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Consistency relations for an implicit n-dimensional regularization scheme
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We extend an implicit regularization scheme to be applicable in then-dimensional space-time. Within this
scheme divergences involving parity violating objects can be consistently treated without recoursing to dimen-
sional continuation. Special attention is paid to differences between integrals of the same degree of divergence,
typical of one loop calculations which are, in principle, undetermined. We show how to use symmetries in
order to fix these quantities consistently. We illustrate with examples in which regularization plays a delicate
role in order to both corroborate and elucidate the results in the literature for the case ofCPT violation in
extended QED4, topological mass generation in three-dimensional gauge theories, the Schwinger model, and
its chiral version.
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I. INTRODUCTION AND MOTIVATIONS

The renormalizability of the standard model~SM! of par-
ticle physics underpins its predictive power. Within pertu
bation theory, a formal proof of renormalizability entreats
gauge invariant regularization scheme. Whereas dimensi
regularization~DR! is known as the most powerful and pra
matic method in the continuum space-time, care must
exercised when dealing with theories whose symmetry c
tent depends on the space time dimension, such as c
gauge theories and topological field theories. In other wo
when parity violating objects such asg5 matrices orem1m2 . . .

tensors occur in the theory, an appropriate extension of
must be performed since the properties of these objects c
with the idea of analytical continuation on the dimension
the space-timen. This is the case of the electroweak sector
the SM1 as well as Chern-Simons~CS! and CS-matter type
of theories. Although such an extension may be explic
constructed, namely, the t’ Hooft-Veltman dimensional co
tinuation~tHVDC!, it is not unique and several modification
were suggested@2#. This, in turn, may give rise to ambigu
ities ~which we shall discuss throughout this paper! and the
appearance of spurious anomalies. The latter is ultima
related to the asymmetric definition ofg5 when the Dirac

*Email address: scarp@fisica.ufmg.br
†Email address: msampaio@fisica.ufmg.br
‡Email address: carolina@fisica.ufmg.br
1The only consistent framework in which the renormalization

the electroweak SM in the continuum four-dimensional~4D! space-
time can be carried out to all orders is algebraic renormaliza
within the Bogolubov-Parasiuk-Hepp-Zimmermann~BPHZ! for-
malism @1#. However for practical purposes it is rather involved
chiral and vector gauge symmetries are broken in intermed
stages which renders the calculations hard to handle.
0556-2821/2001/63~4!/046004~12!/$15.00 63 0460
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algebra is extended ton dimensions@3#. Although on one
hand, such shortcomings may in principle be controlled
imposing the Ward-Slavnov-Taylor identities order by ord
~and introducing new finite counterterms!, on the other hand
this turns the calculations significantly cumbersome@4#.
Some very interesting views on this subject have been
cently presented@5#.

Among the topological field theories in the thre
dimensional~3D! space-time, the perturbative computatio
of ~pure! CS theories have applications to both mathema
@6# and physics@7#, even though some exact results can
drawn nonperturbatively@8#. When coupled to matter field
CS-matter theories are no longer exactly solvable in gene
Notwithstanding, they have a wide range of applications
condensed matter physics~for a nice account see Refs.@9,10#
and references therein!. In either case, the regularization am
biguities stemming from their perturbative evaluation ha
been an everlasting matter of debate@11,12#. The third rank
antisymmetric tensor in the CS Lagrangian is just the
analogue of theg5 in 4D theory. A naive DR cannot mak
the theory well defined@13#, whereas a so-called dimension
reduction, that is the evaluation of the entire antisymme
tensor algebra in 3D while the loop momentum integratio
are performed inn dimensions, can be shown to be incons
tent @11#. The most accepted scheme is the Becchi–Rou
Stora- ~BRS!-invariant hybrid regularization comprising
high covariant derivative~HCD! term added in the Lagrang
ian ~for instance, a Yang-Mills term 1/L2 tr F2) @14# and the
tHVDC. The former renders the model power counti
super-renormalizable and the remaining finite number of d
grams that are left unregularized must be regulated by
latter. The limitsn→3 andL→` are well defined@15–17#
and should be taken in the end. Some comments are in o
If we consider CS theory as a large topological mass limit
a topologically massive Yang-Mills theory, as conjectur
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A. P. BAÊTA SCARPELLI, M. SAMPAIO, AND M. C. NEMES PHYSICAL REVIEW D63 046004
by Jackiw@18#, then the Yang-Mills piece of the Lagrangia
is the natural candidate for the HCD term. However, in pr
ciple one can construct higher covariant derivative terms
will using covariant derivatives@19#. In fact, as regards o
the famous shift/nonshift of the CS parameter,2 a class of
~local, BRS-invariant! higher covariant derivative regulariza
tions were used~see Giavariniet al. @12#!. The shift de-
pended on the large momentum leading term of the regu
ized action being parity even or parity odd.3

Another instance where the regularization ambiguit
play a delicate role is in nonrenormalizable models, of
used as effective theories of QCD. In such cases the reg
ization scheme is frequently defined as part of the model
any parameters introduced by a specific choice must be
justed phenomenologically@20#.

Given the scenario above and the need to go to hig
orders in perturbation theory as the precision of the exp
ments increase, it would be desirable to find a regulariza
framework for diagrammatic computations which preserv
the advantages of DR without the need to dimensionally c
tinue g5 or the antisymmetric tensor and/or introduce HC
terms in the Lagrangian.

Recently, a step in this direction was taken. A techniq
was proposed for the manipulation and calculation of~4D!
divergent amplitudes in a way that a regularization need o
to be assumed implicitly@21,22#. The integrands are algebra
ically manipulated until the infinities are displayed in th
form of basic divergent integrals in the loop momenta, wh
do not need to be explicitly evaluated in order to obtain
standard physical results~they can be fully absorbed in th
definition of the renormalization constants!. No dimensional
continuation is involved and a regulator needs only imp
itly to be assumed to mathematically justify the algebr
steps in the integrands of the divergent integrals.

An important ingredient of this technique is a set of co
sistency relations~CR! expressed by differences between
vergent integrals of the same degree of divergence. In
@21#, it was shown that such CR should vanish in order
avoid ambiguities related to the various possible choices
the momentum routing in certain amplitudes involving loop
consistently with gauge invariance. This is an important f
ture of DR and it can be easily checked that the CR
readily fulfilled in the framework of DR. Alternatively and
more generically, we can assign an arbitrary value to s
CR and let gauge invariance to determine its value.

Our purpose in this contribution is twofold. First, to ge
eralize this approach to be applicable for theories define
any dimension n by deriving the corresponding

2A topological Ward identity constrains such shift to be an in
ger.

3This could well be one of the cases in which the radiative c
rection is finite but undetermined since, nonperturbatively, one
only assert that theb function vanishes to all orders what does n
discard a finite correction.
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n-dimensional CR. This is very important in order to bo
treat ambiguities related to a particular choice of regulari
tion and simplify the loop calculations in dimensions oth
than four; i.e., in the CS-matter theories. Second, for
purpose of illustration, we have selected examples where
ferent regularization schemes have somewhat generated
troversy in the literature.

This paper is organized as follows. In Sec. II we deri
the CR for ann-dimensional regularization and then we pr
ceed to illustrate in the context of theories defined in 4D
Sec. III for standard 4D (QED4). In Sec. IV, we revisit a
well-known example in 4D: the radiative generation of
CPT and Lorentz violating Chern–Simons-type term by i
troducing a termc̄b”g5c in the fermionic sector of QED. In
Sec. V, we study the topological mass generation in 3D Q
and analyze, as an example, in 2D the Schwinger model
its chiral version in Sec. VI. Finally, we draw our conclu
sions and present some applications in which our scheme
be useful.

II. CONSEQUENCES OF MOMENTUM ROUTING
INDEPENDENCE

Consider a one loop two-point function with two vertice
G i andG j and letk be the momentum running in the loop. I
each propagator that forms the loop we are allowed to
arbitrary 4-momenta, sayk1 and k2, consistently with the
momentum-energy conservation. In Ref.@21#, it was shown
for G i5G j51 ~SS!, G i5G j5g5 ~PP!, G i5gm and G j5gn
~VV ! and G i5gmg5, andG j5gng5 ~AA ! that if these am-
plitudes were to be independent of the arbitrary moment
routing, that is to say, if they were translational invariant a
consequently a shift the momentum integration variable w
allowed, then a set of consistency relations~CR! between
integrals of the same degree of divergence had to hold in
sense that the difference between the two integrals must
ish. Such a feature is manifested within DR~and hence DR
obeys the CR! but may not be satisfied by other gauge i
variant regularizations. The existence of at least two regu
izations defined solely on the space time dimension of
theory that realize the CR was also shown in Ref.@21#. The
same CR can be readily derived by imposing translatio
invariance on the~free! propagators of the theory. In thi
section, we derive the CR for an arbitrary space-time dim
sion n.

For definiteness, consider the free fermionic Gree
function

S~x2x8!5E dnk

~2p!n

eik(x2x8)

k”2m
~1!

and the corresponding ‘‘translated’’ Green’s function~i.e., a
different representation of the same object!

Sl~x2x8!5E dnk

~2p!n

ei (k1 l )(x2x8)

k”1 l”2m
, ~2!

wherel is an arbitrary momentum. Since we are dealing w

-

-
n

4-2
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CONSISTENCY RELATIONS FOR AN IMPLICITn- . . . PHYSICAL REVIEW D 63 046004
distributions, the action of these objects require the definit
of a set of test functions on which they act. It is straightfo
ward to see that translational invariance implies that

E S~x2x8! j ~x8!dnx85E Sl~x2x8! j ~x8!dnx8. ~3!

Thus we conclude thatSl(x2x8) should be independent ofl:

d

dlE Sl~x2x8!h~x8!dnx850. ~4!

This condition guarantees that the generating functional
the free theoryZ0@h#5N exp$2i*h̄(x)Sl(x2y)h(y)dnxdny%
does not depend on the particular Fourier representation
has been used, provided the test functions have the adeq
physical behavior. The same will hold true for the generat
functional of the interacting theory@21#. Let us take a close
look at thel dependence of the Green’s function

E Sl~x,y!h~y!dny

5E dnyE dnp

~2p!n

ei (p1 l )(x2y)

p”1 l”2m
E dnq

~2p!n
eiqyh~q!.

~5!

One can now integrate overy to obtain

E Sl~x,y!h~y!dny5E dnp

~2p!nE dnq

~2p!n

ei (p1 l )x

p”1 l”2m

3h~q!dn~q2p2 l !

5E dnq

~2p!n

ei (p1 l )x

p”1 l”2m
h~p1 l !, ~6!

which can also be conveniently rewritten in terms of t
translation operator as

E Sl~x,y!h~y!dny5E dnp

~2p!n
el m]mS eipx

p”2m
h~p!D

5E dnp

~2p!n H eipx

p”2m
h~p!J

1 l mE dnp

~2p!n

]

]pm H eipx

p”2m
h~p!J

1 . . . . ~7!

The first term on the right-hand side is the result which
presses ‘‘translational’’ invariance as required by Eq.~3!. All
the other terms are surface terms which, providedh(p) de-
cays sufficiently fast as required on physical grounds, sho
04600
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vanish identically. But on the improper integrals,Sl will act
over a distribution,

E Sl~x,y!D~x,y!dnydnx, ~8!

typically the delta function or products of particle Green
function. So, we have

E Sl~x,y!D~x,y!dnydnx5E dnp

~2p!n
el m]mS 1

p”2m
D~p!D .

~9!

For D(x,y)5d(x2y), we haveD(p)51, and, for instance,
for the second term on the right-hand side

l mEL dnp

~2p!n

]

]pm H 1

p”
2mJ . ~10!

At this point, since the integral is divergent, some reg
lating procedure must be adopted. Assume that the ultra
let divergent integrals in the momentum~say, k) are regu-
lated by the multiplication of the integrand by a regularizi
function G(k2,L i),

E
k
f ~k!→E dnk

~2p!n
f ~k!G~k2,L i ![E

k

L

f ~k!, ~11!

whereL i are the parameters of a distributionG whose be-
havior for largek renders the integral finite. We shall onl
assume that such a regulator is even ink and that the con-
nection limit limL i→`G(k2,L i)51 is well defined. The latter
will guarantee that the value of the finite amplitudes will n
be affected by taking the limit. Now the integrand of Eq.~10!
can be written as a difference of two divergent integrals
the same degree of divergence, namely

EL dnp

~2p!n

]

]pm H 1

p”2m
J

5gnH EL dnp

~2p!n

gmn

p22m2
2EL dnp

~2p!n

2pmpn

~p22m2!2J .

~12!

If we vary the number of Lorentz indices in the integrals, w
obtain, for a certain degree of divergence, other relation
the higher orders of the expansion~7!. Moreover, the degree
of divergence of the integrals depends on the dimensionn.

1¿1 Dimensions:

Dmn
0 [EL d2k

~2p!2

gmn

k22m2
22EL d2k

~2p!2

kmkn

~k22m2!2
.

~13!
4-3
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2¿1 Dimensions:

Jmn
1 [EL d3k

~2p!3

gmn

k22m2
22EL d3k

~2p!3

kmkn

~k22m2!2
,

~14!

Jmnab
1 [~gmngab1gmagnb1gmbgna!EL d3k

~2p!3

1

k22m2

28EL d3k

~2p!3

kmknkakb

~k22m2!3
, ~15!

etc.

3¿1 Dimensions:

Ymn
2 [EL d4k

~2p!4

gmn

k22m2
22EL d4k

~2p!4

kmkn

~k22m2!2
, ~16!

Ymn
0 [EL d4k

~2p!4

gmn

~k22m2!2
24EL d4k

~2p!4

kmkn

~k22m2!3
,

~17!

Ymnab
2 [~gmngab1gmagnb1gmbgna!EL d4k

~2p!4

1

k22m2

28EL d4k

~2p!4

kmknkakb

~k22m2!3
, ~18!

Ymnab
0 [~gmngab1gmagnb1gmbgna!

3EL d4k

~2p!4

1

~k22m2!2
224EL d4k

~2p!4

kmknkakb

~k22m2!4
,

~19!

etc. Hence, in order to assure momentum routing indep
dence, we have to set theD ’s, J ’s, and Y ’s to vanish. A
simple illustration of this feature will be drawn in Sec. III.

It is interesting to notice that precisely the same type
relations between divergent integrals may appear in
n-dimensional theory in connection with gauge invarian
In order to show this, let us consider a generic form for
polarization tensor:

Pmn~k2!5gmnP~0!1gmnk2P1~k2!1kmknP2~k2!.
~20!

Gauge invariance implies that

kmPmn~k2!50, ~21!

which is only true ifPmn(0)50. We can write this, for the
one loop calculation, as
04600
n-

f
n
.

e

Pmn~0!5EL dnp

~2p!n

Tmn

~p22m2!2
, ~22!

where

Tmn5Ap2gmn1Bm2gmn1Cpmpn , ~23!

and A, B, and C are constants. SincePmn(0)50, we can
suppose that the integrand is a total derivative, and inve
gate if there existA, B, andC which satisfy the condition

Tmn

~p22m2!2
5

]

]pm H Dpn

p22m2J , ~24!

whereD is also a constant. After a simple algebra, we co
clude thatA52B5D andC522D, so that

Pmn~0!5DH EL dnp

~2p!n

gmn

p22m2
22EL dnp

~2p!n

pmpn

~p22m2!2J
50. ~25!

In this case, we may say that the same condition is requ
to preserve both momentum routing independence and ga
invariance. However, in physical applications we shou
privilege the latter upon the former since there are examp
in which gauge invariance can only be attained at the cos
adopting an especific momentum routing@23#, namely, when
one axial vertex is involved. We will come back to this iss
in Sec. IV.

III. QED 4

In this section, we illustrate our regularization framewo
within QED in four dimensions in order to compare wi
well-known results, as well as to gain some insight es
cially in the role played by an arbitrary routing in the loo
momentum of an amplitude in connexion with the CR.

Consider the vacuum polarization tensor to one loop or
with arbitrary internal momentum routing

Pmn5E d4k

~2p!4
tr$gmS~k1k1!gnS~k1k2!%, ~26!

whereS(k) is a usual half spin fermion propagator carryin
momentumk. In order to make the arbitrary momentum d
pendence more explicit, Eq.~26! may be rewritten, after tak-
ing the trace over the Dirac matrices, as
4-4
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Pmn54S EL d4k

~2p!4

2kmkn

@~k1k1!22m2#@~k1k2!22m2#

1~k11k2!nEL d4k

~2p!4

km

@~k1k1!22m2#@~k1k2!22m2#

1~k21k1!mEL d4k

~2p!4

kn

@~k1k1!22m2#@~k1k2!22m2#
1~k2mk1n1k1mk2n!

3EL d4k

~2p!4

1

@~k1k1!22m2#@~k1k2!22m2#
D 22 gmnS EL d4k

~2p!4

1

@~k1k1!22m2#
1EL d4k

~2p!4

1

@~k1k2!22m2#

2~k12k2!2EL d4k

~2p!4

1

@~k1k1!22m2#@~k1k2!22m2#
D . ~27!
h
int

-
(

um

for

ith
an

in-
Now, we manipulate algebraically the integrands until t
external momentum dependence appears solely in finite
grals by means of the identity

1

@~k1ki !
22m2#

5(
j 50

N
~21! j~ki

212ki•k! j

~k22m2! j 11

1
~21!N11~ki

212ki•k!N11

~k22m2!N11@~k1ki !
22m2#

,

~28!

i 51,2, andN is such that the last term in Eq.~28! is finite
under integration overk @22#. After some straightforward
algebra, we can cast Eq.~27! in the form

Pmn5P̃mn14S Ymn
2 2

1

2
~k1

21k2
2!Ymn

0 1
1

3
~k1

ak1
b1k2

ak2
b

1k1
ak2

b!Ymnab
0 2~k11k2!a~k11k2!mYna

0 D , ~29!

where

P̃mn5
4

3
„~k12k2!2gmn2~k12k2!m~k12k2!n…

3XI log
L ~m2!2

i

~4p!2 S 1

3
1

„2m21~k12k2!2
…

~k12k2!2

3Z0„~k12k2!2;m2
…D C, ~30!

and theY ’s are the CR defined in Eqs.~16!–~19!,
04600
e
e- I log

L ~m2!5EL d4k

~2p!4

1

~k22m2!2

and

Z0~p2;m2!5E
0

1

dz lnS p2z~12z!2m2

2m2 D .

~31!

It is clear from Eq.~29! that in order to eliminate the am
biguous terms and to respect the Ward identitiesk1
2k2)mPmn5(k12k2)nPmn50, we must set all theY ’s to
zero. Therefore, we obtain the usual result for the vacu
polarization tensor.

Now let us adopt the particular routingk15p andk250
and hence let the value of the CR be arbitrary, namely

Ymnab
0 5c~gmngab1gmagnb1gmbgan!,

Ymn
0 5agmn . ~32!

Thus we have

pmP54„pmYmn
2 1~c22a!p2pn…, ~33!

from which we see that gauge invariance is implemented
the choice

Ymn
2 50, c5 2 a. ~34!

This will be important for the discussions in Sec. IV.
Notice that at this point we can compare our result w

any sound regularization procedure, for instance, DR by
explicit computation ofI log

L (m2). However, as far as the
physical content is concerned, one need not do so. For
stance, consider the calculation of theb function to one
4-5
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loop order. We add the usual counterterm to defineP̃mnR

5P̃mn1(qmqn2q2gmn)(Z321), Am5Z3
1/2AR

m , and q5k1

2k2. The Callan-Symanzikb function can be written as

b5eR

]

] ln L
„ln Z3

1/2~e,L/m!…. ~35!

We may choose the renormalization constant such thatZ3

21)5 4
3 i I log

L (m2) ~which amounts to a subtraction atq50)
to get the well-known one loop resultb51/(12p2) (eR

51), where we used that]I log
L (m2)/]m252 i /„(4p)2m2

….
In Ref. @22# we also calculate theb function ofw4

4 theory to
two loop order within this approach.

IV. INDUCED LORENTZ AND CPT SYMMETRY
BREAKING IN EXTENDED QED 4

While introducing a Chern-Simons term

Lc5
1

2
cmemnlrFnlAr , cm being a constant 4-vector,

~36!

to violate Lorentz andCPT symmetries in conventiona
QED4 @24# undergoes stringent theoretical and experimen
bounds@25–27#, there have been investigations on possi
extensions of the standard model which could give rise
Lorentz and CPT violation @28#. A natural question is
whether the term expressed in Eq.~36! could be generated
radiatively when Lorentz andCPT violating terms occur in
other parts of a larger theory. For instance, many auth
have exploited the possibility of such terms being induced
introducing an explicit Lorentz andCPT violating term
bmc̄gmg5c in the fermionic sector of standard QED4 @29–
33#. In fact, a meticulous work by Chen and Kunstatter@34#
seems to rule out such particular extension by studying
effect on the calculation of the lambda-shift and on t
anomalous magnetic moment. Hence it would not consti
a physically plausible source of radiatively induced ter
like Eq. ~36!. However, since the issue here is the regul
ization dependence which is involved in the radiative corr
tion, such calculation serves as a perfect laboratory for
amining our framework.

Consider the modified fermionic sector of QED4

Lfermion5c̄~ i ]”2A” 2b”g52m!c, ~37!

wherebm is a constant 4-vector which selects a specific
rection in space-time and therefore the gauge invariant t
c̄b”g5c explicitly violatesCPTand Lorentz symmetries. Th
quantity of interest for deciding whether Eq.~36! is radia-
tively generated is theO(A2) part of the extented effective
action

Gext~A!52 i ln det~ i ]”2A” 2b”g52m!, ~38!

from which the coefficientcm is determined frombm . To
lowest order inb, this corresponds diagramatically to a tr
angle graph composed of two vector currents and one a
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vector current with zero-momentum transfer between the
vector gauge field vertices. Hence we can write generic
that

G2~A![E d4p

~2p!4
Am~2p!Pmn~p!An~p!, ~39!

with Pmn(p);baGmna(p,2p). Now as it was discussed in
Ref. @35#, Gmna(p,2p) is undetermined by an arbitrary pa
rametera, namely

Gmna~p,2p!;Gmna~p,2p!12iaemnabpb , ~40!

which cannot be fixed by requiring transversality ofGmna.
This is in contrast with the famous triangle anomaly and i
essentially because, in our case, the axial vector carries
momentum. Moreover, there is no anomaly in the axial c
rent conservation law in this case. The indetermination
pressed in Eq.~40! ~and therefore incm) is apparent in the
bm perturbative approach@31,36#. However, following
Jackiw @29# one can also carry out a nonperturbative calc
lation by employing thebm-exact propagator

S8~k!5
i

ik”2m2b”g5

, ~41!

which appears to lead to a definite unambiguous re
@29,32,33#. Before proceeding to study this problem with
our approach, a few comments are in order following R
@29#. Because the axial currentj m

5 (x)[c̄(x)gmg5c(x) does
not couple to any physical field butbm , physical gauge in-
variance is achieved provided thatj m

5 is gauge invariant at
zero 4-momentum. This is equivalent to stating that it is
integrated quantity*d4x jm

5 (x) which is gauge invariant, in
consonance with the fact that the induced quantity which
seek~36! is not gauge invariant while its spacetime integ
is. Hence, according to Jackiw@35#, any regularization which
enforces gauge invariance at all momenta will render a v
ishing result forcm such as Pauli-Villars regularization@28#.
As for DR, there is not a unique prescription to work with
this scheme in the presence of ag5 matrix and one has a
many results as alternative continuation prescriptions.

We believe that within our scheme, which preserves
characteristics of the theory as much as possible, one h
good setting to study this problem. For this purpose we
lustrate it for both the nonperturbative and the perturbative
bm treatments. We start by calculating the induced term
the nonperturbative inbm scheme@29#. The exact propagato
~41! can be separated as

S8~k!5SF~k!1Sb~k!, ~42!

whereSF(k) is the usual free fermion propagator and

Sb~k!5
1

ik”2m2b”g5

b”g5SF~k!, ~43!

whereas the vacuum polarization tensor can be generic
written as in@29#
4-6
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Pmn5P0
mn1Pb

mn1Pbb
mn . ~44!

We are concerned about the second term which is line
divergent and thus it can be responsible for a moment
routing ambiguity. Explicitly we have

Pb
mn~p!5E d4k

~2p!4
tr$gmSF~k!gnSb~k1p!

1gmSb~k!gnSF~k1p!%. ~45!

To lowest order in bm , we can replaceSb(k) with
2 iSF(k)b”g5SF(k), so thatPb

mn5Pmnaba , with

Pmna~p!52 i E d4k

~2p!4
tr$gmS~k!gnS~k1p!gag5S~k1p!

1gmS~k!gag5S~k!gnS~k1p!%

[2$I 1
mna1I 2

mna%. ~46!

We shall calculate the two integrals separately, without
ing a shift for the sake of clarity. The ambiguities in mome
tum routing discussed by Jackiw will be made explicit in t
relations between divergent integrals that will appear. Af
taking the trace over the Dirac matrices we have

I 1
mna5E d4k

~2p!4

N 1
mna

@k22m2#@~k1p!22m2#2
~47!

and

I 2
mna5E d4k

~2p!4

N 2
mna

~k22m2!2@~k1p!22m2#
, ~48!

where

N 1
mna54i ˆ$@~k1p!22m2#kb22m2pb%emnab

22pskbkaemnsb
‰ ~49!

and

N 2
mna54i ˆ$2@k22m2#~k1p!b22m2pb%emnab

22pskbkaemnsb
‰. ~50!

Above, we only considered the terms which do not van
after integration or because of symmetry properties in
Lorentz indices. After some straightforward algebra, we c
write

I 1
mna54i $@Jb

L22m2pbJ1#emnab22psgalemnsbJbl
L %

~51!

and

I 2
mna54i $@2Jb

L22m2pbJ12pbJL#emnab

22psgalemnsbJbl
L %, ~52!

where we defined
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J15E d4k

~2p!4

1

~k22m2!2@~k1p!22m2#
, ~53!

JL5EL d4k

~2p!4

1

~k22m2!@~k1p!22m2#
, ~54!

Jb
L5EL d4k

~2p!4

kb

~k22m2!@~k1p!22m2#
, ~55!

and

Jbl
L 5EL d4k

~2p!4

kbkl

~k22m2!2@~k1p!22m2#
. ~56!

Among these integrals, the divergent areJ, Jb , andJbl . We
can manipulate them using Eq.~28! recursively to obtain

JL5I log
L ~m2!2 J̃, ~57!

Jb
L522prQbr

L 1 J̃b , ~58!

and

Jbl
L 5Qbl

L 2 J̃bl , ~59!

where

Qab
L 5EL d4k

~2p!4

kakb

~k22m2!3
, ~60!

J̃5E d4k

~2p!4

p212p.k

@k22m2#2@~k1p!22m2#
, ~61!

and

J̃bl5E d4k

~2p!4

~p212p.k!kbkl

@k22m2#3@~k1p!22m2#
. ~62!

Now that we removed the external momentum depende
from the divergent integrals, we note that they cancel ou
I 1

mna unambiguously. It remains an undetermined finite te
originated from a difference between divergent integrals
I 2

mna . Noting thatpb Ĩ 52 Ĩ b ~which can be shown by partia
integration!, we get

I 1
mna54i $@ J̃b22m2pbJ1#emnab22psgalemnsbJ̃bl%

~63!

and

I 2
mna5I 1

mna1
f

2p2
pbemnab, ~64!

where the divergent integrals were combined, as in Eq.~17!,
to define
4-7
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Yab
0 [gabI log

L ~m2!24Qab
L 5lgab , ~65!

in which l is a dimensionless, finite parameter, and we h
defined

f[
8p2

i
l. ~66!

The finite integrals can be readily solved using Feynm
parameters, after which we can write

Pnon-pert
mna 5emnab

pb

2p2 S u

sinu
2f D , ~67!

where u52 arcsin„Ap2/(2m)… and p2,4m2. The equation
above is similar to the one encountered by Jackiw and K
telecký @29#, with our f playing the role of their surface
term. Now in order to arrive at their claimed unambiguo
result within the nonperturbative approach, another inform
tion would have to be implemented. As it was discussed
Ref. @32# any regularization that had broken the spheri
symmetry in their explicit integration would have altere
their result. That is the case of DR which breaks the tra
lessness of the combinationkmkn21/4gmnk2 in the 4D
space-time. In calculating the surface term, which is or
nated from the shift in the linearly divergent integral, o
also makes use of such symmetry by performing a symme
momentum limit limk→`(kmkn)/k25(gmn)/4. Therefore, it is
an easy matter to check that if we use symmetric integra
in Qab in Eq. ~65!, then we will obtain thatf51/4 in Eq.
~67!, to give in the limit of heavy fermion mass the resu
found in Refs.@29,32,33#.

Now let us proceed to the perturbative inb computation.
The relevant diagrams are thebm-linear one loop correction
to the photon propagator in which a factor ofiblglg5 can be
inserted in either of the two internal fermionic lines to rend
equal contributions. Thus the amplitude reads

Pmn
b 52 ~2 i !blE d4k

~2p!4
trgmSF~k2p!gnSF~k!glg5SF~k!

[2blPlmn , ~68!

wherep is the external momentum. The integral above is j
our I 2

mna in the nonperturbative withp→2p and them, n
indices interchanged. Therefore, we can write, taking i
account the change of signs,

Ppert
mna5emnab

pb

2p2 H u

sinu
2f8J . ~69!

The equation above is to be compared with Eq.~21! in Ref.
@31#. Our undetermined parameterf8 is just their ratio
ln(M1/M2). Thus we have achieved the same elegance
is expressed within differential regularization with the a
vantage of working in the momentum space. This result w
expected since we have not made use of an explicit regula
We, too, have all the results obtained in other regulariza
schemes embodied in different choices for the parametef8
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which is to be fixed on physical grounds either by symme
requirements or a renormalization condition; all the possi
ambiguities are expressed in terms of our so-called con
tency relations which we left arbitrary until the final stage
this case. It is therefore not surprising that our approa
achieved the same merits as those claimed within differen
regularization.

It is interesting to observe that the indeterminacy e
pressed by our parametersf andf8 are ultimately related to
a nonvanishing value for the CR. In other words, the am
tudes considered in this section are not independent of
momentum routing in the loop. Would we have momentu
routing independence then the parameterl and consequently
f andf8 would be zero. Generically, we can state that t
presence of an axial vertex has broken such momentum r
ing independence. In fact, this is not a new feature. It is w
known that only a special routing of the integration mome
may result in a gauge invariant answer in the presence
axial vertices@29,23#. Notice also that total vacuum polariza
tion amplitude~44! has a contributionPmn

0 , which corre-
sponds to pure QED4. Would a particular routing choice vio
late gauge invariance inPmn

0 ? As we have seen, if an
arbitrary momentum routing is taken, then theY ’s must be
zero. On the other hand, it was shown in the last section
if we choose a particular routing, there is another possibi
of mantaining gauge invariance namely by fixing the relat
coefficients of one CR. Therefore, we can fix the moment
routing in Pmn

b and then adjustc52a andYmn
2 50, so as to

respect gauge invariance.

V. TOPOLOGICAL MASS GENERATION IN
THREE-DIMENSIONAL GAUGE THEORY

As we have seen in Sec. IV, CS terms can be induced
radiative quantum effects even if they are not present as
terms in the original Lagrangian. In 311-dimensional space
time such terms could be induced by extending the fermio
sector of QED with an explicitly Lorentz andCPT violating
axial-vector term. In 211 dimensions, however, suc
topological terms can naturally appear at quantum le
without any extension in the classical Lagrangian@39#. Con-
sider the QED3 Lagrangian with fermions of massm, L

52 1
4 FmnFmn1C̄( iD” 1m)C. Now let us study the role

played by a radiatively generated CS term in the sense
giving a mass for the gauge field.4 In @37# it was shown that
despite being all gauge invariant one could classify a se
regularizations in two groups: one in which the origina
massless boson remained massless~such as Pauli-Villars
regularization! and another in which it turned out to be ma
sive ~such as DR among others!. Here we revisit this prob-
lem in the light of our framework. Consider an expansion
powers ofA of the one loop effective action, namely

4Please see@9# for a complete account on this matter.
4-8
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GQED3
@A#5tr ln det~ i ]”2m!1trS 1

i ]”2m
A” D

1
1

2
trS 1

i ]”2m
A”

1

i ]”2m
A” D 1 . . . . ~70!

For an induced mass term, the relevant contribution is
one that is quadratic inA which we write generically as

G2@A#5
1

2E d3p

~2p!3
Am~p!Pmn~p!An~p!, ~71!

wherePmn is the usual vacuum polarization tensor,

Pmn~p!5E d3k

~2p!3
trS gm

p”1k”1m

~p1k!22m2
gn

k”1m

k22m2D
5E d3k

~2p!3

hmn

~~p1k!22m2!~k22m2!
, ~72!

with

hmn52~2kmkn12pmkn2gmn„~k1p!•k2m2
…

1 imemnapa!, ~73!

where we used that in 3D trgmgnga522i emna. Thus we
can write

Pmn52~2I mn12pmI n1 imemnapaI 2gmnI (1)2gmnpaI a!,

~74!

where

I , I m ,I mn[EL d3k

~2p!3

1,km ,kmkn

„~p1k!22m2)~k22m2
…

and

I (1)[EL d3k

~2p!3

1

~p1k!22m2
. ~75!

Among the integrals defined above onlyI and I m are finite,
whereas the others can be rewritten with Eq.~28! as

I mn5EL d3k

~2p!3

kmkn

~k22m2!2

2EL d3k

~2p!3

~p212p•k!kmkn

„~p1k!22m2
…~k22m2!

, ~76!

in which the second integral on the right-hand side is fin
and

I (1)5I l in
L ~m2!2EL d3k

~2p!3

p212p•k

„~p1k!22m2
…~k22m2!

,

~77!
04600
e

e

with

I l in
L ~m2![EL d3k

~2p!3

1

k22m2
. ~78!

However, the second integral on the right-hand side of
~77! vanishes and thereforeI (1)5I l in

L (m2). With the results
given above,Pmn(p) reads

Pmn~p!52XJmn
1 1F1~p2,m!emnapa1F2~p2,m!

3S pmpn

p2
2gmnD C, ~79!

whereJmn
1 is given as in Eq.~14!. Generically, we can write

Jmn
1 5lgmn , on Lorentz invariance grounds wherel is a

parameter~with dimension of mass! to be determined. In
order to assure gauge invariance, we are led to setJmn

1 50 in
this case.5 This appears to be a natural choice as no pa
violating objects appear in the vertex. Moreover, the fin
coefficientsF1 andF2 evaluate to

F1~p2,m!5
i

4p F m

Ap2
lnS 11Ap2/4m2

12Ap2/4m2D G , ~80!

F2~p2,m!5
1

4p Fm2
1

4Ap2
~p214m2!lnS 11Ap2/4m2

12Ap2/4m2D G ,

~81!

which is just the result that is obtained in DR@37–40# . In
the limit wherem→` we obtain

Pm→`
mn 5

i

4p

m

umu
emnapa, ~82!

which contributes to the one loop effective action with
term that in the coordinate space reads

GCS
2 52

i

2

1

4pE d3x emnaAm]nAa . ~83!

These results can be readily generalized to the non-Abe
case.

VI. SCHWINGER MODEL AND ITS CHIRAL VERSION

As an example in two dimensions, we study t
Schwinger model~ScM! (QED2 with massless fermions! and
its chiral version~CScM!. The ScM is exactly solvable@41#
and has served as a good laboratory for both testing theo
ical techniques and getting some insight in the vacuum st
ture of QCD4. Several nontrivial features of the ScM and i
massive and chiral version~such as massive physical stat

5A linearly divergent term}Lgmn which would appear using an
explicit cutoff calculation@38# does not appear in our case, as
would not appear in any gauge invariant regularization such as
4-9
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formed via chiral anomaly, instanton-like vacuum configu
tions labeled by anu angle, etc.! have counterparts in mor
realistic theories@42#. In the ScM, the massless photon of t
tree approximation acquires the masse2/p (e is the coupling
constant! at the one loop level~which is exact in this case!.
Consider the effective action radiatively induced by ferm
ons:

GS52 i ln det~ i ]”2eA” !. ~84!

The mass generation is seen at orderA2 which, for this
model, determines Eq.~84! completely. Hence all we need t
do is to compute the vacuum polarization tensor

PS
mn~p!5 i tr E d2k

~2p!2
gm

i

k”
gn

i

k”1p”
. ~85!

After taking the traces, using Eq.~28! to write the divergence
as a function of the loop momentum only and evaluating
finite integrals, we obtain~see, also, Ref.@35#!

PS
mn~p!5P`

mn1
1

p S gmn

2
2

pmpn

p2 D , ~86!

where

P`
mn[2i EL d2k

~2p!2

~2k2gmn12kmkn!

~k22m2!2
~87!

andm2 is an infrared cutoff which is immaterial for the valu
of P`

mn . Some features are noteworthy. Notice that, in g
eral, PS

mn is not gauge invariant. Lorentz invariance tells
thatP`

mn should be proportional togmn but the coefficient is,
in principle, undetermined since the integral is diverge
Moreover, if P`

mn assumes any value different from zero
would break the traceless ofPS

mn already manifest in its
integral representation~85!. However, Pauli-Villars or DR
can be employed and gauge invariance restored within
schemes. DR, for instance, evaluates Eq.~87! to
„1/(2p)…gmn which gives for Eq.~86!

P̄S
mn~p!5

1

p S gmn2
pmpn

p2 D . ~88!

Now recall the CR~13!, namely

Dmn
0 5EL d2k

~2p!2

gmn

k22m2
22EL d2k

~2p!2

kmkn

~k22m2!2
.

~89!

The choiceDmn
0 50 can be used in Eq.~87! to obtain a result

which is just„1/(2p)…gmn as it can be easily demonstrate
Hence gauge invariance is restored within our framewo
This is close in spirit to Jackiw’s approach in Ref.@35#. In
other words, we can state that this particular value forDmn

0 is
the one which restores gauge invariance, if we so wish
plays the role of an undetermined local part in the quadr
term of the effective action. If the ScM really described
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physical particle, we could say that we had to chooseDmn
0 to

vanish so to explain the photon massm25e2/p.
In order to gain some more intuition, let us make a simi

analysis with the CScM. We simply substitute the vec
interaction with a chiral interaction in Eq.~84!:

Gx52 i ln det„i ]”2e~11g5!A” …, ~90!

g55g0g1. An analogous calculation leads us to the resu

Px
mn~p!5PS

mn~p!1gab„e
naPS

mb~p!1emaPS
bn~p!…

1emaenbPS ab~p!, ~91!

where we used that

g5gm5emngn, ~92!

andPS
mn(p) is given as in Eq.~86!. As it is well known@43#,

there occurs a chiral anomaly in this model: it cannot
made gauge invariant. This is a manifestation of the ano
lous nonconservation of the chiral current in the ScM for

pnP5
mn52

1

p
p̃m→]n j n

55
e

p
enm]nAm, ~93!

where P5
mn5enk(P̄k

m)S because of Eq.~92! and p̃n

5enapa .6

Now let us write generically for the CR

Dmn
0 5

l

2p
gmn

based on Lorentz invariance (l is a dimensionless param
eter!. Thus

P`
mn5S l11

2p Dgmn, ~94!

from which we see that the choicel50 enforces gauge in
variance on the ScM. We can rewrite the axial Ward iden
~93! as a function ofl, namely

pnP5
mn52

l12

2p
p̃m. ~95!

Had we opted for preserving the AWI, we would have to s
l522. This, in turn, would transfer the anomaly to th
VWI since

pmPS
mnul52252

1

p
pn, ~96!

as expected.
On the other hand, for the CScM, Eq.~91! yields

Px
mn~p!5

1

p S ~l12!gmn2~gma1ema!
papb

p2
~gbn2ebn!D .

~97!

6Notice that (P̄m
m)S51/p, which provides precisely the value o

the anomaly.
4-10
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Unlike the ScM, imposing gauge invariance does not fix
value ofl since

pmPx
mn~p!5

1

p
„~l11!pn2 p̃n

…, ~98!

which shows that the longitudinal part does not vanish
any value ofl. Despite the lack of gauge invariance and t
arbitrary parameterl, it constitutes a perfect sound theo
@43#. It can be exactly solved to find that forl.21 it is a
unitary and positive definite model, in which the photon a
quires a mass

m25
e2

p

~l12!2

l11
. ~99!

An equivalent formulation in a bosonized version of t
CScM placesl as arising from ambiguities in the bosoniz
tion procedure. In fact the CScM can be formulated in
gauge invariant way in which a Wess-Zumino term7 exactly
cancels the variation of the original Lagrangian unde
gauge transformation@44#. In addition, it was shown@45#
that the anomalous formulation is nothing but a spec
gauge~unitary gaugeg51) of the gauge invariant formula
tion. Had we chosen the valuel50 as we did for the ScM,
we would obtainm25(4e2)/p. Curiously, this value has
already been conjectured within another regularization~Fad-
deevian regularization! @46#; however, it turned out to be a
special case of the CScM with a minimal Wess-Zumi
term, with a restriction on an undetermined parameter co
spondent tol @47#.

It is important to remark that there is no reason to impo
l50 for the CScM as we did for the ScM. The best w
could do, based on unitarity and positivity of the theory, w
to establish a range of values forl. This remains true in its
gauge invariant formulation, since it obviously yields t
same induced mass for the photon. Within our framewo
we can somewhat generalize the ideas proposed by Ja
@35# in the treatment of the ScM and the CScM to perturb
tive calculations in any quantum field theory where ultrav
let divergences appear. The latter can always be displa
either by basic divergent integrals or by differences betw
integrals of the same degree of divergence, whose valu
finally fixed by imposing vital symmetries from the theo
and/or by fitting with experimental data.

7Such a term arises naturally by adopting the Faddeev-Popov
for quantizing a theory with an anomaly.
ys
n.
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VII. CONCLUDING REMARKS AND OUTLOOK

In this paper, we extended an implicit regularizatio
scheme to be applicable in quantum field theories define
n space-time dimensions. As we do not leave the inte
dimension in which the theory is defined, parity violatin
objects present in chiral or topological field theories do n
need to be dimensionally continued; therefore, we av
well-known ambiguities involved in this procedure. Mor
over, all the undeterminacies will be cast into a set of CR
be fixed on physical grounds either by imposing that the v
symmetries must not be violated or by experiment.

In this sense our framework is useful to simplify loo
calculations in, for instance, Chern-Simons–matter theo
@48#. This is because high-covariant-derivative regulariz
tions make the calculations extremely lengthy~especially be-
yond one loop order! due to the complicated form that th
gauge field propagator assumes. Moreover, there are c
where it seems to be possible to opt for an HCD or an
tended DR; in Ref.@49# the one loop shift in noncommuta
tive CS coupling depends on this choice. Therefore, eve
one uses different regularizations that respect fundame
symmetries of a theory~such as gauge invariance!, one may
not get the same radiative correction. This is different fro
the situation when a theory possesses an intrinsic ambig
whose value may have to be fixed only by experiment, e
if the renormalization is finite@35#. As our framework does
not modify or corrupt the underlying theory in consideratio
it constitutes an ideal tool to study these problems.

Should any further constraint be imposed, such as~re!nor-
malization conditions or some other physical requireme
they can be readily implemented within our framework@50#.
Our main concern within this formulation was to keep t
ambiguities to be fixed in the very final stage of the calcu
tion.

When overlapping divergences occur, they are treated
similar fashion@22#. Finally our approach may be genera
ized to multiloop calculations. The proof follows the sam
lines as the forest and skeleton construction in the BP
formulation @51#.
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