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Two-loop correction to Bhabha scattering
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We present the two-loop virtual QED corrections toe1e2→m1m2 and Bhabha scattering in dimensional
regularization. The results are expressed in terms of polylogarithms. The form of the infrared divergences
agrees with previous expectations. These results are a crucial ingredient in the complete next-to-next-to-leading
order QED corrections to these processes. A future application will be to reduce theoretical uncertainties
associated with luminosity measurements ate1e2 colliders. The calculation also tests methods that may be
applied to analogous QCD processes.
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I. INTRODUCTION

Bhabha scattering is an important process for extrac
physics from experiments at electron-positron colliders p
marily because it provides an effective means for determ
ing luminosity. These measurements depend on having
cise theoretical predictions for the Bhabha scattering cr
sections. As yet, the complete next-to-next-to-leading or
~NNLO! QED corrections needed for reducing theoreti
uncertainties have not been computed. In this paper
present the complete two-loop matrix elements that wo
enter into such a computation. This calculation also provi
a means for validating techniques that can be applied
physically important but more intricate QCD calculations.
also provides an additional explicit verification of a gene
formula due to Catani@1# for the structure of two-loop infra-
red divergences, and allows us to determine the proc
dependent terms for the processes at hand.

In Bhabha scattering there are two distinct kinematic
gions: small angle Bhabha scattering~SABS!, and large
angle~LABS!. In the energy range of the CERNe1e2 col-
lider ~LEP! and the SLAC Linear Collider~SLC!, SABS is
used to measure the machine luminosity via a dedica
small angle luminosity detector. SABS has a large cr
section—about four times larger thanZ decay in the 1° –3°
window—making it particularly effective as a luminosit
monitor. At the same time, SABS is calculable theoretica
with high accuracy from known physics~mainly QED!, apart
from hadronic vacuum polarization corrections that re
upon the experimental data fore1e2 annihilation into had-
rons at low energy@2,3#. Therefore, SABS is an importan
ingredient in measuring any absolute cross section. For
stance, the measurement of the hadronic cross section a
Z peak,sh

o , which enters several precision observables
especially dependent on an accurate theoretical unders
ing of Bhabha scattering.

At LEP-SLC, large angle Bhabha scattering interfe
with e1e2→Z→e1e2 and so it is needed to disentang
0556-2821/2001/63~5!/053007~12!/$15.00 63 0530
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important parameters such as the electroweak mixing an
It is also useful for measuring the luminosity at flavor fact
ries such as BABAR, BELLE, DAFNE, VEPP-2M, and
BEPC-BES@4#. A peculiarity of future electron linear collid-
ers is that the luminosity spectrum is not monochroma
because of the beam-beam effect. Because of this, meas
the total small angle cross section of Bhabha scattering a
is not sufficient, and therefore the angular distribution
LABS was proposed for disentangling the luminosity spe
trum @5#.

Due to the experimental importance of this process, s
nificant effort has been devoted to developing Monte Ca
event generators—see for instance Ref.@6# for an overview.
In order to match the impressive experimental precision
complete inclusion of NNLO QED quantum effects has b
come necessary. On the theoretical side, however, the ca
lation of two-loop four-point amplitudes has been a roa
block to further progress.

In this article we present the two-loop virtual QED co
rections to the differential cross section for Bhabha scat
ing, i.e., the two-loop amplitude interfered with the tree a
plitude and summed over all spins. We neglect the sm
electron mass in comparison to all other kinematic inva
ants, and use dimensional regularization to handle the e
ing infrared divergences. Besides these contributions, a n
ber of other virtual and real emission contributio
~discussed in the conclusions! still need to be obtained befor
a full Monte Carlo program for the Bhabha scattering cro
section can be constructed.

The two-loop QED four-fermion amplitudes are also
useful testing ground for two-loop QCD calculations co
taining more than one kinematic invariant, which are
quired for higher-order jet cross sections and other aspec
collider physics. For processes that depend on a single
mentum invariant, a number of important quantities ha
been calculated up to four loops, such as the total cross
tion for e1e2 annihilation into hadrons and the QC
b-function @7#. In contrast, the only complete two-loop fou
©2001 The American Physical Society07-1
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point scattering amplitudes presently known for generic
nematics in massless gauge theory are theN54 super-Yang-
Mills amplitudes @8,9#, and gg→gg in a single helicity
configuration in pure gauge theory@10#. The two-loop am-
plitudes required for NNLO computations of jet productio
in hadron colliders, or for NNLO three-jet rates and oth
event shape variables ate1e2 colliders, remain uncalcu
lated. We note in passing that partial results for the leadi
color part of two-loop contributions to quark-quark scatt
ing have very recently appeared@11#.

Two important technical breakthroughs are the calcu
tions of the dimensionally regularized scalar double box
tegrals with planar@12# and non-planar@13# topologies and
all external legs massless, and the development of reduc
algorithms for the same types of integrals with loop m
menta in the numerator~tensor integrals! @14–17,11#. Re-
lated integrals, which also arise in the reduction proced
have been computed in Refs.@18,19#. Taken together, thes
results are sufficient to compute all loop integrals requi
for 2→2 massless scattering amplitudes at two loops, t
removing a major obstacle to several types of NNLO cal
lations. In this paper we use these techniques to evaluate
integrals encountered in the Bhabha calculation. An e
more recent result concerning two-loop planar double b
integrals with one massive external leg@20# holds promise
for the NNLO computation of three-jet rates ate1e2 collid-
ers.

There has also been significant progress in develop
general formalisms for other aspects of NNLO computatio
involving massless particles. The motivation has typica
been infrared-safe observables in QCD, but many of the
velopments can be applied to the Bhabha process as
The developments include an understanding of the intric
structure of the infrared singularities that arise when m
than one particle is unresolved~i.e., is soft or collinear with
another particle! @21–23#. Improved approximations to th
NNLO correction to splitting functions have been co
structed recently as well@24#.

Infrared divergences are a significant complication in
the QCD and QED computations mentioned above. In
suitably ‘‘infrared-safe’’ observable all final-state dive
gences will cancel@25#. However, divergences occur in in
dividual amplitudes for fixed particle number, and it is ve
useful to have a general description of such divergen
Catani has presented a general formula for the infrared
vergence appearing in any two-loop QCD amplitude@1#. By
appropriately adjusting group theory factors, it is straightf
ward to convert Catani’s QCD formula to a QED formul
allowing us to directly verify it. Moreover, we extract th
exact form of a process-dependent term in the formula,
the case of QED scattering of four charged fermions. Pre
ously, the only process for which this term had been
tracted@1# was the quark form factor which enters Drell-Ya
production@26#. ~It should also now be possible to extract
for gg→ Higgs using the recent two-loop computation@27#.!
Interestingly, a simple generalization of the quark form fa
tor term ~converted to QED! correctly predicts the process
dependent term for thee1e2→m1m2 and Bhabha ampli-
tudes. We also use Catani’s formula to conveniently organ
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the infrared divergences and to absorb some of the fi
terms.

The previously computed non-Abelian gauge theory a
plitudes@8–10# were obtained via cutting methods. The lo
multiplicity and relative simplicity of thee1e2→m1m2 and
Bhabha scattering Feynman diagrams makes it relativ
easy to directly compute the diagrams, as we do here.
include here only the pure QED diagrams, neglecting
example the contributions ofZ exchange, and hadroni
vacuum polarization effects. The former are negligible at t
order in SABS and in LABS at flavor factories. The hadron
contributions are important, but much of their effect
straightforward to include by introducing a running couplin

We perform the calculation in dimensional regularizati
@28# with d5422e and set the small electron mass to ze
since it is the only form in which the required two-loo
momentum integrals are known. Moreover, it provides
powerful method for simultaneously dealing with both t
infrared and ultraviolet divergences encountered in ga
theories. Traditionally, dimensional regularization is n
used for QED, in part because the infrared divergences
relatively tame compared to non-Abelian gauge theories
photon and electron masses are sufficient for cutting off
theory. Another important reason for using dimension
regularization is to validate techniques that can also be
plied to the more complicated case of QCD. In QCD, dime
sional regularization is the universally utilized method f
dealing with divergences.

In the high-energy Bhabha process, even with
‘‘infrared-safe’’ ~calorimetric! final-state definition, the elec
tron mass will still appear in large logarithms of the for
L[ ln(Q2/me

2) due to initial-state radiation. However, in th
dimensionally regulated amplitudes these singularities~like
all others! appear as poles ine. It may therefore be mos
convenient to handle the initial-state singularities using
electron structure function method@29# implemented in the
modified minimal subtraction (MS) collinear factorization
scheme.

In the next section we briefly describe our method
computing the two-loop amplitudes. Then we describe C
ani’s formula for the divergence structure of the amplitud
followed by a presentation of the finite (O(e0)) terms for
both e1e2→m1m2 and Bhabha scattering. In the final se
tion we give our conclusions, including some discussion
the remaining ingredients still required for construction o
numerical program for Bhabha scattering at this order.

II. THE TWO-LOOP AMPLITUDES

The 16 independent Feynman diagram topologies desc
ing the two-loop QED corrections toe1e2→m1m2 and
Bhabha scattering are enumerated in Fig. 1. In this figure
have suppressed the fermion arrows. After including the
mion arrows and distinct labels for the external legs, th
are a total of 47 Feynman diagrams; however, many of th
diagrams generate identical results. Of the 47 diagrams
contain no fermion loop, 11 contain one fermion loop, and
contains two fermion loops. The Bhabha amplitude may
obtained from thee1e2→m1m2 amplitude by adding to it
7-2
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TWO-LOOP CORRECTION TO BHABHA SCATTERING PHYSICAL REVIEW D63 053007
the same set of diagrams, but with an exchange of one pa
external legs. Thee2m2→e2m2 ande2m1→e2m1 ampli-
tudes may, of course, be obtained by crossing.

We have evaluated these diagrams interfered with the
amplitudes and summed over spins in the conventional
mensional regularization~CDR! scheme. This interferenc
gives directly the two-loop virtual correction to the 2→2
differential cross section. The rules for implementing CD
are straightforward because all particles are treated
formly in all parts of the calculation. In this scheme, a
momenta and all Lorentz indices are taken to beD5422e
dimensional vectors.~The g-matrices remain as 434 matri-
ces; i.e., Tr@1#54.!

After performing allg-matrix algebra present in the two
loop Feynman diagrams, we use the conservation of
menta flowing on the internal lines to express the ten
structure of the diagrams in terms of inverse scalar propa
tors and a small number of additional scalar invariants c
taining loop momenta. The inverse scalar propagators ca
propagators in the denominator to generate simpler ‘‘bou
ary’’ integrals. To handle the integrals containing scalar
variants, we introduce Feynman parameters and interpre
resulting integrals in terms of scalar integrals with multip
propagators, which are then reduced to a set of master
grals with the help of equations in Refs.@14,15,19#.

Proceeding in this way, we obtain an expression for
amplitude in terms of master integrals~of the type listed in
Ref. @15#, plus a few more for the planar double box topo
ogy! multiplied by coefficient functions. This expression
in principle valid to an arbitrary order ine, assuming that the
master integrals could be evaluated to such an order. H
ever, it is a bit too lengthy to present here, and for NNL
computations only the series expansion ine throughO(e0) is
required. To carry out this expansion, we use expansion
the master integrals presented in Refs.@12–15,18,19#. As
noted in Ref.@11#, there is a slight problem with the origina
choice of basis@14# for the two master planar double bo
integrals. In that basis, the coefficients for generic ten
integrals contain 1/e poles, necessitating anO(e) evaluation

FIG. 1. The independent diagrammatic topologies for two-lo
four-fermion scattering in QED.
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of the master integrals. Several solutions to this probl
have been presented@17,11#. We have used a slightly differ
ent solution, which is simply to use the original pair of ma
ter integrals defined in Ref.@14#, except evaluated ind56
22e instead ofd5422e. In d5622e the integrals have
neither ultraviolet nor infrared divergences, making the
simpler to evaluate throughO(e0) than thed5422e inte-
grals.

Many of the master integral expansions quoted in Re
@12–15,18,19# are in terms of Nielsen functions@30#,

Sn,p~x!5
~21!n1p21

~n21!! p! E0

1dt

t
lnn21 t lnp~12xt!, ~2.1!

with n1p<4. We have found it useful to express the resu
instead in terms of a minimal set of polylogarithms@31#,

Lin~x!5(
i 51

`
xi

i n 5E
0

xdt

t
Lin21~ t !,

Li 2~x!52E
0

xdt

t
ln~12t !, ~2.2!

with n52,3,4, using relations such as

S13~x!52Li4~12x!1 ln~12x!Li3~12x!1
1

2
ln2~12x!

3„Li2~x!2z2…1
1

3
ln3~12x!ln x1z4 ,

S22~x!5Li4~x!2Li4~12x!1Li4S 2x

12xD
2 ln~12x!„Li3~x!2z3…1

1

24
ln4~12x!

2
1

6
ln3~12x!ln x1

1

2
z2 ln2~12x!1z4 ,

for 0,x,1. ~2.3!

Here

zs[ (
n51

`

n2s; z25
p2

6
, z351.202057 . . . , z45

p4

90
.

~2.4!

The analytic properties of the non-planar double box
tegrals are somewhat intricate@13#, since they are not real in
any of the three kinematic channels for the 2→2 process,

s-channel: s.0; t,u,0,

t-channel: t.0; s,u,0, ~2.5!

u-channel: u.0; s,t,0,

p

7-3
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Z. BERN, L. DIXON, AND A. GHINCULOV PHYSICAL REVIEW D 63 053007
where s5(k11k2)2, t5(k12k4)2, and u5(k12k3)2.
Therefore we shall present explicit formulas for the fin
terms in the amplitude in both thes- andu-channels; those in
the t-channel will be related by symmetries.

A. General structure of divergences

Dimensionally regulated two-loop amplitudes for fo
massless fermions contain poles ine5(42d)/2 up to 1/e4.
The structure of most of these singularities has already b
exposed by Catani@1#, who described the infrared behavio
of general two-loop QCD processes. We shall theref
adopt his notation in presenting our results.

We work with ultraviolet renormalized amplitudes, an
employ theMS running coupling for QED,a(m2). Of course
this scheme can always be converted to another one,
examplea(Q2) defined via the photon propagator at m
mentum transferQ, by a finite renormalization. The relatio
between the bare couplingau anda(m2) through two-loop
order can be expressed as@1#

aum0
2eSe5a~m2!m2e

3F12a~m2!
b0

e
1a2~m2!S b0

2

e2 2
b1

2e D
1O„a3~m2!…G , ~2.6!

where Se5 exp@e„ln 4p1c(1)…# and g52c(1)
50.5772 . . . isEuler’s constant. The first two coefficients o
the QED beta function are

b052
Nf

3p
, b152

Nf

4p2
, ~2.7!

whereNf is the number of light~massless! charge 1 fermi-
ons.

The renormalized four-fermion amplitude is expanded

M4„a~m2!,m2;$p%…

54pa~m2!FM 4
(0)~m2;$p%!1

a~m2!

2p
M 4

(1)~m2;$p%!

1S a~m2!

2p D 2

M 4
(2)~m2;$p%!1O„a3~m2!…G .

~2.8!

The infrared divergences of a renormalized two-loop a
plitude in QCD or QED are@1#

uM n
(2)~m2;$p%!&R.S.5I (1)~e,m2;$p%!uM n

(1)~m2;$p%!&R.S.

1I R.S.
(2) ~e,m2;$p%!uM n

(0)~m2;$p%!&R.S.

1uM n
(2)fin~m2;$p%!&R.S., ~2.9!

whereuM n
(L)(m2;$p%)&R.S. is a color space vector represen

ing the renormalizedL loop amplitude. The subscript R.S
05300
en

e

or

s

-

stands for the choice of renormalization scheme, andm is the
renormalization scale. These color space vectors give
amplitudes via

Mn~1a1, . . . ,nan![^a1 , . . . ,anuMn~p1 , . . . ,pn!&,
~2.10!

where theai are color indices. The divergences ofMn are
encoded in the color operatorsI (1)(e,m2;$p%) and
I (2)(e,m2;$p%). In the QED case, the color space language
clearly unnecessary;M n

(L) and I (L) are just numbers.
In QCD, the operatorI (1)(e,m2;$p%) is given by

I (1)~e,m2;$p%!5
1

2

e2ec(1)

G~12e! (
i 51

n

(
j Þ i

n

Ti•Tj

3F 1

e2 1
g i

T i
2

1

e G S m2e2 il i j p

2pi•pj
D e

,

~2.11!

where l i j 511 if i and j are both incoming or outgoing
partons andl i j 50 otherwise. The color chargeTi5$Ti

a% is a
vector with respect to the generator labela, and anSU(Nc)
matrix with respect to the color indices of the outgoing p
ton i. The values required for QCD are

T q
25T q̄

25CF , Tg
25CA5Nc ,

gq5g q̄5
3

2
CF , gg5

11

6
CA2

2

3
TRNf . ~2.12!

For QED we let CA→0, CF→1, TR→1 and Ti•Tj
→eiej561, where theei are the electric charges, to obta

I (1)~e,m2;$p%!5
e2ec(1)

G~12e! S 2

e2 1
3

e D
3F2S m2

2sD
e

2S m2

2t D
e

1S m2

2uD eG ,
~2.13!

for the four-fermion amplitude

e1~k1!e2~k2!→m1~k4!m2~k3!. ~2.14!

~Note that the charges of incoming states should be reve
in computingTi•Tj .)

The operatorIR.S.
(2) is given in QCD by@1#

IR.S.
(2) ~e,m2;$p%!

52
1

2
I (1)~e,m2;$p%!S I (1)~e,m2;$p%!1

4pb0

e D
1

e1ec(1)G~122e!

G~12e! S 2pb0

e
1K D I (1)~2e,m2;$p%!

1HR.S.
(2) ~e,m2;$p%!, ~2.15!

where the coefficientK is

K5S 67

18
2

p2

6 DCA2
10

9
TRNf . ~2.16!
7-4
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TWO-LOOP CORRECTION TO BHABHA SCATTERING PHYSICAL REVIEW D63 053007
For the QED process~2.14!, we insertI (1) from Eq. ~2.13!,
takeb0 andb1 from Eq. ~2.7!, and letK→210Nf /9.

The function HR.S.
(2) is process-dependent but has on

singlepoles:

HR.S.
(2) ~e,m2;$p%!5O~1/e!. ~2.17!

Reference@1# does not give an expression forHR.S.
(2) for a

general amplitude, but only for the case of aqq̄ pair, i.e. a
single charged fermion pair. The result, which is extrac
from the two-loop QCD computation of the electromagne
form factor of the quark@26#, is

Hqq̄,CDR
(2)

~e,m2;$p%!5
1

4e

e2ec(1)

G~12e! S m2e2 il12p

2p1•p2
D 2e

3F1

4
g (1)13CFK15z2pb0CF

2
56

9
pb0CF2S 16

9
27z3DCFCAG ,

~2.18!

where

g (1)5~23124z2248z3!CF
2

1S 2
17

3
2

88

3
z2124z3DCFCA

1S 4

3
1

32

3
z2DCFTRNf . ~2.19!

Performing the usual conversion to QED yields a result
plicable to the electromagnetic form factor of the electron

He1e2,CDR
(2)

~e,m2;$p%!

5
1

4e

e2ec(1)

G~12e! S m2e2 il12p

2p1•p2
D 2e

3F2
3

4
16z2212z31S 2

25

27
1z2DNf G .

~2.20!
05300
d
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Using our two-loop computation, and an all-orders-ine
computation of the one-loop amplitude fore1e2→m1m2

~see Sec. II B!, we have verified that the singular behavior
the e1e2→m1m2 amplitude in CDR agrees precisely wit
that predicted by Eq.~2.9! in all three kinematic channels.1

In addition, we have extracted the functionHe1e2m1m2,CDR
(2)

controlling the 1/e poles in Eq.~2.9!. We obtain

He1e2m1m2,CDR
(2)

~e,m2;$p%!

5
1

4e

e2ec(1)

G~12e!
32F S m2

2sD
2e

1S m2

2t D
2e

2S m2

2uD 2eG
3F2

3

4
16z2212z31S 2

25

27
1z2DNf G .

~2.21!

This result agrees with a ‘‘naive’’ generalization from th
form factor case, in which one sums Eq.~2.20! over the six
pairs of charged legs in the four-point amplitude, weight
by the sign of the charge producteiej . @Note that the factors
of „m2/(2si j )…

2e are purely conventional here, since the
deviation from unity only contributes at the level of finit
parts,O(e0). However, the overall normalization is predicte
correctly by the sum over the six pairs.#

B. e¿eÀ\µ¿µÀ at one loop to all orders in e

In order to verify the structure of the infrared singula
ties, and to extract the finite remainder of the two-loop a
plitude presented below, we computed the one-loope1e2

→m1m2 amplitude~interfered with the tree amplitude! to
all orders ine. The result is

(
spins

M 4
(1)M 4

(0)†5
2

3

Nf

e (
spins

M 4
(0)M 4

(0)†

1†A(1)1S@A(1)#‡uj51 , ~2.22!

where the first term is theMS counterterm, expressed i
terms of the tree-level interference

(
spins

M 4
(0)M 4

(0)†58F t21u2

s2 2eG , ~2.23!

and
rmediate
A(1)54j~122e!
u

s2 @~223e!u226etu13~22e!t2#Box(6)~s,t !24
j

122e

t

s2 @~4212e17e2!t226e~122e!tu

1~4210e15e2!u2#Tri~ t !2
8

~122e!~322e!

1

s
@2e~12e!t„~12e!t2eu…Nf

2e~322e!~22e12e2!tu1~12e!~322e!„22~12j!e12e2
…t2#Tri~s!. ~2.24!

The symmetry operationS acts as

1Strictly speaking, we have computed the interference of the two-loop amplitude with the tree amplitude, summed over inte
fermion spins, so in our verification Eq.~2.9! should be similarly understood to be interfered with the tree amplitude.
7-5



ther

round

Z. BERN, L. DIXON, AND A. GHINCULOV PHYSICAL REVIEW D 63 053007
S: t↔u, j↔2j. ~2.25!

After carrying out the operation ofS, one should then setj51. ~Basically,j allows us to separate diagrams based on whe
they have an even or odd number of photons attached to the muon line. Because photons have C521, this criterion governs
the t↔u symmetry properties.!

In Eq. ~2.24!, Box(6)(s,t) and Tri(s) are one-loop box and triangle integrals, the former evaluated in an expansion a
d5622e. For the divergence formula~2.9!, we need their series expansions ine throughO(e2). In theu-channel, where the
functions are manifestly real, their expansions are given by

Box(6)~s,t !5
u212e

2~122e! S 12
p2

12
e2D F1

2
„~V2W!21p2

…12eS Li3~2v !2VLi2~2v !2
1

3
V32

p2

2
VD

22e2S Li4~2v !1WLi3~2v !2
1

2
V2Li 2~2v !2

1

8
V42

1

6
V3W1

1

4
V2W22

p2

4
V22

p2

3
VW22z4D1~s↔t !G

1O~e3!,

Tri~s!52
~2s!212e

e2 F12
p2

12
e22

7

3
z3e32

47

16
z4e4G1O~e3!, ~2.26!
g

o
g

fer-

r-
n

ion

ers
where

v5
s

u
, w5

t

u
, V5 lnS 2

s

uD , W5 lnS 2
t

uD .

~2.27!

The expansions in thes- and t-channels can be found usin
analytic continuation formulas such as@19#

ln~12x1 i«!5 ln~x21!1 ip,

Li 2~x1 i«!52Li2S 1

xD2
1

2
ln2x1

p2

3
1 ip ln x,

Li 3~x1 i«!5Li3S 1

xD2
1

6
ln3 x1

p2

3
ln x1 i

p

2
ln2 x,

~2.28!

Li4~x1 i«!52Li4S 1

xD2
1

24
ln4 x1

p2

6
ln2 x12z4

1 i
p

6
ln3 x,

x.1,

where i« is an imaginary infinitesimal added tos, t or u
before continuing.

We have verified that throughO(e0) our result for the
one-loop amplitude agrees with a previous calculation@32#,
up to terms which can be identified as being due to the c
version between dimensional regularization and mass re
larization.

C. Modifications for Bhabha scattering

In comparison with the processe1e2→m1m2 described
above, the Bhabha scattering process
05300
n-
u-

e1~k1!e2~k2!→e1~k4!e2~k3!, ~2.29!

has additional exchange diagrams. In general, the inter
ence required for Bhabha scattering is given by

(
spins

M 4
(L1)M 4

(L2)†U
Bhabha

5 (
spins

M 4
(L1)M 4

(L2)†
1 (

spins
M 4

(L1)M̃4
(L2)†

1UF (
spins

M 4
(L1)M 4

(L2)†
1 (

spins
M 4

(L1)M̃4
(L2)†G ,

~2.30!

where the symmetryU acts as

U: s↔t, ~2.31!

M 4
(L) is theL-loop amplitude fore1e2→m1m2, andM̃4

(L)

is the sameL-loop amplitude but with legs 1 and 3 inte
changed~taking into account the Fermi statistics minus sig!.

D. Bhabha scattering at one loop to all orders ine

In the CDR scheme, the tree-level exchange contribut
required for Bhabha scattering in Eq.~2.30! is

(
spins

M 4
(0)M̃4

(0)†58~12e!Fu2

st
1eG . ~2.32!

The one-loop exchange contribution, evaluated to all ord
in e, is given by

(
spins

M 4
(1)M̃4

(0)†5
2

3

Nf

e (
spins

M 4
(0)M̃4

(0)†1Ã(1),

~2.33!

where
7-6
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Ã(1)58~122e!
u

st
„~124e1e2!t222e~22e!tu1~12e!2u2

…Box(6)~s,t !18~122e!
1

s
„e~223e2e2!t2

12e~123e2e2!tu2~222e13e21e3!u2
…Box(6)~s,u!2

8~12e!

~122e!~322e!

1

t
@2e~12e!~u21est!Nf

2~322e!„2e~11e2!t21e~312e2!tu22~12e1e2!u2
…#Tri~s!1

8

122e

1

s
„e~225e12e22e3!t2

1e~123e1e22e3!tu2~12e!~223e2e2!u2
…Tri~ t !2

8

122e

u

st
„e~224e1e22e3!t2

1e~223e2e3!tu2~12e!~224e2e2!u2
…Tri~u!. ~2.34!

Using these results, and the computation of the two-loop exchange terms, we again find that the additional singu
in Bhabha scattering are described by Eq.~2.9!, where~not surprisingly! HR.S.

(2) is given by precisely the same expression~2.21!
that we found fore1e2→m1m2.

E. Finite contributions to the amplitudes

1. e¿eÀ\µ¿µÀ

Finally we give the real~dispersive! part of the finite remainder in Eq.~2.9!, interfered with the tree amplitude in the CD
scheme. First we treat thee1e2→m1m2 process~2.14!. It is convenient to decompose the finite part according to the num
of light flavors,Nf ,

(
spins

Re@M 4
(2)finM 4

(0)†#58@F (0)1NfF
(1)1Nf

2F (2)#. ~2.35!

In the s-channel, the functionsF ( i ) are given by

F ( i )5†Fs
( i )1S@Fs

( i )#‡uj51 , ~2.36!

where

Fs
(0)52

x3

y
X21~x21y2!F4~22j!S Li4~2x!2XLi3~2x!1

1

2
X2Li 2~2x! D1

4

3
jp2Li 2~2x!

1F1

6
~11j!X31

2

3
~22j!X2Y2

1

2
XY223~X2Y!X22

p2

3
„~31j!X23Y…1

1

2
~11216j!X2

9

2
Y

1jS 212z31p21
93

4 D GX2
43

2
z42

15

2
z31

29

24
p21

511

32 G
1~x2y!F8Li4~2x/y!16~21j!Li4~2x!1„4~12j!X212Y…Li3~2x!

2S ~22j!X224XY1
4

3
p2DLi2~2x!2~21j!„Li3~2x!2XLi2~2x!…

1S 2
1

12
~61j!X31

2

3
X2Y1

1

6
~114j!p2X1

1

6
~101j!X22

1

2
~22j!XY1

1

2
~116j!X

24~22j!z32~114j!
p2

6
26j DX1jS 26z422z312

p2

3 D G1~22j!„Li3~2x!2XLi2~2x!…

1S 1

6
~523j!X22

1

2
~32j!XY2~124j!

p2

6 DX

1S 2
1

2
~116j!X2

1

2
Y26j DX24z31

p2

3
, ~2.37!
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Fs
(1)5

1

9 H ~x21y2!S j†12„Li3~2x!2XLi2~2x!…1„4X226X@Y12 ln~m2/s!#

120p2229X136 ln~m2/s!133…X‡1
87

2
ln~m2/s!1

35

2
z31

7

4
p21

685

9 D
22j~x2y!F S X223~X21!ln~m2/s!2

13

2
X14p218DX22p2G2j„3X16 ln~m2/s!116…XJ , ~2.38!

Fs
(2)5

4

9
x2F ln2~m2/s!1

10

3
ln~m2/s!2p21

25

9 G , ~2.39!

with

x5
t

s
, y5

u

s
, X5 lnS 2

t

sD , Y5 lnS 2
u

sD , ~2.40!

and the symmetry operationS is given in Eq.~2.25!.
In the u-channel, theF ( i ) are given by

F ( i )5Fu
( i )uj51 , ~2.41!

where

Fu
(0)52

x2y

y
„~V2W!21p2

…22~x2y!S 1

x
23j DV21~x21y2!H 24F ~21j!S Li4~2v !2VLi3~2v !1

1

2
V2Li 2~2v ! D

1~22j!S Li4~2v/w!1~V2W!S Li3~2v !1Li3~2w!2WLi2~2w!2
1

2
~V1W!Li2~2v ! D D G

12~61j!
p2

3
Li2~2v !2

4

3
jV3W1~42j!V2W22

2

3
~722j!VW32

1

6
~122j!W416VW223W3116jVW

1
1

2
~9216j!W21

93

4
jW1p2S 22V21

2

3
~31j!VW2

1

3
~32j!W226V2~32j!WD

14„~22j!V22~11j!W…z3134z4215z32~25196j!
p2

12
1

511

16 J
2~x2y!F6„~21j!Li4~2v/w!2~22j!Li4~2v !…216Li4~2w!14„~12j!W1~21j!V…Li3~2w!

14„4V2~21j!W…Li3~2v !2~21j!„Li3~2w!1WLi2~2v !…24„Li3~2v !2VLi2~2v !…

1S 24V212~21j!VW1~22j!W22~1013j!
p2

3 DLi2~2v !1
1

3
jV42

2

3
~21j!V3W1

5

2
~21j!V2W2

2
1

3
~417j!VW31

1

3
~21j!W41

2

3
jV32~21j!V2W12VW22

1

6
~101j!W31~516j!VW2

1

2
~516j!W2

1
p2

6
„2~62j!V222~1314j!VW1~513j!W212~122j!V2~322j!W…24„~22j!V2W…z326j~2V2W!

1~12113j!z41~215j!z32~15126j!
p2

6 G12j„Li3~2v !2VLi2~2v !2V2W…2~22j!„Li3~2w!2WLi2~2w!…

2~12j!VW21
1

6
~523j!W316jVW1

1

2
~126j!W226jW1

p2

6
„2~413j!V1~825j!W…2~61j!z3

1~1218j!
p2

6
, ~2.42!
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Fu
~1!5

1

9 H ~x21y2!F2jF12S Li3~2w!2WLi2~2w!12„Li3~2v !2VLi2~2v !…2
3

2
V2W1

1

2
VW2

2
1

3
W31~W222VW23W1p2!ln„m2/~2s!…D129~W22V!W233W12p2~3V24W!G

187 ln„m2/~2s!…1~35112j!z31~7258j!
p2

2
1

1370

9 G1j~x2y!@2V312~V2W!3113„2~V2W!V1W2
…

16„2~V2W!V1W212V2W1p2
…ln„m2/~2s!…116~2V2W!22p2~V1W!19p2#

2j†@3W26V16 ln„m2/~2s!…116#W13p2
‡J , ~2.43!

Fu
(2)5

4

9
~x21y2!F ln2

„m2/~2s!…1
10

3
ln„m2/~2s!…1

25

9 G . ~2.44!
ve

er-
Herex, y are defined in Eq.~2.40!, whereasv, w, V, W are
defined in Eq.~2.27!.

In the t-channel, the functionsF ( i ) are given by the action
of the symmetryS of Eq. ~2.25! on theu-channel results,

F ( i )5S@Fu
( i )#uj51 . ~2.45!

The two-loop virtual contribution to thee1e2→m1m2

unpolarized cross section, restoring overall factors and a
aging over initial spins, is given by

ds (2)

dt
5

1

16ps2 3
~4pa!2

4
3S a

2p D 2

32(
spins

Re@M 4
(2)M 4

(0)†#. ~2.46!
05300
r-

2. Bhabha scattering

For the finite two-loop remainder for the Bhabha scatt
ing process~2.29!, we quote only the (s↔t) symmetric sum
of the two exchange terms required by Eq.~2.30!. Again we
decompose the answer according toNf ,

(
spins

$Re@M 4
(2)finM̃4

(0)†#1U†Re@M 4
(2)finM̃4

(0)†#‡%

58@ F̃ (0)1NfF̃
(1)1Nf

2F̃ (2)#. ~2.47!

In the s-channel, the functionsF̃ ( i ) are given by

F̃ ( i )5F̃s
( i ) , ~2.48!

where
F̃s
(0)522

y2

x2 Y222x2
„~X2Y!21p2

…1
y2

x F24„Li4~2x/y!2Li4~2y!1XLi3~2y!…12~4Y23X21!Li3~2x!

14S X222XY1
1

2
X1p2DLi2~2x!1

1

8
X41

4

3
X3Y24X2Y21

2

3
XY32

1

6
Y42

23

12
X31

3

2
X2Y19XY226Y325X2

221XY123Y21
93

4
~X22Y!1

p2

6
~217X2132XY218Y2217X226Y!22z3~3X28Y!115z4238z3

147
p2

6
1

511

8 G1
y~12x!

x F210Li4~2x!16XLi3~2x!2S X212
p2

3 DLi2~2x!1
1

24
X42

13

12
X31

p2

3
X2

2
5

2
„~X2Y!21p2

…1
1

2
Y21S 26z31

5

2
p2112DX120z4G116„Li4~2x/y!2Li4~2y!1XLi3~2y!…

14~3X22Y22!Li3~2x!24~X222XY22X1p2!Li2~2x!2
5

12
X42

4

3
X3Y18X2Y22

8

3
XY31

2

3
Y41

5

6
X3

1X2Y118X224XY12Y21
p2

3
~11X2220XY14Y219X!24z3~3X22Y!188z418z312p2, ~2.49!
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F̃s
(1)5

1

9 H y2

x F36S Li3~2x!2XLi2~2x!2
1

6
~X24!X ln~m2/s!1

1

3
~Y23!Y@ ln~m2/s!1 ln„m2/~2t !…# D

12X3224@X1 ln„m2/~2t !…#XY112XY228Y3219X2258~X2Y!Y1p2@18X228Y112 ln„m2/~2t !…#

1X266Y187@ ln~m2/s!1 ln„m2/~2t !…#158z3144p21
2740

9 G
22x@~3@ ln~m2/s!1 ln„m2/~2t !…#116!X226p2X#24y@X31@3 ln„m2/~2t !…18#X2

1~3@ ln~m2/s!1 ln„m2/~2t !…#22p2116!X23p2#J , ~2.50!

F̃s
(2)5

4

9

y2

x F ln2~m2/s!1 ln2
„m2/~2t !…1

10

3
@ ln~m2/s!1 ln„m2/~2t !…#2p21

50

9 G , ~2.51!

andx, y, X, Y are defined in Eq.~2.40!.
In the t-channel, the functionsF̃ ( i ) are given by the action of the symmetryU of Eq. ~2.31! on thes-channel results,

F̃ ( i )5U@ F̃s
( i )#. ~2.52!

In the u-channel, the functionsF̃ ( i ) are given by

F̃ ( i )5F̃u
( i )1U@ F̃u

( i )#, ~2.53!

where

F̃u
(0)52

2

x2 V21
y2

x F24„Li4~2v !1WLi3~2v !…16V~Li3~2v !1Li3~2w!!12Li3~2v !

1S 2
5

2
V225VW1

3

2
W22V1W111

p2

2 DLi2~2v !

1S 1

8
V32

1

3
V2W2

13

8
VW22

23

12
V21

21

4
VW25V1

31

2
W212z31

93

4
1

p2

6 S 220V1
45

2
W2

93

2 D DV

1
47

8
z4220z32109

p2

12
1

511

16 G1
y~12x!

x F5Li4~2v/w!16V„Li3~2v !1Li3~2w!…

2
1

2 S ~3V1W22!~V2W!15
p2

3 DLi2~2v !1S 2
1

4
V31

1

2
V2W1

13

12
V22

9

4
VW1

5

2
V2121

p2

12
~V17! DVG

116„Li4~2v !1WLi3~2v !…212V„Li3~2v !1Li3~2w!…18Li3~2v !1S ~3V1W24!~V2W!15
p2

3 DLi2~2v !

1S 2
5

12
V312V2W2

9

4
VW21

5

6
V21

1

2
VW118V216W1

p2

6
~24V19W27! DV2

253

4
z418p2, ~2.54!

F̃u
(1)5

1

9 H y2

x F236„Li3~2v !2VLi2~2v !…187 ln„m2/~2s!…147z31
1370

9 G
2x@6„~V2W!21p212~V2W!…ln~m2/~2s!!1~13V231W110p2165!~V2W!116p2#

22yF22V3118V2W112VW ln„m2/~2s!…19V2120VW118~V1W!ln„m2/~2s!…133V

1
p2

2
@4V212 ln„m2/~2s!…229#G J , ~2.55!

F̃u
(2)5

4

9

y2

x F ln2
„m2/~2s!…1

10

3
ln„m2/~2s!…1

25

9 G . ~2.56!
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Here x, y are defined in Eq.~2.40!, whereasv, w, V, W are
defined in Eq.~2.27!.

F. Checks on the result

We performed several checks on our calculation. The
culation was performed with the computer algebra progra
MAPLE, MATHEMATICA , andFORM. To check the code, larg
parts of the calculation were performed independently w
alternative programs written in different languages. Vario
checks were applied to the integral reduction procedures
scribed in Refs.@12–15,18,19# and our implementation o
them. For example, we reproduced the double box ultravi
divergences ind58 and d510 reported in Ref.@9#, and
several other previously calculated double box integrals@10#.
An additional check on the non-planar tensor integrals is
unphysical 1/(t2u) poles occur in the representation
these integrals in terms of the master integral basis we u
@15#; however, in the series expansion ine such poles drop
out after delicate cancellations between the various term

We checked the gauge invariance of the scattering am
tude by explicitly calculating the Feynman diagrams in
generalj gauge and observing that the gauge depende
drops out in the final result. This provides a non-trivial che
of the diagrams and parts of the integral reduction proced

A strong check on the final result is provided by t
matching of the IR divergence structure of the two-loop sc
tering amplitude with Catani’s formula~2.9!, as discussed in
Sec. II A. A given integral will contribute to both infrare
divergences and to finite terms. Thus a check of the div
gent terms provides an indirect check that the finite ter
have been correctly assembled.

Finally, we observed for small scattering angles a s
pression of the leading logarithms,l[ ln(u2/4), e.g. in the
limit s→0 in thet-channel for process~2.14!. In other small-
angle limits ~those not enhanced by the photon propaga
pole! the leading power-law behavior is of course less s
gular, but it is dressed by large logarithms of the typel 4 and
Nfl

3. But in the t-channels→0 limit it cancels down tol 2

andNfl . This behavior is in accord with a generalized eik
nal representation for small-angle scattering@2#.

III. CONCLUSIONS

In this paper we presented the two-loop QED correctio
to e1e2→m1m2 and to Bhabha scattering. We present
the results in terms of two-loop amplitudes interfered w
tree amplitudes and summed over spins in the contex
conventional dimensional regularization. In these results
have set the small electron and muon masses to vanish.~This
is an excellent approximation for the highest energy curr
and future electron-positron colliders.!

The two-loop amplitudes presented in this paper are in
red divergent. To make use of them in a Monte Carlo p
gram for the NNLO terms in the cross section, they must
combined with lower-loop matrix elements including phot
emission, which should be computed using conventional
mensional regularization, at least in the singular regions
phase space. In particular, the pieces that need to be c
puted~for the Bhabha case! are
05300
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the e1e2e1e2 one-loop amplitude interfered with itself
the e1e2e1e2g one-loop amplitude interfered with

five-point tree amplitude, and
the e1e2e1e2gg tree-level squared matrix element.
The interference of the dimensionally regularized on

loop four-point amplitude with itself does not appear to be
the literature. Nevertheless, it should be relatively straig
forward to obtain, given that it involves only one-loop am
plitudes with four-point kinematics. The required integra
are given to sufficiently high order ine in Eq. ~2.26!.

The QED one-loop five-point amplitude interfered wi
the five-point tree is a rather involved object to compu
from scratch. However, the closely related one-loop helic
amplitudes for one photon and two quark pairs are kno
@33–35#, and it is a relatively simple matter to modify th
color factors to obtain the corresponding QED amplitud
The one-loop helicity amplitudes are in the ’t Hooft
Veltman scheme. They can be converted to conventiona
mensional regularization by altering the tree amplitude
pearing in the coefficient of their singular terms@36#. Thus
the e1e2m1m2g and e1e2e1e2g one-loop amplitudes
may be extracted from the known literature throughO(e0).

Because of the 1/e2 infrared divergences that are encou
tered in the phase-space integral, in regions where the ph
is soft or collinear, one might seem to require the one-lo
five-point amplitude throughO(e2). However, this is not
necessary@21#. Instead, one can replace the five-point amp
tudes in singular phase-space regions by a combinatio
four-point amplitudes~which are given in this paper to th
required order in the dimensional regularization parame!
and splitting amplitudes@37,38#. The one-loop splitting am-
plitudes for QCD are enumerated to the required order
Refs.@21#; the case of QED follows as usual by an approp
ate conversion of color factors.

The tree-level helicity amplitudes fore1e2m1m2gg and
e1e2e1e2gg have been known for a while@39#. ~They also
can be converted from the four-quark two photon amplitud
in Ref. @35#, for example.! In infrared-divergent regions o
phase space one must include higher order ine contributions
from the matrix elements. Systematic discussion of these
gions, where two particles can be soft or three collinear,
been presented in Refs.@22# for the case of QCD. Once agai
the results for QED can be obtained by a conversion of
color factors.

Even with all of these matrix element ingredients a
sembled, it is a nontrivial task to devise a numerically sta
method for carrying out the singular phase-space integ
tions. Nevertheless, this task is very analogous to that
quired to obtain QCD jet predictions at next-to-next-t
leading order, so it is likely that it will be attacked soon.

In addition to the obvious application of the present pa
to refined theoretical predictions for Bhabha scattering a
for electron-positron annihilation into muons, it also serv
as a further test of methods that can be applied to analog
QCD processes. We are confident that many more mu
particle two-loop amplitudes will be calculated before lon
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