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Superstrings and superbranes with a modified measure

E. I. Guendelman
Physics Department, Ben-Gurion University, Beer-Sheva 84105, Israel

~Received 12 June 2000; published 30 January 2001!

For superstrings, the consequences of replacing the measure of integrationA2gd2x in the Polyakov’s action
by Fd2x, whereF is a density built out of degrees of freedom independent of the metricgab defined in the
string, are studied. As in the Siegel reformulation of the Green-Schwarz formalism the Wess-Zumino term is
the square of supersymmetric currents. As opposed to the Siegel case, the compensating fields needed for this
do not enter into the action just as in a total derivative. They instead play a crucial role in making up a
consistent dynamics. The string tension appears as an integration constant of the equations of motion. The
generalization to higher dimensional extended objects is also studied using in this case the Bergshoeff and
Sezgin formalism with the associated additional fields, which again are dynamically relevant unlike the stan-
dard formulation. Also unlike the standard formulation, there is no need for a cosmological term on the world
brane.
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I. INTRODUCTION

There are reasons to consider changing the way we t
and formulate generally covariant theories. If these are g
erally covariant theories of gravity, one of the reasons is
cosmological constant problem@1#, which is a consequenc
of the fact that in gravitational theory, as usually formulate
the origin of the energy density is important.

This is very much related to the fact that the action
generally covariant theories, which is usually written as

S5E ddxA2gL, ~1!

whereg is the determinant of the metric andL is a scalar, is
not invariant under the shiftL→L1const.

If in Eq. ~1! we were to change the measure of integrat
ddxA2g by ddxF, whereF is a total derivative, then the
shift L→L1const will indeed be a symmetry.

This possibility was studied in the context of gravitation
theories which can handle the cosmological constant p
lem @2# and as a tool for the construction of new types
scale invariant theories consistent with nontrivial masses
potentials which are of the form required by inflation@3–6#.
In the models of Refs.@3–6#, no fundamental dimensionfu
parameter really appears in the fundamental Lagrangian~one
can indeed introduce such parameters, but they can be r
sorbed, for example, by a rescaling of the fields that de
the measureF).

It is very interesting that the issues raised above in
case of gravitational theories have their analogues in st
and brane theories, even before we attempt to use these
ries as theories of gravity; that is, we are talking here
string or brane world sheet analogues of the issues ra
above.

String and brane theories@7# have appeared as candidat
for unifying all interactions of nature. One aspect of stri
and brane theories seems to many not quite appealing h
ever: this is the introduction from the beginning of a fund
mental scale, the string or brane tension. The idea that
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fundamental theory of nature whatever that may be, sho
not contain any fundamental scale has attracted a lot of
tention. According to this point of view, whatever scale a
pears in nature, must not appear in the fundamental Lagra
ian of physics. Rather, the appearance of these scales mu
spontaneous, for example, due to boundary conditions
classical context or a process of dimensional transmutat
to give an example of such effect in the context of quant
field theory. The issue, that is, the spontaneous appearan
scale in scale invariant theories which use a modified m
sure, was addressed~in a four dimensional context! and sat-
isfactory solved in Refs.@3–6#.

Interestingly enough, the cosmological constant of gra
tational theories has its analogue in brane theory. It is w
known that the generalization of the Polyakov formalism
branes must incorporate an explicit world brane cosmolo
cal term, unlike the string case, where such a term is for
to vanish. A definite asymmetry between string and hig
branes gets established this way.

Here we will see what we obtain from string and bra
theories with a modified measure. As we will see, stri
theories or more generally brane theories without a fun
mental scale are possible if the extended objects do not h
boundaries~i.e., they are closed!. Although it will not be
studied in detail here, the case of extended objects w
boundaries is also possible in this modified measure form
ism. In this case, a scale can be introduced by the couplin
boundary charges~that is, a scale is induced by a bounda
effect, which fits in the general context we are talking abo
scales arise either from boundary effects or initial con
tions!. These charges are needed so that the extended o
finishes at the boundary, as has been shown in the bos
case@8#. This should also hold for the supersymmetric ca
but these generalizations and further complications of
theory will be ignored here for simplicity, since the bas
points can be made in the case of closed strings and bra

Also, for higher dimensional branes no explicit wor
brane cosmological constant needs to be included, there
restoring the symmetry between strings and branes. How
‘‘brane cosmological constant problem’’ is related to t
©2001 The American Physical Society06-1
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E. I. GUENDELMAN PHYSICAL REVIEW D 63 046006
cosmological constant problem of the gravitational low e
ergy theory is not known, but that connection may very w
exist.

Some related works where the string or brane tension
pears as an integration constant also have been done. C
parisons with the approach taken here~which can be made
only after a presentation of the basic ideas of our approa!
and relevant references can be found at the end of Sec.

The situation for bosonic strings and branes with a mo
fied measure was already studied in a previous work@8#.
Here we review this and then proceed to generalize thi
the supersymmetric case.

II. BOSONIC STRING AND BRANE THEORIES WITH A
MODIFIED MEASURE

In this section we review the previous work@8# on
bosonic extendons with a modified measure before go
into the supersymmetric case. The Polyakov action for
bosonic string is@9#

SP@X,gab#52TE dtdsA2ggab]aXm]bXngmn . ~2!

Heregab is the metric defined in the 111 world sheet of the
string andg5det(gab). gmn is the metric of the embeddin
space.T is here the string tension, a dimensionful quant
introduced into the theory, which defines a scale.

We recognize the measure of integrationdtdsA2g and
as we anticipated before, we want to replace this measur
integration by another one which does not depend ongab .

If we introduce two scalars~both from the point of view
of the 111 world sheet of the string and from the embe
ding D-dimensional universe! w i , i 51,2, we can construc
the world sheet density

F5«ab« i j ]aw i]bw j ~3!

where«ab is given by«0152«1051, «005«1150 and« i j is
defined by«1252«2151, «115«2250.

It is interesting to notice thatdtdsF52dw1dw2, that is,
the measure of integrationdtdsF corresponds to integrat
ing in the space of the scalar fieldsw1 ,w2.

We proceed now with the construction of an action th
usesdtdsF instead ofdtdsA2g. When considering the
types of actions we can have under these circumstances
first one that comes to mind~a straightforward generalizatio
of the Polyakov action! is

S152E dtdsFgab]aXm]bXngmn . ~4!

Notice that multiplyingS1 by a constant, before boundary o
initial conditions are specified is a meaningless operat
since such a constant can be absorbed in a redefinition o
measure fieldsw1 ,w2 that appear inF.

The form~4! however is not a satisfactory action, becau
the variation ofS1 with respect togab leads to the rathe
strong condition
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F]aXm]bXngmn50. ~5!

If FÞ0, it means that]aXm]bXngmn50, which means that
the metric induced on the string vanishes, clearly not an
ceptable dynamics. Alternatively, ifF50, no further infor-
mation is available, also a nondesirable situation.

To make further progress, it is important to note th
terms considered as contributions toL in

S5E dtdsA2gL ~6!

which do not contribute to the equations of motion, i.e., su
that A2gL is a total derivative, may contribute when w
consider the sameL in a contribution to the action of the
form

S5E dtdsFL. ~7!

This is so because ifA2gL is a total divergence,FL in
general is not.

This fact is indeed crucial and if we consider an Abeli
gauge fieldAa defined in the world sheet of the string, i
addition to the measure fieldsw1 ,w2 that appear inF, the
metric gab, and the string coordinatesXm, we can then con-
struct the nontrivial contribution to the action of the form

Sgauge5E dtdsF
«ab

A2g
Fab ~8!

where

Fab5]aAb2]bAa . ~9!

The total action to be considered is now

S5S11Sgauge ~10!

with S1 defined as in Eq.~4! andSgauge defined by Eqs.~8!
and ~9!.

The action ~10! is invariant under a set of diffeomor
phisms in the space of the measure fields combined wi
conformal transformation of the metricgab ,

w i→w i85w i8~w j !, ~11!

so that

F→F85JF, ~12!

whereJ is the Jacobian of the transformation~11! and

gab→gab8 5Jgab . ~13!

The combination («ab/A2g)Fab is a genuine scalar. In two
dimensions, it is proportional toAFabF

ab.
Working with Eq.~10!, we obtain the following equations

of motion: From the variation of the action with respect tow j

«ab]bw j]aS 2gcd]cX
m]dXngmn1

«cd

A2g
FcdD 50. ~14!
6-2
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SUPERSTRINGS AND SUPERBRANES WITH A . . . PHYSICAL REVIEW D63 046006
If det(«ab]bw j )Þ0, which meansFÞ0, then we must have
all the derivatives of the quantity inside the parenthesis
Eq. ~14! vanish, that is, such a quantity must equal a cons
which will be determined later, but which we will callM in
the mean time,

2gcd]cX
m]dXngmn1

«cd

A2g
Fcd5M . ~15!

The equation of motion of the gauge fieldAa tells us about
how the string tension appears as an integration cons
Indeed this equation is

«ab]bS F

A2g
D 50, ~16!

which can be integrated to give

F5cA2g. ~17!

Notice that Eq.~17! is perfectly consistent with the confor
mal symmetry equations~11!, ~12!, and~13!. Equation~15!
on the other hand is consistent with such a symmetry onl
M50. Indeed, we will check that the equations of moti
indeed imply thatM50. In the case of higher dimension
branes, the equations of motion will imply thatM is nonva-
nishing.

If the Abelian gauge field couples to a point particle livin
in the string, we would haveF5c1A2g on one side of the
string andF5c2A2g on the other side,c12c2 being the
charge of the point particle. Notice that this gives us
possibility of havingc250. This is therefore the formulation
of an open string in the modified measure approach. No
the possibility of formulating also extended objects w
boundaries, we will leave the subject and in what follo
focus only on theories of closed strings and branes.

By calculating the Hamiltonian, after dropping bounda
terms ~this is totally justified in the case of closed string!
and ~only at the end of the process! using Eq.~17!, we find
that c equals the string tension.

Now let us turn our attention to the equation of moti
derived from the variation of Eq.~10! with respect togab.
We get, then,

2FS ]aXm]bXngmn2
1

2
gab

«cd

A2g
FcdD 50. ~18!

From the constraint~15!, we can solve («cd/A2g)Fcd and
insert back into Eq.~18!, obtaining~if FÞ0)

]aXm]bXngmn2 1
2 gabg

cd]cX
m]dXngmn2 1

2 gabM50.
~19!

Multiplying the above equation bygab and summing over
a,b, we obtainM50, that is, the equations are exactly tho
of the Polyakov action. After Eq.~16! is used, the equation
obtained from the variation ofXm is seen to be exactly th
same as the one obtained from the Polyakov action as w
04600
n
nt

nt.

if

e

g

ll.

Let us now consider ad11 extended object, describe
@generalizing the action~9!# as,

S5Sd1Sd2gauge, ~20!

where

Sd52E dd11xFgab]aXm]bXngmn , ~21!

Sd2gauge5E dd11xF
«a1a2 . . . ad11

A2g
] [a1

Aa2 . . . ad11] ,

~22!

and

F5«a1a2 . . . ad11« j 1 j 2 . . . j d11
]a1

w j 1
. . . ]ad11

w j d11
.

~23!

This model does not have a symmetry which involves
arbitrary diffeomorphism in the space of the measure fie
coupled with a conformal transformation of the metric, e
cept if d51 @Eqs. ~11!, ~12!, and ~13!#. For dÞ1, there is
still a global scaling symmetry where the metric transfor
as (u being a constant!

gab→eugab . ~24!

The w j are transformed according to

w j→l jw j ~25!

~no sum onj ) which meansF→() jl j )F[lF.
Finally, we must demand thatl5eu and that the transfor-

mation ofAa2 . . . ad11
be defined as

Aa2 . . . ad11
→l (d21)/2Aa2 . . . ad11

. ~26!

Then we have a symmetry. Also, no scale is introduced i
the theory from the beginning. This is apparent from the f
that any constants multiplying the separate contributions
the action ~21! or ~22! is meaningless if no boundary o
initial conditions are specified, because then such factors
be absorbed by a redefinition of the measure fields and of
gauge fields. Notice that the existence of a symmetry alon
not enough to guarantee that no fundamental scale appea
the action. For example, string theory, as usually formula
has conformal symmetry, but the string tension is still a fu
damental scale in the theory.

Another interesting symmetry of the action~up to the in-
tegral of a total divergence! consists of the infinite dimen
sional set of transformationsw j→w j1 f j (L), where f j (L)
are arbitrary functions of

L52gcd]cX
m]dXngmn1

«a1a2 . . . ad11

A2g
] [a1

Aa2 . . . ad11] .

~27!
6-3
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E. I. GUENDELMAN PHYSICAL REVIEW D 63 046006
This symmetry does depend on the explicit form of the L
grangian densityL, but only the fact thatL is wa indepen-
dent.

Now we go through the same steps we went through
the case of the string. The variation with respect to the m
sure fieldw j gives

K j
a]aS 2gcd]cX

m]dXngmn1
«a1a2 . . . ad11

A2g
] [a1

Aa2 . . . ad11] D
50 ~28!

where

K j
a5«aa2 . . . ad11« j j 2 . . . j d11

]a2
w j 2

. . . ]ad11
w j d11

. ~29!

Since

det~K j
a!5

~d11!2(d11)

~d11!!
Fd,

it therefore follows that forFÞ0, det(K j
a)Þ0 and

2gcd]cX
m]dXngmn1

«a1a2 . . . ad11

A2g
] [a1

Aa2 . . . ad11]5M ,

~30!

whereM is some constant of integration. IfdÞ1, thenM
Þ0, as we will see. Furthermore, under a scale transfor
tion ~24!, ~25!, and ~26!, M does change from one consta
value to another.

The variation with respect to the gauge fieldAa2 . . . ad11

leads to the equation

«a1a2 . . . ad11]a1

F

A2g
50 ~31!

which means

F5cA2g ~32!

once again. As in the case of the string the brane tension
been generated spontaneously instead of appearing as
rameter of the fundamental Lagrangian. Again, using
simple calculation of the Hamiltonian and then the abo
equation, we obtain thatc is proportional to the brane ten
sion.

The variation of the action with respect togab leads to

2FS ]aXm]bXngmn2
1

2
gab

«a1a2 . . . ad11

A2g
] [a1

Aa2 . . . ad11] D
50. ~33!

We can now solve for

«a1a2 . . . ad11

A2g
] [a1

Aa2 . . . ad11]
04600
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from Eq. ~30! and then reinsert the result in the above eq
tion, obtaining

]aXm]bXngmn5 1
2 gab~gcd]cX

m]dXngmn1M !. ~34!

This is the same equation that we would have obtained fr
a Polyakov-type action augmented by a cosmological ter

As in the case of the string,M can be found by contract
ing both sides of the equation. FordÞ1, M is nonzero and
equal to

M5
gcd]cX

m]dXngmn~12d!

11d
. ~35!

We can also solve forgcd]cX
m]dXngmn in terms ofM from

Eq. ~35! and insert the result in the right-hand side of E
~34!, obtaining

gab5
12d

M
]aXm]bXngmn . ~36!

Which meansgab is up to the constant factor (12d)/M ,
equal to the induced metric. Since there is the scale inv
ance~24!, ~25!, and ~26!, an overall constant factor in th
evolution of gab cannot be determined. The same scale
variance means however that there is a field redefinit
which does not affect any parameter of the Lagrangian
which allows us to setgab equal to the induced metric~at
least if we start from any negative value ofM ), that is,

gab5]aXm]bXngmn . ~37!

In such a caseM is consistently given@inserting Eq.~37! into
Eqs.~36! or ~35!#

M512d. ~38!

Notice that in contrast with the standard approach
Polyakov-type actions in the case of higher dimensio
branes@10#, here we do not have to fine tune a parameter
the Lagrangian, the brane ‘‘cosmological constant,’’ so as
force Eq.~37! to be satisfied. Here instead, it is an integr
tion constant that appears from an action without an origi
cosmological term, which can be set to the value given
Eq. ~38! by means of a scale transformation. Such a cho
then ensures that Eq.~38! is satisfied@and therefore Eq.
~37!#. Furthermore, it appears that this treatment is more
pealing if one thinks of all branes on similar footing, since
the approach of this paper they can all be described b
similar looking Lagrangian, unlike in the usual approa
which discriminates in a radical way between strings, th
having no cosmological constant associated to them, and
higher dimensional branes, which require a fine tuned c
mological constant.

If we do not make the choice~38!, the constantc is not
directly the brane tension, which is instead

cS 12d

M D (d21)/2

,

6-4
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SUPERSTRINGS AND SUPERBRANES WITH A . . . PHYSICAL REVIEW D63 046006
which can be checked as a scale invariant combination, s
under a scale transformationM→euM andc→eu(d21)/2c. If
the choiceM512d is made, the brane tension is simplyc.
The principle remains the same as in the case of the st
and the constantc is still responsible for the spontaneou
generation of a brane tension.

One should notice that other authors have also constru
actions for branes that do not contain a brane-cosmolog
term @11#. Such formulations, unlike what has been dev
oped here, depend on the dimensionality, in particu
whether this is even or odd, so that it is clear that tho
formulations do not have much relation with what has be
done here. Yet other approaches@12# to an action without a
brane cosmological involve Lagrangians with nonlinear
pendence on the invariantgcd]cX

a]dXbgab , also a rather
different path to the one followed here. For an interest
analysis of different possible Lagrangians for extendons
@13#.

An approach that has some common features to the
developed here is that of Refs.@14# and @15# where the ten-
sion of the brane is found as an integration constant. H
also gauge fields are introduced, but they appear in a q
dratic form rather than in a linear form. Also, scale inva
ance is discussed in@14#, but it is a target space scale invar
ance since no metric defined in the brane is studied th
i.e., no connection to a Polyakov-type action, which
known to be more useful in the quantum theory, is made.
the case of superstrings and superbranes we will follow
procedure that keeps the basic structure found in the bos
case, except that the gauge fields introduced here in ord
obtain a consistent dynamics turn out to be composites
other fields, a rather different approach to that of Ref.@14#.
The linearity of the Lagrangian on the~in this case compos
ite! gauge fields will be maintained, also unlike Ref.@14#
~Ref. @15# does not discuss the supersymmetric case!.

III. SUPERSTRINGS WITH A MODIFIED MEASURE

The general structure that we have found for the boso
strings and branes suggest the way to follow in the cas
superstrings and supermembranes.

In fact, the additional term with the gauge fields defin
by Eqs. ~8! and ~9!, being associated with the alternatin
symbol in two dimensions, appears very much related to
Wess-Zumino term in the Green-Shwarz formulation of
superstring@16#.

It is important to notice that in the Green-Schwarz form
lation, the Wess-Zumino term is not invariant under sup
symmetry, but only invariant up to a total divergence. A
since we have already discussed, in our formulation to
derivatives have to be handled with care, since ifA2gL is a
total divergence,FL in general is not.

Under these circumstances, Siegel@17# reformulation of
the Green-Schwarz superstring, where the Wess-Zum
term is manifestly supersymmetric becomes of special in
est from our point of view.

In the Siegel@17# reformulation, the action of the supe
string in a flat embedding spacetime~with metric hmn) is
written as
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S5TE LA2gd2x, ~39!

where the scalarL is given by

L52 1
2 gabJa

mJb
nhmn2 i

«ab

A2g
Ja

aJab , ~40!

where the currentsJa
m , Ja

a , andJab are defined as

Ja
a5]aua, ~41!

Ja
m5]aXm2 i ]auaGab

m ub, ~42!

Jaa5]afa22i ~]aXm!Gmabub2 2
3 ~]aub!Gbd

m udGmaeu
e.

~43!

Then, there is the following symmetry of the Lagrangi
~exact, not up to total divergence!

dua5ea, dXm52 i eaGab
m ub, ~44!

and

dfa52i ebGmabXm1 2
3 ~ebGbe

m ue!Gmakuk, ~45!

provided the DiracGab
m matrices satisfy a condition which

requires the target space dimensionality to be 3, 4, 6, or
In this formalism, the fieldsfa are not determined at all by
the equations of motion, since their dependence enters
as a total divergence.

The situation changes if in Eq.~39!, TA2gd2x→Fd2x
and we now consider

S5E LFd2x, ~46!

with L still given by Eqs.~40!, ~41!, ~42!, and~43!.
It is now crucial to recognize that the Abelian gauge fie

defined in the world sheet of the string, which was intr
duced in order to obtain sensible equations of motion in
case of the bosonic string, appears here induced by the a
tional fields introduced by Siegel.

The identification of the Abelian gauge field proceeds
cording to the equation

2 i«ab]aua]bfa[«ab]aAb ~47!

which can be solved by the composite gauge field const
tion

Ab[2 iua]bfa . ~48!

Such composite gauge field construction is indeed v
closely related to the ones studied by Guendelman, Ni
mov, and Pacheva and also by Castro in Ref.@2#.

One can then see that if no singularities or degene
situations are present, then all of the equations, except
are the same as those obtained in the standard Siegel fo
lation of the Green-Schwarz superstring@17#.
6-5
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E. I. GUENDELMAN PHYSICAL REVIEW D 63 046006
The difference is due to the fact that the Abelian gau
field Ab , and therefore thefa fields, play a dynamical role
unlike the case of the Siegel formalism. And unlike the S
gel formalism, there is an equation that tells us someth
about thefa fields. This is the equation obtained from th
variation of the measure fields,

«ab]bw j]aL50, ~49!

which means, ifFÞ0,

L5M5const. ~50!

The variation with respect tofa gives the equation

«ab]aua]bS F

A2g
D 50. ~51!

If we have a nondegenerate situation, that is, for eno
linearly independent nonvanishing components of]aua, it
follows that

F

A2g
5c5const ~52!

and as in the bosonic case, the integration constantc is the
string tension.

Following the steps of Sec. II, we can once again find,
combining Eq. ~50! and the equation obtained from th
variation with respect to the world sheet metric that

M50. ~53!

As anticipated, once Eq.~52! is used, all the resulting equa
tions are exactly those found in Ref.@17#, except for Eq.~50!
with M50, i.e., the vanishing on the mass shell of the L
grangian. Such condition imposes a constraint on thefa
fields, which in@17# are totally undetermined.

The interesting role of the new fieldsfa in obtaining a
perfect balance, so as to ensure that the Lagrangian is ex
zero, may very well be connected to a resolution of the c
mological constant, is the effective low energy gravitation
theory. Recall that the ideas of using a modified meas
were motivated in the first place in this context@2#.

IV. SUPERBRANES WITH A MODIFIED MEASURE AND
WITHOUT A COSMOLOGICAL TERM

For higher dimensional superbranes Bergshoeff and S
gin @18# have generalized the auxiliary field formalism
Siegel. As we saw in the bosonic case, the new feature
appears when considering higher dimensional branes, ins
of strings, is that in the usual Polyakov-type formalism
world brane cosmological term must be included, but wh
the modified measure is used, no explicit cosmological te
is required. Instead, when the equations of motion are c
sidered, we are forced to consider a nonvanishing value
the constant of integrationM. These features are maintaine
when we formulate the supermembrane generalization of
above.
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We begin our discussion of the higher dimensional bra
with the consideration of the 211 dimensional brane, which
will be treated in some detail. Once this is understood,
higher dimensional cases follow more or less in a sim
fashion, provided the results of Ref.@18# are properly ap-
plied.

Once again, as in the superstring case, we want to w
the Lagrangian as the sum of products of invariant super
rents. For this to be achieved, we need to introduce, in
case of the 211 brane, the additional fieldsfmn ~field with
two target space indices!, fma ~field with one target space
index and one spinor index! and alsofab ~field with two
spinor indices!, in addition to the originalua andXm fields of
the brane.

Then we are in a position to define the currents~where an
abbreviated notation is used in what follows, likeūGm]bu
being a short cut foruaGab

m ]bub, etc.; also in this section we
follow normalizations of theu fields and other convention
of Ref. @18# rather than those of Ref.@17#!:

La
a5]aua, ~54!

La
m5]aXm1 1

2 ūGm]au, ~55!

Lamn5]afmn1 1
2 ūGmn]au, ~56!

Lama5]afma1]afmn~Gnu!a1]aXn~Gmnu!a

1 1
6 ~Gmnu!aūGn]au1 1

6 ~Gnu!aūGmn]au, ~57!

Laab5]afab2 1
2 Xm]afmn~Gn!ab1]afmn~Gmu!(a~Gnu!b)

1 1
4 ~ ū]afm!~Gm!ab12~Gmu!(a]afmb)

2 1
2 Xm]aXn~Gmn!ab2~Gnu!(a~Gmnu!b)]aXm

2 1
12 ~Gnu!(a~Gmnu!b)~ ūGm]au!

2 1
12 ~Gnu!(a~Gmu!b)~ ūGmn]au!. ~58!

And the supersymmetry under which the above currents
invariant is

dua5ea, ~59!

dXm52 1
2 ēGmu, ~60!

dfmn52 1
2 ēGmnu, ~61!

dfma52Xn~Gmne!a2fmn~Gne!a1 1
6 ~ ēGmnu!~Gnu!a

1 1
6 ~ ēGnu!~Gmnu!a , ~62!

dfab52 1
4 ~Gm!abēfm22~Gme!(afmb)2

1
4 Xm~ ēGmnu!

3~Gn!ab2 1
4 Xm~ ēGnu!~Gmn!ab

2 1
12 ēGmnu~Gmu!(a~Gnu!b)

2 1
12 ēGmu~Gmnu!(a~Gnu!b) . ~63!
6-6
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Such transformations are indeed a symmetry if the gam
matrices satisfy a condition which requires the dimension
ity of the target space to be 4, 5, 7, and 11.

Given those supersymmetric currents, Bergshoeff
Sezgin construct the invariant action

S5TE d3xA2gF2 1
2 gabLa

mLbm1 1
2

2
«abc

A2g
~La

mLb
nLcmn1 9

10 La
mLb

aLcma2 1
5 La

aLb
bLcab!G .

~64!

The coefficients of the three last terms, which are cubic
the currents, and which are contracted to«abc are chosen so
that all the dependence on the additional fieldsfmn , fma ,
and fab is through a total divergence. This is exactly t
total divergence by means of which we can once again de
a composite gauge field analogous to the one used in
bosonic case, as it was done in the case of the superstr

We now consider the 211 brane action with a modified
measure. For this we first eliminate the cosmological te
and second consider the changeTA2gd3x→Fd3x, where

F[«abc« i jk]aw i]bw j]cwk , ~65!

that is, we consider the action,

S5TE d3xFF2
1

2
gabLa

mLbm

2
«abc

A2g
~La

mLb
nLcmn1 9

10 La
mLb

aLcma2 1
5 La

aLb
bLcab!G .

~66!

In spite of the higher complexity, the basic structure of t
theory and the way the equations of motion work is the sa
as that of the superstring, explained in Sec. III.

As in any case, the variation with respect to the meas
fields w i imposes the constraint that the Lagrangian equa
constant, ifFÞ0, that is

L52 1
2 gabLa

mLbm2
«abc

A2g
S La

mLb
nLcmn1 9

10 La
mLb

aLcma

2
1

5
La

aLb
bLcabD

5M5const. ~67!

Second, all the conditions obtained from extremizing w
respect to variations of the fieldsfmn , fma , andfab , are
satisfied if

F5cA2g, ~68!

wherec is a constant. From here we once again obtain
brane tension as an integration constant.
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The consideration of the equations obtained from
variation with respect to the world brane metric follow th
same general structure to the one discussed in the bos
case.

Once this is realized, it is clear that, except for the ex
tence of the constraint~67!, all of the equations are the sam
as the ones we obtain in the Bergshoeff-Sezgin case@18#
after an appropriate rescaling of the metricgab , which is
equivalent to making the choice

M512d521 ~69!

~as discussed in Sec. II,M is not invariant under scaling
transformations and through the use of scalings it can
changed continuously!.

The constraint~67! however is totally absent in the cas
of Ref. @18#, where the fieldsfmn , fma , andfab , although
playing an interesting group theoretical role are totally irr
evant dynamically and therefore totally undetermined.

V. THE CASE OF HIGHER BRANES WITH A MODIFIED
MEASURE

It is clear that for higher branes, once the Bergshoe
Sezgin construction is known@18#, the two operations quoted
in the case of the 211 superbrane could also apply, that
take the Bergshoeff-Sezgin Lagrangian, first eliminate
cosmological term and second, modify the integration m
sure~in a way that generalizes straightforwardly from wh
we have done in the string and in the 211 brane! by making
the replacementTA2gdd11x→Fdd11x, with F given as in
Eq. ~23!.

Then the gauge fields, which we had to introduce in
bosonic case in order to have a consistent dynamics,
provided by the extra fields required by the Bergshoe
Sezgin formalism, who got to these constructions from
group theoretic point of view@18#.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have seen that a formulation of sup
strings and superbranes with a modified measure is poss

Due to the construction of this measure asFdd11x, to the
Lagrangian that multiplies this structure, we can add an
bitrary constant sinceF is a total derivative. In this sense
the origin of the vacuum energy density need not be sp
fied in the theory. It may appear through the initial cond
tions.

In these theories, the tension of the string or brane app
as an integration constant. Furthermore, such a formula
appears to give a dynamical role and not just a group th
retical role to the extra fields introduced by Siegel@17# and
Bergoshoeff and Sezgin@18#.

This may be important in the quantization of the theo
and may also be important in the consequences for the
energy gravitational theory that follows from these kind
brane theories. Recall that the original motivation for intr
ducing a modified measure was in this context@2#.

Finally, a very interesting phenomena takes place in
formalism studied here, which is the fact that what we us
6-7
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to think was a total divergence becomes dynamically
evant, even at the classical level and beyond purely topol
cal effects. This is of course due to the use of the modifi
measure. Such observation raises new possibilities conc
ing the study and resolution of fundamental questions c
cerning the dynamical role of total divergences like in t
strong CP problem. Some observations concerning a p
sible resolution of the strongCP problem by use of the
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to
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composite scalar field structures have been made in the
paper of Ref.@2#.
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