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Exact black hole entropy bound in conformal field theory
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We show that a Rademacher expansion can be used to establish an exact bound for the entropy of black
holes within a conformal field theory framework. This convergent expansion includes all subleading correc-
tions to the Bekenstein-Hawking term.
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The statistical derivation of the Bekenstein-Hawking e
tropy formula for black holes in string theory@1# relies
heavily on the Cardy formula for the asymptotic density
states in two-dimensional conformal field theory@2#. A par-
ticularly important example is the (211)-dimensional
Bañados-Teitelboim-Zanelli~BTZ! black hole in anti–de Sit-
ter space@3#. The asymptotic symmetry algebra in this ca
consists of a Virasoro algebra with both left-moving a
right-moving sectors; this is known as the Brown-Hennea
algebra@4#. A simple application of the Cardy formula the
yields the Bekenstein-Hawking entropy of the BTZ bla
hole @5,6#. The significance of this result follows from th
fact that many black holes in string theory have a ne
horizon structure containing the BTZ black hole. As a res
the derivation of the entropy in these examples is based
sentially on the BTZ case@5,7–9#.

In @10#, it was pointed out that exact convergent expr
sions~Rademacher expansions@11#! exist for the Fourier co-
efficients ofSL(2,Z) modular forms. These were then us
to investigate in detail the anti–de Sitter/conformal fie
theory~AdS/CFT! correspondence for type IIB string theo
on AdS33S33K3. One important example of such
Rademacher expansion is the exact formula for the parti
function of an integer. Using this expansion, for example,
usually quoted asymptotic formula of Hardy-Ramanujan@12#
can be simply derived. In this paper, we observe tha
Rademacher expansion gives a precise way to determine
nature of all subleading corrections to the Bekenste
Hawking black hole entropy. In effect, this generalizes
Cardy formula beyond the leading term. Furthermore, du
its convergence, the expansion leads directly to an exac
tropy bound. We also point out that the logarithmic corre
tion to the Bekenstein-Hawking entropy obtained recen
within a conformal field theory framework@13# follows im-
mediately from the Rademacher expansion. This logarith
correction term first appeared in the quantum geometry
malism @14#.

We are interested in how the microscopic degrees of fr
dom of a conformal field theory encode information abo
the entropy of a macroscopic black hole. The starting poin
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to consider the modular invariant partition function of a un
tary conformal field theory defined on a two-torus, name

Z~t!5Tr e2p i (L02c/24)t. ~1!

Here,t is the modular parameter andc is the central charge
of the conformal field theory. The Fourier expansion of t
partition function takes the form

Z~t!5 (
n>0

F~n!e2p i (n2c/24)t. ~2!

The black hole entropy in this framework is given byS
5 ln F(n), for large n. Such a procedure is applicable to
wide variety of black hole geometries@1,5–9,15,16#. To
study S, we use an exact convergent expansion, due
Rademacher@11#, for the Fourier coefficients of a modula
form of weightv. This is given by@10#

F~n!52p (
m2c/24,0 S n2

c

24

Um2
c

24U D
(v21)/2

F~m!

3 (
k51

`
1

k
Kl S n2

c

24
,m2

c

24
;kD

3I 12vS 4p

k
AUm2

c

24US n2
c

24D D . ~3!

Here,I 12v is the standard Bessel function andKl (n,m;k) is
a Kloosterman sum defined by@10#

Kl ~n,m;k!5 (
dP(Z/kZ)*

expF2p i

k
~dn1d21m!G . ~4!

We are interested in the convergent expansion ofF(n) for
v50. For largen, this will correspond to the density o
states in the conformal field theory for large eigenvalues
L0. To begin, let us setm50 andF(0)51 in Eq. ~3!. This
leads to the expression
©2001 The American Physical Society01-1
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F~n!5
c

S0
eS0

p2

3 (
k51

`
1

k
Kl S n2

c

24
,2

c

24
;kD Fe2S0I 1S S0

k D G ,
~5!

where

S052pAc

6 S n2
c

24D . ~6!

Note that we have extracted a factor ofeS0 from the summa-
tion overk. The main point to recall is thate2xI 1(x),1, for
all x @17#. Consequently,e2xI 1(x/k),1, for all x and for all
k; in fact, one can show thate2xI 1(x/k),1/k, for all x and
for all k. It is also known that the Kloosterman sum
bounded byk1/2 @10,18#. It then follows that we can at leas
bound the argument of the summation in Eq.~5! by 1/k3/2.
Thus, we obtain the following bound onF(n):

F~n!,eS0
c

S0

p2

3
zS 3

2D , ~7!

wherez(3/2) is the Riemann zeta function. The correspon
ing entropyS5 ln F(n) is then bounded as follows:

S,S01 lnF c

S0

p2

3
z~3/2!G . ~8!

At this point, we simply observe that the logarithmic ter
will yield a negative contribution if we impose the constra

c

S0
,

3

p2z~3/2!
. ~9!

Subject to this constraint, the convergent Rademacher ex
sion leads directly to the exact entropy bound

S,S0 . ~10!

Below, we show that this constraint is naturally satisfied
many examples of interest. The entropy bound is exact in
sense that it is derived from an exact convergent Radema
expansion.

We should remark on the restriction of the above analy
to them50 term in ~3!. For generalm, the Bessel function
term will be of the form I 1@(S0 /k)Aum2c/24u/(c/24)#.
However, we can still extract a factor equal to the right-ha
side of Eq.~7! from each of the terms in them-summation. It
follows that the terms withmÞ0 are exponentially sup
pressed compared to them50 term. We then obtain a simi
lar result to Eq.~8!, except that the argument of the logarit
mic term contains additional exponentially suppressed ter
Since we are interested in lnF(n) for largen, and hence for
largeS0, these additional terms do not affect the bound~10!.

As an explicit example, one can consider the BTZ bla
hole which is parametrized by its massM5(r 1

2 1r 2
2 )/8Gl2

and angular momentumJ5r 1r 2/4Gl. Here, L521/l 2 is
the cosmological constant, andr 6 denote the location of the
04750
-

n-

e
er

is

d

s.

k

inner and outer horizons. The Brown-Henneaux algebra
lates the mass and angular momentum to the Virasoro g
erators by

Ml 5L01L̄02
c

12
, J5L02L̄0 . ~11!

Here, the normalization is thatL05L̄05c/24 corresponds to
the zero mass black hole, andL05L̄050 corresponds to
anti–de Sitter space. The central charge of the Virasoro
gebra isc5 c̄53l /2G.

Although we have derived the entropy bound for a sin
sector, one can consider the situation for a conformal fi
theory with both left-moving and right-moving sector
However, for convenience, let us consider the extremal B
black hole, withMl 5J. Then,L̄05c/24, and moreover

S05
A

4G
, ~12!

whereA52pr 1 is the length of the horizon. Note that sinc
we are considering macroscopic black holes, the mas
large in Planck units, i.e.,r 1@ l . Thus, we see that the con
straint ~9! is automatically satisfied. As a result, the tot
entropy is bounded by the Bekenstein-Hawking termA/4G.

It is also of interest to examine the nature of the lead
terms in the Rademacher expansion. From Eq.~5!, we have

F~n!5
~2p!3/2

12
c S0

23/2eS0F12
3

8S0
2•••G . ~13!

Here, we have written only the most dominantk51 term. By
comparison, the terms withk.1 are exponentially dampe
because of the 1/k factor in the Bessel function. We hav
also used the asymptotic expansion of the Bessel func
I 1(z)5(1/A2pz)ez@123/8z2•••#, for Re(z)→1`. The
leading terms in the black hole entropy are then given by

S5S02
3

2
ln S01 ln c1const. ~14!

This reveals the presence of logarithmic corrections to
Bekenstein-Hawking entropyS0; this is the usual correction
term which arises from the power-like factor multiplying th
asymptotic density of states@10#. As an example, for the
extremal BTZ black hole considered above, one finds
logarithmic correction to the entropy of the form
23/2 ln(A/4G). In @13#, the original derivation of the Cardy
formula was extended to include the first subleading corr
tion. Indeed, Eq.~14! is in precise agreement with the fo
mula derived in@13#. One interesting point to note is that th
23/2 lnS0 term first appeared in the quantum geometry f
malism @14#.

However, the main point to stress here is that t
Rademacher expansion is an exact convergent expres
which determines all subleading corrections. In particu
we note that it is an expansion in which the central chargc
and Virasoro generatorL0 always appear in the combinatio
S0 defined by Eq.~6!, with one exception. There is a lon
1-2



y
re

k
.
h
eo
o
iv

TZ
ace

the

,

n of
opy
les
e-

se
to
.

BRIEF REPORTS PHYSICAL REVIEW D 63 047501
factor of the central chargec in Eq. ~13!, which leads to the
ln c term in Eq.~14!. Thus, within the conformal field theor
framework, the coefficients of the logarithmic terms a
fixed.

In @15,16#, a conformal field theory approach to blac
hole entropy in arbitrary dimensions has been suggested
treating the horizon as a boundary, one finds that wit
suitable choice of boundary conditions the algebra of diff
morphisms in the (r 2t)-plane near the horizon is a Virasor
algebra. The central charge and Virasoro generator are g
by

c5
3A

2pG

b

k
, L05

A

16pG

k

b
. ~15!

Here, b is an arbitrary parameter,k is the surface gravity,
04750
By
a
-

en

andA is the horizon area. We note the contrast with the B
black hole, where the curvature scale of anti–de Sitter sp
leads to a central chargec53l /2G which is independent of
the area. In this case, we find the leading term reproduces
Bekenstein-Hawking entropy, i.e.,S05A/4G, provided
b/k!1. The constraint~9! is then automatically satisfied
and we again have the exact entropy boundS,A/4G.

In conclusion, we have used the convergent expansio
Rademacher to show that the Bekenstein-Hawking entr
provides an exact bound for the entropy of black ho
within the two-dimensional conformal field theory fram
work.
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