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Superstring action in AdS;XS°: k-symmetry light cone gauge
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As part of a program to quantize superstrings in AdS® in a light-cone gauge we find the explicit form
of the corresponding Green-Schwarz action in the fermionic light-coisymmetry gauge. The resulting
action contains terms quadratic and quartic in fermions. In the flat space limit it reduces to the standard
light-cone GS action, while for’ — 0 it has the correct AdSX S° light-cone superparticle limit. We discuss
fixing the bosonic light-cone gauge and a reformulation of the action in terms of 2D Dirac spinors.
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I. INTRODUCTION AND SUMMARY expanding near a nontrivial bosonic string configuration.
It is well known how this is achieved for the flat space GS
action—by choosing a light-cone gau@2,1]. The super-
The two maximally supersymmetric backgrounds of type-string light-cone gauge fixing consists of the two stefbs:
IB superstring theory are flat Minkowski spa&® and  fermionic light-cone gauge choice, i.e., fixing tkesymme-
AdS;xX S°. The manifestly supersymmetric superstring ac-try by I'* ¢'=0; (I1) bosonic light-cone gauge choice, i.e.,
tion in flat space—the Green-Schwd@S action—is well using the conformal gauge/gg*= 7** and fixing the re-

known [1], and its Ad§x S® analogue was constructed in sidual conformal diffeomorphism svmmetr +
Ref.[2] (see also Refd3,4]). —p*r P y y by (7,0)
Progress in understanding the AdS conformal field theory "_. . Lo
; T . ] Fixing the fermionic light-cone gauge already produces a
(.CFT) ﬂ“a"ty (5] 1.€., 1 solving(the IargeN) supersymmet substantial simplification of the flat-space GS action: it be-
ric N=4 Yang-Mills (YM) theory in terms of (first-

quantized superstring in AdSxS® depends on developing comes _quadrgtlc Ing. (IJ_h_(ioshln_g thf bosonlct: :lght-cct;ne
its GS description and making it more practical. Some agdauge, 1.€., using an explicit choicext, may not aways be

vances in this direction with application to “long” strings Necessarysee Refs[13,14)), but it makes derivation of the

ending at the boundary of AdSwere discussed in Refs. Physical string spectrum straightforward. o
[6-8] Our eventual aim is to develop a systematic light-cone
. . . 5 .
While the Neveu-Schwarz-RamoflSR) string action in ~ 92uge framework for the GS strings in AgSS’. In this
curved NS-NS backgrounds has well-defined kinetic term@aPer we shall concentrate on the first and crucial step of
and is at most quartic in fermions, the GS action in curvedXing the fermionic light-cone gauge, i.e., imposing an ana-

_ o, 2 . . .
AdS;x S° background with R-R flux looks, in general, very 109 Of I'"6'=0 condition” The idea is to get a simple
nonlinear2—4]. Its fermion structure simplifies in some spe- 92uge-fixed form of the action where the nondegeneracy of

cial k-symmetry gaugef9—11,, but, as in flat space, one the kinetiq .term_for the fermions.will not depend_ on gchoipe
may still face the question of dependence of the fermiorPf a specific string backgrounq in transverse directions, i.e.,
kinetic term on a choice of bosonic string background, i.e. of2S In flat space, the fermion kinetic term will have the struc-
its potential degenerady]. ture ax* 696.

String configurations in AdS< S® include “short” closed There are other motivations for studying AgSS’strings
strings and “long” stretched strings that may end at thein the light-cone gauge.
boundary. The GS action is well suited for description of (i) One of the prime goals is to clarify the relation be-
small fluctuations near long string backgrour(isr which ~ tween the string theory anti=4 super YM(SYM) theory at
fermion kinetic term is well definedHowever, to be able to the boundary. The SYM theory does not admit a manifestly
determine the fundamental closed string spectrum inAdSN=4 supersymmetric Lorentz-covariant description, but has
x S® one is to learn how to quantize the AgSS® string  a simple superspace description in the light-cone gaige
action in the “short string” sector, i.e., without explicitly

A. Motivations for light-cone gauge approach

IWe use Minkowski signature 2D world sheet mewig, with g
*Email address: metsaev@Ipi.ru, metsaev@pacific.mps.ohio= —detg,, .

state.edu 2A previous work in this direction was reported in REE5], but
"Also at Blackett Laboratory, Imperial College, London and Leb- the x-symmetry light-cone gauge used there is different from ours

edev Physics Institute, Moscow. Email address: and we do not understand the relation of the action presented in

tseytlin@mps.ohio-state.edu Ref.[15] to our light-cone gauge fixed action.
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=0 [16]. It is based on a single chiral superfiede(x, 6) Choosing a light-cone gauge in the parametrization of the

=AX)+ 60" (x)+ - - -, where A=A;+iA, represents the supercoset PSU(342)/[SO(4,1)x SO(5)] described below,

transverse components of the gauge field énitis fermionic  the AdS;x S° superstring Lagrangian of R¢R] can be writ-

partner which transforms under the fundamental representaen a$

tion of R-symmetry group SU4). In addition to the standard

light-cone supersymmetrghifts of 6), the light-cone super- L=Lg+LE+LE. (1.2

space SYM actioig[ ® | has also a nonlinear superconformal N , Mo uN

symmetry. This suggests that it may be possible to formulat&le® Le=—2vg9g"*"Gun(X)d,.X JX" s the standard

the bulk string theory in a way which is naturally related to Posonic sigma model with AdscS° as target space

the light-cone form of the boundary SYM theory. In particu-

lar, it may be useful to split the corresponding fermionic EB:_\/agMV

string coordinates into the two parts with manifest SU(4)

=S0(6) transformation properties which will be the coun- 1 1

terparts of the linearly realized PoinCasepersymmetry su- +20,¢d,6+ et el

percharges and the nonlinearly realized conformal supersym- 2 2#

metry supercharges of the SYM theory. A o ) ] S )
(i) As was shown in Ref§17—19, field theories in AdS €. 1S the_pro_Jec'uon of_ the welpem_ of5_SNh|ch in the special

space(in particular, type-lIB supergravilyadmit a simple Parametrization we will be using is given by

light-cone description. There exists a light-cone action for a .

superparticle in Ad$x S° which was used to formulate AdS/ A’ = — I—Tr( Yo, uu ), U=, utu=l,

CFT correspondence in the light-cone gauge. This suggests “ 2 . . .

that the full superstring theory in Ag$ S° should also have 1.4

a natural light-cone gauge formulation, which should be usewhere Tr is overi,j. The matrixU e SU(4) depends on 5
ful in the context of the AdS/CFT correspondence. independent coordinatgs“'

e2%(9,x" 9, X +3,Xd, X)

1.3

B. Stru.ctu-re of the light con-e gauge string actlon. . y',-E EyA (A ),j ’ (y'j)* —yl., yi=0, (15
Our fermionic k-symmetry light-cone gaugéwhich is
different from the naivd " 6'=0 but is related to it in the
flat space limit will reduce the 32 fermionic coordinatﬁ
(two left Majorana-Weyl 10D spinojgo 16 physical Grass-
mann variables: “linear”d' and “nonlinear” %' and their
Hermitian conjugate®); and »; (i=1,2,3,4), which trans-
form according to the fundamental representations af43U
The superconformal algebra psu(|2,p dictates that these
variables should be related to the Poincanel the conformal
supersymmetry in the light-cone gauge description of the .
boundary theory. The action and symmetry generators will N P-odd €*” dependent term in Ed1.6) came from the
have simple(quadrati¢ dependence o', but complicated ~WZ term in the original supercoset GS actid].
(quartio dependence oy .3 Here we used the following notation:

We shall split the 10 bosonic coordinates of A&S® as
follows. The 4 isometric coordinates along the boundary di-
rections will be

andy*" are SO(5) Dirac matrices ?) is the quadratic part
of the fermionic action

i . S
LP=e*?9,x* 5\/59’”(—@7%0'—mDm'HmeLjnJ)

+E;w7]ici/j(rDV0j_i\/Ee‘f)njayx) +H.c. (1.6

D9i=d0i—Qij¢9j, D0i2d9i+0jﬂji, eijE(’yA,)ijei,,

1 and D=D, do*€';=€,,;do*, where o*=(7,0) are 2D
= E(x%xo), coordinatesD is the generalized spinor derivative &A. It

*

x3=(x", X7, X,X), X

_ ) “The light-cone gauge action can be found in two related forms.
x,x= —=(x'£ix?), (1. One of them corresponds to the Wess-Zumino type gauge in 10D

2 superspace while another is based on the Killing gaisge Refs.

[3,10)). These “gauges”(better to be called “parametrizations”
the radial direction of AdSwill be ¢, and the & coordinates do not reduce the number of fermionic degrees of freedom but only
will be denoted as,A’ (A'=1,2,3,4,5). sp_emah;e a choice of fermionic coordlnate_s. The action given in
this section corresponds to the WZ parametrization, while the action

in the Killing parametrization will be discussed in Section VI.
S0ur index notation differs from Ref2]: here we usex,»=0,1

3These coordinates are direct counterparts of the Grassmann cfor 2D indices,i,j for SU(4) indicesA=0,1, . .. ,4 for Adg and
ordinates in the light-cone action for a superparticle in AdSPin A'=1,... 5 forS® tangent space indicésepeated indices are con-
Refs.[18,19. tracted with flat metric We usee®’=1.
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has the general representatibrr d+ Q';J); and satisfies the  of the couplings to the R-R 5-form backgrouhd.

relationD?=0. Q' is given by (d) The gauge we considered treats the Aa8d S fac-
tors asymmetrically. In particular, the action contains only
Q=du Ul do-QAQ=0, (1.8  SQOO5) but not S@4,1) gamma matrices, ané; and »; are

not spinors under S@,1).°

(e) The AdS;x S° superstring action depends on two pa-
rameters: the scal@equal radii R of AdS;x S® and the in-
verse string tension at’. Restoring the dependence Brset
equal to 1 in Eq(1.2) one finds that in the flat space limit
R—oo the quartic term(1.10 goes away, while the kinetic
term (1.6) reduces to the standard one with),—d,, . The
resulting action is equivalent to the flat space light-cone GS
Cj; is the constant charge conjugation matrix of the(50 action[1] after representing each of the two @DS‘P'!’WS n -
Dirac matrix algebreC''C’'=1,C'T=—C’. The Hermitean terms of the two S} splnprs._Thei action takes dlagon_al
conjugation rules aré!=¢', 7 = 7. The quartic fermionic form in terms of the combinationg; , of our two fermionic

term in Eq.(1.2) depends onlyy but not oné variablesisee Eq(1.22 _bEIOW]' . S
a.(1.2 dep v (f) For o’ — 0 the action has the correct particle limit, i.e.,

it reduces to the light-cone gauge superparticle action in

and can be written in terms of tf8 spin connectiono” &’
and the 5-beire®” as follows:

. 1 IR o I ros ’
Q'jZ—Z(YAB)'ijB +§(7A )jet. (1.9

1 . oo 5
LW==\gg*"e*®9, x* 9, x (7' 5)%— (77" 5?2 AdS; X S° [18].
FT2V9e a L7 /)] (@) A special feature of this action is that SU(4)
(1.10 =S0(6) symmetry is realized linearly on fermions, but not

on bosons, i.e., is not manifest. This is a consequence of the
factor SO(4,1xSO(5) in the underlying supercoset
PSU(2,24)/[SO(4,1)< SO(5)] being purely bosonic. The
The aCtIOI’](12),(13),(16),(11@ has several important S5: SO(G)/SO(S)part of the bosonic action can be repre-

C. Some properties of the action

properties. . ) sented as a special case of the @IH coset sigma model
€} -The+de|3enden(-:e OR~ is only linear—through the L=Tr(aML{1/l’l+AM)2, Ue G=S0(6), with the 2D gauge
bosonicax™ x~ term in Eq.(1.3). field A, being in the algebra dfi=SO(5).This action does

(b) The bosonic factor in the fermion kinetic term is sim- not have manifest SO(6) symmetry affey is integrated out
ply e*?9x™. It is the crucial property of this light-cone andyyis restricted to belong to the coset as a gauge choice.
x-symmetry gauge fixed form of the action that the fermion () The action is symmetric under shifting— 6+ €
kinetic term involves the derivative of onlgne space-time  gnplemented by an appropriate transformatiox of Here
direction—x", .i.e., its (non)degeneracy does not depend on . js 5 Killing spinor onS®, satisfying the equatiofe' = 0. It
transverse string profife. , _is this symmetry that is responsible for the fact that the

(c) The fact that the action has only quadratic and quartic
fermionic terms has to do with special symmetries of the———

AdS; X S° background(covariantly constant curvature and

5-form field strength The presence of theg* term (1.10

reflects the curvature of the backgrouhds follows from ~ 9eneralization of the quadratic ten(w;)in the ﬂat'Spazce GS adﬁﬁ”
the discussion in Refl2], the “extra” terms in Eq.(1.6) fore V"UsllmmetryJ gauge fixing S¢”'=(i/2ma’)/d o(\gg" o
such asp€'j 7! and 7C' 7ax should have the interpretation ~€“'S™)¢'p,D,0". Here p, are projections of the 10D Dirac
matrices p,=I3ENd, XM= (TaEp+TaEf)a, XM, and Ej)
is the vielbein of the 10D target space metric. The covariant deriva-

6T ) hus h imi h  the ligh tive D, is the projection of the 10D derivativeDy=dy
e action thus has similar structure to that of the lig t'ConeJrlw'“”l"r;]af(1/8><5!)FM1'"MSFMe‘I’FMlA,.MS which appears

gauge action for the GS string in curved magnetic R-R background # ™M~ mn i i )
constructed in Ref20]. in the Killing spinor equation of type-IIB supergrawtl/. It has
"Note that the light-cone gauge GS action in a curved space of thée ~ following  explicit form: D, 6'=[5"D,—(i/2)e"p,]¢",
form R:x M® with generic NS-NS and R-R backgrouri@d] (re-  D,=d,+ 33, x"wji'Tsy, where the term  with p,
constructed from the light-cone flat space GS vertex operf2@is E(FAEQHFA,EQ')%XM originates from the coupling to the R-R
contains, in general, higher than quartic fermionic terms, multiplieds-form field strength.
by higher derivatives of the background fields. This light-cone GS % and » are not scalars with respect to SO(4,1). Combined to-
action has quartic fermionic terfi23,21 involving the curvature  gether with fermions eliminated by-symmetry gauge they trans-
tensor form in spinor representation of SO(4450(5). Butafter gauge
_ _ fixing which is based ory matrices from Ad$ part (y* §=0), the
R---ax*tox*(or - )(6I " ---6)~R---(p*)? SQ(4,1) group, with the exception of its S@) subgroup generated
by J**[17] (which is part of little group for the AdScase becomes
realized nonlinearly. Thumodulo subtleties of nonlinear realiza-

which is similar to the one present in the NSR string actiom, in  tion of su(4) on bosorjshe algebra so(2)su(4) is a counterpart
the standard 2D supersymmetric sigma madel of the algebra 9@®) in flat case.

8The part of the action in Ref2] quadratic in¢' is a direct

X(OT - 6)(6I - --6)
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theory is linear ing, i.e., that there are no quartic interactions e??y0=—-1, xt=p'r (1.12
in 6.
Indeed, the equation for*
D. Bosonic light-cone gauge fixing and elimination ok*

To proceed further to quantization of the theory one d,(e2\Jgg"9,x")=0 (1.13
would like, as in the flat case, to eliminate the* factors
from the fermion kinetic terms in Eq1.6). In flat space this is then satisfied. The coordinate space BDHP approach based
was possible by choosing the bosonic light-cone gauge. lon Eqg.(1.12 is equivalent to the phase space GGRT ap-
the Brink—Di Vecchia—Howe—PolyakoBDHP) formula-  proach based on fixing the diffeomorhisms by"
tion [24,25 which we are using this may be done by fixing =p*r, P*=const. The possibility to fix the light-cone
the conformal gauge gauge for the bosonic string in AdS space using the latter

v uw v Y v GGRT approach was originally suggested by Thi@42.
Y=g, yt=igg, dety'=—1, (113 A complication in the case of fixing the diffeomorphisms

and then noting that since the resulting equatidr™ =0 by the conditions ony®® andx* (or on P™ andx™ in the
has the general solution (7,0)=f(7—0)+h(7+0) one  phase space approaatompared to the cases where one can
can fix the residual conformal diffeomorphism symmetry onfix the 2D metric completely by choosing the conformal
the plane by choosing«™(7,0)=p*7. An alternative gauge is that here one is still to integrate over the remaining
(equivalent approach is to use the original Goddard- independent component of the 2D metfar y°%) and to
Goldstone-Rebbi-ThortGGRT) [26] formulation based on  solve the resulting constraint. One may try to avoid this by
writing the Nambu action in the canonical first order form fixing instead a modification of the conformal gaugel1)
(with constraints added with Lagrange multiplieasid fixing  suggested by Polyakd33]
the diffeomorphisms by 2 conditions—on one coordinate and
one canonical momentur:” =p™* 7,P" = const*® y*=diag — e~ 2%,62%), (1.14

The first approach based on the conformal gauge does not
in general apply in curved spaces with null Killing vectors
which are not of the direct product forR*x M2 (the gauge
conditions will not in general be consistent with classical
equations of motion It does apply, however, if the null Kill-

such that Eq(1.13 still hasx* =p™ r as its solution. This is
just a particular classical solution, and it may seem that in
contrast with the flat space case here one is unable to argue

. tor i antl t2f29]. Th . di thatx*=p™ 7 represents a gauge fixing condition for some
Ing vector IS covariantly cons a29). There is no need, in residual symmetry. However, this ansatz may indeed be jus-
principle, to insist on fixing the standard conformal gauge,

- . : tified a posteriorias being the outcome of a systematic pro-
.(1'11)'. Inst;ahad,tone ma)(/j_:'lx th%ocﬂff_egmoip_hlsp gaTuhge bycedure based on fixing" and one condition on a 2D metric
IMposing the two —conditionsy™= =1, X==p 7. NS ¢,cp a9 Eq(1.12 and then integrating ovetr  (assuming it
choice is consistent provided the background metric Sat'Sf'eﬁas No sources
G,_=1, G__=G_;=0, d_Gyn=0 [30]. This approach

. . . . In this paper we shall not discuss in detail the conse-
is essentially equivalent to the GGRT approach applied t%uences o? fi?(ing the bosonic light-cone gau@el? in the
the curved space case.

o . ., superstring actior{1.2) (or the equivalent light-cone gauge
Thg fabove conditions do not Qpply in the AdS case: thEfixing in the phase space GGRT appro§8#]) and follow a
null2 f'”m% vectors are not covariantly constant afl, ... simplified approach based on using a particular classical so-
=e“?#1.7" It is easy to see, howe(;/ei, that a slight modifi- lution.
cation of the aboye conditions oy, x" represents a con- Let us first not make any explicit gauge choice and con-
sistent gauge choice sider the superstring path integral assuming that there is no
sources forx~. The linear dependence of the action
(1.2),(1.3) on x~ allows us to integrate ovexr™ explicitly.
Ovet another approach is to fix. - =0, x*=h(r,0) wherehis  This produces the-function constraint imposing the equa-
determined by external sourcg®7]. For a discussion of various tion of motion (1.13 for x*, which is formally solved by
ways of fixing the light-cone gauge in the case of flat target spaceetting
aqg their relations see, e.g., RE28].
In fact, there is no globally well-defined null Killing vector in v2 f_ uv
AdS space as its norm proportional ¢é? vanishes at the horizon \/§g” € ¢avx =€t (115
¢=—o (this point and a possibility to fix a global diffeomorphism ) . . ) .
gauge for AdS string was discussed in R&fL]). In this paper we wheref(7,0) is anarbitrary function. Since our actiofil.2)
shall use a formal approach to this issue: since the boundary SyMepends only ox" only throughe??dx*, we are then able
theory in R13 space has a well-defined light-cone description, itto integrate ovex™® as well, eliminating it in favor of the
should be possible to fix some analogue of a light-cone gauge fofunction f. The action will contain the fermionic terms
the dual string as wellassuming it is defined on the Poincare patch (1.6),(1.10 with
of the AdS space A potential problem of that approach which will

be reflected in the degeneracy of the resulting light-conegauge fixed e
action near the horizon region should then be addressed at a later e2¢,9ﬂx+_>fﬂz g,w_ﬁxf- (1.1
stage. \/a
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The resulting fermion kinetic term is then nondegenettte

a properly choseffi), and may be interpreted as an action of

2D fermions in curved 2D geometry determinedfandg,,,
(see Refs[8,37,39).

We may then simplify the action further by making a

special choice of and fixing a diffeomorphism gauge an,,

in a consistent way. One possibility is to choose the gauge

(1.14) and f~ ¢ which implies according to Eq1.15 that
xT~r el

+

xt=r, \Jgg*'=diag —e 2?,e?%).

(1.17

f=o, T,

E. “2D spinor” form of the action

Like in the flat space cagel] and in the “long string”
cases discussed in R¢B] the resulting action can then be
put into the “2D spinor” form. Indeed, the -88 fermionic
degrees of freedom can be organized into 4 Dirac 2
spinors, defined icurved2D geometry. Using1.17) we can
write the kinetic term Eq(1.6) as

i . o
L= 5(6Dof + 7 Doy ~imieg; )

+e?9'Cli(D101—i\2e?nlax) +H.c.

(1.18
Introducing a 2D zweibein corresponding to the metric in
Eqg. (1.17
—di 2 _ 0,0 1.1
en=diage®’,1), g, =-e.e)te.e,, (1.19
we can put Eq(1.18 in the 2D form as follows:
—1£(2)__i_mMD +i_ _ 1_i =]
& LE'=—syerenDuyt Sdiid Eiﬁieon ¥
+iv2e?(y")Tm Cliplax+H.c. (1.20
Here o™ are 2D Dirac matrices
0°=io,, o'=o0,, 0°=0%'=03,
0*= (0%, m=j(1-gh, (12
\/E — ’ 2 1 .

=) 00, ¢y stands fory, ', ¥ denotes the transposi-
tion of 2D spinor andy’s are related to the original2D
scalay fermionic variabless’s and 7's by*®

2Note that the standard conformal gauggg*’=diag(—1,1)
leads to inconsistency for genergt if one insists on the simplest
f=o0 choice. Consistency for generit is achieved only iff (and

x*) are nontrivial. But then the structure of the resulting action is

complicated. B
Bn our notation g™V = —iyl(Vo— Vi) 1—igh(Vo
+V1)§[/2, Vm:e#]é’”_.

PHYSICAL REVIEW D 63 046002

wi:( Il) ¢i=i[0i—i(c’7l)ij ]
w2 e

o1 .
¢'2=E[0'+i(0’*1)'177j], (1.22

The quartic interaction terrtl.10 takes the following form:
i — . — :
e 'L =21 e W) - (hie y)?] (123

The total action is thus a kind @/H bosonic sigma model
coupled to a Thirring-type 2D fermionic model in curved 2D
geometry(1.19 (determined by the profile of the radial func-
tion of the AdS spadeand coupled to some 2D vector fields.
The interactions are such that they ensure the quantum 2D

pFonformal invariance of the total modgg].

Properties of the resulting action and whether it can be put
into simpler and useful form remain to be studied. It is clear
of course that the action has a rather complicated structure
and is not solvable in terms of free fields in any obvious way.
A hope is that the light-cone form of the action we have
found (or its first order phase space anaglogay suggest a
choice of more adequate variables which may allow further
progress.

We finish this discussion with few remarks.

(i) The mass termyid, ¢ in Eq. (1.20 is similar to the
one in Ref.[8] (where the background string configuration
was nonconstant only in the radigl direction and has its
origin in the e*"e*%9,x*d,¢%'C/; 01 term appearing after
7+ 6 symmetrization of the*” term in Eq.(1.6) (its “non-
covariance” is thus a consequence of the choite=7).

(i) The action is symmetric under shifting/'— '
+po €', wheree' is the 2D Killing spinor. This symmetry
reflects the fact that our original action is symmetric under
shifting 6' by a Killing spinor onS®.

(iii) The 2D Lorentz invariance is preserved by the fermi-
onic light-cone gaugéoriginal GS fermionsd are 2D sca-
lars) but is broken by our special choice of the bosonic gauge
(1.17). The special form of,,, in Eq. (1.17) implies “non-
covariant” dependence ot in the bosonic part of the ac-
tion: the action(1.3) for the 3 fields¢,x,x and the 5-sphere

coordinatesyA' has the form

_ — 1 1
‘CB: 80X(90X— e4¢(91X(91X+ Ee_2¢a0¢(90¢_ Eez¢31¢&1¢

1
+5Gas(y) (e 2?90y doy"—e*Parytary®), (1.24

whereG 45 is the metric of 5-spher¥. A peculiarity of the
g,.» gauge choice in Eq1.17) compared to the usual con-

Yhere we renamed th&angent spageindices A’,B’ into the
coordinate space one$,B for consistency with the notation used

later in Sec. VI gA=y*").
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formal gauge is that here the® Part of the action is no [see Eq(1.1)] of the so(4,2) generatofs.
longer decoupled from the radial Agl8lirection ¢. In Sec. IV we adapt the original A% S° GS action of
(iv) The form of the quadratic fermionic part of the Ref.[2]to the case of the light-cone basis of psu(2)2 The
AdS; X S° superstring action expanded near a straight longesulting x-symmetric action is written entirely in terms of
string configuration along direction of AdS was discussed Cartan 1-forms corresponding to the light-cone basis and in
in Ref.[8] using the “covariant” k-symmetry gauge condi- an arbitrary(e.g., Wess-Zumino or Killingparametrization
tion #'=6? (equivalent result was found also in th#  of the supercoset space.
=iy,6° gauge used in Ref§11,6]). It is easy to show that In Sec. V we fix the light-conec-symmetry gauge and
an equivalent fermionic action is found also in the presenfind the corresponding Cartan 1-forms. These light-cone
light-cone k-symmetry gauge. Expanding near the configu-gauge 1-forms are given in the Killing parametrization of the
rationx’=7,¢=0, x=0, y=0 (it is easy to check that this original superspace.
is a classical string solutigrand choosing the bosonic gauge In Sec. VI we find the fermionic light-cone gauge fixed
so that the 2D metrig,, is equal to the induced (Adp  form of the action of Sec. IV. We present the action in the
metric ds’=(1/0?)(—d7?+do?) we find that the corre- Killing parametrization, discuss some of its properties, and
sponding functiorf in Eq. (1.15 is then equal tar 2. The  also transform it into the “4-6” manifestly SU4) invariant
quadratic part of the fermion actiqii.20 becomegwe re-  form [see Eqs(6.13,(6.14) and(6.22,(6.23]. We then ex-
define thez fermions by the constant unitary matr&’ in plain the transformation of the action into the Wess-Zumino
Eq. (1.18] parametrization form which was presented above in Egs.
(1.2,(1.6),(1.10. We also mention that our results for
AdS; X S° case can be easily generalized to the fAdS®
J drdo o™ %(0990+ ndgn— 11 6). (1.29  case.
In Appendix A we discuss the relations between the
so(4,1)»s0(5) (or “5+5") basig® of the psu(2,4) super-
Rescaling the fields#=06',7=07’ (so that they have algebra used in Ref2] in the construction of the GS action
o-independent normalizatiofidrdo\/g#o=fdrdo 6'9’) i AdSsXS’ and the more familiar so(3,8)su(4)
and integrating by parts we find =sl(2C)@su(4) (or “4+6") basis(naturally appearing in
the discussion of\'=4,d=4 superconformal symmetry of
SYM theory). We use the later basis to identify the genera-
f drda(0'dpb' + 5’ don’' — 5’ 9,0' —0 19" 0"). tors of the algebra in the light-conpor so(1,1®u(1)
(1.26 @so(2)psu(4)] basis. The knowledge of the explicit rela-
' tions between the generators in the three bases is useful in
order to find normalizations in the forms of the string action
The first three terms here are as in the flat GS action, whilgorresponding to the so(34&)su(4) and the light-cone
the last term represents the Ad@rmion mass term which is  bases.
the same as found in R€8]. Indeed, diagonalizing the ac- In Appendix B we explain the transformation of the
tion as in Eq.(1.22 we get AdS;x S string action from its original form in the
so(4,1so(5) basi$2] to the so(3,1¥su(4) basis and then
to the light-cone basis. We also discuss some details of deri-
J drdo(Y,d i+ o p_—oa Yy ), vation of the light-cone gauge fixed action given in Sec. VI.
(1.27 In Appendix C we present another version of the AdS
X S° superstring action using theS‘'gauge” to fix the
symmetry S refers to the conformal supersymmetry genera-

which is the special case of the general form of the quadratigor)_ In this gauge all of the superconformalfermions are
action (1.20 with d,¢ in the mass term computed fab gauged away.

=Ino.

II. LIGHT CONE k-SYMMETRY GAUGE FIXING IN

F. Contents of the rest of the paper FLAT SPACE

The rest of the paper contains derivation of the action It is useful first to discuss the case of light-cone gauge
(1.2 and related explanations and technical details. In Sec. fiixing in the standard flat space GS action. This allows to
we start with the case of the flat space GS action and illusexplain in the simplest setting the procedure of light-cone
trate on this simplest example the procedure of light-cone
gauge fixing we shall use in the Ad8S® case. We present
a particular light-cone form of the GS action to which our 15ye gshall use the following terminology: “light cone basigsr
AdS;X S light-cone gauge fixed action will reduce in the “ight cone frame”) will refer to the decomposition of superalgebra

flat space limit. generators, while the “light cone gauge” will refer to the choice of
In Sec. Il we discuss the basic superalgebra(@@4)  the x-symmetry gauge.

and write down itgant) commutation relations in the light-  ®we label the basis by the symmetry algebras under which su-
cone basis, corresponding to the light-cone decompositiopercoordinates are transforming in a linear way.
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gauge fixing we are going to follow in the case of AdS Where 6' are subject to the light-cone gauge condition
X . In particular, we shall discuss the split of supercoordi-I'*8'=0." Inserting these expressions into acti@l) we
nates which is closely related to the one we will use in theget

AdS; X S° case, and obtain the form of the GS action to

which our Ad$x S° light-cone action will reduce in the flat L= Lyint Lz, 2.7
space limit.

We start with the flat GS actiofl] in the form[35 1
1] [35] foe @gw( SRR SRR

1 ~ ~ ~ S ~
|0=——f dza\/agWLﬁLﬁJrif SULAA(L'TAALY), —
2 Jomg M3 +ia,x"0'T~4,6'|, (2.9
(2.9
where sV=diag(1-1) (1,J=1,2) and 2ra’=1. The 2D Lyz=—i€""s7d, x0T 73,67, (2.9
metric g,, (u,»=0,1) has signature {+), and g=
—detg,, . Next, let us do the “5-5" splitting of the 10D Clifford

The left-invariant Cartan 1-forms are defined on the type-algebra generators, the charge conjugation matr@ad the
[IB coset superspace defined[d€D super Poincare grolfp  supercoordinates
[SO(9,1) Lorentz group
. . A IM=yAX1X0q, ]“A':|><7,A'><0-2,
G dG=LAPA+L'Q,, LA=dXMLL, XM=(x,6),
(2.2

lai

C=CXC'Xig,, 6= , (2.10

. . . 0
whereG=G(x, ) is an appropriate coset representative. A

specific choice of5(x,§) commonly used is where | is 4X4 unit matrix, o, are Pauli matricesg

=1,2,3,4, and =1,2,3,4. Let us also introduce the complex

G(x,0)=exp(x"Pi+6'Q)), coordinates
. DAT— _ o ApD-
[PA.Ps]=0, {Q;,Qs}=—2i6,(CI")Pa, (2.9 9q5%(el+i02), 2.1
and thus the coset space vielbeins defined by (E®) are
given by and use the parametrization
LA=dxA—ig'TAdg', L'=de". (2.4 7
+i
¢' are two left Majorana-Weyl 10D spinors. The explicit 2D 0‘1‘“:g 77 ], v=2¥ (2.12
form of the GS actiori1] 2| —i ‘9_
g~
1 A
'o:f dz‘fﬁozj d?o| — E@QMV(&MXA_'GIFA%GI) Decompositions of so(4,1y matrices we use may be found

o . in Appendix A[see Eq(A18)]. The light-cone gauge
X (9, xA—=i10T"9,07)—ie*’sV6'Th9,67

1 -
A : pKTA K
9, X —Elﬂ 9,0 )

r*9'=0, I''=—(T3x19), (2.13

X

Sl

. (2.9

One usually imposes the-symmetry light-cone gauge by leads to

starting with the component form of action given by Eq. i i

. : 0 '=7n""'=0. (2.19
(2.5). It turns out to be cumbersome to generalize this pro-
cedure to the case of strings in Ag8S°. It is more conve-
nient to first impose the light-cone gauge at the level of th

Cartan formd.#, L' and then use them in the action taken in gz = g—(gh N,
. . A - ’ n=n i_(a)i ni_(n)v
its general form2.1). The light-cone gauge form df” is (2.15

Lhanging sigrxA—>—xA, using the notation

L*=dx*, L~ =dx —if'Tdéd,
1The transverse bosonic Cartan forbdin Eq. (2.6) should not
LN=dxN, N=1,....8, (2.6)  be confused with fermionic ones.
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and inserting the above decomposition into the actid@  The light cone form of s@,2) algebra commutation relations
we finally get the following expressions for the kinetic and can be obtained from Eq3.1) using that the light cone

WZ parts of the light-cone gauge flat space GS Lagrangianmetﬂc has the following elements;* =7 =1, 7

XX
1 = 77 = 1.
Liin= \/59”” _ (Q”X*' 9, X" — EaMXNava In this paper the 96) algebra will be interpreted as @)
one (,j,k,1=1,2,3,4)
i o . i i i
-—@J*(Eﬁﬁvﬂ4—§nﬁyn“kH£J, 2.16 [3].,5]= 8491, - 8135 35
o _ To describe the odd part of psu(l24_2 superalgebra we
Lyz=€""d,x" 7'C{;d,0'+H.c. (217 introduce 32 supercharg&™', Q;", S*', S". They carry

theD, J*~, andJ** charges, as follows from the structure of
the algebra. The commutation relations of the supercharges
with the dilatationD

It is to this form of the flat GS action that our light-cone
AdS; X S° action will reduce in the flat space limit. A char-

acteristic feature of this parametrization is that while the ki-
netic term is diagonal id’s and s, they are mixed in the 1 1
Wess-ZuminodWZ) term. [D,Q*=— EQi', [D,Q]=— EQii ,

lll. psu (2,44) SUPERALGEBRA IN THE LIGHT CONE I N

The superalgebra psu(243 which is the algebra of isom- ) ,
etry transformations of AdS<S® superspace plays the cen- allow to |.nte(pretQ s as the standard supercharges of the
tral role in the construction of the GS action in Ades® ~ SUPer Poincarsubalgebra an&'s as the conformal super-

[2]. In this section we shall present the form of this algebracharges. The .supe+r£:harges with supersctipt(—) have

which will be used in the present paper. The even part oPOSitive (negativg J°~ charge

psu(2,24) is the sum of the algebra so(4,2) which is the

isometry algebra of AdsSand the algebra so(6) which is the [Jt~,0%]=+

isometry algebra of S The odd part consists of 32 super- ' B

charges corresponding to 32 Killing spinors in A4SS®

vacuum[38] of type-1IB supergravitysee Refs[39—41]; for

recent developments in representation theory see[R2}.
We shall use the form of the basis of(4®) subalgebra

implied by its interpretation as conformal algebra in 4 di-The 3% charges are fixed by the commutation relations
mensions. The generators are then called translatitfhs

«i O
Q™ [JF in]_—zQi ,

N| -

) . 1
[J+7,St|]=t Stl, [J+7,S|i]=tisli.

N| =

conformal boost&?, dilatationD, and Lorentz rotationg2° X i 1 L o~ 1 .,
and satisfy the standard commutation relations [I7Q7]=%5Q7, [IQr]=+3Q7, @7
[Pa,JbC]ZnabPC— nach, — 1 . - . 1 »
[P*S ]=x5S, [IJ¥*S']=%5S"".
a 1bc abpec acy b a b ab ab 2 2
[K,J7%]= K= K", [P%,KP]=7""D—J%", (3.9
(3.2
The transformation properties of th@ supercharges with
[D,Pq]=-P23 [D,K?¥=K?, respect to si4) subalgebra are determined by
ab qcdy_ bcyad PR -+1-+
[JaP J°4]= 5PCJ29+ 3 terms, 3.2 [Qi—,Jlk]=5{Q|;—ZBLQi—,

where7?°=(—,+,+,+) anda,b,c,d=0,1,2,3. In the light L
cone basig1.1) we have the following generators: S0 A i~ P~
e 99 [Q,9d=~5Q"1+78lQ",
J+_ th Ji; Jx;
’ ’ ’ ’ with the same relations for th® supercharges. Anticommu-
— — tation relations between the supercharges are

P*, PX PX K*, KX KX (3.3 | _ | _
[Q*,Q1=7iP*s, {Q".Q/}=-iPs, (39

- o {s*.§}==xiK=5, {S,S'}=iKg,
P=P* P=P* K=K* K=K (3.4 (3.10

To simplify the notation we shall set
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Q' s1= st Qis1= —J3xs , vyhereG is a coset _represen;ativ_e in PSU(22 Let us de-
j i j j .
fine also the following combinations:

-1 - S .
gfl=_(Jt 4+ J%% iy [ " 1 , i S
{Q ,S]} 2(‘] +‘] +D)5]+‘]j LaELg__La, LA E_E(,},A )IjLJiv

2
The remaining commutation relations between odd and even , ok
generators have the following form: (C'L)ij=Cj L. (4.3
[Q1,JX]=—QF, [S J+?]: _ gt Then the kinetic term in Eq4.1) takes the form
. 7 . . . 1 ~ ~ ! !
[Q".J71=Q7", [s".J7]=s"", Lin= =5 V9g" (L + Lo Lo, + L LY), (44

[S™.P71=iQi, [S,P]=iQi, while the 3-form™ in the WZ term can be written asve

[S{ 5] o [in K= g suppress the signs of exterior products of 1-fogrms

1 =—I i +1 =1 T
H=H%,c +HI—H.c., 4.

[Q 7 ,K]=—iS™!, [Q" K]=iS'". s o

The generators are subject to the following Hermitean con- Hidss: — I_2(|:+L§ici,jL(5j+I:iL(_SiCi,ngj

jugation conditions: V2

(PH)T=—pP*, P'=—P, (KH)'=-K*, K'=-K, +Ds'CiLgl+ LS ClLgh)

vt X O P P 1 1 ...,
(J _) i R +ELD<§L§ICULSJ
(JXX)"':JXX, DT:_D, (‘]ij)T:‘]jiv
| | +L-ic.'.L+i), (4.6

(Q*)'=Q7, (s)'=57, (3.11) Qe
All the remaining nontrivial(antjcommutation relations of 1 ) )

. . Hq :_[L+I(C,L)“L_J
psu(2,24) superalgebra may be obtained by using these S5 22 S ijks
Hermitean conjugation rules and tfent)commutation rela-
tions given above. —Lgi(C’L)ingi]

IV. LIGHT CONE BASIS FORM OF AdS ;X S°STRING 1 i =
ACTION + E[LQ (C'L)ijLq

Superstring action in AdS< S° [2] has the same structure
as the flat space GS actida.1)

Derivation of these expressions from the original ones given
| = f ‘Ckin+ f I’H
3 3

—Lo'(C'L);Ly".

(4.2  in Ref.[2] may be found in Appendix B.

V. COORDINATE PARAMETRIZATION OF CARTAN
FORMS AND FIXING THE LIGHT-CONE
k-SYMMETRY GAUGE

In Ref.[2] the Cartan forms in terms of which the action is
written were given in the so(4,8)so(5) basis of psu(2,2).
This is the basis that allows to present the AdS® GS
action in the form similar to the one in the flat space. Our To represent the Cartan 1-forms in terms of the even and

present goal is to rewrite the action in the light-cone basigdd coordinate fields we shall start with the following super-
discussed in the previous section and tiienthe next sec-  coset representatiisee(2.3)]:

tion) to impose ac-symmetry light-cone gauge. We shall use

the conformal algebra and light-cone frame notation. G=0x,09,9y9¢, (5.1
The Cartan 1-forms in the light-cone basis are defined by
where
1 o . ' . ) .
G 'dG=LEP+LRK +LpD+ S L2+ L0 +16'Qf O o= EXPXAPA+ 07 1Q + 67 Q 1+ 671Q +67Q 1),
(5.2

+Lo QM HLYQr +LEQ T+ Lg'S + LS

_ _ =expn 'S + 75 ST+ 5tS +4S7,
PLS LS 4.2 9,=expn 'S + 7 n'S +7'S) 53
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andg, andg, depend on the radial AdSoordinate$ and

! —I— 274 2
S coordinatesy” , respectively. Ls'=e *?dn + 277 7'dx* )
9y= exp(¢D), (5.4) il
i L5i=e¢’2<dm— 5”2’7‘ dx*), (5.18
gy=exp(y';3),  y¥i=5(")yN (5.5

where7?="7%'7; . All the remaining forms are equal to zero.

Choosing the parametrization of the coset representative W€ have introduced the notation
the form(5.1) corresponds to what is usually referred to as

“Killing gauge” in superspace. o'=Uj0), b=0,U"Y), (5.19
Since the supercharges transform in the fundamental rep- - _
resentation of su(4) the corresponding fermionic coordinates doi=U, jdol, de=de;(uhHi;, (5.20

0's and n's also transform in the fundamental representation

of su(4). Theabove expressions provide the definition of theand similar ones for. Note that§?= 62 and Hdo=0 do.
Cartan forms in the light-cone basis. Let us further specifyThe matrixU eSU(4) is defined in terms of th&° coordi-
these expressions by setting to zero some of the ferm|on|ﬁatesy ory? by Eqgs.(1.4),(1.5). It can be written explicitly
coordinates which corresponds to fixing a particulargg

x-symmetry gauge. Namely, we shall fix tkesymmetry by

putting to zero all the Grassmann coordinates which carry | |yl A
P Sitee ) hageleoe(d 14T U= cos— +iyA'n? sin P lyl=VyA YA,
9+i:9i+:77+i:77i+:0' (5.6 A’
I 5.2
To simplify the notation we shall set in what follows: "= Iyl 620
0i50*i’ 0.=0., i= 7i, =7 . 5.

=0, n=n", m=n . (7 VI. AdS5X S® STRING ACTION

As a result, thex-symmetry fixed form of the coset repre- IN'THE LIGHT-CONE GAUGE

sentative(5.1) is Plugging the above expressiofs11)—(5.18 into the ac-

— ’ 5.8 tion (4.1) we get the following result for the light-cone gauge
(8x.0)at(9,)919y0 8 fixed superstring Lagrangian in terms of the light cone su-
(Ox0)gr= EXPXPA+6Q +6,Q 1), percoset coordinates
(5.9
ya% 2¢ + - o 1
(g ) (= eXF(”I]iSJr'Fﬂ'SJri) (5 10) ‘Ckln \/ag —€ (a,ux d, X +&anvx)_§‘9u¢av¢
n/g.f. i i . .

Plugging thisGg; into (4.2) we get thex-symmetry gauge 1 _ _
fixed expressions for the Cartan 1-forms — Eef‘ e +(9 x* e2¢( 6'3,0,+ 60,0

e~ e~ .
L;:e¢dx+, nged’(dx‘—ie' dei—zﬁi d&'), i ) 1. P~
(' amit md, )+ 5me,

(5.11
LX=eddx, Li=e?dx, (5.12 1 e
" " +500X 0 XD W1, 6.1
1. i ~ e ~
Le=e"¢| 2 (7)2dx" + 7' dyi+ 57 d7f |,
4 2 2 My
(5.13 Lyz=— \/Ee‘f’& x*%'Cl(d,0/+i7ma,x)+H.c.
Lp=dé, (5.14 (6.2
_ _ 1 The kinetic terms are obtained in a straightforward way. De-
L'j=(dU Ul)'j+i( n'n;— Zy/zé})dxﬂ (5.1 tails of derivation of th'e WZ part are given in Appendix B.
A few remarks are in order.

PRy e (i) In the flat space limit this actiofafter an appropriate

Lo =e”(dd' +in dx), Lo=e”(d6i—iy dx), rescaling of fermionic variables given in E¢6.3)] reduces
(516 {0 the GS light-conec-symmetry gauge fixed action repre-

) _ , sented in the form{2.16),(2.17). In the particle theory limit

Lo'=—ie??y dx*, Lg=ie??y dx”, (517 4'—0 (corresponding to keeping only thedependence of
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the fields and omitting the WZ ternthis action reduces
(after an appropriate bosonic light-cone gauge fixing and re-
scaling of some fermionic variableto the light-cone action
of a superparticle propagating in AgsS’® [18].18

(ii) The kinetic terms for the fermionic coordinates have
manifest linear si4) invariance. In the remaining terms this
symmetry is not manifest and is not realized linearly.

(iii ) Since the WZ term depends ehthrough its deriva-
tive, it is invariant under a shift of. To maintain this in-
variance in the kinetic terms the shifting @f should be !
supplemented, as usual, by an appropriate transformation éVA)'j&yA of $° (dya=dldy
x~. The action is invariant under shifts of the bosonic coor- Note thatx™ enters the action only through the combina-

D,y =d,y = 2i p(VY nle*?a,xt (6.6
cl/=u'ic/ Uk,

CY=C/, cody| +i(C'y*);n*" sinly],
(6.7)

where (\/A)ij are the components of the Killing vectors
4

dinatesx? along the boundary directions.

(iv) As in the superparticle cadd 8,19 this action is

quadratic in half of the fermionic coordinate®)( but of

higher order(quartig in the another half ). It was the

desire to split the fermionic variables in suéfs and 7’s

tion ewaﬂx*. An attractive feature of this representation is
that the terms in Eq(6.1) involving 7;(y*")';%' are now
collected in the second term in the derivati¥e6) and thus
have a natural geometrical interpretation, multiplying the
Killing vectors.

that motivated our choice of the supercoset parametrization The Killing vectors (\/A)ijayA satisfy the so(63=su(4)

in Eq. (5.8). o
(v) The action contains the terms like;3)? and 7;€'; 7’
which in the superparticle case played important fa& in

establishing the AdS/CFT correspondence. These terms
should also play a similar important role in formulating the

AdS/CFT correspondence at the string theory level.

The fermionic variable® and » as defined above in Eq.
(5.1) have opposite conformal dimensions. It is convenient

commutation relation§3.5) and may be written as
Ayi 1 A'B’\i \/A'B’ i AN A
(v )jO"yAzz(?’ )V "‘5(7 ) Vvh, (6.9

where VA" and VA'®' correspond to the 5 translations and
O(5) rotations, respectively, and are given [lsge Eq.

however, to use the variables with the same conformaszm

dimensions?® To achieve this we rescale as follows:

n—2ely, n—2ely. (6.3

To get convenient sign in front of kinetic terms of fermions

we change signx®— —x2. Then the Lagrangiaf6.1),(6.2)
may be written as

— 1
Liin= 99" —€X(3,X" 9,X™ +9,X0,X) = 59,49,

i .
-3 09“"e*?9,x"[6'3,6,

1
~5G.as(y)D,y"D,y"
+ Hiauai+ 77if9v77i+ 7]if9v77i + iez¢(9vx+( 7]2)2]1 (64)

Lyz=€""e??9,x" 1'Cll(d,01—i\2e?51d,x)+H.c.
(6.5

HereG 4 is the metric of the 5 sphef@ The matrixC;/ and
the differentialD ,y** are defined by

VA =[y|cofy|(8*"A—n*" n4)+n*'nay, (6.9

VA'E =yA’o"yBr —yB’&yA' . (6.10
Here "4 is Kronecker delta symbol and we use the con-
ventionsy”=&,,y*', n4=s4,n"", n=n . In these coor-
dinates theS® metric tensor has the form

- A Sinly]

! ’ !
Gus=¢€1e5 ., €4 M (8% —nan™)+nnh

(6.11

Note that while deriving Eq.(6.4 we use the relation
(UTA'U)'j= - 2ief (V).

The Lagrangiar6.4),(6.5 can be put into the manifestly
SU(4) invariant form by changing the coordinates from

#,y* to the Cartesian coordinatd®’ (M=1, . .. ,6):

18Referencd 18] found the Hamiltonian for the superparticle in
AdS; X S° [see Eq.(12) therd. The action is obtained from the
Hamiltonian in the usual way.

®The light-cone formulation of the superparticle in AGSS®
[18,19 used similar Grassmann variables with the same conformal
dimensions

2Oe introduced the coordinate® $hdices.A,B=1, ... ,5(to be
distinguished from the tangent space indidsB’) and sety*

= 5;‘,yA’I

YA =e?siny|n®’, Y®=e?cogy|,

Y2=yYMYM=|y|2=¢2? (6.12

In terms of the new coordinates the superstring Lagrangian
L=Lyint+ Lyz takes then the following more transparent
manifestly SW4) invariant form
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Liin=—VI9*"| YX(9,X" 3, X"+ 3,%d, X)

1 i _
+ FDMYMD,,YM — E@gﬂwzaﬂxwaavai

+ eiavgi_‘_ 77if9v7li+ 77if9y7]i+iY2(9VX+(7]2)2]:

(6.13
Lwz=€""|Y|d,x*n'Y p”(& 01—i\2|Y|71a,x)
+H.c., (6.14
where
DYM=dYM—2i 7 (R 1Y dx*. (6.19

The 6 matriceSpi'\j’I are the S@) y matrices in the chiral

representation. The usual 8) Dirac matrices can be ex-

pressed in terms qfi"j" as follows:

My ij
yM:( OM (p™) )
Pij 0
(pM)ilpll\jl+(pN)ilpll\J(|:25MN5}' pi'\j/l:_p:'\i/l'

where M) =—(pi)*. In deriving Eq.(6.14 we used the
following representation foIC’ and S@5) y matrices in
terms of thep matrices

) =i(e") e}, Ci=pj, (6.17)
implying an interesting relation
e’Cii=pjj YM. (6.18

The matrices IRM)‘,- in the covariant derivativé6.15 are
defined as follows 1,N,K,L=1, ... ,6)

1 .
(RM)'j=7 ("5 (R (6.19
where
(RM)KLZYKﬁLM—YLﬁKM'
KLyi 1 Kyil L
(p )IJEE(P )'P|j_(K<—>|—)- (6.20

Note that RM)' dym satisfy the so(63su(4) commutation
relatlons(3 5. In contrast tov* which are complicated func-
tions of y* the matriceRM take simpler form.

Note that in terms of the 6 Cartesian coordinat&sthe
metric of AdS X S° takes the “4+6” form

ds?=Y2 dx® dx@+Y 2 dYM dYM,

PHYSICAL REVIEW D63 046002

Similar choice of the bosonic part of superstring coordinates
was used, e.g., in Reff6,15]. The advantage of the resulting
action is a more transparent structure of the WZ tésrii4).

The above actior(6.13,(6.14 can be transformed into
the equivalent form corresponding to the choice of the con-
formally flat coordinates in AdS< S, i.e., (YM—2zM/z?)

1
ds’= 7 (dx* dx*+dz" dZ").

If we start again with Eq96.4),(6.5) and introducdsee Eq.
(6.12]

ZA' =e ?¢sinly|n®’, Z8=e ¢cogy|,
72=7M7M=|z|?=¢" 2%, (6.21

then we finish withsee Eqs(6.13,(6.14)]

— 1
Liin=—NOG*"Z 7% 9,X" 9, X" +3,X3, X+ EDMZMDVZM

i _ o
— E@gﬂvz*zaﬂﬁ[49'(9V¢9iJr 6.9,0'+ 70,7,
+0id,m' +iZ729,xT (7%)?], (6.22

Lyz= €22, x" 5'plf ZM(3,00~12|Z| *n1a,x)

+H.c., (6.23

whereZ?=(z?)"! and[see Eqs(6.15,(6.19]
DZM=dz"-2i 7 (RM)';»1Z2"2 dx*, RM=- EpMLzL.
(6.29

All other notations are the same as above. One can obtain
Egs.(6.22, (6.23 directly from Eqgs.(6.13,(6.14 by mak-

ing the inversiony™—ZzM/Zz? and taking into account the
relationRMZM=0.

In this section we have discussed the light-cone action in
the Killing parametrization of superspace. In order to get the
light-cone gauge action in the Wess-Zumino parametrization
one needs to make the following redefinitions in E@sY),

(6.2 [see Egs(5.19, (5.20]

aiﬂ(u—l)ijai,
7' —2e4(U ni—2e¢7Ul . (6.26

In addition we change sign of 4D coordinat€s— — x?. The
fermionic derivativess,, will then get the generalized con-
nectionQ,;&MUU‘l (1.8 contributions, i.e., become the
covariant derivative®,, [see Eq(1.7)]. The action in terms
of these new variables was presented in Efj$),(1.10 in
the Introduction.

Finally, let us note that our results for the AgSS® space
can be generalized to the case of AdS® in a rather

straightforward way. To get the light-cone gauge action for

i— 6;Ul;, (6.25

J77’
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this case one could use theinvariant action of Ref[43] We start with the commutation relations of psu(2p
and then apply the same procedure of light-cone splitting anduperalgebra in so(4,8)so(5) basis given ih2]
gauge fixing as developed in this paper. However, our light-

cone gauge action is already written in the form which al- [Pa,Psl=dag, [Pa,Pel=—Jdnag, (A1)
lows a straightforward generalization to the case of AdS

x S one is just to do a dimensional reduction. Let us dis- [JAB JCE]= 5BCIAEL 3terms,

cuss the Ad$x S® Lagrangian using for definiteness the WZ

parametrization where the action has the form given by Eq. [JA’B’,JC’E’]: 77B'c'JA'E'+3 terms, (A2)

(1.2). To get theCg and £ ?) terms in the Ad$x S® case we

are to sek=x=0 in Egs.(1.3) and(1.6) and also to assume . i

that the fermionic variable® and 7 now transform in the [Q,.Pal==5€,Q,7a.

fundamental representation of 8)(i.e., the indices, | take

values 1,2). The matric/; is then given byC'=ho, |h| A 1

=1. The matrices ¢*')';, A’=1,2,3 are now S@) Dirac [Q,:Ja8l=~5Q 7a8: (A3)
gamma matrices and the mattiy) takes the same form as

in Egs.(1.4), (5.21). The quartic part of the Lagrangiahf*) 1

in Eq. (1.10 simplifies td* [Q.Pal=5€,Q7ar,

L®=2\gg"e*g,x 9,x" (g'n)%  (6.20)

1
[QJaer]==5Qvam (A4)
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APPENDIX A: PSU(2,24) SUPERALGEBRA: so(4,)@so(5),  and Qi for Qi,i, whereQ,,;=Q’5;,Cg,Cf; . Hermitean
sa(3,1)@su(4) AND LIGHT-CONE BASES conjugation rules in this basis are

Commutation relations of psu(24) superalgebra in Pl=—Pa, p;,:_pA,,
so(4,1yso(5) basis were given in Reff2]. This basis is
most adequate for finding the covariant action in AdS®
space 2] which is the direct analogue of the GS action in flat
space. To develop the light-cone formulation it is conve- 1By (4 OVB— _ QlBIC, C
nient, however, to make a transformation to the basis in Q) (7 a=~Q7CpCji -
which the supercharges are diagonal with respect to the 9€1et us first transform the bosonic generators into the confor-

erators)” , D, J* [see Eq(3.3] and belong to the funda- g algebra basis. To this end we introduce the Poincare

cone basis.

We shall find the transformation to the light-cone basis atby
the level of the algebra, and this will allow us to find the . 1 . . A
Cartan 1-forms and the action in the form corresponding to ~ P*=P?+J%, Ka=§(— P2+J%), D=-P%
the light-cone basis. It is convenient to first make the trans- (A8)
formation to the intermediate so(3d¥u(4) basis and only
then to the light-cone basis. A bonus of this procedure is thalaking use of the commutation relatio(1),(A2) it is easy
this intermediate form will allow us to find as a by-product to check that these generators satisfy the commutation rela-
another interesting version of the-symmetry gauge fixed tions given in Eqs(3.1),(3.2).
action (see Appendix € Next, we introduce the new ‘“charged” supergenerators

Ihe=—dne: I =—dne, (A6)

(A7)

2!To transform Eq(1.10 to this form we use the completeness
relation for S@3) gamma matrices %*')'(y*)<=— 5| 8f
+24 5}‘. We shall use the simplified notation

a= L 1+iQ? =t 1-iQ%). (A9
Q (Q™+iQ%), Q (Q™—iQ%).  (A9)
V2 V2
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Q=-Q%, Q,i=Qqui- (A10)

Then the nonvanishing values éf; (€53, €1,=1) become

replaced bydyq=1 (€54=i) and the Majorana condition
takes the form Q#")7(y%)~A=Q,;. The commutators have
the form

- 1 . A 1 .
[Q".PY=-5(r" Q" [Q".I*I=5(v**Q)",
(A11)

- 1 A 1
[Qui PM=5(QrMuis [Qui 3=~ 3(Qy"8),

(A12)
[Q“i,PA']=—i§(7A'Q)“‘,
[Qa‘,JA’B’]%wA’B’Q)aK (AL3)
[Qui ,PA/]=i§<Q7A’>ai.
[Qui ,JA’B’]=—%<QYA’B'>M, (A14)

while the anticommutators transform into the form

{Q".Qpit=[2i (v P A+ (v "B) 53715, - 4i 533",
(A15)

where we use the notation

: i P § TRt AlR!
‘]Ij_ (’)’A )IjPA +Z(7AB)IJ‘]AB‘ (A16)

2

Starting with the commutation relations f&*" and J*'®’

PHYSICAL REVIEW D63 046002

0 (O_a)ab 1 0
N L NN Y

T 0
€ab 0
Cup= 0 b’ (A18)

where the matriceSO@)aé, ()4, are related to Pauli matri-
ces in the standard way
o= (1,0’1,0'2,0'3), ot= (— 1,0'1,0'2,0'3).

(A19)

— .
Note that(r:aZ Tonr Top= O'ZE where O'Z'aE(O'a) bbe, €p-

We use the following conventions for the sl(2) indices;
_ 12 .. _ _12_
=e“=—€p=—€°=1,

PP= Py, Y= Pena, PPy, = yPep.
(A20)

We then decompose the supercharges in the si62)4)
basis

[ 2iv Q¥
QCH_

2US; ’ Qai:(zvsai!_ZivilQ?)v

v=2%4 (A21)

In terms of these new supercharges the commutation rela-

tions take the form

. 1 1
[0.Q"]=-35Q%, [D.§]=5S", (A22)

[S*,P%]= é(aaf"ﬂ% . [S.,PY=— ﬁ(?‘)a&a‘,
(A23)

[Q*. K=~ %(Ua)aési'  [Qai K= i_(;a)éasla'

V2

and applying various Fierz identities one proves tﬂ%ilt (A24)
(3 ]-TZJJi) satisfy the commutation relations of su(4) alge- ) )
bra. ai by _ I_ abpa i a qbiy _ _ I_ abyea i
Using the commutator§A13), (A14), and (A16) and {Q%.Q7} \/Eaa PR3, {57.8" ﬁga K=9),
completeness relation for Dirac matrices one proves that (A25)
j j 13 ai jab 1 abya ~bi
[Qai v‘]Jk]:anak_ZaLQaia [Q 1‘] ]=§(0- ) bQ ’ (A26)
. T R aib_lab 1ababi ab ji
[Qm,JJk]:_5LQaJ+Z5{<Qw- (A17) {Q ,SJ-}— EG D+ Zo'ab‘J 5j+€ Jj, (A27)
byab_ _b b bya — c(by-
This demonstrates that supercharges transform in the funddthere — @*)®=€"(a*")%,  (0*)%=3(0%)*(c")w

mental representations of (g1).

—(a<h). Hermitean conjugation rules of the supercharges

In what follows we will use the following decomposition &€

of so(4,1) Dirac and charge conjugation matrices in the sl(2)

basis

Qe'=Q?, Qf=-Qy, (A28)
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and the same foB supercharges. The spinor sl(2) indices Comparing this with Eq(B4) and using EqS(A8), (A16) we
a,b are raised and lowered as in E420). From these com- get

mutation relations we learn th@® , Q® may be interpreted 1 1
as the supercharges of the super Poinsaitealgebra while La=L3- ELa’ [fa=12+ ELa' L4=—Lp, (B6)
S?, S are the conformal supercharges.

This finishes the description of the so(3319u(4) basis. o ' 1 A
We are now ready to introduce the light-cone basis. The — Lij==(y*")[|LA = —(yA'B)|,LA'B, (B7)
transformation of the bosonic generators is implied by the 2 4

Iight-cone decomposition of t_he coordinatésl) and is Using these relations in the expression for the kinetic term
given by (3.3). The transformation of supercharges amounts(Bl) gives the actior(4.4)

to attaching the signs- and — which will show explicitly Now let us consider the fermionic 1-forms. They satisfy
their J* ~ charges. The corresponding supercharges are d?—lermitean conjugation rule

fined by

| T , (L) T(y©)a=L"ICy,C (B8)
QlIE_Q_Il QZIEQ+|1 QiE_Qi_! QiEQi_'—! . . )
(A29) and we use the notatidn ;=L 6J,CBQCJ-’i . Let us define

1_ o 2_ _ ot li_ g 2i _ g+ 1 - 1
S=S . §=-§, S'=s, S'=-S% L= (LH+ILY), Li=—(L*-iL%), (B9

(A30) 2 2

Choice of signs in these definitions is a matter of conventionintroduce the notatioh®'=L9, L = Lq.i and use the fol-
Hermitean conjugation ruldg\28) lead then to the conjuga- lowing decomposition into sl(2)su(4) Cartan 1-forms:
tion rules given in Eq(3.11). ,
v 1L .
al E . S L _1 —ivl -1 a
APPENDIX B: CARTAN FORMS IN so (3,1)®su(4) AND L™= 2\ gLl | ai_z( llqai v Ls)-
LIGHT CONE BASES o (B10)

. . 5 .
The kinetic term of the AdS<S’ GS action and the  ermitean conjugation rules for the new Cartan 1-forms then
3-form in its WZ term have the following form in the i;1e the same form as in EGA28). The light-cone frame

s0(4,1)pso(5) basig2]: Cartan 1-forms are defined by
1 1 - 2 + 1i —i 2i +i
C— wv L ACA Ay A L~.=—L . L4 =—L - L~=—L , La=—L ,
Lan=—5Vgg" (LLL0+LALY), (B1) @™o LT hor em e bom e
H=s"LAL Y AL +isPLA LIy A LY. Le=Lg', LE=L{, LE=Lg, LE=LS.
(B2) (B12)
They are expressed in terms of the Cartan 1-forms defined ihhese relations imply
the so(4,1¥so(5) basis by LlaiQm: LaiQai_LaiQai (B13)
G 1dG=(G 1 dG)pest L' Qi (B3) o . -
bos ' =L3Qi—L3Qs+L¥S,—LES, (B14)
where the restriction to the bosonic part is Pm— i i ;
P =L5Q +LG'Q +LEQ LG Q"
(G L dG) =L APA+ %LABjA% LA'PA + %LA'B/JA'B/_ +Lg'S LIS +LgST LS (B15)

(B4  The representatioiB14) corresponds to the sl(Z)su(4)

] ] ] basis while Eq(B15) corresponds to the light-cone basis.
The transformation of the psu(24) algebra into the light- Using the relation between the Cartan 1-forms in Egs.

cone basis described in Appendix A allows us to find the B9)—(B12) we are ready to consider the decomposition of
corresponding Cartan 1-forms and thus to write down the G$e Wz 3-form (B2). We start with the AdS contribution

action in the light-cone basis. , , which is given by the first term in right-hand side of Eq.
We first consider the so(3,8)su(4) basis and define the (B2). Taking into account that'=L'CC’ and Eq.(B9) we

bosonic(even Cartan forms by can rewrite the AdScontribution in terms of the “charged”
1 o Cartan formd.9, L9
(G™* dG)pos= LpP*+ LK +LpD+ 5 L2020+ L) _
(B5) Hads,= Higs, + HAas, - (B16)
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Higs,= LALI(Cy ™) ,5ClL oI,
Hgs,=LALI (CyA) (sCii L. (B17)

SmcelH Ads; is Hermitean conjugate toH{, Ads, We restrict
our attention to decomposition of the first term. We get

Higs, = L2LIM(Cy?) (4Cfj LW~ LpLI9N(Cy ) ,4C/ L]

(B18)
_i‘ai ¢ _ayaby | 1 1 ai~rg ]
J
+ﬁLa'cULQé)
i Py —imry =i =y iy F
+LgiClLy +LLEiCLy))
1 +i i i~ +j
+EL SLg'cliLgi+Lg'ciiLg (B19)

Equation(B19) provides representation of the Adgart of
the 3-form in the sl(2®su(4) basis, while EqB19) repre-
sents the light-cone basis.

Let us now consider the>$art of the WZ 3-form in Eq.

(B2), i.e.,is"LA'L'yA'L’. Representing it in terms of the

charged Cartan forms as in E®16), H s=H gs+ H qss , we
get

HI=iLALINC 4(C"yA); LI = —2L99C  ,C LK LI

(B20)
1 ai ’ ]
=555 A(CL)yLk— J‘ 8(C'L)ijLos
(B21)
=i[L“(C'L)--L*J—L*i(c'L)--L“’]
2\/5 S ij-s S ij-s
+i[Lgi(C’L)ijLgi—Lg(C’L)ingi]. (B22)

V2

Note that in Eq.(B20) we exploited the relatioriB7) and
used the fact that@’ y~'®");; is symmetric ini, j, the charge
conjugation matrixC, s is antisymmetric inw, 8 and the fer-

mionic Cartan 1-formd.9 are commuting with each other.

Equation(B21) provides representation of part of the WZ
3-form in the sl(2}su(4) basis, while EqB22) represents
the light-cone basis.

Next, let us outline the procedure of derivation of the WZ

PHYSICAL REVIEW D63 046002

countthatL ' =0, L$=0, L =0, LX=0, LX=0 and plug-
ging the Cartan 1-forms given by E¢$.11)—(5.18) into the
above expressions we gétiss =HiGd + HAR , where
[see Egs(5.19,(5.20]

q(l):__d> J__¢ idx™
Hag AdS \/Ee dx* dn C d0 \/Ee dqﬁd&C”n dx

i ~
MR = —2e? dx* dx'dn' Cfjm]
L @
—Ee d¢dx*t dX7]C”7]
1 b ot
~d —Ee dx dxnC,Jn (B24)

The signs~ indicate that these relations are valid modulo
terms which are obtained by acting by differentiabn the
matrle' which enters in the definition of, d6. Suchd U'
terms are canceled by contributions coming from Sﬁepart

of WZ 3-form which in the light-cone gauge takes the form

1. »
_[LQI(C,L)ijLQJ_

V2

To summarize, one gets the following exact relation:

Hds= Lo'(C'L);iLG']. (B25)

dl —etdx*7 7'Cli(do+i7idx) |.

V2

Hus, +Hs=d
(B26)

Multiplying this expression by, adding the Hermitean con-
jugate and going from the 3D to the 2D representation of the
WZ term gives the WZ part of the string Lagrangiég,; in

Eq. (6.2.

APPENDIX C: AdSsXS® ACTION IN S GAUGE

The results for the Cartan forms in the sl@3u(4) basis
described in Appendix B allow us to find another version of
the k-symmetry gauge fixed action of superstring in AdS
X S°. Let us start with the supercoset representdee Egs.
(5.0)—(5.9)]

G=0x09,9y94 (€D
gx 0= equapa_i_ eaQ - aalQau)

(C2

9,= eXp(7¥S,— 7S, (C3)

term in the light-conex-symmetry gauge. Taking into ac- and impose the-symmetry gauge by
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(C4

Gg.f.: Ox,09y9 ¢ - (CH

Since we have set to zero the fermionic coordinateghich
correspond to the conformal superchar§ege shall call this

the S gauge?? The resulting gauge fixed expressions for the

Cartan 1-forms are given by

i o
p=ef dx?- —z(ﬁia(raabdﬁlb-l— 0205, doP) |,

22 a
(C6)
La=e2d6?, Ly=e?7de, (7
Lp=dé, Lij:(dU Uil)ij, (C9

wheredé is defined as in Eq(5.20 while the matrixU is
defined by Eqgs(1.4),(1.5). All the remaining Cartan 1-forms
are equal to zero.

Using that nowL =0 we get from Eq(B19) the follow-
ing expressions for the AdSart of the 3-formH:

1 —
Higs,= ﬁd(p e’de?cde., (C9)
while Eq. (B21) gives
q 1 G pai =i

Thus we conclude that

22The “S gauge” and ‘Q gauge” terminology was introduced in
Ref. [44], but our S gauge is different from the one used in Ref.
[44].

PHYSICAL REVIEW D 63 046002

T
—=e?d6¥C/;dg,|, (C1D

242

which allows us to find the 2D form of the WZ term.

Using the above relations and Ed4.4),(4.3 and taking
into account that.; =0 we finally get the following kinetic
and WZ parts of the AdS<S® string Lagrangiarjsee Egs.
(6.1,(6.2)]

1 ! ’
Lin==5V99"" (L}, L3, + b, -+ € €)),
(C12

i 3 .
Lwz= 5 e"'e?3,6%Cild,0.+H.c., (C13

whereL,i‘,M is given by Eq.(C6) andCH as in Eq.(6.7). Note

that in thisSgauge the 1-forn”A” which is given in terms of

L', as in Egs(4.3) is equal simply to the S1-forme”’". The
reason is that, in contrast to what happens in the light-cone
gauge(5.15, here the Cartan forra'; does not contain fer-
mionic contributiongsee Eqs(C8)]. Making use of formula
(6.18 we get the following manifestly SU(4) invariant rep-
resentation for WZ part

3,67 p!YMa, 6! +H.c.

Lwz= (C19

i
2\2
This form of WZ action by using usual §6) y matrices
(6.16 can be cast into the form similar to the one given in
Refs.[9,1]] (see also Refl6]). The kinetic term(C12) can

be transformed into S4) manifestly invariant form in a
standard way. Our presentation gives self-contained deriva-

tion of SU4) manifestly invariant action from the original
5+5 form of action given in Ref[2].
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