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For superstrings, the consequences of replacing the measure of integratiaifx in the Polyakov’s action
by ®d?x, where® is a density built out of degrees of freedom independent of the metrjalefined in the
string, are studied. As in the Siegel reformulation of the Green-Schwarz formalism the Wess-Zumino term is
the square of supersymmetric currents. As opposed to the Siegel case, the compensating fields needed for this
do not enter into the action just as in a total derivative. They instead play a crucial role in making up a
consistent dynamics. The string tension appears as an integration constant of the equations of motion. The
generalization to higher dimensional extended objects is also studied using in this case the Bergshoeff and
Sezgin formalism with the associated additional fields, which again are dynamically relevant unlike the stan-
dard formulation. Also unlike the standard formulation, there is no need for a cosmological term on the world
brane.
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[. INTRODUCTION fundamental theory of nature whatever that may be, should
not contain any fundamental scale has attracted a lot of at-

There are reasons to consider changing the way we thintention. According to this point of view, whatever scale ap-
and formulate generally covariant theories. If these are gerpears in nature, must not appear in the fundamental Lagrang-
erally covariant theories of gravity, one of the reasons is thgan of physics. Rather, the appearance of these scales must be
cosmological constant problefi], which is a consequence spontaneous, for example, due to boundary conditions in a
of the fact that in gravitational theory, as usually formulated,classical context or a process of dimensional transmutation,
the origin of the energy density is important. to give an example of such effect in the context of quantum

This is very much related to the fact that the action forfield theory. The issue, that is, the spontaneous appearance of
generally covariant theories, which is usually written as  scale in scale invariant theories which use a modified mea-

sure, was addresséih a four dimensional contexand sat-
S_f 4% =L isfactory solved in Refg.3—6].
- YL, (1) H ; H
Interestingly enough, the cosmological constant of gravi-
tational theories has its analogue in brane theory. It is well
wherey is the determinant of the metric ahds a scalar, is  known that the generalization of the Polyakov formalism to
not invariant under the shift— L + const. branes must incorporate an explicit world brane cosmologi-

Ifin Eq. (1) we were to change the measure of integrationcal term, unlike the string case, where such a term is forced
di%+/—y by d®, where® is a total derivative, then the to vanish. A definite asymmetry between string and higher
shift L— L +const will indeed be a symmetry. branes gets established this way.

This possibility was studied in the context of gravitational Here we will see what we obtain from string and brane
theories which can handle the cosmological constant probtheories with a modified measure. As we will see, string
lem [2] and as a tool for the construction of new types oftheories or more generally brane theories without a funda-
scale invariant theories consistent with nontrivial masses anchental scale are possible if the extended objects do not have
potentials which are of the form required by inflatiB+6].  boundaries(i.e., they are closed Although it will not be
In the models of Refd3—6], no fundamental dimensionful studied in detail here, the case of extended objects with
parameter really appears in the fundamental Lagran@iae boundaries is also possible in this modified measure formal-
can indeed introduce such parameters, but they can be reailsm. In this case, a scale can be introduced by the coupling to
sorbed, for example, by a rescaling of the fields that defindoundary charge&hat is, a scale is induced by a boundary
the measurab). effect, which fits in the general context we are talking about:

It is very interesting that the issues raised above in thecales arise either from boundary effects or initial condi-
case of gravitational theories have their analogues in stringons). These charges are needed so that the extended object
and brane theories, even before we attempt to use these thdinishes at the boundary, as has been shown in the bosonic
ries as theories of gravity; that is, we are talking here ofcase[8]. This should also hold for the supersymmetric case,
string or brane world sheet analogues of the issues raisdslt these generalizations and further complications of the
above. theory will be ignored here for simplicity, since the basic

String and brane theori¢3] have appeared as candidatespoints can be made in the case of closed strings and branes.
for unifying all interactions of nature. One aspect of string Also, for higher dimensional branes no explicit world
and brane theories seems to many not quite appealing hovsrane cosmological constant needs to be included, therefore
ever: this is the introduction from the beginning of a funda-restoring the symmetry between strings and branes. How the
mental scale, the string or brane tension. The idea that th¢rane cosmological constant problem” is related to the
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cosmological constant problem of the gravitational low en- D G, X IpX"g,,,=0. (5)
ergy theory is not known, but that connection may very well
exist. If ®+0, it means thav,X*d,X"g,,=0, which means that

Some related works where the string or brane tension aghe metric induced on the string vanishes, clearly not an ac-
pears as an integration constant also have been done. Coreptable dynamics. Alternatively, =0, no further infor-
parisons with the approach taken hévehich can be made mation is available, also a nondesirable situation.
only after a presentation of the basic ideas of our appnoach To make further progress, it is important to note that
and relevant references can be found at the end of Sec. Il.terms considered as contributionsltan

The situation for bosonic strings and branes with a modi-
fied measure Was_already studied in a previous _V\[ﬁr]k_ S:j deU\/_—yL 6)
Here we review this and then proceed to generalize this to

the supersymmetric case. . . . Lo
persy which do not contribute to the equations of motion, i.e., such

that — yL is a total derivative, may contribute when we
consider the samé& in a contribution to the action of the
form

II. BOSONIC STRING AND BRANE THEORIES WITH A
MODIFIED MEASURE

In this section we review the previous woflg] on
bosonic extendons with a modified measure before going szf drdo®L. 7)
into the supersymmetric case. The Polyakov action for the

bosonic string i$9] This is so because if/—yL is a total divergencepL in

general is not.
Se[ X, Yan] = _Tf deU\/—_VVabﬁaX“ﬁbX"gW- 2 This fact is indeed crucial and if we consider an Abelian
gauge fieldA, defined in the world sheet of the string, in
addition to the measure fields, ,¢, that appear ind, the
metric ¥*°, and the string coordinaté§*, we can then con-
struct the nontrivial contribution to the action of the form

Here v, is the metric defined in the-£1 world sheet of the

string andy=det(yap)- 9, is the metric of the embedding

space.T is here the string tension, a dimensionful quantity

introduced into the theory, which defines a scale. gab
Sgauge:f

We recognize the measure of integratibrdo/— y and drdo®——=F,, (8)
as we anticipated before, we want to replace this measure of \/__7’
integration by another one which does not dependygn where

If we introduce two scalaréboth from the point of view
of the 1+1 world sheet of the string and from the embed- Fab=daAp— dpA,. 9
ding D-dimensional universeg;, i=1,2, we can construct
the world sheet density The total action to be considered is now

b= Sabsij&aﬁpi‘?b@j 3) S= Sl+Sgauge (10

with S; defined as in Eqd) andS defined by Eqs(8
wheree?" is given bye®'= —£1%=1, ¢¥=¢'=0 ande;; is  znqg (9)1_ ) Jauge ¥ Eqsi®
defined bye ;= —e2=1, £11=€2,=0. The action(10) is invariant under a set of diffeomor-

It is interesting to notice that7do®=2d¢;d¢,, thatis,  phisms in the space of the measure fields combined with a
the measure of integratioirdo® corresponds to integrat- conformal transformation of the metrig,y,,

ing in the space of the scalar fields, ¢,.
We proceed now with the construction of an action that cpi—>cpi’=<pi’(goj), (11
usesdrdo® instead ofdrdo\/—y. When considering the
types of actions we can have under these circumstances, tf8 that
first one that comes to min@ straightforward generalization O—P' =P (12)
of the Polyakov actionis ’
whereJ is the Jacobian of the transformati¢hl) and

Sl:—f deO'CI)),ab(;!aX#(}’bXVgW_ (4) Yab— yz,ab:‘J'}’ab- (13)

. . ab — . .
Notice that multiplyingS; by a constant, before boundary or T_he cor_nbma_tu_m& I _7)Fab Is a genuine scalar. In wo
dimensions, it is proportional tgF ,,FaP.

initial conditions are specified is a meaningless operation; ; . . . .
since such a constant can be absorbed in a redefinition of the% Working with Eq.(10), we obtain the following equations

measure fields, , ¢, that appear inb. of motion: From the variation of the action with respectio

The form(4) however is not a satisfactory action, because god
ot ; b
the variation ofS, with respect toy®” leads to the rather e3¢, da| — ¥*9X X9, +——=—=Fcq| =0. (14)
strong condition V=
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If det(sab&bcpj)io, which meansb # 0, then we must have Let us now consider @+ 1 extended object, described
all the derivatives of the quantity inside the parenthesis ifgeneralizing the actio®)] as,

Eqg. (14) vanish, that is, such a quantity must equal a constant

which will be determined later, but which we will call in S=S4+ Sy- gauge (20
the mean time,

where
8cd
cd v _
— Y9 XH 94XV, T ——=——=F.q=M. (15
-y Sy=— f d9t I y229, X  3,X"g,,,, (22)
The equation of motion of the gauge fiedd tells us about
how the string tension appears as an integration constant. di1 g+
Indeed this equation is Sdfgauge= j d®" “x® \/?)’ a[alAaz cageql
22
o (22
29, =0, (16)
NEEY and
which can be integrated to give D=gf%2- gy da @y - -day Pl 3
d=c\—. (17

) . . . This model does not have a symmetry which involves an
Notice that Eq(17) is perfectly consistent with the confor- grpjtrary diffeomorphism in the space of the measure fields
mal symmetry equation€ll), (12), and(13). Equation(15)  coupled with a conformal transformation of the metric, ex-
on the other hand is consistent with such a symmetry only itept if d=1 [Egs. (11), (12), and (13)]. Ford+#1, there is

M=0. Indeed, we will check that the equations of motionstjl| a global scaling symmetry where the metric transforms
indeed imply thatM=0. In the case of higher dimensional 55 (9 being a constapt

branes, the equations of motion will imply thisltis nonva-
nishing. 0
If th?a Abelian gauge field couples to a point particle living Yab—? € Yab- 29
in the String, we would havé):Cl\/?y on one side of the The @; are transformed according to
string and®=c,\/— y on the other side¢;—c, being the .
charge of the point particle. Notice that this gives us the @ =\ @] (25)
possibility of havingc,=0. This is therefore the formulation
of an open string in the modified measure approach. Notingno sum onj) which meansb — (I1;\;) ®=\®.

the possibility of formulating also extended objects with Finally, we must demand that:e”Jand that the transfor-
boundaries, we will leave the subject and in what followsation of A, .. be defined as
2" 1

focus only on theories of closed strings and branes.
By calculating the Hamiltonian, after dropping boundary
terms (this is totally justified in the case of closed strings

and (only at the end of the procésssing Eq.(17), we find o )
thatc equals the string tension. Then we have a symmetry. Also, no scale is introduced into

Now let us turn our attention to the equation of motion the theory from the beginning. This is apparent from the fact
derived from the variation of Eq:10) with respect toy??,  that any constants multiplying the separate contributions to

(26)

We get, then, the action(21) or (22) is meaningless if no boundary or
initial conditions are specified, because then such factors can
1 gcd be absorbed by a redefinition of the measure fields and of the
—®| X 9pX"G,,— > Yab—— Fe.q|=0. (18  gauge fields. Notice that the existence of a symmetry alone is
\/—_7 not enough to guarantee that no fundamental scale appears in

_ § the action. For example, string theory, as usually formulated
From the constrainf15), we can solve £°/\—y)Fcqg and  has conformal symmetry, but the string tension is still a fun-

insert back into Eq(18), obtaining(if &+ 0) damental scale in the theory.
) L cd ) . Another interesting symmetry of the actiéup to the in-
92X XY= 2 Yan ¥ 90X 33X"9,,— 2 YaoM =0. tegral of a total divergengeconsists of the infinite dimen-

(19 sional set of transformationg; — ¢;+ f;(L), wheref;(L)

_ . : are arbitrary functions of
Multiplying the above equation by?® and summing over Y

a,b, we obtainM =0, that is, the equations are exactly those 8g8p - -8gy1

of the Polyakov action. After Eq16) is used, the equation Y t: PRV e s
. .. . L Y acx adx gp,VJr

obtained from the variation ak* is seen to be exactly the N

same as the one obtained from the Polyakov action as well. (27)

d [alAa2 .

gyl
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This symmetry does depend on the explicit form of the La-from Eq.(30) and then reinsert the result in the above equa-

grangian density, but only the fact that is ¢, indepen-

dent.

Now we go through the same steps we went through in

tion, obtaining

9aXH X" Gy = 3 Van( Y9 X X G, M), (34)

the case of the string. The variation with respect to the mea-

sure fieldy; gives

g2 --8d+1

a _~cd v
Kl &a Y acx’uadx gMV+ \/?y c?[alAaz . 'ad+l]
=0 (28
where
K]_azsaaz h 'adﬂsijz dar1%2,®Pip Py Py (29
Since
(d+1)" @D
a = —
etk = —gv ’
it therefore follows that fob #0, detQ(]-"‘) #0 and
§ g8 a1
— ,yC &Cxﬂﬂdxngyﬁ- T&[%Aaz gl =M,
(30)

whereM is some constant of integration. df+ 1, thenM

This is the same equation that we would have obtained from
a Polyakov-type action augmented by a cosmological term.
As in the case of the stringyl can be found by contract-
ing both sides of the equation. Fd¥ 1, M is nonzero and

equal to

d v
_yc acxﬂadx gp,v(l_d)
B 1+d : (39
We can also solve fof49.X* 94X g uv IN terms ofM from
Eqg. (35 and insert the result in the right-hand side of Eq.
(34), obtaining

Vabzvaaxﬂabxvggv- (36)

Which meansy,, is up to the constant factor (1d)/M,
equal to the induced metric. Since there is the scale invari-
ance(24), (25), and(26), an overall constant factor in the
evolution of y,, cannot be determined. The same scale in-
variance means however that there is a field redefinition
which does not affect any parameter of the Lagrangian and
which allows us to sety,, equal to the induced metri@t

#0, as we will see. Furthermore, under a scale transformdeast if we start from any negative value ldf), that is,

tion (24), (25), and(26), M does change from one constant

value to another.
The variation with respect to the gauge fieiqz_

©8d41
leads to the equation
e g, 2 g a
V=
which means
d=cy-y (32)

once again. As in the case of the string the brane tension h
been generated spontaneously instead of appearing as a R
rameter of the fundamental Lagrangian. Again, using &
simple calculation of the Hamiltonian and then the abovet
equation, we obtain that is proportional to the brane ten-

sion.
The variation of the action with respect 6 leads to

1 salaz...ad+l
—®| 9, X"dpX"g —5Yab 77— J[a Aa,. . .a ]
L] \/?y 1 42 d+1
=0. (33
We can now solve for
g8 ad+1
Ia,Pay .. ag.]

——

Yab™ &axﬂ&bxygﬂll' (37)

In such a cas#l is consistently givefinserting Eq(37) into
Egs.(36) or (35)]

M=1-d. (39)

Notice that in contrast with the standard approach for
Polyakov-type actions in the case of higher dimensional
braneq10], here we do not have to fine tune a parameter of
the Lagrangian, the brane “cosmological constant,” so as to
force Eq.(37) to be satisfied. Here instead, it is an integra-
fon constant that appears from an action without an original
E3'smological term, which can be set to the value given by

hen ensures that Eq38) is satisfied[and therefore Eq.
(37)]. Furthermore, it appears that this treatment is more ap-
pealing if one thinks of all branes on similar footing, since in
the approach of this paper they can all be described by a
similar looking Lagrangian, unlike in the usual approach
which discriminates in a radical way between strings, these
having no cosmological constant associated to them, and the
higher dimensional branes, which require a fine tuned cos-
mological constant.

If we do not make the choic€38), the constant is not
directly the brane tension, which is instead

M

3

1—d\ -1
|
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which can be checked as a scale invariant combination, since
under a scale transformatidn—e’™M andc—e?d~ Y% | S=Tf L= yd?x, (39
the choiceM =1—d is made, the brane tension is simgly
The principle remains the same as in the case of the stringhere the scalak is given by
and the constant is still responsible for the spontaneous
generation of a brane tension. 2P

One should notice that other authors have also constructed L=—3y343pn,,~i \/:‘]r:‘]ab! (40
actions for branes that do not contain a brane-cosmological Y
term [11]. Such formulations, ur_1I|ke vyhat .has .been d.evel'where the currentd”, J¢, andJ,, are defined as
oped here, depend on the dimensionality, in particular, ar-a
whether this is even or odd, so that it is clear that those  ja_ j pa (41)
formulations do not have much relation with what has been a Tany
done here. Yet other approacHd£] to an action without a
brane cosmological involve Lagrangians with nonlinear de-
pendence on the invarianfdﬁcxaadxﬁgaﬁ, also a rather
different path to the one followed here. For an interesting
analysis of different possible Lagrangians for extendons see
[13]. Then, there is the following symmetry of the Lagrangian

An approach that has some common features to the ON&xact, not up to total divergence
developed here is that of Refd.4] and[15] where the ten-
sion of the brane is found as an integration constant. Here 50°=€", SXH=—ie T 0", (44)
also gauge fields are introduced, but they appear in a qua-
dratic form rather than in a linear form. Also, scale invari- and
ance is discussed [i4], but it is a target space scale invari-
ance since no metric defined in the brane is studied there, 8o =21 €T, pXF+3(ePT 0T 0%, (45)
i.e., no connection to a Polyakov-type action, which is
known to be more useful in the quantum theory, is made. Foprovided the Dirad';, matrices satisfy a condition which
the case of superstrings and superbranes we will follow a@equires the target space dimensionality to be 3, 4, 6, or 10.
procedure that keeps the basic structure found in the bosonlo this formalism, the fieldsp, are not determined at all by
case, except that the gauge fields introduced here in order the equations of motion, since their dependence enters only
obtain a consistent dynamics turn out to be composites cds a total divergence.
other fields, a rather different approach to that of R##]. The situation changes if in Eq39), T\/— yd?x— ®d?x
The linearity of the Lagrangian on th@ this case compos- and we now consider
ite) gauge fields will be maintained, also unlike REi4]
(Ref.[15] does not discuss the supersymmetric fase

JE= 9 XH—10,60°T % 565, (42)

Jaa: &a(ﬁa_ 2i (aax#)ruaﬁaﬁ_ %(aaaﬁ)rgé‘eﬁl—‘pafaé'
(43

S= f Ldd?x, (46)

Ill. SUPERSTRINGS WITH A MODIFIED MEASURE with L still given by Eqs.(40), (41), (42), and (43).

The general structure that we have found for the bosonic !t is now crucial to recognize that the Abelian gauge field
strings and branes suggest the way to follow in the case df€fined in the world sheet of the string, which was intro-
superstrings and supermembranes. duced in order to _obtal_n sensible equations of motion in the_

In fact, the additional term with the gauge fields definedc@se of the bosonic string, appears here induced by the addi-
by Egs.(8) and (9), being associated with the alternating tional fields introduced by Siegel. _
symbol in two dimensions, appears very much related to the The identification pf the Abelian gauge field proceeds ac-
Wess-Zumino term in the Green-Shwarz formulation of thecording to the equation
superstring 16]. . o _

It is important to notice that in the Green-Schwarz formu- 1870040 pb o =5"aPp (47)
lation, the Wess-Zumino term is not invariant under super
symmetry, but only invariant up to a total divergence. And.;
since we have already discussed, in our formulation tota&
derivatives have to be handled with care, sincg-fyL is a Ap=—i16%pd,. (48)
total divergence®L in general is not.

Under these circumstances, Sie@®Y] reformulation of Such composite gauge field construction is indeed very
the Green-Schwarz superstring, where the Wess-Zuminolosely related to the ones studied by Guendelman, Nissi-
term is manifestly supersymmetric becomes of special intermov, and Pacheva and also by Castro in R2¥.
est from our point of view. One can then see that if no singularities or degenerate

In the Siegel[17] reformulation, the action of the super- situations are present, then all of the equations, except one,
string in a flat embedding spacetint@ith metric »,,) is  are the same as those obtained in the standard Siegel formu-
written as lation of the Green-Schwarz superstririy].

‘which can be solved by the composite gauge field construc-
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The difference is due to the fact that the Abelian gauge We begin our discussion of the higher dimensional branes
field Ay, and therefore the,, fields, play a dynamical role, with the consideration of the21 dimensional brane, which
unlike the case of the Siegel formalism. And unlike the Sie-will be treated in some detail. Once this is understood, the
gel formalism, there is an equation that tells us somethindpigher dimensional cases follow more or less in a similar
about the¢,, fields. This is the equation obtained from the fashion, provided the results of Rdfl8] are properly ap-

variation of the measure fields, plied.
ab Once again, as in the superstring case, we want to write
eV pjdal =0, (49 the Lagrangian as the sum of products of invariant supercur-
_ ) rents. For this to be achieved, we need to introduce, in the
which means, i #0, case of the -1 brane, the additional field,,, (field with
N — two target space indicgse,, (field with one target space
L=M=const. 50 . . A . .
0 index and one spinor indgxand also¢,; (field with two
The variation with respect td’a gives the equation Spinor indice% in addition to the Originapa andX* fields of
the brane.
) ) Then we are in a position to define the currefmibere an
a le% — . . . . A%
£ da0"dp N =0 (51)  abbreviated notation is used in what follows, likE'~ 9,6

being a short cut foﬁ“l“ﬁjﬁabaﬁ, etc.; also in this section we
If we have a nondegenerate situation, that is, for enougffpllow normalizations of thed fields and other conventions
linearly independent nonvanishing componentsagé®, it ~ of Ref.[18] rather than those of Reff17]):

follows that

L2=3,6°, (54)
b _
\/: =c=const (52 LE= g X"+ 16T 43,0, (55)
-7
and as in the bosonic case, the integration constastthe  Laus=da®unt 36T ,,3,0, (56)

string tension. , ,
Following the steps of Sec. I, we can once again find, by Lapa=%a®ua™t dadu(I70) o+ 32X (T ,,0)
combining Eq.(50) and the equation obtained from the

1 arv 1 v s
variation with respect to the world sheet metric that + 5140 0) 017920+ 5(I'76) 61 1,020, (57)
M=0. (53) Laa,8= aa¢a'3_ %xuﬁa(ﬁﬂv(rv)aﬂ—i_ aa(ﬁ,uv(r'ue)(a(rya)ﬁ)

As anticipated, once Eq52) is used, all the resulting equa- +5(00200,)(TH) 0+ 2(TH0) (0 up)
tions are exactly those found in R¢L7], except for Eq(50) Clypg v T u
with M=0, i.e., the vanishing on the mass shell of the La- 2X102X T ) ap = (170) (@l 1 46) gy 9aX
grangian. Such condition imposes a constraint on d¢he —é(Fvﬁ)(a(F“”ﬁ)ﬁ)(yrﬂﬁaﬂ)
fields, which in[17] are totally undetermined. o

The interesting role of the new fields, in obtaining a —13(T,0) (T ,0) 5 (6T #73,06). (58

perfect balance, so as to ensure that the Lagrangian is exactly

zero, may very well be connected to a resolution of the cosAnd the supersymmetry under which the above currents are
mological constant, is the effective low energy gravitationalinvariant is

theory. Recall that the ideas of using a modified measure

were motivated in the first place in this contéi. 66%= €, (59

SXt=—1Lel 0, (60)

IV. SUPERBRANES WITH A MODIFIED MEASURE AND
WITHOUT A COSMOLOGICAL TERM

N

0 (61)

17
= ZEF/“, ,

0y
For higher dimensional superbranes Bergshoeff and Sez- .
gin [18] have generalized the auxiliary field formalism of — oy _ vy 4 1(q] v
Siegel. As we saw in the bosonic case, the new feature that Pua= "X p€)a™ P17 at s (€T, 0)(T70)
appears when considering higher dimensional branes, instead +1(elvo)(T ,,0),, (62
of strings, is that in the usual Polyakov-type formalism, a prea
world brane cosmological term must be included, but when

—_Yrwy o _ “ _ iy
the modified measure is used, no explicit cosmological term 0¢ap=~ 3T apebu=2(1"€) (abpp) ~ 2 X (el 0)

is required. Instead, when the equations of motion are con- X(T') _;X;L(:Fya)(r )

sidered, we are forced to consider a nonvanishing value of b4 priap

the constant of integratiokl. These features are maintained — %?[‘Wg(ru 0)(T76) 5

when we formulate the supermembrane generalization of the .

above. —15€l,0(T#"6) (T ,0)p) - (63)
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Such transformations are indeed a symmetry if the gamma The consideration of the equations obtained from the
matrices satisfy a condition which requires the dimensionalvariation with respect to the world brane metric follow the

ity of the target space to be 4, 5, 7, and 11. same general structure to the one discussed in the bosonic
Given those supersymmetric currents, Bergshoeff andase.
Sezgin construct the invariant action Once this is realized, it is clear that, except for the exis-

tence of the constrair{67), all of the equations are the same

as the ones we obtain in the Bergshoeff-Sezgin ¢asg
— 3 1 b 1
S_Tf d>xV—y| — 27 LaLp, T2 after an appropriate rescaling of the metsig,, which is
equivalent to making the choice
abc
- \/Ty(LlaLLELCMv_'—%LngLCMa_%LngLCaB) . M=1-d=-1 (69)

(as discussed in Sec. IM is not invariant under scaling
transformations and through the use of scalings it can be

The coefficients of the three last terms, which are cubic iff1@nged continuously , _
the currents, and which are contracted:85° are chosen so ~ 1he constrain(67) however is totally absent in the case
that all the dependence on the additional fiefls,, ¢,.. of Ref.[18], where the fieldsp,,,, ¢, and¢,, although
and ¢, is through a total divergence. This is exactly the playing an interesting group theoretical role are tgtally irrel-
total divergence by means of which we can once again defing/ant dynamically and therefore totally undetermined.
a composite gauge field analogous to the one used in the
bosonic case, as it was done in the case of the superstring.V- THE CASE OF HIGHER BRANES WITH A MODIFIED

We now consider the 21 brane action with a modified MEASURE
measure. For this we first eliminate the cosmological term
and second consider the chanfé— yd3x— ®d3x, where

(64)

It is clear that for higher branes, once the Bergshoeff-

Sezgin construction is knowi 8], the two operations quoted

in the case of the 2 1 superbrane could also apply, that is,

take the Bergshoeff-Sezgin Lagrangian, first eliminate the

that is, we consider the action, cosmological term and second, modify the integration mea-
sure(in a way that generalizes straightforwardly from what

D=5}, @ IcPk » (65)

1 we have done in the string and in the-2 brané by making
S=Tf d3xP| — E'yabLng” the replacemenity/— yd4" Ix— ®d9* Ix, with & given as in
Eq. (23.
gabc Then the gauge fields, which we had to introduce in the
- (LAL L gyt AL L g — sLOLEL o) | bosonic case in order to have a consistent dynamics, are
V= arbrouy T I0TaTb e 8 Tath Teal provided by the extra fields required by the Bergshoeff-

(66) Sezgin formalism, who got to these constructions from a
group theoretic point of vieW18|.
In spite of the higher complexity, the basic structure of the
theory and the way the equations of motion work is the same VI. DISCUSSION AND CONCLUSIONS
as that of the superstring, explained in Sec. Ill. ) _
As in any case, the variation with respect to the measure [N this paper, we have seen that a formulation of super-

fields ¢; imposes the constraint that the Lagrangian equals atrings and superbrane; with a modified meads+u1re is possible.
constant, ifd#0, that is Due to the construction of this measuredag®™ “x, to the

Lagrangian that multiplies this structure, we can add an ar-

abc bitrary constant since is a total derivative. In this sense,
L=—37"LALp,— —( LALPL 1L 4L L pa the origin of the vacuum energy density need not be speci-
V-7 fied in the theory. It may appear through the initial condi-
1 tions.
- —L;‘L{fLmﬁ) In these theories, the tension of the string or brane appears
S as an integration constant. Furthermore, such a formulation
—M = const. (67) appears to give a dynamical role and not just a group theo-

retical role to the extra fields introduced by Sief&f] and
Second, all the conditions obtained from extremizing withBergoshoeff and Sezgiri8].

respect to variations of the fields,,, ¢,,, and,s, are This may be important in the quantization of the theory
satisfied if and may also be important in the consequences for the low

energy gravitational theory that follows from these kind of

d=c\—y, (68)  brane theories. Recall that the original motivation for intro-

ducing a modified measure was in this conteXt
wherec is a constant. From here we once again obtain the Finally, a very interesting phenomena takes place in the
brane tension as an integration constant. formalism studied here, which is the fact that what we used
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to think was a total divergence becomes dynamically relcomposite scalar field structures have been made in the last
evant, even at the classical level and beyond purely topologipaper of Ref[2].

cal effects. This is of course due to the use of the modified

measure. Such observation raises new possibilities concern- ACKNOWLEDGMENTS
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