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We obtain the zero-mode effective action for gravitating objects in the bulk of dilatonic domain walls.
Without additional fields included in the bulk action, the zero-mode effective action reproduces the action in
one lower dimension obtained through ordinary Kaluza-K(&HK) compactification, only when the transverse
(to the domain wa)l component of the bulk metric does not have a nontrivial term depending on the domain
wall world volume coordinates and the tension of the domain wall is positive. With additional fields included
in the bulk action, a nontrivial dependence of the transverse metric component on the domain wall longitudinal
coordinates appears to be essential in reproducing the lower-dimensional action obtained via ordinary KK
compactification. We find, in particular, that the effective action for the chargedl{-brane in the domain
wall bulk reproduces the action for thpebrane in one lower dimension.
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[. INTRODUCTION not allow charged branes. One of the ways to get around this
difficulty is to allow the bulk cosmological constant term to
Recently, phenomenologists have actively considered thkave the dilaton factor. In fact, unlike the nondilatonic do-
possibility that the existence of additional compact spatiaimain wall of RS, dilatonic domain walls can be readily real-
dimensions may account for the large hierarchy between thized within string theories. It is observédi9] that even the
electroweak scale and the Planck scale, the so-called hieratilatonic domain wall effectively compactifies gravity. The
chy problem in particle physics. In this scenario, our four-warp factor of the dilatonic domain wall that traps gravity
dimensional world is confined within the world volume of a also decreases within the finite allowed coordinate interval
three-brane, within which the fields of the standard modebround the wall as a powerlaw, instead of exponentially
are contained. The earlier propod4dl,2] relies on a large within the infinite allowed coordinate interval just like the
enough volume of the compact extra space for solving therondilatonic domain wall of the RS modg8-5], and be-
hierarchy problem. A more compelling scenario proposed byomes zero at the end of the allowed finite coordinate inter-
Randall and SundrufRS) [3—5] assumes that the spacetime val. So anyway one can also use such dilatonic domain walls
is nonfactorizable, in contrast with the conventional view offor tackling the hierarchy problem.
Kaluza-Klein (KK) theory that the spacetime is the direct It is realized[20] that chargedo-branes, as observed in
product of the four-dimensional spacetime and the compaatne lower dimension, should rather be regarded as charged
extra space. Such a point of view of spacetime was als¢p+ 1)-branes in the bulk of domain wall§ one wishes to
previously taken[6-13 as an alternative to compact regard charged branes in the brane world as being originated
compactification—namely, as a mechanism to trap mattefrom 10 or 11 dimensions of string theoriesbecause
within the four-dimensional hypersurface without having tochargedo-branes in the bulk of domain wall backgrounds are
assume that the extra space is compact. However, what i®t effectively compactified to the chargpeebranes in one
new in the RS model is that it is not just matter but alsolower dimension on the hypersurface of the wall. We studied
gravity that is localized within the hypersurface. The expo-[21] the dynamics of probes in the background of such
nential falloff (as one moves away from the braref the  charged branes. In this paper, we check whether such
metric warp factor accounts for the large hierarchy betweercharged p+1)-branes in the domain wall bulk effectively
the electroweak and the Planck scales in our fourdescribe the corresponding chargedbranes in one lower
dimensional world, which is assumed to be located awaylimension or describe different physics in one lower dimen-
from the wall. sion by obtaining the effective action for such charged (
Since gravity is shown to be effectively compactified to +1)-branes in the bulk of the domain walls. The study of the
one lower dimensioffeven when the extra spatial dimension effective action of the brane world scenario can generically
is infinite) in the bulk of the RS domain wallgt], it is of  provide one with the physical implications of the RS model
interest to study various gravitating objects in such a backsuch as any possible deviations of the effective lower-
ground.(Some of the previous works on a related subject aralimensional theory of the RS model from ordinary Einstein
Refs. [14-18.) In our previous works[19-21], we at- gravity. In fact, for the first RS moddI3] with negative
tempted to understand charged branes in the bulk of the R$ension domain wall include@vith nontrivial radion field, it
type domain wall. It turns out that the domain wall bulk was pointed ou{22] that the lower-dimensional effective
background is so restrictive about the possible gravitatingheory is described by Brans-DickBD) theory[23], rather
objects that nondilatonic domain wall bulk in general doesthan by Einstein’s general relativity. In the case of the sec-
ond RS mode[4] with only a positive tension domain wall
and its dilatonic generalization, we find that the zero-mode
*Email address: donam.youm@cern.ch gravity effective action in one lower dimension is that of
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Einstein’s general relativity. Also, we find that the effective . ZERO-MODE EFFECTIVE ACTION
action for the bulk p+1)-brane has exactly the same form
as the action for th@-brane in one lower dimension that is
obtained from the action for theg(+ 1)-brane through ordi-
nary KK compactification ors®. Therefore, for the gravitat-
ing configurations under consideration in this paper, we fin
no deviation from Einstein’s general relativity and from or-
dinary KK compactification. Our result on the bulk charged
(pt1)-brane case implies that when there are additional
bulk fields the RS gauge of metric perturbations should be
modified to include the transver$® the domain wajl met-

ggrggir;u\:\?slnon, and yet gravity can be localized around th%vherec is given by Eq.(4), andg,,, andh depend onc*,

only. When the bulk action has no additional fields,
D-dimensional equations of motion are guaranteed to be sat-
IIl. DILATONIC DOMAIN WALL SOLUTION isfied whenh=1 andg,, is Ricci flat (cf. Ref.[24]). When
We begin by discussing the-dimensional extreme dila- there are additional bulk fields, can have a nontrivial de-

tonic domain wall solution studied in Ref19]. The total ~Pendence ox*, as can be seen from examples of the solu-
action for the domain wall is the sum of the bulk action tions for charged branes in the bulk of dilatonic domain wall.
First, we consider the case of no additional bulk fields.

The total action(1) + (2) reduces to the following form:

In this section, we study theD(— 1)-dimensional effec-
tive action obtained from the total action by integrating over
the extra spatial coordinate. We shall consider only the zero
dnodes of the fields, because the gravitating configurations
under consideration in this paper are independent of the extra
spatial coordinate.

We consider the following form of the bulk metric:

GundxMdx"=([g,,dx*dx"+h?dZ*], (6)
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Here, A is the bulk cosmological constantp,y is the do- Kp
main wall tension, andy is the determinant of the induced 2AQ71 40
metric y,,,= 3,X"3,XNGyy on the domain wall world vol- = —Zf dPx \/—_g[ ———5 R~ (1+ 1—2)},
ume, whereM,N=0,1,...D—1 andu,»=0,1,...D—2. 2Kp A+4 -
In this paper, we consider the domain wall solution in the (7)
conformally flat form as follows:
5 where w=1+[(A+2)/A]Q|z|. Since the domain wall is
GundxMdxN=([ 7, dx#dx’+dZ?], e*?=cP-2aH located atz=0, the fields in the world volume action take
(3)  the formse 3¢=1 andy,,=g,, (in the static gauge Note
that, in the last equality, we integrated over all possible val-
where the conformal factaf is given by ues ofz Namely,

4/(D—2)(A+2)
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A+2 A+2
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for the —2<A <0 case, and—c«w<z<ow for the A<—-2
case[cf. Eq.(4)]. (The A< —2 case includes the=0 case,
i.e., the nondilatonic domain wall of the original RS modlel.
Through the boundary condition z¢ 0 and the equations of WhenA >0 [in which caseopyy given in Eq.(5) is negative
motion, one can relatd andop,y to the paramete® of the  if Q>0], integration over all the possible values fi.e.,

A

(4)

solution in the following way: —w<z<o, will make the Einstein term diverge; i.e., the
(D—1)-dimensional gravitational constant is zero and the
2Q? 4 Q gravity is not effectively compactified. So when,>0
A=- A dowT TR P (5 (with Q>0), the effective actioi7) reduces to the action for

(D —1)-dimensional general relativity with the gravitational

In this paper, we assume th@t>0, so that the tensioa,,  constant given by

of the wall is positive wherd <0. In particular, the domain

wall solution of the RS mode[3-5] corresponds to the 2 —EQ 2 ®)
(D,a)=(5,0) case of the above general solution. D1 2A <o
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as can be seen from the last line of Ed@). Note thatA is 4(D—p—4)
always greater than 4 for D>4, sox3_,>0 if A<O and adp1= — “(D-2)77 - (11)

Q>0. Note that it is essential thatpy>0, in order for
Einstein’s gravity in one lower dimension to be reproduced.Guided by the explicit solution presented in REZ1], we
Namely, if opw<0, the Einstein term would have diverded take Eq.(6) as theD-dimensional metridnsatzand the fol-
(unless the extra spatial dimension is truncatud no can-  lowing as the remaining fieldnsaze

cellation of the extra terms in the actidi@) would have
occurred(even if the extra spatial dimension is truncated
This is in accordance with the result of our previous work
[19], that gravity cannot be localized around the domain walwhere the tilded fieldédescribing the parts of fields associ-
if A andQ are positive. So anyd-dimensional gravitating ated with the bulk p+1)-brang depend orx*, only, andC
objects in the dilatoni¢as well as nondilatonjadomain wall IS given by Eq.(4). Substituting the abové&nsaze for the
background with the bulk action given by E@_) and the fields into_the total qctioSgnd integrating ovez, we obtain
metric given by Eq(6) with h=1 and Ricci-flatg,, effec-  the following effective action:
tively describe the corresponding configurations in general

e2¢zc(D—2)2a/4e2¢' Ap+2:C(D_2)/ZAp+2, (12)

relativity in one lower dimension, as long ag,>0, e.g., o= Zf dD—lde\/__gmli—z hR. 4 h(5%)2
A<0 with Q>0. This confirms that the RS model can be 2Kp 9 D-2
extended to the dilatonic domain wall case. D_1

Now, we consider the case when the domain wall bulk _ h—lezap+17/>|~:2+2_8 gh,l
spacetime contains a chargep+1)-brane, where one of 2(p+2)! P D-2A
the longitudinal directions of the brane is along the trans- DQ 2Q2 _
verse direction of the domain wall, whose explicit solution is X1 8(z)— —mZ] - _WZheZaﬂ
studied in our previous work21]. The total actiors for this 4(D-1) A
case is give by the sum of the bulk action Q _
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the domain wall world volume actiof?), and the following (A+4)0?
additional world volume action for the charged + 1 —23%_ on—ad
(p+1)-brane: +2 A? (h™"+he 2e) |+ Sp11,
(13
— pt+2 —a b [_ M N - - -
Sp+1 Tp+1f d g e p+1 \/ detaax abx CSMN Where Fp+2:dAp+1 W|th (Ap+1)'““1"'l““p+1

— 14 2 . .
\/m 1 N v —(Ap+2)ﬂl...ﬂp+lz, Kp_, IS given by E_q.(8), and we let
T (pr2)n € P20, X Jay, , A <0 and made use of the constraifit) in the form poten-

tial kinetic term. Note that the explicit expressions foand

e’ are given in terms of the harmonic functiéty,, , for the
' D-dimensional p+1)-brane ag21]

XXMP‘*ZAMl”‘MerZ
_ 1y 20-p=4)/(D-2)Ap; 1 b_1g(D=2)ap /20,1

A _(D—Z)a§+l+2(p+2)(D_p_4) y h=H ) Pri,el=H e (1)
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Note thatﬂp” andg,,, are also given in terms df ., but

The consistency of the equations of motion requires &at

anda,,; satisfy the following constraint:

we choose to leave it in the general form in the action, just
assuming such specific forms to ensure consistency with the
D-dimensional equations of motion. Just as in the previous
case,g,, can contain a Ricci-flat metric without violating

the equations of motion. So the scalar potential term of the

The Einstein term in the effective action is finite: i.e., the effec- (P —1)-dimensional action in Eq13) becomes zero. The

tive gravitational constant_ is nonzero if and only if the gravi- (D —1)-dimensional effective action in Eq13), therefore,
ton KK zero mode is normalizable, i.e., if gravity is trapped on thebe€comes of the form of the bulk action for the dilatonic

domain wall. Note, however, that the effective action may haveP-brane inD—1 dimensions, obtained from the bulk action
undesirable terms such as a cosmological constant term in sonfer the D-dimensional dilatonic §+ 1)-brane through ordi-
cases even if the KK graviton zero mode is normalizable. nary KK compactification ors* along one of its longitudinal
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directions. Next, we consider the world volume acti@gn ; This result indicates that when there are additional fields
for the dilatonic @+ 1)-brane. In the static gauge with con- in the bulk action gravity can be trapped within the domain
stant transvers@to the (p+ 1)-brand target space coordi- Wall even if the domain wall metric has a nontrivial pertur-

nates, the g+ 1)-brane world volume actiofiL0) takes the bation along the transverséo the domain wall direction.
following form: The zero mode of this transverse perturbation is identified as

a scalar in one lower dimension. As we have seen from the
dilatonic (p+1)-brane solution in the domain wall bulk,

e d+19\/—detGyy, such a zero mode of the transverse metric perturbation con-
spires with the zero mode of the dilaton perturbation in such

Serl: _Tp+lJ dp+2X

N/ a way that the possible scalar potential term or the cosmo-
+ 2'3 Atxl,,_xpZ , (15  logical term in one lower dimension is eliminated. Thereby,

a configuration in the domain wall bulk effectively describes
the corresponding configuration ian asymptotically flat
spacetimdn one lower dimension.

On the other hand, the domain wall bulk spacetime is very
restrictive about the possible gravitating configurations. The
gravitating configurations with nontrivial transverée the

wherea,b=t,x;, ... x,,z. After substituting theAnsaze
for the fields in the above and integrating oemwe obtain
the following effective action:

Spi1= _Tp+1J dPtixdze A +2) wall) metric component are not preferred if there are no ad-
ditional fields in the bulk action, as it was shoy25—27
~ \/A_+1~ that the zero mode of the transverse perturbation has to van-
x| e~ 3+1%h/— detgzp+ —pAtXl‘,.x z} ish. Also, without additional fields in the bulk action, the
2 P zero-mode effective action with nontriviblin Eq. (6) yields

e @+1%h\/— detgzp+ iAtx X a solution having metri¢6) with h=1 is the classically pre-
2 1 . . . .
ferred stable configuration. And only the dilatonic charged
(16) brane with the dilaton coupling parameter satisfying the con-
s straint(11) is allowed in the bulk of a dilatonic domain wall.
where T,=[—2A/(A+4)Q]Ty.1 and a,b=t,x;, ... X,. Because of this restriction, a nondilatonic domain wall bulk
This is of the form of the world volume action for th®(  background cannot admit charged brarfedth asymptoti-
—1)-dimensionalp-brane obtained from the world volume cally flat spacetime in one lower dimensjcand the current
action for theD-dimensional p+ 1)-brane through ordinary RS-type modelddilatonic and nondilatonjccannot admit,
KK compactification onS! along one of its longitudinal di- for example, Reissner-Nordstroblack holes in one lower
rections. dimension.

\/_p~ } the potential term whose minimum is lat 1, implying that
ol

= —TpJ' dP*ix
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