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We extend an implicit regularization scheme to be applicable imttlienensional space-time. Within this
scheme divergences involving parity violating objects can be consistently treated without recoursing to dimen-
sional continuation. Special attention is paid to differences between integrals of the same degree of divergence,
typical of one loop calculations which are, in principle, undetermined. We show how to use symmetries in
order to fix these quantities consistently. We illustrate with examples in which regularization plays a delicate
role in order to both corroborate and elucidate the results in the literature for the c&deTofiolation in
extended QED, topological mass generation in three-dimensional gauge theories, the Schwinger model, and
its chiral version.
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I. INTRODUCTION AND MOTIVATIONS algebra is extended to dimensions[3]. Although on one
hand, such shortcomings may in principle be controlled by

The renormalizability of the standard mod&M) of par-  imposing the Ward-Slavnov-Taylor identities order by order
ticle physics underpins its predictive power. Within pertur- (and introducing new finite counterterinen the other hand,
bation theory, a formal proof of renormalizability entreats athis turns the calculations significantly cumbersoifdg.
gauge invariant regularization scheme. Whereas dimension&8lome very interesting views on this subject have been re-
regularization DR) is known as the most powerful and prag- cently presente¢5].
matic method in the continuum space-time, care must be Among the topological field theories in the three-
exercised when dealing with theories whose symmetry condimensional(3D) space-time, the perturbative computation
tent depends on the space time dimension, such as chirgf (pure CS theories have applications to both mathematics
gauge theories and topological field theories. In other wordg6] and physic7], even though some exact results can be
when parity violating objects such gg matrices ofe,, ... drawn nonperturbativelf8]. When coupled to matter fields
tensors occur in the theory, an appropriate extension of DIES-matter theories are no longer exactly solvable in general.
must be performed since the properties of these objects clastotwithstanding, they have a wide range of applications in
with the idea of analytical continuation on the dimension ofcondensed matter physiffer a nice account see Ref$,10|
the Space-time. This is the case of the electroweak sector Ofand references therémn either case, the regu|arizati0n am-
the SM" as well as Chern-Simori€S) and CS-matter type higuities stemming from their perturbative evaluation have
of theories. Although such an extension may be explicitlypeen an everlasting matter of debgtd,12). The third rank
constructed, namely, the t' Hooft-Veltman dimensional con-gntisymmetric tensor in the CS Lagrangian is just the 3D
tinuation(tHVDC), it is not unique and several modifications analogue of theys in 4D theory. A naive DR cannot make

yt\(ere sag%esteﬁzr]]. 'Ill'hdi_s, in tu;ﬂ’ ma;rq gi;/?h_rise o ar(?tt)ri]gu- the theory well definefil3], whereas a so-called dimensional
ities (which we shall discuss throughout this papand the reduction, that is the evaluation of the entire antisymmetric

appearance of spunous_anoma_ll_es. The latter is UIt.'mate|¥ensor algebra in 3D while the loop momentum integrations
related to the asymmetric definition of5 when the Dirac L . . .
are performed im dimensions, can be shown to be inconsis-
tent[11]. The most accepted scheme is the Becchi—Rouet—
Stora- (BR9)-invariant hybrid regularization comprising a
"Email address: msampaio@fisica, ufmg.br hlgh coyarlant derlvatMéHC_D) term a(2:ided2|n the Lagrang-
*Email address: carolina@fisica.ufmg.br ian (for instance, a Yang-Mills term AF tr F<) [14] and the

'The only consistent framework in which the renormalization of tHYDC. The former renders the model power counting
the electroweak SM in the continuum four-dimensiof#) space-  SUPer-renormalizable and the remaining finite number of dia-
time can be carried out to all orders is algebraic renormalizatiorffams that are left unregularized must be regulated by the
within the Bogolubov-Parasiuk-Hepp-ZimmermaitiBPHz) for-  latter. The limitsn—3 andA — o are well defined15-17
malism[1]. However for practical purposes it is rather involved as and should be taken in the end. Some comments are in order.
chiral and vector gauge symmetries are broken in intermediatéf we consider CS theory as a large topological mass limit of
stages which renders the calculations hard to handle. a topologically massive Yang-Mills theory, as conjectured
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by Jackiw[18], then the Yang-Mills piece of the Lagrangian n-dimensional CR. This is very important in order to both

is the natural candidate for the HCD term. However, in prin-treat ambiguities related to a particular choice of regulariza-
ciple one can construct higher covariant derivative terms afion and simplify the loop calculations in dimensions other
will using covariant derivative§19]. In fact, as regards of than four; i.e., in the CS-matter theories. Second, for the
the famous shift/nonshift of the CS paramétar,class of PUrPose of illustration, we have selected examples where dif-
(local, BRS-invarianthigher covariant derivative regulariza- ferent regularization schemes have somewhat generated con-

tions were usedsee Giavariniet al. [12]). The shift de- troversy in the literature.

: This paper is organized as follows. In Sec. Il we derive
pended on the large momentum leading term of the regulaiye R for am-dimensional regularization and then we pro-

ized action being parity even or parity odd. ceed to illustrate in the context of theories defined in 4D in
Another instance where the regularization ambiguitiessec. |I| for standard 4D (QEL). In Sec. IV, we revisit a
play a delicate role is in nonrenormalizable models, oftenwell-known example in 4D: the radiative generation of a
used as effective theories of QCD. In such cases the regulaGPT and Lorentz violating Chern—Simons-type term by in-
ization scheme is frequently defined as part of the model angtoducing a term?byy// in the fermionic sector of QED. In
any parameters introduced by a specific choice must be adec. V, we study the topological mass generation in 3D QED
justed phenomenologicalf20]. and analyze, as an example, in 2D the Schwinger model and
Given the scenario above and the need to go to highets chiral version in Sec. VI. Finally, we draw our conclu-
orders in perturbation theory as the precision of the experisions and present some applications in which our scheme can
ments increase, it would be desirable to find a regularizatio®® useful.
framework for diagrammatic computations which preserved
t_he advantages of !DR withogt the need to dir_nensionally con- . CONSEQUENCES OF MOMENTUM ROUTING
tinue y5 or the antisymmetric tensor and/or introduce HCD INDEPENDENCE
terms in the Lagrangian.
Recently, a step in this direction was taken. A technique ) ) ] ) )
was proposed for the manipulation and calculatior(4i9) Consider a one loop two-point function with two vertices
divergent amplitudes in a way that a regularization need only i 21d1'; and letk be the momentum running in the loop. In

Lo . each propagator that forms the loop we are allowed to add
to be assumed implicitl{21,22. The integrands are algebra- . i . .
ically manipulated until the infinities are displayed in the arbitrary 4-momenta, sat; and k,, consistently with the

. . X .~ momentum-energy conservation. In RgZ1], it was shown
form of basic divergent integrals in the loop momenta, whichg T T — _ _
- . . or I'=I';=1 (SS, T I'i=7vs (PP, T} Y, andl'j=vy,

do not need tq be explicitly evaluated in order to obFaln the(VV) andT';=y,ys, andT;=7,ys (AA) that if these am-
standard physical resultghey can be fully absorbed in the pjitudes were to be independent of the arbitrary momentum
definition of the renormalization constantdlo dimensional  routing, that is to say, if they were translational invariant and
continuation is involved and a regulator needs only implic-consequently a shift the momentum integration variable was
ity to be assumed to mathematically justify the algebraicallowed, then a set of consistency relatidi@R) between
steps in the integrands of the divergent integrals. integrals of the same degree of divergence_- had to hold in the

An important ingredient Of thlS technique iS a set Of Con_sense that the d|fference betWeen the two |ntegra|s must van-

sistency relationéCR) expressed by differences between di- 1Sh- Such a feature is manifested within D&d hence DR

vergent integrals of the same degree of divergence. In Ref’beyS the CRbut may not be satisfied by other gauge in-

[21], it was shown that such CR should vanish in order tov'ariant regularizations. The existence of at least two regular-

, - . . ) izations defined solely on the space time dimension of the
avoid ambiguities related to the various possible choices fo{heory that realize the CR was also shown in R21]. The

the momentum routing in certain amplitudes involving loops,same CR can be readily derived by imposing translational
consistently with gauge invariance. This is an important feainyariance on the(free) propagators of the theory. In this
ture of DR and it can be easily checked that the CR argection, we derive the CR for an arbitrary space-time dimen-
readily fulfilled in the framework of DR. Alternatively and sionn.

more generically, we can assign an arbitrary value to such For definiteness, consider the free fermionic Green’s

CR and let gauge invariance to determine its value. function

Our purpose in this contribution is twofold. First, to gen- _ )
eralize this approach to be applicable for theories defined in s [ dk elk(x=x) !
any dimension n by deriving the corresponding (X=x")= (2m)" k—m (1)

and the corresponding “translated” Green’s functige., a

2A topological Ward identity constrains such shift to be an inte-dlfferent representation of the same object
ger. : ,

[ . . - d"k e|(k+|)(><—>< )

This could well be one of the cases in which the radiative cor- Sl(x—x’):i )
rection is finite but undetermined since, nonperturbatively, one can (2m)" k+I-m
only assert that th@ function vanishes to all orders what does not
discard a finite correction. wherel is an arbitrary momentum. Since we are dealing with

046004-2



CONSISTENCY RELATIONS FOR AN IMPLICITn- . . . PHYSICAL REVIEW D 63 046004

distributions, the action of these objects require the definitiorvanish identically. But on the improper integra%,will act
of a set of test functions on which they act. It is straightfor-over a distribution,
ward to see that translational invariance implies that

(x,y)D(x,y)d"yd"x, (8
JS<x—x'>j<x'>d“x'=fa<x—x'>j<x'>d“x'. 3 fS YIRSy

Thus we conclude th& (x—x’) should be independent bf ~ typically the delta function or products of particle Green's
function. So, we have

d n
— | S(x=x")p(x")d"x' =0. (4) S B Y
dlf f Si(x,y)D(x,y)d"yd"x f e (p_mD(p) :

(2m)"
This condition guarantees that the_generating functional for _ ©
the free theoryZg[ 7]=N expl—if 7(X)S(x—y) n(y)d"xdy} ForD(x,y)=8(x—Yy), we ha\{eD(p)= 1, gind, for instance,
does not depend on the particular Fourier representation thif" the second term on the right-hand side
has been used, provided the test functions have the adequate Adp o (1
physical behavior. The same will hold true for the generating |ILJ' _[ B m] . (10)
functional of the interacting theofy21]. Let us take a closer (2m)" ap* | p

look at thel dependence of the Green'’s function . . . . -
At this point, since the integral is divergent, some regu-
lating procedure must be adopted. Assume that the ultravio-
J S(x,y) 7(y)d"y let divergent integrals in the momentufsay, k) are regu-

lated by the multiplication of the integrand by a regularizing
dn ei(p+|)(x—y) dn )
o] 2B S

function G(k2,A),
2m)" p+I-m J (27)

J’f(k)HJ d’k f(k)G(kZ,Ai)EJAf(k), (12)
k k

n
(5) (2)
One can now integrate overto obtain where A; are the parameters of a distributi@whose be-
havior for largek renders the integral finite. We shall only
"p dq el(Phx assume that such a regulator is everkiand that the con-

f Sl(x,y)n(y)d”y=f

nection limit IimAinG(kz,Ai) =1 is well defined. The latter

n n —
(2m)") (2m)" p+I—m will guarantee that the value of the finite amplitudes will not

X 7(q)"(q—p—1) be affected by taking the limit. Now the integrand of Et0)
can be written as a difference of two divergent integrals of
dg eiPthx the same degree of divergence, namely
=f - 7(p+1), (8)
2m)" p+I—-m

fA dp 4 1
which can also be conveniently rewritten in terms of the (2)" op* | p—m
translation operator as

[ JA dp g fA dp  2ptp* ]
i =7, - :
dn e|px 2 n ~2_ 2 2 n 2_n2\2
| seymmay- | pne'”""ﬂ( n(p)) (mprmmt L (2m (P
(2m) p—m (12)
dnp alPXx
= J - n(p) If we vary the number of Lorentz indices in the integrals, we
(2m)" [ p—m obtain, for a certain degree of divergence, other relations in
i the higher orders of the expansi6r). Moreover, the degree
d" J | ePx . X ! )
+|Mf p 7 7(p) of divergence of the integrals depends on the dimension
(2m)" ap* [ p—m
o (@) 1+1 Dimensions:
The first term on the right-hand side is the result which ex- o2 o2
presses “translational” invariance as required by 8j. All AO EJ’ dk g _ J dk K.k, _
the other terms are surface terms which, providgg) de- mr (2m)? k2—m? (27)?% (k2—m?)?
cays sufficiently fast as required on physical grounds, should (13
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241 Dimensions:

Uy 2JA d*k kK,
(2m)® (K¥=m??’
(14

- _fA d3k
T ] (2m)8 K2—m?

A d3k 1

B ivas=(99ap+ 9uaBrpT 9up0ra) f (2m)° K—m?

- JA d*k kK, K.Kg 15

(2m)? (K—m?)*’
etc.

3+1 Dimensions:

YZ EJA d4k g:u-V
my (2m)* KP—m?

A d*%k Kk
-2 _L, 6
f(27-r)4(k2—m2)2 (19

0 EJA d*k Uy _4IA d'k  kk,
mv (277_)4 (k2_m2)2 (277_)4 (k2_m2)3'
17

A d*k 1

2 —
Yirap=(9ur0ap™ Gualupt guﬁgva)f (2m)* K—m?

B JA d% K,k Kakg 8

(2,”_)4 (k2_m2)3'

Y?LVC!BE (guvgaﬁ+ g,u,agv,B+ g,u,,Bgva)

fA dk 1 ” fA d*k  K,k,K.Kg
(2m)* (K—m?)? (2m)* (K¥=m?)*’
(19

PHYSICAL REVIEW D63 046004

d"p T
22
(2m)" (p2—m?)?’ (22

0=

where

T,..,=Ap%g,,+Bm’g,,+Cp,p,, (23

and A, B, and C are constants. SincH ,,(0)=0, we can
suppose that the integrand is a total derivative, and investi-
gate if there exisf, B, andC which satisfy the condition

TMV J Dp,
- , (24)
(p?=m?)?  gp# | p?~m

whereD is also a constant. After a simple algebra, we con-
clude thatA=—-B=D andC= —2D, so that

A i A d"
HW(O)sz P 9w —Zf P PP
(2m)" p?—m? (2m)" (p*~m?)?

(25

=0.

In this case, we may say that the same condition is required
to preserve both momentum routing independence and gauge
invariance. However, in physical applications we should
privilege the latter upon the former since there are examples
in which gauge invariance can only be attained at the cost of
adopting an especific momentum routir&g], namely, when

one axial vertex is involved. We will come back to this issue
in Sec. IV.

. QED ,

etc. Hence, in order to assure momentum routing indepen- In this section, we illustrate our regularization framework

dence, we have to set the's, E’s, andY's to vanish. A
simple illustration of this feature will be drawn in Sec. IIl.

within QED in four dimensions in order to compare with
well-known results, as well as to gain some insight espe-

It is interesting to notice that precisely the same type ofcially in the role played by an arbitrary routing in the loop
relations between divergent integrals may appear in amomentum of an amplitude in connexion with the CR.

n-dimensional theory in connection with gauge invariance.

Consider the vacuum polarization tensor to one loop order

In order to show this, let us consider a generic form for thewith arbitrary internal momentum routing

polarization tensor:

HMV( k2) = g;LVH(O) + g,uvkznl( kz) + k,ukVHZ( kz) . (20)

Gauge invariance implies that
kIl ,,(k*) =0, (21)

which is only true ifIT,,(0)=0. We can write this, for the
one loop calculation, as

d*k
i, [ Stk skl (26

whereS(k) is a usual half spin fermion propagator carrying
momentumk. In order to make the arbitrary momentum de-
pendence more explicit, E€R6) may be rewritten, after tak-
ing the trace over the Dirac matrices, as
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2K, k,
m?I[(k+kz)?—m?]

( A d%k
11 =
= f (2w>4[<k+kl>2—

PHYSICAL REVIEW D 63 046004

+(kqy+ k)f Ky
V) 2n >4 [(k+kq)2—mP][(K-+kp)2—m?]
+(ko+k f K, + (ko Ky + Ky K
( 2 1) (2 )4 (k+k 2][(k+k2)2 ] ( 2uly 1w 2V)

XJ d*k 1
(2m)* [(K+ky)?—m?][(k+ky)?—

)_2 (fA d*k 1
m2) 29 ) e [k

+J d*k 1
m?] (2m)* [(k+kq)?—m?]

—(ky—k )ZJA o =
V) 2t [(kky)2-

Now, we manipulate algebraically the integrands until the
external momentum dependence appears solely in finite inte-

grals by means of the identity

N 1)J(k2+2k k)J
jzo m2)]+l
(—l)N+1(ki2+2ki-k)N+l
(k2_m2)N+1[(k+ki)2_m2]’
(28

[(k+k)?—m?

i=1,2, andN is such that the last term in E8) is finite

under integration ovek [22]. After some straightforward

algebra, we can cast ER7) in the form

,,=I,,+4 wa—%(ki+k§)¥2y+%(kfkf+k§k§
+KTKE) YO, p— (ki ko) *(ki+ky) YO, |, (29
where
ﬁw:g((kl_kz)zgw_(kl_kz)#(kl_kz)p)

0 [ emr(k—kp)?)
X("’g(m) (4#)2(3+ (ky—kp)?

), (30

X Zo((ky—kz)?%;m?)

and theY's are the CR defined in Eq§16)—(19),

m?][ (k+k,)2—m?

: 2
]) (27)

2 A d%k 1
og(m) = f(27r)4(k2—m2)2

and

2 _ )
2P = fﬁd“”(w)'

(31

It is clear from Eq.(29) that in order to eliminate the am-
biguous terms and to respect the Ward identitidg (
—ko)“I1,,= (ki —kp) "I1,,,=0, we must set all th&’s to
zero. Therefore, we obtain the usual result for the vacuum
polarization tensor.

Now let us adopt the particular routing=p andk,=0
and hence let the value of the CR be arbitrary, namely

Y?.waﬁ':c(g/uzgaﬁ_'—gﬂagvﬁ_'—gﬂﬁgav)v
0 _
Y,uv_ag;u}' (32)
Thus we have

pIl=4(p*Y?%,+(c—2a)p?p,), (33
from which we see that gauge invariance is implemented for
the choice

Y2,=0, c=2a. (34)
This will be important for the discussions in Sec. IV.

Notice that at this point we can compare our result with

any sound regularization procedure, for instance, DR by an
explicit computation ofl|og(m2). However, as far as the

physical content is concerned, one need not do so. For in-
stance, consider the calculation of ti# function to one
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loop order. We add the usual counterterm to defh,guR
:HMV—'_(quV_quILLV)(Zs_l)' AM:Z%/ZAI‘“, and q:kl
—k,. The Callan-Symanzil@ function can be written as

B=e i (Inz¥%(e,A/m)) (35)
Raln A 3 3= '

We may choose the renormalization constant such tAat (

—1)=13il ((‘,g(mz) (which amounts to a subtraction g&=0)
to get the well-known one loop resufp=1/(127%) (er
=1), where we used thatljy(m?)/gm?= —i/((4m)?m?).
In Ref.[22] we also calculate thg function ofgo;1 theory to
two loop order within this approach.

IV. INDUCED LORENTZ AND CPT SYMMETRY
BREAKING IN EXTENDED QED ,

While introducing a Chern-Simons term

1
chzcﬂe“V”PFmAp, c,, being a constant 4-vector,

(36)

PHYSICAL REVIEW D63 046004

vector current with zero-momentum transfer between the two
vector gauge field vertices. Hence we can write generically
that

d4
rea= | TP PA), (69

(2

with 11 ,,,(p) ~ b, I'***(p,—p). Now as it was discussed in
Ref.[35], I'*"*(p,—p) is undetermined by an arbitrary pa-
rametera, namely

r#ra(p,—p)~T#"(p,—p)+2iae""*#p,;,  (40)

which cannot be fixed by requiring transversality Iof "¢,

This is in contrast with the famous triangle anomaly and it is
essentially because, in our case, the axial vector carries zero
momentum. Moreover, there is no anomaly in the axial cur-
rent conservation law in this case. The indetermination ex-
pressed in Eq(40) (and therefore irc,) is apparent in the

b, perturbative approach31,36. However, following
Jackiw[29] one can also carry out a nonperturbative calcu-
lation by employing théb ,-exact propagator

to violate Lorentz andCPT symmetries in conventional S'(k)= (41)

QED, [24] undergoes stringent theoretical and experimental
bounds[25-27, there have been investigations on possible,pich appears to lead to a definite unambiguous result

extensions of the standard model which could give rise 1929 32 33 Before proceeding to study this problem within
Lorentz and CPT violation [28]. A natural question is oyr approach, a few comments are in order following Ref.
whether the term expressed in E§6) could be generated [29]. Because the axial currehi(x)z@(x)y ¥5u(x) does

: “

radiatively when Lorentz an@ P T violating terms occur in Qot couple to any physical field b, , physical gauge in-

other parts of a larger theory. For instance, many authors_ . ) hieved ided thist i . ant at
have exploited the possibility of such terms being induced b)ya”ance IS achieved provide gli IS gauge invariant &

ik_m_b’)’s,

introducing an explicit Lorentz and€PT violating term

bMEyMy5¢/; in the fermionic sector of standard QEP29-
33]. In fact, a meticulous work by Chen and Kunstafté4]

seems to rule out such particular extension by studying it
effect on the calculation of the lambda-shift and on the
anomalous magnetic moment. Hence it would not constitut
a physically plausible source of radiatively induced term
like Eg. (36). However, since the issue here is the regular
ization dependence which is involved in the radiative correc
tion, such calculation serves as a perfect laboratory for ex-

amining our framework.
Consider the modified fermionic sector of QED

Ltermion= ¥(id—A— b'}’s_ m) i, (37

S

(=]

SAs for DR, there is not a unique prescription to work within

this scheme in the presence ofyg matrix and one has as

zero 4-momentum. This is equivalent to stating that it is the
integrated quantit;[d4xji(x) which is gauge invariant, in
consonance with the fact that the induced quantity which we
seek(36) is not gauge invariant while its spacetime integral
is. Hence, according to Jacki5], any regularization which
enforces gauge invariance at all momenta will render a van-
ishing result forc,, such as Pauli-Villars regularizatig@8].

many results as alternative continuation prescriptions.

We believe that within our scheme, which preserves the
characteristics of the theory as much as possible, one has a
good setting to study this problem. For this purpose we il-
lustrate it for both the nonperturbative and the perturbative in
b, treatments. We start by calculating the induced term in

whereb,, is a constant 4-vector which selects a specific di-the nonperturbative ib,, schemg29]. The exact propagator
rection in space-time and therefore the gauge invariant terf¢l) can be separated as

Zbytﬂp explicitly violatesCPT and Lorentz symmetries. The

quantity of interest for deciding whether E(6) is radia-

tively generated is th©(A?) part of the extented effective whereSc(k) is the usual free fermion propagator and

action
Fe(A)=—iIndetid—A—By°—m), (38)

from which the coefficient,, is determined fronb,. To

S'(k) = Sr(k) +Sy(k), (42
1
Sp(k) =—————By5Sc(k), (43)
|k_m_b‘)/5

lowest order inb, this corresponds diagramatically to a tri- whereas the vacuum polarization tensor can be generically
angle graph composed of two vector currents and one axiatritten as in[29]
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=11+ g + 11y . (44) N d*k 1
= | G
We are concerned about the second term which is linearly (2m)* (K?=m?)?[(k+p)?—m?]
divergent and thus it can be responsible for a momentum-
routing ambiguity. Explicitly we have . J‘A d*k 1 54
a'K (2m)* (K =m?)[(k+p)*~m?]’
Hé‘"(p)=f tr{ ¥ Se(K) y"Sp(k+p)
(2m)* L[N d% Ks
u v ‘JB:J 4,22 2_ 21" (59
+7#Sy(k) y"Se(k+p)}. (45) (2m)" (kK*=m)[(k+p)°—m]
To lowest order inb,, we can replaceS,(k) with and
—iSp(K)bysSe(k), so thatllf”=11#"*b,, with
4
. 3 A d%k KKy (56
) d*k B 4 1,2 2\2 2_m21°
M#re(p)=—i 2 )4tr{y”S(k)yVS(k+p)y“y58(k+p) (2m)* (k*=m*)“[(k+p)°—m"]
a
" " , Among these integrals, the divergent drdz, andJg, . We
+y#S(k) y*ysS(K) y"S(k+ p)} can manipulate them using E@8) recursively to obtain
= {117 +157. (46)

I=1g(m?) =1, (57)

We shall calculate the two integrals separately, without do-

ing a shift for the sake of clarity. The ambiguities in momen- ng — 2p0®2 +3,, (58)
. . . . o p VB

tum routing discussed by Jackiw will be made explicit in the

relations between divergent integrals that will appear. Afterand

taking the trace over the Dirac matrices we have

IMV(I_J« d4k N,iuza (47) B B
b ) 2wt (- mL (ke p)2 - P where
A d% Kk
and ®2B:f 4,2 ,82 3 (60)
(2m)" (k*—m?)
d*k NEVe
I§”=f . (49 , ,
2m)* (K2—m?)?[(k+p)?>—m?] ~_J' d*k p2+2p.k 61
where (2m)* [K*=m?P[(k+p)®—m?]’
Ni‘ya:4i{{[(k+ p)Z_ mZJkB_ZmZpB}Eﬂvaﬁ and
—2pKgk“e P} (49) - d*k (p%+2p.k)kgk,
ﬁA:J’ 4711L2_ 213 2_ 21" (62)
and (2m)" [k*=m]°[(k+Pp)*—m7]
NEve=4i{{—[K?—m?](k+ p)B—ZmZpﬁ}e“”“ﬁ Now that we removed the external momentum dependence
from the divergent integrals, we note that they cancel out in
—2p,kgk*e P}, (50)  147* unambiguously. It remains an undetermined finite term

originated from a difference between divergent integrals in

47 . Noting thatp I =21 4 (which can be shown by partial
Antegration, we get

Above, we only considered the terms which do not vanis
after integration or because of symmetry properties in th
Lorentz indices. After some straightforward algebra, we ca

write ~
1472 =4i{[ 35— 2m?p I er P —2p,g* 4 7F] 5}
147 =4i{[J3—2mPppdt et P —2p, gt et 7Py | (63)
(51)
and
and
¢
1574 =4i{[— 5~ 2mPpgdt—pgdter P 1570 =11" 0 S ppet s, (64)
v
—2p,g™ e 7P}, (52
where the divergent integrals were combined, as in(Eg),
where we defined to define
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Ygﬁzgw|ﬁ)g(m2)_42ﬁ:)\gaﬂ, (65  Which is to be fixed on physical grounds either by symmetry
requirements or a renormalization condition; all the possible
in which \ is a dimensionless, finite parameter, and we haveambiguities are expressed in terms of our so-called consis-
defined tency relations which we left arbitrary until the final stage in
this case. It is therefore not surprising that our approach
b= —N\. (66)  achieved the same merits as those claimed within differential
' regularization.

o . . It is interesting to observe that the indeterminacy ex-
The finite integrals can be readily solved using Feynman ressed by our baramet ndd’ are ultimately related to
parameters, after which we can write P y ourp afsand ¢ . y

a nonvanishing value for the CR. In other words, the ampli-
tudes considered in this section are not independent of the
hon-pert= e“”“ﬁ—(.—— ) (670  momentum routing in the loop. Would we have momentum
m routing independence then the paramaét@nd consequently
¢ and ¢’ would be zero. Generically, we can state that the
Joresence of an axial vertex has broken such momentum rout-

telecky [29], with our ¢ playing the role of their surface N9 independence. In fa}ct, thisf is not a new feat.ure. It is well
term. Now in order to arrive at their claimed unambiguousknown that only a special routing of the integration momenta
result within the nonperturbative approach, another informaMay result in a gauge invariant answer in the presence of
tion would have to be implemented. As it was discussed irpxial verticed 29,23. Notice also that total vacuum polariza-
Ref. [32] any regularization that had broken the sphericaltion amplitude(44) has a contributiorf1,, which corre-
symmetry in their explicit integration would have altered sponds to pure QED Would a particular routing choice vio-
their result. That is the case of DR which breaks the tracelate gauge invariance iri'[fw? As we have seen, if an
lessness of the combinatiok,k,—1/4g, k* in the 4D  arbitrary momentum routing is taken, then fiiés must be
space-time. In calculating the surface term, which is origi-zero. On the other hand, it was shown in the last section that
nated from the shift in the linearly divergent integral, oneijf we choose a particular routing, there is another possibility
also makes use of such symmetry by performing a symmetrig mantaining gauge invariance namely by fixing the relative
momentum limit lim_...(k,k,)/k“=(g,,)/4. Therefore, itis  coefficients of one CR. Therefore, we can fix the momentum
an easy matter to check that if we use symmetric 'megrat'o'?outing i”Hby and then adjust="2a andY2V=0, S0 as to

in ©,5 in Eq. (65), then we will obtain thaip=1/4 in Eq. respect gau/ée invariance. #

(67), to give in the limit of heavy fermion mass the result
found in Refs[29,32,33.

Now let us proceed to the perturbativebrcomputation.
The relevant diagrams are the-linear one loop correction
to the photon propagator in which a factoribf, y* y° can be
inserted in either of the two internal fermionic lines to render
equal contributions. Thus the amplitude reads As we have seen in Sec. IV, CS terms can be induced by

radiative quantum effects even if they are not present as bare
b o d*k s terms in the original Lagrangian. Int3l-dimensional space-
IL,=2(=1)b J (277_)4”7/’«8':('(_ P) ¥,Se(K) 7 ¥”Se(K) time such terms could be induced by extending the fermionic
sector of QED with an explicitly Lorentz an@dP T violating
E2b*1‘[MW, (68) axial-vector term. In 21 dimensions, however, such
. ) . . topological terms can naturally appear at quantum level
wherep is the external momentum. The integral above is justyithout any extension in the classical Lagrangia8]. Con-

our 15" in the nonperturbative witp——p and theu, v gjger the QER Lagrangian with fermions of mass, L
indices interchanged. Therefore, we can write, taking into v T
FFe’+¥(iD+m)¥. Now let us study the role

account the change of signs, T Al '
played by a radiatively generated CS term in the sense of

ps [ 6 giving a mass for the gauge fieldn [37] it was shown that
e = E“Va’g—z(m— ¢']- (69 despite being all gauge invariant one could classify a set of

2ar regularizations in two groups: one in which the originally
massless boson remained massléasch as Pauli-Villars
regularization and another in which it turned out to be mas-
%'ve (such as DR among otherdHere we revisit this prob-
lem in the light of our framework. Consider an expansion in
powers ofA of the one loop effective action, namely

where 6= 2 arcsir(y/p?/(2m)) and p?<4m?. The equation
above is similar to the one encountered by Jackiw and Ko

V. TOPOLOGICAL MASS GENERATION IN
THREE-DIMENSIONAL GAUGE THEORY

The equation above is to be compared with E2{) in Ref.
[31]. Our undetermined parametet’ is just their ratio
In(M1/M2). Thus we have achieved the same elegance as
is expressed within differential regularization with the ad-
vantage of working in the momentum space. This result wa
expected since we have not made use of an explicit regulator.

We, too, have all the results obtained in other regularization

schemes embodied in different choices for the paramgter  “Please sef9] for a complete account on this matter.
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with
FQED3[A]=trIn de(i&—m)+tr(i‘9_mA) L Ny L
1 1 )= | S (79
ol ig_mAmA) T (0 However, the second integral on the right-hand side of Eq.

(77) vanishes and therefolé!) =1 (m?). With the results
For an induced mass term, the relevant contribution is thgjven above]l ,,(p) reads

one that is quadratic i& which we write generically as

ral= 0 LA, (7D H“”(D)ZZ(E}‘”Fl(pz’m)e"”“pa+F2(p2’m)
2) (2m)® " ’
PPy
wherell ,, is the usual vacuum polarization tensor, X( ”2 —g,w> ) (79
p
3
I V(p):j gk tr( y prk+m v, k+m whereEfw is given as in Eq(14). Generically, we can write
a 2m® | H(p+k)2—m? k?—m? E,,=\g,,. on Lorentz invariance grounds whekeis a
3 parameter(with dimension of magsto be determined. In
:f d°k Tuv (72) order to assure gauge invariance, we are led tﬁégt:O in
(2m)3 ((p+k)2—m?)(k2—m?)’ this case. This appears to be a natural choice as no parity

_ violating objects appear in the vertex. Moreover, the finite
with coefficientsF; andF, evaluate to

. FipPm=—| =l —=——| |, (80)
+ime,,.p%), (73 4 \/p— 1—/p®/4m
where we used that in 3D #fy"y*=—2ie*"*. Thus we , 1 1 , , 1+W>
can write F ,m)=—m-— +4m)In| ———| |,
2(p*,m) pp 4\/F(p ) 1— JpZ/am?
H,LLVZZ(ZI}LV_I—Zp/.LIV+im€/.LVapa|_gﬂvl(l)_gyvpala)! (81)

(74 which is just the result that is obtained in OR7-4(Q . In
the limit wherem— o we obtain

where
d3k 1k, k Kk Ay LU (82)
A 9 1 v Hoc:__e ve al
e e i G [ P
(2m)° ((p+k)*=m7) (k= m") . . : . :
which contributes to the one loop effective action with a
and term that in the coordinate space reads

A d3 i1 va
|<1>Ej d>k 1 _ 75 Fég—zEf d3x €47 A 0 A, (83)
(2m)3 (p+k)2—m?
) . o These results can be readily generalized to the non-Abelian
Among the integrals defined above onlandl , are finite, case.
whereas the others can be rewritten with E28) as

VI. SCHWINGER MODEL AND ITS CHIRAL VERSION

A d3k K.k, . . .
:j 35 23 As an example in two dimensions, we study the
(2m)° (k*=m?) Schwinger modelScM) (QED, with massless fermiongind
fA &K (p2+2p- Kk .k, its chiral version(CScM). The ScM is exactly solvabletl]

wv

. (76 and has served as a good laboratory for both testing theoret-
(27)% (p+k)?>—m?)(k2—m?) ical techniques and getting some insight in the vacuum struc-
ture of QCO,. Several nontrivial features of the ScM and its

in which the second integral on the right-hand side is finittmassive and chiral versiofsuch as massive physical states
and

A d3k 2+2p-k
P P , 5A linearly divergent term<Ag,, which would appear using an
(2m)2 ((p+k)2—m?)(k*—m?) explicit cutoff calculation[38] does not appear in our case, as it

(77) would not appear in any gauge invariant regularization such as DR.

-
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formed via chiral anomaly, instanton-like vacuum configura-physical particle, we could say that we had to choﬁ%@ to
tions labeled by a® angle, etg. have counterparts in more vanish so to explain the photon masd=e?/ .

realistic theorie$42]. In the ScM, the massless photon of the  In order to gain some more intuition, let us make a similar
tree approximation acquires the madér (e is the coupling  analysis with the CScM. We simply substitute the vector
constank at the one loop levelwhich is exact in this cage  interaction with a chiral interaction in E484):

OC:;SIdeI’ the effective action radiatively induced by fermi- I =—ilndeli/—e(1+ ys)A), (90)

v5= v¥oY1- An analogous calculation leads us to the result

I's=—ilnde(id—eA). (84)

o _ , [47(p)=T14"(p) + g p(e"*TIE#(p) + #“T1E"(p))
The mass generation is seen at ordér which, for this
model, determines E484) completely. Hence all we need to +e* el g(p), (99)

do is to compute the vacuum polarization tensor where we used that

2k V“i—v”—i (85) Y5Yu= €, (92)
(2m)? " k" k+p andIT4”(p) is given as in Eq(86). As it is well known[43],
there occurs a chiral anomaly in this model: it cannot be
made gauge invariant. This is a manifestation of the anoma-
8ous nonconservation of the chiral current in the ScM for

g p)=iv |

After taking the traces, using E8) to write the divergence
as a function of the loop momentum only and evaluating th
finite integrals, we obtaiiisee, also, Ref.35])

1. e
v vi5__ v
1 3% MV pVH’g :——p”“%ﬂ JV——€VM(9 AM, (93)
H§”<p>=HgV+;(gz -R2 ) (86 T T
P where TI£"=e"(I1%)g because of EQ.(92) and p”
where =€""p,.°
Now let us write generically for the CR
A d?k (—k32gHr+ 2kMKY)
Hgvszif 8 o _ M
@m?  (K-p?)? e A= ur

andu? is an infrared cutoff which is immaterial for the value based on Lorentz invariance (is a dimensionless param-
of IT#”. Some features are noteworthy. Notice that, in genetep. Thus

eral, I1£” is not gauge invariant. Lorentz invariance tells us A+1

thatI1%" should be proportional tg,,, but the coefficient is, ner= (?) gr’, (99

in principle, undetermined since the integral is divergent.

Moreover, ifI1£" assumes any value different from zero it from which we see that the choice=0 enforces gauge in-
would break the traceless dl4” already manifest in its variance on the ScM. We can rewrite the axial Ward identity
integral representatiof85). However, Pauli-Villars or DR (93) as a function o\, namely

can be employed and gauge invariance restored within this

schemes. DR, for instance, evaluates E(@7) to p, 1LY =— A+2~pﬂ_ (95)
(2/(27))g*” which gives for Eq.(86) 2m
1 . Had we opted for preserving the AWI, we would have to set
AV Ay — — | v N=-—2. This, in turn, would transfer the anomaly to the
1s"(p) W(g p2 ) (88) VWI since
1

Now recall the CR(13), namely p,LH'st|>\=72: _;py, (96)

2 2
AC :fA d*k  Gu —ZJA d’k & as expected.
- (2m)? K>—m? (2m)? (K*—m?)? On the other hand, for the CScM, E@1) yields

(89
papﬁ

The choiceA) =0 can be used in E¢87) to obtain a result L7 (p)=—| (N +2)g"" = (g*"+ ") === (gP =€) |.
which is just(1/(27))g*” as it can be easily demonstrated. P

Hence gauge invariance is restored within our framework. 97
This is close in spirit to Jackiw’s approach in RE35]. In

other words, we can state that this particular valueﬁfﬁg is

the one which restores gauge invariance, if we so wish. It -

plays the role of an undetermined local part in the quadratic ®Notice that (1%)s= 1/, which provides precisely the value of
term of the effective action. If the ScM really described athe anomaly.
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Unlike the ScM, imposing gauge invariance does not fix the VIl. CONCLUDING REMARKS AND OUTLOOK

value of\ since . L —
In this paper, we extended an implicit regularization

1 _ scheme to be applicable in quantum field theories defined in
P (P)=—((A+1)p"—p"), (98)  n space-time dimensions. As we do not leave the integer
dimension in which the theory is defined, parity violating

which shows that the longitudinal part does not vanish foroPiects present in chiral or topological field theories do not
any value ofx. Despite the lack of gauge invariance and theneed to be dimensionally continued; therefore, we avoid

arbitrary parametek, it constitutes a perfect sound theory Well-known ambiguities involved in this procedure. More-
[43]. It can be exactly solved to find that far>—1 it is a over, all the undeterminacies will be cast into a set of CR to

be fixed on physical grounds either by imposing that the vital
symmetries must not be violated or by experiment.
In this sense our framework is useful to simplify loop
e? (N +2)2 calculations in, for instance, Chern-Simons—matter theories
o TNF1 (99)  [48]. This is because high-covariant-derivative regulariza-
tions make the calculations extremely lengtbgpecially be-

An equivalent formulation in a bosonized version of theYOnd one loop ordgrdue to the complicated form that the

CScM places\ as arising from ambiguities in the bosoniza- 92Ug€ field propagator assumes. Moreover, there are cases

tion procedure. In fact the CScM can be formulated in aVhere it seems to be possible to opt for an HCD or an ex-

gauge invariant way in which a Wess-Zumino térexactly ~ tended DR; in Ref[49] the one loop shift in noncommuta-
cancels the variation of the original Lagrangian under &€ €S coupling depends on this choice. Therefore, even if

gauge transformatiofd4]. In addition, it was showrj45] one uses different regularizations thqt res'pect fundamental
that the anomalous formulation is nothing but a speciafyMmetries of a theorjsuch as gauge invarianc@ne may
gauge(unitary gaugeg=1) of the gauge invariant formula- not g_et th_e same radiative correction. Thls_ is _dlfferent f_rorr_1
tion. Had we chosen the value=0 as we did for the ScM. the situation when a theory possesses an mtrms;c ambiguity
we would obtainm?= (4e?)/ar. Curiously, this value has whose value may have to be fixed only by experiment, even
already been conjectured within another regularizatkad- if the rer_10rmal|zat|on IS f|n|t¢35].. As our frgmework doe§
deevian regularization 46]; however, it turned out to be a not mO(_jlfy or corrupt the underlying theory in consideration,
special case of the CScM with a minimal Wess-Zumino't constitutes an ideal tool to study these problems.

term, with a restriction on an undetermined parameter corre- ?hotl."d any f(;]_?her constraint bteh|mp0hseq, SILJC(TB)QOT- ¢
spondent to\ [47]. malization conditions or some other physical requirement,

It is important to remark that there is no reason to imposéhey can be readily implemented within our framew{f5k.

N=0 for the CScM as we did for the ScM. The best we Ul main concern within this formulation was to keep the

could do, based on unitarity and positivity of the theory, Wasambiguities to be fixed in the very final stage of the calcula-

to establish a range of values for This remains true in its tlo?/i/h lapping di th treated i
gauge invariant formulation, since it obviously yields the en overiapping divergences occur, they are treated in a

same induced mass for the photon. Within our frameworks'irnilar fashion[22]. Finally our approach may be general-

: . jzed to multiloop calculations. The proof follows the same
we can somewhat generalize the ideas proposed by JaCkllkl%r/?es as the forest and skeleton construction in the BPHZ

[35] in the treatment of the ScM and the CScM to perturba- .

tive calculations in any quantum field theory where ultravio-formUIat'on[51]'

let divergences appear. The latter can always be displayed

either by basic divergent integrals or by differences between
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