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Comment on ‘‘Topological invariants, instantons, and the chiral anomaly
on spaces with torsion’’
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In Riemann-Cartan spacetimes with torsion only its axial covector pieceA couples tomassiveDirac fields.
Using renormalization group arguments, we show that in addition to the familiar Riemannian term only the
Pontrjagin type four-formdA`dA arises additionally in the chiral anomaly, butnot the Nieh-Yan termd* A,
as has been claimed in a recent paper@Phys. Rev. D.55, 7580~1997!#.
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I. INTRODUCTION

Quantum anomalies both in the Riemannian and
Riemann-Cartan spacetimes were calculated previously
ing different methods, see, e.g., Refs.@1,2#. However, re-
cently @3# the completeness of these earlier calculations
been questioned, which demonstrated that the Nieh-
four-form @4# is irrelevant to the axial anomaly.

For the axial anomaly, we have a couple of distinguish
features. Most prominent is its relation with the Atiya
Singer index theorem. Also from the viewpoint of perturb
tive quantumfield theory ~QFT!, the chiral anomaly has
some features which signal its conceptual importance. Fo
topological field theories such asBF theories, Chern-Simon
theories, and for all topological effects such as the anom
the remarkable fact holds that the relevant invariants do
renormalize — higher order loop corrections do not alter
one-loop value of the anomaly, for example. The fact that
anomaly is stable against radiative corrections guaran
that it can be given a topological interpretation. For t
anomaly, this is the Adler-Bardeen theorem, while other
pological field theories are carefully designed to ha
among other properties, vanishing beta functions. Anot
feature is finiteness: in any approach, the chiral anomaly
topological invariant is a finite quantity.

In a spacetime with torsion, Chandia and Zanelli@3# argue
that the Nieh-Yan~NY! four-form d* A will add to this quan-
tity. As usual, they confront the fact that such a term, if it
generated at all, is ill defined, independent of the regular
tion. In their case, they use a Fujikawa-type approach
propose to absorb the regulator mass in a rescaled vierb

However, there is a severe misunderstanding in Ref.@3#.
While there is no doubt that the NY term can possibly
generated, as demonstrated previously@5,2#, this is not the
end of the argument. In order to obtain a finite quantity,
tetrads have to be rescaled. While this might look like
innocent manipulation, this is not so. In rescaling the tetr
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the authors of Ref.@3# ignore the presence of renormalizatio
conditions and the generation of a scale upon renormal
tion. Rescaling the tetrad would ultimately change the wa
function renormalizationZ factor.

This factor creeps into the definition of the NY term at t
quantum level, and thus a rescaling of the tetrad does
achieve the desired goals. This is not surprising: QFT
mands a newZ factor for the NY term, in sharp contrast t
proper topological invariants at the quantum level, whi
remain unchanged under renormalization.

With no renormalization condition available for the N
term, and other methods obtaining it as zero, we can o
conclude that the response function of the quantum fi
theory to a gauge variation~this is the anomaly! delivers no
NY term. Or, saying it differently, its finite value is zero afte
renormalization.

II. GRAVITATIONAL CHERN-SIMONS AND
PONTRJAGIN TERMS

In our notation, Clifford-algebra valued exterior form
@6#, the constant Dirac matricesga obeying gagb1gbga
52oab are saturating the index of the orthonormal cofram
one-formqa and its Hodge dualha

ª* qa via gªgaqa and
* g5gaha . In terms of theconnectionGª( i /4)Gabsab ,
the SL(2,C)-covariant exterior derivative is given byD5d
1G`, where sab5( i /2)(gagb2gbga) are the Lorentz
generators entering also in the Clifford-algebra valued tw
form sª( i /2)g`g5 1

2 sabqa`qb.
Differentiation of these independent variables leads to

Clifford algebra-valued two-forms of torsionQªDg
5Taga and curvatureVªdG1G`G5( i /4)Rabsab of
Riemann-Cartan~RC! geometry.

The Chern-Simons~CS! term @7# for the Lorentz connec-
tion CRRª2Tr(G`V2 1

3 G`G`G) and its corresponding
Pontrjagin termdCRR52Tr(V`V)5 1

2 Rab`Rab have the
familiar form. Since the coframe is the translational part
the Cartan connection@7#, there arises also the translation
CS term@8#

CTTª
1

8l 2 Tr~g`Q!5
1

2
~CRR2ĈRR! ~2.1!
©2001 The American Physical Society01-1
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COMMENTS PHYSICAL REVIEW D 63 048501
which is related to the Nieh-Yan four-form@4#:

dCTT5
1

2l 2 ~Ta`Ta1Rab`qa`qb!. ~2.2!

A fundamental lengthl unavoidably occurs here for di
mensional reasons. This can also be motivated by a de S
type @9# approach, in which the sl(5,R)-valued connection
Ĝ5G1(1/l )(qaLa

41qbL4
b) is expanded into the dimen

sionless linear connectionG plus the coframeqa5ei
adxi

with canonical dimension@length#. The corresponding CS
termĈRR splits viaĈRR5CRR22CTT into the linear one and
that of translations, see footnote 31 of Ref.@7#. This relation
has recently been ‘‘recovered’’ by Chandia and Zanelli@3#.

The one-form of axial vector torsion

Aª
1

4
Tr~ ǧ c* Q!5

1

4
* Tr~g`Q!5* ~qa`Ta! ~2.3!

is a conformal invariant under the combined transformat
of classical Weyl rescalings of the coframe, in contrast
* A522l 2CTT , see. Eqs.~3.14.1!,~3.14.9! of Ref. @7#.

III. DIRAC FIELDS IN RIEMANN-CARTAN SPACETIME

The Dirac Lagrangian is given by the manifestly Herm
ian four-form

LD~g,c,Dc!5
i

2
$c̄* g`Dc1Dc`* gc%1* mc̄c

5L~g,c,D $%c!2
1

4
A`c̄g5* gc, ~3.1!

for which c̄ªc†g0 is the Dirac adjoint and* m5mh the
mass term, see Ref.@6#. The decomposed Lagrangian~3.1!
leads to the following form of the Dirac equation:

i * g`D̆c1* mc5 i * g`FD $%1
i

4
mg1

i

4
Ag5Gc50

~3.2!

in terms of the Riemannian connectionG$% with D $%g50 and
the irreducible piece~2.3! of the torsion. Hence, in a RC
spacetime a Dirac spinor only feels the axial torsion o
form A. This can also be seen from the identity~3.6.13! of
Ref. @7# which specializes here to the ‘‘on shell’’ commut
tion relation

@D̆,D̆#5V$%1
i

4
g5dA2

i

8
m2s. ~3.3!

In contrast to Ref.@3#, Eq. ~27!, there arise in Eq.~3.3! no
tensor or vector pieces of the torsion, because our operatD̆
in Eq. ~3.2! is the only possible result from the Lagrangia
~3.1!, which is Hermitian as required by QFT.

From the Dirac equation~3.2! and its adjoint one can
readily deduce the well-known ‘‘classical axial anomaly

d j55d( 1
3 c̄s`gc)52miP52mic̄g5c for massive Dirac
04850
ter

n
o

-

fields also in a RC spacetime. If we restore chiral symme
in the limit m→0, this leads to classical conservation law
the axial current for massless Weyl spinors, or sinced j50,
equivalently, for the chiral currentj 6ª

1
2 c̄(16g5)* gc

5c̄L,R* gcL,R .
The Einstein-Cartan-Dirac~ECD! theory of a gravitation-

ally coupled spin1
2 fermion field provides a dynamical un

derstanding of the axial anomaly on a classical~i.e., not
quantized! level. From Einstein’s equations2(1/2)habg
`Rbg5 l 2Sa and the purely algebraic Cartan relatio
2(1/2)habg`Tg5 l 2tab52( l 2/4)habgdC̄g5gdChg one
finds @6,10#

d j5>4dCTT5
2

l 2 ~Ta`Ta1Rab`qa`qb! ~3.4!

which establishes a link to the NY four form@4#, but only for
massive fields@10#. However, if we restore chiral invarianc
for the Dirac fields in the limitm→0, we find within the
dynamical framework of ECD theory that the NY four-form
tends to zero ‘‘on shell,’’ i.e.,dCTT>(1/4)d j5→0.

This is consistent with the fact that a Weyl spinor do
not couple to torsion at all, because the remaining axial
sion A becomes a lightlike covector, i.e.,AaAah5A`* A
>( l 4/4)* j 5` j 550. Here we implicitly assume that th
light-cone structure of the axial covector* j 5 is not spoiled
by quantum corrections, i.e. that no ‘‘Lorentz anomaly’’ o
curs as inn54k12 dimensions@11#.

IV. CHIRAL ANOMALY IN QFT

When quantum field theory~QFT! is involved, other
boundary terms may arise in the chiral anomaly due to
nonconservation of the axial current, see Refs.@12,13#. Now,
to approach the anomaly in the context of spacetime w
torsion, we will proceed by switching off the curvature an
concentrate on the last term in the decomposed Dirac
grangian~3.1!.

Then, this term can be regarded as an external axial c
ectorA @in view of Eq. ~3.3! without Lorentz or ‘‘internal’’
indices# coupled to the axial currentj 5 of the Dirac field in
an initially flat spacetime. By applying the result~11-225! of
Itzykson and Zuber@14#, we find that only the termdA
`dA arises in the axial anomaly, butnot the NY type term
d* A;dCTT as was recently claimed@3#. After switching on
the curved spacetime of Riemannian geometry, we fina
obtain for the axial anomaly

^d j5&52m^ iP&1
1

24p2 FTr~V$%`V$%!2
1

4
dA`dAG .

~4.1!

In addition to other perturbative methods such as point sp
ting, there is the further option to use dimensional regul
ization. If one adopts theg5 scheme of Ref.@15#, one imme-
diately concludes that only the result~4.1! can appear. The
only effect of theg5 problem is the replacement of the usu
trace by a noncyclic linear functional. The anoma
1-2
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COMMENTS PHYSICAL REVIEW D 63 048501
appears as the sole effect of this noncyclicity. There is
room for other sources of noncyclicity apart from the ve
fermion loops which produce the result~4.1!. The whole
effect of noncyclicity is to have an operatorD, D250, and
the anomaly is in the image modulo the kernel ofD, which
summarizes the fact that in thisg5 scheme no other anoma
lous contributions are possible in addition to Eq.~4.1!.

But at this stage we have not discussed the possibility
contorted spacetime which cannot be adiabatically deform
to the torsion-free case. In such a case it has been argue@3#
that the boundary termdCTT occurs, multiplied by a factor
M2. This factor M2 corresponds to a regulator mass in
Fujikawa type approach. For instance, in the heat kernel
proach, the first nontrivial terms@5,2#, which potentially
could contribute to the axial anomaly, read

Tr~g5K2!52d* A, K5* D̆`* D̆* A,

Tr~g5K4!5
1

6FTr~V$%`V$%!2
1

4
dA`dA1dKG .

~4.2!

However, there is an essential difference in the physical
mensionality of the termsK2 and K4. Whereas inn54 di-
mensions the Pontrjagin type termK4 is dimensionless, the
termK2;2l 2dCTT carries dimensions. It can be consisten
absorbed in a counterterm, and thus discarded from the
result for the anomaly.

This is also in agreement with the analysis in@16# where,
in the framework of string theory, the chiral anomaly in t
presence of torsion had a smooth adiabatic limit to the c
of vanishing torsion. In contrast, in Ref.@3# it is argued that
such contributions can be maintained by absorbing the di
gent factor in a rescaled coframeq̃a

ªMqa and proposed to
consider the Wigner-Ino¨nü contractionM→` in the de Sit-
ter gauge approach@9#, with Ml fixed.

Apart from the fact that this would change also the dime
sion of c, in order to retain the physical dimension@\# of
the Dirac action, there are several points which seem un
isfactory in such an argument.

~1! As the difference~2.1! of two Pontrjagin classes, th
term dCTT is a topological invariant after all. Now, it is
actuallynot this term which appears as the torsion-depend
extra contribution to the anomaly, but more precise
2d* A52l 2dCTT . Thus, measuring its proportion in uni
of the topological invariantdCTT , we find that it vanishes
when we consider the proposed limitM→`, keepingMl
constant.

~2! Instead of rescaling the vierbein, it is consistent
compensate the ill-defined term by a counterterm. This
plies that consistently a renormalization condition can be
posed which guarantees the anomaly to have the value~4.1!.
Even if one renders this extra term finite by a rescaling a
Ref. @3#, one has to confront the fact that a~finite! renormal-
ization condition can be imposed which settles the anom
at this value. Further, if one were to keep this extra fin
term, it would be undetermined, and is thus not related to
anomaly at all. Also, on-shell renormalization conditions a
just the wave function renormalization of the fermion prop
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gator to have unit residuum at the physical mass. Any
scaling of the tetrad cannot dispense for the fact that the
term needs renormalization by itself, as it is proven by
very calculation of Ref.@3#.

~3! From a renormalization group point of view, it is th
scaling of the coupling which determines the scaling of
anomaly~regarded as a Green’s function!, a property which
is desperately needed to maintain the validity, e.g., of
proof of the Adler-Bardeen theorem. Or, to put it otherwis
an anomaly is stable against radiative corrections for the
son that such corrections are compensated by a renorma
tion of the coupling. While, on the other hand, the topolo
cal invariant of Ref. @3# has no such property, its
interpretation as an anomaly seems dubious to us. The
consistent way out is to impose a renormalization condit
which adjust the finite value of the NY term to be zer
which is patently stable under radiative corrections.

~4! Finally, it is well known that usually the appearance
a chiral anomaly is deeply connected with the presence
conformal anomaly@17–19#. This makes sense: usually, co
formal invariance is lost due to the~dynamical! generation of
a scale. But this is the very mechanism which destroys ch
invariance as well. Thus, one would expect any argumen
fail trying to combine strict conformal invariance with a ch
ral anomaly.

V. CONCLUSIONS

Our conclusion is that the NY termdCTT doesnot con-
tribute to the chiral anomaly inn54 dimensions, either clas
sically or in quantum field theory, in sharp contrast to R
@3#. We once more stress the interrelation between the s
and chiral invariance @17–19#. Since renormalization
amounts to a continuous scale deformation, only the R
mannian part of the Pontrjagin term contributes to the top
ogy of the chiral anomaly.

The result of Chandiaet al. is very different in spirit than
a typical anomaly, where, in perturbative QFT~PQFT!, the
relevant Green’s function is UV finite and only implicitl
depends on the scale via the coupling. This contrasts the
that the Chandiaet al. term would depend explicitly on tha
scale.

Since theA is not a gauge field, one can also legitimate
absorb the contribution from the axial torsion covectorA into
the redefined gauge-invariant physical currentĵ 5ª j 5
1(1/96p2)A`dA1M2 * A, where the last term depends e
plicitly on the regulator massM. It may arise from the coun-
tertermM2A`* A to the Dirac Lagrangian~3.2!. Then, be-
cause of

^d ĵ5&5^d j5&1~1/96p2!dA`dA1M2d* A

52m^ iP&1~1/24p2!Tr~V$%`V$%!, ~5.1!

only the Riemanniancontribution remains for the axia
anomaly of this newphysicalcurrent. A consistent way to
avoid regularization problems forM→` is to assume tha
the ‘‘photon’’ A is is transverse, i.e.,d* A50, which is just
the vanishing of the NY term.
1-3
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One would surmise that inn52 dimensional models only
the termd* A survives in the heat kernel expansion~4.2!,
since it then has the correct dimensions. However, it is w
known @7# that in 2D the axial torsionA vanishes identically.

In general, the Pontrjagin topological invariant, as an
tegral over aclosedfour-form, depends also upon the seco
fundamental form of the embedding of the boundary]M into
M. In Ref. @20# this is generalized to spaces with torsio
supporting our view that the index shall be independen
regulator masses, hence excluding contributions from
NY term. Since the integral*Md* A[*]M* A vanishes iden-
tically for manifolds without boundary, the NY invarian
would occur only for nonclosed manifolds, anyhow.

A situation where torsion is indeed realized in a disco
tinuous manner arises for the cosmic string solution wit
the EC theory@21–23#. We have shown in detail in Ref.@10#
that the NY term~2.2! vanishes identically for this exampl
d

n,

04850
ll

-

f
e

-
n

of a spinning cosmic string exhibiting a torsion line defe
The instantons of Ref.@3# with nonvanishing NY term are
clearly detached from an Einstein-type dynamics, and a
the recent analysis in Ref.@24# fails to substantiate the pres
ence of the NY term.
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