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The real time nonequilibrium evolution of condensates in field theory requires an initial value problem
specifying an initial quantum state or density matrix. Arbitrary specifications of the initial quantuni=iate
or mixed results in initial time singularities. These initial time singularities are of a different nature and
independent of the ultraviolet divergences which are removed by the usual renormalization counterterms. The
removal of the initial time singularities requires a specific choice of initial states. We study the initial time
singularities in the linearized equation of motion for the scalar condensate in a renormalizable Yukawa theory
in 3+1 dimensions. In this renormalizable theory the initial time singularities are enhanced. We present a
consistent method for removing these initial time singularities by specifying initial states where the distribution
of high energy quanta is determined by the initial conditions and the interaction effects. This is done through
a Bogoliubov transformation which is consistently obtained in a perturbative expansion. The usual renormal-
ization counterterms and the proper choice of the Bogoliubov coefficients lead to a singularity free evolution
equation. We establish the relationship between the evolution equations in the linearized approximation and
linear response theory. It is found that only a very specific form of the external source for linear response leads
to a real time evolution equation which is singularity free. We focus on the evolution of spatially inhomoge-
neous scalar condensates by implementing the initial state preparation via a Bogoliubov transformation up to
one loop. As a concrete application, the evolution equation for an inhomogeneous condensate is solved
analytically and the results are carefully analyzed. Symmetry breaking by initial quantum states is discussed.
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[. INTRODUCTION the quark-gluon plasma and chiral phase transition at the
forthcoming ultrarelativistic heavy ion collidefBNL Rela-

The study of the real time dynamics and the evolution oftivistic Heavy lon CollidefRHIC) and CERN Large Hadron
nonequilibrium quantum states has now become ubiquitou€ollider (LHC)] has motivated a substantial effort to study
in cosmology and high or intermediate energy physics. Irout of equilibrium dynamics during phase transitions. In par-
cosmology the real time evolution of expectation values ofticular the formation of coherent pion domaif#y, the evo-
guantum fields is a necessary component of a microscopiation of nonequilibrium initial density matrices and states of
description of the inflationary dynamics and the subsequerttigh energy densitj10], and isospin condensatgkl]. Non-
hot Friedmann-Robertson-WalkéFRW) stage (big bang perturbative techniques had been developed to study consis-
seeking to give a realistic description of the early universeently nonequilibrium dynamics of quantum field theories
and the physical processes originated there. In the physics §8,4] and current computational facilities allow the possibil-
heavy ion collisions a very active program seeks to establisity of studying the nonequilibrium dynamics of nonlinear,
potential experimental signatures from possible nonequilibinhomogeneous configurations in quantum field thedi@$
rium stages of the evolution of the quark-gluon and chiralincluding gauge theorie§13,14], for which recent lattice
phase transitionkl]. In cosmology a program that incorpo- simulations of nonequilibrium gauge field theories with to-
rates consistently the nonequilibrium evolution of initial pological excitations had recently been repoit&s].
guantum states or density matrices of thermal or nonthermal The real time evolution of either density matrices or pure
origin including renormalization and back-reaction effectsstates, or alternatively of matrix elements must be set up as
had been pursued vigorously during the last few yg&®—  an initial value problem, either by specifying the initial state
8]. In high or intermediate energy the possibility of studyingor by providing the Cauchy dat@xpectation values of the
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field and its time derivativetypically on spacelike hypersur- equations of motion of condensates. An important corollary
faces. Once this initial value problem has been set up aif this correspondence is that only very specific choices of
some initial time, the real-time evolution of the expectationthe external source in the linear response approach lead to a
values or other matrix elements can be studied either analytsingularity free initial value problem. We choose to study the
cally in the case of small amplitud¢$6,17] or numerically initial value problem for the evolution of a scalar field con-
in the case of large amplitude configuratig8s10,12,14,15  densate in a Yukawa theory in+3L dimensions both for
(although analytic expressions are available in some extenthomogeneous as well as for inhomogeneous condensates.
An important but largely unnoticed subtlety arises in thesé/WVhereas 18,19 the homogeneous case has been studied
situations in that besides the usual ultraviolet divergencem a self-consistent manner and the linearized approximation
associated with masses, couplings, and wave-function renohas been extracted from it, tiiehomogeneousase has not
malizations there appear initial time singularitigh3,19. been studied, and hence we devote our attention mainly to
The physical reason for these initial time singularities can béhis important case. In a renormalizable theory the initial
understood as follows: the initial stateither pure or mixed time singularities are enhanced and new infinities associated
is typically chosen to reflect some physical description butwvith the preparation of the initial state emerge, this situation
generally is either some initial pure excited state with freeis highlighted in the renormalizable Yukawa theory which is
field quanta or a thermal density matrix for free field theory.the focus of our study.
The choice of the initial staténcluding the field expectation Main results (i) The main results of our study can be
value and its time derivatiyehas been essentially arbitrary summarized as follows: we show that the initial value prob-
and in particular independent of the field Hamiltonian. Thelem in renormalizable quantum field theories is well defined
time evolution with the interacting Hamiltonian suddenly and free of initial time singularities provided we apply an
couples at the initial time the infinite number of degrees ofappropriate Bogoliubov transformation to the initial state.
freedom of the theory, redistributing the spectral densities. IThe initial data specifies the expectation value of the order
the case in which the underlying theory is renormalizableparameter, i.e., the condensate and its time derivative at the
this redistribution of the spectral densities results in a diverinitial time and the Bogoliubov coefficients required to
gent response. Such effect is also present on systems withspecify the initial state. In order to eliminate the initial time
finite number of degrees of freedom but it is then finite. ~ singularities, the Bogoliubov coefficients are constrained to
The consideration of singularities associated with settindoehave in a precise manner for high momentum modes.
up initial conditions in a quantum field theory has been adMore precisely, the 3 and 1p* contributions to the Bogo-
dressed originally by Stueckelbefg], the similarity with  liubov coefficients for a mode of momentupare uniquely
sharp boundary conditions in a Euclidean formulation hadixed by the initial data, the coupling and the méSec. 1\).
been studied by SymanzjR0] and has since found different Choices of Bogoliubov coefficients that differ by contribu-
possible solution§2,6,18,19,21 tions in 1p of order higher than p? define different initial
It is important to emphasize that these initial time singu-states, all of them free of initial time singularities. Thus, the
larities are different from the usual ultraviolet divergencestime evolution of an initial state in quantum field theory is
common in quantum field theories and are not cured by théree of initial time singularities provided that the high energy
renormalization counterterms associated with the removal ddistribution of quanta of the initial state is specified in a very
the ultraviolet divergences. These initial time singularitiesprecise manner.
require a very different treatment for their resolution that This method is implemented consistently in the perturba-
hinges upon a judicious choice of initial states that includegive expansion and in combination with the usual renormal-
the effects of the interactions. ization of mass, wave-function and coupling leads to a real-
A very appealing method to prepare initial states that leadime evolution free of ultraviolet and initial time
to evolution equations without initial time singularities has singularities.(ii) As an example we study the real-time evo-
been recently advocat¢d8,19 for self-consistent real-time lution of an inhomogeneous scalar condensate in the Yukawa
evolution. This method consists in defining an initial state agheory, both in the case in which the scalar is heavy and can
a Bogoliubov transformation of the initial states in a freedecay into fermion-antifermion pairs, and in the case in
field theory. The Bogoliubov transformation is chosen towhich the scalar is light and cannot decay into fermion pairs.
cancel the initial time singularities. The advantage of thisHere we provide a detailed analysis of the real time evolu-
method is that it is physically transparent and can be impletion of an inhomogeneous scalar condensate corresponding
mented both for small amplitude, i.e., the linearized problemto a spherical wave.
as well as for the large amplitude case which must be nec- The article is organized as follows. In Sec. Il we obtain
essarily studied numerically. the equations of motion for a scalar condensate. In Sec. IlI
In this article we focus on studying these initial time sin- we analyze the ultraviolet and initial time singularities. For
gularities and their resolution via the method of a Bogoliu-simplicity we present first the case of a homogeneous scalar
bov transformed initial state in a renormalizable theory in thecondensate. Section IV introduces the Bogoliubov trans-
case of small amplitudes of the scalar condensate. This casermed initial state in the case of a homogeneous condensate,
allows to obtain the evolution equations in a linearized ap-discusses in detail the choice of the Bogoliubov coefficients
proximation with an analytical solution to the evolution. Fur- that lead to an evolution free of initial time singularities and
thermore, we establish the correspondence between thesents the singularity free real-time equations of motion
method and linear response theory for the case of linearizefibr the homogeneous case. In Sec. V we establish a relation
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between the initial value problem in the linearized approxi-We specify the initial data at the timg=0 by giving the

mation and linear response and discuss the constraints on thetial condition,

external sources that lead to a well defined initial value prob- . -

lem free of singularities. In Sec. VI we extend the treat%ent p(x,0=¢(x) and ¢(x,00=&(X).

to the case of inhomogeneous scalar condensates, obtain the . I . . . .

corresponding inhomggeneous Bogoliubov transformatiorijfEt us consider that the initial density matrix at titge=0 is

consistently in perturbation theory and the equations of mo9d'Ven by

tion free of singularities to one-loop order. In Sec. VIl we p(0)=1]0)(0]

obtain an analytic solution of the real-time equations of evo-

lution for an inhomogeneous scalar condensate. We also pravith [0) the free field Fock vacuum for the scalar and fer-

vide a numerical analysis of the solution and discuss its maimion fields. Fort>0, p(t)=e ""'p(0)e'"" whereH is the

features. The conclusions summarize our work and discusségll Hamiltonian. This case is tantamount to considering an

the potential applications of the methods presented. initial free field vacuum state and switching-on the interac-
The Bogoliubov transformation of the tadpole and self-tion suddenly at=0.

energy diagrams is presented in the Appendixes A—C. Fur- The equation of motion forp(x,t) is obtained in a sys-

thermore, Appendix D establishes several sum rules on theematic perturbative expansion by imposing that (x,t))

spectral densities =0 to all orders in perturbation theory. We will restrict our
study to the case of small amplitudes of the condensate and
Il. LINEARIZED EQUATIONS OF MOTION FOR will obtain the equations of motiolinearizedin ¢(X,t). In
CONDENSATES this linear approximation the self-energy kernel is obtained

to any desired order in a perturbative expansion in the

Although the initial time singularities that will be dis- Yukawa coupling but in the state withanishing condensate
cussed in this article are generic features of initial valueThus assuming that the state with vanishing condensate is
problems in field theory, they are highlighted in renormaliz-spatially translational invariant it is convenient to perform a
able theories. Therefore we choose to discuss these singulagpatial Fourier transform for the condensate and the self-
ties and their resolution in a Yukawa theory i3 dimen-  energy kerne[16,17. Anticipating renormalization effects
sions. The focus of this article is to understand the problemgye introduce the renormalized field and mass in the Lagrang-
of setting up an initial value problem to describe the non-jan before shifting the field by the condensate
equilibrium evolution of condensates or field expectation
values in the linearizedsmall amplitude¢ approximation. _ . 2_np2 2
Furthermore, we compare with a?] alterngt[i)ve formulation POO=NZ,Pr(0;  ZyM?=Mg+ M.
based on linear response. Since the fermionic fields will be integrated out to obtain

We_ con.5|der. a massive scalar fiefe(x) CO“P'_ed 0 a e equation of motion for the expectation value of the scalar
massive Dirac fields(x) in a Yukawa model specified by the fieq \ve do not introduce the renormalizations associated

Lagrangian density with the fermionic fields. We now drop the subscripfrom
— 1 1., the renormalized quantities to avoid cluttering of notation,
L@, )= 50, P(X)#P(x)+ 5 M P(x) with the understanding that the scalar field and its mass are
the renormalized ones.
+E(x)[i¢9+ m+g®d(x) ] h(x). (2.1 The equation of motion for the spatial Fourier transform

of the condensate
We study the time evolution of the expectation value of the .
scalar field via the real time generating functional in terms of qu(t)EJ d3x e 19 Xp(x,1),
a path integral defined on a contour in complex ti(@GFP)
[22,23. The effective Lagrangian that enters in the contouryy one loop order is given bisee Ref[17] for detail9

path integral is )

Com LD T )= LD T, (14 6Z)[ b(t) + A2 g()]+ (M+ SM?) (1)
where the+ labels on the fields refer to the forwate) and + J;dt'Eq(t—t')f/’q(t') —J=0, (2.2
backward(_—) branch_es corres_pqr_1d|ng to the forwa_rd and

packward e evolion of e oty Brepred Sensiy i o721 and

use the tadpole method to obtain the equation of motion for . dk -
the expectation value of the scalar field = Igﬁq,of (277)§tr$< (t.Y), 23

H(x)=(P(x)) S ) zf d3p (s s )
t—t')=—ig? | —=t[S,(t—t')S>_,(t'—t
and write ‘ (2m)> 7P %o

DE(X)=x () + d(X);  (x=(x))=0. — S, (t—=t")S,_4(t' = 1)]. (2.4)
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The contribution] is due to the fermion tadpole, it is usually 1ll. ULTRAVIOLET RENORMALIZATION AND INITIAL
absorbed in a constant shift of the fieldx). The fermionic TIME SINGULARITIES

Green's functions in the vacuum state are giver| by The evolution equation of the typ€.2) contains two

_ . types of divergences(i) ultraviolet divergences which are
Srf(t,t’)=—iJ d3x e P X(y(x, 1) (0,t")) removed by the mass and wave function renormalizations;
(i) initial time singularities.
; To illustrate these singularities in a more clear manner we
=— —[e Bt (p+m) now focus on the case of homogeneous condensateqi.e.,
2B, =0. We find

+eEt " yo(p—m) o], , ) d°p 8p? . ,
Zp(t=t")=—-29 JMZ_EF,SW{ZEP(I_t )1,

S, (tt)=i f d3x e P X(y(0,t") h(x,1))

J=—-4 f d°p 3.1
—_ ra-iEpt-=t)
2Ep[e P (p+m) WhereasJ acts as a constant source term and can be ab-
‘ ) sorbed in a shift of the expectation valygx), the self-
+e Bty (h—m) yol, energy kernel leads to ultraviolet divergences as can be seen
upon integrating by parts the nonlocal term in E22) three
Ep=Vp°+m?. times

dp 8p _
fdt So(t—t)po(t')=—g f(zqr)32E E, dt’ SI2EL(t—t") ] (")

1 1 1
=—0 f (277 32E E {ZEp ¢O(t)_2_E’:)¢O(O)C0$2Ept) (2E )2 ¢0(O)S|n 2E t

1 . 1 . 1 t
2, do(t)+ 2E,)° ¢o(0)cos Et+ 25" Jodt cog 2Ep(t-t") Jeho(t’) | -
Using dimensional regularization the coefficientdf(t) becomes

3 22
_M2=—g? f_“P _3g'm’
(27)%2E, E2  4p°

This agrees with the expression obtained by evaluation the corresponding Feynman graphdmm&nsions. The renormal-
ization is performed here af=0.

The coefficient proportional t@(t) is the wave function renormalization which again in dimensional regularization is
given by

——y+
€ 3

2 2
P’ g
—02=9g f(z )32E, E5 877

These ultraviolet renormalizations are cancelled by the mass and wave function counterterms but there still remain singularities
arising from the terms that are evaluated at the initial ttmd®, these are given by

2 2 i A p?
B A 3 mZ2

1 .
5= $o(0)cos Et— (2Ep)2 $o(0)sin 2Et

{fdti t—t')po(t") —_gf(zw)32|5 Ep { 2E,

sing

1
(2E )3 ¢0(0)0032E t]
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Obviously this expression is singular &s-0. Simple Therefore we introduce the antihermitian operafothat
power counting shows that the coefficientsggf{0), ¢¢(0), generates the unitary Bogoliubov transformation
and ¢(0) diverge as 1f, 1k, and log, respectively. At

finite t they are finite due to the oscillatory behavior of the d°p '

integrand. . o Q= f Z)Tﬁps[dT(_p,s)bT(p,s)emps
The physical reason for these singularities is the follow- s (2m p

ing: having prepared the initial state to be the free field Fock —b(p,s)d(—p,s)e~ %]

vacuum and switching-on the interaction suddenly at the ini-
tial time t=0, the interaction redistributes the spectral den-

sity of fields. The scalar field states overlap with the fermi'whereb(p,s) andd(p,s) are annihilation operators for fer-
onic continuum of states and the particles become dressed bYi < and antifermions respectively artaf (p,s) and

the interaction. This dressing effect which is responsible fOI’dT(p,s) are creation operators for fermions and antifermions,

mass, wave functiqn and .cou_pling.renormalizatiqns OCCUIBaspectively. The-number functions,s and 8, will be cho-
suddenly when the interaction is switched on and is reflected.\ s\ ch that the initial ime singulgsrities are removed

as an _initial_time singularity._O_bvioust these short “”_‘e sin- This generator of Bogoliubov transformations illuminates
gularities will be present at finite temperature or dens_|ty, anGt once the nature of the Bogoliubov transformed initial
are a consequence of the fact that the the underlying fiel

h infini ber of d t freed tates. Acting on the free field Fock vacuum state, the Bogo-
theory possesses an infinite number of degrees of freedomy, ,,, yransformation leads to a state that is a linear combi-
Our main point in this article is that these initial time

nation of particle-antiparticle pairs of total zero momentum.

i . . o ' CaRne fact that the total momentum of these pairs is zero is of
be defined consistently and free of singularities by consider-

) . S . course a result of the fact that the scalar condensate is ho-
ing an appropriately chosen initial state that is dressed by thﬁwogeneous

interactions. We thus propose to initialize the real time evo- The commutators of) with the fermionic creation and
lution by providing an initial state that includes the dress'ngannihilation operators are given by

as a Bogoliubov transformation from the free field Fock
states. Furthermore we will argue that this construction leads
to a consistent initial value problem for real-time dynamics [Q,b(p,S)]=Bpsei Ssd’(—p,s),
and can be implemented systematically order by order in
perturbation theory.

We now discuss in detail this procedure in the example [Q,dT(—p,s)]=— B,ce %sb(p,s)
under consideration to lowest order in the Yukawa coupling. ’ ’ ps o

IV. EQUATIONS OF MOTION WITH BOGOLIUBOV which leads to the following relation between the trans-
TRANSFORMED STATES: HOMOGENEOUS CASE formed and the original operators:

In this section we introduce the Bogoliubov transformed
states and show explicitly how the introduction of these
dressed states provides a solution to the problem of initial
time singularities. For the sake of clarity we study first the
homogeneous cagg=0 and postpone to a later section the
generalization to inhomogeneous condensates.

From the free field Fock vacuum std@ a Bogoliubov
transformed state is obtained after a unitary transformation

|0,)=e"9|0) The operatord(p,s), d(p,s) as well asby(p,s), dy(p,s)
b ’ obey the usual canonical anticommutation relations.

with Q an anti-Hermitian operator. Bogoliubov transformed ~ The initial density matrix is now given by
operators are defined via

Op=exp—Q)OexHQ), pp(0)=e"%p(0)e=|0,)(0y- 4.2

b(p,s) =cosBysby(p,s) +sinB, s e'%sdf(—p,s),

d'(—p,s)=—sinB,se '%shy(p,s)+cosB, di(—p,s).
4.1

therefore if the vacuum staf@) is annihilated by the destruc-

tion operators, the Bogoliubov transformed annihilation op-  Although we have focused on a pureacuun state, ob-

erators annihilate the stat8,). viously this can be easily generalized to thermal or nonther-
To lowest order in the Yukawa coupling the Bogoliubov mal mixed states.

transformation that required to cancel the initial time singu- In Appendix A we provide the details that lead to the

larities only involve fermionic fields. Only when scalar con- following Green’s functions in the Bogoliubov transformed

tributions in higher order corrections arise there will be astates.

need to introduce the Bogoliubov transformation for scalar With this restriction the transformed Green function be-

fields. comes
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ISy (1,5t ,x")=(0p|(t,x) h(t",x")|Op)
d3p ip(x—x") —iE (t—t") : i 0, —iEq (t+t")
= me [cos By(p+m)e Ep —sinB, cosBpe' PZs(P+m)ysyoe Ep
p

—sinB, cosBye =5 ysvo(P+m)eErt )+ sir? B ysyo(P+m) ysyee St t],

and

—iSy (t,x;t",X")=(0p| (' X" ) (1, X)| Op)

d*p e . B ,
:f—(27r)32E ePX X sin? B(p+m)e 'Eo ")+ sin B, cosB e PZ5(p+m) ysyee ErtT)
p
+5in B, cosBye =55 yo(p+m)eEr )+ cod B, ysyo( P+ m) ysyee Bt ], 4.3

Perhaps the most striking feature of these Green’s func- d3p
tions is their lack of time translational invariance, the mainA2p o(t,t") = —Zng (2m)32E, f{sz(COS 28,—1)
reason is that the Bogoliubov transformed states are not ) L
eigenstates of the bare particle number. We note that in the Xsif2E,(t—t")]—8pmsin 25,
terms witht+t’ a translatiqn of the time variables can be X[SIN2E t— 8,) — SiN(2E ' — 8,)]}.
compensated by a change in the phagei.e., a gauge trans-
formation of the fermionic fields.

It is this lack of time translational invariance that will

allow to cancel the initial time singularities as shown exphc—Ciently fast withp so that terms proportional to sifg and

|tIyTbheI0W. luti tion is obtained in th cos(28,)—1 lead to convergent integrals. This in fact will be
€ evolution equation 1S obtain€d In the Same MANNET ag, . agja posterioriwhen we find the required expression

in the previous section and is exactly of the same form as Eq ; . :
: . . or below. Then the ultraviolet divergences in Ed.
(2.2 with q=0 as befits the homogeneous case, with th refﬁe same as in the perturbative vac%um H4.5

sglf—e&e;?y(zaz)dbta:qpc;le kernfetlﬁ ngw gl'.vin bty thef exprgs— Integrating by parts now three times th in order to
slonsiz.9), (2.7 but in terms of the Bogoliubov transtorme single out the ultraviolet and equal-time singularities from

Green's functions 2, o(t,t") in the equation of motion, we find that just as in
the untransformed case the ultraviolet divergences propor-

tional to ¢po(t) and(t) are cancelled by the mass and wave
d3p function renormalization counterternigp to finite parts de-
= —gf S 35=L4mcos 28, pending on the renormalization prescription
(2m)°2E, LN . " .
The terms that result in initial-time singularities arise
—(—4p)sin 2B, cog 2E,t—5,)] (4.4  from

We will assume in the following tha8, decreases suffi-

Jp(t)=—igtr S (t,x;t,%)

and

t
Uodtlzb,o(t—t’)%(t’)}

sing

dp 1
N — 2 2
2b,O(tvt )_ Zg f (27T)32Ep 2Ep {8p COiZﬂp)

X sin 2E(t—t")]—8pmsin(283,)
X[SIN(2Ept— 8p) —SIN(2E,t" — 6,) 1}

d3p 8p2[
=—92f—— — 5 %0)
(2m)32E, E, | 2E,"°

1 . .
4.5 X cos Ept—mcﬁO(O)sm 2E .t

The first, time independent contribution &g(t) in Eq.
(4.4) can be absorbed into a constant shift of the condensate
much in the same way as in the untransformed case. The
second, time dependent term will be used to cancel the initial

1 .
+ (2E—)3 do(0)cos ZEpt] COS 28, .
p

time singularities. We now require that these terms be cancelled by the time
The self-energy kerndld.5) can be written a&o(t—t')  dependent terms af,(t), Eq. (4.4). This requirement leads
+ A%, ot,t") with 2(t—t") given by Eq.(3.1) and to the equation
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tan 28, cog 2Et— 6p) V. LINEAR RESPONSE THEORY
2p 1 1 . The initial value problem can be obtained by establishing
:gE— — Eqﬁo(O)COS ZEt— —(2E )2¢0(0) direct contact with linear response theory as presented in
p P P Ref.[24] in the case of scalar condensates and in R2H]

1 . for fermionic coherent states. This is achieved by coupling
Xsin 2Bt + ———3 ¢o(0)cos ZEt . an external sourcaerm to the scalar field in the Lagrangian
(2E,) .
P density(2.1)

Comparing the terms proportional to the sine and cosine we _ _
find two equations that determing,,3,. These equations LLDP, i, f]— LLDP, ¢h, h]+ I X) P (X).
can be solved perturbatively with
The expectation value of the scalar field induced by this
Bp=b1,p9+b, 0%+ 0O(g%). source term is given by

To one loop order we only need to keep the linear termg in _ ) , N L
leading to <‘I’(X)>=|f dX" Jex XD T ()P (X"))

1 1 . —(®T(x)D(x"))], 5.1
chos6p=gE3[—quo(onmgqbo(m}, Weotean] oL
P P P where the superscripts refer to the forward and backward
time branches in the real time generating functional. The
. (4.6) bracket in Eq(5.1) is the retarded commutator. As discussed
in detail in Ref.[24] the inversion of Eq(5.1) gives rise to

At this stage we recognize that there is freedom in ChOOSt_he equation of motion for the scalar field with an inhomo-

ing the Bogoliubov parameters to cancel the initial time Sin'ggr?w%t)s/tegI\;ege?giletzeinetxr::rgfslt zgz:i((:)i ts\;gl;inzotlfgvgngu;ggn
gularities. The initial value problem will be free of singulari- P ’ q

ties by choosing the coefficienf, ; 5, so as to cancel the of motion for an homogenous condensate to be given by
terms proportional to P, 1/p® and so thais, vanishes ap

— 00,
Different choices of the Bogoliubov parameters that differ t
only in higher inverse powers of the momenta lead to differ- +f dt’ Zo(t—t") do(t’) —I=Jgxo(l),
ent initial quantum states, but the initial value problem is free -
of initial singularities. This freedom is similar to choosing ) ) o
renormalization counterterms including finite parts, i.e., dif-Which differs from Eq.(2.2) in the lower limit in the nonlo-
ferent renormalization prescriptions. cal' term with thg self—gnergy. Assuming adiabatic
Now the Bogoliubov correction and the mass and waveSWitching-on of the interaction fron=—o we can now
function renormalization counter terms remove exactly allf€Write this equation of motion in a form that is closer to Eq.
ultraviolet and initial time divergences from the equation of (2.2) by integrating by parts the nonlocal term. Defining,
motion. To lowest order we can sg5=0 in the self-energy
in the equation of motion and having removed all ultraviolet
and initial time singularities and absorbing the time indepen-
dent contribution from the tadpole term in a constant shift of
the condensate, we finally obtain the evolution equation in
the case of the homogeneous condensate

) p 1 .
Bpsin 5p=9E—p - W%(O)

(14 6Z) po(t) + (M2 + SM?) (1)

d
So(t—t")= Wzl,o(t_t,)

d2
= sz,o(t_t')

3

. t ,
¢o(t)+M2¢>o(t>+J dt’ T(t—t")pe(t')=0, (4.7 = gr Jedt=t)
0
where3 (t—t') is the subtracted self-energy kernel and integrating by parts we obtain
d3 2 y 2 2
P 4.9 —350(0) dho(t) + Z30(0) (1)
The equation of motion above should be compared to Egs. + Jt dt’ Sqo(t—t) do(t') —I=Jexo(t),
(7.21) and (7.22 in [19]. The equation of motion obtained —o ’

there differs from Eq(4.7) by a finite renormalizationAZ
that corresponds to a different renormalization scheme buwith > o(t—t") given by Eq.(4.8). Using the explicit form
otherwise the equations are the same up to one loop orderof 3 4(t) given by Eq.(3.1) we find
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d®p  4p? history of the condensate and only a very specific form for it

21000)= _gzj (2m%2E. EZ SM?, (5.2  leads to a singularity free initial value problem. From the
PP perspective of an initial value problem in which Cauchy data

3,0,(0)=0 are specified at some given initial time on a spacelike hyper-
20 ’ surface this is a consistent choice. However, from the point
d3p  4p? of view of linear response this choice is somewhat artificial.

Z30(0) =ng - —7 = — 6Z. (5.3  The resulting external curredbes not vanisfor t>0. If we

(2m)°2E, Ep instead require an instantaneous switching-off of the external

current at =0, initial time singularities become unavoidable.

Therefore the specific choice of external current ) o X
P The method of preparing a dressed initial state via a Bo-

0 goliubov transformation leads to a satisfactory description of

Jext(t):J dt’ Z(t—t") po(t") (5.4 the initial value problem. The usual mass, wave function,

o and coupling constant renormalization counterterms cancel

leads to the initial value problem described by E47). the ultraviolet divergences, and the Bogoliubov coefficients

This current depends on the past history of the conden?'® jgdicious!y chosen to cancel the initial time diverg_ences
sate, and in generaloes not vanish fort0 as it would be consistently in perturbation theory. To lowest order in the
desirable from the point of view of linear response. In linearYUkawa coupling and for a homogenous condensate such a
response the initial value problem is envisaged to be prehoice is given by Eq(4.6). _
pared by switching-on an external source and the interaction Having studied in detail the simpler case of the homoge-
adiabatically fromi=— . The external source acts as a La- N€0US condensate, we now move on to our main point, the

grange mulitiplier, slowly displacing the condensate to theStudy of the evolution of inhomogeneous condensates.

value to be determined &t 0, and switching-off the source
suddenly at this time. This allows the condensate to beVI' EQUATIONS OFCMOONTEI)EESZC_)FESINHOMOGENEOUS

formed and dressed over a very long period of time. The
dressed condensate is then released when the external currentThe equation of motion for nonhomogeneous condensates
is switched-off. However, in an interacting renormalizablein the amplitude approximation and in terms of spatial Fou-
theory this instantaneous switching-off of the external curvier transforms reads

rent results in singularities. To set up a consistent, singularity

free and renormalized initial value problem as is the goal of (14 8Z)[ hg(1) + G (1) ]+ (M?+ M) g (1)
this article, the choice of the currei®.4) is the one that .

establishes contact with a linear response formulation, in this +f dt’ S4(t,t") dg(t’) +Jp o()=0.
case the current depends on the past history of the conden- 0 a d 4

sate, which obviously need not be specified for an initial

value problem. On the other hand, such a choice of current, From the discussion; of the pre_vi_ous sections we have
depending on the past history is rather artificial from theearned that the Bogo_ll_ubo_v coefficients that defme th?
linear response point of view. dressed states at the initial time can be found consistently in

We note that the current can be made to vanish at alperturbation theory. Since the self-energy is already of sec-
times with the particular choice ond order in the Yukawa coupling we will not need to con-
sider the Bogoliubov corrections to the self-energy, but only

) 1. to the tadpole ternd,(t).
Bo(t) = do(0) + do(0)t + Ed)o(o)t2 The one-loop self-energy is therefore the usual one and
given by
for t<<0. Obviously this behavior manifests the problem of d3p
the initial time singularities as singularities in the behavior of iEq(t—t’)=4ng S35 5
the field at a remote past. (2m)°2Ep2E, g
An alternative would be to assume that the external X[E,+E,_q+p(p—q)—m?2](—2i)
source and therefore the condensate is adiabatically PP
switched-on with a damping fact@®' for t<0 but this re- XS (Ep+Ep-g)(t—=t")]. (6.2)

sults indiscontinuitiesin the first or second derivatives at The derivati f the tadoole di that determi
=0 and that would produce additional contributions from the € derivation of the tadpole diagram that determines
integration by parts from these discontinuities. Jp,q(t)_usmg the Bogolluboy—transformed Green functions, is
There are two main conclusions of this discussion on thé'V€n " Appendix B. We find
relationship with linear response. d3p
We have established a direct relationship between the Jb,q(t):4m9J (2m)2E,
evolution equations in the linearized approximation and lin- p
ear response theory. The initial value problem free of UV d3p CEE. ot
and initial time singularities is shown to be obtained in the —ZJ m[v*(q,p)e pT=p-a
context of linear response through a particular choice of the peTema
external current. Such external current depends on the past +y(q,p")e'Ept Eo-a],
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The functiony(q,p) is a function related to the angles of the Bogoliubov transformation, that will be specified below such as
to remove the initial time singularities.

The analysis of the singular and divergent contributions in the equation of motion proceeds as in the homogeneous case,
performing three integrations by parts with respect to the time in the nonlocal term, we find

O ) 4(0)
E,tE, o E,tE, o ot (ot Ep-gtl=

t
Jl)dt’ SIN(Ep+Ep- o) (t—t")]g(t") = 7SI (Ep+Ep_g)t]

(BEp+Ep-o)

B $aq(t) bq(0)
(Ep+Ep_g)®  (Ep+Ep_g)

3Co§ (E,+E, o)t]

l t e
T EFE, O° fodt cog (Ep+Ep-o)(t=1)]dq(t)).

The parts containing(0) and its derivatives lead to initial time singularities in the equation of motion, these can be isolated
by writing

t d°p ~i(Ep+
[Ldt' Eq(t_t,)qbq(t,)} :—BQZJW[EpEpq+P(P—Q)—mZ][T(q,P)e (EptEp-glt

sing

+ (q, p)ei(Ep+ Ep,q)t]

with

$o(0) $4(0) . $4(0)

1
4P =3 TE+E, T EFE, 7 T (E+E, o)

note thatp,(0)= ¢* ,(0). With thechoice

¥(0,p) = —4g[E,Ep— o+ p(p—a) —m?]7* (q,p)

the current), 4(t) exactly cancels the initial time singularities in the nonlocal term with the self-energy. As in the homoge-
neous case, the curredy ,(t), which is a Fourier transform dfys(x) #/(x")) is nonvanishing.
The ultraviolet divergent contributions of the self-energy to the equation of motion are given by

- d°p ¢a(t) (1)
__ngf (2m)72E,2E, 4| EpEe-a T PP~ e e T

=3 1(0?) (1) + 2 3(02) g 1).

Here we define the UV divergent parts of the self energy kernel in dimensional regularization as

t
fodt' 3 (t—t") dg(t)

pP—q

UV div

S o [ (5P EEe BP0
! (2m)3"¢ 4E,E,_o(Ept+Ep_g)

S d* p EpEpqtp(p—q)—m?
34(0?)=8 Zf — - :
(V=8 | 2T AEE, (B, E, o7

These expressions have to be regularized to obtain the renormalized equation of motion. This is discussed in detail in
Appendix C. The singular and ultraviolet divergent parts are cancelled by the appropriate choice of the mass and wave function
renormalization and the Bogoliubov coefficient in the tadpole. The final form of the subtracted self-energy kernel is given by

d’p EpEp—qtP(p—q)—m?
_$'y\— _Qn2 p—p—q 4
2S,q(t t ) 89 f (2’77)32Ep2Ep_q (Ep+ Ep—q)3 Coi(Ep_'— Epfq)(t t )]

It follows from rotation invariance that the kernkl 4(t) only depends orn.
The equation of motion in momentum space becomes
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~ . ~ t ~ oo
[1+6Z+323(0) ] g(t) +[Q*(1+ 6Z) + M?+ SM?+31(?) ] hg(t) + fodt’Equ(t—t’)gbq(t’):O.

We show in Appendix C that we can decompasgq?) and.s(q?) as

S1(0R)=—M2—q?5Z+AS(0?), S4(qP)=—6Z+AS¥q?).

The divergent and finite parts are explicitly given in Appendix C. We finally obtain the renormalized equation of motion which
is free from ultraviolet and initial time singularities

- 3 ~ t o~
[1+AZ5(0%) 1 g(t) +[ G2+ M?+AZ 1(g%) ] pg(t) fodt'zs,q(t—t’)%(t’):O, (6.2

where

s (t—t’)=—8ng i/ Wi
&4 (2m)%4EE,_q (Ep+Ep_g)°

cog (Ep+Ep)7]. (6.3

VIl. SOLUTION OF THE EQUATION OF MOTION: NUMERICAL ANALYSIS

We have derived in the previous section the renormalized equation of motion. It can be solved in a standard way via
Laplace transform. We introduce

Bs)= | dte oo
for the condensate, and
”&S(sz,qz)=sJ dte S (1)
0

for the self-energy26]. We find

d°p  EEpqtpp—a)—m?
(2m)%4EE,_q (Ep+Ep—g)®

T4(s?,0q%)=—8g%s fo dre " cod (Ep+Ep_g) 7]

= —8g?s? f d°p EpEp—gtP(p—q)—m,
(2m)24E Ep—q (EptEp_ ) [(Ep+Ep_o)*+5°]

(7.1
The Laplace transformed renormalized equation of motion becomes

{1+ A3 4(q?) +F5(%,02) ]+ G2+ M2+ AS 1 (42)} g (S)

. ~ b,(0
=[q(0) +5¢4(0)][1+AZ5(q?) +T(s%, )]+ %?rs(sz,qz),

so that

[¢q(0) +5¢q(0)][1+ Ai3(q2) +T4(s%,0)] +2(0-Q)5s(52,q2)/3
S 1+ AS4(0?) +F4(s%,0D) ]+ G2+ M2+ AS 1 (0?)

Py(s)=

The solutiong,(t) then is obtained by the inverse transformation

io+c ds

()= J o S,

This solution is discussed in detail in Appendix D. The integral above is along the Bromwich contour avjtbsitive real
constant to the right of all the singularities of the Laplace transform. The result can be writsseasppendix D for details
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cog wt) ¢4(0) w IMF1(— w?+i0,0?) +sin( wt) 4(0)Im Fy(— w?+i0,G%)

2 o
H0= ], 00

~ $40)

——coq wt)ImF,(—w?+i0,q%) |,

w
where
1+A345(0) +T(%02
FL(s2.q%) = _ 3(q9) +7(s%,q%) N |
S?[1+A35(0) +T4(5%,9%) ]+ 9+ M2+ A3 (s2,G%)
~ 32, 2
FZ(SZ,qz): O-S( q )

S[1+AS4(0P) + 7)) ]+ P M2+ AS 4 (?)

qu(O) is not an independent initial value, it is determined by settin@ in the equation of motio6.2) with the result

>+ M2+ Ail(qz)

bq(0)=— ¢4(0) -
1+A35(q)?

It is then convenient to define a kerrie which combined=; andF, with prefactors uniquely determined lgy,(0). With the
definition
. . 1+q2+M2+A21 1
s(@.q)==2 (1+A33)w x ., PP+ MZ+AS,
1+A3;+ 54— w?+i0,q°)

2

the solution can be written as
2 (= .
bq(t)= - J dw [ ¢4(0)cog wt)Im F3(w—i0,0?) + ¢4(0)sin(wt)Im F1(— w?+i0,q%)].

The functionF 3 which is, up to prefactors, the Laplace transform of the solution, exhibits a pole at
wR= w0yt oo, wg= YM?+¢?,

with o= 0(g?). If M>2m the scalar field can decay into a fermion-antifermion pair, the pole actually describes a resonance.
In perturbation theory the width of this resonance is perturbatively small and near the resonance we can approximate the
function F5 by a Breit-Wigner resonance

1 Z
2y = R
Fg((l),q ) 2w—wR—iFR'

The resonance position is determined by

wé-l— A3,
1+ A3+ 5y~ w5 +io,g?)’

WR= Re

the residueZy, is given by

R_(1+A23)(1)q

(1)3+A21 '
“14+ A3+ T(—w?+i0,07)

w=wq

wq-l—% R

and the width by
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r | w(2]+A21
R 20p | 1+AS ;54— 0> +i0,00)|
w
Numerical analysis of t and|X| for M=3;m=1;g=1. We see that the propaga-

We are now in condition to study the evolution of an tion is inside the light cone and damped in time. The peak at
initial scalar condensate numerically by performing the in-th€ origin is the center of mass of the wave packet, it oscil-
verse Laplace and Fourier transforms since all the quantitie§t€S in time with a frequency-wg and decays on a time
are given by the subtracted one-loop self-energy. scalel' *. The evolution at very early times is smooth.

We consider two separate casés>2m in which case M <2m. In this case the scalar field is stable, the spectral
the scalar can decay into fermion-antifermion pairs, &hd density features poles ab==*wg below the fermion-

<2m in which case the scalar particle is stable. In both case&ntifermion cut. We find again tha,~0.97, implying, that
we studied the evolution for an initial spherical wave of the contribution from the fermion-antifermion continuum is

Gaussian profile negligible except for smatl Figure 2 displays the time evo-
lution of the Gaussian wave packet in this case. The wave
H(0X)=Ngexp —x?/2R3), packet spreads in space-time, the evolution is always below

the light cone as clearly illustrated in the figure. The ampli-
) tude of the wave packet decreases as a result of spreading. Its
¢$(0x)=0, with J d3x p(0x)=1. (7.2 spatial integral, which is equal t@y(t), asymptotically os-
cillates with the pole frequency and amplitude .

Since this Gaussian wave packet has zero center of mass
momentum, the peak of the wave packet will not displace VIIl. SCALAR THEORIES

underdtlme .eVOIUt'OH’ .bUt the wave packet will disperse and The connection between the preparation of the initial state
spread out in space-time. via Bogoliubov transformations and the formulation in terms

M>h2m. _W_e ha¥ehchosemf: 3m but there 'f a _rather of linear response allows to generalize the study presented
smooth variation of the wave function renormalization Con-p, e tg scalar theories. In particular let us consider the case

stant, position and width of the resonance for reasonable va 5t a scalar self-coupled®* model using the linear response
uhes ofI the rfat;]o ZM/mfs 10: As a first Slt'ep we calcula}tetljl analysis. Focusing on the evolution equation for a homoge-
the value o the wave unctlon renormalization numerica Yneous condensate to ordé we find

and find thatZy differs from unity by less than 3% and that
the ratio of the width to the position of the pole/wg

y 2 2
~0.02 forg=1 or smaller and & M/m=10. Therefore if (1+6Z) po(t) + (M + M) ho(t) + % 1,(0) ho( )

the coupling is of this order or smaller, the approximation of . t

the spectral densitydiscontinuity across the cutby the +23,0(0)¢o(t)+j dt’ S o(t—=t") do(t’) = Jexiolt)-
imaginary part of the Breit-Wigner form given above is ex- o

cellent. The agreement obtained from the full numerical evo- (8.1

lution and that obtained from the approximate Breit-Wigner o
form is excellent. The evolution in this case is depicted inThe order\ tadpole has been absorbed idhl as a mass

Fig. 1 that displays the profile of the condensate as a functiorenormalization and the self-energy to ordéris given by

0.08 0.08
0.06 0.06
0.04 0.04
0.02 0.02
0 0
iy
-0.02 I -0.02
Ty
-0.04 i \'\‘.ﬂ‘\‘\: 15 -0.04
‘\'\\‘\“ r
-0.06 A 10 -0.06
-0.08 I -0.08 t
FIG. 1. Unstable case=3; m=1; g=1 with a Gaussian FIG. 2. Stable caséM=1; m=1; g=1 with a Gaussian profile
profile for the condensate a0, given by Eq.(7.2) with Ry=1 for the condensate &t=0, given by Eq.(7.2 with Ry;=1 and
and normalized so thatd®x ¢(0x)=1. normalized so thafd3x ¢(0x)=1.
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the sunset diagram. The choice of counterteiissM? are  a precise law determined by the initial data, couplings, and
as given in Egs(5.2), (5.3) and the external source intro- masses.

duced for linear response is specifically chosen as in Eq. We have chosen to study these initial time singularities
(5.4). In this manner we obtain the initial value problem free and provide a consistent resolution in a Yukawa theory in
of ultraviolet and initial time singularities. An alternative in- 3+ 1 dimensions, this theory being renormalizable allows to
terpretation of the external source associated with the lineadentify all of the divergences and singularities: ultraviolet
response formulation can be provided by introducing a Hardivergences associated with mass, coupling, and wave-
tree factorization in the Lagrangian with a term of the formfunction renormalizations and initial time singularities that
AND(D3). This term acts now as an explicit source in thecannot be cancelled by the usual counterterms.

linearized equation of motion which is chosen so as to lead After recognizing the initial time singularities and their

to a singularity free initial value problem, thus requiring a physical significance in the case of homogeneous conden-
nontrivial Bogoliubov vacuum. The linear response analysigates, we have proposed a rather simple approach to provide
leads very simply to a well defined initial value problem for @ singularity free initial value problem. We introduced Bo-

a proper choice of the external source. The equivalence p&oliubov transformed initial states that incorporate the ef-
tween the preparation of the state via a Bogoliubov transforfects of dressing of states by the interaction. The Bogoliubov
mation of the free field Fock vacuutor density matrix and coefficients can be obtained in a systematic series expansion
the initial value problem obtained from linear response forin the Yukawa coupling and we have obtained them to one-
the proper choice of external source allows now to generaliz&€0p order in this theory. The usual renormalization counter-

the results obtained above for the linearized approximationterms cancel the ultraviolet divergences associated with
mass, coupling, and wave function, and the Bogoliubov co-

efficients are chosen consistently to cancel the initial time
IX. CONCLUSIONS singL_JIarities. T_ha_\t_ is, their high energy behavior is fixed ac-
cording to the initial datdSec. V).

The nonequilibrium evolution of condensates in real time We have established contact with linear response theory
requires to provide Cauchy data at some initial time, hencéy obtaining the evolution equations for the scalar conden-
an initial value problem which requires the specification ofsate and the initial value problem in the linearized approxi-
an initially prepared quantum state or density matrix. Anmation as the linear response to an external source coupled
initial pure or mixed state of free field Fock quanta leads toto the scalar condensate. This equivalent formulation clari-
initial time singularities. These have a simple interpretationfies at once the relationship between the linearized approxi-
the evolution of expectation values or matrix elements in thenation for the evolution equations of the condensate and
interacting theory implies that the interaction is switched-onlinear response. The corresponding initial value problem,
suddenly. The interaction rearranges the spectral densities dé., providing Cauchy data for the field and its first deriva-
the fields and the response to the sudden switching-on of théve on a spatial hypersurface requires that the external
interaction results in initial time singularities which are en-source that couples to the scalar fieldes not vanish after
hanced in a renormalizable theory. For systems with a finitéhe initial time A very specific source term that depends on
number of degrees of freedom such effects are also preseatgiven past history of the condensate furnished a singularity
but no singularities arise. free initial value problem.

The Bogoliubov transformatio(#.1) mix creation and an- After presenting the method in the simpler homogeneous
nihilation operators. It mixes the fermion creation operatorcase and establishing the relationship to linear response
with the anti-fermion creation operator and similarly for the theory we focused on the important case of inhomogeneous
annihilation operators. The scalar products between transondensates. Following on the steps for the homogeneous
formed and untransformed states vanish in the infinite volcase we have constructed the proper Bogoliubov transforma-
ume limit. As a consequence of that the transformed andion to lowest order in the Yukawa coupling and shown ex-
untransformed states belong to unitarily inequivalent repreplicitly how a judicious choice of the Bogoliubov coeffi-
sentations of the CCR. The physical space of states is thgents in combination with the usual renormalization
transformed one and the physical quantity must be computecbunterterms leads to an initial value problem free of ultra-
there. Unlike the case of spontaneous breaking of chiral symviolet and initial time singularities. As an example of this
metry [5], the Bogoliubov transformation does not changeconsistent procedure we have provided a numerical study of
the physical properties of the system like the symmetries othe space-time evolution of an inhomogeneous scalar con-
any other basic property. It just describes the reaction of thelensate both in the case in which the scalar can decay into
guantum modes of the vacuum to the external field, andermion-antifermion pairs and in the case in which the scalar
leads, for the localized states considered later, to a vacuuis light and stable.
polarization induced by the localized classical field. We have also generalized the results of the fermionic case

In summary, the time evolution of arbitrary quantum to scalar field theories by exploiting the relation to linear
states or density matrices (mteracting field theory leads to  response, thus providing a generalized and consistent manner
short time divergences. Only for appropriately prepared puref describing nonequilibrium evolution of condensates in
or mixed initial states, as those considered in this paper, theerms of an initial value problem free of ultraviolet diver-
time evolution is well defined. By appropriately prepared wegences and initial time singularities.
mean states where the filling for high energy quanta follows Applications We foresee several applications of these
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methods(i) We can now study consistently the evolution of ACKNOWLEDGMENTS
inhomogeneous pion condensates after a chiral phase transi- . . .
tion by setting up a physically reasonable initial value prob- u;]ﬁ ;f:]a:jnkgftflﬁethigr_?_/HgEroigs tﬁ‘;thgnli{/g'g{;:gg I;tts—
lem that incorporates the important features of the transitiort’{)/I 9

in the fully interactinginitial state (or density matrix. This F(?rrslihﬁrl:gr;seéelzr)r?enirsws?r:a;??(I)rr Bgfﬁglaghyépi?f utnhdeengerlg:f EZ_
approach is complementary to that advocated in REZ]. i i i )
(it) In cosmology we can now study the nonequilibrium dy- 703/6-1. D.B. thanks PHY-9605186, INT-9815064 for par

namics of inhomogeneous configurations by providing the't\'/la;rise UPC%?:;’ aar:jdDtgﬁisLg;g-e”rzqg;ritge\/luanr:\ée\r/?[)tfcﬁrtrr?ei?t
initial field profile and the first derivative on a spacelike

hypersurface and following the space-time evolution of thishOSp'ta“ty' D.B. and H.J. deV. acknowledge support from

configuration. In particular a very relevant setting for cos-i‘fsg::?elzfgﬁgs ﬁc&%ng%%rogram. LPTHE is Laboratoire
mology is that of supersymmetric theories during for ex- '
ample the stages of rolling of the scalar field component.
Treating the dynamics as an initial value problem, the initial  APPENDIX A: FERMIONIC GREEN'S FUNCTIONS
conditions on the scalar field, displaced from the equilibrium IN THE BOGOLIUBOV STATE
position breaks supersymmetry. This breakdown of super- FOR THE HOMOGENEOUS CASE
symmetry is not explicit at the level of the Lagrangian, but
by the quantum state. Our formulation allows us to follow The Green functionS; (t,x;t’,x’) in the Bogoliubov-
the dynamics consistently and study the consequences of thikansformed staté);,) is defined via
supersymmetry breaking. Work on these issues is in

rogress. e ! A Y ’
P 'Ighe next step in our program is to extend the results ob- ISy (Xt x') = (0| (1. X) (1" x")|Op) (AD)
tained in this article, valid in the linearized approximation, to
a full nonlinear inhomogeneous problem. We expect to reand the(free) field operators are given, in terms of the cre-
port on progress on these and other issues in the near futurgtion and annihilation operators, by

d3 . _ _
wt=2 f ﬁe'px[b(p,S)U(p,S)e*'EP“r d'(—p,s)V(—p,s)€e'Fr],
S p

i d3 ! in!v! P H ’ - H ’
w(t/’X/)ZE f_(ZW)BF;E e*lpx[bT(p/,SI)U(pr,S/)eflEp/t +d(_pr,S/)V(_pr,S/)elEprt ]

’ p/

) (A2)

We use the normalization for the spind?ip,s)U(p,s)zZm so thatU™(p,s)U(p,s)=1.
Using Egs. (4.1, (4.2, (Al), and (A2) we obtain the following expression for the transformed Green function
Sy (t,x;t',x'):
Sy (6t ,x) = (0p| (t,)4h(t",X)|Op)
dsp ip(x—x") 'nY —Ep(t—t") _ «j i) V2
-2 @m2E, ¢ [CoS(Bps)U(p,5)U(p,s)e =6 ™) —sin 5 Cosppee U (p,5)V

X (—p,s)e Bt —sing  cosBpe %PV (—p,s)U(p,s)eEr ) +sir? B V(—p,s)V(—p,s)e Bt

As long as we consider homogeneous condensates, the — — R
anglesB,,s and 8,5 can be chosen to depend only on the f(Ep)ES: U(D,S)V(—D,S)Zz U(p,s)V(—p,s)f(Xp)
modulus|p|, and on the helicities. The weight of the two
possible helicities is still arbitrary and we consider these

angles to be functions of the helicity matrix ZES f(S)U(p,S)V(—p,s).
5
P= 0 op)’ 3p commutes with all other matrices that are relevant to this
discussionyg, vs, andpy, and can therefore be treated as a
wherep=p/|p|. We have, e.g., ¢ number.
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Specifying the vectop” to be on shellp”=(E,,p), and A similar calculation leads to the transformed Green func-
using yoyyo= — v it is straightforward to find tion S; (t,x;t’,x") which is defined as
2 U(p:9U(p,s)=p+m, —iS5 (Xt X") =(0p (', X ) ¢(£,%)[ Op).

_ Following the same steps leading to E43) we find
2 V(=P:HV(=p,9)=yo(B=M) %o

— iS5 (t,xt" ") =(0p| (' X ) ¢h(t,%)|Op)

=7¥5Yo(P+mM)ys5Y0- &p
The mixed product can be found by resorting to the repre- = f (27)32E, elPx)
sentation . P .
X[sinp,e'%se” Ep'Ep
U(p,s)= pm (XS) +08B,Ys70e' Ert (P +m)
VEp+m o
X[sinBe ' %e'Eot 2P
V(- S):_M(O) e
P /Ep+m Xs/' +cosBpysyee P ],
where y, is an eigenspinor obrp with eigenvalues from  which upon reordering of terms gives the form quoted in
which we find expression4.4).
> V(—p,s)U(p,S)=y5yo(p+m), APPENDIX B: BOGOLIUBOV TRANSFORMATION AND
s TADPOLE DIAGRAM FOR INHOMOGENEOUS
SYSTEMS
ES: U(p,s)V(—p,s)=(p+m)ysyo. In this appendix we generalize the Bogoliubov transfor-

mations described in the homogeneous case to the case of
We note that the phasg,s appears in a combination such inhomogeneous condensates. Unlike the homogeneous case
that a shift in this phase can be compensated by a shift in th& which the generator of the Bogoliubov transformation cre-
origin of time, i.e., a time translation—t+t,d,s— Jps ates particle-antiparticle pairs of zero total momentum, in the
+2E,to. Since the square of the helicity matrix is the iden-inhomogeneous case the total momentum of the pair is non-
tity and the only odd function of3,s multiplies the mixed =~ 2€ro. _ . _
terms, we found that the simplest Bogoliubov transformation ~Consistent with perturbation theory we now find the cor-
that is required to cancel the initial time singularities is suchfesponding Bogoliubov transformation to lowest order in the
that the phasé,, is independent of and thaiB,s=32pB, so  Yukawa coupling, thus CY8ps=1, SiNBos™fos= O(9). Since
that the self-energy is already @?(g-), to lowest order we only
need to focus on the tadpole tedy(x,t).
COSfB,s=CO0SPy, The Bogoliubov transformation in lowest order reads
sinBps=2psing,. d3p’
, , _ b(p,s)=bb(p,8>+ffpssf(p,p’)dg
Such a choice has proven to be appropriate for removing (2m) 2,
the initial singularity for the full one-loop equations.

: . X(=p'.s"),
After some straightforward algebra, we find
— 3n7
iSp (t,x:t",x") = (Op| ¢(t, ) (1", X")|Op) to_ =_fd— X (o '
d3 d ( pvs) (277)32Ep’ Ps/s(p :p)bb(p 15)
p (XX i
= | —— @lip( ) Ept
f(zﬂy"zEpe' T eoshye +di(—p.s),
—sinBpe” ' ®2pysyoe S 1(p+m) with pss = O(g). With this choice the transformation leaves

the canonical anticommutation relations unchanged up to
terms of orderp’,. In order to compute the transformed
—sinﬂpe‘ 5p75702pe—iEpt’], (A3) Green functions we need the expectation values of bilinear
combinations of creation and annihilation operator. We find
Upon reordering of the terms we find the Green’s functionthe following expectation values that are necessary to com-
quoted in Eq(4.3. pute the Green’s functions:

X[ cospBye'Ee”
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3R

<0b|b(p.3)d(—p',5’)|0b>=JW‘;Ep”[—psr'sr(p”,p’)]<0b|bb(p.S)bE(p”.S")l0b>5ssr(2w)32Epé\3(p—p”)
—pss(P.P'),
(Op|b(p,5)b(p’,5")|0p) = (277)*2Ep 855 8°(P—P),
(0pld"(=p,s)d(—p’,5")[0p) =0,
(Opld'(=p,5)b'(p’,8")|0p) == pL (P’ ,P).-
(0pld(p’,s")d"(p,s)|0p) = (27)*2E( b5y 8°(P—P'),
(0p|b*(—p’,s")b(—p,s)|0p) =0,
(Opld(—p’,s")b(p,$)|0p) = pss (P.P"),
(0p|b"(p’,s")d"(=p,5)|06) = pZs(P".P).-
This yields the transformed Green'’s functions,

ISy (£,%:t",X") = (0p| (£, ) (1", X" )| Op)
I X— X —i d3p,
f(z )32E Pl U(p S)U(p s)e Ep(t=t) 2 f(2W)32E (277)32Ep’

X el (PP X% (p',p)V(—p,s)U(p’,s ) e B Eot)t oo (p,p" ) U(P,s)V(—p’,s')e!Ent TEpty

and

—iSy (11" X')=(0p|th(t",X") 4h(t,%)|Op)
dp i . — . , dp d3p’
— " Aip(x=x") _ _ —iEp(t—t")
2 f(Zw)32Epe V(=ps)V(—psje S+ 2 f(zw)32EJ(2w)32Ep,

X el PP'SIp% (p' p)V(—p,s)U(p’,s")e " Et Bt )t o (p,p")U(P,S)V(—p',s" )€ (Eat* Bt

to first order inpgy (p,p’).
Using these results we now can evaluate the tadpole graph in the inhomogeneous condensate. That is, the expectation value

of (Jw) which plays the T of an external current in the equation of motion. Inserting the above explicit expressions we find

Jb(t,x)zigtrsj(t x;t,x)

d3p/

x el PP’ )X{p’;s(p’ Pt [V(—p,s)U(p’ ,s’)]e“EP*EP’“pssf(p,p’)tr [U(p,s)V(—p’,s")]e Ept Bty

The traces over the spinors yield

trV(—p,s)U(p’,s")=U(p’,s")V(—p,s)

555’5[\/(Ep_m)(Ep’+m)+\/(Ep+m)(Ep’_m)]a (Bl)
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trU(p,s)V(—p’,s")=V(—p’,s)U(p,s)

= — S5 S[N(Ep—m)(Ep +m) +(Ep+m)(Ep —m)].
We see that the relevant part @fy (p,p’) contributing to Eq(B1) is odd ins and diagonal irss’. We therefore choose

SOsy
VEp,—m)(Epr+m)+(Ep+m)(Ep—m)

pss(P.P")=v(p,p")

Then,
d3p d3p d3p/
Jb(t.X)=4m9f (2m)2E, 2f (2m)%2E, ) (2m32E, ©

The first term is again space and time independent and is absorbed into a shift of the condensate. The second term displays
space and time dependence in a factored form. It will be used to compensate for the initial time singularities of the self-energy.

i(p—p/)X{,y* (pr 'p)e—i(Ep+ Ep)ty ,y(p'p/)ei(Ep-*— Epr)t}_

APPENDIX C: ANALYSIS OF THE SELF-ENERGY KERNEL

In this Appendix we provide the details for the various contributions to the self-energy. The integrals that enter in the
expression for the self-energy kernel can be related to the following one defined in dimensional regularization:

3—¢€
Qo= ¢ p 1 E.+E_
0’ (2m)® € 2E.E_ (E,+E_)>—q}
B d4—ep 1
2w [(p—al2?—m?+io][(p+9/2)°—m’+io]
m? }

m?+ a(1—a)(q2—qp)

1
LE-I—J daIn
0

1677

where we have introduced the shifted momemta=p 5 d® “p EL,E_+p.p_.—m?
+@/2 and energie&.. = \p2 +m’. L, is defined as l1(q ):f (2m)% € 4E.E_(E,+E.)

4 p? 10 dp (1 1
L.==—y+In . Sl I e
e 7T T 8 (27r)3—6(E+ TE
) q2 d3fep 1
We now consider the various integrals defined in Sec. VIII. “\mt (2m)3 € 2E,E_(E,+E_)"

In doing so we will shift the integration variable so that
p—p.=p+ag/2 andp’=p—qg—p_=p—0g/2. Then the nu-

merator arising from the Dirac trace takes the form The first integral, including the prefactor, is equal to
d3—sp 1 m2
1 2 -
E.E_+p.p-—m*=3(E,+E_)*=2[ m*+ qz : 2m? aE 322 bt
The second integral is the basic integtéd3,q?) at q3=0.
We then have Altogether we obtain
31(9%)=—89%1(q?), 3G =31(0)+ 22 1(0)+ A3, (g?),
with with
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S0)=—om2=T0 0 2
1 A € 3/
g2
31(0)=—62= 82 L.,
2 2 2
~ q g 1 m
2|2 1

(CD
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dp 1 1
(2m)° 2E,E_ (E, +E_)[(E.+E_)*+57]

[1(—s%0%)—1(0,0%)]

1 (1 m?+ a(1—a)q?
ZJ da|n 2 2 o\ -
167° Jo M-+ a(l—a)(q°+5s°)

We e

We proceed analogously for the second integral and finally
obtain

Here we have introduced the renormalization constants cor-

responding to a renormalization gt=0.
For 35(g?) we have

35(9%) =802 5(P),
with

(EL+E_)%12—2(m?+g?/4)
(E.+E_)?

3—¢€
2 _ p_ 1
|3(q )_f (27T)3—€ 4E+E,

This integral can be related to the integraqg,qz) and its
derivative with respect tg3, atqo=0. We find

S3(q?)=— 6Z+A34(P),

where 6Z has been defined in EQC1). The finite part is

= g (2 q°
AEg(q2)=—ﬁ Odaln l+a(l—a’)W}
2 2
¢ (L F) [, al-a
+27T2 m+4 fodamz-i-a(l—a)qz'

From the way in which we have introducéd in il andig

it is apparent that the covariant countertenf)‘ﬁs{zsﬂL a%d) in
the equation of motion will absorb these divergences.

2
o(s%,0%) = 272

1
m?+ 7 (g*+5%)

11
Odalg
m?+ a(1—a)q
m’+ a(1—a)(g°+s%)

2
XIn

a(l—a)
m’+ a(1—a)g?

2
g
m?+ —

+ 4

}. (C2
The « integrations can be performed analytically.

APPENDIX D: DETAILS OF THE ANALYTIC SOLUTION

We have obtained in section the solution of the equation
of motion and its solution via Laplace transform. We con-
sider at first the unrenormalized equation. The solution reads

_ S¢4(0)+ ¢hg(0)
l/’q(s)_ SZ+M2+q2+?T(SZ,q2),
so that
L [fiee Sq(0)+ g (0)
PaV= 200 ) .00 ey q*+0(s%.9%)

As usual[16,17] we shift the contour to the left so that fi-
nally it includes the cuts, and eventually poles, on the imagi-

We finally consider the Laplace transform of the sub-Narysaxis and a circle gis|—c around the left half, which

tracted self-energy kernel introduced in E@.1)
d’p 1
(2m)° 4E .E_

(EL+E_)%12—2(m?+g?/4)
(E4+E )[(E4 +E )?+57]

4(s%,0%) = —8g’s”

Comparing with the standard integrb(lqg,qz) we see that

besides the continuation to the Euclidean regiqﬁ\,—»—sz

does not contribute for positiveas the exponential exgt
tends to zero there. In doing so we make use of the causality
condition that there are no zeros in the left half of the com-
plex s plane, as required by causality. Along the cutsat
=iw with 2Jm?+ ?’<w<= we define the real and imagi-
nary parts of the kernér by the convention

Gl(io*e)%0°]=0r(— w?,0) i (~ 0% q%).

As o only depends os? this also fixes the relative signs of

we have additional denominators. These can be obtained viiie imaginary parts ot on the lower cut for which—o

subtraction. We have

<w<—2\m?+¢g?. We then obtain
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1 (=, _ i 0pg(0)+ pg(0)
— iwt q q
$o(t) 2 chldwe dlsc—wz—l—M2+p2+'&(—w2iie,q2)

—iwpg(0)+ pg(0)
w2+ M2+ p2+5'(—w21ie,q2) ’

b Jm(—i)dw e vldisc
27 ) o, -

with w.=2+/g%+m? for the two fermion cut. The spectral density is obtained from the discontinuity across the cut

1
0’ +M?+p?+3(— w’+i€,q?)

S(w,q)=idisc—

_ 2‘5.|(_w2’q2)
[~ 02+ MP PP+ TR(— 0 +i€,0)) P+ T (—wi+ie,q?)

(D1)

In the case in which the scalar particle is unstable, Me>2m there is a resonance above the fermion-antifermion
threshold and no support for the spectral density below thre$t6ld 7. However in the cas® <2m the scalar is stable and
cannot decay, now the spectral density has support abovbedodthreshold. Below threshold the spectral density is a delta
function at the position of the renormalized pole, to include the stable pole below the two particle threshold in the description
we now definew,=0" to distinguish that the origin is excluded from the integration region. The pole in the stable case is
obtained from the identity

o1—0
S(w,q) — T —w’+M2+p®+Tr(—w’+ie,q?)],

so that

©hg(0)51(— 0*,¢)
[~ 0’ +M?+p?+5r(— w’+i€,q) 1+ T (— 0’ +i€,q?)

2 o
dq() = p fo+dw coswt

+ 27 dwsinet $¢(0)7(— 0%
o Jo+ [_w2+M2+p2+'a'R(_w2+iE’qZ)]2+»&I2(_w2+i6'q2)_

(D2)

In order that this equation and its time derivative be consistett8at we have to require the sum rule

27 w7 (— w?,q%)
T o [Pt M PP oR(— 0Pt ie,qD) |2 A — 0l tie,q)

In order to derive this sume rule we require, as already mentioned above, that the denosiinafor M2+ o(s,g°) has no
zeros in the left half of the complex plane. We have to assume furthermor&tsag?) increases less strongly a$ as
|s|—< in the left half of the complex plane. Under these assumptions we have the identity

S

i P 9s P+MZ+5(s%,99) =0

if the integral is carried out along the contour enclosing the left half of the complex plane. The contour consists of an integral
along the left of the imaginarg axis and a semicircle as|=«. The latter one contributes

1 ds
imlcs
The integral along the imaginary axis is given by
1f"°d iw N —iw _2f°°d 0T (—w?,g°)
7)o | FHPAMIAG(— 02 —i0)  S+PHMIHT(— w2 H10)| 7 )u, |- @2t MZE PP o (— ol tie, )
(D3)

The two parts of the contour integral have to add up to zero, which yields the sum rule.
For the renormalized equation of motion we rewrite the result obtained in Sec. VII as
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joo+c

1 . 5 o 1 > >
G015 | ds| (5001 + B O)IF(S.07) + B(0) S o2 .

with

1+ A3 4(q?) +S5(s%,92)

Fl(sziqz): —_ - ’
S1+A33(0%) +T4(s%,9%) ]+ >+ M2+ A3 (s%,0%)

ES(Sziqz)

FZ(SZIqZ): ~ ~ '
SA1+AS4(q3) +T4(s%,99) ]+ P2+ M2+ A3 1 (9?)

The functionF(s?,g°) has analyticity properties analogous 2 (= 1

to the fraction 1/6>+ g+ M2+ ) considered above. In par- 0= ;f do—Im Fo(—w?+i0,q%)

ticular the discontinuities along the positive and negative “e

imaginary axis have the same relative signs, it has no singu-

larities in the left half of the complex plane, and the limiting which follows from analogous considerations, using that in
behavior ags|—« is 1/%. For the first property it is essen- this case the infinite semicircle does not contribute as the
tial to note thafr only depends on the square of the variableintegrand behaves assi/there.

s; see Eq.(C2). For the last property is sufficient to notice We next have to consider the term proportiona['ﬁ&(())

that7(s?,q%) behaves as I as|s|—, so the terms pro- and the second time derivative of E@4). From the renor-
portional toos dominate in numerator and denominator. Themalized equation of motiof6.2) att=0 we derive immedi-
function F,(s?,g%) has analyticity properties analogous to ately
those ofF,(s?,g?), and decreases asymptotically as?1/

The relative signs gf t?e imaginary parts along the cuts are
the same as foF(s%,q°). Collecting all terms we find o2+ M2+ AS (o)

1+A34(q)?

bq(0)=— ¢4(0) (D6)

©

sqv== [ 0w

@c

coswtpy(0)w IMmFy(—w?+i0,q%)
The second derivative of EgD4) att=0 reads

+sinwtdy(0)ImFy(— w?+i0,q%)

. 2 (=
54(0 340) === | dol gy(0) mFy(~ w?+i0,0?)
- %)cos(ut ImF,(—w?+i0,9%) |. (D4) ‘ T J o a
+w?dg(0)IMFy(— w?+i0,0%)].
For the consistency of the left and right hand sides and their

first derivatives with respect tbthe sum rule .
We express, on the right hand sidg,(0) by ¢4(0), using

Eqg. (D6). Then we can write the sum rule as

2 (= ,
1=;j dw o ImF(—w?+i0,9°) (D5)

has to be satisfied. It follows again by considering the inte-

2 o

1=—j do o Im| w?F(— 0?+i0,9%)
m J o

gral

1+A§3(q2)

L +F,(—w?+i0,g?) |. (D7)
2 2 S
= 3€dssa(s @) o2+ M2+ A3, (¢?)

along a closed contour around the left complex half planeThe expression in the square brackets can be written explic-
One needs, furthermore, itly as
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Os

— 021+ A3 .+ T)+ G2+ M2+AS, 2+ M2+AS,

1+A§rl

— 0A(1+AS;+T)+GP+M2+AS,

1+AS 4+,

P+M2+AS, -—w%1+A§3+aQ+qZ+M2+A§1

Only the imaginary part of this expression occurs in the integrand. So the first term on the right-hand side does not contribute,
and the second term is juBt . The sum rulgD7) reduces therefore to the first ofiB5).
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