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Comment on “Topological invariants, instantons, and the chiral anomaly
on spaces with torsion”
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In Riemann-Cartan spacetimes with torsion only its axial covector plexguples tomassiveDirac fields.
Using renormalization group arguments, we show that in addition to the familiar Riemannian term only the
Pontrjagin type four-fornd A/\dA arises additionally in the chiral anomaly, butt the Nieh-Yan ternd* A,
as has been claimed in a recent pgarys. Rev. D55, 7580(1997)].
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[. INTRODUCTION the authors of Ref.3] ignore the presence of renormalization
conditions and the generation of a scale upon renormaliza-
Quantum anomalies both in the Riemannian and irtion. Rescaling the tetrad would ultimately change the wave
Riemann-Cartan spacetimes were calculated previously ugdnction renormalizatiorZ factor.
ing different methods, see, e.g., Ref4,2]. However, re- This factor creeps into the definition of the NY term at the
cently [3] the completeness of these earlier calculations haguantum level, and thus a rescaling of the tetrad does not
been questioned, which demonstrated that the Nieh-Yafchieve the desired goals. This is not surprising: QFT de-
four-form [4] is irrelevant to the axial anomaly. mands a nevZ factor for the NY term, in sharp contrast to
For the axial anomaly, we have a couple of distinguished®™Per topological invariants at the quantum level, which
features. Most prominent is its relation with the Atiyah- remain unchanged u.nde_r re”Ofm?"Za"O”:
Singer index theorem. Also from the viewpoint of perturba- with no rinormallﬁatlon CO‘?d.'“O”. available for the NYl
tive quantumfield theory (QFT), the chiral anomaly has term, and other methods obtamlng It as zero, we can only
some features which signal its conceptual importance. For a onclude that the response fgnchon of the guantum field
. ) ) . L eory to a gauge variatiofthis is the anomalydelivers no
topolpg|cal field theories suc_:h &F theories, Chern-Simons NY term. Or, saying it differently, its finite value is zero after
theories, and for all topological effects such as the anomalyrenormalization.
the remarkable fact holds that the relevant invariants do not
renormalize — higher order loop corrections do not alter the Il GRAVITATIONAL CHERN-SIMONS AND
one-loop yalue of the anomaly, for_example. The fact that the PONTRJAGIN TERMS
anomaly is stable against radiative corrections guarantees
that it can be given a topological interpretation. For the In our notation, Clifford-algebra valued exterior forms
anomaly, this is the Adler-Bardeen theorem, while other to{6], the constant Dirac matriceg, obeying y,ys+ vs¥a
pological field theories are carefully designed to have,=20,pz are saturating the index of the orthonormal coframe
among other properties, vanishing beta functions. Anothepne-formd“ and its Hodge duah®:=* 9“ via y:=y, 9 and
feature is finiteness: in any approach, the chiral anomaly as 7= ¥“7.. In terms of theconnectionl:=(i/4)I"*P o4,
topological invariant is a finite quantity. the SL(2C)-covariant exterior derivative is given liy=d
In a spacetime with torsion, Chandia and Zar{@liargue ~ +1'/\, where o,3=(i/2)(v.¥s— vp7) are the Lorentz
that the Nieh-Yar{NY) four-form d* A will add to this quan-  generators entering also in the Clifford-algebra valued two-
tity. As usual, they confront the fact that such a term, if it isform o:=(i/2) y/\y=30,59/\ 9%,
generated at all, is ill defined, independent of the regulariza- Differentiation of these independent variables leads to the
tion. In their case, they use a Fujikawa-type approach an€lifford algebra-valued two-forms of torsion®:=Dy
propose to absorb the regulator mass in a rescaled vierbeirs T*y, and curvatureQ:=dl' +'/\['=(i/4)R*¢,,, of
However, there is a severe misunderstanding in [&f. Riemann-CartaiiRC) geometry.
While there is no doubt that the NY term can possibly be The Chern-Simon§CS) term([7] for the Lorentz connec-
generated, as demonstrated previoys§ly?], this is not the tion Crri=—Tr(I'/ANQ—3T/AI'/AT') and its corresponding
end of the argument. In order to obtain a finite quantity, thePontrjagin ternd Cggr= —Tr(Q/\Q)=3R*¥/AR,; have the
tetrads have to be rescaled. While this might look like anfamiliar form. Since the coframe is the translational part of
innocent manipulation, this is not so. In rescaling the tetradthe Cart:E\n] connectiofV], there arises also the translational
CS term[8
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which is related to the Nieh-Yan four-forpd]: fields also in a RC spacetime. If we restore chiral symmetry
. in the limit m— 0, this leads to classical conservation law of
AC =25 (TOAT o+ Ry g A 9%). 2.2 the §X|al current for mas§less Weyl splncl)r_s, or sid¢e 0,
2| equivalently, for the chiral currenf. :=5 (1% vy5)* yi¢
_*
A fundamental length unavoidably occurs here for di- — YLRYILR-

mensional reasons. This can also be motivated by a de Sitt%h TEEuEilre]jjtesini_r?la;g;i?)irﬁciEED)rg]v?gg2( 3 %r:r\rlliit?ztii|03r_1
type [9] approach, in which the sI(8)-valued connection de}r/standping ofp tﬁe axial anomar;y on a clagsidaé not
 — ap 4 By i ; ; "
I'=I'+(1N)(3°L,+94L%) is expanded into the ilm?n- quantized level. From Einstein's equations-(1/2)7,4,
sionless linear connectiohi plus the coframed“=e{"dx /\Rﬁy:|22a and the purely algebraic Cartan relation
with E:anomc;al @rpensmﬂ[length]. The corre_spondlng CSs —(1/2)77ag/\T7=|27'aB=—(|2/4)77a;;y5‘57575‘1’777 one
termCrg splits viaCrg= Crr—2C+r into the linear one and  §ings [6,10]
that of translations, see footnote 31 of Réf]. This relation
has recently been “recovered” by Chandia and Zar&li 2

The one-form of axial vector torsion dj554dCTT=I—2(T"‘/\Ta+ Raﬁ/\f}“/\ﬂﬁ) (3.9

1 . 1 . . .
A:=—Tr(y[*®)=—* Tr(yA®)=*(9*A\T,) (2.3  which establishes a link to the NY four forf4], but only for

4 4 massive field$10]. However, if we restore chiral invariance
nfor the Dirac fields in the limitm—0, we find within the

is a conformal invariant under the combined transformatio .
of classical Weyl rescalings of the coframe, in contrast todynamlcal framework of ECD theory that the NY four-form

¥p o2 tends to zero “on shell,” i.e.dCyr=(1/4)djs—0.
A 21°Crr, see. Eqs(3.14.1,(3.14.9 of Ref.[7]. This is consistent with the fact that a Weyl spinor does

not couple to torsion at all, because the remaining axial tor-

sion A becomes a lightlike covector, i.eA ,A“p=AN*A
The Dirac Lagrangian is given by the manifestly Hermit- =(1*/4)*js/\js=0. Here we implicity assume that the

ian four-form light-cone structure of the axial covectdjjs is not spoiled

by quantum corrections, i.e. that no “Lorentz anomaly” oc-

curs as inn=4k+2 dimensiong11].

Ill. DIRAC FIELDS IN RIEMANN-CARTAN SPACETIME

i — I _
Lo(y, s D) =5 {¢" y/AD ¢+ DA\ v+ mi
IV. CHIRAL ANOMALY IN QFT

R
IL(%l/f,D{}llf)—ZA/\dfﬁ Y, 3.1 When quantum field theorfQFT) is involved, other
boundary terms may arise in the chiral anomaly due to the
for which =4y, is the Dirac adjoint and*m=mz the nonconservation of the axial current, see REf2,13. Now,
mass term, see Ref6]. The decomposed Lagrangiés.l)  t© approach the anomaly in the context of spacetime with

leads to the following form of the Dirac equation: torsion, we will proceed by switching off the curvature and
concentrate on the last term in the decomposed Dirac La-

. i i grangian(3.1).
i* yADy+*my=i*y/\| DU+ Zm7+ZA7’5}¢=0 Then, this term can be regarded as an external axial cov-
(3.2) ectorA [in view of Eqg. (3.3) without Lorentz or “internal”
indiceg coupled to the axial current of the Dirac field in
in terms of the Riemannian connectibff with Dy=0 and  an initially flat spacetime. By applying the res(dt1-225 of
the irreducible piecg2.3) of the torsion. Hence, in a RC ltzykson and Zubef14], we find that only the terndA
spacetime a Dirac spinor only feels the axial torsion one/\dA arises in the axial anomaly, baobt the NY type term
form A. This can also be seen from the identi8:6.13 of = d*A~dCyt as was recently claimeg@]. After switching on
Ref. [7] which specializes here to the “on shell” commuta- the curved spacetime of Riemannian geometry, we finally
tion relation obtain for the axial anomaly

. i [ 1 1
[D,D]:Q{}+ZySdA—§mzo_ (3.3 <dj5>:2m<ip>+m Tr(Q{}/\Q{})_ZdA/\dA _
T

In contrast to Ref[3], Eq. (27), there arise in Eq(3.3) no 4.3
tensor or vector pieces of the torsion, because our opePator |n addition to other perturbative methods such as point split-
in Eq. (3.2 is the only possible result from the Lagrangian ting, there is the further option to use dimensional regular-
(3.1), which is Hermitian as required by QFT.. ization. If one adopts thes scheme of Ref{15], one imme-
From the Dirac equatiori3.2) and its adjoint one can diately concludes that only the rest.1) can appear. The
readily deduce the well-known “classical axial anomaly” only effect of theys problem is the replacement of the usual
djs=d(3 o/ \y)=2miP=2miyysy for massive Dirac trace by a noncyclic linear functional. The anomaly
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appears as the sole effect of this noncyclicity. There is naator to have unit residuum at the physical mass. Any re-
room for other sources of noncyclicity apart from the veryscaling of the tetrad cannot dispense for the fact that the NY
fermion loops which produce the resu#.1). The whole term needs renormalization by itself, as it is proven by the
effect of noncyclicity is to have an operatdr, A>=0, and  very calculation of Ref[3].

the anomaly is in the image modulo the kernelAgfwhich (3) From a renormalization group point of view, it is the
summarizes the fact that in thig, scheme no other anoma- scaling of the coupling which determines the scaling of the
lous contributions are possible in addition to E4.1). anomaly(regarded as a Green'’s functjom property which

But at this stage we have not discussed the possibility of éis desperately needed to maintain the validity, e.g., of the
contorted spacetime which cannot be adiabatically deformegroof of the Adler-Bardeen theorem. Or, to put it otherwise,
to the torsion-free case. In such a case it has been af§lied an anomaly is stable against radiative corrections for the rea-
that the boundary terrdC;+ occurs, multiplied by a factor son that such corrections are compensated by a renormaliza-
M2. This factor M? corresponds to a regulator mass in ation of the coupling. While, on the other hand, the topologi-
Fujikawa type approach. For instance, in the heat kernel agsal invariant of Ref. [3] has no such property, its
proach, the first nontrivial term§5,2], which potentially interpretation as an anomaly seems dubious to us. The only

could contribute to the axial anomaly, read consistent way out is to impose a renormalization condition
5 5 which adjust the finite value of the NY term to be zero,
Tr(ysKy)=—d*A, K=*D/\*D*A, which is patently stable under radiative corrections.

(4) Finally, it is well known that usually the appearance of
1 1 a chiral anomaly is deeply connected with the presence of a
Tr(ysKa) =5 TF(Q{}/\Q{})—ZdA/\dA+ dic|. conformal anomaly17—19. This makes sense: usually, con-
(4.2  formalinvariance is lost due to tidynamical generation of
a scale. But this is the very mechanism which destroys chiral
However, there is an essential difference in the physical diinvariance as well. Thus, one would expect any argument to
mensionality of the term&, andK,. Whereas im=4 di- fail trying to combine strict conformal invariance with a chi-
mensions the Pontrjagin type tendy is dimensionless, the ral anomaly.
termK,~ 21?dCy+ carries dimensions. It can be consistently

absorbed in a counterterm, and thus discarded from the final V. CONCLUSIONS
result for the anomaly.
This is also in agreement with the analysid 16| where, Our conclusion is that the NY termdC;; doesnot con-

in the framework of string theory, the chiral anomaly in the tribute to the chiral anomaly in=4 dimensions, either clas-
presence of torsion had a smooth adiabatic limit to the cassically or in quantum field theory, in sharp contrast to Ref.
of vanishing torsion. In contrast, in R¢8] it is argued that [3]. We once more stress the interrelation between the scale
such contributions can be maintained by absorbing the diverand chiral invariance[17—-19. Since renormalization
gent factor in a rescaled cofran®é:=M 9* and proposed to amounts to a continuous scale deformation, only the Rie-
consider the Wigner-iimii contractionM — in the de Sit- mMannian part of the Pontrjagin term contributes to the topol-
ter gauge approadi®], with M1 fixed. ogy of the chiral anomaly. . -

Apart from the fact that this would change also the dimen-  The result of Chandiat al. is very different in spirit than
sion of ¢, in order to retain the physical dimensiph] of @ typical anomaly, where, in perturbative QFFQFT), the

the Dirac action, there are several points which seem unsafélévant Green's function is UV finite and only implicitly
isfactory in such an argument. depends on the scale via the coupling. This contrasts the fact

(1) As the differencg2.1) of two Pontrjagin classes, the that the Chandia&t al. term would depend explicitly on that
term dCyy is a topological invariant after all. Now, it is Scale. _ . .
actuallynotthis term which appears as the torsion-dependent Since theA is nota gauge field, one can also legitimately
extra contribution to the anomaly, but more preciselyabsorb the contribution from the axial torsion coveizltonto
—d*A=212dC;r. Thus, measuring its proportion in units the redefined gauge-invariant physical currepd:=js
of the topological invariantiCy7, we find that it vanishes +(1/967%)AAdA+M? * A, where the last term depends ex-
when we consider the proposed lint—o, keepingMI plicitly on the regulator mashl. It may arise from the coun-
constant. tertermM2A/\* A to the Dirac Lagrangiai3.2). Then, be-

(2) Instead of rescaling the vierbein, it is consistent tocause of
compensate the ill-defined term by a counterterm. This im-

plies that consistently a renormalization condition can be im- (djs)=(djs)+ (1/9672)dA/\d A+ M2d* A
posed which guarantees the anomaly to have the valdg _ )
Even if one renders this extra term finite by a rescaling as in =2m(iP)+(1/24r*) Tr(QUAQY), (5.9

Ref.[3], one has to confront the fact thatfanite) renormal-

ization condition can be imposed which settles the anomalpnly the Riemanniancontribution remains for the axial
at this value. Further, if one were to keep this extra finiteanomaly of this newphysicalcurrent. A consistent way to
term, it would be undetermined, and is thus not related to thavoid regularization problems fdvl —oc is to assume that
anomaly at all. Also, on-shell renormalization conditions ad-the “photon” A is is transverse, i.ed* A=0, which is just
just the wave function renormalization of the fermion propa-the vanishing of the NY term.
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One would surmise that in=2 dimensional models only of a spinning cosmic string exhibiting a torsion line defect.
the termd* A survives in the heat kernel expansi¢h?2), The instantons of Ref.3] with nonvanishing NY term are
since it then has the correct dimensions. However, it is weltlearly detached from an Einstein-type dynamics, and also
known|[7] that in 2D the axial torsio vanishes identically. the recent analysis in Ref24] fails to substantiate the pres-

In general, the Pontrjagin topological invariant, as an in-ence of the NY term.
tegral over alosedfour-form, depends also upon the second
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