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Radiative corrections of O(a) for pion beta decay in the light-front quark model
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If the CKM matrix elementV 4 that can be derived from superallowed nuclear decays, neutron decay and
pion beta decay is used for a precision test of the unitarity of the CKM matrix, the combination of the present
world data seems to indicate a small violation of the unitarity condition for the first row. While an accurate
calculation of the radiative correctiof®C) of O(«) is crucial in order to determine the value ¥f4 as
precisely as possible, the theoretical analysis has been limited in the past by the rather crude estimate of the
effect of the hadronic structure. Only the contribution due to the axial vector current depends on the hadronic
environment. We develop a strategy to deal with the influence of the hadronic structure on the decay properties
of the simplest hadron, the pion, and calculate the contribution of the axial vector current to the RC, using a
light-front model for the pion. Itsﬁbound state structure is well described by two parameters, the constituent
quark mass and confinement scale, that have been fixed by a comparison with the data. We take into consid-
eration three different groups of two-loop diagrams, and derive their light-front representations. We discuss the
associated zero-mode problem and show that the respective light-front amplitudes are free of spurious contri-
butions. There is only a small model dependent uncertainty of the final result for the RC for pion beta decay.
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[. INTRODUCTION the RC to the electron or positron spectrum in allowed beta
decay. In the total decay raterlit is replaced by the aver-
For three fermion generations, unitarity of the Cabibbo-aged valueg(E,); Eq is the end-point energy of the spec-
Kobayashi-Maskaw&CKM) matrix requires the sum of the trum.
squared moduli of the first three elements to be equal to one: The correction terms 00(«a) consist of three distinct
- 5 5 - parts. The first two termg(E,) + 3 In(Mz/M,) represent the
V2=V “+ | Vid “+ [Vl *= 1. (1) contribution of the vector current and are independent of
hadron dynamics. Thg boson mas$/, is a consequence of
short-distance effects while the proton madg cancels in
(We sum of the two terms. The third terdy, is a small
asymptotic QCD correction ternfiy=—0.34[1,3]. Finally
there is a contribution Il /M ») + 2C induced by the axial
The unitarity sumv? critically depends upon the precise vector _current, where th_e Iogarit_hm is again th? result of
, — short-distance effects, witM, acting as an effective low-
value o_f the matrix element 4 for the decaysi—der and energy cutoff(presumably roughly equal to the; meson
d—uev. These quark level transitions give rise to superal-masg, and 2C stands for the remaining low-energy part.
lowed Fermi beta decays, the decay of the free neutron  The value ofM, is uncertain; Marciano and Sirlif3]
—pev and pion beta decay" — 7%ev. In each case the suggested a range 400 M&W ,<1600 MeV, while Sir-
measured rate can be used to determine the valué,@f  lin [4] proposed an even wider range
after radiative correctiondkC) and the effect of the hadronic
environment have been separated out. Ma1/2<Mp<2Mg,, (1.3
A general formula for the RC of order to the transition i
rates has been given by Sirljd]. The total decay rate 2/ With the central value at the, meson masl,,=1.26 GeV.
can be separated into the uncorrected expression, denoted h{j€ auantity Z is model dependent and has been calculated

A test of this property is of crucial importance since a vio-
lation of unitarity would be evidence for new physics, and
the use of such a result to constrain possible extensions
the standard model would require a precise valu¥ofnd

its uncertainty.

1/, and an overall factor as in the Born approximation in Ref§3,5] using nucleon elec-
tromagnetic and axial form factors. For pion beta de€ay
1r=1l79(1+ ) =0 in the Born approximation since the axial vector current

does not couple to a pseudoscalar meson. The resulting val-
ues forC are

5= G(Eo)+ 312 1 A
=5-|9(Eo) + nM—p+ g

cec 0.885 (superallowed and neutron decays
N % , (1.2 ~TBemT o (pion beta decay

Nz,
3(Qu+Qd)nM_A+ c (1.4

whereQ, and Qq are the quark charges ofandd quarks.  For superallowed beta decays there are additional nuclear
The Sirlin functiong(E,Ey) has been defined if2] as a  structure dependent contributions@owhich have been pro-
function of the electron or positron ener@yand represents posed and discussed in REg).
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The uncorrected decay raterd/ defined by Eq(1.2), still reached in Ref[7], that the treatment of the effect of the
incorporates Coulomb corrections aBdlependent radiative nuclear environment in superallowed nuclear decays is reli-
corrections of O(Za?) and O(Z2a®) for superallowed able, with only a small error, and that there is no evidence
nuclear decays, and depends on hadronic form factors, whidhat the unitarity problem can be solved by improvements in
encode the effect of the quark structure of the decaying hadhe calculation of nuclear structure effects.
ron. In order to obtain more information on the unitarity prob-

Recently the current status ®f,4 has been reviewed by lem accurate measurements of the pion beta decay observ-
Towner and Hardy7], based upon the current world data for ables would be of great importance. Like the superallowed
the three decay modes indicated above. To date, nine supemiclear decays pion beta decay is a pure vector transition and
allowed 0" —0™" transitions have been measuredtt0.1%  the matrix element of the axial vector current, which com-
precision or better, and the result fg[,4 obtained from the plicates the analysis of neutron decay, does not contribute to

average ft value is the lowest order amplitude. In higher orders both the vector
and the axial vector parts of the weak current contribute. The
|Vygl=0.9740=0.0005. (1.5  expression for the radiative corrections@{«) is given in

) o Eqg. (1.2. Moreover, since the decaying pion is free, the
From this value oV,4 the unitarity sum, Eq(1.1), becomes nyclear structure dependent corrections that complicate
nuclear beta decay are absent. Based on the lif e
V2=0.9968+0.0014, e y eftih

_ -8
where the 1998 Particle Data Gro@pDG 98 [8] recom- Texp= (2.60330.000§ 10" s (1.9

mendations fol,s andV,, have been used in Rdf7]. The
value for the CKM matrix elemeny s determined from an
analysis of kaon and hyperon decays |i¢,]=0.2196 _ -8
+0.0023, while the value forVy, is |V,|=0.0032 BR=(1.025-0.034 10" (110
+0.0008 and does not affect the unitarity sum at its presen,q yalue ofv
level of accuracy.

According to the analysis of Towner and Hardy, the error |V,4=0.9670+0.0161 (1.12)
bar associated with the value ¥f,4 is caused mainly by the
uncertainty in the RC £0.0004) due to the prescription znd the unitarity sum
(1.3 for the effective low-energy cutoff and the uncertainty

and the branching ratidlLO]

ud was determined in Ref7] to be

in the nuclear isospin symmetry-breaking correction V2=0.9833-0.0311. (1.12
(+£0.0003), while the average experimental uncertainty is
quite small (-0.0001). The price to pay for the advantage of a simple theoretical

The problems associated with a precise treatment ofnaysis of pion beta decay is a large erroljgy due to the
nuclear structure effects can be avoided if the beta decay Qfynsiderable experimental difficulty in measuring the

free hadrons is considered instead. A survey of vyorld data OBranching ratio with a precision comparable to the one ob-

neutron decay observables has been presented ifRefd  (4ined in superallowed beta decays. However, there is a pro-

it has begn r_10t_ed that the derivation of thg valg&'lgp(f from posal for an experiment at PRI1] with the aim of making a

n decay is limited largely by the uncertainty in the overall yrecise determination of the pion beta decay rate. In the first

average value ok =ga/gy. However, there is a new result phase of the experiment it is intended to measure the branch-

for_the beta asymmetry obtained by the PERKEO I Collabo-ing ratio with an accuracy of 0.5%. The proposed experi-

ration [9] which leads to the valug\[=1.2735-0.0021.  mental method was designed to finally achieve an overall

This single value, combined with the world average for theayg| of uncertainty in the range of 0-D.3 %.

neutron lifetime, leads to the following value ¥4 [7]: The decay rate for pion beta decay including the RC of

orderw is given by Eq.(1.2), where an approximate expres-

Vgl =0.9714£0.0015. (1.7) sion for thg uncor?/ectcéél de)cay rate has Fl;Fe)zen derived Igng ago

The unitarity sum is then by Kallen [12];

V2=0.9919+ 0.0030. (1.9 U GE|Vydl?
To— 3

A
1-— ASf(e,A), (1.13
o : : 307 2M .

The error given in Eq(1.7) is three times larger than the

error in Eq.(1.5 and is dominated by the uncertainty in the 9

measurement of the beta asymmetry but, as in the analysis of A=l 7€ 2

the superallowed decays, still contains the contribution of the fle.d)=vi-ell 2 4e

uncertainty in the RC.

The results fol,4 and the unitarity sunv? given in Egs. 15, [1+V1-€| 3 A?
(1.5—(1.8) are consistent with each other and seem to indi- + o€ In Je -7 >
cate a substantial violation of the unitarity conditidnl) for € (M. +Mo)
three generations. Moreover, they support the conclusion (1.149
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with e=mZ/A% and A=M, —M,, whereM, and M, are The simple structure of thaq bound state should allow
the masses ofr™ and 7% G is the Fermi coupling con- definite conclusions about the relative importance of the had-
stant. Equatior(1.14) includes the leading correction in an ronic environment in a calculation of the RC. Radiative cor-
expansion in powers oA?/(M , +Mg)? [1]. The effect of rections of order to the form factors that describe pion beta
the quark structure has been neglected entirely, and in Sec.dlecay arise from the virtual exchange&fy or W and are

we shall study the error made by this approximation. In parfepresented by two-loop diagrams. We shall extend the ap-
ticular, we shall investigate the effect of isospin violation proach of Ref.[16] and derive unique LFQM expressions
due to the quark mass differenog—m,, in order to make (that are free of spurious contributigrfsr the two-loop dia-
sure that isospin breaking effects do not produce unexpecgrams associated with the axial vector current, and derive in
edly large contributions. this way the effe_ct of the hadronic structure on _tb(aa)

For a precision test of the unitarity of the CKM matrix, corrections for pion beta _decay. This determination of the
i.e. of the standard model, an accurate calculation of the RcEffect of the hadronic environment by means of a two-loop
in particular a reliable determination of the effect of the had_ca!culatlon should be just as reliable as the one'—loop calcu-
ronic structure, is crucial. The terms in the electromagneti(!atlon of the electromagnetic form factor of the pion.

o . We shall show in this work that the uncertainty of the
radiative corrections o®(«) that are generated by the vec- . . ,
: . : hadronic corrections due to the particular quark structure of
tor current[the first two terms in Eq.1.2)] are firmly

i . he pion is small for pion beta decay. This result is in con-
founded ona current algebra formulation a_nd the details Oirast to the situation for superallowed nuclear decays and
the underlying quark strucf[ure are of only minor importance a tron decay where the large valuedfEq. (1.4), signals a

We shall not further consider that part of the RC®@fa)  mych greater importance of the detailed quark structure with
which is induced by the vector current. While the short-g jts model dependent uncertainty. We shall analyze super-
distance contribution of the axial vector current is well es-zjlowed nuclear decays and neutron decay in a future work in
tablished too, its role at low energies strongly depends Upog similar manner as for pion beta decay. But even without
the detailed quark structure of the decaying hadron and itknowing the result of such an investigation it is clear that

influence on the decay properties has been estimated onpjion beta decay, once precise data are available, will always
very roughly in terms of an effective low-energy cutdffy, ~ have a unique position due to the simple quark structure of
and the quantityC. We do not know of any published work the pion which generates hadronic corrections with very

that attempts to obtain the contribution of the axial vectorsmall uncertainties.

current using a model of hadronic structure. However, it is In Sec. Il we present the general formalism for pion beta

evident that a reliable interpretation of the experimental datglecay without radiative corrections, which is analyzed in

and a conclusive analysis of the unitarity problem necessaterms of two form factors that describe the quark structure of
ily requires a more refined treatment of the effect of thethe pion. We investigate the effect on the decay rate of both
quark structure in order to substantially reduce the theoretithe isospin violation due to the quark mass difference and the

cal uncertainties and to firmly establish the size of the haglhomentum transfer dependence of the form factors. In Sec.
ronic corrections. 11l the detailed calculation of the RC due to the axial vector

current is presented. We consider three different groups of
tion to the RC in the case of pion beta decay in the framelWO-loop diagrams, and derive their light-front representa-
tions. We discuss the associated zero-mode problem in the

work of the light-front quark mode(LFQM), which is a . N .
relativistic constituent quark model based on the Iight-frontAppenle and show that the respective light-front amplitudes

. ) . are unique, i.e. free of spurious contributions. The Appendix
formalism[13]. The LFQM provides a conceptually S|mple,_ contains also a general discussion of the covariance proper-

phenomenological method for the determination of hadronigi.q of one- and two-loop light-front integrals. We approxi-
form factors and coupling constants, and has become a mug5ie higher order gluon exchange effects by means of
used tool for investigating various electroweak properties OExchange diagrams, which are shown to be of only minor
light and heavy mesonssee e.g.[14,19 and references mportance if appropriate off-shell form factors are used.
therein. In Ref.[16] we have presented a covariant exten-section IV contains our result for the RC for pion beta de-
sion of the LFQM which permits the calculation of all the cay.

form factors that are necessary to represent the Lorentz struc-

ture of a hadronic matrix element. In this approach a meson || GENERAL EORMALISM EOR PION BETA DECAY

is composed of valence quarks with constituent quark masses WITHOUT RADIATIVE CORRECTIONS

and the structure of the bourgly meson state is approxi- ) ] o ]

mated by a covariant model vertex function, which depends The aanhtude without radiative corrections for the decay
on a parameter B/which essentially determines the confine- m — 7w is given by

ment scale, i.e. The size of the composite meson. Form fac-

In this paper we shall calculate the axial vector contribu

tors are given in the one-loop approximation as light-front Ge o~ ,
momentum integrals. As an example, it was shown in Ref. 1:EVud< 7(P")[dyu (1= ys)ulm* (P) )L*

[16] that a prediction of the electromagnetic form factor of 2.1)
the pion for small values of the momentum transfer can be

made that is in good agreement with the data. where the matrix element of the leptonic current is
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L,=U,(k,)7,(1= ys)ve(l) (2.2
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andk, ,|I are the 4-momenta of the neutrino and the positron
respectively. We represent the hadronic matrix element for

pion beta decay in terms of appropriate form factors

(P"))=\2{(P'+P") ,F1(q?)
+0,F2(99)}

(mO(P")|dy,ulm*
(2.3

(mO(P")|dy,ysulm " (P'))=0 (2.4

whereq=P’'—P" is the 4-momentum transfer which varies
within the rangem?=<g?< (M, —M)?.

’
It is convenient to analyze semileptonic decays of pseuyeCtor isP|

doscalar mesons in terms of the form factérg(q?) and
Fo(g?), where the scalar form factdto(q?) is defined by

q2
Fo(@®)=Fy(a®)+ ———F
M2 —

SR, (29
0

The differential partial width in terms of these form fac-
tors is then

Gl2:|vud|2|v|3

dFO(W+4>7TOEV) T )
= s P(a%)
32

dg?

(2.6

and the density(qg?) consists of spin 0 and spin 1 contribu-
tions as follows:

p(a%) = po(9?) +p1(g?) (2.7)

m;
po(9?) = ?(Fo(qz))z(

2\ 2

m
=
q

8
pa(a?)= §<Fl<q2>)2(

wherep,, is the recoil momentum of the?® in the 7 rest

frame:

Pz iMI-MD* gt —2q*(ME+MEL (210
+

If the quark structure of the pion is neglected, i.e. in the limit

F1(9%)=Fy(g?) =1 and for the approximatiop?=(M ,
+Mg)2(A2—q?)/4M? | the integrated partial width leads to
the approximate expression for the total decay ratg, l#q.
(1.13.

In this section we shall briefly discuss the exact integrated
partial width (2.6) based upon the formulas for the form

factors F,(g?%) and F,(g?), which we have derived in the
framework of the quark model in Ref16].
The hadronic matrix elemer(2.3) is given in the one-

loop approximation, corresponding to the diagrams of Fig. 1,

as a light-front momentum integral, denoted By,. The

P P”

(a) (b)

FIG. 1. The one-loop contributions to pion beta decay.

4-momentum of a meson of mabt’ in terms of light-front
components isP’=(P’~,P'",P]), where the transverse
=(P'%,P’?). Its constituent quarks have masses
m;,m, and 4-moment&;,p,, respectively, and the total
4-momentum of the meson state is givenddy- p,=P’, i.e.

The quarks are in general off the mass-shell. The appropriate

variables for the internal motion of the constituentsp( ),
are defined by

pi+:XP/+, p;:(l_X)P’+

Py, =XP+p;, Ppa=(1-xP]—

and the kinematic invariant mass is

pi*+m3
1-x

12 12
p, +my
X

M/Z

(2.11

For the transition between an initiakr*=ud with
4-momentumP’, mass M’, and internal variables and
masses of its constituent quarks,§; ,m; ,m,) and a final

=(dd—uu)/ 2 with 4-momentunP”, massM”, and the
correspondlng internal quantitiex,p’ ,m7,m,), the mo-
mentum integralA ,, in a Lorentz frame withg =0, con-
sists of two parts that describe tlhie-d transition of Fig.

1(a) and thed—u transition of Fig. 1b), and is given by

,u \/—(HM(mu!md md)+HM(md mu’mu)) (2 12
where

h/l

H/.L(mﬁll.’m,]/.’mZ)

focs o] !

N// [
(213

with

S, =1t ys( p1+m7) '}’,u(lbl'*' my) ys(— P+ my) ],
(2.19

whereN. is the number of colors, i.&N.=3. The light-front
momentum integraH , , Eq.(2.13), is computed at the pole
of the spectator quark:

m5=0.

NZE pg— (213
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In our formalism[16] four-momentum is conserved and the ~ While the form factorF;(g?) in the one-loop approxima-

4-vectors appearing in the tra¢2.14) are then given by tion can be derived directly from the plus component of the
momentum integralA,, (2.12), the calculation of the form
mg L ) factorF,(qg?) requires an appropriate account of the effect of
P2=| —P2 ,P2s zero-modes, as we have shown[k6]. We shall not write
2 down the formulas for the form factors, they can be found in
. Ref.[16], but quote the results of the numerical calculation.
P1=P'—p; In the limit of exact isospin symmetry the quark masses and
the pion masses are equal, ilm,=myg=m and M, =M,
p1=p;—d, (216 = M., and the form factors can be predicteB;(g?)
) 5 1o =F,(g?), whereF . is the charge form factor of the pion
wherems, =m;+p;°. It follows from Eqg.(2.16 that with F_(0)=1, andF,(q?)=0. In our model the effect of
T o o isospin symmetry breaking is generated by a finite quark
Ni=p;"—m;"=x(M"*=Mq%) mass differenc& m=my—m,, while the parameters for the
. o o wave functions ofw™ and #° are kept equal:3. =,
Ni=p1"—m;"=x(M"“=M7") =p.. We use the parameters which we have found to re-
) produce the properties of pions in very good agreement with
2 P2+ (1—x)mj%+xm3 - the data in Ref[16]:
o x(1—x) ’ .17
andp/=p| —(1—x)q, . In our phenomenological approach m=(m,+my)/2=260 MeV
we have chosen a pseudoscalar vertex operator forthe B.=308.8 MeV (2.23
pair bound in a S-state state, with the matrix structuref i ' ' '
and vertex functionfi; andhg, where[16] For the calculations of this section we assumed a mass dif-
1o ferencemy—m,=4 MeV.
L M§*—(m;2—m32)? The momentum transfer in pion beta decay is small and
ho=ho(Mg) = Mg the form factors can be approximated by monopole forms
M'2—Mg® 2 Fi( ZZLO) =
, i(g%) , i=0,1. (2.24
X[Méz—(mi—m2)2]1/2¢(Mo ) (2.18 1—q?/A?

The explicit calculation givesA;=719 MeV (the corre-

for the gq bound state of mask!’, and a similar equation g,,nding quantity for the charge form factor of the pion is
for hg. The orbital wave function is assumed to be a simpley, _ 759 MeV), while

function of the kinematic invariant mass as

Am?
F1(0)~1

—————=1-20x10"° (2.29
H(M§®)=N'exp —M{*/88'2), (2.19 (902 MeV)

from which it is seen that the effect of symmetry breaking on

where N’ is the normalization constant and the parametef 1(0) is of second order, in accordance with the Ademollo-
1/8" determines the confinement scale. The normalizatioff?atto theoreni17]. In contrastf,(0) is of first order in the
condition is obtained foM'=M", g'=p"=g, m,=m/ Pion mass differenc® . — M, and takes the value

=m,=m andqg?=0, either as a relation fad ,(m,m,m):

HM(m,m,m):(P’+P,’)M, (22() F2(0)2_144>< 1073, (22@

or as a relation for the orbital wave function: . . .
which leads to the monopole approximatidg.24) for

Fo(g?%) with Ag=1.123 GeV.
! The widthI", can be obtained from E@2.6) by a numeri-

Ne (2 , Mg . . | be ¢
Lo (1) 0= cal integration oveq~ with the result
167r3fodxf 40! S a0 | #MoI"=1, (220 g g

which for the equal mass case is given explicitly by To(mm—ml%er)=1ry(1-1.2x107%),  (2.27)

1/2
N2 a2 2 where 1f, is the approximate expression given by Egs.
exp(=(Mq”—4m*)/85°). (1.13 and (1.14. The correction is essentially due to the
(2.22  quark structure of the pion. Obviously, the effect of the sym-

87°
¢(M62) — 77*3/43*3/2 T
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pr

(2)

w % ij % 1z
(b)
FIG. 4. p exchange corrections for pion beta decay.
The leptonic tensor is
z w
(d)

Ln=U,(K,) 7,(1— y5) (= +Kk+me) yve(l)
= _2|)\LM+ k)\L'u"' kML)\_gM)\kL"'iSM)\aﬁkaL'B
(3.2

© and the leptonic currenit,, has been defined in Eq¢2.2).
FIG. 2. Vertex corrections for pion beta decay. The hadronic tensoh ,, contains only the axial vector part
of the weak current. Current algebra methods have been used

metry breaking, Eq(2.25), is largely compensated by the in Ref.[18_] to derive it_s asymptotic behavior, which leads to
effect of theg?-dependence of the form factors, and the sumthe following expression foA,, :
of all structure dependent contributions to the transition
probability, Eq.(2.27), is indeed very small, and can be _
safely neglected. We shall continue to analyze pion beta de- A, =—(Qu+Qq) i& 4 qpk* ( 72(P")|dyPul=* (P"))
cay in the isospin symmetry limih,=my=m, with m given

by Eq.(2.23. «—' 4o i), (3.3
k2-Mmz K

Ill. THE RADIATIVE CORRECTIONS OF O(a) FROM . ) o i
THE AXIAL VECTOR CURRENT where an arbitrary hadronic mabs, is introduced to avoid

a spurious infrared divergence in E®.1). The low-energy
The axial vector current essentially contributes to pionpart OfA#)\ depends on the quark structure of the pion and is
beta decay iIO(«) only in the two-loop processes which are ynknown.
represented by the vertex correction diagrams of Fig. 2 and |f the result(3.3) is inserted into Eq(3.1) for T$” and
the exchange diagrams of Fig. 3. The amplitude correspondyqded to the correspondirfyexchange contributioff(zz) of
ing to the photon—ethange diagrams of Fig. 2, involving the,:ig_ 2, one obtains the correction terms@(«) in Eq. (1.2
axial vector current, is given by that are induced by the axial vector current, where the un-
known low-energy contribution is parametrized in terms of
the constani 4 .

F a It is the main purpose of this work to evaluate those con-
T(2y):7vud_3 tributions of the vertex correction and exchange diagrams
z 4 that come from the axial vector current, in the light-front
A LKA M2 guark model of Ref[16]. The model calculation coincides
X f dk 20 w ~with the result of Eq(3.3) in the asymptotic limit and com-
(K*+ie)(k?—2lk+ig) M{—(g—k)?+ie pletes the current algebra approach by filling in the details

(3.1) that depend upon the quark structure of the pion.
' In addition we shall estimate the contribution of higher
order gluon exchange by means of fhexchange diagrams
of Fig. 4.

A. The vertex corrections of Fig. 2

We shall calculate the contribution of the vertex correc-
tion diagrams of Fig. 2 by treating separately the vertex cor-
rection for an off-shell quark. In the limit=k,=qg=0 the
matrix element for the exchange of a photon, that consists of
a part that describes the—d transitions of Figs. @),(b)

FIG. 3. Exchange corrections for pion beta decay. and an analogous part for tlle—u transitions, is given by

(2) (b)
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N 1 h(')z @
TV =GpVyg— f dxf d?p| ————— —[Q @+ QuIT™® (3.4
2 F Ud167T3 0 pi(l—X)Niz 47T[Qu Qd ] )

and the contribution of the vertex correction is

; (a) | uh 2

H(a)zl_f d%k Sin - Miw , (3.9
w? (K>+ie)?(k?—2pjk+Nj+ig) M3, —k>+ie
; (b) | ph 2

o= I_f d*k Sin - Miy , (3.6
w2 (k>+ig)?(k®+2pik+Nj+ig) M3, —k?>+ie

with
SIR =t ys(B1+ M) (= 7, 76) (b1 K+ M), (B3 +mi) ys(— P2+ my)],
SR =t ys(B1 -+ M)y (B3 + K+M) (= 7, 76) (3 M3) y5(— P+ my) ],
wherep?i=p; andN7=Nj, sinceq=0. The evaluation of the traces gives the result
SR =18 ,nap(4N;P1"P5 +kSP),
SN = —ieunap(—4NIPIPE+kSP),

whereS? has been defined in E¢2.14). Only the termisMaﬁk“LB of the leptonic tensok

Eq. (3.2), contributes to the
momentum integral$l® andII®®, which can be written as

2N

2 _ : Al . Pl —n'l . ' 2
H<a>:i d4kk LS—kS-kL+4N;(pik-P’'L—pjL-kP") M2, 57
i w2 (K®+ige)?(k®—2pik+Nj+ie) M2, —k%+ie
1 1 W
2 _ _ ’ ".P'l —n'l . ’ 2
H<b>:i d4kk -LS—kS-kL—4N;(pjk-P'L—piL-kP") MZ, 58
i 2 (k2+ig)?(k®+2pik+Nj+ig) MZ—k3+ie

where we have used thpy=P’ —p;. The momentum inte- (Examples of zero-mode contributions can be found in Ap-
grals of Eqs(3.7) and(3.8) can be calculated in terms of the pendix B, Eq.(B5), and in Ref[16]. A more general discus-
usual space-time components by the standard Feynman pgion in the context of light-front quantization is given in Ref.
rameter method. Using the detailed results that have bedd9].) This is the zero-mode problem which in the present

collected in Appendix A we find case can be circumvented by the decomposition of the matrix
eIementT(Z” into a covariant(physica) part, that is not as-
@ =11® =11 sociated with a zero-mode, and a spurious part that is can-

2 , , celed by the appropriate zero-mode contribution. We are
=2{(3by+by p;)LS—b, p3S-pslL only interested in the physical part " that can be iden-
—4a, Ni(piz' P'L—piL-piP")}, (3.9 tified by choosing a special representation of the 4-velctor

wherea,, b; andb, are functions ofp;? and are given by L=(L",0,0.). (3.10
Eqgs. (A3)—(Ab).

The matrix elemenT$ for the exchange of a photon has The method which we have developed in Réf6] can be
been expressed in terms of the light-front momentum inteused to show that the resulting expressionTg? is unique,
gral (3.4) which is to be computed at the pole of the spectatoii.e. the contribution of the associated zero-mode vanishes
quark. However, it is well knowr(see e.g. Ref[16] and  exactly.
references therejrihat this straightforward light-front repre- We thus conclude that the conditi¢.10 guarantees that
sentation of a hadronic matrix element is in general incomall spurious contributions are eliminated and the momentum
plete and contains spurious contributions that violate Lorentintegral (3.4), calculated at the pole of the spectator quark,
covariance. These difficulties are a consequence of the faciiquely defines the complete light-front representation of
that the effect of the associated zero-modes is not includedhe matrix eIemenT(Z”. In order to express the quantity,
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Eqg. (3.9, in terms of light-front variables, we compute the  For the amplitude of th&-exchange diagrams of Fig. 2,

following scalar products, using EqR.15—(2.17), that can be derived by an analogous analysis, one finds, that
the quark structure contributes to the amplitude only to order
piL=xP'L, m?/M3, and m?/M2; this is a small effect which can be
safely neglected. Therefore, the published result, that is due
LS= 4xM(’)2 P'L, originally to Sirlin[1], remains essentially unchanged and is

axial

o’ 1 2 ’
piP’=5(M2+Np),

520 =% 0.1yl 31 Mz 1o m mz))
ial— 5 d Ly CENIRE
p;S=2(p{2 M2+ m?M2 ~N{2). w2 Mw I M M3
(3.10) (3.19
In thi i functi 12 24 N/ where the minimal standard model relatioM
:mzliz;nzner%e_ Ind8l as a function ofp;"=m ! =Mzcos0,, (O is the weak anglehas been use(see
m 0/ e.g. Ref[8)).

X In the calculation of the vertex-loop integrals the value of
[I=8P'L 3b1XM62—(31+ b,)N] piz_ _(N1+Mi)“, the mass of the internal quark line is important only in the
2 low photon momentum range, where the quark mass is es-
(3.12 sentially equal to the constituent mass. Therefore, for the
numerical computation of Eq3.13, we take the values

Inserting Eq.(3.12 into Eq.(3.4) we can express the matrix (2.23 for the parameterm and ... and obtain the result

elementT$” in terms of T, Eq.(2.1), as

1 520, = 0+ g 31 S a0 ™
T(27)=§Tl (Sg()igllv axial_zﬂ_(Qu Qu) n? 4 M\ZN )
A=—4.498, (3.15
2y) @ NC . . .
Som= 5 (QutQq)—— | dx where we have used the normalization conditi@r21).
W 167°Jo : L
The combined correction is
12
2 0 o MZ A
<[ oo K= A A= e 3@ QI+ 4 5.
(3.16
12 ’
% { 6b1xMo"—2(a5+b2)N, B. The exchange corrections of Fig. 3
X The exchange diagrams of Fig. 3 are different from the
X piz—E(NH M2) ] (3.13  diagrams of Figs. 1 and 2 in that both quark lines are in-

volved in the decay process, and there is no well defined
spectator quark line. In order to establish the LFQM expres-

variant LFQM expression for the matrix elemer§?) (see 507 for thef amplltude'rghtf}iat corrhe sponclis o t?ehexchange
also Appendix G diagrams of Fig. 3 we shall use the analysis of the covariant

In order to complement the above remarks regarding th&V0-loop diagram with pointlikerqq vertices(a Feynman
zero-mode problem, we note that the 3-dimensional lightdiagram presented in Appendix B, as a guide.

front momentum integrai.13 with pointiike qq vertices Just as in the case of the one-loop momentum integrals we
. grats. P mqq v can calculate the two-loop 4-momentum integrals, expressed
(i.e. for hg=const), and the covariant 4-dimensional mo-

. in terms of light-front variables, by performing the integrals
mentum integral that represents the photon-exchange FeyBi/er the minus components of the loop momenta by contour

man diagrams of Fig. 2with the same pointlikerqq verti-  methods, whereby the momentum integrals are given as resi-

mode contributions. the previous subsection that this straightforward procedure
We can reverse this argument and conclude that the trangads in general to an incomplete result since it misses the

sition from the covariant Feynman perturbation theory to thezontribution of the zero-modes, and without including this
LFQM proceeds in two steps: In the first step the manifestlyeffect the contour method not only violates Lorentz covari-
covariant 4-dimensional momentum integral, that correance, but is an uncertain approximation of the 4-momentum
sponds to a given Feynman diagram, is represented exactiftegrals. The zero-mode problem can be circumvented only
in terms of a 3-dimensional light-front momentum integral. if the special representatidB.10 is used. In Appendix B we

In the second step appropriate phenomenological vertex  prove that the contribution of the zero modes vanishes ex-
functions are introduced into the light-front representation. actly for the resulting amplitud&;. Therefore, the contour

In arriving at Eq.(3.13 we have finally established the in-
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method already leads to the complete result for the momerconsists of two parts, which depend upon the sign of the plus

tum integrals, which are given as residues of the respectiveomponent of the photon momentuks p]—p;=p,—p5.

quark poles, and uniquely defines their light-front represengor k*>0 the residue is determined by the poles of the

tation. _ _ o quarks with moment; and p;. The remaining momenta
We shall calculate the amplitudg; in the limit =k, are determined by 4-momentum conservation, jug= P’

=0, g=l+k,=0 and P’=P”, with P'>=M2. Only the , PR o ,
. — n =P’ —p5. Th nditions | to the relation
contribution of the axial vector current will be considered. It p1 andp; P2 ese conditions lead o the relations

kt*>0: pj2-m?=0, py?—m?=0,
pEZ_mZZ(l_X/)(MZ Mr2) p//2 _X//(Mi_Mgz)'
K2=kZ=k{MZ—(1—-x")MPZ=Xx"M§*}—K?, (3.17
wherexk=k"/P'*=x"—x" and O<k<1-—x'.

For k™ <0 the residue is determined by the poles of the quarks with momEngnd p] . These conditions lead to the
relations

kt<0: py2-m?=0, p;?-m?=0,
pi’—m?=x'(M7=Mg?), pi*—m?=(1-x")(M7~Mg?),
K2=kZ=x{—M2+x'M{Z+(1—-x" M2 —K?, (3.18

and k varies within the range-x’ <«=<0. The resulting amplitud&; is then given by

T.=GV achld’fdz’fld”
= — | dx X
3 Ud12 5 0 pl 0

h’ h"
Xf dzpi ’ A " ° 2O /2 //2
X' (1=x")x"(1=X")(M7—=My")(M 0)
OX"—x") O(xX'—x")
><( Tt )(QdSE,?Q—Qu SILA (3.19
K K

The hadronic tensors associated with the diagrams of Figs(l3 are
SR =t ys(B1+M)(— 7, 75) (b1 + M) ys(— b3+ M) N (= P3+m)],
SIX =t ys(Ba M) yu(Ba+ M) ys(— b1+ m)(— 7, 78) (— B{+m)],
=-s¥. (3.20

The leptonic tensok ,, has been defined in E(B.2). The product of the hadronic and leptonic tensors consists of a scalar and
a pseudoscalar part:

S@L#r=jgrrabk | ,S@) + pseudoscalar, (3.2

where the pseudoscalar terms do not contribute to the amplitydand will be ignored in the following presentation. The
scalar terms are given by

SIAL# =8 (p1ps+m?)(pik-P'L=piL-P'k) =8 (pips+ m*)(pik- P'L—piL-P'K). (3.22
Using the special representati@@ 10 we find that

SE?A)L“"=8 P'L (pjps+m?)(p;k—x"P'k)—8 P'L (pjps+m?)(pik—x"P'k). (3.23
This equation can be written such that its value at the various quark poles becomes obvious:
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SIALM =2 P'L (MZ— (pf*=m?) = (p3*—m?))((1—x")(p*~m?)
—(1=x")(p*=m?) +X(p5?—m?) = x' (p3*—m?) —k?)
+2P'L (M7= (p*=m?) — (pp* = m?))((1-X")(py*~m?)
—(1=x")(p3?—m?) +X"(ps°—m?) —X"(p5> — m?) — k). (3.24
The contribution ofSEf‘QL’“ to the integrand of Eq3.19 for k™ >0 is, according to the conditior(8.17), given by
k*>0: SELM=2P'L-R(X' X", (3.29
where
R(X',X")=((1=X")M2+X"M§)(X"(1—x" ) (M2 =M?) —x'(1—x")(ME—My?) —k2)
+ (X ME+(L=X)IMP X" (L=X ) (MZ=Mg?) = X" (1=x") (M2 —Mg?) —K2). (3.26
For k™ <0 we use the condition&.18) to find
k*<0: SELM=2P'L-R(1-x"1-X"). (3.27

The computation of the amplitudg; can be simplified by the observation that the integralskfor-0 andk* <0 are equal,
which can be shown by substituting for 1—x’ andx” for 1—x".

Inserting Eq.(3.25 into Eq.(3.19 we find the invariant LFQM expression for the matrix elem&gt(see also Appendix
O):

Ta=3T1 63 (3.28

where

0= @+ Qo) ot [Cax [ arpr [ o [ o Mo 16 RO 0 (329
T ent o H XL (A ME- M (ME-MEAKE ™

For the numerical calculation af3),, we take again the valug®.23 for the parameters and 3., and find the correction

3 @
5gx)ial_ﬂ

0.256. (3.30

C. The p exchange corrections of Fig. 4

Besides the diagrams of Figs. 2 and 3 there is also the sum of all irreducible higher order gluon exchange diagrams. The
effect of this contribution can be approximated by means of diagrams of the type drawn in Fig. 4, where appropriate meson
states are exchanged between the weak axial vector and the electromagnetic vertices. The Born appr@esotainge of a
pion), which in general is expected to give the dominant contribution, vanishes, since the pion does not couple to the axial
vector current. We shall consider only the lowest mass exchange process, p@xtieange diagrams of Fig. 4, and calculate
the corresponding amplitude first for on-shell vertex structures, which are defined by the appropriate matrix elements.

The matrix element of the electromagnetic current for the transjifon 7° is

Jx=Quunu+Qqdnd
(P'Ii\IP";135) = €T () =€" (Qu+ Qo) g(K))i ey apP K", (331
The matrix element of the axial vector current for the transition— p° is
(P";135| = dy,ysulP")=\2 e 'T(})
=2 e " {—f(k?g,,~a,(kK*)P,P, +a_(k?)k,P,}, (3.32

wheree= €(J3) is the polarization vector of the, P=P’'+P", andk=P"—P’.
The amplitude that corresponds to the diagram of Fig) ¥ then given in the limil =k,=0 by
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ie? . r{Dgrer e
Taa=—G Vyo(Qu+ Qd)(ZW)AJ e (P TP ie) (3.33
where we have used the bgsegropagator
P.P,
D,W(P)Z(g,w— ?)Ao(P),
AgH(P)=P*~M2+is, (3.39

and the leptonic tensdr ,, is given by Eq.(3.2) and P’2=M2 . Using the hadronic tensors as defined by E§s31) and
(3.32 gives the result

ie?
(2m)*

4(P'k-kL—k2-P'L)
(K2+ie)2((P" +k)2=M2+ie)’

T4a= =G Vya(Qut+Qq)

f d*k g(k?)f(k?) (3.39

In the isospin symmetry limit the amplitudes corresponding to the diagrams of @gadd 4b) are equal, and the total
contribution is given by
T4=T4at Tap=2T4a.

The amplitudeT, depends only on the form factoggk?) and f(k?), which we have determined in the framework of the
light-front formalism in Ref[16]. The results of 16] can be written as

N, (1 h (M2)h, (M
g(kz;P’Z,P"2)=——°3j dxf d?p; B
8m°Jo (1=x)x“(P"“=M ) (P"*—Mg°)
(pikL)Z
X4 m+ 124 , 3.3
[ Mp+2m| k2 (339

f(K2:P'2 p"2)= Nc ld d2p’ hﬂ'(M(,))hP(Mg)
( ' ' ) 3 X PL 2ipr2 12 "2 "2
8w Jo (1=x)X(P"“=My)(P"*—Mg9)

'k
X —2me(’)2—2me’2—mkP+mk2+2m(k2—kP)pll(zl
,2 (pk.)?
pL + 2 !
k ) Pk,
- 2xP'2+2xM{*—k?+ kP—2(k?*—kP) , (3.37
M4+ 2m k?
|
where pﬁ=pi'—(1—x)kL , ki=—K? anq kP’: P”Z—P',Z. o(k) = g(0) (k)= f(0) (3.39
We have designated theqq vertex functionh, by h_(Mg) _1—k2/A§' 1—k2/A$’ :

and thepqq vertex functionh by h,(Mg); they are given
by Eg.(2.18 in terms of themr massM, andp massM,,

: ) where the pole massesy; and A; are determined by the
respectively. The on-shell form factors are given by

derivatives of the form factors &°=0. For the numerical
o 22 na2 N f2.8n2 np2 calculation we take the valud®.23 for the parameters
g(k9)=g(k%M7 M), (k) =1(k" M7, Mp). and .., andg,=0.26 GeV[16], and obtain the results

(3.38
For the evaluation of the 4-momentum integ(al35) it is g(0)=—-1.21 GeV'!, A;=0.664 GeV,
convenient to approximate the form factors by monopole
forms: f(0)=—-0.85 GeV, A;{=1.72 GeV. (3.40
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The 4-momentum integrdB.39 can now be calculated by g(0;M2,M2)f(0;M2,M2)/(g(0)f(0)F ,(0;M? ,M2))
the standard Feynman parameter method, with the result ’ P

=0.048. (3.43
T4=5T1 6500 . o .
Therefore, without going into any further computational de-
o tails one can conclude that the resulting correction is reduced
sW = ﬂ( —0.69=-8.0x10"* (on-shel). by at least the factof3.43), i.e.

(3.41) 54 (10°5)  (off-shell). (3.44)

axial =~
Sirlin has estimated the contribution of the diagrams of Fig
4 on the basis of vector dominance and Weinberg sum rul
arguments in Refl1] and found the correction to the decay

rate “to be a few times 10%” in accordance with Eq.
(3.41). IV. CONCLUDING REMARKS

However, the intermediate in the diagrams of Fig. 4is  \we have developed in this work a strategy to deal with
off-shell, and for a rigorous evaluation of the correspondinghe effect of the hadronic structure on the corrections to pion
amplitude the off-shell structure of the hadronic verticespeta decay inO(a) due to the axial vector current. It is
must be accounted for. Moreover, a consistent treatment e .. - 1ho light-front quark model for the pion, whase

quires the caIcuIatloh Of_ the self-energy operator in the bound state structure is well described by two adjustable pa-
sameqq-loop approximation that has been used for the calyameters, constituent quark mass and confinement scale, that
culation of the hadronic form factors. The c_orrespondingh‘—,we been shown in Refil4,16| to describe a large body of
renormalizedp propagator that arises from tlggy structure  data. In most applications of the light-front quark model the
of the vector meson is obtained from E§.34 by the modi-  effect of the hadronic structure could be well approximated
fication by one-loop diagrams. However, the axial ved@a) cor-

rections to the beta decay ofcay bound state requires the
calculation of two-loop diagrams, and we have considered
2 k22 Dy - three different types which are represented by the graphs of
whereF (k% M}, ,P?) is the half-off-shell charge f0r2m fa2ctor Figs. 2, 3 and 4. The amplitudes corresponding to the dia-
of the p, with the normalization conditior,(0;M;,M?)  grams of Figs. 2 and 3 can be expressed in terms of light-
=1. An analogous result has been derived for the renormakont momentum integrals, which we have shown to be
ized pion propagator in Ref20]. Fork?=0 the charge form  nique, i.e. there are no associated zero-mode contributions.
factors of andp are given in the one-loop approximation QOnly the form factors=, andf, which are defined by Egs.
by the same analytical expressiowith appropriater andp  (2.3) and (3.32), respectively, are affected by zero modes; a
parameterswhich has been derived in R4fL6] to be method to account for the effect of zero-modes has been
proposed in Ref[16]. An alternative, explicitly covariant
2 oo Ne 1 o, approach for a consistent evaluation of the form factors has
Fp(0;M,P)= QL dxf d°p. been presented in Appendix C. Both methods lead to the
same numerical results. In particular, we have shown that the
(hp(M()))z correction of the decay rate due to the contribution$ of

M(’)z. Eq. (2.8), and off, Eq.(3.35 (corresponding to the diagrams

(1=x)x*(M5=Mg?)(P?=Mg?) of Fig. 4), is negligible.
(3.42) The results of the quark model calculation for the correc-
tions of O(a) due to the axial vector current are given by
In order to estimate the importance of this structure effect weegs. (3.16), (3.30 and(3.44), which can be rewritten in the
have used the light-front formulg8.36) and (3.37) to con-  form of the standard representatioh.2) in terms of the
tinue the form factorsg(k?) and f(k?) to their off-shell  quantitiesM, andC:
forms g[k% M2, (P’ +k)?] and f[k%;M2 (P’ +k)?], with

Evidently the correction due theexchange diagrams of Fig.
are very small, and can be safely neglected.

A (P)—A~HP)=(P?=M2+ie) F,(0;M3,P?),

P’2=M?2 . For an order of magnitude estimate it is sufficient 5@ 4 53) =i3(Q +Qd)|n&
to compare the values of the different form factorkatO. axial = Paxial =5 7 u My’
We find
M,=425.68-8 MeV, (4.1)
g(0;M2,M2)=0.125 GeV'?,
and
f(0;M2,M2)=-0.028 GeV,
4 _ 4
Fp(o,Mi,Mi):_O()?O, 5a><|al 2773(QU+Qd) 2C,
and consequently C=0(10?). 4.2
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Comparison with Eq(1.3) shows that the valu@t.l) for the  nuclear decays and neutron decay in a future work, in a

effective masaM, is clearly different from thea; meson  similar manner as for the pion. If we tentatively assume that

mass, but close to the confinement scale ofghepion, and  the effective mas 5 associated with gqq nucleon will be

is even below the guessed randed). The error bar associ- found approximately equal to the result given by E41), it

ated withM , in Eq. (4.1) is due to the small uncertainties of is easy to show that the unitarity sum derived from nuclear

the constituent quark mass=260+5 MeV [14] and theZ  decays become¥?=0.9956+0.0011, i.e. the violation of

massM,=91.188+0.007 GeV[8]. The value ofC, i.e. the unitarity seems to be much more pronounced than indicated

correction due to the exchange diagrams of Fig. 4 is so by Eq.(1.6).

small that it can be neglected. The same is true of the effect However, a definite judgment of the unitarity problem

of the form factors of the pion which we have discussed inwill be possible only if the complete results of both the de-

Sec. Il. tailed structure calculation faiqq nucleons and the preci-
Thus our model calculation of the axial vector contribu- sion measurement of pion beta decay will be available.

tion to the radiative corrections @d(«) not only gives a

definite value forM,, Eq. (4.1), which leads to larger cor-

rections, but also removes the large uncertainty in the RC ACKNOWLEDGMENTS
due to the assumed rang@k.3). Using the average value of
Ref. [8] A=M, —M,=4.5936+0.0005 MeV, which gives | would like to thank G. Rasche and W. S. Woolcock for

the end-point energy Eq=(M,+My)A/2M_=45180 helpful discussions, and A. Gashi for technical assistance.
+0.0005 MeV, we find &/27)g(Ey)=1.0515<10 2 and

obtain from Eqs(1.2) and(4.1) the value of the RC to pion

beta decay APPENDIX A: THE MOMENTUM INTEGRALS

FOR SEC. IIIA
5=(3.230:0.002 X 10" 2, 4.3
The momentum integrals encountered in the calculation

where the error comes from the uncertainty Mfy, Eq.  of the vertex correction diagrams of Fig. 2 can be evaluated

(4.1). We emphasize that the error on the RC is of the saméy the standard Feynman parameter method. Convenient for-

order as the neglected correctiof%527), due to the weak mulas for the on-shell case can be found, e.qg., in Rdf. In

form factors of the pion, and{%,,, Eq.(3.44. Sec. Il A the vertex correction is calculated for off-shell
We shall investigate the effect of the detailed structure ofjuarks in terms of the functiod, and the relevant integrals

the three quark bound state on the properties of superalloweate given below:

1 k M2,
— | d*k z =+p},a;, (A1)
i 72 (%t i6)2(k2= 2plk t N +i8) M2—Itis o
! d*k Kk, Miv b,+p;,pib (A2)
i 772 (%t 18)2(%= 2pLlct N +8) M2t is  orort PuPuba:
where
2 2 12
L L S ) (A3)
== —5— —gIn———+0| =],
p12 p;* m? M\Z/v
1 M2 3 m2_p12 rn4_pl4 mz_p/Z m2
by=In— + >+ ——+——=1n = +0| — |, (Ad)
4" " m* 8  ap; 4p; m? MZ,
1 m2_p/2 m2_p/2 m2_p72 1
by=———5— —— —M——In———+0| —|. (AS)
2p; Py Py m My

APPENDIX B: THE TWO-LOOP DIAGRAM AND ITS ZERO-MODE CONTRIBUTION

We shall analyze in this appendix the two-loop diagrams of Fig. 3 for the special case of poirqﬁoeertex functions.
From the corresponding covariant amplitude, which is given by the Feynman rules, we shall derive the light-front amplitude

by integrating over the minus components of the momentum variables. For the purpose of this calculation werpat the
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coupling constant equal to 1. In the conventional space-time formalism the covariant amplitude in the kp3#t0 is given
by

,(QSR—QuSILH M,
'DID4DIDY (K2+ie)2 M3 —K2+ie’

1 i2e?N
F ¢ 4.7 4
Tgeynman:EG VUdWJ d plf d p (Bl)

whereD/=p/?—m?+ig, DI=p'?—m?+ie for n=1,2, andp;+ p5=p}+ps=P’ with P’2=M?2 . The photon has momen-

tumk=p}—p;=p;—pjs. The leptonic tensok ,, has been defined in E¢B.2), and the hadronic tenso&? andS() in Eq.
(3.20.

If the momenta are decomposed into their light-front components we have
d*pi=3P’*dp; dx'd®p], d*pi=3 P’ dp] dx'd’p].
We are only interested in the integration with respegb{o andp] , and use the same technique as in IR&8), which is

based upon the integral representation

2 I2 : :fwdaei“(pz‘m2+if). (B2)
p2-m?+ie Jo

A similar procedure has been used in Rg22] to investigate the relation between the standard covariant quantum field theory
and light-front field theory.
There are three basic integrals that contribute to the amplifgdg these are

( I )zfd _Jd . 1 M\ZN
2m P1 b1 D;D4D}D4 (k®+ig)? M3, —k?+ie
B 1
M2 X" (1=x")X"(1=X")(MZ=Mg?) (M2 ~Mg?)

@(X//_X/) M2 @(X/_X//) M2
X 4 2 W2 4 2 Wz ) (BS)
k> MW_k> k< MW_k<
i \? P M3
<_) fdpli"‘dpzi pl 2, : 2 2 V;/ .
2m D]D4D)D} (k*+ig)?> M3, —k>+ie
B 1
M3 X' (1=x)X"(1=X")(MZ=Mg?) (M2~ Mg?)
(Mi—X,M,2)®(X"—X,) M2 (1_X7)M!2®(X/_XH) MZ
X 04 2 = 2 + 04 2 = 2|’ (84)
k2 My — kS kZ My — k<

wherek? andk? have been defined in Eq&8.17) and(3.18, and we have used th& =M. The result for the first two
integrals(B3) and (B4) coincides with the result obtained by the contour method, i.e. in both cases one finds the residues of
the respective quark poles, and zero modes do not contribute.

The third integral we represent as

Zfdp'fdp” i pi- M,
I
! D!D4D}D} (k> +ie)? M3 —K3+ie

e

=%{P1(x"— X))+ PO (X —X")+R18(X") 8(X") +Ry8(1—x")5(1—x")}. (B5)

w

The form of the residue terms is obvious
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(M2=x'M{?)(1—x")M?
X' (1=Xx")X"(1=X")(M3=Mg* (M2 —Mg?) kL

Py

(1=x")MZM2Z—x"Mg?)
p,= . (B6)
X (L=x)X"(1=x")(MZ=Mg") (M7~ Mg%) K=

The functionsR,=R,(p;] ,p|) for n=1,2, which determine the zero-mode contribution, are independelt_gf but their
detailed form cannot be derived by the method used above. For exaRypkefound to be the ratio of two functions, each of
which becomes zero for' =x"=0. However, there is an alternative way to deternfqendR,. It uses the limiting behavior
of the integral

. p’P’~p"P’ M2
lim fd“p;J d*p Y —0(M?), (B7)
M_—0 D;D,;D|D% (k“+ig)* My, —k“+ie

which is implied by Lorentz covariance.
If we define

1
PO= fim Py=———,
M, —0 (1—=x")x"kZ

T

1
PQ)= lim Pp=———, (B8)
M, —0 X' (L=x")kZ

and integrate Eq(B5) with respect toc’ andx”, then, according to E4B8) the contribution ofo(M %) must vanish exactly,
which gives the conditions

1 1
f dx’ f dx’ PP +R;=0,
0 x'

1 x!
f dx’ J dx’ PP +R,=0. (B9)
0 0

From Egs.(B9) for R; andR; it can be seen th&®;=R,, by substitutingx’ for 1—x" andx” for 1—x".

This derivation of the zero-mode contribution shows clearly that a residue term which is derived by the contour method,
may contain a spurious part that is not consistent with the requirement of Lorentz covariance. It is the zero-mode contribution
that cancels this unphysical part of the residue term. This is an example of the deep connection between the zero-mode and the
Lorentz invariance of the light-front formalism.

Next, we shall decompose the product of leptonic and hadronic tensors in the integrand (81LEqto products of
light-front components. We use thaf})=—S{3, Eq.(3.20, and the resul{3.22, and find

SALM =2P’L{-2p; py (k")?
+p; [k (2m2+x"M2) = (1—2x" )M (2pk, +X"M ,k*)]

—py kT (2mZ+x'M2) — (1—2x")M .(2p| k, +x'M k") ]+ - -}, (B10)
where we have omitted all those terms that are independepf ofand p]

If the decompositior{B10) and the basic integral®3)—(B5) are used to perform the integration of EB1) with respect
top; andpj , itis obvious that the zero-mode contribution of ER5) vanishes, since the term that contains the product
p; p; is multiplied withk*. The result for the momentum integrd1) is given by the residues of the respective quark
poles, and zero modes do not contribute:
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aN; (1 1
Tgeynman:G VyqP'L (Qu+Qq) 164-::’J’0 dx’f dzpijx’dX,,J' dzpz

R(x",x") M3,
X 2 12 (M2 M2 14 M2 K2 1ig
X'(L=x")X"(L=X")(MZ—=M*)(MZ—Mg“) kI My—KkS +ie

(B11)

where we have used that the integrals kor>0 andk™ by the invariant equationox=0. The special caseav
<0 are equal, and the functid®(x’,x") has been defined in =(2,0,0,) corresponds to the light-front or null-planex
Eq. (3.26). =x"=0.

We have proven that the covariant Feynman inte(3a) We are only interested in the limit=P’' —P”=0. There-
and the light-front integra(B11) are equal. Since the inte- fore, the second term of EGC1) can be decomposed with
grals are finite, this result can be verified by numerical caltegard toP’ andw as
culation. At this stage we depart from the covariéfeyn-
man perturbation theory and introduce phenomenological (1 - h(’,2 o
vertex functions, Eq(2.18), into the two-loop light-front in- fo dxj d mefZ(pl ) P1,
tegrals. This step gives the light-front quark model expres- 1
sions, EQs(3.28 and (3.29, for the amplitudeT;, corre- 1 h2 ©
sponding to the diagrams of Fig. 3, in terms of a simple :f de' dzpi%fz(piz){xPl’ﬁC(ﬁ—“}.
convolution of light-front vertex functions. 0 (1-x)Ng 20P’

(C2
APPENDIX C: COVARIANCE PROPERTIES
OF ONE- AND TWO-LOOP LIGHT-FRONT INTEGRALS Such an equation will be written in the following as a rela-

tion between integrands:
In order to treat the complete Lorentz structure of a had-

ronic matrix element the authors of RE23] have developed o
a method to identify and separate spurious contributions and piﬂixPl’ﬁ C‘ll) £
to determine the physical part of the hadronic matrix ele-

ment. The formal aspects of this approach have been inve

tigated in Ref[24]. We have developed a basically different .
technique in Ref[16] to deal with this problem. Both meth- there that (tjheu-term of Iilq.(C:%) |s'bca'nceledhexa:cctly by the
ods lead to the same 4-vector structure of the light-front incorresponding zero-mode contrl ution. T erelore, we can
tegrals for the two-loop amplitudéﬁ]’ andTs. In the first omit the w-term and obtain a unique expression for the sec-
part of this appendix we shall use a method that has bee?]nd term of Eq{C1) by the replacement
proposed in Ref[25] to determine the Lorentz invariant pIL—xP'L (C4)
parts of the light-front integrals, that are free of spurious ! '
contributions; these are the LFQM expressions for the amThe analysis of the third term of EGC1) requires the tensor
plltudeST(z"), Eq (313, andTg, Eq5(32& and(329} decomposition

The light-front integral for the amplitud&%” , Egs.(3.4)
and (3.9, consists of three different terms which we write p; p;,=—3p|*g,,+x*P, P,

. C3
2wP’ €3

Fhe coefficientC{") is given in[16], and we have shown

formally as
1 14
: hg? (Pl +w,PYBP+ A D) (CH)
T‘z”=J de d’p; S{f1(pi2) 'L+ f4(pi2) piL wP 4(wP')
0 (1-x)N;
where
+f3(p1®) piL-p1P'}, (CY

X
(2)_— ! _ 2 1.2
wherep; is given in terms of the internal variablesp| by BY 2[N1+(1 2X)Mz ]+ zp.”.

Eqg. (2.17. In order to analyze the covariance properties of

the amplitudeT$” we shall use the procedure of R¢t6]  The coefficientC$?) is given in[16] and will not be required
and shall show that the second term of EQ1), which de- here. We have argued i16] that there is neither a zero-
pends on the 4-vectqr;,, and the third term of Eq(C1), mode associated with the coefficif”), nor does the inte-
which depends on the tensqm,pj,, generate 4-vector gratedB{? vanish for the light-front vertex function;, given
structures that are in general not covariant, since they contaipy Eq.(2.18). Moreover,B{? contributes to the physical part
a spurious dependence on the orientation of the light-frontof the amplitude and cannot be simply omitted. But even
The light-front is defined in terms of the lightlike 4-vector  though B(lz) is combined withw,, its physical contribution
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can be expressed in terms of a covariant structure. For its 1

construction we shall adopt a method that has been proposed piL-piP'—| — Epf*' B +xMZ| P'L
in Ref.[25] for a covariant calculation of the electromagnetic

form factors of the nucleon. We shall split tB4?) term of

— ’ 2 ’
Eq. (C5) into a part that is a linear combination of the =5 (Ni+M7) P'L
4-tensorgy,, andPMP’V, and a part that is orthogonal ¢g,,,
andP/P: =xp;P"-P'L, (C9)

where Eqs(2.16 and(2.17) have been used for the last step.
In this manner we can rederive E@.13 for the amplitude
T . In principle, the coefficients of the 4-vectors and
4-tensors in EqSC3) and(C8), and consequently the light-
VT O front integral(3.13), can also depend o@, however, since

(wP)2 7" 1. (CH »?=0 the w-dependence can enter only in the form of the

ratio oP’/wP” which is always unity from the condition

wq=0, see Refs[25] and[24].

In conclusion, this construction which basically consists
of the separation and omission of thkedependent terms,
leads to a Lorentz invariant expression for the amplit‘ﬂ]@é
in terms of the light-front integral3.13.

The contribution of the coefficierB{”) to the physical part The same analysis can be carried out also for the ampli-
of the amplitude is included correctly by the requirement tude T5. It is given by Eq.(3.19 in terms of the product
(3.22. If the vectorsp;,, andp], are decomposed with re-
P,B*'=P'#, gard toP, and », as in Eq.(C3), we can get rid of the
w-dependent contributions by means of the replacements

1
?(P;wﬁ w,P,)B®»=8B,,B?+R,,BY
w

The orthogonality conditions are given by

P, P,R*=g,,R*=0.

The tensord8,,, andR,,, are then given by

p;L—x'P'L,
B, 19w 2 o P pIL—X"P'L. (C10
3 3M2 M
These relations lead to E¢3.23 and we have shown in
Appendix B, Eq.(B10), that there are no zero modes asso-
R — (P w0, +©,P)) ciated with the resulting expression fag, i.e., the light

N =Y, front integral(3.29 for T; is invariant.

Note that our choice of the special representati®i10

5 for the 4-vectorL is equivalent to the replacemeni€4),

MZ—B,,. (C7)  (c9) and(C10.

The developments of this Appendix enable us to resolve
) ] N o an inconsistency that is associated with the formalism of Ref.
The construction(C6) contains an additional contribution [16]. Based upon a special class of meson vertex functions
proportional tow,,®, which can be combined with th@%” e have shown ifi16] that there exists an exact correspon-

0,0,
(wP")?

term of Eq.(C5). The resulting expression far; ,p;, is dence between the explicitly covariant 4-dimensional and the
light-front calculations in one-loop order. In that framework
2 we could analyze the role of zero modes, in particular we
p1,.P1,= ( 5 —pl2+ B(Z) 9.+ | X2+ —28(12)) P'P! found that covariance requires the inclusion of the effect of
m zero modes, and the conditions for the exact disappearance

of the spurious dependence on the orientation of the light-
C(z)Jr M B(z)) (C9) front have been deriveldn terms of the “covariance condi-
(w ’)2 tions,” Eq. (3.32 of Ref.[16]]. However, the vertex func-
tions used in the approadii6] are not symmetric in the

It is clearly separated into a physical contribution terms ~ 4-momenta of the constituent quarks, and can hardly be con-

of the 4- tensorsg,w andP ') that does not depend an, sidered a realistic approximation of tlyg bound state. We
the termR,,, that is orthogonal to and independent of thehave argued in16] that mesons must be described in terms
physical part and the term proportional g, ,. The last of light-front vertex functions which are symmetric in the
term, which is expected to be canceled by the associatedariables of the constituenfy pair, and that it does not seem
zero-mode contribution, an®,,,, which is expected to be possible to establish an equally straightforward correspon-
canceled by higher order gluon exchange contributions, ardence between the respective light-front approach and a
spurious and will be omitted. Therefore, a unique expressiomanifestly covariant 4-dimensional formalism. This means
for the third term of Eq(C1) is obtained by the replacement in particular that the light-front expression of a one-loop ma-

1
(2
+BPR,,+| 5
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trix element for transitions between symmettiq mesons For the calculation of, andF, we require the decom-

contains in general a nonvanishing spurious contributiorpffsmgn of the tensopy,p;, with rfzzspec”tzto the 4-vectors

which violates Lorentz covariance. We have stated this facP’, P” andw, under the conditiof?’ “+ P". By a straight-

in Ref.[16], but did not attempt to solve the problem. forward generalization of the covariant construction scheme,
In the covariant analysis of Ref16] we have calculated Which we have proposed in this Appendix, we found the

the form factorsF1(q?), F»(q?), 9(g?), (g% anda.(q?) remarkable result that the formulas fby and F, are the

in terms of asymmetric meson vertex functions. For practicapame as those given [16], but expressed now in terms of

applications it is important to know, if it is consistent with general(e.g., symmetricmeson vertex functions.

the requirement of Lorentz covariance to use these formulas For the calculation og, f anda.. we need the decompo-

for form factors in combination with a general light-front sition of the tensop; ,p;, ep; with respect to the 4-vectors

necessary to modify the formulas. factors is again straightforward but requires lengthy alge-
A fully covariant approach to treat hadronic matrix ele- Praic manipulations. We found that the formulas gpand

ments in the light-front formalism can be established by a2+ are reproduced, whiltanda_ are modified with respect

combination of the methods that have been developed itP the results of Ref.16], if general meson vertex functions

Refs.[23,25,24 and in Ref.[16], and it can be used as an are used. In particular, E¢3.37) for f(k%;P'%,P"%) must be

alternative and more general method for a consistent evalyeplaced by

a_\tion of the form factorfs. This approach is valid for a general f(kZP'2,P"2) (k2% P'2,P"2)+ Af(k2 P2, P"?),

light-front vertex function, and we shall now compare the

results obtained with this method, with those of Hé®6]. where

h-(Mg)h,(Mg)
2(P72_M62)(Pu2_M82)

Af(kZ.P/2 P//Z): &fldxf d2p/
Y 8m3Jo (1-x)x

x;rkz P2(5(3>+ B<3>)+0(k4)]. (C11)
Mj+2m| kP Tt T2

The functionsB{®) and B> have been defined in RdfL6] and are given as

, p’k k2+kP
)((1—X)P’2—XM02+(k2—kP) ik2l>+x % (

L
2

rk 2
p/2+ (Pik) ) (€12

o= - oy B
Note thatAf vanishes if Eq(C11) is calculated with the asymmetric meson vertex functions of Re.
SinceAf(0;P’2,P"2)=0 the numerical results given in E.40 are unchanged, except far; which is calculated, using
Egs.(3.37) and(C11), asA;=1.80 GeV. Consequently, the number given for the correqt®fl) has to be corrected in a
minor way, i.e.,8{},= —.00081, while the final estimai@.44 remains unchanged.
We have described in this Appendix how the approach of Ré&f. can be combined with the approach of R¢23,25,24
in order to decompose a hadronic matrix element on the light-front into its Lorentz covariant parts. In this manner correspond-
ing form factors can be determined that are consistent with the requirement of Lorentz covariance without imposing restric-

tions on theqameson vertex function. We have calculated in this general framework the form f&GtoFs,, g anda, , and

found that the formulas given 6] are valid also in terms of generqueson vertex functions. In contrast, the formulas
for the form factord anda_ are different. It is remarkable that neither the numerical results of the present work, that are based
on Ref.[16], nor those of Ref[16] itself are changed.
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