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We present the two-loop virtual QED correctionsetbe” — .+ u~ and Bhabha scattering in dimensional
regularization. The results are expressed in terms of polylogarithms. The form of the infrared divergences
agrees with previous expectations. These results are a crucial ingredient in the complete next-to-next-to-leading
order QED corrections to these processes. A future application will be to reduce theoretical uncertainties
associated with luminosity measurementsae™ colliders. The calculation also tests methods that may be
applied to analogous QCD processes.
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I. INTRODUCTION important parameters such as the electroweak mixing angle.
It is also useful for measuring the luminosity at flavor facto-

Bhabha scattering is an important process for extractingies such as BABAR, BELLE, D®&NE, VEPP-2M, and
physics from experiments at electron-positron colliders pri-BEPC-BEJ4]. A peculiarity of future electron linear collid-
marily because it provides an effective means for determiners is that the luminosity spectrum is not monochromatic
ing luminosity. These measurements depend on having préyecause of the beam-beam effect. Because of this, measuring
cise theoretical predictions for the Bhabha scattering crosghe total small angle cross section of Bhabha scattering alone
sections. As yet, the complete next-to-next-to-leading ordejs not sufficient, and therefore the angular distribution of
(NNLO) QED corrections needed for reducing theoreticall ABS was proposed for disentangling the luminosity spec-
uncertainties have not been computed. In this paper wgum [5].
present the complete two-loop matrix elements that would Due to the experimental importance of this process, sig-
enter into such a computation. This calculation also providesificant effort has been devoted to developing Monte Carlo
a means for validating techniques that can be applied tevent generators—see for instance RR6f.for an overview.
physically important but more intricate QCD calculations. It n order to match the impressive experimental precision, a
also provides an additional explicit verification of a generalcomplete inclusion of NNLO QED quantum effects has be-
formula due to Catarfil] for the structure of two-loop infra-  come necessary. On the theoretical side, however, the calcu-
red divergences, and allows us to determine the processation of two-loop four-point amplitudes has been a road-
dependent terms for the processes at hand. block to further progress.

In Bhabha scattering there are two distinct kinematic re- |n this article we present the two-loop virtual QED cor-
gions: small angle Bhabha scatterifi§ABS), and large rections to the differential cross section for Bhabha scatter-
angle(LABS). In the energy range of the CER&'e™ col-  ing, i.e., the two-loop amplitude interfered with the tree am-
lider (LEP) and the SLAC Linear Collide(SLC), SABS is  plitude and summed over all spins. We neglect the small
used to measure the machine luminosity via a dedicatedlectron mass in comparison to all other kinematic invari-
small angle luminosity detector. SABS has a large crosgints, and use dimensional regularization to handle the ensu-
section—about four times larger thandecay in the 1°-3° ing infrared divergences. Besides these contributions, a num-
window—making it particularly effective as a luminosity ber of other virtual and real emission contributions
monitor. At the same time, SABS is calculable theoretically(discussed in the conclusiorstill need to be obtained before
with high accuracy from known physi¢mainly QED), apart  a full Monte Carlo program for the Bhabha scattering cross
from hadronic vacuum polarization corrections that relysection can be constructed.
upon the experimental data fef e~ annihilation into had- The two-loop QED four-fermion amplitudes are also a
rons at low energy2,3]. Therefore, SABS is an important useful testing ground for two-loop QCD calculations con-
ingredient in measuring any absolute cross section. For intaining more than one kinematic invariant, which are re-
stance, the measurement of the hadronic cross section at theaired for higher-order jet cross sections and other aspects of
Z peak, op, which enters several precision observables, isollider physics. For processes that depend on a single mo-
especially dependent on an accurate theoretical understangkentum invariant, a number of important quantities have
ing of Bhabha scattering. been calculated up to four loops, such as the total cross sec-

At LEP-SLC, large angle Bhabha scattering interferestion for e"e™ annihilation into hadrons and the QCD
with efe”—Z—e"e™ and so it is needed to disentangle B-function[7]. In contrast, the only complete two-loop four-
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point scattering amplitudes presently known for generic ki-the infrared divergences and to absorb some of the finite
nematics in massless gauge theory areNket super-Yang- terms.

Mills amplitudes [8,9], and gg—gg in a single helicity The previously computed non-Abelian gauge theory am-
configuration in pure gauge theof§0]. The two-loop am- Plitudes[8-10] were obtained via cutting methods. The low
plitudes required for NNLO computations of jet production multiplicity and relative simplicity of the"e” —x " u~ and

in hadron colliders, or for NNLO three-jet rates and otherBhabha scattering Feynman diagrams makes it relatively
event shape variables af"e~ colliders, remain uncalcu- €asy to directly compute the diagrams, as we do here. We
lated. We note in passing that partial results for the leadinginclude here only the pure QED diagrams, neglecting for

color part of two-loop contributions to quark-quark scatter-€xample the contributions oZ exchange, and hadronic
ing have very recently appeargtil]. vacuum polarization effects. The former are negligible at this

Two important technical breakthroughs are the Ca|cu|a_0rder in SABS and in LABS at flavor factories. The hadronic

tions of the dimensionally regularized scalar double box in-contributions are important, but much of their effect is
tegrals with planaf12] and non-planaf13] topologies and ~Straightforward to include by introducing a running coupling.
all external legs massless, and the development of reduction We perform the calculation in dimensional regularization
algorithms for the same types of integrals with loop mo-[28] with d=4-2¢ and set the small electron mass to zero,
menta in the numeratoftensor integrals[14—17,11. Re-  Since it is the only form in which the required two-loop
lated integrals, which also arise in the reduction procedurgnomentum integrals are known. Moreover, it provides a
have been computed in Refd8,19. Taken together, these Powerful method for simultaneously dealing with both the
results are sufficient to compute all loop integrals requirednfrared and ultraviolet divergences encountered in gauge
for 2—2 massless scattering amplitudes at two loops, thufeories. Traditionally, dimensional regularization is not
removing a major obstacle to several types of NNLO calcutiSed for QED, in part because the infrared divergences are
lations. In this paper we use these techniques to evaluate tfiglatively tame compared to non-Abelian gauge theories, so
integrals encountered in the Bhabha calculation. An evefhoton and electron masses are sufficient for cutting off the
more recent result concerning two-loop planar double bosheory. Another important reason for using dimensional
integrals with one massive external IE20] holds promise regularization is to validate techniques that can also be ap-
for the NNLO computation of three-jet rateseite ™ collid-  Plied to the more complicated case of QCD. In QCD, dimen-
ers. sional regularization is the universally utilized method for

There has also been significant progress in developing€aling with divergences. _
general formalisms for other aspects of NNLO computations !N the high-energy Bhabha process, even with an
involving massless particles. The motivation has typica||y“|nfrared—saf(_a” (c_alorlmetno_fmal—state de_ﬂnmon, the elec-
been infrared-safe observables in QCD, but many of the déron mass will still appear in large logarithms of the form
velopments can be applied to the Bhabha process as welt=IN(Q¥ng) due to initial-state radiation. However, in the
The developments include an understanding of the intricatdimensionally regulated amplitudes these singularitige
structure of the infrared singularities that arise when moredll others appear as poles ie. It may therefore be most
than one particle is unresolvéde., is soft or collinear with convenient to handle the initial-state singularities using an
another particle[21-23. Improved approximations to the electron structure function methg@9] implemented in the
NNLO correction to splitting functions have been con- modified minimal subtractionMS) collinear factorization
structed recently as wellR4]. scheme.

Infrared divergences are a significant complication in all In the next section we briefly describe our method for
the QCD and QED computations mentioned above. In angomputing the two-loop amplitudes. Then we describe Cat-
suitably “infrared-safe” observable all final-state diver- ani’'s formula for the divergence structure of the amplitudes,
gences will cance]25]. However, divergences occur in in- followed by a presentation of the finite)(e®)) terms for
dividual amplitudes for fixed particle number, and it is very bothe®e™ — u ™~ and Bhabha scattering. In the final sec-
useful to have a general description of such divergencegion we give our conclusions, including some discussion of
Catani has presented a general formula for the infrared dithe remaining ingredients still required for construction of a
vergence appearing in any two-loop QCD amplititie By ~ numerical program for Bhabha scattering at this order.
appropriately adjusting group theory factors, it is straightfor-
ward to convert Catani’'s QCD formula to a QED formula,
allowing us to directly verify it. Moreover, we extract the
exact form of a process-dependent term in the formula, for The 16 independent Feynman diagram topologies describ-
the case of QED scattering of four charged fermions. Previing the two-loop QED corrections te*e” —u* ™ and
ously, the only process for which this term had been exBhabha scattering are enumerated in Fig. 1. In this figure we
tracted[1] was the quark form factor which enters Drell-Yan have suppressed the fermion arrows. After including the fer-
production[26]. (It should also now be possible to extract it mion arrows and distinct labels for the external legs, there
for gg— Higgs using the recent two-loop computati@7].)  are a total of 47 Feynman diagrams; however, many of these
Interestingly, a simple generalization of the quark form fac-diagrams generate identical results. Of the 47 diagrams, 35
tor term (converted to QEDcorrectly predicts the process- contain no fermion loop, 11 contain one fermion loop, and 1
dependent term for the"e” —u*u~ and Bhabha ampli- contains two fermion loops. The Bhabha amplitude may be
tudes. We also use Catani’s formula to conveniently organizebtained from thee*e™ — u ™ u~ amplitude by adding to it

Il. THE TWO-LOOP AMPLITUDES
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of the master integrals. Several solutions to this problem
W have been present¢il7,11]. We have used a slightly differ-
ent solution, which is simply to use the original pair of mas-
ter integrals defined in Refl4], except evaluated id=6
:E>W<E E :g —2e instead ofd=4—2e¢. In d=6—2¢ the integrals have
:@m‘% o E zz [12-15,18,19are in terms of Nielsen functiori$0],
— (-p™Ptode
B Sn'p(X)—mfon tInP(1—xt), (2.1
é Z% @ [ % with n+p=<4. We have found it useful to express the results
— — instead in terms of a minimal set of polylogarithfidi],

neither ultraviolet nor infrared divergences, making them
FIG. 1. The independent diagrammatic topologies for two-loop

simpler to evaluate throug®(e®) than thed=4-2¢ inte-
four-fermion scattering in QED. ¥ (X)=§ x_i: fngi ©
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grals.
Many of the master integral expansions quoted in Refs.

J000C000

the same set of diagrams, but with an exchange of one pair of
external legs. The  u~—e u~ ande u*—e” u™ ampli- Li,(x) = _f
. . 2

tudes may, of course, be obtained by crossing. 0

We have evaluated these diagrams interfered with the tree
amplitudes and summed over spins in the conventional diwith n=2,3,4, using relations such as
mensional regularizatiofCDR) scheme. This interference
gives directly the two-loop virtual correction to the—2 ) . 1,
differential cross section. The rules for implementing CDR ~ S13(X) = ~Lia(1=x)+ In(1=Xx)Liz(1=x) + 5 In“(1—x)
are straightforward because all particles are treated uni-
formly in all parts of the calculation. In this scheme, all
momenta and all Lorentz indices are taken todbe4—2e
dimensional vectorgThe y-matrices remain asX4 matri-
ces; i.e., Trl]=4.)

After performing ally-matrix algebra present in the two-  Spp(X) =Lis(X) —Lis(1—Xx)+Li,
loop Feynman diagrams, we use the conservation of mo-
menta flowing on the internal lines to express the tensor 1
structure of the diagrams in terms of inverse scalar propaga- — In(1=x)(Liz(x) = {3)+ ﬂln“(l—x)
tors and a small number of additional scalar invariants con-
taining loop momenta. The inverse scalar propagators cancel 1, 1 )
propagators in the denominator to generate simpler “bound- - gln (1—=x)In x+ 54,“2 IN“(1—X)+ {4,
ary” integrals. To handle the integrals containing scalar in-
variants, we introduce Feynman parameters and interpret the

xd

ttln(l—t), (2.2

X (Liy(X)— &)+ %In:"(l—x)ln X+&4,

—X
1-x

o ; . . . for 0<x<1. (2.3
resulting integrals in terms of scalar integrals with multiple
propagators, which are then reduced to a set of master im?iere
grals with the help of equations in Refd.4,15,19.

Proceeding in this way, we obtain an expression for the % 2 2
amplitude in terms of master integraisf the type listed in ~ , = - 52:77_’ (3=1.2020% ..., 54:77__
Ref. [15], plus a few more for the planar double box topol- ~° A=1 6 90
ogy) multiplied by coefficient functions. This expression is (2.9

in principle valid to an arbitrary order ia, assuming that the

master integrals could be evaluated to such an order. How- The analytic properties of the non-planar double box in-
ever, it is a bit too lengthy to present here, and for NNLOtegrals are somewhat intricgte3], since they are not real in
Computations On|y the Series expansior& iﬂnrougho(eo) is any of the three kinematic channels for the-2 proceSS,
required. To carry out this expansion, we use expansions of

the master integrals presented in Rfs2—-15,18,19 As s-channel: s>0; t,u<0,

noted in Ref[11], there is a slight problem with the original

choice of basig14] for the two master planar double box t-channel: t>0; s,u<0, (2.5
integrals. In that basis, the coefficients for generic tensor

integrals contain ¥ poles, necessitating af(e) evaluation u-channel: u>0; s,t<0,
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where s=(k;+k,)?, t=(k;—kg)? and u=(k;—ksz)?  stands for the choice of renormalization scheme, arislthe
Therefore we shall present explicit formulas for the finiterenormalization scale. These color space vectors give the
terms in the amplitude in both ttse andu-channels; those in  amplitudes via
the t-channel will be related by symmetries.

y y Mn(lal' e ,nan)E<a1, e :an|Mn(p11 PR ,pn)z,

2.10
. . , where thea; are color indices. The divergences .bi,, are
Dimensionally regulated two-loop amplitudes for four oncoded in the color operatord (e, 2 {p}) and

massless fermions contain polesér (4—d)/2 up to 1£%. 1@)(e, u2{p}). In the QED case, the color space language is
The structure of most of these singularities has already beeé]early unnecessaryyt ) and1®) are just numbers.
exposed by Catarjil], who described the infrared behavior |, QCD, the Operatgr(l)(elﬂz;{p}) is given by

of general two-loop QCD processes. We shall therefore

A. General structure of divergences

adopt his notation in presenting our results. W, 2 1 e ) 200

We work with ultraviolet renormalized amplitudes, and 15 (e, n5{p}h) = 2T(1-¢ & ; Ti-Tj
employ theMS running coupling for QEDg(?). Of course :
this scheme can always be converted to another one, for 1y 1| pleNim\e€
example a(Q?) defined via the photon propagator at mo- X ?+ i W) '
mentum transfe, by a finite renormalization. The relation Ti v

between the bare coupling” and a(«?) through two-loop (2.11

order can be expressed where \j;=+1 if i and] are both incoming or outgoing

au,ugfse: a( pu?) e partons and ;=0 otherwise. The color charge={T?} is a
vector with respect to the generator lalbeland anSU(N.)

> Bo 5 B3 B matrix with respect to the color indices of the outgoing par-
X 1-a(p)—+a ()| Z =5, toni. The values required for QCD are
o } Ti=T2=Cg, T;=Ca=N,
+0 , 2.6
(a”(n) (2.6) 3 11 2
yq:yaZECF, 'Yg:ECA_ §TRNf' (212

where  S.= exfge(In 47+ ¢(1))] and  y=—y(1)
=0.5772 . .. isEuler's constant. The first two coefficients of ~ For QED we letC,—0, Cg—1, Tg—1 and T;-T,

the QED beta function are —eje;=*1, where theg; are the electric charges, to obtain
e~ () (2 3
Nf Nf |(1) , 2; :—(—4—-)
302_3_77' 31:_4_172. (2.7 (e.p {p}) I'(l1—e) P
MZ € 1U“2 € ,LL2 €
whereN; is the number of ligh{masslesscharge 1 fermi- XNl zs) T\ Tl
ons.
The renormalized four-fermion amplitude is expanded as (2.13
for the four-fermion amplitude
My(a(p?), 1n%{p}) . _ i N _
e’ (kpe  (kp)—u™ (kg u™ (k). (2.14

) 2. a(p?) @, 2. . )
MG (p{pH + — =M (w%iP})  (Note that the charges of incoming states should be reversed
in computingT;-T;.)

=4ma(u?)

2))\2 The operatot %), is given in QCD by{1]
+(%‘T)) M52><M2:{p}>+0(a3<u2>)}. L R}j
6, 1
2.9 RS(EMTP
1 (1) 2 (1) 2 4mBo
The infrared divergences of a renormalized two-loop am- =Sl ensiph| (e, nmiPH + —
plitude in QCD or QED ar¢1]
, ) etV (1-2e) (278, o N
IMP(p?{ph)rs=1 D x®{PHIMP(u?{ph)rss. L Y TK)I(2e, 17 P}
+185(en?{PHIM D% PR s +HEL (e 1% {p}), (219
+MP™(u?{ph))rs. (2.9  where the coefficienk is
where| M (P (1%{p}))r.s. is a color space vector represent- :(6_7_ 77_2) B 1_0.|_ N (2.16
ing the renormalized. loop amplitude. The subscript R.S. 18 6/ A 9 R ’
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For the QED proces&.14), we insertl) from Eq. (2.13,
take By and B, from Eq (2.7), and letKk — — 10N;/9.

PHYSICAL REVIEW B3 053007

Using our two-loop computation, and an all-ordersein-
computation of the one-loop amplitude fefe™ —u™u™

The function H&) is process-dependent but has only (see Sec. lI B. we have verified that the singular behavior of

single poles:

HEZL (e, u%{p}) = O(1le). (2.17

Reference[1] does not give an expression fet?) for a
general amplitude, but only for the case ofjq pair, i.e. a

single charged fermion pair. The result, which is extracted
from the two-loop QCD computation of the electromagnetic

form factor of the quark26], is

1 e (D) (MZ

H@ il
4e'(1—e€)| 2py-p;

aq, CDR(E,,U,Z;{p}) =

ei)\lzﬂ') 2e

1
X Z 7(1)"‘ 3CFK+ 5§27TB00|:

56 16
_EWIBOCF_ 3_753 CeCal,
(2.18
where
Y(1y=(—3+24,~ 48(5)C?

17 88

| T3 T 302t 2403 CeCa
4 32

+(§+§g2)cFTRNf. (2.19

Performing the usual conversion to QED yields a result ap-
plicable to the electromagnetic form factor of the electron

He+e CDR(EH“Z;{p})

1 e—ez,lf(l) MZe—i)\lzﬂ' 2e
:4_€F(1_€)( 2p;- P2 )
3 5
X _Z+6§2_12g3+ 2_7+§2 Nf .

(2.20

AD=4¢1-2¢) 2[(2 3e)u”—6Betu+3(2— e)t?]|Box®)(s,1) — 47—

+(4—10e+5€?)u?]Tri(t) —

—€(3—2€)(2— e+ 2e)tu+(1—€)(3—2€)(2— (1— &) e+ 2€X)t?]Tri(s).

The symmetry operatio® acts as

IStrictly speaking, we have computed the interference of the two-loop amplitude with the tree amplitude, summed over intermediate

1
(1-26)(3-2¢) 5211~

thee™e”— " u~ amplitude in CDR agrees precisely with
that predicted by Eq(2.9) in all three kinematic channels.

In addition, we have extracted the functlbtiw_ﬂm_ CDR
controlling the 1¢ poles in Eq.(2.9). We obtain

H‘(__\%r)e—MJr#—YCDR(G,MZ;{p})

_1 e*El//(l) o M_Z 26+ ,LL_2 25_ ,LL_2 2e
4deT'(1—¢) -S —t —-u
3 25
X| =7 168= 1203+ = 55+ 05 Ny

(2.20)

This result agrees with a “naive” generalization from the
form factor case, in which one sums Eg.20 over the six
pairs of charged legs in the four-point amplitude, weighted
by the sign of the charge produgg; . [Note that the factors
of (u?/(—sij))* are purely conventional here, since their
deviation from unity only contributes at the level of finite
parts,0(€°). However, the overall normalization is predicted
correctly by the sum over the six pais.

B.eTe"—pTpu~ at one loop to all orders ine

In order to verify the structure of the infrared singulari-
ties, and to extract the finite remainder of the two-loop am-
plitude presented below, we computed the one-leég™
—utu” amplitude (interfered with the tree amplitugi¢o
all orders ine. The result is

S mpmpr=2%

spins

E M(O)M (o)t

spins

+HAD+FAD_y,  (2.22

where the first term is thé1S counterterm, expressed in
terms of the tree-level interference

2 2
> MEMP-g

spins

: (2.23

— €

and

g 2[(4 12e+7€?)t?—6e(1—2€)tu

e)t((1—e)t—eu)N;

(2.29

fermion spins, so in our verification E€R.9) should be similarly understood to be interfered with the tree amplitude.
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E——¢. (2.25

After carrying out the operation & one should then sét=1. (Basically, ¢ allows us to separate diagrams based on whether
they have an even or odd number of photons attached to the muon line. Because photons kaletl@s criterion governs

the t«>u symmetry properties.

In Eq. (2.24), Box®)(s,t) and Tri(s) are one-loop box and triangle integrals, the former evaluated in an expansion around
d=6—2e. For the divergence formul®.9), we need their series expansionsithrough®(€?). In theu-channel, where the
functions are manifestly real, their expansions are given by

—1-€ 2 2
Box(6>(st)=u— 1-—¢€ E((V—W)ZJquZ)Jrze Liz(—v)—VLi (—v)—EV3— v
T 2(1-2¢) 12" /|2 3 z 3 2
26| Li WLi Lvai Lya Lvaws Bvanes Tves Tywe o
—2€7| Lis(—v) +WLig(—v) = 5ViLia(—v) = gVi= g VW 7 T VI g YW=24 (s 1)
+0(€d),
. (-s) V¢ m’ » o5 AT, 3
THi(s) = = —— 5| 1= 35~ g4’ qglac’ | T O(), (2.26
|
where et (ke (ky)—et(kye (kg), (2.29
s ot B S B t has additional exchange diagrams. In general, the interfer-
v=y0 W=y V=inf-g]s W=inf-o ence required for Bhabha scattering is given by

(2.27)

The expansions in the andt-channels can be found using

analytic continuation formulas such Ek9]
IN(1—x+ie)=In(x—1)+i,
Lip(x+ig)=—Li ! 1|2 +772+' |
i(Xx+ie)=—Li, X —Enx 3 iminx,

) . (1)1 2 T,
Liz(x+ie)=Lij X —Eln x+?lnx+|gln X,

(2.28

2

. . (1 1, ™
Lis(x+ie)=—Liy X —ﬂln x+?ln X+2,

n
+i—=In3x,
6

Xx>1,

whereie is an imaginary infinitesimal added ® t or u
before continuing.

We have verified that througB®(e®) our result for the

one-loop amplitude agrees with a previous calculafi®?),

Z M E"—l)M E‘Lz)‘r

spins

Bhabha

— E MiLl)M Ele)T_,_ z MElLl)MElLZ)T

spins spins

+U E MiLl)M E‘Lz)TJrz MiLl)MiLZ)T 1
spins spins
(2.30
where the symmetry acts as
U: st (2.31

M is theL-loop amplitude fore*e™— " ™, and M{”
is the same_-loop amplitude but with legs 1 and 3 inter-
changedtaking into account the Fermi statistics minus gign

D. Bhabha scattering at one loop to all orders ine

In the CDR scheme, the tree-level exchange contribution
required for Bhabha scattering in E®.30 is
u2

2 MPMPT=8(1-¢)| ;+e|.

spins

(2.32

up to terms which can be identified as being due to the conthe one-loop exchange contribution, evaluated to all orders
version between dimensional regularization and mass regin ¢, is given by

larization.

C. Modifications for Bhabha scattering

In comparison with the process e —u* ™~ described

above, the Bhabha scattering process

2 M Ell)/’\'/l(O)T_ 3 & M Elo)Mslo)T+ AL
spins 3 € spins
(2.33
where
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~ u 1
AD=8(1-2¢) S((1—de+ €)t2—2e(2— e)tu+(1—€)?u?)Box®)(s,t) +8(1— 2¢) S(e(2-3e- €)t?

+2€e(1-3e— €)tu—(2—2e+3€+ €)u?)Box®)(s,u) — % %[26(1— €)(u?+ est)N;

1
—(e(2—5e+2€>— e)t?
S

_ 8
—(3—2€)(2e(1+ €)t?+ €(3+2€’)tu—2(1— e+ €%)u?)]Tri(s) + T oe

+e(1—3e+ €= €)tu—(1—€)(2—3e— €)ud)Tri(t) — & Sgt(e(2—4e+ e2— ed)t?
+e(2—3e—dtu—(1—€)(2—4e— €?)U?)Tri(u). (2.39

Using these results, and the computation of the two-loop exchange terms, we again find that the additional singular terms
in Bhabha scattering are described by Eq9), where(not surprisingly H%_ is given by precisely the same expressi@ar2l)
that we found forete  —u* u™.
E. Finite contributions to the amplitudes
1. ete"—ptu~
Finally we give the realdispersive part of the finite remainder in E@2.9), interfered with the tree amplitude in the CDR

scheme. First we treat tlef e — u ™ u~ procesg2.14). It is convenient to decompose the finite part according to the number
of light flavors, N,

> R M PIALOT1=8[FO)+NF D+ NZF?)], (2.35

spins
In the s-channel, the functions(") are given by
FO=[FO+SFOTle-1, 2.36

where

s 1 4
Fg°>=2X7x2+(x2+y2) 4(2—5)( Lis(—x)—XLig(—x)+ §X2Liz(—><)) + 55772“2(—)()

2

1 2 1 T 1 9
+ 6(1+ X3+ §(2—§)x2\(— —XY2—3(X—Y)X—2?((3+ EX—3Y)+ E(ll_ 166)X— =Y

2 2

1opus 2+93 X 43 15 +29 2+511
By | o O A 7 7

+¢
+(X—y)[8Li4(—X/y)+6(2+ ELis(—x)+(4(1— &) X—12Y)Liz(—x)

Lio(=X) = (2+ &) (Lig(—x) = XLix(—=x))

- ( (2— E)XP—AXY+ ng

- —i(6+§)x3+EX2Y+1(1+4§) 2x+£(10+g)x2—E(z—g)xv+}(1+eg)x
12 6 A 2 2

3
7T2 772
M2 8)La (1+48) =~ 68| X+ & —6{4— 25+ 25| | +(2— ) (Lis(—x) ~XLiz(—X))
1 , 1 ’772)
+|5(5-3H)X* = S(3-HXY—(1-48) & |X
1 1 ) 2
+| = 5(1+6HX—5Y-6¢|X—4L5+ =, (2.37)
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(1) _ 1 2 2 H H 2 2
Fe =95 (X“+y9) | E[12(Lig(—x) — XLio(—x))+ (AX—=6X[Y+2 In(u/s)]
87 35 7 685
+ 2072 — 29X + 36 In( u?/s) + 33 X]+ ?In(,uzls)Jr ot Zw2+ 5
13
—2&(x—Y) X2—3(X—1)In(,u2/s)—?X+4772+8 X—2m?|— E(BX+6 In(u?/s)+16)X |, (2.39
4 10 25
F@= _x2 In%(u?s)+ = In(u?ls)— w2+ —|, (2.39
9 3 9
with
! _4 X=1 ! Y=I ! 2.4
x=g y=g3. X=h|—g). v=m| -], 240
and the symmetry operatiddis given in Eq.(2.25.
In the u-channel, thec() are given by
FO=F{|,_,, (2.4))
where
o_ XY 2,2 . 2 2,42 ; ; 12
Fu ZZT((V_W) +7%)—2(X—y) ;—35 Ve (xe+y9) —4| (2+&)| Lig(—v)—VLig(—v)+ EV Lio(—v)

+(2-¢) Li4(—vlw)+(V—W)< Lis(—v)+ Lig(— W) —WLin( —w)— %(V+W)Li2(—v)>)

2
+2(6+¢) %Liz(—v)— ggv3w+(4—§)vzwz— 2(7—2§)vvv3— %(1—2§)W“+ 6VW2—3W3+ 166VW

1 93 2 1
+ 5(9—165)W2+ 2 W+ 772( —2V2+ §(3+ EVW— §(3—§)W2—6V—(3—§)W)

m? 511
+4((2—E)V—-2(1+ )W) {3+ 344 — 1503— (25+ 96§)E+ 16

—(X—Y)[G((2+ ELis(—vIw) = (2= §)Lig(—v)) = 16Lig(—W) +4((1 = HHW+(2+ EV)Liz(—w)

+4(4V—(2+EW)Lis(—v)—(2+ &) (Liz(—w) +WLiy(—v))—4(Lig(—v) —VLiy(—v))
2

w2\ 1 2 5
+| —4VZH2(24+ VW (2— )W — (10+ 3§) ?) Lio(—v)+ §gv“— 32+ EVAW+ S (2+ &) VAW?

1 1 2 1 1
— 34+ 7E VWA 32+ E WA+ ggv3—(2+ E)VAW+2VW2P— 5 (10+ EW3+ (5468 VW— 5(5+ 6&)W?

2
+ 71%(2(6— EV2—2(13+4EVW+ (543 W2+ 2(12— E)V—(3—26)W)—4((2— E)V—W) 35— 6£(2V—W)

2
(1214 38)Lut (2+58) £5— (15+ 265)%

+2£(Lig(—v) = VLip(—0) = VAW) = (2= €) (Lis( — W) — WLi,(—w))

1 1 2
—(1- VW2 + g(5—3g)w3+ 6EVW+ E(1—65)W2—65W+ F(2(4+3§)V+(8—5§)W)—(6+ &) s

2
+(1_18§)E’ (2.42
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1
Fi'=g1 (+y?)

2

_f[ 12( Liz(—w)—WLi(=w)+2(Lig(—v) = VLi(~v))— gV2W+ EVW2

1
- §w3+(w2—2vw— 3W+ 72)In(w?/(—S)) | + 2 W—2V)W— 33W+ 272(3V — 4W)

2

w? 1370
+87In(u?/(—s))+ (35+ 1zg)ga+(7—585)7+T +E(x—y)[2V3+2(V—W)3+132(V—W)V+W?)

+62(V—W)V+W?>+2V—W+ 72)In(u?/(—s))+16(2V—W) — 272(V+ W) + 97?]

—¢[3W—6V+6 In(u?/(—s))+ 16]W—I—3772]], (2.43

Fo= §<x2+y2> In(u?(=9))+ 130 In(u?/(=s))+ 235 : (2.49

Herex, y are defined in Eq(2.40, whereasy, w, V, W are 2. Bhabha scattering
defined in Eq.(2.27).

In thet-channel, the functiong() are given by the action
of the symmetryS of Eq. (2.295 on theu-channel results,

For the finite two-loop remainder for the Bhabha scatter-
ing procesg2.29, we quote only theg—t) symmetric sum
of the two exchange terms required by E2.30. Again we

F() = S[FS)]|§:1. (2.45 decompose the answer according\ip,
The two-loop virtual contribution to the*e™ —u™ u~ 2 (R M PO+ U[RG M PO
unpolarized cross section, restoring overall factors and aver- ~ sPins
aging over initial spins, is given by _ O+ NED+ NZED)] (2.47
do® 1 ><(471'6«)2 y a\? o o L the 1 o _
dt 1672 4 o In the s-channel, the functions'” are given by
FO-FO, (2.4
x2> RgMP MO (2.4
spins where
~ y2 y2
FO)= =275 V2= 2(X=Y) 2+ )+ —| = 4(Lia(=XIy)~ Lia(—y)+ XLiz(—y))+ 2(4Y = 3X~1)Liz(~X)
1 1 4 2 1 23 3
+4| X?—2XY+ SXF a2 | Lio(—Xx)+ §x4+ §X3Y—4X2Y2+ §XY3— EY“— 1—2x3+ §X2Y+ 9XY?—6Y3-5X2

93 w?
—2IXY+23Y%+ Z(X—ZY)+ g(—17X2+32XY—18Y2—17X—26Y)—2§3(3X—8Y)+1554—3853
2 2
2 o i e Eva BBa, T
X +23>L|2( X)+ Xt = X =X

6 8

2 511} y(1—x) ) )
— |+ —10Lis( —x) +6XLiz(—x)—

5 1 5
—E((X—Y)2+7T2)+EY2+ —6/5+ E772+12 X+20 4|+ 16(Li4( —x/y) — Lig(—y)+ XLig(—y))

, , 5 4 8 2 .5
+4(3X—2Y—2)Lig(—x)—4(X?—=2XY—2X+ 7%)Liy(—x)— 1—2x4— §x3Y+ 8X2Y2— §XY3+ §Y“+ gx3

2
T
+X2Y+18X2—4XY+2Y?%+ ?(11x2—2oxv+ 4Y%+9X)—473(3X—2Y)+88(,+8{3+ 277, (2.49
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2
gy LY
S 9| x

1 1
[36( Lig(—x)—XLiy(—x)— E(X—4)X|n(,u2/5)+ §(Y—3)Y[In(,u2/s)+ In(u?/(—1))]
+2X3 =24 X+ In(u?/(—t))]XY+12XY2—8Y3— 19X?— 58 X— Y)Y+ w2 18X — 28Y + 12 In(u?/ (—1))]
2740
+X—66Y+87In(u?/s)+ In(u?/(—t))]+ 583+ 447>+ T}

—2x[(3[In(u?/s)+ In(u?/(—1))]+ 16) X2 — 67r2X]— 4y[ X3+ [3 In(u?/(—t))+ 8]X?

+(3[In(u?/s)+ In(u?/(—t))]— 27+ 16)X—37T2]], (2.50
2
ﬁg2>=§ y; In2(w2/s)+ In2(u2/(—1t))+ ?[In(,uzls) + In(u?(—t))]— 72+ %O , (2.52)

andx, y, X, Y are defined in Eq(2.40.
In the t-channel, the functions () are given by the action of the symmetdyof Eq. (2.31) on thes-channel results,

FO=U[FY]. (2.52
In the u-channel, the functions® are given by
FO=FO+y[F®7, (2.53

where

2

- 2
FO=— X7v2+ yy —4(Lig(—v)+WLig(—v))+6V(Lig(—v)+Lizg(—w))+2Lig(—v)

5, 3 e\
+ _EV —5VW+ EW —v+w+11? Liy(—v)
+ 1v3 1V2W 13vw2 23v2+ 21vw 5V+ 31W 12 +93+ ™ 20V+45W 93
8 3 8 12 4 2 {3 4 6 2 2

47 20 10977_2 511] y(1—x)
Tyl 20 I g T

5Lis(—v/w)+6V(Lis(—v)+Lis(—w))

1 L
- E((3V+W—2)(V—W)+5?) Lio(—v)+

Lves Svwe Buzs Quws Svo1or Tvan v
TV VW VI g VW SV 124 35 (V)
2

+16(Li4(—v) +WLis(—v))— 12V(Lis(—v) + Lig(—W))+8Lis(—v) + (3V+W—4)(V—W)+5%) Lio(—v)

77_2
+

5 9 5 1
— —\V34+2vaw-— Zvvv2+ gv2+ —VW+18V—16W+

4AV+OW-7) |V 253 +872 2.5
1 5 5 ) 4 bat 8T (2.59

= 1 y? , _ ) 1370
Fu’=g15| ~36(Lis(—v)=VLia(=0))+87IN(u*(=5))+ 475+ —5—
—X[6((V—W)2+ 72+ 2(V—W))In(u?/(—S))+ (13V—31W+ 1072+ 65)(V— W) + 167?]

—2y[ —2V3+18V2W+ 12VWIn(u?/( — S))+ 9V2+ 20V W+ 18(V+ W) In(u?/(— ) + 33V

2
+ o [4V-12 In(,uzl(—s))—ZQ]H, (2.59

S 10 5 25
IN“(us/(—s))+ gln(,u /(—s))+§ . (2.56
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Herex, y are defined in Eq(2.40, whereasv, w, V, W are thee"e e"e” one-loop amplitude interfered with itself,
defined in Eq(2.27). the e*e"e*e”y one-loop amplitude interfered with a
five-point tree amplitude, and
F. Checks on the result thee*e e"e” yy tree-level squared matrix element.

¢ q | check lculati h | The interference of the dimensionally regularized one-
We performed several checks on our calculation. The cal, o, tour-point amplitude with itself does not appear to be in
culation was performed with the computer algebra programge |iterature. Nevertheless, it should be relatively straight-

MAPLE, MATHEMATICA , andFORM. To check the code, large forward to obtain, given that it involves only one-loop am-
parts of the calculation were performed independently withyjitudes with four-point kinematics. The required integrals
alternative programs written in different languages. Variousare given to sufficiently high order ia in Eq. (2.26).
checks were applied to the integral reduction procedures de- The QED one-loop five-point amplitude interfered with
scribed in Refs[12-15,18,19 and our implementation of the five-point tree is a rather involved object to compute
them. For example, we reproduced the double box ultraviolefrom scratch. However, the closely related one-loop helicity
divergences ind=8 and d=10 reported in Ref[9], and amplitudes for one photon and two quark pairs are known
several other previously calculated double box intedri0$ ~ [33—35, and it is a relatively simple matter to modify the
An additional check on the non-planar tensor integrals is thagolor factors to obtain the corresponding QED amplitudes.
unphysical 1/(—u) poles occur in the representation of The one-loop helicity amplitudes are in the 't Hooft—
these integrals in terms of the master integral basis we use¢eltman scheme. They can be converted to conventional di-
[15]; however, in the series expansionédrsuch poles drop menslongl regulanzga'qon by altt_arlng the tree amplitude ap-
out after delicate cancellations between the various terms, Pearing in the coefficient of their singular terf&6]. Thus
We checked the gauge invariance of the scattering ampli€ € € w u y ande’e e'e y one-loop amphttbjdes
tude by explicitly calculating the Feynman diagrams in amay be extracted from the known literature througge’).

general¢ gauge and observing that the gauge dependence Because of the # infrared divergences that are encoun-
drops out in the final result. This provides a non-trivial chec ftered in the phase-space integral, in regions where the photon

; : : is soft or collinear, one might seem to require the one-loop
of the diagrams and parts of the integral reduction procedure, "= . oo 2 e
A strong check on the final result is provided by theehve point amplitude throughO(e“). However, this is not

. ) n ry21]. In n n repl he five-point ampli-
matching of the IR divergence structure of the two-loop scat ecessarj21]. Instead, one can replace the five-point amp

. ) . - X >~¥“udes in singular phase-space regions by a combination of
tering amplitude with Catani’'s formul@.9), as discussed in four-point ar%plitugee(whicﬁ are gi?/en in t);lis paper to the

Sec. Il A. A given integral will contribute to both infrared yeqyired order in the dimensional regularization parameter
divergences and to finite terms. Thus a check of the diverynq splitting amplitude§37,38. The one-loop splitting am-
gent terms provides an indirect check that the finite termgitudes for QCD are enumerated to the required order in
have been correctly assembled. Refs.[21]; the case of QED follows as usual by an appropri-
Finally, we observed for small scattering angles a supate conversion of color factors.
pression of the leading logarithmk= In(¢%/4), e.g. in the The tree-level helicity amplitudes fer'e u* u~ yy and
limit s—0 in thet-channel for proces®.14). In other small-  e*e e"e™ yy have been known for a whil89]. (They also
angle limits (those not enhanced by the photon propagatotan be converted from the four-quark two photon amplitudes
pole) the leading power-law behavior is of course less sin+in Ref. [35], for example). In infrared-divergent regions of
gular, but it is dressed by large logarithms of the typand  phase space one must include higher order dontributions
N¢I3. But in thet-channels—0 limit it cancels down td?  from the matrix elements. Systematic discussion of these re-
andN¢l. This behavior is in accord with a generalized eiko- gions, where two particles can be soft or three collinear, has

nal representation for small-angle scatteri@g been presented in RefR2] for the case of QCD. Once again
the results for QED can be obtained by a conversion of the
[ll. CONCLUSIONS color factors.

Even with all of these matrix element ingredients as-

In this paper we presented the two-loop QED correctiongempyeq, it is a nontrivial task to devise a numerically stable
toe'e —u"u and to Bhabha scattering. We presentedmethoq for carrying out the singular phase-space integra-
the results in terms of two-loop amplitudes interfered withyons  Nevertheless, this task is very analogous to that re-
tree amplitudes and summed over spins in the context ofired to obtain QCD jet predictions at next-to-next-to-
conventional dimensional regularization. In these results Wesading order, so it is likely that it will be attacked soon.
have set the small electron and muon masses to ve{fists In addition to the obvious application of the present paper
is an excellent approximation for the highest energy currenfy refined theoretical predictions for Bhabha scattering and
and future electron-positron colliders. _ for electron-positron annihilation into muons, it also serves

The two-loop amplitudes presented in this paper are infragg 4 further test of methods that can be applied to analogous
red divergent. To make use of them in a Monte Carlo Pro-QCD processes. We are confident that many more multi-

gram for the NNLO terms in the cross section, they must be,icle two-loop amplitudes will be calculated before long.
combined with lower-loop matrix elements including photon

emission, which should be computed using conventional di- The research of Z.B. and A.G. was supported by the U.S.
mensional regularization, at least in the singular regions oDepartment of Energy under grant DE-FG03-91ER40662.
phase space. In particular, the pieces that need to be corithe research of L.D. was supported by the U.S. Department
puted (for the Bhabha casere of Energy under grant DE-AC03-76SF00515.
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