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Remarks on the racetrack scheme: Stabilizing the moduli of string theory
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There are only a small number of ideas for stabilizing the moduli of string theory. One of the most appealing
of these is the racetrack mechanism, in which a delicate interplay between two strongly interacting gauge
groups fixes the value of the coupling constant. In this paper, we explore this scenario. We find that, quite
generally, some number of discrete tunings are required in order that the mechanism yield a small gauge
coupling. Even then, there is, in general, no systematic weak coupling approximation. On the other hand,
certain holomorphic quantities can be computed, so such a scheme is in principle predictive. Searching for
models which realize this mechanism is thus of great interest. We also remark on cosmology in these schemes.
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I. INTRODUCTION

Understanding how the moduli of string or M theory com
pactifications are fixed is one of the greatest challenges o
subject. For compactifications with more than four sup
symmetries (N.1 in four dimensions!, general consider-
ations suggest that there is an exact moduli space. In the
of four or fewer supersymmetries, generically the flat dire
tions are lifted, with the potential typically tending to zero
any region in which the appropriate couplings tend to zero
the radii tend tò .1

This argument suggests that the string coupling should
strong and the scales of the theory should be comparable@2#.
This in turn raises the question as to why the observed ga
couplings in nature are weak and unified, and why the u
fication scale seems to differ significantly from the Plan
scale. This is the real issue in stabilization of the mod
given that stabilization must occur, if at all, in regions whe
no sort of weak coupling approximation can be valid, w
should anything be calculable? It is, after all, not hard
imagine schemes to stabilize the moduli, but it is hard to
why the coupling should be small, except as a result of
merical accidents, shrouded in mysterious high energy ph
ics. In this view, none of the parameters of low energy ph
ics would be calculable in any systematic approximat
scheme.

These points are illustrated by the various toy models
modulus stabilization which appear in the literature. Most
these focus on a single modulus and postulate superpo
tials from one or another source which provides stabilizat
@3–5#. Generically, however, the couplings turn out to be
order 1 in these proposals, and it is necessary to suppose

1In compactifications of non-supersymmetric string theories,
story is slightly different. Generically, in the loop expansion, o
finds a non-zero cosmological constant, as a result of which
energy may blow up for large radius, but will still tend to zero f
small coupling. An example of anN51 theory where some of the
moduli are exact was given in@1#.
0556-2821/2001/63~4!/046005~8!/$15.00 63 0460
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uncontrolled strong coupling dynamics explains why t
coupling is small. These models certainly illustrate that
gauge coupling can be small, but they do not predict that
of the parameters of low energy physics should be ca
lable. It is perhaps worth noting that onecan construct
weakly coupled string models with~at the tree level! as few
as a single modulus@6# or in which all moduli or all moduli
but one are charged under discrete symmetries. One can
contemplate theories with no moduli at all@7# or in which all
moduli transform under unbroken symmetries, but it is u
clear whether any controlled approximation might be ava
able.

There are only a small number of proposals for fixi
moduli in which some quantities are calculable. One
known as ‘‘Kähler stabilization’’ @8#. Here one imagines
starting with some weakly coupled limit of M theory~i.e.
some limit in which a systematic approximation is availabl!,
where one can calculate holomorphic quantities such as
gauge coupling functions and the superpotential. In ot
words, as one takes some modulus to extreme valuesM
→`, one comes to a regime where one can perform syst
atic calculations inM 21. The superpotential and gauge co
plings are holomorphic, and because of discrete shift sy
metries, they are functions ofe2M. As one increases the
couplings one supposes that, in a regime where the expo
tial is small, there are large corrections to the Ka¨hler poten-
tials of the moduli, such that the potential has a minimum
weak coupling. Any holomorphic quantity which can b
computed in the weak coupling limit will be calculable
such a picture.

A second proposal involves the possibility of ‘‘maximal
enhanced symmetry’’@9#. Here one argues that the minimu
of the full potential might naturally lie at a point where all o
the moduli transform under unbroken symmetries. In ad
tion to the fact that such points are automatically station
points of the effective action, this hypothesis naturally solv
the moduli problem of string cosmology. However, gene
cally in such states,a'1. One must hope that there are som
such states for which the effective low energy couplings h
pen to be small~and unified!. Little is calculable in such a
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picture; however, this hypothesis leads to the prediction
supersymmetry will be broken at low energies and that so
sort of gauge mediation will play a crucial role. A third po
sibility is that there are simply no moduli. Operationally, th
hypothesis is similar to that of maximally enhanced symm
try. In the context of large extra dimensions, possibilit
involving large topological charges have been proposed@10–
12#, and in some cases, the size of the extra dimensio
correlated with the smallness of the gauge couplings@13#.
Finally, we will focus in this note on the ‘‘racetrack mech
nism’’ @14–17#.

The racetrack proposal is in some sense more ambit
than the others we have listed. Here one hopes for a sys
atic analysis of moduli stabilization in the low energy effe
tive field theory. The basic idea is that competing effe
from different low energy gauge groups may give rise to
local minimum for the moduli, in a computable fashion,
weak coupling. One might then hope to compute other qu
tities relevant to low energy physics.

From the beginning, questions have been raised about
culability in this scenario@18,19#. This question will be a
central focus of our investigation. We will see that in som
versions of the racetrack scheme, nothing is computable
that most quantities are not likely to be computable inany
circumstance. But upon more careful consideration, it w
become clear that the racetrack scenario has many featur
common with the Ka¨hler stabilization and maximally en
hanced symmetry hypotheses in that, in some cases, h
morphic quantities such as the gauge couplings and supe
tential are computable. To simplify the discussion, we w
assume unification, so the standard model gauge coup
are controlled by a single modulus, which we will loose
refer to as the ‘‘dilaton.’’ We point out that in order to hav
any control over low energy physics, it is necessary that
scale of the gauge groups be hierarchically small, i.e. tha
be much below the fundamental scale. This requires
~discrete! fine-tuning. Even then, one is unlikely to be able
compute the Ka¨hler potential in a systematic weak couplin
approximation; there is, in general, no quantity which can
taken as arbitrarily small in order to justify such a calcu
tion. Holomorphic quantities, however, may be computab
just as in the case of Ka¨hler stabilization. In other words, on
can compute holomorphic quantities at weak coupling, a
these computations should be reliable at the true minim
The point is simply that, by symmetries and holomorph
corrections to holomorphic quantities are controlled by po
ers of e2S, so that if this quantity is hierarchically smal
corrections are similarly small.

This is not the case for the Kahler potential and oth
non-holomorphic quantities. No simple symmetry argum
controls its dependence onS. In some instances, we can e
hibit large corrections to the Ka¨hler potential by examining
the low energy effective field theory. If we assume that
appropriate cutoff for this theory is that governed by t
relations between couplings and scales of the wea
coupled heterotic string, corrections to the Ka¨hler potential,
as we will see, are formally of order 1. If we take the sc
ings suggested by the Horava-Witten picture, the story
somewhat different. In this limit, corrections to the Kahl
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potential are suppressed by powers ofr, the size of the 11th
dimension. Corrections to higher derivative operators in
low energy field theory are of order 1. If one assumes tha
type I picture is valid, as we will see, corrections to quan
ties in the low energy theory are suppressed byge f f

2 /8p2.
Given that one cannot make the gauge groups~and hence

the coupling constants! arbitrarily large in these limits, the
message we take from these observations is that gene
only holomorphic quantities will be calculable. Still, we ca
not rule out the possibility that we might be lucky, and th
leading order computations might be reliable for other qu
tities as well.

Apart from these differences, it is perhaps worthwhile
distinguish two cases: supersymmetry unbroken at the m
mum of the potential and supersymmetry broken. In the
ter case, because of the potential problem of computing
Kahler potential, it is difficult to perform any analysis. If on
supposes that the Ka¨hler potential is calculable, then one ca
compute the cosmological constant; for typical forms of t
superpotential, it is unlikely to vanish.

In the case that the potential forS does not break super
symmetry, one has, in principle, more control. Holomorph
quantities are computable. Moreover, as will be describ
elsewhere, such a situation might be desirable for cosm
ogy. In this case, some other sector of the theory must
responsible for supersymmetry breaking. If gravity is t
principle messenger of supersymmetry breaking~as is pos-
sible if the symmetries are not enhanced!, the non-
calculability of the Kähler potential means that one has litt
control over the low energy dynamics. Soft breakings,
particular, are not computable. The situation is potentia
quite different if supersymmetry is broken by low ener
dynamics, as in gauge mediated models. The gauge
plings and some Yukawa couplings~i.e. ratios which depend
only on holomorphic quantities! would be computable. The
soft breakings would be computable in terms of a small nu
ber of parameters~some terms in the low energy effectiv
superpotential would depend on uncontrollable Ka¨hler po-
tential corrections!. Many of the uncomputable non
holomorphic quantities may be of little relevance to low e
ergy physics.

The racetrack explains how one modulus is fixed, with
large value for its mass. If there are other moduli, they m
still pose problems for cosmology. On the other hand,
these moduli all sit at enhanced symmetry points, the cos
logical moduli problem@20,21# is solved, and low energy
breaking, as in the case of maximally enhanced symmetr
inevitable. In such a picture, it is quite natural that only o
modulus has a large value in fundamental units, and thu
responsible for the observed values of the gauge coupl
and their unification. As stressed by the authors of@20#, any
low energy supersymmetry breaking scheme has a drawb
in order to generate a term in the superpotential of the cor
order of magnitude to lead to vanishing cosmological co
stant, it is necessary to postulate some additional strong
namics beyond that which breaks supersymmetry. We
make some remarks on this below. It is not clear whether
problem is truly more severe than the extreme fine-tun
required in any case.
5-2
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REMARKS ON THE RACETRACK SCHEME: . . . PHYSICAL REVIEW D 63 046005
This picture is indeed attractive from a cosmological po
of view, as discussed in@20#. These authors argued that
might be desirable to fix the mass of some moduli at sca
well above the scale of supersymmetry breaking. Any
maining moduli pose potential cosmological problems, u
less, as argued in@22#, they sit at enhanced symmetry poin

Before investigating these questions, we should introd
our basic assumptions and some terminology. Our focu
on the question as to why the gauge couplings are small
unified. To address this, we will assume, as stated above,
there is one modulus whose value controls the size of
observed gauge couplings~other moduli, with small expec
tation values, could also couple!. We will refer to this modu-
lus as the dilaton, and denote it byM, though we will not
assume that this field is to be identified with what is usua
called the dilaton in weakly coupled string theory. Seco
we need to explain, as in any such discussion, what is m
by the term ‘‘modulus.’’ Clearly, since we are discussing t
problem of stabilization, we are not supposing that there
an exact moduli space. We have instead in mind the po
bility that there are approximate moduli, whose masses
their minima are small compared to the fundamental sc
and which become exact moduli in some limit. Finally, w
are assuming throughout that there is approximate low
ergy supersymmetry. Indeed, we will see that it is hard
make sense of the racetrack scheme without it.

One must also note that there are actually several vers
of the racetrack idea. Most are tied specifically to gaug
condensation, but this is not necessary@23# and, as we will
see, has certain disadvantages. All involve generating a
perpotential in the low energy theory. In most versions of
scenario, the dynamics which fixes the moduli does
break supersymmetry. We will argue that this is essentia
the gauge couplings are to be calculable. In perhaps the
plest proposal, there are several groups coupled to the dil
with very largeb functions@17,23#. In this case, as we wil
see, the usual low energy analysis yields a small value for
gauge coupling. However, the scale of the low energy the
is of order the fundamental scale, and the low energy an
sis is not valid. One might have hoped that holomorphy a
symmetries would allow one to extend the range of valid
of these methods. However, the modulus superpoten
even assuming the relevance of the low energy theory,
much more complicated function than usually assumed. T
superpotential is not calculable, and the mass of the mod
is of order 1. Generically, the cosmological constant will
of order 1, though it is possible, in principle, for it to vanis
at this level, due to symmetries. So, in this case, little
gained over simply assuming that the theory has
supersymmetry-preserving minimum at some desired va
of the coupling.

More promising is a second~discretely! fine-tuned ver-
sion, in which several groups have very similar, largeb
functions. In this case, the coupling can be small, and th
can be a hierarchy of scales. In the case where gluino c
densation is the origin of the superpotential, at least th
groups must have nearly equal, largeb functions, and specia
relations must hold among threshold factors. However,
lowing @23#, we can consider models with unbrokenR sym-
04600
t

s
-
-

e
is
nd
at
e

y
,
nt

is
si-
at
le

n-
o

ns
o

u-
e
t

if
m-
on

e
ry
y-
d

l,
a

is
us

s
a
e

re
n-
e

l-

metries~in this reference it was supposed that the symm
tries were continuous but discrete symmetries can a
accomplish the same objectives; the role of discreteR sym-
metries in obtaining unbroken supersymmetry was fi
stressed in@20#!. In this case, only one fine-tuning is re
quired, though one also needs many gauge singlet fields
discrete symmetries.

Even in this discretely fine-tuned case, it is unlikely th
some sort of weak coupling analysis will be possible. Fir
there is no small parameter~such as 1/N) which justifies
such an approximation. Second, if one assumes the rela
of couplings and scales as in the weakly coupled heter
string, while the gauge couplings are numerically small, it
easy to exhibit loop corrections, at least for non-holomorp
quantities, which are of order 1. As we have already not
the situation is different in other string theories, but giv
that one cannot obtain very large gauge groups in these
its, we view this result as suggestive of a more general
ficulty. However, certain holomorphic quantities are und
control, and may be susceptible to analysis in the low ene
theory. To understand this, one should imagine first pass
to the weak coupling limit. In this limit, high energy effec
in the superpotential and gauge coupling function go as p
ers ofe2M. The low energy analysis yields a coupling su
that e2M is extremely small. So these corrections should
under control. In a scheme of this sort, one must still und
stand the breaking of supersymmetry and the fixing of a
other moduli. If the breaking is at scales intermediate
tween the weak and Planck scales~as in ‘‘supergravity’’
models!, low energy soft breaking is not calculable. If brea
ing is at low energies, as in gauge mediation, many of
important features of the low energy theory may be cal
lable.

Different scalings hold in the type I or strongly couple
heterotic string limits and it is conceivable that the Ka¨hler
potential is calculable. But even if many quantities are n
calculable, one would be left with a rather appealing pictu
Allowing one numerical coincidence~some close relation
among beta functions!, one would hope to develop a com
plete phenomenology starting from a weakly coupled lim
One would still need to understand the problem of the c
mological constant, of course.

We turn, finally, to the possibility that supersymmetry
broken simultaneously with fixing the moduli. For such sc
narios, we note that, in light of our observation that o
cannot compute the Ka¨hler potential, very little, if anything,
is accessible to analysis. The gauge couplings would no
calculable; nor would soft breaking terms. It is possible th
as in the case of Kahler stabilization, some terms in the
perpotential might be. Even if one could use the lowest or
Kähler potential~as we will see might conceivably be th
case!, one has another difficulty: the cosmological constan
calculable and typically non-vanishing at the minimum.

In the following sections, we review the racetrack id
and describe these possibilities in greater detail. We c
clude by arguing that indeed the racetrack idea, whether
timately realized in nature or not, does provide a viab
model for understanding the smallness of the gauge c
plings in a theory which is inherently strongly coupled. A
5-3
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MICHAEL DINE AND YURI SHIRMAN PHYSICAL REVIEW D 63 046005
an application, we consider the implication of such a pict
for scenarios with large internal dimensions.

II. SUSY CONSERVING VERSION
OF THE RACETRACK IDEA

Kaplunovsky and Louis@17# have put forth an appealin
version of the racetrack idea. They note that studies
F-theory compactifications have yielded classical grou
states of the theory with enormous gauge groups. Supp
now, that one has two gauge groups~without matter—these
remarks all readily generalize to cases with matter in wh
the strong gauge group does not by itself break supersym
try! with very largeb functions, say

b15aN, b25bN, ~1!

whereN is a large integer, anda andb are~rational numbers!
of order unity. Suppose the gauge couplings of both gro
are controlled by a single modulus,M; i.e. the Lagrangian a
low energies looks like

E d2uM~W1
21W2

2!. ~2!

Then the usual arguments for gluino condensation yiel
superpotential forM:

W5ab1e2M/b12b2be2M/b2. ~3!

~If the couplings are not the same at the fundamental sc
this difference can be absorbed into thebi ’s.! Herea andb
are numbers of order 1 which arise due to threshold cor
tions. This superpotential has a stationary point at

M5
b1b2

b12b2
lnS b

a D . ~4!

For largeN, this behaves as

M;N ln~b/a!. ~5!

At the stationary point, however,W is nonzero:

W5a~b12b2!S b

a D 2b2 /(b12b2)

~6!

~whenb15b2, there is no stationary point!.
This would appear to be what is needed to stabilize

dilaton at weak coupling, and would even seem to be ra
generic. There are at least two difficulties, however, wh
appear more or less fundamental. The first has to do with
self-consistency of the calculation and the second to do w
the problem of the cosmological constant. The usual anal
of gluino condensation assumes that the scale of the
energy gauge theory,L, is well below the fundamental scale
But in this scheme,L is of order 1. As a result, it is not at a
clear why one can look at the gauge group and not cons
the full set of massive string~M! theory states.

Still, sometimes holomorphy and symmetries can sign
cantly constrain the form of the superpotential, so we mi
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hope that the low energy analysis captures some of the tr
To assess this possibility, let us consider the effects of n
renormalizable operators on the low energy analysis. T
usual discussion of gluino condensation starts by noting
at the renormalizable level, the effective theory has anR
symmetry under which the modulusM transforms. ThisR
symmetry uniquely determines the dependence of the c
densate,̂ ll& on M:

^ll&5z, ~7!

where

z5e23M/b0. ~8!

Now suppose that there are terms in the effective action
below the string scale of the form

E d2uxW41zW61••• . ~9!

We can think ofx andz, etc., as spurions which transform
under theR symmetry;x hasR charge22, z charge24,
etc. The same argument which gave the leading term giv

^ll&5z1axz21bzz31••• ~10!

wherea andb are constants of order one.
So we see that the superpotential is a general functio

z, even in the case of one modulus. At the stationary po
these corrections are not suppressed. Indeed, even with
one modulus there may now be a stationary point with la
M. It is not possible to determine the location of this s
tionary point, however, without an understanding of the f
string theory. The low energy theory is insufficient.

In order that one obtain a supersymmetric vacuum w
vanishing cosmological constant, it is necessary that both
superpotential and its first derivative vanish. This is not
case for our simplified treatment of the example above; at
stationary point ofW, W is non-zero. It is conceivable tha
there are models for whichW has special properties such th
it vanishes at the stationary point. After all, the vanishing
W in weakly coupled string compactifications is a cons
quence of detailed features such as the Peccei-Quinn s
metry. It is possible that models whose dynamics preserv
discreteR symmetry could naturally yield a vanishingW at
the stationary point. We will discuss this possibility below
a different context, but the other difficulties remain.

Finally, note that in these schemes, the modulus itsel
massive, with mass of order one. So one might as well s
pose that one is studyingM theory vacua~in some approxi-
mation! with fewer moduli from the start. Logically, there i
no problem with this idea, but it leaves unanswered the qu
tions of why the couplings are weak and whether anything
calculable.

III. IMPROVEMENT THROUGH FINE-TUNING

In our example above, ifb1'b2, one can perhaps im
prove the situation. In this case,z can be small. For example
if the two quantities are within 10% of each other, thenz
5-4
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;10210. The scales are now well separated, and arguably
use of the low energy effective action is self-consistent. T
situation with respect to the cosmological constant is a
somewhat better. For suppose supersymmetry brea
arises from some more weakly coupled gauge group w
beta functionb3!b1. It is possible~for example if the lead-
ing order contribution—inz—to the cosmological constan
vanishes! that the various terms could cancel with one a
other.

In the finely tuned case, it is possible to analyze the p
sible vanishing ofW with several gauge groups. With tw
gauge groups there are still no solutions, but with three
more gauge groups with very similar, largeb functions,
there are solutions for suitable values for the threshold c
rections@15#. One can analyze this problem by considering
superpotential of the form

W5ab1e2M/b11bb2e2M/b21gb3e2M/b3. ~11!

We want to ask whether there can be solutions of the eq
tions W85W50, for some values ofa, b and g. It is a
simple algebraic exercise to verify that this is the ca
Whether the required values of the threshold corrections
tually arise is another question, but it is not perhaps co
pletely implausible, given that corrections toa, b and g
from their one loop form will be exponentially small.

Izawa and Yanagida have proposed a variant on the r
track scheme which would ameliorate this difficulty@23#.
Field theories with quantum moduli spaces, at the leve
non-renormalizable terms, leave unbrokenR symmetries. If
such a theory appears in the low energy limit of a str
theory and if the theory has a~discrete! R symmetry, then the
superpotential can naturally vanish at the stationary p
~the fact thatR symmetries can account for unbroken sup
symmetry and vanishing cosmological constant was stre
in @20# and is crucial to the cosmological scenario outlined
@24#!. These authors give an example with two~discretely
tuned! low energy groups. A large number~of order N2)
singlets with suitable couplings to the matter fields of the
groups are required to achieve the desired stabilization.
ditional discrete symmetries are required in order to obt
the desired patterns of couplings. On the other hand, in b
constructions such large numbers of singlets might be p
sible, and elaborate discrete symmetries are familiar in st
theory. This type ofR-symmetry based scenario, then, see
the most plausible.

Finally, there is the question of what is calculable in th
picture. Looking at the explicit solutions, one sees that if
b functions are of orderN and their differences of order 1
the gauge couplings are of order 1/N2. This is probably
enough to ensure that holomorphic quantities are given
their weak coupling values. Corrections to the superpoten
and the gauge coupling functions go ase2M, for example,
and this is suitably small. However, non-holomorphic qua
tities are not, in general, described by any weak coup
approximation. In particular, consider corrections to t
Kähler potential forM, such as those indicated in Fig.
These diagrams come with a factor ofN2L2/M p

2 , where the
N2 arises from theN2 particles propagating in the loop, an
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L is a cutoff @25#. In the weakly coupled heterotic string
L25g2M p

2 , and so these corrections are of order 1. T
resulting one loop supergravity~SUGRA! contributions to
the soft masses are of the orderN2L2/(16p2M p

2) @26#. Tak-
ing into account factors ofp in our definition of the dilaton
we find that they are of order 1. We should stress here tha
some models supergravity contributions may be numeric
small. If one examines the scenarios discussed in Ref.@16#,
one finds that for most of them,g2(Ni

2/16p2 is 30% or
larger, but there is one where it is as small as 10–15 %. O
might hope that the corrections can be reliably comput
However, it will be difficult to establish this fact, since, a
we have argued, there is no formal small expansion par
eter.

So far we have focused on the weakly coupled heter
string theory in order to estimate the cutoff. Some hope
optimism is provided by considering other string theor
~we are grateful to Antoniadis@36# for a remark which
prompted an examination of this question!. In the limit of the
strongly coupled heterotic string one would expect the cu
to be given byM11. However, for quantities which are pre
dicted by 10 dimensional supersymmetry, the relevant cu
will be related to the compactification scale. Support for t
comes from studies of the Ka¨hler potential in the Horava-
Witten limit, which is easily seen by symmetry arguments
be the same as in the weak coupling limit, up to terms
order 1/r, wherer is the size of the 11th dimension. This ca
be traced to the fact that one can pass from one limit to
other in such a way that the theory is always approximat

FIG. 1. Contributions to dilaton Ka¨hler potential proportional
to N2.
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ten dimensional. So the Ka¨hler potential may be calculable
For example, if the typical size of the M-theory compacti
cation manifold is R.M11

21 , then the supersymmetr
~SUSY! above the compactification scale may provide
relevant cutoff. In such a case corrections could be of or
N2R22/M p

2;N2g3;1/N. Certain higher dimensional opera
tors would obtain non-calculable corrections, but this co
be of little relevance to low energy effective theory. In t
type I theory, assuming compactification at the string sc
L25g4M p

2 , and so again one might hope that these corr
tions are under control for sufficiently largeN ~applied to the
examples of@16#, this gives corrections in some cases
small as 7%, with 20% being more typical!. Of course, to
argue this formally requires that there exist a set of theo
characterized byN such that one can take the limitN→`,
and this seems unlikely to exist in these limits.2 F theory
suggests that very large gauge groups may exist, but w
not know how to perform the corresponding analysis fo
theory, and suspect that one will have similar difficulties
those of the weak coupling heterotic picture. We will ado
the pessimistic view in what follows that one does not exp
to be able to compute the Ka¨hler potential. In this view, one
does not expect to be able to calculate quantities which
pend on the detailed form of the Ka¨hler potential. But it is
again important to keep in mind that there may be instan
where much more is calculable.

In sum, the finely tuned case is a scenario in which a l
energy analysis can in principle provide an explanation
small couplings and large hierarchies. Holomorphic qua
ties are in principle calculable in such a scheme, but n
holomorphic quantities are probably not. If supersymmetr
broken at an intermediate scale, it will not be possible to
much about the low energy spectrum, since the Ka¨hler po-
tential is not known. On the other hand, if supersymmetry
broken at low energies, as in gauge mediation, many qu
tities may be calculable. Apart from the gauge couplin
themselves, physical quantities which depend holomorp
cally on terms in the superpotential will be calculable. T
soft breakings should be expressible in terms of a small n
ber of parameters.

IV. SUPERSYMMETRY VIOLATING VERSION
OF THE RACETRACK SCHEME

When originally proposed, it was hoped that the racetr
scheme would provide a mechanism for fixing some mod
~assumed to be the usual dilaton of weakly coupled heter
string theory! while simultaneously breaking supersymme
in a calculable manner, and generating a weak gauge
pling and large hierarchy. This possibility was most tho
oughly analyzed in@16#, where many interesting example
were developed. Still, we can ask whether such a prop
can truly be analyzed in terms of a low energy effect
action.

2The same, of course, is true for holomorphic quantities, but gi
their exponential dependence, this seems more plausible.
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As in the supersymmetric case, it is necessary, in or
that any low energy effective action analysis make se
~and presumably also that one obtain hierarchically sm
supersymmetry breaking! that one has several~at least two!
groups with nearly identicalb functions. However, deter
mining whether a minimum of the potential exists and
location~and in particular determining the value of the gau
coupling! requires, in this case, knowledge of the Ka¨hler
potential for the modulus. We have argued, however, t
this may not be calculable. The problem can be stated m
strongly: there is no simple argument, in these cases, tha
superpotential is simply a sum of the superpotentials for
different groups. The usual symmetry arguments@27# for the
form of the superpotental no longer hold. Moreover, at g
neric points in the moduli space, the larger condensate
duces non-zero—and large—contributions to the other.
amining the appropriate diagrams, one can see that
problem is closely tied to the problem of understanding
Kähler potential.3

Indeed, this situation is not so much different than that
‘‘Kä hler stabilization,’’ where it is supposed that with
single gauge group, the Ka¨hler potential is such as to giv
rise to a minimum of the potential at weak coupling. T
principle difference is the two, nearly equal,b functions pro-
vide a slightly different explanation for the smallness of t
gauge coupling than the accident proposed in@8#.

As we have remarked above, the analysis of@16# is con-
sistent with these remarks. In most cases, a rough estima
the corrections yields a large value for the effective exp
sion parameter, but in one of their examples it is about 10
Whether this is good enough in string theory is, of course,
open question.

Operationally, it is not clear that there is much differen
between the two hypotheses. In particular, in both cas
some quantities protected by holomorphy, i.e. the super
tential and gauge coupling functions, are accessible. Qua
ties which are not, such as the soft breaking masses,
unpredictable. Recently, in@28#, it has been shown that
combination of Ka¨hler stabilization and multiple condensat
provides an interesting model for stabilization. A quite sp
cific and plausible picture for the origin of the Ka¨hler poten-
tial corrections is presented, though again control of n
holomorphic quantities, in the sense of there being
systematic, weak coupling approximation scheme, is limit

It should be noted that if the Ka¨hler potential is given by
its weak coupling~or strong heterotic coupling! form, the
cosmological constant can be calculated at the level of

n

3Similar issues were raised in@34#, where it was noted that in
certain grand unified theories, one obtained inconsistencies if
assumed the superpotential was a simple sum of this type. In@35#, it
is asserted that the superpotential is a sum. However, this ana
treats the dilaton superfield as a non-dynamical background
ignores the fact that one condensate induces corrections to
other. It is conceivable that the correct form is a sum and that th
other effects can be absorbed into corrections to the Ka¨hler poten-
tial, but this is by no means obvious and is a question worthy
further investigation.
5-6
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effective action. The dilaton potential is~now calling the
dilaton S, as appropriate to the weak coupling limit!

V~S,S†!5
1

S1S† FUS ]W

]S
1

1

S1S†D WU2

~S1S†!223uWu2G .

~12!

It is not easy to find systems whoseW gives minima with
V50 @14#.

V. OTHER ALTERNATIVES
TO THE RACETRACK SCHEME

We have stressed in the preceding sections that the p
lem in string theory is not to explain how moduli can b
stabilized, but rather how they can be stabilized in suc
way that the gauge couplings are weak and supersymmet
hierarchically broken, and such that anything is computa
We have argued that the finely tuned version of the racetr
scheme does provide a picture in which the gauge coupl
could be fixed at small values and a hierarchy explained
calculable fashion. Of course, we do not have a deta
string model which realizes these ideas, but at least the
nario permits us to frame the discussion.

The literature contains discussion of other proposals
stabilizing the moduli, which are alternatives to the racetra
scheme. They all suffer, however, from difficulties similar
those which have been discussed here. We will not attem
complete review, but mention a few examples.

Reference@4# focuses specifically on the heterotic strin
dilaton, though similar arguments can be applied to ot
moduli. It is argued that modifications of the gauge coupl
function along with gaugino condensation can lead to sta
lization. SL~2,Z! duality is used to significantly constrain th
form of this function, as well as the form of the Ka¨hler
potential. Not surprisingly, however, this leads to stabiliz
tion at values of the coupling (a) of order 1. It is argued,
there, that uncomputable corrections might give a phen
enologically acceptable value for the coupling. However, t
means precisely that nothing is computable in such a pict
The smallness of the low energy gauge couplings is an a
dent; no aspect of string~M! theory dynamics is accessible
a systematic, weak coupling analysis.

In Ref. @5#, another low energy mechanism for stabilizin
the moduli is proposed. In this scheme, the low ene
theory, in a certain approximation, has a quantum-modi
moduli space. The authors only consider the global lim
their models do not yield supersymmetry-conserving mini
with vanishing cosmological constant when coupled to gr
ity. Ignoring this issue, as these authors note, the gen
value of the gauge coupling is of order 1. It is possible
obtain smaller couplings if the models have large discr
symmetries. These models are not sufficiently develope
decide whether a weak coupling analysis is applicable,
we would argue it is unlikely that any sort of perturbati
treatment of non-holomorphic quantities is possible. If fr
of anomalies, large discreteR symmetries require large
gauge groups~or large matter content!. These lead to prob
lems of calculability identical to those we have describ
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above. Even if anomalies are canceled by a Green-Schw
mechanism, it is difficult to avoid such large groups.

VI. CONCLUSIONS

Conceptually, the difficult issue in understanding ho
moduli are stabilized in string theory is understanding w
couplings are weak and unified, and there are large hie
chies. It is certainly not hard to imagine that moduli a
stabilized in such a way that couplings and dimensionl
ratios are of order 1. How large pure numbers arise in
theory without small parameters is distinctly more puzzlin
The racetrack scheme and its variants which have been
viewed here are probably the most concrete proposals
how moduli are stabilized at weak gauge coupling. We ha
seen that in order that one obtain small couplings in a c
trollable approximation, some degree of fine-tuning is
quired: if gaugino condensation is the origin of the mod
superpotential, one must have at least three gauge gr
with closely relatedb functions; in theories with an unbro
ken discreteR symmetry, one needs two groups and
elaborate field and symmetry structure. In these cases,
everything is calculable, but holomorphic quantities such
the superpotential and the gauge coupling functions may
If supersymmetry is broken at intermediate energy sca
many quantities will not be computable. If supersymmetry
broken at low energies, it is likely that many quantities r
evant to low energy physics could be.

Comparing with other proposals for modulus stabilizati
in string theory, the racetrack model has a certain app
While the fine-tuning is unattractive and we do not ha
explicit examples which provide a complete realization, t
scenario is quite concrete. As we have described here
offers the hope of computing the gauge couplings and
superpotential. If supersymmetry is broken at low energ
many quantities relevant to low energy physics might
computable. Ka¨hler stabilization, by contrast, invokes unco
trollable and unknown corrections to the Ka¨hler potential. As
in the racetrack scenario, certain holomorphic quantities
calculable, but not the gauge couplings. It is hard to rec
cile this mechanism with low energy supersymmetry bre
ing. Maximally enhanced symmetry, while possessing a c
tain economy, requires that through some mysterio
mechanism the gauge couplings are quite small, and whi
does suggest low energy supersymmetry breaking, is
likely to offer the hope of computing even holomorph
quantities.

There has been much interest recently in the possibility
large internal dimensions. The first well-developed propo
of this type appeared in@29#, where it was assumed that th
strong coupling limit of the heterotic string, with compac
fication on a Calabi-Yau space was appropriate. The d
culty with this idea, noted in@31#, is that at large radius, the
supersymmetry of the higher dimensional theory ensures
the potential vanishes. Clearly, however, something like
racetrack picture could operate here as well@30#. In the
scheme of@29#, in particular, one has two walls, and supe
symmetry breaking arises from dynamics in the walls. T
competing groups could give rise to a potential for t
5-7
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MICHAEL DINE AND YURI SHIRMAN PHYSICAL REVIEW D 63 046005
moduli, with a minimum for some large value of some of t
radii. In this regime, again, the Ka¨hler potential would not be
calculable, but the gauge couplings and other holomorp
quantities would be. This would presumably mean that o
could not take the geometric picture too literally; at best
would only be qualitatively correct. Similar remarks apply
other scenarios in which stabilization for large values of g
metrical moduli is required, e.g.@32#.

It is also interesting to consider the possibility that t
dilaton of this picture is an inflaton~these remarks are in
spired by the recent work of@24# as well as earlier work of
@33#!. In the models here, the dilaton is fixed, with a ma
large compared to the expected scale of supersymm
breaking. This is perhaps promising, since for inflation o
wants a rather large scale. Moreover, the potential, as a re
of the discrete fine-tuning, is rather flat. Determini
whether or not inflation occurs, and the values of the relev
scales, requires an understanding of the Ka¨hler potential,
which we have argued is not calculable in these scheme
any case, the scale of the potential can quite naturally be
or three orders of magnitude below the Planck scale, perh
leading to a suitable spectrum of density fluctuations. De
mining the number ofe-foldings also requires knowledge o
the Kähler potential, but it is plausible that this numb
the
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might be large. Because the potential is a function ofS/N,
taking the Kähler potential to be of order (N)0, a simple
scaling argument givesNe;N2. In other words, the fine-
tuning required to obtain a weak gauge coupling might
the same as the fine-tuning required to obtain adequate i
tion.

Inflation in this picture requires explicit, if plausible, a
sumptions about the Ka¨hler potential. Still, the connection o
the tuning required to obtain small gauge couplings in t
picture and that required to obtain inflation raises the po
bility that the two are truly correlated; perhaps the expla
tion of the smallness of the gauge couplings is that o
regions with weak gauge couplings inflate.
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