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Radiative corrections of O„a… for pion beta decay in the light-front quark model
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Institut für Theoretische Physik der Universita¨t Zürich, Winterthurerstrasse 190, CH-8057 Zu¨rich, Switzerland

~Received 20 March 2000; published 8 February 2001!

If the CKM matrix elementVud that can be derived from superallowed nuclear decays, neutron decay and
pion beta decay is used for a precision test of the unitarity of the CKM matrix, the combination of the present
world data seems to indicate a small violation of the unitarity condition for the first row. While an accurate
calculation of the radiative corrections~RC! of O(a) is crucial in order to determine the value ofVud as
precisely as possible, the theoretical analysis has been limited in the past by the rather crude estimate of the
effect of the hadronic structure. Only the contribution due to the axial vector current depends on the hadronic
environment. We develop a strategy to deal with the influence of the hadronic structure on the decay properties
of the simplest hadron, the pion, and calculate the contribution of the axial vector current to the RC, using a

light-front model for the pion. Itsqq̄ bound state structure is well described by two parameters, the constituent
quark mass and confinement scale, that have been fixed by a comparison with the data. We take into consid-
eration three different groups of two-loop diagrams, and derive their light-front representations. We discuss the
associated zero-mode problem and show that the respective light-front amplitudes are free of spurious contri-
butions. There is only a small model dependent uncertainty of the final result for the RC for pion beta decay.

DOI: 10.1103/PhysRevD.63.053009 PACS number~s!: 12.15.Hh, 12.39.Ki, 13.30.Ce, 13.40.Ks
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I. INTRODUCTION

For three fermion generations, unitarity of the Cabibb
Kobayashi-Maskawa~CKM! matrix requires the sum of th
squared moduli of the first three elements to be equal to o

V2[uVudu21uVusu21uVubu251. ~1.1!

A test of this property is of crucial importance since a v
lation of unitarity would be evidence for new physics, a
the use of such a result to constrain possible extension
the standard model would require a precise value ofV2 and
its uncertainty.

The unitarity sumV2 critically depends upon the precis
value of the matrix elementVud for the decaysu→dēn and
d→uen̄. These quark level transitions give rise to super
lowed Fermi beta decays, the decay of the free neutron

→pen̄ and pion beta decayp1→p0ēn. In each case the
measured rate can be used to determine the value ofVud ,
after radiative corrections~RC! and the effect of the hadroni
environment have been separated out.

A general formula for the RC of ordera to the transition
rates has been given by Sirlin@1#. The total decay rate 1/t
can be separated into the uncorrected expression, denote
1/t0, and an overall factor as

1/t51/t0~11d!

d5
a

2p Fg~E0!13ln
MZ

M p
1AgG

1
a

2p F3~Qu1Qd!ln
MZ

MA
12CG , ~1.2!

whereQu andQd are the quark charges ofu andd quarks.
The Sirlin functiong(E,E0) has been defined in@2# as a
function of the electron or positron energyE and represents
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the RC to the electron or positron spectrum in allowed b
decay. In the total decay rate 1/t it is replaced by the aver
aged valueg(E0); E0 is the end-point energy of the spe
trum.

The correction terms ofO(a) consist of three distinct
parts. The first two termsg(E0)13 ln(MZ /Mp) represent the
contribution of the vector current and are independent
hadron dynamics. TheZ boson massMZ is a consequence o
short-distance effects while the proton massM p cancels in
the sum of the two terms. The third termAg is a small
asymptotic QCD correction term:Ag520.34 @1,3#. Finally
there is a contribution ln(MZ /MA)12C induced by the axial
vector current, where the logarithm is again the result
short-distance effects, withMA acting as an effective low-
energy cutoff~presumably roughly equal to thea1 meson
mass!, and 2C stands for the remaining low-energy part.

The value ofMA is uncertain; Marciano and Sirlin@3#
suggested a range 400 MeV<MA<1600 MeV, while Sir-
lin @4# proposed an even wider range

Ma1/2<MA<2Ma1 , ~1.3!

with the central value at thea1 meson massMa151.26 GeV.
The quantity 2C is model dependent and has been calcula
in the Born approximation in Refs.@3,5# using nucleon elec-
tromagnetic and axial form factors. For pion beta decayC
50 in the Born approximation since the axial vector curre
does not couple to a pseudoscalar meson. The resulting
ues forC are

C5CBorn5H 0.885 ~superallowed and neutron decays!,

0 ~pion beta decay!.
~1.4!

For superallowed beta decays there are additional nuc
structure dependent contributions toC which have been pro-
posed and discussed in Ref.@6#.
©2001 The American Physical Society09-1
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WOLFGANG JAUS PHYSICAL REVIEW D 63 053009
The uncorrected decay rate 1/t0, defined by Eq.~1.2!, still
incorporates Coulomb corrections andZ-dependent radiative
corrections of O(Za2) and O(Z2a3) for superallowed
nuclear decays, and depends on hadronic form factors, w
encode the effect of the quark structure of the decaying h
ron.

Recently the current status ofVud has been reviewed b
Towner and Hardy@7#, based upon the current world data f
the three decay modes indicated above. To date, nine su
allowed 01→01 transitions have been measured to60.1%
precision or better, and the result forVud obtained from the
average ft value is

uVudu50.974060.0005. ~1.5!

From this value ofVud the unitarity sum, Eq.~1.1!, becomes

V250.996860.0014, ~1.6!

where the 1998 Particle Data Group~PDG 98! @8# recom-
mendations forVus andVub have been used in Ref.@7#. The
value for the CKM matrix elementVus determined from an
analysis of kaon and hyperon decays isuVusu50.2196
60.0023, while the value forVub is uVubu50.0032
60.0008 and does not affect the unitarity sum at its pres
level of accuracy.

According to the analysis of Towner and Hardy, the er
bar associated with the value ofVud is caused mainly by the
uncertainty in the RC (60.0004) due to the prescriptio
~1.3! for the effective low-energy cutoff and the uncertain
in the nuclear isospin symmetry-breaking correcti
(60.0003), while the average experimental uncertainty
quite small (60.0001).

The problems associated with a precise treatment
nuclear structure effects can be avoided if the beta deca
free hadrons is considered instead. A survey of world data
neutron decay observables has been presented in Ref.@7# and
it has been noted that the derivation of the value ofVud from
n decay is limited largely by the uncertainty in the over
average value ofl5gA /gV . However, there is a new resu
for the beta asymmetry obtained by the PERKEO II Collab
ration @9# which leads to the valueulu51.273560.0021.
This single value, combined with the world average for t
neutron lifetime, leads to the following value forVud @7#:

uVudu50.971460.0015. ~1.7!

The unitarity sum is then

V250.991960.0030. ~1.8!

The error given in Eq.~1.7! is three times larger than th
error in Eq.~1.5! and is dominated by the uncertainty in th
measurement of the beta asymmetry but, as in the analys
the superallowed decays, still contains the contribution of
uncertainty in the RC.

The results forVud and the unitarity sumV2 given in Eqs.
~1.5!–~1.8! are consistent with each other and seem to in
cate a substantial violation of the unitarity condition~1.1! for
three generations. Moreover, they support the conclus
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reached in Ref.@7#, that the treatment of the effect of th
nuclear environment in superallowed nuclear decays is r
able, with only a small error, and that there is no eviden
that the unitarity problem can be solved by improvements
the calculation of nuclear structure effects.

In order to obtain more information on the unitarity pro
lem accurate measurements of the pion beta decay obs
ables would be of great importance. Like the superallow
nuclear decays pion beta decay is a pure vector transition
the matrix element of the axial vector current, which co
plicates the analysis of neutron decay, does not contribut
the lowest order amplitude. In higher orders both the vec
and the axial vector parts of the weak current contribute. T
expression for the radiative corrections ofO(a) is given in
Eq. ~1.2!. Moreover, since the decaying pion is free, t
nuclear structure dependent corrections that complic
nuclear beta decay are absent. Based on the lifetime@8#

texp5~2.603360.0005!31028 s ~1.9!

and the branching ratio@10#

BR5~1.02560.034!31028, ~1.10!

the value ofVud was determined in Ref.@7# to be

uVudu50.967060.0161 ~1.11!

and the unitarity sum

V250.983360.0311. ~1.12!

The price to pay for the advantage of a simple theoret
analysis of pion beta decay is a large error inVud due to the
considerable experimental difficulty in measuring thep
branching ratio with a precision comparable to the one
tained in superallowed beta decays. However, there is a
posal for an experiment at PSI@11# with the aim of making a
precise determination of the pion beta decay rate. In the
phase of the experiment it is intended to measure the bra
ing ratio with an accuracy of 0.5%. The proposed expe
mental method was designed to finally achieve an ove
level of uncertainty in the range of 0.220.3 %.

The decay rate for pion beta decay including the RC
ordera is given by Eq.~1.2!, where an approximate expres
sion for the uncorrected decay rate has been derived long
by Källén @12#:

1/t05
GF

2 uVudu2

30p3 S 12
D

2M 1
DD5f ~e,D!, ~1.13!

f ~e,D!5A12e F12
9e

2
24e2

1
15

2
e2lnS 11A12e

Ae
D 2

3

7

D2

~M 11M0!2G ,

~1.14!
9-2
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RADIATIVE CORRECTIONS OFO(a) FOR PION BETA . . . PHYSICAL REVIEW D 63 053009
with e5me
2/D2 and D5M 12M0, whereM 1 and M0 are

the masses ofp1 and p0; GF is the Fermi coupling con-
stant. Equation~1.14! includes the leading correction in a
expansion in powers ofD2/(M 11M0)2 @1#. The effect of
the quark structure has been neglected entirely, and in Se
we shall study the error made by this approximation. In p
ticular, we shall investigate the effect of isospin violatio
due to the quark mass differencemd2mu , in order to make
sure that isospin breaking effects do not produce unexp
edly large contributions.

For a precision test of the unitarity of the CKM matri
i.e. of the standard model, an accurate calculation of the
in particular a reliable determination of the effect of the ha
ronic structure, is crucial. The terms in the electromagn
radiative corrections ofO(a) that are generated by the ve
tor current @the first two terms in Eq.~1.2!# are firmly
founded on a current algebra formulation and the details
the underlying quark structure are of only minor importan
We shall not further consider that part of the RC ofO(a)
which is induced by the vector current. While the sho
distance contribution of the axial vector current is well e
tablished too, its role at low energies strongly depends u
the detailed quark structure of the decaying hadron and
influence on the decay properties has been estimated
very roughly in terms of an effective low-energy cutoffMA

and the quantityC. We do not know of any published wor
that attempts to obtain the contribution of the axial vec
current using a model of hadronic structure. However, i
evident that a reliable interpretation of the experimental d
and a conclusive analysis of the unitarity problem neces
ily requires a more refined treatment of the effect of t
quark structure in order to substantially reduce the theor
cal uncertainties and to firmly establish the size of the h
ronic corrections.

In this paper we shall calculate the axial vector contrib
tion to the RC in the case of pion beta decay in the fram
work of the light-front quark model~LFQM!, which is a
relativistic constituent quark model based on the light-fro
formalism @13#. The LFQM provides a conceptually simpl
phenomenological method for the determination of hadro
form factors and coupling constants, and has become a m
used tool for investigating various electroweak properties
light and heavy mesons~see e.g.@14,15# and references
therein!. In Ref. @16# we have presented a covariant exte
sion of the LFQM which permits the calculation of all th
form factors that are necessary to represent the Lorentz s
ture of a hadronic matrix element. In this approach a me
is composed of valence quarks with constituent quark ma
and the structure of the boundqq̄ meson state is approxi
mated by a covariant model vertex function, which depe
on a parameter 1/b which essentially determines the confin
ment scale, i.e. The size of the composite meson. Form
tors are given in the one-loop approximation as light-fro
momentum integrals. As an example, it was shown in R
@16# that a prediction of the electromagnetic form factor
the pion for small values of the momentum transfer can
made that is in good agreement with the data.
05300
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The simple structure of theqq̄ bound state should allow
definite conclusions about the relative importance of the h
ronic environment in a calculation of the RC. Radiative co
rections of ordera to the form factors that describe pion be
decay arise from the virtual exchange ofZ, g or W and are
represented by two-loop diagrams. We shall extend the
proach of Ref.@16# and derive unique LFQM expression
~that are free of spurious contributions! for the two-loop dia-
grams associated with the axial vector current, and deriv
this way the effect of the hadronic structure on theO(a)
corrections for pion beta decay. This determination of
effect of the hadronic environment by means of a two-lo
calculation should be just as reliable as the one-loop ca
lation of the electromagnetic form factor of the pion.

We shall show in this work that the uncertainty of th
hadronic corrections due to the particular quark structure
the pion is small for pion beta decay. This result is in co
trast to the situation for superallowed nuclear decays
neutron decay where the large value ofC, Eq.~1.4!, signals a
much greater importance of the detailed quark structure w
all its model dependent uncertainty. We shall analyze sup
allowed nuclear decays and neutron decay in a future wor
a similar manner as for pion beta decay. But even with
knowing the result of such an investigation it is clear th
pion beta decay, once precise data are available, will alw
have a unique position due to the simple quark structure
the pion which generates hadronic corrections with v
small uncertainties.

In Sec. II we present the general formalism for pion be
decay without radiative corrections, which is analyzed
terms of two form factors that describe the quark structure
the pion. We investigate the effect on the decay rate of b
the isospin violation due to the quark mass difference and
momentum transfer dependence of the form factors. In S
III the detailed calculation of the RC due to the axial vec
current is presented. We consider three different groups
two-loop diagrams, and derive their light-front represen
tions. We discuss the associated zero-mode problem in
Appendix and show that the respective light-front amplitud
are unique, i.e. free of spurious contributions. The Appen
contains also a general discussion of the covariance pro
ties of one- and two-loop light-front integrals. We approx
mate higher order gluon exchange effects by means or
exchange diagrams, which are shown to be of only mi
importance if appropriate off-shell form factors are use
Section IV contains our result for the RC for pion beta d
cay.

II. GENERAL FORMALISM FOR PION BETA DECAY
WITHOUT RADIATIVE CORRECTIONS

The amplitude without radiative corrections for the dec
p1→p0ēn is given by

T15
GF

A2
Vud^ p0~P9!ud̄gm~12g5!uup1~P8! &Lm

~2.1!

where the matrix element of the leptonic current is
9-3
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WOLFGANG JAUS PHYSICAL REVIEW D 63 053009
Lm5ūn~kn!gm~12g5!ve~ l ! ~2.2!

andkn ,l are the 4-momenta of the neutrino and the posit
respectively. We represent the hadronic matrix element
pion beta decay in terms of appropriate form factors

^ p0~P9!ud̄gmuup1~P8! &5A2$~P81P9!mF1~q2!

1qmF2~q2!% ~2.3!

^ p0~P9!ud̄gmg5uup1~P8! &50 ~2.4!

whereq5P82P9 is the 4-momentum transfer which varie
within the rangeme

2<q2<(M 12M0)2.
It is convenient to analyze semileptonic decays of ps

doscalar mesons in terms of the form factorsF1(q2) and
F0(q2), where the scalar form factorF0(q2) is defined by

F0~q2!5F1~q2!1
q2

M 1
2 2M0

2
F2~q2!. ~2.5!

The differential partial width in terms of these form fa
tors is then

dG0~p1→p0ēn!

dq2
5

GF
2 uVudu2M 1

3

32p3
r~q2! ~2.6!

and the densityr(q2) consists of spin 0 and spin 1 contribu
tions as follows:

r~q2!5r0~q2!1r1~q2! ~2.7!

r0~q2!5
me

2

q2
„F0~q2!…2S 12

me
2

q2 D 2S 12
M0

2

M 1
2 D 2

pp

M 1

~2.8!

r1~q2!5
8

3
„F1~q2!…2S 12

me
2

q2 D 2S 11
me

2

2q2D S pp

M 1
D 3

~2.9!

wherepp is the recoil momentum of thep0 in the p1 rest
frame:

pp
2 5

1

4M 1
2 $~M 1

2 2M0
2!21q422q2~M 1

2 1M0
2!%. ~2.10!

If the quark structure of the pion is neglected, i.e. in the lim
F1(q2)5F0(q2)51 and for the approximationpp

2 .(M 1

1M0)2(D22q2)/4M 1
2 , the integrated partial width leads t

the approximate expression for the total decay rate 1/t0, Eq.
~1.13!.

In this section we shall briefly discuss the exact integra
partial width ~2.6! based upon the formulas for the for
factors F1(q2) and F2(q2), which we have derived in the
framework of the quark model in Ref.@16#.

The hadronic matrix element~2.3! is given in the one-
loop approximation, corresponding to the diagrams of Fig
as a light-front momentum integral, denoted byAm . The
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4-momentum of a meson of massM 8 in terms of light-front
components isP85(P82,P81,P'8 ), where the transverse
vector isP'8 5(P81,P82). Its constituent quarks have mass
m18 ,m2 and 4-momentap18 ,p2, respectively, and the tota
4-momentum of the meson state is given byp181p25P8, i.e.
The quarks are in general off the mass-shell. The appropr
variables for the internal motion of the constituents, (x,p'8 ),
are defined by

p18
15xP81, p2

15~12x!P81

p1'8 5xP'8 1p'8 , p2'5~12x!P'8 2p'8

and the kinematic invariant mass is

M08
25

p'8
21m18

2

x
1

p'8
21m2

2

12x
. ~2.11!

For the transition between an initialp15ud̄ with
4-momentum P8, mass M 8, and internal variables and
masses of its constituent quarks (x,p'8 ,m18 ,m2) and a final

p05(dd̄2uū)/A2 with 4-momentumP9, massM 9, and the
corresponding internal quantities (x,p'9 ,m19 ,m2), the mo-
mentum integralAm , in a Lorentz frame withq150, con-
sists of two parts that describe theu→d transition of Fig.
1~a! and thed̄→ū transition of Fig. 1~b!, and is given by

Am5
1

A2
„Hm~mu ,md ,md!1Hm~md ,mu ,mu!… ~2.12!

where

Hm~m18 ,m19 ,m2!5
Nc

16p3E0

1

dxE d2p'8
h08h09

~12x!N18N19
Sm

~2.13!

with

Sm5tr@g5~p” 191m19!gm~p” 181m18!g5~2p” 21m2!#,
~2.14!

whereNc is the number of colors, i.e.Nc53. The light-front
momentum integralHm , Eq. ~2.13!, is computed at the pole
of the spectator quark:

N2[p2
22m2

250. ~2.15!

FIG. 1. The one-loop contributions to pion beta decay.
9-4
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In our formalism@16# four-momentum is conserved and th
4-vectors appearing in the trace~2.14! are then given by

p25S m2'
2

p2
1

,p2
1 ,p2'D

p185P82p2

p195p182q, ~2.16!

wherem2'
2 5m2

21p'8
2 . It follows from Eq. ~2.16! that

N18[p18
22m18

25x~M 822M08
2!

N19[p19
22m18

25x~M 922M19
2!

M09
25

p'9
21~12x!m19

21xm2
2

x~12x!
, ~2.17!

andp'9 5p'8 2(12x)q' . In our phenomenological approac

we have chosen a pseudoscalar vertex operator for theqq̄
pair bound in a S-state state, with the matrix structure ofg5

and vertex functionsh08 andh09 , where@16#

h085h08~M08!5FM08
42~m18

22m2
2!2

4M08
3 G 1/2

3
M 822M08

2

@M08
22~m182m2!2#1/2

f~M08
2! ~2.18!

for the qq̄ bound state of massM 8, and a similar equation
for h09 . The orbital wave function is assumed to be a sim
function of the kinematic invariant mass as

f~M08
2!5N8exp~2M08

2/8b82!, ~2.19!

where N8 is the normalization constant and the parame
1/b8 determines the confinement scale. The normaliza
condition is obtained forM 85M 9, b85b95b, m185m19
5m25m andq250, either as a relation forHm(m,m,m):

Hm~m,m,m!5~P81P9!m , ~2.20!

or as a relation for the orbital wave function:

Nc

16p3E0

1

dxE d2p'8
M08

2x~12x!
uf~M08

2!u251, ~2.21!

which for the equal mass case is given explicitly by

f~M08
2!5p23/4b23/2S 8p3

3 D 1/2

exp„2~M08
224m2!/8b2

….

~2.22!
05300
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While the form factorF1(q2) in the one-loop approxima
tion can be derived directly from the plus component of t
momentum integralAm ~2.12!, the calculation of the form
factorF2(q2) requires an appropriate account of the effect
zero-modes, as we have shown in@16#. We shall not write
down the formulas for the form factors, they can be found
Ref. @16#, but quote the results of the numerical calculatio
In the limit of exact isospin symmetry the quark masses a
the pion masses are equal, i.e.mu5md5m and M 15M0
5Mp , and the form factors can be predicted:F1(q2)
5Fp(q2), whereFp is the charge form factor of the pio
with Fp(0)51, andF2(q2)50. In our model the effect of
isospin symmetry breaking is generated by a finite qu
mass differenceDm5md2mu , while the parameters for the
wave functions ofp1 and p0 are kept equal:b15b0
5bp . We use the parameters which we have found to
produce the properties of pions in very good agreement w
the data in Ref.@16#:

m5~mu1md!/25260 MeV

bp5308.8 MeV. ~2.23!

For the calculations of this section we assumed a mass
ferencemd2mu54 MeV.

The momentum transfer in pion beta decay is small a
the form factors can be approximated by monopole form

Fi~q2!5
F1~0!

12q2/L i
2

, i 50,1. ~2.24!

The explicit calculation givesL15719 MeV ~the corre-
sponding quantity for the charge form factor of the pion
Lp5720 MeV), while

F1~0!'12
Dm2

~902 MeV!2
5122.031025, ~2.25!

from which it is seen that the effect of symmetry breaking
F1(0) is of second order, in accordance with the Ademol
Gatto theorem@17#. In contrast,F2(0) is of first order in the
pion mass differenceM 12M0 and takes the value

F2~0!521.4431023, ~2.26!

which leads to the monopole approximation~2.24! for
F0(q2) with L051.123 GeV.

The widthG0 can be obtained from Eq.~2.6! by a numeri-
cal integration overq2 with the result

G0~p1→p0ēn!51/t0~121.231025!, ~2.27!

where 1/t0 is the approximate expression given by Eq
~1.13! and ~1.14!. The correction is essentially due to th
quark structure of the pion. Obviously, the effect of the sy
9-5
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WOLFGANG JAUS PHYSICAL REVIEW D 63 053009
metry breaking, Eq.~2.25!, is largely compensated by th
effect of theq2-dependence of the form factors, and the s
of all structure dependent contributions to the transit
probability, Eq. ~2.27!, is indeed very small, and can b
safely neglected. We shall continue to analyze pion beta
cay in the isospin symmetry limitmu5md5m, with m given
by Eq. ~2.23!.

III. THE RADIATIVE CORRECTIONS OF O„a… FROM
THE AXIAL VECTOR CURRENT

The axial vector current essentially contributes to p
beta decay inO(a) only in the two-loop processes which a
represented by the vertex correction diagrams of Fig. 2
the exchange diagrams of Fig. 3. The amplitude correspo
ing to the photon-exchange diagrams of Fig. 2, involving
axial vector current, is given by

T2
(g)5

GF

A2
Vud

a

4p3

3E d4k
Aml Lml

~k21 i«!~k222lk1 i«!

MW
2

MW
2 2~q2k!21 i«

.

~3.1!

FIG. 2. Vertex corrections for pion beta decay.

FIG. 3. Exchange corrections for pion beta decay.
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The leptonic tensor is

Lml5ūn~kn!gm~12g5!~2 l”1k”1me!glve~ l !

522l lLm1klLm1kmLl2gmlkL1 i«mlabkaLb

~3.2!

and the leptonic currentLm has been defined in Eq.~2.2!.
The hadronic tensorAml contains only the axial vector par
of the weak current. Current algebra methods have been
in Ref. @18# to derive its asymptotic behavior, which leads
the following expression forAml :

Aml52~Qu1Qd! i«mlabka ^ p0~P9!ud̄gbuup1~P8! &

3
i

k22MA
2

1OS 1

k2D , ~3.3!

where an arbitrary hadronic massMA is introduced to avoid
a spurious infrared divergence in Eq.~3.1!. The low-energy
part ofAml depends on the quark structure of the pion and
unknown.

If the result ~3.3! is inserted into Eq.~3.1! for T2
(g) and

added to the correspondingZ-exchange contributionT2
(Z) of

Fig. 2, one obtains the correction terms ofO(a) in Eq. ~1.2!
that are induced by the axial vector current, where the
known low-energy contribution is parametrized in terms
the constantMA .

It is the main purpose of this work to evaluate those co
tributions of the vertex correction and exchange diagra
that come from the axial vector current, in the light-fro
quark model of Ref.@16#. The model calculation coincide
with the result of Eq.~3.3! in the asymptotic limit and com-
pletes the current algebra approach by filling in the det
that depend upon the quark structure of the pion.

In addition we shall estimate the contribution of high
order gluon exchange by means of ther exchange diagrams
of Fig. 4.

A. The vertex corrections of Fig. 2

We shall calculate the contribution of the vertex corre
tion diagrams of Fig. 2 by treating separately the vertex c
rection for an off-shell quark. In the limitl 5kn5q50 the
matrix element for the exchange of a photon, that consist
a part that describes theu→d transitions of Figs. 2~a!,~b!

and an analogous part for thed̄→ū transitions, is given by

FIG. 4. r exchange corrections for pion beta decay.
9-6
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T2
(g)5GFVud

Nc

16p3E0

1

dxE d2p'8
h08

2

~12x!N18
2

a

4p
@QuP (a)1QdP (b)# ~3.4!

and the contribution of the vertex correction is

P (a)5
i

p2E d4k
Sml

(a) Lml

~k21 i«!2~k222p18k1N181 i«!

MW
2

MW
2 2k21 i«

, ~3.5!

P (b)5
i

p2E d4k
Sml

(b) Lml

~k21 i«!2~k212p19k1N191 i«!

MW
2

MW
2 2k21 i«

, ~3.6!

with

Sml
(a)5tr@g5~p” 191m19!~2gmg5!~p” 182k”1m!gl~p” 181m18!g5~2p” 21m2!#,

Sml
(b)5tr@g5~p” 191m19!gl~p” 191k”1m!~2gmg5!~p” 181m18!g5~2p” 21m2!#,

wherep195p18 andN195N18 , sinceq50. The evaluation of the traces gives the result

Sml
(a)52 i«mlab~4N18p18

ap2
b1kaSb!,

Sml
(b)52 i«mlab~24N18p18

ap2
b1kaSb!,

whereSb has been defined in Eq.~2.14!. Only the termi«mlabkaLb of the leptonic tensorLml , Eq. ~3.2!, contributes to the
momentum integralsP (a) andP (b), which can be written as

P (a)5
2

ip2E d4k
k2
•LS2kS•kL14N18~p18k•P8L2p18L•kP8!

~k21 i«!2~k222p18k1N181 i«!

MW
2

MW
2 2k21 i«

, ~3.7!

P (b)5
2

ip2E d4k
k2
•LS2kS•kL24N18~p18k•P8L2p18L•kP8!

~k21 i«!2~k212p19k1N191 i«!

MW
2

MW
2 2k21 i«

, ~3.8!
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where we have used thatp25P82p18 . The momentum inte-
grals of Eqs.~3.7! and~3.8! can be calculated in terms of th
usual space-time components by the standard Feynman
rameter method. Using the detailed results that have b
collected in Appendix A we find

P (a)5P (b)[P

52$~3b11b2 p18
2!LS2b2 p18S•p18L

24a1 N18~p18
2
•P8L2p18L•p18P8!%, ~3.9!

wherea1 , b1 andb2 are functions ofp18
2 and are given by

Eqs.~A3!–~A5!.
The matrix elementT2

(g) for the exchange of a photon ha
been expressed in terms of the light-front momentum in
gral ~3.4! which is to be computed at the pole of the specta
quark. However, it is well known~see e.g. Ref.@16# and
references therein! that this straightforward light-front repre
sentation of a hadronic matrix element is in general inco
plete and contains spurious contributions that violate Lore
covariance. These difficulties are a consequence of the
that the effect of the associated zero-modes is not includ
05300
pa-
en

-
r

-
tz
ct
d.

~Examples of zero-mode contributions can be found in A
pendix B, Eq.~B5!, and in Ref.@16#. A more general discus
sion in the context of light-front quantization is given in Re
@19#.! This is the zero-mode problem which in the prese
case can be circumvented by the decomposition of the ma
elementT2

(g) into a covariant~physical! part, that is not as-
sociated with a zero-mode, and a spurious part that is c
celed by the appropriate zero-mode contribution. We
only interested in the physical part ofT2

(g) that can be iden-
tified by choosing a special representation of the 4-vectoL:

L5~L2,0,0'!. ~3.10!

The method which we have developed in Ref.@16# can be
used to show that the resulting expression forT2

(g) is unique,
i.e. the contribution of the associated zero-mode vanis
exactly.

We thus conclude that the condition~3.10! guarantees tha
all spurious contributions are eliminated and the moment
integral ~3.4!, calculated at the pole of the spectator qua
uniquely defines the complete light-front representation
the matrix elementT2

(g) . In order to express the quantityP,
9-7
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Eq. ~3.9!, in terms of light-front variables, we compute th
following scalar products, using Eqs.~2.15!–~2.17!,

p18L5x P8L,

LS54xM08
2 P8L,

p18P85
1

2
~Mp

2 1N18!,

p18S52~p18
2 Mp

2 1m2Mp
2 2N18

2!.
~3.11!

In this manner one findsP as a function ofp18
25m21N18

5m21x(Mp
2 2M08

2):

P58P8LH 3b1xM08
22~a11b2!N18Fp18

22
x

2
~N181Mp

2 !G J .

~3.12!

Inserting Eq.~3.12! into Eq. ~3.4! we can express the matri
elementT2

(g) in terms ofT1, Eq. ~2.1!, as

T2
(g)5

1

2
T1 daxial

(2g) ,

daxial
(2g) 5

a

2p
~Qu1Qd!

Nc

16p3E0

1

dx

3E d2p'8
h08

2

~12x!N18
2

3H 6b1xM08
222~a11b2!N18

3S p18
22

x

2
~N181Mp

2 ! D J . ~3.13!

In arriving at Eq.~3.13! we have finally established the in
variant LFQM expression for the matrix elementT2

(g) ~see
also Appendix C!.

In order to complement the above remarks regarding
zero-mode problem, we note that the 3-dimensional lig
front momentum integral~3.13! with pointlike pqq̄ vertices
~i.e. for h05const), and the covariant 4-dimensional m
mentum integral that represents the photon-exchange F
man diagrams of Fig. 2~with the same pointlikepqq̄ verti-
ces! are equal, which is another proof that there are no ze
mode contributions.

We can reverse this argument and conclude that the t
sition from the covariant Feynman perturbation theory to
LFQM proceeds in two steps: In the first step the manifes
covariant 4-dimensional momentum integral, that cor
sponds to a given Feynman diagram, is represented ex
in terms of a 3-dimensional light-front momentum integr
In the second step appropriate phenomenologicalpqq̄ vertex
functions are introduced into the light-front representatio
05300
e
t-

-
n-

o-

n-
e
y
-
tly
.

For the amplitude of theZ-exchange diagrams of Fig. 2
that can be derived by an analogous analysis, one finds,
the quark structure contributes to the amplitude only to or
m2/MW

2 and m2/MZ
2 ; this is a small effect which can b

safely neglected. Therefore, the published result, that is
originally to Sirlin @1#, remains essentially unchanged and

T2
(Z)5 1

2 T1 daxial
(2Z)

daxial
(2Z) 5

a

2p
~Qu1Qd!S 3 ln

MZ

MW
1OS m2

MW
2

,
m2

MZ
2D D ,

~3.14!

where the minimal standard model relationMW
5MZ cosQW (QW is the weak angle! has been used~see
e.g. Ref.@8#!.

In the calculation of the vertex-loop integrals the value
the mass of the internal quark line is important only in t
low photon momentum range, where the quark mass is
sentially equal to the constituent mass. Therefore, for
numerical computation of Eq.~3.13!, we take the values
~2.23! for the parametersm andbp , and obtain the result

daxial
(2g) 5

a

2p
~Qu1Qd!S 3 ln

MW

m
1

9

4
1D1OS m2

MW
2 D D ,

D524.498, ~3.15!

where we have used the normalization condition~2.21!.
The combined correction is

daxial
(2) 5daxial

(2g) 1daxial
(2Z) 5

a

2p S 3~Qu1Qd!ln
MZ

m
1

3

4
1

D

3 D .

~3.16!

B. The exchange corrections of Fig. 3

The exchange diagrams of Fig. 3 are different from t
diagrams of Figs. 1 and 2 in that both quark lines are
volved in the decay process, and there is no well defin
spectator quark line. In order to establish the LFQM expr
sion for the amplitudeT3 that corresponds to the exchang
diagrams of Fig. 3 we shall use the analysis of the covar
two-loop diagram with pointlikepqq̄ vertices~a Feynman
diagram! presented in Appendix B, as a guide.

Just as in the case of the one-loop momentum integrals
can calculate the two-loop 4-momentum integrals, expres
in terms of light-front variables, by performing the integra
over the minus components of the loop momenta by cont
methods, whereby the momentum integrals are given as
dues of the respective quark poles. We have emphasize
the previous subsection that this straightforward proced
leads in general to an incomplete result since it misses
contribution of the zero-modes, and without including th
effect the contour method not only violates Lorentz cova
ance, but is an uncertain approximation of the 4-moment
integrals. The zero-mode problem can be circumvented o
if the special representation~3.10! is used. In Appendix B we
prove that the contribution of the zero modes vanishes
actly for the resulting amplitudeT3. Therefore, the contou
9-8
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method already leads to the complete result for the mom
tum integrals, which are given as residues of the respec
quark poles, and uniquely defines their light-front repres
tation.

We shall calculate the amplitudeT3 in the limit l 5kn

50, q5 l 1kn50 and P85P9, with P825Mp
2 . Only the

contribution of the axial vector current will be considered.
05300
n-
ve
-

t

consists of two parts, which depend upon the sign of the p
component of the photon momentumk5p192p185p282p29 .
For k1.0 the residue is determined by the poles of t
quarks with momentap18 and p29 . The remaining momenta
are determined by 4-momentum conservation, i.e.p285P8
2p18 andp195P82p29 . These conditions lead to the relation
e

r and

e

k1.0: p18
22m250, p29

22m250,

p28
22m25~12x8!~Mp

2 2M08
2!, p19

22m25x9~Mp
2 2M09

2!,

k25k.
2 5k$Mp

2 2~12x8!M08
22x9M09

2%2k'
2 , ~3.17!

wherek5k1/P815x92x8 and 0<k<12x8.
For k1,0 the residue is determined by the poles of the quarks with momentap28 and p19 . These conditions lead to th

relations

k1,0: p28
22m250, p19

22m250,

p18
22m25x8~Mp

2 2M08
2!, p19

22m25~12x9!~Mp
2 2M09

2!,

k25k,
2 5k$2Mp

2 1x8M08
21~12x9!M09

2%2k'
2 , ~3.18!

andk varies within the range2x8<k<0. The resulting amplitudeT3 is then given by

T35G Vud

aNc

128p5E0

1

dx8E d2p'8 E
0

1

dx9

3E d2p'9
h08 h09

x8~12x8!x9~12x9!~Mp
2 2M08

2!~Mp
2 2M09

2!

3S Q~x92x8!

k.
4

1
Q~x82x9!

k,
4 D ~QdSml

(a)2QuSml
(b)!Lml. ~3.19!

The hadronic tensors associated with the diagrams of Figs. 3~a!,~b! are

Sml
(a)5tr@g5~p” 191m!~2gmg5!~p” 181m!g5~2p” 281m!gl~2p” 291m!#,

Sml
(b)5tr@g5~p” 291m!gl~p” 281m!g5~2p” 181m!~2gmg5!~2p” 191m!#,

52Sml
(a) . ~3.20!

The leptonic tensorLml has been defined in Eq.~3.2!. The product of the hadronic and leptonic tensors consists of a scala
a pseudoscalar part:

Sml
(a)Lml5 i«mlabkaLbSml

(a)1pseudoscalar, ~3.21!

where the pseudoscalar terms do not contribute to the amplitudeT3 and will be ignored in the following presentation. Th
scalar terms are given by

Sml
(a)Lml58 ~p19p291m2!~p18k•P8L2p18L•P8k!28 ~p18p281m2!~p19k•P8L2p19L•P8k!. ~3.22!

Using the special representation~3.10! we find that

Sml
(a)Lml58 P8L ~p19p291m2!~p18k2x8P8k!28 P8L ~p18p281m2!~p19k2x9P8k!. ~3.23!

This equation can be written such that its value at the various quark poles becomes obvious:
9-9
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Sml
(a)Lml52 P8L „Mp

2 2~p19
22m2!2~p29

22m2!…„~12x8!~p19
22m2!

2~12x8!~p18
22m2!1x8~p29

22m2!2x8~p28
22m2!2k2

…

12 P8L „Mp
2 2~p18

22m2!2~p28
22m2!…„~12x9!~p18

22m2!

2~12x9!~p19
22m2!1x9~p28

22m2!2x9~p29
22m2!2k2

…. ~3.24!

The contribution ofSml
(a)Lml to the integrand of Eq.~3.19! for k1.0 is, according to the conditions~3.17!, given by

k1.0: Sml
(a)Lml52 P8L•R~x8,x9!, ~3.25!

where

R~x8,x9!5„~12x9!Mp
2 1x9M09

2
…„x9~12x8!~Mp

2 2M09
2!2x8~12x8!~Mp

2 2M08
2!2k.

2
…

1„x8Mp
2 1~12x8!M08

2
…„x9~12x8!~Mp

2 2M08
2!2x9~12x9!~Mp

2 2M09
2!2k.

2
…. ~3.26!

For k1,0 we use the conditions~3.18! to find

k1,0: Sml
(a)Lml52 P8L•R~12x8,12x9!. ~3.27!

The computation of the amplitudeT3 can be simplified by the observation that the integrals fork1.0 andk1,0 are equal,
which can be shown by substitutingx8 for 12x8 andx9 for 12x9.

Inserting Eq.~3.25! into Eq. ~3.19! we find the invariant LFQM expression for the matrix elementT3 ~see also Appendix
C!:

T35 1
2 T1 daxial

(3) ~3.28!

where

daxial
(3) 5~Qu1Qd!

aNc

16p5E0

1

dx8E d2p'8 E
x8

1

dx9E d2p'9
h08 h09 R~x8,x9!

x8~12x8!x9~12x9!~Mp
2 2M08

2!~Mp
2 2M09

2!k.
4

. ~3.29!

For the numerical calculation ofdaxial
(3) we take again the values~2.23! for the parametersm andbp and find the correction

daxial
(3) 5

a

2p
0.256. ~3.30!

C. The r exchange corrections of Fig. 4

Besides the diagrams of Figs. 2 and 3 there is also the sum of all irreducible higher order gluon exchange diagra
effect of this contribution can be approximated by means of diagrams of the type drawn in Fig. 4, where appropriate
states are exchanged between the weak axial vector and the electromagnetic vertices. The Born approximation~exchange of a
pion!, which in general is expected to give the dominant contribution, vanishes, since the pion does not couple to t
vector current. We shall consider only the lowest mass exchange process, i.e. ther exchange diagrams of Fig. 4, and calcula
the corresponding amplitude first for on-shell vertex structures, which are defined by the appropriate matrix element

The matrix element of the electromagnetic current for the transitionr0→p0 is

j l5Quūglu1Qdd̄gld

^P8u j luP9;1J3&5enGln
(g)5en ~Qu1Qd!g~k2!i«lnabPakb. ~3.31!

The matrix element of the axial vector current for the transitionp1→r0 is

^P9;1J3u2d̄gmg5uuP8&5A2 e* nGln
(A)

5A2 e* n $2 f ~k2!gmn2a1~k2!PmPn1a2~k2!kmPn%, ~3.32!

wheree5e(J3) is the polarization vector of ther, P5P81P9, andk5P92P8.
The amplitude that corresponds to the diagram of Fig. 4~a! is then given in the limitl 5kn50 by
053009-10
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T4a52G Vud~Qu1Qd!
ie2

~2p!4E d4k
Gln

(g)gnrGmr
(A)Lml

~k21 i«!2
„~P81k!22M r

21 i«…
, ~3.33!

where we have used the barer propagator

Dmn~P!5S gmn2
PmPn

P2 D D0~P!,

D0
21~P!5P22M r

21 i«, ~3.34!

and the leptonic tensorLml is given by Eq.~3.2! and P825Mp
2 . Using the hadronic tensors as defined by Eqs.~3.31! and

~3.32! gives the result

T4a52G Vud~Qu1Qd!
ie2

~2p!4E d4k g~k2! f ~k2!
4~P8k•kL2k2

•P8L !

~k21 i«!2
„~P81k!22M r

21 i«…
. ~3.35!

In the isospin symmetry limit the amplitudes corresponding to the diagrams of Fig. 4~a! and 4~b! are equal, and the tota
contribution is given by

T45T4a1T4b52 T4a .

The amplitudeT4 depends only on the form factorsg(k2) and f (k2), which we have determined in the framework of th
light-front formalism in Ref.@16#. The results of@16# can be written as

g~k2;P82,P92!52
Nc

8p3E0

1

dxE d2p'8
hp~M08!hr~M09!

~12x!x2~P822M08
2!~P922M09

2!

3H m1
2

M0912m
F p'8

21
~p'8 k'!2

k2 G J , ~3.36!

f ~k2;P82,P92!5
Nc

8p3E0

1

dxE d2p'8
hp~M08!hr~M09!

~12x!x2~P822M08
2!~P922M09

2!

3H 22xmM08
222xmP822mkP1mk212m~k22kP!

p'8 k'

k2

22

p'8
21

~p'8 k'!2

k2

M0912m
F2xP8212xM08

22k21kP22~k22kP!
p'8 k'

k2 G J , ~3.37!
ol
where p'9 5p'8 2(12x)k' , k'
2 52k2 and kP5P922P82.

We have designated thepqq̄ vertex functionh08 by hp(M08)

and therqq̄ vertex functionh09 by hr(M09); they are given
by Eq. ~2.18! in terms of thep massMp andr massM r ,
respectively. The on-shell form factors are given by

g~k2!5g~k2;Mp
2 ,M r

2!, f ~k2!5 f ~k2;Mp
2 ,M r

2!.
~3.38!

For the evaluation of the 4-momentum integral~3.35! it is
convenient to approximate the form factors by monop
forms:
05300
e

g~k2!5
g~0!

12k2/Lg
2

, f ~k2!5
f ~0!

12k2/L f
2

, ~3.39!

where the pole massesLg and L f are determined by the
derivatives of the form factors atk250. For the numerical
calculation we take the values~2.23! for the parametersm
andbp , andbr50.26 GeV@16#, and obtain the results

g~0!521.21 GeV21, Lg50.664 GeV ,

f ~0!520.85 GeV , L f51.72 GeV. ~3.40!
9-11
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The 4-momentum integral~3.35! can now be calculated b
the standard Feynman parameter method, with the resul

T45 1
2 T1 daxial

(4) ,

daxial
(4) 5

a

2p
~20.69!528.031024 ~on-shell!.

~3.41!

Sirlin has estimated the contribution of the diagrams of F
4 on the basis of vector dominance and Weinberg sum
arguments in Ref.@1# and found the correction to the deca
rate ‘‘to be a few times 1024,’’ in accordance with Eq.
~3.41!.

However, the intermediater in the diagrams of Fig. 4 is
off-shell, and for a rigorous evaluation of the correspond
amplitude the off-shell structure of the hadronic vertic
must be accounted for. Moreover, a consistent treatmen
quires the calculation of ther self-energy operator in the
sameqq̄-loop approximation that has been used for the c
culation of the hadronic form factors. The correspond
renormalizedr propagator that arises from theqq̄ structure
of the vector meson is obtained from Eq.~3.34! by the modi-
fication

D0
21~P!→D21~P!5~P22M r

21 i«! Fr~0;M r
2 ,P2!,

whereFr(k2;M r
2 ,P2) is the half-off-shell charge form facto

of the r, with the normalization conditionFr(0;M r
2 ,M r

2)
51. An analogous result has been derived for the renorm
ized pion propagator in Ref.@20#. For k250 the charge form
factors ofp andr are given in the one-loop approximatio
by the same analytical expression~with appropriatep andr
parameters! which has been derived in Ref.@16# to be

Fr~0;M r
2 ,P2!5

Nc

8p3E0

1

dxE d2p'8

3
„hr~M08!…2

~12x!x2~M r
22M08

2!~P22M08
2!

xM08
2 .

~3.42!

In order to estimate the importance of this structure effect
have used the light-front formulas~3.36! and ~3.37! to con-
tinue the form factorsg(k2) and f (k2) to their off-shell
forms g@k2;Mp

2 ,(P81k)2# and f @k2;Mp
2 ,(P81k)2#, with

P825Mp
2 . For an order of magnitude estimate it is sufficie

to compare the values of the different form factors atk50.
We find

g~0;Mp
2 ,Mp

2 !50.125 GeV21,

f ~0;Mp
2 ,Mp

2 !520.028 GeV,

Fr~0;M r
2 ,Mp

2 !520.070,

and consequently
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g~0;Mp
2 ,Mp

2 ! f ~0;Mp
2 ,Mp

2 !/„g~0! f ~0!Fr~0;M r
2 ,Mp

2 !…

50.048. ~3.43!

Therefore, without going into any further computational d
tails one can conclude that the resulting correction is redu
by at least the factor~3.43!, i.e.

daxial
(4) 5O~1025! ~off-shell!. ~3.44!

Evidently the correction due ther exchange diagrams of Fig
4 are very small, and can be safely neglected.

IV. CONCLUDING REMARKS

We have developed in this work a strategy to deal w
the effect of the hadronic structure on the corrections to p
beta decay inO(a) due to the axial vector current. It i
based on the light-front quark model for the pion, whoseqq̄
bound state structure is well described by two adjustable
rameters, constituent quark mass and confinement scale
have been shown in Refs.@14,16# to describe a large body o
data. In most applications of the light-front quark model t
effect of the hadronic structure could be well approxima
by one-loop diagrams. However, the axial vectorO(a) cor-
rections to the beta decay of aqq̄ bound state requires th
calculation of two-loop diagrams, and we have conside
three different types which are represented by the graph
Figs. 2, 3 and 4. The amplitudes corresponding to the d
grams of Figs. 2 and 3 can be expressed in terms of lig
front momentum integrals, which we have shown to
unique, i.e. there are no associated zero-mode contributi
Only the form factorsF2 and f, which are defined by Eqs
~2.3! and ~3.32!, respectively, are affected by zero modes
method to account for the effect of zero-modes has b
proposed in Ref.@16#. An alternative, explicitly covariant
approach for a consistent evaluation of the form factors
been presented in Appendix C. Both methods lead to
same numerical results. In particular, we have shown that
correction of the decay rate due to the contributions ofF2,
Eq. ~2.8!, and off, Eq. ~3.35! ~corresponding to the diagram
of Fig. 4!, is negligible.

The results of the quark model calculation for the corre
tions of O(a) due to the axial vector current are given b
Eqs.~3.16!, ~3.30! and ~3.44!, which can be rewritten in the
form of the standard representation~1.2! in terms of the
quantitiesMA andC:

daxial
(2) 1daxial

(3) 5
a

2p
3~Qu1Qd!ln

MZ

MA
,

MA5425.6868 MeV, ~4.1!

and

daxial
(4) 5

a

2p
3~Qu1Qd! 2C,

C5O~1022!. ~4.2!
9-12
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Comparison with Eq.~1.3! shows that the value~4.1! for the
effective massMA is clearly different from thea1 meson
mass, but close to the confinement scale of theqq̄ pion, and
is even below the guessed range~1.3!. The error bar associ
ated withMA in Eq. ~4.1! is due to the small uncertainties o
the constituent quark massm526065 MeV @14# and theZ
massMZ591.18860.007 GeV@8#. The value ofC, i.e. the
correction due to ther exchange diagrams of Fig. 4 is s
small that it can be neglected. The same is true of the ef
of the form factors of the pion which we have discussed
Sec. II.

Thus our model calculation of the axial vector contrib
tion to the radiative corrections ofO(a) not only gives a
definite value forMA , Eq. ~4.1!, which leads to larger cor
rections, but also removes the large uncertainty in the
due to the assumed range~1.3!. Using the average value o
Ref. @8# D5M 12M054.593660.0005 MeV, which gives
the end-point energy E05(M 11M0)D/2M 154.5180
60.0005 MeV, we find (a/2p)g(E0)51.051531022 and
obtain from Eqs.~1.2! and~4.1! the value of the RC to pion
beta decay

d5~3.23060.002!31022, ~4.3!

where the error comes from the uncertainty ofMA , Eq.
~4.1!. We emphasize that the error on the RC is of the sa
order as the neglected corrections~2.27!, due to the weak
form factors of the pion, anddaxial

(4) , Eq. ~3.44!.
We shall investigate the effect of the detailed structure

the three quark bound state on the properties of superallo
05300
ct
n

C

e

f
ed

nuclear decays and neutron decay in a future work, in
similar manner as for the pion. If we tentatively assume t
the effective massMA associated with aqqq nucleon will be
found approximately equal to the result given by Eq.~4.1!, it
is easy to show that the unitarity sum derived from nucl
decays becomesV250.995660.0011, i.e. the violation of
unitarity seems to be much more pronounced than indica
by Eq. ~1.6!.

However, a definite judgment of the unitarity proble
will be possible only if the complete results of both the d
tailed structure calculation forqqq nucleons and the preci
sion measurement of pion beta decay will be available.
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APPENDIX A: THE MOMENTUM INTEGRALS
FOR SEC. III A

The momentum integrals encountered in the calculat
of the vertex correction diagrams of Fig. 2 can be evalua
by the standard Feynman parameter method. Convenient
mulas for the on-shell case can be found, e.g., in Ref.@21#. In
Sec. III A the vertex correction is calculated for off-she
quarks in terms of the functionP, and the relevant integral
are given below:
plitude
he
1

ip2E d4k
km

~k21 i«!2~k262p18k1N181 i«!

MW
2

MW
2 2k21 i«

56p1m8 a1 , ~A1!

1

ip2E d4k
kmkn

~k21 i«!2~k262p18k1N181 i«!

MW
2

MW
2 2k21 i«

5gmnb11p1m8 p1n8 b2 , ~A2!

where

a152
1

p18
2

2
m2

p18
4

ln
m22p18

2

m2
1OS 1

MW
2 D , ~A3!

b15
1

4
ln

MW
2

m2
1

3

8
1

m22p18
2

4p18
2

1
m42p18

4

4p18
4

ln
m22p18

2

m2
1OS m2

MW
2 D , ~A4!

b252
1

2p18
2

2
m22p18

2

p18
4

2m2
m22p18

2

p18
6

ln
m22p18

2

m2
1OS 1

MW
2 D . ~A5!

APPENDIX B: THE TWO-LOOP DIAGRAM AND ITS ZERO-MODE CONTRIBUTION

We shall analyze in this appendix the two-loop diagrams of Fig. 3 for the special case of pointlikepqq̄ vertex functions.
From the corresponding covariant amplitude, which is given by the Feynman rules, we shall derive the light-front am
by integrating over the minus components of the momentum variables. For the purpose of this calculation we put tpqq̄
9-13
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coupling constant equal to 1. In the conventional space-time formalism the covariant amplitude in the limitl 5kn50 is given
by

T3
Feynman5

1

2
G Vud

i 2e2Nc

~2p!8 E d4p18E d4p19
~QdSml

(a)2QuSml
(b)!Lml

D18D28D19D29 ~k21 i«!2

MW
2

MW
2 2k21 i«

, ~B1!

whereDn85pn8
22m21 i«, Dn95pn9

22m21 i« for n51,2, andp181p285p191p295P8 with P825Mp
2 . The photon has momen

tum k5p192p185p282p29 . The leptonic tensorLml has been defined in Eq.~3.2!, and the hadronic tensorsSml
(a) andSml

(b) in Eq.
~3.20!.

If the momenta are decomposed into their light-front components we have

d4p185 1
2 P81dp18

2dx8d2p'8 , d4p195 1
2 P81dp19

2dx9d2p'9 .

We are only interested in the integration with respect top18
2 andp19

2 , and use the same technique as in Ref.@16#, which is
based upon the integral representation

i

p22m21 i e
5E

0

`

da eia(p22m21 i e). ~B2!

A similar procedure has been used in Refs.@22# to investigate the relation between the standard covariant quantum field th
and light-front field theory.

There are three basic integrals that contribute to the amplitude~B1!; these are

S i

2p D 2E dp18
2 E dp19

2
1

D18D28D19D29 ~k21 i«!2

MW
2

MW
2 2k21 i«

5
1

Mp
2 x8~12x8!x9~12x9!~Mp

2 2M08
2!~Mp

2 2M09
2!

3H Q~x92x8!

k.
4

MW
2

MW
2 2k.

2
1

Q~x82x9!

k,
4

MW
2

MW
2 2k,

2 J , ~B3!

S i

2p D 2E dp18
2 E dp19

2
p18

2

D18D28D19D29 ~k21 i«!2

MW
2

MW
2 2k21 i«

5
1

Mp
3 x8~12x8!x9~12x9!~Mp

2 2M08
2!~Mp

2 2M09
2!

3H ~Mp
2 2x8M08

2!Q~x92x8!

k.
4

MW
2

MW
2 2k.

2
1

~12x8!M08
2Q~x82x9!

k,
4

MW
2

MW
2 2k,

2 J , ~B4!

wherek.
2 andk,

2 have been defined in Eqs.~3.17! and~3.18!, and we have used thatP815Mp . The result for the first two
integrals~B3! and ~B4! coincides with the result obtained by the contour method, i.e. in both cases one finds the resi
the respective quark poles, and zero modes do not contribute.

The third integral we represent as

S i

2p D 2E dp18
2 E dp9

12
p18

2 p19
2

D18D28D19D29 ~k21 i«!2

MW
2

MW
2 2k21 i«

5
1

Mp
4 $P1Q~x92x8!1P2Q~x82x9!1R1d~x8!d~x9!1R2d~12x8!d~12x9!%. ~B5!

The form of the residue terms is obvious
053009-14
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P15
~Mp

2 2x8M08
2!~12x9!M09

2

x8~12x8!x9~12x9!~Mp
2 2M08

2!~Mp
2 2M09

2! k.
4

,

P25
~12x8!M08

2~Mp
2 2x9M09

2!

x8~12x8!x9~12x9!~Mp
2 2M08

2!~Mp
2 2M09

2! k,
4

. ~B6!

The functionsRn5Rn(p'8 ,p'9 ) for n51,2, which determine the zero-mode contribution, are independent ofMp , but their
detailed form cannot be derived by the method used above. For example,R1 is found to be the ratio of two functions, each
which becomes zero forx85x950. However, there is an alternative way to determineR1 andR2. It uses the limiting behavior
of the integral

lim
Mp→0

E d4p18E d4p19
p18P8•p19P8

D18D28D19D29 ~k21 i«!2

MW
2

MW
2 2k21 i«

5O~Mp
2 !, ~B7!

which is implied by Lorentz covariance.
If we define

P1
(0)5 lim

Mp→0
P15

1

~12x8!x9k.
4

,

P2
(0)5 lim

Mp→0
P25

1

x8~12x9!k,
4

, ~B8!

and integrate Eq.~B5! with respect tox8 andx9, then, according to Eq.~B8! the contribution ofO(Mp
24) must vanish exactly,

which gives the conditions

E
0

1

dx8 E
x8

1

dx9 P1
(0)1R150,

E
0

1

dx8 E
0

x8
dx9 P2

(0)1R250. ~B9!

From Eqs.~B9! for R1 andR2 it can be seen thatR15R2, by substitutingx8 for 12x8 andx9 for 12x9.
This derivation of the zero-mode contribution shows clearly that a residue term which is derived by the contour m

may contain a spurious part that is not consistent with the requirement of Lorentz covariance. It is the zero-mode con
that cancels this unphysical part of the residue term. This is an example of the deep connection between the zero-mod
Lorentz invariance of the light-front formalism.

Next, we shall decompose the product of leptonic and hadronic tensors in the integrand of Eq.~B1! into products of
light-front components. We use thatSml

(b)52Sml
(a) , Eq. ~3.20!, and the result~3.22!, and find

Sml
(a)Lml52 P8L$22p18

2p19
2~k1!2

1p18
2@k1~2m'9

21x9Mp
2 !2~122x8!Mp~2p'9 k'1x9Mpk1!#

2p19
2@k1~2m'8

21x8Mp
2 !2~122x9!Mp~2p'8 k'1x8Mpk1!#1•••%, ~B10!

where we have omitted all those terms that are independent ofp18
2 andp19

2 .
If the decomposition~B10! and the basic integrals~B3!–~B5! are used to perform the integration of Eq.~B1! with respect

to p18
2 andp19

2 , it is obvious that the zero-mode contribution of Eq.~B5! vanishes, since the term that contains the prod
p18

2p19
2 is multiplied with k1. The result for the momentum integral~B1! is given by the residues of the respective qua

poles, and zero modes do not contribute:
053009-15
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T3
Feynman5G Vud P8L ~Qu1Qd!

aNc

16p5E0

1

dx8E d2p'8 E
x8

1

dx9E d2p'9

3
R~x8,x9!

x8~12x8!x9~12x9!~Mp
2 2M08

2!~Mp
2 2M09

2! k.
4

MW
2

MW
2 2k.

2 1 i«
, ~B11!
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where we have used that the integrals fork1.0 and k1

,0 are equal, and the functionR(x8,x9) has been defined in
Eq. ~3.26!.

We have proven that the covariant Feynman integral~B1!
and the light-front integral~B11! are equal. Since the inte
grals are finite, this result can be verified by numerical c
culation. At this stage we depart from the covariant~Feyn-
man! perturbation theory and introduce phenomenologi
vertex functions, Eq.~2.18!, into the two-loop light-front in-
tegrals. This step gives the light-front quark model expr
sions, Eqs.~3.28! and ~3.29!, for the amplitudeT3, corre-
sponding to the diagrams of Fig. 3, in terms of a sim
convolution of light-front vertex functions.

APPENDIX C: COVARIANCE PROPERTIES
OF ONE- AND TWO-LOOP LIGHT-FRONT INTEGRALS

In order to treat the complete Lorentz structure of a h
ronic matrix element the authors of Ref.@23# have developed
a method to identify and separate spurious contributions
to determine the physical part of the hadronic matrix e
ment. The formal aspects of this approach have been in
tigated in Ref.@24#. We have developed a basically differe
technique in Ref.@16# to deal with this problem. Both meth
ods lead to the same 4-vector structure of the light-front
tegrals for the two-loop amplitudesT2

(g) andT3. In the first
part of this appendix we shall use a method that has b
proposed in Ref.@25# to determine the Lorentz invarian
parts of the light-front integrals, that are free of spurio
contributions; these are the LFQM expressions for the a
plitudesT2

(g) , Eq. ~3.13!, andT3, Eqs.~3.28! and ~3.29!.
The light-front integral for the amplitudeT2

(g) , Eqs.~3.4!
and ~3.9!, consists of three different terms which we wri
formally as

T2
(g)5E

0

1

dxE d2p'8
h08

2

~12x!N18
2 $ f 1~p18

2! P8L1 f 2~p18
2! p18L

1 f 3~p18
2! p18L•p18P8%, ~C1!

wherep18 is given in terms of the internal variablesx,p'8 by
Eq. ~2.17!. In order to analyze the covariance properties
the amplitudeT2

(g) we shall use the procedure of Ref.@16#
and shall show that the second term of Eq.~C1!, which de-
pends on the 4-vectorp1m8 , and the third term of Eq.~C1!,
which depends on the tensorp1m8 p1n8 , generate 4-vecto
structures that are in general not covariant, since they con
a spurious dependence on the orientation of the light-fro
The light-front is defined in terms of the lightlike 4-vectorv
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by the invariant equationvx50. The special casev
5(2,0,0') corresponds to the light-front or null-planevx
5x150.

We are only interested in the limitq5P82P950. There-
fore, the second term of Eq.~C1! can be decomposed wit
regard toP8 andv as

E
0

1

dxE d2p'8
h08

2

~12x!N18
2

f 2~p18
2! p1m8

5E
0

1

dxE d2p'8
h08

2

~12x!N18
2

f 2~p18
2!H xPm8 1C1

(1) vm

2vP8
J .

~C2!

Such an equation will be written in the following as a rel
tion between integrands:

p1m8 8xPm8 1C1
(1) vm

2vP8
. ~C3!

The coefficientC1
(1) is given in @16#, and we have shown

there that thev-term of Eq.~C3! is canceled exactly by the
corresponding zero-mode contribution. Therefore, we
omit thev-term and obtain a unique expression for the s
ond term of Eq.~C1! by the replacement

p18L→x P8L. ~C4!

The analysis of the third term of Eq.~C1! requires the tenso
decomposition

p1m8 p1n8 82 1
2 p'8

2 gmn1x2 Pm8 Pn8

1
1

vP8
~Pm8 vn1vmPn8!B1

(2)1
vmvn

4~vP8!2
C2

(2) , ~C5!

where

B1
(2)5

x

2
@N181~122x!Mp

2 #1 1
2 p'8

2 .

The coefficientC2
(2) is given in@16# and will not be required

here. We have argued in@16# that there is neither a zero
mode associated with the coefficientB1

(2) , nor does the inte-
gratedB1

(2) vanish for the light-front vertex functionh08 given
by Eq.~2.18!. Moreover,B1

(2) contributes to the physical par
of the amplitude and cannot be simply omitted. But ev
thoughB1

(2) is combined withvm its physical contribution
9-16
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can be expressed in terms of a covariant structure. Fo
construction we shall adopt a method that has been prop
in Ref. @25# for a covariant calculation of the electromagne
form factors of the nucleon. We shall split theB1

(2) term of
Eq. ~C5! into a part that is a linear combination of th
4-tensorsgmn andPm8 Pn8 , and a part that is orthogonal togmn

andPm8 Pn8 :

1

vP8
~Pm8 vn1vmPn8!B1

(2)5Bmn B1
(2)1Rmn B1

(2)

1
vmvn

~vP8!2
Mp

2 B1
(2) . ~C6!

The orthogonality conditions are given by

Pm8 Pn8R
mn5gmnRmn50.

The contribution of the coefficientB1
(2) to the physical part

of the amplitude is included correctly by the requirement

Pn8B
mn5P8m.

The tensorsBmn andRmn are then given by

Bmn5
1

3
gmn1

2

3Mp
2

Pm8 Pn8 ,

Rmn5
1

vP8
~Pm8 vn1vmPn8!

2
vmvn

~vP8!2
Mp

2 2Bmn . ~C7!

The construction~C6! contains an additional contributio
proportional tovmvn which can be combined with theC2

(2)

term of Eq.~C5!. The resulting expression forp1m8 p1n8 is

p1m8 p1n8 8S 2
1

2
p'8

21
1

3
B1

(2)Dgmn1S x21
2

3Mp
2

B1
(2)D Pm8 Pn8

1B1
(2) Rmn1S 1

4
C2

(2)1Mp
2 B1

(2)D vmvn

~vP8!2
. ~C8!

It is clearly separated into a physical contribution~in terms
of the 4-tensorsgmn andPm8 Pn8) that does not depend onv,
the termRmn that is orthogonal to and independent of t
physical part, and the term proportional tovmvn . The last
term, which is expected to be canceled by the associ
zero-mode contribution, andRmn , which is expected to be
canceled by higher order gluon exchange contributions,
spurious and will be omitted. Therefore, a unique express
for the third term of Eq.~C1! is obtained by the replacemen
05300
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p18L•p18P8→S 2
1

2
p'8

21B1
(2)1x2Mp

2 D P8L

5
x

2
~N181Mp

2 ! P8L

5xp18P8•P8L, ~C9!

where Eqs.~2.16! and~2.17! have been used for the last ste
In this manner we can rederive Eq.~3.13! for the amplitude
T2

(g) . In principle, the coefficients of the 4-vectors an
4-tensors in Eqs.~C3! and ~C8!, and consequently the light
front integral~3.13!, can also depend onv, however, since
v250 the v-dependence can enter only in the form of t
ratio vP8/vP9 which is always unity from the condition
vq50, see Refs.@25# and @24#.

In conclusion, this construction which basically consis
of the separation and omission of thev-dependent terms
leads to a Lorentz invariant expression for the amplitudeT2

(g)

in terms of the light-front integral~3.13!.
The same analysis can be carried out also for the am

tude T3. It is given by Eq.~3.19! in terms of the product
~3.22!. If the vectorsp1m8 and p1m9 are decomposed with re
gard to Pm8 and vm as in Eq.~C3!, we can get rid of the
v-dependent contributions by means of the replacement

p18L→x8 P8L,

p19L→x9 P8L. ~C10!

These relations lead to Eq.~3.23! and we have shown in
Appendix B, Eq.~B10!, that there are no zero modes ass
ciated with the resulting expression forT3, i.e., the light-
front integral~3.29! for T3 is invariant.

Note that our choice of the special representation~3.10!
for the 4-vectorL is equivalent to the replacements~C4!,
~C9! and ~C10!.

The developments of this Appendix enable us to reso
an inconsistency that is associated with the formalism of R
@16#. Based upon a special class of meson vertex functi
we have shown in@16# that there exists an exact correspo
dence between the explicitly covariant 4-dimensional and
light-front calculations in one-loop order. In that framewo
we could analyze the role of zero modes, in particular
found that covariance requires the inclusion of the effect
zero modes, and the conditions for the exact disappeara
of the spurious dependence on the orientation of the lig
front have been derived@in terms of the ‘‘covariance condi
tions,’’ Eq. ~3.32! of Ref. @16##. However, the vertex func-
tions used in the approach@16# are not symmetric in the
4-momenta of the constituent quarks, and can hardly be c
sidered a realistic approximation of theqq̄ bound state. We
have argued in@16# that mesons must be described in term
of light-front vertex functions which are symmetric in th
variables of the constituentqq̄ pair, and that it does not seem
possible to establish an equally straightforward corresp
dence between the respective light-front approach an
manifestly covariant 4-dimensional formalism. This mea
in particular that the light-front expression of a one-loop m
9-17
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trix element for transitions between symmetricqq̄ mesons
contains in general a nonvanishing spurious contribut
which violates Lorentz covariance. We have stated this
in Ref. @16#, but did not attempt to solve the problem.

In the covariant analysis of Ref.@16# we have calculated
the form factorsF1(q2), F2(q2), g(q2), f (q2) anda6(q2)
in terms of asymmetric meson vertex functions. For pract
applications it is important to know, if it is consistent wit
the requirement of Lorentz covariance to use these form
for form factors in combination with a general light-fron
vertex function~e.g. for a symmetricqq̄ meson!, or if it is
necessary to modify the formulas.

A fully covariant approach to treat hadronic matrix el
ments in the light-front formalism can be established by
combination of the methods that have been developed
Refs. @23,25,24# and in Ref.@16#, and it can be used as a
alternative and more general method for a consistent ev
ation of the form factors. This approach is valid for a gene
light-front vertex function, and we shall now compare t
results obtained with this method, with those of Ref.@16#.
ak
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For the calculation ofF1 and F2 we require the decom
position of the tensorp1m8 p1n8 with respect to the 4-vector
P8, P9 andv, under the conditionP82ÞP92. By a straight-
forward generalization of the covariant construction schem
which we have proposed in this Appendix, we found t
remarkable result that the formulas forF1 and F2 are the
same as those given in@16#, but expressed now in terms o
general~e.g., symmetric! meson vertex functions.

For the calculation ofg, f anda6 we need the decompo
sition of the tensorp1m8 p1n8 ep18 with respect to the 4-vector
P8, P9, e and v. The covariant construction of the form
factors is again straightforward but requires lengthy al
braic manipulations. We found that the formulas forg and
a1 are reproduced, whilef anda2 are modified with respec
to the results of Ref.@16#, if general meson vertex function
are used. In particular, Eq.~3.37! for f (k2;P82,P92) must be
replaced by

f ~k2;P82,P92!→ f ~k2;P82,P92!1D f ~k2;P82,P92!,

where
espond-
restric-

as
based
D f ~k2;P82,P92!5
Nc

8p3E0

1

dxE d2p'8
hp~M08!hr~M09!

~12x!x2~P822M08
2!~P922M09

2!

3
1

M0912m
H k2 P2

kP
~B1

(3)1B2
(3)!1O~k4!J . ~C11!

The functionsB1
(3) andB2

(3) have been defined in Ref.@16# and are given as

B1
(3)1B2

(3)5S x2
p'8 k'

k2 D S ~12x!P822xM08
21~k22kP!

p'8 k'

k2 D 1x
k21kP

k2 S p'8
21

~p'8 k'!2

k2 D . ~C12!

Note thatD f vanishes if Eq.~C11! is calculated with the asymmetric meson vertex functions of Ref.@16#.
SinceD f (0;P82,P92)50 the numerical results given in Eq.~3.40! are unchanged, except forL f which is calculated, using

Eqs.~3.37! and ~C11!, asL f51.80 GeV. Consequently, the number given for the correction~3.41! has to be corrected in a
minor way, i.e.,daxial

(4) 52.00081, while the final estimate~3.44! remains unchanged.
We have described in this Appendix how the approach of Ref.@16# can be combined with the approach of Refs.@23,25,24#

in order to decompose a hadronic matrix element on the light-front into its Lorentz covariant parts. In this manner corr
ing form factors can be determined that are consistent with the requirement of Lorentz covariance without imposing
tions on theqq̄ meson vertex function. We have calculated in this general framework the form factorsF1 , F2 , g anda1 , and
found that the formulas given in@16# are valid also in terms of generalqq̄ meson vertex functions. In contrast, the formul
for the form factorsf anda2 are different. It is remarkable that neither the numerical results of the present work, that are
on Ref.@16#, nor those of Ref.@16# itself are changed.
h
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