfo dta(t; —t2)*(gEL(t1)gE,(t2) - GE2(0) e

T—oo

T ty _
- —(V V) lim j dtlJO dt,(ty—to) 3 9ESL(t1)gE; (t2) - 9E1(0) )¢

T—oo

T . X . ) .
2| viim |0t PGB DB+ (9ELDOEL I (VIV)

Taoc

— glim [ ate(gELNIEL O VIVONTIVE) + (0t d,C) 503 ,) (53
0

T—o
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2ee@
V)= 2 i | dt(gB(1)-9B(0))  4(d, + 6, ) 50— x0). (54

T—o

Similar considerations also apply to the results in terms ofl/m? potentials, the naturalness argument suggests that they

states of Sec. lll. are of O(mv?®). However, also here several constraints ap-
ply. Terms involvingV V{®)~m?y2 are suppressed by an ex-
tra factorv, due to the virial theorem. The Gromes relation

VI. POWER COUNTING [10,34
The standard power counting of NRQQ(IDrganized in 1 dv©
powers ofv andag) used to assess the relative importance of — +V(Z0-_ytd=g (55)
the different matrix elements, as discussed, for instance, in 2r dr 271

[34], can only be proved in the perturbative regime. Even in
this regime, owing to the different dynamical scales still in-suppresses by an extra factorthe combinationV(%® —

volved, the matrix elements of NRQCD do not have a unique\/(leéi. Similar constraints also exist for the spin-independent

power counting inv. In the nonperturbative regime the prob- yotentials[12]. Perturbatively the t? potentials count at
lem of the power counting of NRQCD is still open. In prin- most aso(mv?), because of the extras suppression. Fi-
ciple, it is possible that a different power counting may bepgly, it is important to consider that some of the potentials
appropriate in this situation and this would influence, forareO(aS) suppressed because of the matching coefficients
instance, the studies of the charmonium system or of highghherited from NRQCD. This is, for instance, the case of the
bottomonium state$We believe that our result, through the terms coming from the & corrections to the purely glu-

connection between NRQCD and the quantum-mechanicgjnic sector of the NRQCD Lagrangian or of the terms com-
picture, will eventually help to better understand the hlerar—Ing from the four-fermion sector.

chy of the different matrix elements in NRQCD, as well as10 “Terms involving two field-strength insertions in the static

get a much deeper understanding of the underlying dynampiison loop are known from lattice measuremefitd] and

ics. Thi; is due to th_e fact that, by going to a NR quantum+ave been studied in some QCD vacuum mode&. For
mechanical formulation, we have made the dynamics of thehem a parametrization is possible and some supplementary
heavy quarks explicit, transferring the problem of the powefiytormation can be extracted. However, terms involving
counting of NRQCD into the problem of obtaining the power oy than two field insertions in the static Wilson loop have
counting of the different potentials in pNRQCD. These maynot peen studied so far, to our knowledge, by lattice simula-
be expressed in terms of Wilson loops where only gluongjons or within models. Consistency with the experimental
and light quarks appear as dynamical entities and for whiclyata will further constrain any possible power-counting rule.
there are or there will be direct lattice measurements. Morep, gny case, a detailed study of the potentials using the above
over, it is in this formulation that statements such as thg,tormation (as well as new lattice or model-dependent re-

virial theorem have a more rigorous, gauge-independenditg should be performed in order to obtain the sized

meaning. thus the power-counting rulesf the different potentials for
Here, we only say a few words about the expected behane charmonium and bottomonium systems.

ior of the potentials using arguments of naturalness on the

scalemwo, i.e., assuming that the potentials scale with.

We first consideV(©). In principle, V(®) counts asmv, but,

by definition, the kinetic energy counts a®?. Therefore, VII. CONCLUSIONS AND OUTLOOK

the virial theorem constraing(®) also to count asnv?. The A new formalism with which to obtain the QCD potential

extraO(v) suppression has to come on dynamical groundsy; arpitrary orders in it has been explained in detail. We
In the perturbative case, it originates from the factgr v in

- - - _have obtained expressions for the energies of the gluonic
the potential. In the nonperturbative case little can be saidyitations between heavy quarks valid beyond perturbation
and othleg mechanisms must be responsible. Using naturgkenry at0(1/m?). In particular, for the heavy quarkonium,
ness,V(1%/m scales likemv?. Therefore, it could in prin- e have also obtained the complete spin-dependent and spin-
ciple be as large a¢(?). This makes a lattice calculation or a independent potentials &(1/m?) for pure gluodynamics in
model evaluation of this potential urgent. Perturbatively, OW-arms of Wilson loops. For the spin-dependent piece our re-
ing to the factorag, it is of O(mv*). For what concerns the sults correct the expressions giver{#10,13. For the spin-
independent potentials, we agree with the momentum-
dependent potentials obtained [12], but not for the
3 different, nonstandard, power counting of the matrix elementsnomentum-independent terms, where new contributions are
of NRQCD may explain the apparent difficulties that NRQCD is found. We have also briefly discussed the power counting in
facing to explain the polarization of prompty data and to accu- the nonperturbative regime.
rately determine the different matrix elemeigee[35]). We conclude, commenting on two possible developments
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of the present work. First, it is worthwhile to explore the
possibility of expressing the potentials associated with higher
gluonic excitations in terms of Wilson loop operators as done
here for the heavy quarkonium ground state. The correspond-
ing guantum-mechanical expressions are given in E(3—

(23). Second, our results are completeqtl/m?) in the case

of pure gluodynamics. If we want to incorporate light fermi-
ons, the procedure to be followed is analogous and our re-
sults still remain validconsidering now matrix elements and
Wilson loops with dynamical light fermions incorporajed
except for new terms appearing in the energie®&t/m?)

due to operators involving light fermions that appear in the
NRQCD Lagrangian ab(1/m?) [24]. They may be incorpo-
rated along the same lines as the terms discussed here and
will be explicitly worked out elsewhere.
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APPENDIX A: THE PARAMETRIZATION OF [12]

In this appendix, for ease of comparison, we write the
spin-independent potentials in the parameterization given in

[12]. They read
LU
3 —r'r')ve(r)}

I
V(szlo)——{p'lp‘lﬁ”vd(r)+

1
+5(VIVO+va)), (A1)

(11)_ [ | ﬂ_“iﬂ'

Vs PP, 8'Vp(r)+{ 5= —r'r ) Ve(r)
+V4(1). (A2)

Let us note that if12] the 1/m;m, potential contained only
momentum-dependent pieces. Therefore, the momentum-
independent potential, which we naie, was missing. Our
calculation also substantially modifies the result\grgiven

in [12]. The above potentials read

Vd—ghmf dtt?{gE (t)-gE1(0)).,  (A3)

T—w

s i LI _ _
(?_rlr])ve:zll_[nwfo dtt {«gEll(t)gE]l(O)»c
5

- _« gE(t) (A4)

gE1(0)>>c],
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%(Vﬁth+vg>
— VEZ,O)( r) (VZV(Z 0))
T ) )
+ 4| Tiviim [ areqeEL0gE ).
T—wxdO
(A5)
Vb:——llmf dttz((gEl(t) gE»(0)),
Tﬂw
(A6)
T ) .
¢= i |imf dttz[«gE'l(t)gEJz(O)»c
T—wJd0
8
_?«gEl(t) : gEz(O)»c] : (A7)

Vi(r)= V(“)(r)+ (vzv“”)

Too

V 'V1lim fo dt t’(gE! (t)gE) (0)>>c).

(A8)

APPENDIX B: COMPARISON WITH THE

EICHTEN-FEINBERG SPIN-ORBIT POTENTIAL

In order to compare our results with the Eichten-Feinberg
ones properly, we set)=c{®?’=1. Then, our Eq(48) reads

—r- Ilmf dtt(gB(t) X gE,(0))

T—oo

©(0|gB|k)(@x ©)(k|gEZ|0)

I
==
r.2

0 (EQ—E)?

o
= T240(a?) (B
pert T

On the other hand, Eichten and Feinberg obtaia actually
use the expression in Minkowski space given in R&2])
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i 1 (Tw2 Tw/2
VED(r)=-— lim — dtf dt’ t'r-(gB(t) X gE,(t"))
2t 2rty L Twd —myz s Ty

i 22 ©(0lgB4/k)(”x ©(k|gE3|m)©

2" % fn @ (EP-EDNEP-ED)
i aoay OmigBINOx CUGENO)® i ©(0lgBKx CUKgEY0)®
ot & ED-EDNEDED) 2 (e Py
Cia
= —2+0(ad), (B2)
pert 21

where thea,(X,,X,) are defined by

wT(X1)¢>(X1,Xz)X(Xz)lvaC>=; an(X1,%2)|;%q %)@,

here

1
d(y,x)=P exr{ igfo ds(y—x)-A[x—s(x—y)] (B3)

being the end-point string used in the Wilson loop operators. Note that we havd{jxed in Eq.(B2), as corresponds to the
procedure followed by Eichten and Feinberg.

The above calculation makes manifest the disagreement aBEgwith Eq. (B2) both at the perturbative level as well as
in the representation in terms of intermediate states. A possible source of disagreement may be traced back in the original
paper of Eichten and Feinbef§] to their Eq.(4.9b), which seems to be incorrect. Finally, the reason for this last error seems
to be the improper treatment of the Wilson loops in the large-time limit.
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