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Exact black hole entropy bound in conformal field theory
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We show that a Rademacher expansion can be used to establish an exact bound for the entropy of black
holes within a conformal field theory framework. This convergent expansion includes all subleading correc-
tions to the Bekenstein-Hawking term.
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The statistical derivation of the Bekenstein-Hawking en-to consider the modular invariant partition function of a uni-
tropy formula for black holes in string theoryl] relies tary conformal field theory defined on a two-torus, namely
heavily on the Cardy formula for the asymptotic density of
states in two-dimensional conformal field the¢8}. A par- Z(7)=Tre?m (Lo~ cl24)r (1)
ticularly important example is the (R1)-dimensional
Barados-Teitelboim-ZanelliBTZ) black hole in anti-de Sit- Here,  is the modular parameter awds the central charge

ter spacg3]. The asymptotic symmetry algebra in this caseof the conformal field theory. The Fourier expansion of the
consists of a Virasoro algebra with both left-moving andpartition function takes the form

right-moving sectors; this is known as the Brown-Henneaux
algebra[4]. A simple application of the Cardy formula then A
yields the Bekenstein-Hawking entropy of the BTZ black Z(7)= >, F(n)e2m(n-cl24)r 2)
hole [5,6]. The significance of this result follows from the n=0
fact that many black holes in string theory have a near-
horizon structure containing the BTZ black hole. As a result,The black hole entropy in this framework is given By
the derivation of the entropy in these examples is based es=InF(n), for largen. Such a procedure is applicable to a
sentially on the BTZ caskb,7-9. wide variety of black hole geometridd,5-9,15,1% To

In [10], it was pointed out that exact convergent expresStudy S we use an exact convergent expansion, due to
sions(Rademacher expansioftsl]) exist for the Fourier co- Rademachef11], for the Fourier coefficients of a modular
efficients of SL(2,Z) modular forms. These were then used form of weightw. This is given by{10]
to investigate in detail the anti—-de Sitter/conformal field

theory (AdS/CFT) correspondence for type IIB string theory c |\ (e bR

on Ad$XS*XK3. One important example of such a n— 24

Rademacher expansion is the exact formula for the partition F(n)=2x E — F(m)
function of an integer. Using this expansion, for example, the m-c/24<0 ‘ _ %J

usually quoted asymptotic formula of Hardy-Ramanujs2) 2

can be simply derived. In this paper, we observe that a m

Rademacher expansion gives a precise way to determine the % Z EKI ( n— ° m— i-k)
nature of all subleading corrections to the Bekenstein- = 24 24
Hawking black hole entropy. In effect, this generalizes the

Cardy formula beyond the leading term. Furthermore, due to < (4_77\/ m— %‘( c ))
its convergence, the expansion leads directly to an exact en- 1=l k 2

tropy bound. We also point out that the logarithmic correc-

tion to the Bekenstein-Hawking entropy obtained recentlyqere, |, is the standard Bessel function akiti{n,m;k) is
within a conformal field theory framewori3] follows im- 3 Kloosterman sum defined 0]

mediately from the Rademacher expansion. This logarithmic

()

correction term first appeared in the quantum geometry for- 2 i
malism[14]. Kl(n,m;k)= 2 ex;{T(dnerlm)} (4
We are interested in how the microscopic degrees of free- de(Z/kz2)*

dom of a conformal field theory encode information about
the entropy of a macroscopic black hole. The starting pointis We are interested in the convergent expansioR (af) for
w=0. For largen, this will correspond to the density of
states in the conformal field theory for large eigenvalues of
*Email address: dannyb@pop3.ucd.ie Lo. To begin, let us selm=0 andF(0)=1 in Eq.(3). This
TEmail address: sen@maths.tcd.ie leads to the expression
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c w2 21 c c S, inner and outer horizons. The Brown-Henneaux algebra re-
F(n)= —eSO? E EKI(n— Yl ﬂ;k) e30|1<?”, lates the mass and angular momentum to the Virasoro gen-
So k=1 erators by
(5
_ c _
where M|=L0+LO_ 1_2, J=Lo_ Lo. (11)
Sp=27 /¢ n— i)_ (6) Here, the normalization is thaty=Lo=c/24 corresponds to
6 2 the zero mass black hole, andg,=Ly=0 corresponds to

anti—de Sitter space. The central charge of the Virasoro al-

gebra isc=c=3I/2G.

Although we have derived the entropy bound for a single
sector, one can consider the situation for a conformal field
theory with both left-moving and right-moving sectors.
However, for convenience, let us consider the extremal BTZ

black hole, withM|=J. Then,L,=c/24, and moreover

Note that we have extracted a factores from the summa-
tion overk. The main point to recall is tha *I ;(x)<1, for

all x[17]. Consequentlye™ I ;(x/k)< 1, for all x and for all

k; in fact, one can show that *I,(x/k)<1/k, for all x and
for all k. It is also known that the Kloosterman sum is
bounded byk'2[10,18. It then follows that we can at least
bound the argument of the summation in Eg). by 1k>2

Thus, we obtain the following bound dr(n): A
c 2 (3 SOZEa (12
F(n)<e$o——g(—), Y
S 37\2 whereA=2r , is the length of the horizon. Note that since

_ _ _ we are considering macroscopic black holes, the mass is
where{(3/2) is the Riemann zeta function. The correspondiarge in Planck units, i.er,, >1. Thus, we see that the con-

ing entropyS=InF(n) is then bounded as follows: straint (9) is automatically satisfied. As a result, the total
) entropy is bounded by the Bekenstein-Hawking texmiG.
cm It is also of interest to examine the nature of the leading
< =5 . ; '
S<Stin Sy 3 §(3/2)} ® terms in the Rademacher expansion. From (By. we have
At this point, we simply observe that the logarithmic term F(n)= (277)3/2(: & VeS| 1 3 13
will yield a negative contribution if we impose the constraint 12 8, '
c 3 Here, we have written only the most domin&rt 1 term. By
<o 9 comparison, the terms witk>1 are exponentially damped
So w2L(312) because of the K/factor in the Bessel function. We have

_ ) ) also used the asymptotic expansion of the Bessel function
Subject to this constraint, the convergent Rademacher eXpaP{(z):(ll\/Z_m)ez[l—SISZ— ...], for Re@)—+. The

sion leads directly to the exact entropy bound leading terms in the black hole entropy are then given by

S<S,. (10 3
SZSO—EIn S+ Inc+const. (14
Below, we show that this constraint is naturally satisfied in
many examples of interest. The entropy bound is exact in thghjs reveals the presence of logarithmic corrections to the
sense that itis derived from an exact convergent Rademachgiekenstein-Hawking entrop$,; this is the usual correction
expansion. term which arises from the power-like factor multiplying the
We should remark on the restriction of the above analysi%symptotic density of statdd0]. As an example, for the
to them=0 term in(3). For generaim, the Bessel function extremal BTZ black hole considered above, one finds a
term will be of the formI,[(Sy/k)|m—c/24|/(c/24)].  logarithmic correction to the entropy of the form
However, we can still extract a factor equal to the right-hand-3/2 In(A/4G). In [13], the original derivation of the Cardy
side of Eq.(7) from each of the terms in the-summation. It formula was extended to include the first subleading correc-
follows that the terms withm+#0 are exponentially sup- tion. Indeed, Eq(14) is in precise agreement with the for-
pressed compared to tine=0 term. We then obtain a simi- mula derived if13]. One interesting point to note is that the
lar result to Eq(8), except that the argument of the logarith- —3/2InS, term first appeared in the quantum geometry for-
mic term contains additional exponentially suppressed termsnalism[14].
Since we are interested in l{n) for largen, and hence for However, the main point to stress here is that the
large Sy, these additional terms do not affect the boib®.  Rademacher expansion is an exact convergent expression
As an explicit example, one can consider the BTZ blackwhich determines all subleading corrections. In particular,
hole which is parametrized by its mask=(r2 +r2)/8GI?>  we note that it is an expansion in which the central charge
and angular momenturd=r ,r_/4G|. Here, A=—1/% is  and Virasoro generatdr, always appear in the combination
the cosmological constant, and denote the location of the S, defined by Eq.(6), with one exception. There is a lone
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factor of the central chargein Eq. (13), which leads to the
Inc term in Eq.(14). Thus, within the conformal field theory
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andA is the horizon area. We note the contrast with the BTZ
black hole, where the curvature scale of anti—de Sitter space

framework, the coefficients of the logarithmic terms areleads to a central charge=31/2G which is independent of

fixed.
In [15,16], a conformal field theory approach to black

the area. In this case, we find the leading term reproduces the
Bekenstein-Hawking entropy, i.e.So=A/4G, provided

hole entropy in arbitrary dimensions has been suggested. B§/x<1. The constrain(9) is then automatically satisfied,
treating the horizon as a boundary, one finds that with @&nd we again have the exact entropy bo&dA/4G.

suitable choice of boundary conditions the algebra of diffeo-

morphisms in the(—t)-plane near the horizon is a Virasoro
algebra. The central charge and Virasoro generator are giv

by

_3A B
€= 276G k'’

A «k

LOIRE. (15)

Here, B is an arbitrary parametek is the surface gravity,

In conclusion, we have used the convergent expansion of
Rademacher to show that the Bekenstein-Hawking entropy

dyovides an exact bound for the entropy of black holes

within the two-dimensional conformal field theory frame-
work.
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