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Superstring action in AdS5ÃS5: k-symmetry light cone gauge
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As part of a program to quantize superstrings in AdS53S5 in a light-cone gauge we find the explicit form
of the corresponding Green-Schwarz action in the fermionic light-conek-symmetry gauge. The resulting
action contains terms quadratic and quartic in fermions. In the flat space limit it reduces to the standard
light-cone GS action, while fora8→0 it has the correct AdS53S5 light-cone superparticle limit. We discuss
fixing the bosonic light-cone gauge and a reformulation of the action in terms of 2D Dirac spinors.
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I. INTRODUCTION AND SUMMARY

A. Motivations for light-cone gauge approach

The two maximally supersymmetric backgrounds of typ
IIB superstring theory are flat Minkowski spaceR1,9 and
AdS53S5. The manifestly supersymmetric superstring a
tion in flat space—the Green-Schwarz~GS! action—is well
known @1#, and its AdS53S5 analogue was constructed
Ref. @2# ~see also Refs.@3,4#!.

Progress in understanding the AdS conformal field the
~CFT! duality @5#, i.e., in solving~the largeN) supersymmet-
ric N54 Yang-Mills ~YM ! theory in terms of ~first-
quantized! superstring in AdS53S5 depends on developin
its GS description and making it more practical. Some
vances in this direction with application to ‘‘long’’ string
ending at the boundary of AdS5 were discussed in Refs
@6–8#.

While the Neveu-Schwarz-Ramond~NSR! string action in
curved NS-NS backgrounds has well-defined kinetic ter
and is at most quartic in fermions, the GS action in curv
AdS53S5 background with R-R flux looks, in general, ve
nonlinear@2–4#. Its fermion structure simplifies in some sp
cial k-symmetry gauges@9–11,6#, but, as in flat space, on
may still face the question of dependence of the ferm
kinetic term on a choice of bosonic string background, i.e
its potential degeneracy@6#.

String configurations in AdS53S5 include ‘‘short’’ closed
strings and ‘‘long’’ stretched strings that may end at t
boundary. The GS action is well suited for description
small fluctuations near long string backgrounds~for which
fermion kinetic term is well defined!. However, to be able to
determine the fundamental closed string spectrum in A5
3S5 one is to learn how to quantize the AdS53S5 string
action in the ‘‘short string’’ sector, i.e., without explicitly
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expanding near a nontrivial bosonic string configuration.
It is well known how this is achieved for the flat space G

action—by choosing a light-cone gauge@12,1#. The super-
string light-cone gauge fixing consists of the two steps:~I!
fermionic light-cone gauge choice, i.e., fixing thek symme-
try by G1u I50; ~II ! bosonic light-cone gauge choice, i.e
using the conformal gauge1 Aggmn5hmn and fixing the re-
sidual conformal diffeomorphism symmetry byx1(t,s)
5p1t.

Fixing the fermionic light-cone gauge already produce
substantial simplification of the flat-space GS action: it b
comes quadratic inu. Choosing the bosonic light-con
gauge, i.e., using an explicit choice ofx1, may not always be
necessary~see Refs.@13,14#!, but it makes derivation of the
physical string spectrum straightforward.

Our eventual aim is to develop a systematic light-co
gauge framework for the GS strings in AdS53S5. In this
paper we shall concentrate on the first and crucial step
fixing the fermionic light-cone gauge, i.e., imposing an an
log of G1u I50 condition.2 The idea is to get a simple
gauge-fixed form of the action where the nondegeneracy
the kinetic term for the fermions will not depend on a choi
of a specific string background in transverse directions,
as in flat space, the fermion kinetic term will have the stru
ture ]x1ū]u.

There are other motivations for studying AdS53S5strings
in the light-cone gauge.

~i! One of the prime goals is to clarify the relation b
tween the string theory andN54 super YM~SYM! theory at
the boundary. The SYM theory does not admit a manifes
N54 supersymmetric Lorentz-covariant description, but h
a simple superspace description in the light-cone gaugeA1

o-

-

1We use Minkowski signature 2D world sheet metricgmn with g
[2detgmn .

2A previous work in this direction was reported in Ref.@15#, but
the k-symmetry light-cone gauge used there is different from o
and we do not understand the relation of the action presente
Ref. @15# to our light-cone gauge fixed action.
©2001 The American Physical Society02-1
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50 @16#. It is based on a single chiral superfieldF(x,u)
5A(x)1u ic i(x)1•••, where A5A11 iA2 represents the
transverse components of the gauge field andc i its fermionic
partner which transforms under the fundamental represe
tion of R-symmetry group SU(4). In addition to the standard
light-cone supersymmetry~shifts ofu), the light-cone super-
space SYM actionS@F# has also a nonlinear superconform
symmetry. This suggests that it may be possible to formu
the bulk string theory in a way which is naturally related
the light-cone form of the boundary SYM theory. In partic
lar, it may be useful to split the corresponding fermion
string coordinates into the two parts with manifest SU(
.SO(6) transformation properties which will be the cou
terparts of the linearly realized Poincare´ supersymmetry su
percharges and the nonlinearly realized conformal supers
metry supercharges of the SYM theory.

~ii ! As was shown in Refs.@17–19#, field theories in AdS
space~in particular, type-IIB supergravity! admit a simple
light-cone description. There exists a light-cone action fo
superparticle in AdS53S5 which was used to formulate AdS
CFT correspondence in the light-cone gauge. This sugg
that the full superstring theory in AdS53S5 should also have
a natural light-cone gauge formulation, which should be u
ful in the context of the AdS/CFT correspondence.

B. Structure of the light-cone gauge string action

Our fermionic k-symmetry light-cone gauge~which is
different from the naiveG1u I50 but is related to it in the
flat space limit! will reduce the 32 fermionic coordinatesua

I

~two left Majorana-Weyl 10D spinors! to 16 physical Grass
mann variables: ‘‘linear’’u i and ‘‘nonlinear’’ h i and their
Hermitian conjugatesu i and h i ( i 51,2,3,4), which trans-
form according to the fundamental representations of SU(4).
The superconformal algebra psu(2,2u4) dictates that these
variables should be related to the Poincare´ and the conformal
supersymmetry in the light-cone gauge description of
boundary theory. The action and symmetry generators
have simple~quadratic! dependence onu i , but complicated
~quartic! dependence onh i .3

We shall split the 10 bosonic coordinates of AdS53S5 as
follows. The 4 isometric coordinates along the boundary
rections will be

xa5~x1,x2,x,x̄!, x6[
1

A2
~x36x0!,

x,x̄5
1

A2
~x16 ix2!, ~1.1!

the radial direction of AdS5 will be f, and the S5 coordinates
will be denoted asyA8 (A851,2,3,4,5).

3These coordinates are direct counterparts of the Grassman
ordinates in the light-cone action for a superparticle in AdS53S5in
Refs.@18,19#.
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Choosing a light-cone gauge in the parametrization of
supercoset PSU(2,2u4)/@SO(4,1)3SO(5)# described below,
the AdS53S5 superstring Lagrangian of Ref.@2# can be writ-
ten as4

L5LB1L F
(2)1L F

(4) . ~1.2!

Here LB52 1
2 AggmnGMN(X)]mXM]nXN is the standard

bosonic sigma model with AdS53S5 as target space5

LB52AggmnFe2f~]mx1]n x21]mx]n x̄!

1
1

2
]mf]nf1

1

2
em

A8en
A8G . ~1.3!

em
A8 is the projection of the vielbein of S5 which in the special

parametrization we will be using is given by

em
A852

i

2
Tr~gA8]mUU21!, Ui

j[~ey! i
j , U†U5I ,

~1.4!

where Tr is overi , j . The matrixUPSU(4) depends on 5
independent coordinatesyA8

yi
j[

i

2
yA8~gA8! i

j , ~yi
j !* 52yj

i , yi
i50, ~1.5!

andgA8 are SO(5) Dirac matrices.L F
(2) is the quadratic part

of the fermionic action

L F
(2)5e2f]mx1F i

2
Aggmn~2u iD nu i2h iD nh i1 ih ien

i
jh

j !

1emnh iCi j8 ~D nu j2 iA2efh j]n x!G1H.c. ~1.6!

The P-odd emn dependent term in Eq.~1.6! came from the
WZ term in the original supercoset GS action@2#.

Here we used the following notation:

Du i5du i2V i
ju

j , Du i5du i1u jV
j
i , ei

j[~gA8! i
je

A8,
~1.7!

and D5D m dsm,ei
j5em

i
j dsm, where sm5(t,s) are 2D

coordinates.D is the generalized spinor derivative onS5. It

co-

4The light-cone gauge action can be found in two related form
One of them corresponds to the Wess-Zumino type gauge in
superspace while another is based on the Killing gauge~see Refs.
@3,10#!. These ‘‘gauges’’~better to be called ‘‘parametrizations’’!
do not reduce the number of fermionic degrees of freedom but o
specialize a choice of fermionic coordinates. The action given
this section corresponds to the WZ parametrization, while the ac
in the Killing parametrization will be discussed in Section VI.

5Our index notation differs from Ref.@2#: here we usem,n50,1
for 2D indices,i , j for SU(4) indices,A50,1, . . . ,4 for AdS5 and
A851, . . . ,5 forS5 tangent space indices~repeated indices are con
tracted with flat metric!. We usee0151.
2-2
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has the general representationD5d1V i
j J

j
i and satisfies the

relationD 250. V i
j is given by

V5dU U21, dV2V`V50, ~1.8!

and can be written in terms of theS5 spin connectionvA8B8

and the 5-beineA8 as follows:

V i
j52

1

4
~gA8B8! i

jv
A8B81

i

2
~gA8! i

je
A8. ~1.9!

Ci j8 is the constant charge conjugation matrix of the SO~5!
Dirac matrix algebraC8†C85I ,C8T52C8. The Hermitean
conjugation rules areu i

†5u i , h i
†5h i . The quartic fermionic

term in Eq.~1.2! depends onlyh but not onu

L F
(4)5

1

2
Aggmne4f]mx1]n x1@~h ih i !

22~h ig
A8 i

jh
j !2#.

~1.10!

C. Some properties of the action

The action~1.2!,~1.3!,~1.6!,~1.10! has several importan
properties.

~a! The dependence onx2 is only linear—through the
bosonic]x1]x2 term in Eq.~1.3!.

~b! The bosonic factor in the fermion kinetic term is sim
ply e2f]x1. It is the crucial property of this light-cone
k-symmetry gauge fixed form of the action that the fermi
kinetic term involves the derivative of onlyone space-time
direction—x1, i.e., its ~non!degeneracy does not depend
transverse string profile.6

~c! The fact that the action has only quadratic and qua
fermionic terms has to do with special symmetries of
AdS53S5 background~covariantly constant curvature an
5-form field strength!. The presence of theh4 term ~1.10!
reflects the curvature of the background.7 As follows from
the discussion in Ref.@2#, the ‘‘extra’’ terms in Eq.~1.6!
such ash ie

i
jh

j andhC8h]x should have the interpretatio

6The action thus has similar structure to that of the light-co
gauge action for the GS string in curved magnetic R-R backgro
constructed in Ref.@20#.

7Note that the light-cone gauge GS action in a curved space o
form R1,13M8 with generic NS-NS and R-R backgrounds@21# ~re-
constructed from the light-cone flat space GS vertex operators@22#!
contains, in general, higher than quartic fermionic terms, multipl
by higher derivatives of the background fields. This light-cone
action has quartic fermionic term@23,21# involving the curvature
tensor

R•••]x1]x1~ ūG2
•••u!~ ūG2

•••u!;R•••~p1!2

3~ ūG2
•••u!~ ūG2

•••u!

which is similar to the one present in the NSR string action~i.e., in
the standard 2D supersymmetric sigma model!.
04600
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of the couplings to the R-R 5-form background.8

~d! The gauge we considered treats the AdS5 and S5 fac-
tors asymmetrically. In particular, the action contains on
SO~5! but not SO~4,1! gamma matrices, andu i and h i are
not spinors under SO~4,1!.9

~e! The AdS53S5 superstring action depends on two p
rameters: the scale~equal radii! R of AdS53S5 and the in-
verse string tension ora8. Restoring the dependence onR set
equal to 1 in Eq.~1.2! one finds that in the flat space lim
R→` the quartic term~1.10! goes away, while the kinetic
term ~1.6! reduces to the standard one withDm→]m . The
resulting action is equivalent to the flat space light-cone
action@1# after representing each of the two SO~8! spinors in
terms of the two SU~4! spinors. The action takes ‘‘diagonal’
form in terms of the combinationsc1,2

i of our two fermionic
variables@see Eq.~1.22! below#.

~f! For a8→0 the action has the correct particle limit, i.e
it reduces to the light-cone gauge superparticle action
AdS53S5 @18#.

~g! A special feature of this action is that SU(4
.SO(6) symmetry is realized linearly on fermions, but n
on bosons, i.e., is not manifest. This is a consequence o
factor SO(4,1)3SO(5) in the underlying supercose
PSU(2,2u4)/@SO(4,1)3SO(5)# being purely bosonic. The
S55SO(6)/SO(5)part of the bosonic action can be repr
sented as a special case of the 2DG/H coset sigma mode
L5Tr(]mUU211Am)2, UPG5SO(6), with the 2D gauge
field Am being in the algebra ofH5SO(5).This action does
not have manifest SO(6) symmetry afterAm is integrated out
andU is restricted to belong to the coset as a gauge cho

~h! The action is symmetric under shiftingu→u1e
supplemented by an appropriate transformation ofx2. Here
e is a Killing spinor onS5, satisfying the equationDe i50. It
is this symmetry that is responsible for the fact that t

e
d

he

d

8The part of the action in Ref.@2# quadratic inu I is a direct
generalization of the quadratic term in the flat-space GS action~be-
fore k symmetry gauge fixing! SF

(2)5( i /2pa8)*d2s(Aggmnd IJ

2emnsIJ) ū IrmDnuJ. Here rm are projections of the 10D Dirac

matrices rm[Gm̂EM
m̂]mXM5(GAEM

A 1GA8EM
A8)]mXM, and EM

m̂

is the vielbein of the 10D target space metric. The covariant der
tive Dm is the projection of the 10D derivativeDM5]M

1
1
4 vM

m̂n̂Gm̂n̂2(1/835!)GM1•••M5GMeFFM1•••M5
which appears

in the Killing spinor equation of type-IIB supergravity. It ha

the following explicit form: Dmu I[@d IJDm2( i /2)e IJr̃m#uJ,

Dm5]m1
1
4 ]mxMvM

m̂n̂Gm̂n̂ , where the term with r̃m

[(GAEM
A 1 iGA8EM

A8)]mXM originates from the coupling to the R-R
5-form field strength.

9u and h are not scalars with respect to SO(4,1). Combined
gether with fermions eliminated byk-symmetry gauge they trans
form in spinor representation of SO(4,1)3SO(5). Butafter gauge
fixing which is based ong matrices from AdS5 part (g1u50), the
SO~4,1! group, with the exception of its SO~2! subgroup generated

by Jxx̄ @17# ~which is part of little group for the AdS5 case! becomes
realized nonlinearly. Thus@modulo subtleties of nonlinear realiza
tion of su(4) on bosons# the algebra so(2)% su(4) is a counterpar
of the algebra so~8! in flat case.
2-3
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theory is linear inu, i.e., that there are no quartic interactio
in u.

D. Bosonic light-cone gauge fixing and elimination ofx¿

To proceed further to quantization of the theory o
would like, as in the flat case, to eliminate the]x1 factors
from the fermion kinetic terms in Eq.~1.6!. In flat space this
was possible by choosing the bosonic light-cone gauge
the Brink–Di Vecchia–Howe–Polyakov~BDHP! formula-
tion @24,25# which we are using this may be done by fixin
the conformal gauge

gmn5hmn, gmn[Aggmn, detgmn521, ~1.11!

and then noting that since the resulting equation]2x150
has the general solutionx1(t,s)5 f (t2s)1h(t1s) one
can fix the residual conformal diffeomorphism symmetry
the plane by choosingx1(t,s)5p1t. An alternative
~equivalent! approach is to use the original Goddar
Goldstone-Rebbi-Thorn~GGRT! @26# formulation based on
writing the Nambu action in the canonical first order for
~with constraints added with Lagrange multipliers! and fixing
the diffeomorphisms by 2 conditions—on one coordinate a
one canonical momentum:x15p1t,P15const.10

The first approach based on the conformal gauge does
in general apply in curved spaces with null Killing vecto
which are not of the direct product formR1,13M8 ~the gauge
conditions will not in general be consistent with classic
equations of motion!. It does apply, however, if the null Kill-
ing vector is covariantly constant@29#. There is no need, in
principle, to insist on fixing the standard conformal gau
~1.11!. Instead, one may fix the diffeomorphism gauge
imposing the two conditionsg00521, x15p1t. This
choice is consistent provided the background metric satis
G1251, G225G2 i50, ]2GMN50 @30#. This approach
is essentially equivalent to the GGRT approach applied
the curved space case.

The above conditions do not apply in the AdS case:
null Killing vectors are not covariantly constant andG12

5e2fÞ1.11 It is easy to see, however, that a slight mod
cation of the above conditions ong00,x1 represents a con
sistent gauge choice

10Yet another approach is to fixg2250, x15h(t,s) whereh is
determined by external sources@27#. For a discussion of various
ways of fixing the light-cone gauge in the case of flat target sp
and their relations see, e.g., Ref.@28#.

11In fact, there is no globally well-defined null Killing vector in
AdS space as its norm proportional toe2f vanishes at the horizon
f52` ~this point and a possibility to fix a global diffeomorphis
gauge for AdS string was discussed in Ref.@31#!. In this paper we
shall use a formal approach to this issue: since the boundary S
theory in R1,3 space has a well-defined light-cone description
should be possible to fix some analogue of a light-cone gauge
the dual string as well~assuming it is defined on the Poincare pat
of the AdS space!. A potential problem of that approach which wi
be reflected in the degeneracy of the resulting light-conegauge fi
action near the horizon region should then be addressed at a
stage.
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e2fg00521, x15p1t. ~1.12!

Indeed, the equation forx1

]m~e2fAggmn]nx1!50 ~1.13!

is then satisfied. The coordinate space BDHP approach b
on Eq. ~1.12! is equivalent to the phase space GGRT a
proach based on fixing the diffeomorhisms byx1

5p1t, P15const. The possibility to fix the light-cone
gauge for the bosonic string in AdS space using the la
GGRT approach was originally suggested by Thorn@32#.

A complication in the case of fixing the diffeomorphism
by the conditions ong00 and x1 ~or on P1 and x1 in the
phase space approach! compared to the cases where one c
fix the 2D metric completely by choosing the conform
gauge is that here one is still to integrate over the remain
independent component of the 2D metric~or g01) and to
solve the resulting constraint. One may try to avoid this
fixing instead a modification of the conformal gauge~1.11!
suggested by Polyakov@33#

gmn5diag~2e22f,e2f!, ~1.14!

such that Eq.~1.13! still hasx15p1t as its solution. This is
just a particular classical solution, and it may seem tha
contrast with the flat space case here one is unable to a
that x15p1t represents a gauge fixing condition for som
residual symmetry. However, this ansatz may indeed be
tified a posteriorias being the outcome of a systematic pr
cedure based on fixingx1 and one condition on a 2D metri
such as Eq.~1.12! and then integrating overx2 ~assuming it
has no sources!.

In this paper we shall not discuss in detail the con
quences of fixing the bosonic light-cone gauge~1.12! in the
superstring action~1.2! ~or the equivalent light-cone gaug
fixing in the phase space GGRT approach@34#! and follow a
simplified approach based on using a particular classical
lution.

Let us first not make any explicit gauge choice and co
sider the superstring path integral assuming that there is
sources for x2. The linear dependence of the actio
~1.2!,~1.3! on x2 allows us to integrate overx2 explicitly.
This produces thed-function constraint imposing the equa
tion of motion ~1.13! for x1, which is formally solved by
setting

Aggmne2f]nx15emn]n f , ~1.15!

wheref (t,s) is anarbitrary function. Since our action~1.2!
depends only onx1 only throughe2f]x1, we are then able
to integrate overx1 as well, eliminating it in favor of the
function f. The action will contain the fermionic term
~1.6!,~1.10! with

e2f]mx1→ f m[gmn

enl

Ag
]l f . ~1.16!

e

M
t
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The resulting fermion kinetic term is then nondegenerate~for
a properly chosenf ), and may be interpreted as an action
2D fermions in curved 2D geometry determined byf andgmn

~see Refs.@8,37,36#!.
We may then simplify the action further by making

special choice off and fixing a diffeomorphism gauge ongmn

in a consistent way. One possibility is to choose the ga
~1.14! and f ;s which implies according to Eq.~1.15! that
x1;t, i.e.,12

f 5s, x15t, Aggmn5diag~2e22f,e2f!.
~1.17!

E. ‘‘2D spinor’’ form of the action

Like in the flat space case@1# and in the ‘‘long string’’
cases discussed in Ref.@8# the resulting action can then b
put into the ‘‘2D spinor’’ form. Indeed, the 818 fermionic
degrees of freedom can be organized into 4 Dirac
spinors, defined incurved2D geometry. Using~1.17! we can
write the kinetic term Eq.~1.6! as

L F
(2)5

i

2
~u iD 0u i1h iD0h i2 ih ie0

i
jh

j !

1e2fh iCi j8 ~D 1u j2 iA2efh j]1x!1H.c.

~1.18!

Introducing a 2D zweibein corresponding to the metric
Eq. ~1.17!

em
m5diag~e2f,1!, gmn52em

0 en
01em

1 en
1 , ~1.19!

we can put Eq.~1.18! in the 2D form as follows:

e21L F
(2)52

i

2
c̄%mem

mDmc1
i

2
c̄c]1f2

1

A2
c̄ ie0

i
j%

2c j

1 iA2ef~c i !Tp2Ci j8 c j]1x̄1H.c. ~1.20!

Here%m are 2D Dirac matrices

%05 is2 , %15s1 , %35%0%15s3 ,

%6[
1

A2
~%36%0!, p2[

1

2
~12%1!, ~1.21!

c̄ i5(c i)†%0, c̄c stands forc̄ ic
i , cT denotes the transpos

tion of 2D spinor andc ’s are related to the original~2D
scalar! fermionic variablesu ’s andh ’s by13

12Note that the standard conformal gaugeAggmn5diag(21,1)
leads to inconsistency for genericf if one insists on the simples
f 5s choice. Consistency for genericf is achieved only iff ~and
x1) are nontrivial. But then the structure of the resulting action
complicated.

13In our notation i c̄%m¹mc52 ic1
†(¹02¹1)c12 ic2

†(¹0

1¹1)c2 , ¹m5em
m]m .
04600
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c i5S c1
i

c2
i D , c1

i 5
1

A2
@u i2 i ~C821! i j h j #,

c2
i 5

1

A2
@u i1 i ~C821! i j h j #. ~1.22!

The quartic interaction term~1.10! takes the following form:

e21L F
(4)5

1

4
@~ c̄ ig

A8 i
j%

2c j !22~ c̄ i%
2c i !2#. ~1.23!

The total action is thus a kind ofG/H bosonic sigma mode
coupled to a Thirring-type 2D fermionic model in curved 2
geometry~1.19! ~determined by the profile of the radial func
tion of the AdS space!, and coupled to some 2D vector field
The interactions are such that they ensure the quantum
conformal invariance of the total model@2#.

Properties of the resulting action and whether it can be
into simpler and useful form remain to be studied. It is cle
of course that the action has a rather complicated struc
and is not solvable in terms of free fields in any obvious w
A hope is that the light-cone form of the action we ha
found ~or its first order phase space analog! may suggest a
choice of more adequate variables which may allow furt
progress.

We finish this discussion with few remarks.
~i! The mass termc̄c]1f in Eq. ~1.20! is similar to the

one in Ref.@8# ~where the background string configuratio
was nonconstant only in the radialf direction! and has its
origin in the emne2f]mx1]nfh iCi j8 u j term appearing after
h↔u symmetrization of theemn term in Eq.~1.6! ~its ‘‘non-
covariance’’ is thus a consequence of the choicex15t).

~ii ! The action is symmetric under shiftingc i→c i

1%2e i , wheree i is the 2D Killing spinor. This symmetry
reflects the fact that our original action is symmetric und
shifting u i by a Killing spinor onS5.

~iii ! The 2D Lorentz invariance is preserved by the ferm
onic light-cone gauge~original GS fermionsu are 2D sca-
lars! but is broken by our special choice of the bosonic gau
~1.17!. The special form ofgmn in Eq. ~1.17! implies ‘‘non-
covariant’’ dependence onf in the bosonic part of the ac
tion: the action~1.3! for the 3 fieldsf,x,x̄ and the 5-sphere
coordinatesyA8 has the form

LB5]0x]0x̄2e4f]1x]1x̄1
1

2
e22f]0f]0f2

1

2
e2f]1f]1f

1
1

2
GAB~y!~e22f]0yA]0yB2e2f]1yA]1yB! , ~1.24!

whereGAB is the metric of 5-sphere.14 A peculiarity of the
gmn gauge choice in Eq.~1.17! compared to the usual con

14here we renamed the~tangent space! indices A8,B8 into the
coordinate space onesA,B for consistency with the notation use

later in Sec. VI (yA[yA8).
2-5
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formal gauge is that here the S5 part of the action is no
longer decoupled from the radial AdS5 directionf.

~iv! The form of the quadratic fermionic part of th
AdS53S5 superstring action expanded near a straight lo
string configuration alongf direction of AdS5 was discussed
in Ref. @8# using the ‘‘covariant’’k-symmetry gauge condi
tion u15u2 ~equivalent result was found also in theu1

5 ig4u2 gauge used in Refs.@11,6#!. It is easy to show tha
an equivalent fermionic action is found also in the pres
light-conek-symmetry gauge. Expanding near the config
rationx05t,f5s, x50, y50 ~it is easy to check that this
is a classical string solution! and choosing the bosonic gaug
so that the 2D metricgmn is equal to the induced (AdS2)
metric ds25(1/s2)(2dt21ds2) we find that the corre-
sponding functionf in Eq. ~1.15! is then equal tos22. The
quadratic part of the fermion action~1.20! becomes@we re-
define theh fermions by the constant unitary matrixC8 in
Eq. ~1.18!#

E dt ds s22~u]0u1h]0h2h]1u!. ~1.25!

Rescaling the fieldsu5su8,h5sh8 ~so that they have
s-independent normalization,*dt dsAguu5*dt ds u8u8)
and integrating by parts we find

E dt ds~u8]0u81h8]0h82h8]1u82s21h8u8!.

~1.26!

The first three terms here are as in the flat GS action, w
the last term represents the AdS2 fermion mass term which is
the same as found in Ref.@8#. Indeed, diagonalizing the ac
tion as in Eq.~1.22! we get

E dt ds~c1]1c11c2]2c22s21c1c2!,

~1.27!

which is the special case of the general form of the quadr
action ~1.20! with ]sf in the mass term computed forf
5 ln s.

F. Contents of the rest of the paper

The rest of the paper contains derivation of the act
~1.2! and related explanations and technical details. In Se
we start with the case of the flat space GS action and il
trate on this simplest example the procedure of light-co
gauge fixing we shall use in the AdS53S5 case. We presen
a particular light-cone form of the GS action to which o
AdS53S5 light-cone gauge fixed action will reduce in th
flat space limit.

In Sec. III we discuss the basic superalgebra psu~2,2u4!
and write down its~anti! commutation relations in the light
cone basis, corresponding to the light-cone decomposi
04600
g

t
-
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n
II

s-
e

n

@see Eq.~1.1!# of the so(4,2) generators.15

In Sec. IV we adapt the original AdS53S5 GS action of
Ref. @2# to the case of the light-cone basis of psu(2,2u4). The
resultingk-symmetric action is written entirely in terms o
Cartan 1-forms corresponding to the light-cone basis an
an arbitrary~e.g., Wess-Zumino or Killing! parametrization
of the supercoset space.

In Sec. V we fix the light-conek-symmetry gauge and
find the corresponding Cartan 1-forms. These light-co
gauge 1-forms are given in the Killing parametrization of t
original superspace.

In Sec. VI we find the fermionic light-cone gauge fixe
form of the action of Sec. IV. We present the action in t
Killing parametrization, discuss some of its properties, a
also transform it into the ‘‘416’’ manifestly SU~4! invariant
form @see Eqs.~6.13!,~6.14! and ~6.22!,~6.23!#. We then ex-
plain the transformation of the action into the Wess-Zum
parametrization form which was presented above in E
~1.2!,~1.6!,~1.10!. We also mention that our results fo
AdS53S5 case can be easily generalized to the AdS33S3

case.
In Appendix A we discuss the relations between t

so(4,1)% so(5) ~or ‘‘515’’ ! basis16 of the psu(2,2u4) super-
algebra used in Ref.@2# in the construction of the GS actio
in AdS53S5 and the more familiar so(3,1)% su(4)
.sl(2,C) % su(4) ~or ‘‘416’’ ! basis~naturally appearing in
the discussion ofN54,d54 superconformal symmetry o
SYM theory!. We use the later basis to identify the gene
tors of the algebra in the light-cone@or so(1,1)% u(1)
% so(2)% su(4)# basis. The knowledge of the explicit rela
tions between the generators in the three bases is usef
order to find normalizations in the forms of the string acti
corresponding to the so(3,1)% su(4) and the light-cone
bases.

In Appendix B we explain the transformation of th
AdS53S5 string action from its original form in the
so(4,1)% so(5) basis@2# to the so(3,1)% su(4) basis and then
to the light-cone basis. We also discuss some details of d
vation of the light-cone gauge fixed action given in Sec. V

In Appendix C we present another version of the Ad5
3S5 superstring action using the ‘‘S gauge’’ to fix thek
symmetry (S refers to the conformal supersymmetry gene
tor!. In this gauge all of the superconformalh fermions are
gauged away.

II. LIGHT CONE k-SYMMETRY GAUGE FIXING IN
FLAT SPACE

It is useful first to discuss the case of light-cone gau
fixing in the standard flat space GS action. This allows
explain in the simplest setting the procedure of light-co

15We shall use the following terminology: ‘‘light cone basis’’~or
‘‘light cone frame’’! will refer to the decomposition of superalgeb
generators, while the ‘‘light cone gauge’’ will refer to the choice
the k-symmetry gauge.

16We label the basis by the symmetry algebras under which
percoordinates are transforming in a linear way.
2-6
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gauge fixing we are going to follow in the case of Ad5
3S5. In particular, we shall discuss the split of supercoor
nates which is closely related to the one we will use in
AdS53S5 case, and obtain the form of the GS action
which our AdS53S5 light-cone action will reduce in the fla
space limit.

We start with the flat GS action@1# in the form @35#

I 052
1

2 E]M3

d2sAggmnLm
ÂLn

Â1 i E
M3

sIJLÂ`~ L̄ IG Â`LJ!,

~2.1!

where sIJ[diag(1,21) (I ,J51,2) and 2pa851. The 2D
metric gmn (m,n50,1) has signature (21), and g[
2detgmn .

The left-invariant Cartan 1-forms are defined on the ty
IIB coset superspace defined as@10D super Poincare group#/
@SO(9,1) Lorentz group#

G21 dG5LÂPÂ1LIQI , LÂ5dXMLM
Â , XM5~x,u!,

~2.2!

whereG5G(x,u) is an appropriate coset representative.
specific choice ofG(x,u) commonly used is

G~x,u!5exp~xÂPÂ1u IQI !,

@PÂ ,PB̂#50, $QI ,QJ%522id IJ~CG Â!PÂ , ~2.3!

and thus the coset space vielbeins defined by Eq.~2.2! are
given by

LÂ5dxÂ2 i ū IG Âdu I , LI5du I . ~2.4!

u I are two left Majorana-Weyl 10D spinors. The explicit 2
form of the GS action@1#

I 05E d2sL05E d2sF2
1

2
Aggmn~]mxÂ2 i ū IG Â]mu I !

3~]n xÂ2 i ū JG Â]nu J!2 i emnsIJū IG Â]nu J

3S ]mxÂ2
1

2
i ūKG Â]muKD G . ~2.5!

One usually imposes thek-symmetry light-cone gauge b
starting with the component form of action given by E
~2.5!. It turns out to be cumbersome to generalize this p
cedure to the case of strings in AdS53S5. It is more conve-
nient to first impose the light-cone gauge at the level of
Cartan formsLÂ, LI and then use them in the action taken
its general form~2.1!. The light-cone gauge form ofLÂ is

L15dx1, L25dx22 i ū IG2du I ,

LN5dxN, N51, . . . ,8, ~2.6!
04600
-
e

-

.
-

e

where u I are subject to the light-cone gauge conditi
G1u I50.17 Inserting these expressions into action~2.1! we
get

L5Lkin1LWZ , ~2.7!

Lkin5AggmnS 2]m x1]n x22
1

2
]m xN]n xN

1 i ]m x1ū IG2]nu I D , ~2.8!

LWZ52 i emnsIJ]m x1ū IG2]nu J. ~2.9!

Next, let us do the ‘‘515’’ splitting of the 10D Clifford
algebra generators, the charge conjugation matrixC and the
supercoordinates

GA5gA3I 3s1 , GA85I 3gA83s2 ,

C5C3C83 is2 , u I5S u Ia i

0 D , ~2.10!

where I is 434 unit matrix, sn are Pauli matrices,a
51,2,3,4, andi 51,2,3,4. Let us also introduce the comple
coordinates

uq[
1

A2
~u11 iu2!, ~2.11!

and use the parametrization

uqa i5
v
2 S h2 i

h1 i

2 iu1 i

iu2 i

D , v[21/4. ~2.12!

Decompositions of so(4,1)g matrices we use may be foun
in Appendix A @see Eq.~A18!#. The light-cone gauge

G1u I50, G6[
1

A2
~G36G0!, ~2.13!

leads to

u1 i5h1 i50. ~2.14!

Changing signxÂ→2xÂ, using the notation

u i[u2 i , h i[h2 i , u i5~u i !†, h i5~h i !†,
~2.15!

17The transverse bosonic Cartan formsLN in Eq. ~2.6! should not
be confused with fermionic onesLI .
2-7
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and inserting the above decomposition into the action~2.7!
we finally get the following expressions for the kinetic a
WZ parts of the light-cone gauge flat space GS Lagrang

Lkin5AggmnF2]mx1]n x22
1

2
]mxN]nxN

2]mx1S i

2
u i]nu i1

i

2
h i]nh i1H.c.D G , ~2.16!

LWZ5emn]mx1h iCi j8 ]nu j1H.c. ~2.17!

It is to this form of the flat GS action that our light-con
AdS53S5 action will reduce in the flat space limit. A cha
acteristic feature of this parametrization is that while the
netic term is diagonal inu ’s andh ’s, they are mixed in the
Wess-Zumino~WZ! term.

III. psu „2,2z4… SUPERALGEBRA IN THE LIGHT CONE
BASIS

The superalgebra psu(2,2u4) which is the algebra of isom
etry transformations of AdS53S5 superspace plays the ce
tral role in the construction of the GS action in AdS53S5

@2#. In this section we shall present the form of this algeb
which will be used in the present paper. The even par
psu(2,2u4) is the sum of the algebra so(4,2) which is t
isometry algebra of AdS5 and the algebra so(6) which is th
isometry algebra of S5. The odd part consists of 32 supe
charges corresponding to 32 Killing spinors in AdS53S5

vacuum@38# of type-IIB supergravity~see Refs.@39–41#; for
recent developments in representation theory see Ref.@42#!.

We shall use the form of the basis of so~4,2! subalgebra
implied by its interpretation as conformal algebra in 4
mensions. The generators are then called translationsPa,
conformal boostsKa, dilatationD, and Lorentz rotationsJab

and satisfy the standard commutation relations

@Pa,Jbc#5habPc2hacPb,

@Ka,Jbc#5habKc2hacKb, @Pa,Kb#5habD2Jab,
~3.1!

@D,Pa#52Pa, @D,Ka#5Ka,

@Jab,Jcd#5hbcJad13 terms, ~3.2!

wherehab5(2,1,1,1) anda,b,c,d50,1,2,3. In the light
cone basis~1.1! we have the following generators:

J12, J6x, J6 x̄, Jxx̄,

P6, Px, Px̄, K6, Kx, Kx̄. ~3.3!

To simplify the notation we shall set

P[Px, P̄5Px̄, K[Kx, K̄5Kx̄. ~3.4!
04600
n

-

a
f

The light cone form of so~4,2! algebra commutation relation
can be obtained from Eq.~3.1! using that the light cone
metric has the following elementsh125h2151, hxx̄

5h x̄x51.
In this paper the so~6! algebra will be interpreted as su~4!

one (i , j ,k,l 51,2,3,4)

@Ji
j ,Jk

n#5d j
kJi

n2dn
i Jk

j . ~3.5!

To describe the odd part of psu(2,2u4) superalgebra we
introduce 32 superchargesQ6 i , Qi

6 , S6 i , Si
6 . They carry

theD, J12, andJxx̄ charges, as follows from the structure
the algebra. The commutation relations of the supercha
with the dilatationD

@D,Q6 i #52
1

2
Q6 i , @D,Qi

6#52
1

2
Qi

6 ,

@D,S6 i #5
1

2
S6 i , @D,Si

6#5
1

2
Si

6 , ~3.6!

allow to interpretQ’s as the standard supercharges of t
super Poincare´ subalgebra andS’s as the conformal super
charges. The supercharges with superscript1 (2) have
positive ~negative! J12 charge

@J12,Q6 i #56
1

2
Q6 i , @J12,Qi

6#56
1

2
Qi

6 ,

@J12,S6 i #56
1

2
S6 i , @J12,Si

6#56
1

2
Si

6 .

The Jxx̄ charges are fixed by the commutation relations

@Jxx̄,Q6 i #56
1

2
Q6 i , @Jxx̄,Qi

6#57
1

2
Qi

6 , ~3.7!

@Jxx̄,Si
6#56

1

2
Si

6 , @Jxx̄,S6 i #57
1

2
S6 i .

~3.8!

The transformation properties of theQ supercharges with
respect to su~4! subalgebra are determined by

@Qi
6 ,Jj

k#5d i
jQk

62
1

4
dk

j Qi
6 ,

@Q6 i ,Jj
k#52dk

i Q6 j1
1

4
dk

j Q6 i ,

with the same relations for theS supercharges. Anticommu
tation relations between the supercharges are

$Q6 i ,Qj
6%57 iP6d j

i , $Q1 i ,Qj
2%52 iPd j

i , ~3.9!

$S6 i ,Sj
6%56 iK 6d j

i , $S2 i ,Sj
1%5 iKd j

i ,
~3.10!
2-8
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$Q1 i ,Sj
1%52J1xd j

i , $Q2 i ,Sj
2%52J2 x̄d j

i ,

$Q6 i ,Sj
7%5

1

2
~J121Jxx̄7D !d j

i 7Ji
j .

The remaining commutation relations between odd and e
generators have the following form:

@Q2 i ,J1x#52Q1 i , @S2 i ,J1 x̄#52S1 i ,

@Q1 i ,J2 x̄#5Q2 i , @S1 i ,J2x#5S2 i ,

@Si
7 ,P6#5 iQi

6 , @Si
2 ,P#5 iQi

2 ,

@Si
1 ,P̄#52 iQi

1 , @Q7 i ,K6#52 iS6 i ,

@Q2 i ,K#52 iS2 i , @Q1 i ,K̄#5 iS1 i .

The generators are subject to the following Hermitean c
jugation conditions:

~P6!†52P6, P†52 P̄, ~K6!†52K6, K†52K̄,

~J6x!†52J6 x̄, ~J12!†52J12,

~Jxx̄!†5Jxx̄, D†52D, ~Ji
j !

†5Jj
i ,

~Q6 i !†5Qi
6 , ~S6 i !†5Si

6 , ~3.11!

All the remaining nontrivial~anti!commutation relations o
psu(2,2u4) superalgebra may be obtained by using th
Hermitean conjugation rules and the~anti!commutation rela-
tions given above.

IV. LIGHT CONE BASIS FORM OF AdS 5ÃS5STRING
ACTION

Superstring action in AdS53S5 @2# has the same structur
as the flat space GS action~2.1!

I 5E
]M3

Lkin1E
M3

iH. ~4.1!

In Ref. @2# the Cartan forms in terms of which the action
written were given in the so(4,1)% so(5) basis of psu(2,2u4).
This is the basis that allows to present the AdS53S5 GS
action in the form similar to the one in the flat space. O
present goal is to rewrite the action in the light-cone ba
discussed in the previous section and then~in the next sec-
tion! to impose ak-symmetry light-cone gauge. We shall u
the conformal algebra and light-cone frame notation.

The Cartan 1-forms in the light-cone basis are defined

G21dG5LP
a Pa1LK

a Ka1LDD1
1

2
LabJab1Li

jJ
j
i1LQ

2 iQi
1

1LQi
2 Q1 i1LQ

1 iQi
21LQi

1 Q2 i1LS
2 iSi

11LSi
2S1 i

1LS
1 iSi

21LSi
1S2 i , ~4.2!
04600
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whereG is a coset representative in PSU(2,2u4). Let us de-
fine also the following combinations:

L̂a[LP
a 2

1

2
LK

a , LA8[2
i

2
~gA8! i

jL
j
i ,

~C8L ! i j [Cik8 Lk
j . ~4.3!

Then the kinetic term in Eq.~4.1! takes the form

Lkin52
1

2
Aggmn~ L̂m

a L̂n
a1LDmLDn1Lm

A8Ln
A8!, ~4.4!

while the 3-formH in the WZ term can be written as~we
suppress the signs of exterior products of 1-forms!

H5HAdS5

q 1HS5
q

2H.c., ~4.5!

HAdS5

q 52
i

A2
~ L̂1LS

2 iCi j8 LQ
2 j1L̂2LQ

1 iCi j8 LS
1 j

1L̂xLS
2 iCi j8 LQ

1 j1L̂ x̄LS
1 iCi j8 LQ

2 j !

1
1

A2
LDS 1

2
LS

1 iCi j8 LS
2 j

1LQ
2 iCi j8 LQ

1 j D , ~4.6!

H S5
q

5
1

2A2
@LS

1 i~C8L ! i j LS
2 j

2LS
2 i~C8L ! i j LS

1 j #

1
1

A2
@LQ

1 i~C8L ! i j LQ
2 j

2LQ
2 i~C8L ! i j LQ

1 j #.

Derivation of these expressions from the original ones giv
in Ref. @2# may be found in Appendix B.

V. COORDINATE PARAMETRIZATION OF CARTAN
FORMS AND FIXING THE LIGHT-CONE

k-SYMMETRY GAUGE

To represent the Cartan 1-forms in terms of the even
odd coordinate fields we shall start with the following sup
coset representative@see~2.3!#:

G5gx,ughgygf , ~5.1!

where

gx,u5 exp~xaPa1u2 iQi
11u i

2Q1 i1u1 iQi
21u i

1Q2 i !,
~5.2!

gh5 exp~h2 iSi
11h i

2S1 i1h1 iSi
21h i

1S2 i !,
~5.3!
2-9
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andgf andgy depend on the radial AdS5 coordinatef and
S5 coordinatesyA8, respectively.

gf[ exp~fD !, ~5.4!

gy[ exp~yi
jJ

j
i !, yi

j[
i

2
~gA8! i

j y
A8. ~5.5!

Choosing the parametrization of the coset representativ
the form ~5.1! corresponds to what is usually referred to
‘‘Killing gauge’’ in superspace.

Since the supercharges transform in the fundamental
resentation of su(4) the corresponding fermionic coordina
u ’s andh ’s also transform in the fundamental representat
of su(4). Theabove expressions provide the definition of t
Cartan forms in the light-cone basis. Let us further spec
these expressions by setting to zero some of the fermi
coordinates which corresponds to fixing a particu
k-symmetry gauge. Namely, we shall fix thek symmetry by
putting to zero all the Grassmann coordinates which ca
positiveJ12 charge@see~2.14!#:

u1 i5u i
15h1 i5h i

150. ~5.6!

To simplify the notation we shall set in what follows:

u i[u2 i , u i[u i
2 , h i[h2 i , h i[h i

2 . ~5.7!

As a result, thek-symmetry fixed form of the coset repre
sentative~5.1! is

Gg.f.5~gx,u!g.f.~gh!g.f.gygf , ~5.8!

~gx,u!g.f.5 exp~xaPa1u iQi
11u iQ

1 i !,
~5.9!

~gh!g.f.5 exp~h iSi
11h iS

1 i !. ~5.10!

Plugging thisGg.f. into ~4.2! we get thek-symmetry gauge
fixed expressions for the Cartan 1-forms

LP
15ef dx1, LP

25efS dx22
i

2
ũ i d̃u i2

i

2
ũ i d̃u i D ,

~5.11!

LP
x 5ef dx, LP

x̄ 5ef dx̄, ~5.12!

LK
25e2fF1

4
~ h̃2!2 dx11

i

2
h̃ i d̃h i1

i

2
h̃ i d̃h i G ,

~5.13!

LD5df, ~5.14!

Li
j5~dU U21! i

j1 i S h̃ i h̃ j2
1

4
h̃2d j

i Ddx1, ~5.15!

LQ
2 i5ef/2~ d̃u i1 i h̃ i dx!, LQi

2 5ef/2~ d̃u i2 i h̃ i dx̄!,
~5.16!

LQ
1 i52 ief/2h̃ i dx1, LQi

1 5 ief/2h̃ i dx1, ~5.17!
04600
in

p-
s

n

y
ic
r

y

LS
2 i5e2f/2S dh̃ i1

i

2
h̃2h̃ idx1D ,

LSi
25e2f/2S d̃h i2

i

2
h̃2h̃ i dx1D , ~5.18!

whereh̃2[h̃ i h̃ i . All the remaining forms are equal to zero
We have introduced the notation

ũ i[Ui
ju

j , ũ i[u j~U21! j
i , ~5.19!

d̃u i[Ui
j du j , d̃u i[du j~U21! j

i , ~5.20!

and similar ones forh. Note thatũ25u2 and ũ d̃u5u du.
The matrixUPSU(4) is defined in terms of theS5 coordi-
natesyj

i or yA8 by Eqs.~1.4!,~1.5!. It can be written explicitly
as

U5 cos
uyu
2

1 igA8nA8 sin
uyu
2

, uyu[AyA8yA8,

nA8[
yA8

uyu
. ~5.21!

VI. AdS5ÃS5 STRING ACTION
IN THE LIGHT-CONE GAUGE

Plugging the above expressions~5.11!–~5.18! into the ac-
tion ~4.1! we get the following result for the light-cone gaug
fixed superstring Lagrangian in terms of the light cone
percoset coordinates

Lkin5AggmnS 2e2f~]mx1]n x21]mx]n x̄!2
1

2
]mf]nf

2
1

2
em

A8en
A81]mx1F i

2
e2f~u i]nu i1u i]nu i !

1
i

4
~h i]nh i1h i]nh i !1

1

2
h̃ ien

i
j h̃

j G
1

1

8
]mx1]n x1$~h2!22@h̃ i~gA8! i

j h̃
j #2% D , ~6.1!

LWZ52
emn

A2
ef]mx1h̃ iCi j8 ~]nũ j1 i h̃ j]n x!1H.c.

~6.2!

The kinetic terms are obtained in a straightforward way. D
tails of derivation of the WZ part are given in Appendix B

A few remarks are in order.
~i! In the flat space limit this action@after an appropriate

rescaling of fermionic variables given in Eq.~6.3!# reduces
to the GS light-conek-symmetry gauge fixed action repre
sented in the form~2.16!,~2.17!. In the particle theory limit
a8→0 ~corresponding to keeping only thet dependence of
2-10
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the fields and omitting the WZ term! this action reduces
~after an appropriate bosonic light-cone gauge fixing and
scaling of some fermionic variables! to the light-cone action
of a superparticle propagating in AdS53S5 @18#.18

~ii ! The kinetic terms for the fermionic coordinates ha
manifest linear su~4! invariance. In the remaining terms th
symmetry is not manifest and is not realized linearly.

~iii ! Since the WZ term depends onu through its deriva-
tive, it is invariant under a shift ofu. To maintain this in-
variance in the kinetic terms the shifting ofu should be
supplemented, as usual, by an appropriate transformatio
x2. The action is invariant under shifts of the bosonic co
dinatesxa along the boundary directions.

~iv! As in the superparticle case@18,19# this action is
quadratic in half of the fermionic coordinates (u) but of
higher order~quartic! in the another half (h). It was the
desire to split the fermionic variables in suchu ’s and h ’s
that motivated our choice of the supercoset parametriza
in Eq. ~5.8!.

~v! The action contains the terms like (h2)2 andh ie
i
jh

j

which in the superparticle case played important role@18# in
establishing the AdS/CFT correspondence. These te
should also play a similar important role in formulating t
AdS/CFT correspondence at the string theory level.

The fermionic variablesu andh as defined above in Eq
~5.1! have opposite conformal dimensions. It is convenie
however, to use the variables with the same conform
dimensions.19 To achieve this we rescaleh as follows:

h i→A2efh i , h i→A2efh i . ~6.3!

To get convenient sign in front of kinetic terms of fermio
we change signxa→2xa. Then the Lagrangian~6.1!,~6.2!
may be written as

Lkin5AggmnF2e2f~]mx1]n x21]mx]n x̄!2
1

2
]mf]nf

2
1

2
GAB~y!DmyADnyBG2

i

2
Aggmne2f]mx1@u i]nu i

1u i]nu i1h i]nh i1h i]nh i1 ie2f]n x1~h2!2#, ~6.4!

LWZ5emne2f]mx1h iCi j
U~]nu j2 iA2efh j]n x!1H.c.

~6.5!

HereGAB is the metric of the 5 sphere.20 The matrixCi j
U and

the differentialDmyA are defined by

18Reference@18# found the Hamiltonian for the superparticle
AdS53S5 @see Eq.~12! there#. The action is obtained from the
Hamiltonian in the usual way.

19The light-cone formulation of the superparticle in AdS53S5

@18,19# used similar Grassmann variables with the same confor
dimensions

20We introduced the coordinate S5 indicesA,B51, . . . ,5 ~to be
distinguished from the tangent space indicesA8,B8) and setyA

5dA8
A yA8.
04600
-

of
-

n

s

t,
al

DmyA5]myA22ih i~VA! i
jh

je2f]mx1 ~6.6!

Ci j
U[Ul

iClk8 Uk
j ,

Ci j
U5Ci j8 cosuyu1 i ~C8gA8! i j n

A8 sinuyu,
~6.7!

where (VA) i
j are the components of the Killing vector

(VA) i
j]yA of S5 (]yA5]/]yA).

Note thatx1 enters the action only through the combin
tion e2f]mx1. An attractive feature of this representation
that the terms in Eq.~6.1! involving h̃ i(g

A8) i
j h̃

j are now
collected in the second term in the derivative~6.6! and thus
have a natural geometrical interpretation, multiplying t
Killing vectors.

The Killing vectors (VA) i
j]yA satisfy the so(6).su(4)

commutation relations~3.5! and may be written as

~VA! i
j]yA5

1

4
~gA8B8! i

jV
A8B81

i

2
~gA8! i

jV
A8, ~6.8!

where VA8 and VA8B8 correspond to the 5 translations an
SO(5) rotations, respectively, and are given by@see Eq.
~5.21!#

VA85@ uyucotuyu~dA8A2nA8nA!1nA8nA#]yA, ~6.9!

VA8B85yA8]yB82yB8]yA8 . ~6.10!

Here dA8A is Kronecker delta symbol and we use the co
ventionsyA5dA8

A yA8, nA5dA8
A nA8, nA5nA . In these coor-

dinates theS5 metric tensor has the form

GAB5eA
A8eB

A8 , eA
A85

sinuyu
uyu ~dA

A82nAnA8!1nAnA8.

~6.11!

Note that while deriving Eq.~6.4! we use the relation

(U†gA8U) i
j522ieA

A8(VA) i
j .

The Lagrangian~6.4!,~6.5! can be put into the manifestly
SU~4! invariant form by changing the coordinates fro
f,yA8 to the Cartesian coordinatesYM (M51, . . . ,6):

YA85ef sinuyunA8, Y65ef cosuyu,

Y25YMYM5uYu25e2f. ~6.12!

In terms of the new coordinates the superstring Lagrang
L5Lkin1LWZ takes then the following more transpare
manifestly SU~4! invariant form

al
2-11
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Lkin52AggmnFY2~]mx1]n x21]mx]n x̄!

1
1

2Y2
DmYMDnYMG2

i

2
AggmnY2]mx1@u i]nu i

1u i]nu i1h i]nh i1h i]nh i1 iY2]nx1~h2!2#,

~6.13!

LWZ5emnuYu]mx1h iYMr i j
M~]nu j2 iA2uYuh j]n x!

1H.c., ~6.14!

where

DYM5dYM22ih i~RM ! i
jh

jY2 dx1. ~6.15!

The 6 matricesr i j
M are the SO~6! g matrices in the chiral

representation. The usual SO~6! Dirac matrices can be ex
pressed in terms ofr i j

M as follows:

gM5S 0 ~rM ! i j

r i j
M 0 D ,

~rM ! i l r l j
N1~rN! i l r l j

M52dMNd j
i , r i j

M52r j i
M ,

~6.16!

where (rM) i j 52(r i j
M)* . In deriving Eq.~6.14! we used the

following representation forC8 and SO~5! g matrices in
terms of ther matrices

~gA8! i
j5 i ~rA8! i l r l j

6 , Ci j8 5r i j
6 , ~6.17!

implying an interesting relation

efCi j
U5r i j

MYM. ~6.18!

The matrices (RM) i
j in the covariant derivative~6.15! are

defined as follows (M ,N,K,L51, . . . ,6)

~RM ! i
j5

1

4
~rKL! i

j~RM !KL, ~6.19!

where

~RM !KL5YKdLM2YLdKM,

~rKL! i
j[

1

2
~rK! i l r l j

L 2~K↔L !. ~6.20!

Note that (RM) i
j]YM satisfy the so(6).su(4) commutation

relations~3.5!. In contrast toVA which are complicated func
tions of yA the matricesRM take simpler form.

Note that in terms of the 6 Cartesian coordinatesYM the
metric of AdS53S5 takes the ‘‘416’’ form

ds25Y2 dxa dxa1Y22 dYM dYM.
04600
Similar choice of the bosonic part of superstring coordina
was used, e.g., in Refs.@6,15#. The advantage of the resultin
action is a more transparent structure of the WZ term~6.14!.

The above action~6.13!,~6.14! can be transformed into
the equivalent form corresponding to the choice of the c
formally flat coordinates in AdS53S5, i.e., (YM→ZM/Z2)

ds25
1

Z2 ~dxa dxa1dZM dZM !.

If we start again with Eqs.~6.4!,~6.5! and introduce@see Eq.
~6.12!#

ZA85e2f sinuyunA8, Z65e2f cosuyu,

Z25ZMZM5uZu25e22f, ~6.21!

then we finish with@see Eqs.~6.13!,~6.14!#

Lkin52AggmnZ22F]mx1]n x21]mx]n x̄1
1

2
DmZMDnZM G

2
i

2
AggmnZ22]mx1@u i]nu i1u i]nu i1h i]nh i

1h i]nh i1 iZ22]n x1~h2!2#, ~6.22!

LWZ5emnuZu23]mx1h ir i j
MZM~]nu j2 iA2uZu21h j]n x!

1H.c., ~6.23!

whereZ22[(Z2)21 and @see Eqs.~6.15!,~6.19!#

DZM5dZM22ih i~RM ! i
jh

jZ22 dx1, RM52
1

2
rMLZL.

~6.24!

All other notations are the same as above. One can ob
Eqs. ~6.22!, ~6.23! directly from Eqs.~6.13!,~6.14! by mak-
ing the inversionYM→ZM/Z2 and taking into account the
relationRMZM50.

In this section we have discussed the light-cone action
the Killing parametrization of superspace. In order to get
light-cone gauge action in the Wess-Zumino parametriza
one needs to make the following redefinitions in Eqs.~6.1!,
~6.2! @see Eqs.~5.19!, ~5.20!#

u i→~U21! i
ju

i , u i→u jU
j
i , ~6.25!

h i→A2ef~U21! i
jh

j , h i→A2efh jU
j
i . ~6.26!

In addition we change sign of 4D coordinatesxa→2xa. The
fermionic derivatives]m will then get the generalized con
nectionVm5]mUU21 ~1.8! contributions, i.e., become th
covariant derivativesDm @see Eq.~1.7!#. The action in terms
of these new variables was presented in Eqs.~1.6!,~1.10! in
the Introduction.

Finally, let us note that our results for the AdS53S5 space
can be generalized to the case of AdS33S3 in a rather
straightforward way. To get the light-cone gauge action
2-12
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this case one could use thek invariant action of Ref.@43#
and then apply the same procedure of light-cone splitting
gauge fixing as developed in this paper. However, our lig
cone gauge action is already written in the form which
lows a straightforward generalization to the case of Ad3
3S3: one is just to do a dimensional reduction. Let us d
cuss the AdS33S3 Lagrangian using for definiteness the W
parametrization where the action has the form given by
~1.2!. To get theLB andL F

(2) terms in the AdS33S3 case we

are to setx5 x̄50 in Eqs.~1.3! and~1.6! and also to assum
that the fermionic variablesu and h now transform in the
fundamental representation of SU~2! ~i.e., the indicesi , j take
values 1,2). The matrixCi j8 is then given byC85hs2 , uhu
51. The matrices (gA8) i

j , A851,2,3 are now SO~3! Dirac
gamma matrices and the matrixU(y) takes the same form a
in Eqs.~1.4!, ~5.21!. The quartic part of the LagrangianL F

(4)

in Eq. ~1.10! simplifies to21

L F
(4)52Aggmne4f]mx1]n x1~h ih i !

2. ~6.27!
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APPENDIX A: PSU„2,2z4… SUPERALGEBRA: so„4,1…Šso„5…,
so„3,1…Šsu„4… AND LIGHT-CONE BASES

Commutation relations of psu(2,2u4) superalgebra in
so(4,1)% so(5) basis were given in Ref.@2#. This basis is
most adequate for finding the covariant action in AdS53S5

space@2# which is the direct analogue of the GS action in fl
space. To develop the light-cone formulation it is conv
nient, however, to make a transformation to the basis
which the supercharges are diagonal with respect to the
eratorsJ12, D, Jxx̄ @see Eq.~3.3!# and belong to the funda
mental representation of su(4). This basis we shall call light-
cone basis.

We shall find the transformation to the light-cone basis
the level of the algebra, and this will allow us to find th
Cartan 1-forms and the action in the form corresponding
the light-cone basis. It is convenient to first make the tra
formation to the intermediate so(3,1)% su(4) basis and only
then to the light-cone basis. A bonus of this procedure is
this intermediate form will allow us to find as a by-produ
another interesting version of thek-symmetry gauge fixed
action ~see Appendix C!.

21To transform Eq.~1.10! to this form we use the completene

relation for SO~3! gamma matrices (g A8) i
j (g

A8)k
l52d j

i d l
k

12d l
id j

k .
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We start with the commutation relations of psu(2,2u4)
superalgebra in so(4,1)% so(5) basis given in@2#

@ P̂A ,P̂B#5 ĴAB , @PA8 ,PB8#52JA8B8 , ~A1!

@ ĴAB,ĴCE#5hBCĴAE13terms,

@JA8B8,JC8E8#5hB8C8JA8E813 terms, ~A2!

@Q
I
,P̂A#52

i

2
e

IJ
Q

J
gA ,

@Q
I
,ĴAB#52

1

2
Q

I
gAB , ~A3!

@Q
I
,PA8#5

1

2
e

IJ
Q

J
gA8 ,

@Q
I
,JA8B8#52

1

2
Q

I
gA8B8 , ~A4!

$Qa i I ,Qb jJ%5d
IJ

@22iCi j8 ~Cg A!abP̂A

12Cab~C8g A8! i j PA8#

1e
IJ

@Ci j8 ~Cg AB!abĴAB

2Cab~C8g A8B8! i j JA8B8#. ~A5!

Unless otherwise specified, we use the notationQI for QIa i

and QI for QIa i , whereQIa i[QJb jdJICbaCji8 . Hermitean
conjugation rules in this basis are

P̂A
†52 P̂A , PA8

†
52PA8 ,

ĴAB
† 52 ĴAB , JA8B8

†
52JA8B8 , ~A6!

~QIb i !†~g 0!a
b52QIb jCbaCji8 . ~A7!

Let us first transform the bosonic generators into the con
mal algebra basis. To this end we introduce the Poinc´
translationsPa, the conformal boostsKa and the dilatationD
by

Pa5 P̂a1 Ĵ4a, Ka5
1

2
~2 P̂a1 Ĵ4a!, D52 P̂4.

~A8!

Making use of the commutation relations~A1!,~A2! it is easy
to check that these generators satisfy the commutation r
tions given in Eqs.~3.1!,~3.2!.

Next, we introduce the new ‘‘charged’’ supergenerator

Qq[
1

A2
~Q11 iQ2!, Qq̄[

1

A2
~Q12 iQ2!. ~A9!

We shall use the simplified notation
2-13
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Qa i[2Qqa i , Qa i[Qqa i . ~A10!

Then the nonvanishing values ofd IJ (e IJ , e1251) become
replaced bydqq̄51 (eqq̄5 i ) and the Majorana condition
takes the form (Qb i)†(g 0)a

b5Qa i . The commutators have
the form

@Qa i ,P̂A#52
1

2
~g AQ!a i , @Qa i ,ĴAB#5

1

2
~g ABQ!a i ,

~A11!

@Qa i ,P̂A#5
1

2
~Qg A!a i , @Qa i ,ĴAB#52

1

2
~Qg AB!a i ,

~A12!

@Qa i ,PA8#52
i

2
~g A8Q!a i ,

@Qa i ,JA8B8#5
1

2
~g A8B8Q!a i , ~A13!

@Qa i ,PA8#5
i

2
~Qg A8!a i ,

@Qa i ,JA8B8#52
1

2
~Qg A8B8!a i , ~A14!

while the anticommutators transform into the form

$Qa i ,Qb j%5@2i ~g A!b
aP̂A1~g AB!b

aĴAB#d j
i 24idb

aJi
j ,
~A15!

where we use the notation

Ji
j[2

i

2
~g A8! i

j P
A81

1

4
~g A8B8! i

j J
A8B8. ~A16!

Starting with the commutation relations forPA8 and JA8B8

and applying various Fierz identities one proves thatJi
j

(Ji
j
†5Jj

i) satisfy the commutation relations of su(4) alg
bra.

Using the commutators~A13!, ~A14!, and ~A16! and
completeness relation for Dirac matrices one proves tha

@Qa i ,Jj
k#5d i

jQak2
1

4
d k

j Qa i ,

@Qa i ,Jj
k#52d k

i Qa j1
1

4
d k

j Qa i . ~A17!

This demonstrates that supercharges transform in the fu
mental representations of su(4).

In what follows we will use the following decompositio
of so(4,1) Dirac and charge conjugation matrices in the sl
basis
04600
a-

)

~g a!a
b5S 0 ~sa!aḃ

s̄ ȧb
a 0 D , g 45S 1 0

0 21D ,

Cab5S eab 0

0 e ȧḃD , ~A18!

where the matrices (sa)aȧ, (s̄a) ȧa are related to Pauli matri
ces in the standard way

sa5~1,s1,s2,s3!, s̄a5~21,s1,s2,s3!. ~A19!

Note thatsaȧ
a

5s̄ ȧa
a , s̄ ȧb

a
5saḃ

a* where saȧ
a

[(sa)bḃebae ḃȧ .
We use the following conventions for the sl(2) indices:e12

5e1252e 1̇2̇52e 1̇2̇51,

ca5eabcb , ca5cbeba , c ȧ5e ȧḃc ḃ , c ȧ5c ḃe ḃȧ .
~A20!

We then decompose the supercharges in the sl(2)% su(4)
basis

Qa i5S 2iv21Qai

2vSȧ
i D , Qa i5~2vSai ,22iv21Qi

ȧ!,

v[21/4. ~A21!

In terms of these new supercharges the commutation r
tions take the form

@D,Qai #52
1

2
Qai , @D,Si

a#5
1

2
Si

a , ~A22!

@Si
a ,Pa#5

i

A2
~sa!aȧQȧi , @Sȧ

i ,Pa#52
i

A2
~ s̄a! ȧaQ

ai ,

~A23!

@Qai ,Ka#52
i

A2
~sa!aȧSȧ

i , @Qȧi ,Ka#5
i

A2
~ s̄a! ȧaSi

a,

~A24!

$Qai ,Qj
ḃ%5

i

A2
sa

aḃPad j
i , $Sj

a,Sḃi%52
i

A2
sa

aḃKad j
i ,

~A25!

@Qai ,Jab#5
1

2
~sab!a

bQ
bi , ~A26!

$Qai ,Sj
b%5S 1

2
eabD1

1

4
sab

abJabD d j
i 1eabJi

j , ~A27!

where (sab)ab5ebc(sab)a
c , (sab)a

b[
1
2 (sa)aċ(s̄b) ċb

2(a↔b). Hermitean conjugation rules of the supercharg
are

Qia†5Qi
ȧ , Qa

i†52Qȧi , ~A28!
2-14
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and the same forS supercharges. The spinor sl(2) indic
a,b are raised and lowered as in Eq.~A20!. From these com-

mutation relations we learn thatQai , Qi
ȧ may be interpreted

as the supercharges of the super Poincare´ subalgebra while
Si

a , Sȧi are the conformal supercharges.
This finishes the description of the so(3,1)% su(4) basis.

We are now ready to introduce the light-cone basis. T
transformation of the bosonic generators is implied by
light-cone decomposition of the coordinates~1.1! and is
given by ~3.3!. The transformation of supercharges amou
to attaching the signs1 and 2 which will show explicitly
their J12 charges. The corresponding supercharges are
fined by

Q1i[2Q2 i , Q2i[Q1 i , Qi
1̇[2Qi

2 , Qi
2̇[Qi

1 ,
~A29!

Si
1[Si

2 , Si
2[2Si

1 , S1̇i[S2 i , S2̇i[2S1 i .
~A30!

Choice of signs in these definitions is a matter of conventi
Hermitean conjugation rules~A28! lead then to the conjuga
tion rules given in Eq.~3.11!.

APPENDIX B: CARTAN FORMS IN so „3,1…Šsu„4… AND
LIGHT CONE BASES

The kinetic term of the AdS53S5 GS action and the
3-form in its WZ term have the following form in the
so(4,1)% so(5) basis@2#:

Lkin52
1

2
Aggmn~ L̂m

AL̂n
A1Lm

A8Ln
A8!, ~B1!

H5sIJL̂AL̄ Ig ALJ1 isIJLA8L̄Jg A8LJ.
~B2!

They are expressed in terms of the Cartan 1-forms define
the so(4,1)% so(5) basis by

G21 dG5~G21 dG!bos1LIa iQIa i , ~B3!

where the restriction to the bosonic part is

~G21 dG!bos5L̂AP̂A1
1

2
L̂ABĴAB1LA8PA81

1

2
LA8B8JA8B8.

~B4!

The transformation of the psu(2,2u4) algebra into the light-
cone basis described in Appendix A allows us to find
corresponding Cartan 1-forms and thus to write down the
action in the light-cone basis.

We first consider the so(3,1)% su(4) basis and define th
bosonic~even! Cartan forms by

~G21 dG!bos5LP
a Pa1LK

a Ka1LDD1
1

2
LabJab1Li

jJ
j
i .

~B5!
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Comparing this with Eq.~B4! and using Eqs.~A8!, ~A16! we
get

L̂a5LP
a 2

1

2
LK

a , L̂4a5LP
a 1

1

2
LK

a , L̂452LD , ~B6!

Li
j5

i

2
~g A8! i

jL
A82

1

4
~g A8B8! i

jL
A8B8. ~B7!

Using these relations in the expression for the kinetic te
~B1! gives the action~4.4!.

Now let us consider the fermionic 1-forms. They satis
Hermitean conjugation rule

~LIb i !†~g 0!a
b5LIb jCbaCji8 ~B8!

and we use the notationLIa i[LJb jdJICbaCji8 . Let us define

Lq[
1

A2
~L11 iL 2!, Lq̄[

1

A2
~L12 iL 2!, ~B9!

introduce the notationLa i5Lqa i , La i5Lqa i and use the fol-
lowing decomposition into sl(2)% su(4) Cartan 1-forms:

La i5
1

2 S v21LS
ai

ivLQȧ
i D , La i5

1

2
~2 ivLQai ,v21LSi

ȧ !.

~B10!

Hermitean conjugation rules for the new Cartan 1-forms th
take the same form as in Eq.~A28!. The light-cone frame
Cartan 1-forms are defined by

LQi
1 52LQi

2 , LQi
2 52LQi

1 , LQ
1̇i52LQ

2 i , LQ
2̇i52LQ

1 i ,
~B11!

LS
1i5LS

2 i , LS
2i5LS

1 i , LSi
1̇ 5LSi

2 , LSi
2̇ 5LSi

1 .
~B12!

These relations imply

LIa iQIa i5La iQa i2La iQ
a i ~B13!

5LQi
a Qa

i 2LQ
ȧiQȧi1LS

aiSai2LSi
ȧ Sȧ

i

5LQ
1 iQi

21LQ
2 iQi

11LQi
1 Q2 i1LQi

2 Q1 i

~B14!

1LS
2 iSi

11LS
1 iSi

21LSi
2S1 i1LSi

1S2 i . ~B15!

The representation~B14! corresponds to the sl(2)% su(4)
basis while Eq.~B15! corresponds to the light-cone basis.

Using the relation between the Cartan 1-forms in E
~B9!–~B12! we are ready to consider the decomposition
the WZ 3-form ~B2!. We start with the AdS5 contribution
which is given by the first term in right-hand side of E
~B2!. Taking into account thatL̄ I5LICC8 and Eq.~B9! we
can rewrite the AdS5 contribution in terms of the ‘‘charged’’
Cartan formsLq, Lq̄

HAdS5
5HAdS5

q 1HAdS5

q̄ , ~B16!
2-15
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HAdS5

q [L̂ALqa i~Cg A!abCi j8 Lqb j ,

HAdS5

q̄ [L̂ALq̄a i~Cg A!abCi j8 Lq̄b j . ~B17!

Since iHAdS5

q̄ is Hermitean conjugate toiHAdS5

q we restrict

our attention to decomposition of the first term. We get

HAdS5

q 5L̂aLqa i~Cg a!abCi j8 Lqb j2LDLqa i~Cg 4!abCi j8 Lqb j

~B18!

5
i

2
L̂aLSa

i Ci j8 ~sa!aḃLQḃ
j

1
1

4
LDS 1

A2
LS

aiCi j8 LSa
j

1A2LQ
ȧiCi j8 LQȧ

j D
52

i

A2
~ L̂1LS

2 iCi j8 LQ
2 j1L̂2LQ

1 iCi j8 LS
1 j

1L̂xLS
2 iCi j8 LQ

1 j1L̂ x̄LS
1 iCi j8 LQ

2 j !

1
1

A2
LDS 1

2
LS

1 iCi j8 LS
2 j1LQ

2 iCi j8 LQ
1 j D . ~B19!

Equation~B19! provides representation of the AdS5 part of
the 3-form in the sl(2)% su(4) basis, while Eq.~B19! repre-
sents the light-cone basis.

Let us now consider the S5 part of the WZ 3-form in Eq.
~B2!, i.e., isIJLA8L̄ Ig A8LJ. Representing it in terms of th

charged Cartan forms as in Eq.~B16!, H S55H S5
q

1H S5
q̄ , we

get

H S5
q

5 iL A8Lqa iCab~C8g A8! i j L
qb j522Lqa iCabCik8 Lk

jL
qb j

~B20!

5
1

2A2
LS

ai~C8L ! i j LSa
j 2

1

A2
LQ

ȧi~C8L ! i j LQȧ
j

~B21!

5
1

2A2
@LS

1 i~C8L ! i j LS
2 j2LS

2 i~C8L ! i j LS
1 j #

1
1

A2
@LQ

1 i~C8L ! i j LQ
2 j2LQ

2 i~C8L ! i j LQ
1 j #. ~B22!

Note that in Eq.~B20! we exploited the relation~B7! and
used the fact that (C8g A8B8) i j is symmetric ini , j , the charge
conjugation matrixCab is antisymmetric ina,b and the fer-
mionic Cartan 1-formsLq are commuting with each othe
Equation~B21! provides representation of S5 part of the WZ
3-form in the sl(2)% su(4) basis, while Eq.~B22! represents
the light-cone basis.

Next, let us outline the procedure of derivation of the W
term in the light-conek-symmetry gauge. Taking into ac
04600
count thatLS
1 i50, LSi

150, LK
150, LK

x 50, LK
x̄ 50 and plug-

ging the Cartan 1-forms given by Eqs.~5.11!–~5.18! into the
above expressions we getHAdS5

q 5HAdS5

q(1) 1HAdS5

q(2) , where

@see Eqs.~5.19!,~5.20!#

HAdS5

q(1) 52
i

A2
ef dx1 d̃h i Ci j8 d̃u j2

i

A2
ef df d̃u iCi j8 h̃ jdx1

'dS i

A2
ef dx1 h̃ iCi j8 d̃u j D , ~B23!

HAdS5

q(2) 52A2ef dx1 dx d̃h i Ci j8 h̃ j

2
1

A2
ef df dx1 dxh̃ iCi j8 h̃ j

'dS 2
1

A2
ef dx1dxh̃ iCi j8 h̃ j D . ~B24!

The signs' indicate that these relations are valid modu
terms which are obtained by acting by differentiald on the
matrix Ui

j which enters in the definition ofh̃, d̃u. SuchdUi
j

terms are canceled by contributions coming from theS5 part
of WZ 3-form which in the light-cone gauge takes the for

H S5
q

5
1

A2
@LQ

1 i~C8L ! i j LQ
2 j2LQ

2 i~C8L ! i j LQ
1 j #. ~B25!

To summarize, one gets the following exact relation:

HAdS5

q 1H S5
q

5dF i

A2
ef dx1h̃ iCi j8 ~ d̃u j1 i h̃ jdx!G .

~B26!

Multiplying this expression byi, adding the Hermitean con
jugate and going from the 3D to the 2D representation of
WZ term gives the WZ part of the string LagrangianLWZ in
Eq. ~6.2!.

APPENDIX C: AdS5ÃS5 ACTION IN S GAUGE

The results for the Cartan forms in the sl(2)% su(4) basis
described in Appendix B allow us to find another version
the k-symmetry gauge fixed action of superstring in Ad5
3S5. Let us start with the supercoset representative@see Eqs.
~5.1!–~5.8!#

G5gx,ughgygf , ~C1!

gx,u5 exp~xaPa1u i
aQa

i 2u ȧiQȧi !,
~C2!

gh5 exp~haiSai2h i
ȧSȧ

i
!, ~C3!

and impose thek-symmetry gauge by
2-16
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hai5h i
ȧ50, ~C4!

i.e.,

Gg.f.5gx,ugygf . ~C5!

Since we have set to zero the fermionic coordinatesh which
correspond to the conformal superchargesSwe shall call this
the S gauge.22 The resulting gauge fixed expressions for t
Cartan 1-forms are given by

LP
a 5efFdxa2

i

2A2
~u ias

aaḃ du ḃ
i
1u i ȧs̄ ȧb

a
du i

b!G ,

~C6!

LQi
a 5ef/2 d̃u i

a, LQ
ȧi5ef/2 d̃u ȧi , ~C7!

LD5df, Li
j5~dU U21! i

j , ~C8!

where d̃u is defined as in Eq.~5.20! while the matrixU is
defined by Eqs.~1.4!,~1.5!. All the remaining Cartan 1-forms
are equal to zero.

Using that nowLS50 we get from Eq.~B19! the follow-
ing expressions for the AdS5 part of the 3-formH:

HAdS5

q 5
1

2A2
df efd̃u ȧiCi j8 d̃u ȧ

j , ~C9!

while Eq. ~B21! gives

HS5
q

52
1

A2
ef d̃u ȧi~C8L ! i j d̃u ȧ

j . ~C10!

Thus we conclude that

22The ‘‘S gauge’’ and ‘‘Q gauge’’ terminology was introduced in
Ref. @44#, but our S gauge is different from the one used in Re
@44#.
rg

B

hy

04600
HAdS5

q 1HS5
q

5dS 1

2A2
ef d̃u ȧiCi j8 d̃u ȧ

j D , ~C11!

which allows us to find the 2D form of the WZ term.
Using the above relations and Eqs.~4.4!,~4.3! and taking

into account thatLK
a 50 we finally get the following kinetic

and WZ parts of the AdS53S5 string Lagrangian@see Eqs.
~6.1!,~6.2!#

Lkin52
1

2
Aggmn~LPm

a LPn
a 1]mf]nf1em

A8en
A8!,

~C12!

LWZ5
i

2A2
emnef]mu ȧiCi j

U]nu ȧ
j
1H.c., ~C13!

whereLPm
a is given by Eq.~C6! andCi j

U as in Eq.~6.7!. Note

that in thisSgauge the 1-formLA8 which is given in terms of
Li

j as in Eqs.~4.3! is equal simply to the S5 1-form eA8. The
reason is that, in contrast to what happens in the light-c
gauge~5.15!, here the Cartan formLi

j does not contain fer-
mionic contributions@see Eqs.~C8!#. Making use of formula
~6.18! we get the following manifestly SU(4) invariant rep
resentation for WZ part

LWZ5
i

2A2
emn]mu ȧir i j

MYM]nu ȧ
j
1H.c. ~C14!

This form of WZ action by using usual SO~6! g matrices
~6.16! can be cast into the form similar to the one given
Refs. @9,11# ~see also Ref.@6#!. The kinetic term~C12! can
be transformed into SU~4! manifestly invariant form in a
standard way. Our presentation gives self-contained der
tion of SU~4! manifestly invariant action from the origina
515 form of action given in Ref.@2#.
y
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