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The real time nonequilibrium evolution of condensates in field theory requires an initial value problem
specifying an initial quantum state or density matrix. Arbitrary specifications of the initial quantum state~pure
or mixed! results in initial time singularities. These initial time singularities are of a different nature and
independent of the ultraviolet divergences which are removed by the usual renormalization counterterms. The
removal of the initial time singularities requires a specific choice of initial states. We study the initial time
singularities in the linearized equation of motion for the scalar condensate in a renormalizable Yukawa theory
in 311 dimensions. In this renormalizable theory the initial time singularities are enhanced. We present a
consistent method for removing these initial time singularities by specifying initial states where the distribution
of high energy quanta is determined by the initial conditions and the interaction effects. This is done through
a Bogoliubov transformation which is consistently obtained in a perturbative expansion. The usual renormal-
ization counterterms and the proper choice of the Bogoliubov coefficients lead to a singularity free evolution
equation. We establish the relationship between the evolution equations in the linearized approximation and
linear response theory. It is found that only a very specific form of the external source for linear response leads
to a real time evolution equation which is singularity free. We focus on the evolution of spatially inhomoge-
neous scalar condensates by implementing the initial state preparation via a Bogoliubov transformation up to
one loop. As a concrete application, the evolution equation for an inhomogeneous condensate is solved
analytically and the results are carefully analyzed. Symmetry breaking by initial quantum states is discussed.
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I. INTRODUCTION

The study of the real time dynamics and the evolution
nonequilibrium quantum states has now become ubiquit
in cosmology and high or intermediate energy physics.
cosmology the real time evolution of expectation values
quantum fields is a necessary component of a microsc
description of the inflationary dynamics and the subsequ
hot Friedmann-Robertson-Walker~FRW! stage ~big bang!
seeking to give a realistic description of the early unive
and the physical processes originated there. In the physic
heavy ion collisions a very active program seeks to estab
potential experimental signatures from possible nonequ
rium stages of the evolution of the quark-gluon and ch
phase transitions@1#. In cosmology a program that incorpo
rates consistently the nonequilibrium evolution of initi
quantum states or density matrices of thermal or nonther
origin including renormalization and back-reaction effe
had been pursued vigorously during the last few years@4,6–
8#. In high or intermediate energy the possibility of studyi
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the quark-gluon plasma and chiral phase transition at
forthcoming ultrarelativistic heavy ion colliders@BNL Rela-
tivistic Heavy Ion Collider~RHIC! and CERN Large Hadron
Collider ~LHC!# has motivated a substantial effort to stud
out of equilibrium dynamics during phase transitions. In p
ticular the formation of coherent pion domains@9#, the evo-
lution of nonequilibrium initial density matrices and states
high energy density@10#, and isospin condensates@11#. Non-
perturbative techniques had been developed to study co
tently nonequilibrium dynamics of quantum field theori
@3,4# and current computational facilities allow the possib
ity of studying the nonequilibrium dynamics of nonlinea
inhomogeneous configurations in quantum field theories@12#
including gauge theories@13,14#, for which recent lattice
simulations of nonequilibrium gauge field theories with t
pological excitations had recently been reported@15#.

The real time evolution of either density matrices or pu
states, or alternatively of matrix elements must be set up
an initial value problem, either by specifying the initial sta
or by providing the Cauchy data~expectation values of the
©2001 The American Physical Society23-1
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field and its time derivative! typically on spacelike hypersur
faces. Once this initial value problem has been set up
some initial time, the real-time evolution of the expectati
values or other matrix elements can be studied either ana
cally in the case of small amplitudes@16,17# or numerically
in the case of large amplitude configurations@3,10,12,14,15#
~although analytic expressions are available in some exte!.

An important but largely unnoticed subtlety arises in the
situations in that besides the usual ultraviolet divergen
associated with masses, couplings, and wave-function re
malizations there appear initial time singularities@18,19#.
The physical reason for these initial time singularities can
understood as follows: the initial state~either pure or mixed!
is typically chosen to reflect some physical description
generally is either some initial pure excited state with fr
field quanta or a thermal density matrix for free field theo
The choice of the initial state~including the field expectation
value and its time derivative! has been essentially arbitrar
and in particular independent of the field Hamiltonian. T
time evolution with the interacting Hamiltonian sudden
couples at the initial time the infinite number of degrees
freedom of the theory, redistributing the spectral densities
the case in which the underlying theory is renormaliza
this redistribution of the spectral densities results in a div
gent response. Such effect is also present on systems w
finite number of degrees of freedom but it is then finite.

The consideration of singularities associated with sett
up initial conditions in a quantum field theory has been
dressed originally by Stueckelberg@2#, the similarity with
sharp boundary conditions in a Euclidean formulation h
been studied by Symanzik@20# and has since found differen
possible solutions@2,6,18,19,21#.

It is important to emphasize that these initial time sing
larities are different from the usual ultraviolet divergenc
common in quantum field theories and are not cured by
renormalization counterterms associated with the remova
the ultraviolet divergences. These initial time singularit
require a very different treatment for their resolution th
hinges upon a judicious choice of initial states that includ
the effects of the interactions.

A very appealing method to prepare initial states that le
to evolution equations without initial time singularities h
been recently advocated@18,19# for self-consistent real-time
evolution. This method consists in defining an initial state
a Bogoliubov transformation of the initial states in a fr
field theory. The Bogoliubov transformation is chosen
cancel the initial time singularities. The advantage of t
method is that it is physically transparent and can be imp
mented both for small amplitude, i.e., the linearized proble
as well as for the large amplitude case which must be n
essarily studied numerically.

In this article we focus on studying these initial time si
gularities and their resolution via the method of a Bogol
bov transformed initial state in a renormalizable theory in
case of small amplitudes of the scalar condensate. This
allows to obtain the evolution equations in a linearized
proximation with an analytical solution to the evolution. Fu
thermore, we establish the correspondence between
method and linear response theory for the case of linear
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equations of motion of condensates. An important coroll
of this correspondence is that only very specific choices
the external source in the linear response approach lead
singularity free initial value problem. We choose to study t
initial value problem for the evolution of a scalar field co
densate in a Yukawa theory in 311 dimensions both for
homogeneous as well as for inhomogeneous condens
Whereas in@18,19# the homogeneous case has been stud
in a self-consistent manner and the linearized approxima
has been extracted from it, theinhomogeneouscase has not
been studied, and hence we devote our attention mainl
this important case. In a renormalizable theory the init
time singularities are enhanced and new infinities associ
with the preparation of the initial state emerge, this situat
is highlighted in the renormalizable Yukawa theory which
the focus of our study.

Main results. ~i! The main results of our study can b
summarized as follows: we show that the initial value pro
lem in renormalizable quantum field theories is well defin
and free of initial time singularities provided we apply a
appropriate Bogoliubov transformation to the initial sta
The initial data specifies the expectation value of the or
parameter, i.e., the condensate and its time derivative a
initial time and the Bogoliubov coefficients required
specify the initial state. In order to eliminate the initial tim
singularities, the Bogoliubov coefficients are constrained
behave in a precise manner for high momentum mod
More precisely, the 1/p and 1/p3 contributions to the Bogo-
liubov coefficients for a mode of momentump are uniquely
fixed by the initial data, the coupling and the mass~Sec. IV!.
Choices of Bogoliubov coefficients that differ by contrib
tions in 1/p of order higher than 1/p3 define different initial
states, all of them free of initial time singularities. Thus, t
time evolution of an initial state in quantum field theory
free of initial time singularities provided that the high ener
distribution of quanta of the initial state is specified in a ve
precise manner.

This method is implemented consistently in the pertur
tive expansion and in combination with the usual renorm
ization of mass, wave-function and coupling leads to a re
time evolution free of ultraviolet and initial time
singularities.~ii ! As an example we study the real-time ev
lution of an inhomogeneous scalar condensate in the Yuk
theory, both in the case in which the scalar is heavy and
decay into fermion-antifermion pairs, and in the case
which the scalar is light and cannot decay into fermion pa
Here we provide a detailed analysis of the real time evo
tion of an inhomogeneous scalar condensate correspon
to a spherical wave.

The article is organized as follows. In Sec. II we obta
the equations of motion for a scalar condensate. In Sec
we analyze the ultraviolet and initial time singularities. F
simplicity we present first the case of a homogeneous sc
condensate. Section IV introduces the Bogoliubov tra
formed initial state in the case of a homogeneous condens
discusses in detail the choice of the Bogoliubov coefficie
that lead to an evolution free of initial time singularities a
presents the singularity free real-time equations of mot
for the homogeneous case. In Sec. V we establish a rela
3-2
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between the initial value problem in the linearized appro
mation and linear response and discuss the constraints o
external sources that lead to a well defined initial value pr
lem free of singularities. In Sec. VI we extend the treatm
to the case of inhomogeneous scalar condensates, obta
corresponding inhomogeneous Bogoliubov transforma
consistently in perturbation theory and the equations of m
tion free of singularities to one-loop order. In Sec. VII w
obtain an analytic solution of the real-time equations of e
lution for an inhomogeneous scalar condensate. We also
vide a numerical analysis of the solution and discuss its m
features. The conclusions summarize our work and discu
the potential applications of the methods presented.

The Bogoliubov transformation of the tadpole and se
energy diagrams is presented in the Appendixes A–C. F
thermore, Appendix D establishes several sum rules on
spectral densities

II. LINEARIZED EQUATIONS OF MOTION FOR
CONDENSATES

Although the initial time singularities that will be dis
cussed in this article are generic features of initial va
problems in field theory, they are highlighted in renormal
able theories. Therefore we choose to discuss these singu
ties and their resolution in a Yukawa theory in 311 dimen-
sions. The focus of this article is to understand the proble
of setting up an initial value problem to describe the no
equilibrium evolution of condensates or field expectat
values in the linearized~small amplitude! approximation.
Furthermore, we compare with an alternative formulat
based on linear response.

We consider a massive scalar fieldF(x) coupled to a
massive Dirac fieldc(x) in a Yukawa model specified by th
Lagrangian density

L~F,c,c̄ !5
1

2
]mF~x!]mF~x!1

1

2
M2F2~x!

1c̄~x!@ i ]”1m1gF~x!#c~x!. ~2.1!

We study the time evolution of the expectation value of
scalar field via the real time generating functional in terms
a path integral defined on a contour in complex time~CTP!
@22,23#. The effective Lagrangian that enters in the conto
path integral is

Leff5L~F1,c1,c̄1!2L~F2,c2,c̄2!,

where the6 labels on the fields refer to the forward~1! and
backward~2! branches corresponding to the forward a
backward time evolution of the initially prepared density m
trix. We now follow the procedure of references@16,17# and
use the tadpole method to obtain the equation of motion
the expectation value of the scalar field

f~x![^F~x!&

and write

F6~x!5x6~x!1f~x!; ^x6~x!&50.
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We specify the initial data at the timet050 by giving the
initial condition,

f~x,0![f~x! and ḟ~x,0![ḟ~x!.

Let us consider that the initial density matrix at timet050 is
given by

r~0!5u0&^0u

with u0& the free field Fock vacuum for the scalar and fe
mion fields. Fort.0, r(t)5e2 iHtr(0)eiHt whereH is the
full Hamiltonian. This case is tantamount to considering
initial free field vacuum state and switching-on the intera
tion suddenly att50.

The equation of motion forf(x,t) is obtained in a sys-
tematic perturbative expansion by imposing that^x6(x,t)&
50 to all orders in perturbation theory. We will restrict ou
study to the case of small amplitudes of the condensate
will obtain the equations of motionlinearizedin f(x,t). In
this linear approximation the self-energy kernel is obtain
to any desired order in a perturbative expansion in
Yukawa coupling but in the state withvanishing condensate.
Thus assuming that the state with vanishing condensat
spatially translational invariant it is convenient to perform
spatial Fourier transform for the condensate and the s
energy kernel@16,17#. Anticipating renormalization effects
we introduce the renormalized field and mass in the Lagra
ian before shifting the field by the condensate

F~x!5AZfFR~x!; ZfM25MR
21dM2.

Since the fermionic fields will be integrated out to obta
the equation of motion for the expectation value of the sca
field, we do not introduce the renormalizations associa
with the fermionic fields. We now drop the subscriptR from
the renormalized quantities to avoid cluttering of notatio
with the understanding that the scalar field and its mass
the renormalized ones.

The equation of motion for the spatial Fourier transfo
of the condensate

fq~ t ![E d3x e2 iq•xf~x,t !,

to one loop order is given by~see Ref.@17# for details!

~11dZ!@f̈q~ t !1q2fq~ t !#1~M21dM2!fq~ t !

1E
0

t

dt8(q~ t2t8!fq~ t8!2J50, ~2.2!

with dZ5Zf21 and

J52 igdq,0E d3k

~2p!3 tr Sk
.~ t,t !, ~2.3!

(q~ t2t8!52 ig2E d3p

~2p!3 tr@Sp
.~ t2t8!Sp2q

, ~ t82t !

2Sp
,~ t2t8!Sp2q

. ~ t82t !#. ~2.4!
3-3
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The contributionJ is due to the fermion tadpole, it is usual
absorbed in a constant shift of the fieldf(x). The fermionic
Green’s functions in the vacuum state are given by@17#

Sp
.~ t,t8!52 i E d3x e2 ip•x^c~x,t !c̄~0,t8!&

52
i

2Ep
@e2 iEp~ t2t8!~p”1m!

1eiEp~ t2t8!g0~p”2m!g0#,

Sp
.~ t,t8!5 i E d3x e2 ip•x^c̄~0,t8!c~x,t !&

5
i

2Ep
@e2 iEp~ t2t8!~p”1m!

1e2 iEp~ t2t8!g0~p”2m!g0#,

Ep5Ap21m2.
04502
III. ULTRAVIOLET RENORMALIZATION AND INITIAL
TIME SINGULARITIES

The evolution equation of the type~2.2! contains two
types of divergences:~i! ultraviolet divergences which ar
removed by the mass and wave function renormalizatio
~ii ! initial time singularities.

To illustrate these singularities in a more clear manner
now focus on the case of homogeneous condensate, i.q
50. We find

(0~ t2t8!522g2E d3p

~2p!32Ep

8p2

2Ep
sin@2Ep~ t2t8!#,

J524mgE d3p

~2p!32Ep
. ~3.1!

WhereasJ acts as a constant source term and can be
sorbed in a shift of the expectation valuef(x), the self-
energy kernel leads to ultraviolet divergences as can be
upon integrating by parts the nonlocal term in Eq.~2.2! three
times
-

n is

gularities
E
0

t

dt8 (0~ t2t8!f0~ t8!52g2E d3p

~2p!32Ep

8p2

Ep
E

0

t

dt8 sin@2Ep~ t2t8!#f0~ t8!

52g2E d3p

~2p!32Ep

8p2

Ep
H 1

2Ep
f0~ t !2

1

2Ep
f0~0!cos~2Ept !2

1

~2Ep!2 ḟ0~0!sin 2Ept

2
1

~2Ep!3 f̈0~ t !1
1

~2Ep!3 f̈0~0!cos 2Ept1
1

~2Ep!3 E
0

t

dt8 cos@2Ep~ t-t8!#f̂0~ t8!J .

Using dimensional regularization the coefficient off0(t) becomes

2dM252g2E d3p

~2p!32Ep

4p2

Ep
2 5

3g2m2

4p2 F2

e
2g1

1

3
1 ln

4pm2

m2 G .
This agrees with the expression obtained by evaluation the corresponding Feynman graph in 42e dimensions. The renormal
ization is performed here atq250.

The coefficient proportional tof̈0(t) is the wave function renormalization which again in dimensional regularizatio
given by

2dZ5g2E d3p

~2p!32Ep

p2

Ep
4 5

g2

8p2 F2

e
2g2

2

3
1 ln

4pm2

m2 G .
These ultraviolet renormalizations are cancelled by the mass and wave function counterterms but there still remain sin
arising from the terms that are evaluated at the initial timet50, these are given by

F E
0

t

dt8(0~ t2t8!f0~ t8!GU
sing

52g2E d3p

~2p!32Ep

8p2

Ep
H 2

1

2Ep
f0~0!cos 2Ept2

1

~2Ep!2 ḟ0~0!sin 2Ept

1
1

~2Ep!3 f̈0~0!cos 2EptJ .
3-4
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Obviously this expression is singular ast→0. Simple
power counting shows that the coefficients off0(0), ḟ0(0),
and f̈0(0) diverge as 1/t2, 1/t, and logt, respectively. At
finite t they are finite due to the oscillatory behavior of t
integrand.

The physical reason for these singularities is the follo
ing: having prepared the initial state to be the free field Fo
vacuum and switching-on the interaction suddenly at the
tial time t50, the interaction redistributes the spectral de
sity of fields. The scalar field states overlap with the ferm
onic continuum of states and the particles become dresse
the interaction. This dressing effect which is responsible
mass, wave function and coupling renormalizations occ
suddenly when the interaction is switched on and is reflec
as an initial time singularity. Obviously these short time s
gularities will be present at finite temperature or density, a
are a consequence of the fact that the the underlying fi
theory possesses an infinite number of degrees of freed

Our main point in this article is that these initial tim
singularities can be removed and an initial value problem
be defined consistently and free of singularities by consid
ing an appropriately chosen initial state that is dressed by
interactions. We thus propose to initialize the real time e
lution by providing an initial state that includes the dress
as a Bogoliubov transformation from the free field Fo
states. Furthermore we will argue that this construction le
to a consistent initial value problem for real-time dynam
and can be implemented systematically order by orde
perturbation theory.

We now discuss in detail this procedure in the exam
under consideration to lowest order in the Yukawa coupli

IV. EQUATIONS OF MOTION WITH BOGOLIUBOV
TRANSFORMED STATES: HOMOGENEOUS CASE

In this section we introduce the Bogoliubov transform
states and show explicitly how the introduction of the
dressed states provides a solution to the problem of in
time singularities. For the sake of clarity we study first t
homogeneous caseq50 and postpone to a later section t
generalization to inhomogeneous condensates.

From the free field Fock vacuum stateu0& a Bogoliubov
transformed state is obtained after a unitary transformati

u0b&5e2Qu0&,

with Q an anti-Hermitian operator. Bogoliubov transform
operators are defined via

Ob5exp~2Q!O exp~Q!,

therefore if the vacuum stateu0& is annihilated by the destruc
tion operators, the Bogoliubov transformed annihilation o
erators annihilate the stateu0b&.

To lowest order in the Yukawa coupling the Bogoliubo
transformation that required to cancel the initial time sing
larities only involve fermionic fields. Only when scalar co
tributions in higher order corrections arise there will be
need to introduce the Bogoliubov transformation for sca
fields.
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Therefore we introduce the antihermitian operatorQ that
generates the unitary Bogoliubov transformation

Q5(
s
E d3p

~2p!32Ep
bps@d†~2p,s!b†~p,s!eidps

2b~p,s!d~2p,s!e2 idps#,

whereb(p,s) andd(p,s) are annihilation operators for fer
mions and antifermions, respectively andb†(p,s) and
d†(p,s) are creation operators for fermions and antifermio
respectively. Thec-number functionbps anddps will be cho-
sen such that the initial time singularities are removed.

This generator of Bogoliubov transformations illuminat
at once the nature of the Bogoliubov transformed init
states. Acting on the free field Fock vacuum state, the Bo
liubov transformation leads to a state that is a linear com
nation of particle-antiparticle pairs of total zero momentu
The fact that the total momentum of these pairs is zero is
course a result of the fact that the scalar condensate is
mogeneous.

The commutators ofQ with the fermionic creation and
annihilation operators are given by

@Q,b~p,s!#5bps eidpsd†~2p,s!,

@Q,d†~2p,s!#52bps e2 idps b~p,s!,

which leads to the following relation between the tran
formed and the original operators:

b~p,s!5cosbp,s bb~p,s!1sinbp,s eidp,sdb
†~2p,s!,

d†~2p,s!52sinbp,s e2 idp,sbb~p,s!1cosbp,sdb
†~2p,s!.

~4.1!

The operatorsb(p,s), d(p,s) as well asbb(p,s), db(p,s)
obey the usual canonical anticommutation relations.

The initial density matrix is now given by

rb~0!5e2Qr~0!eQ5u0b&^0bu. ~4.2!

Although we have focused on a pure~vacuum! state, ob-
viously this can be easily generalized to thermal or nonth
mal mixed states.

In Appendix A we provide the details that lead to th
following Green’s functions in the Bogoliubov transforme
states.

With this restriction the transformed Green function b
comes
3-5
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iSb
.~ t,x;t8,x8!5^0buc~ t,x!c̄~ t8,x8!u0b&

5E d3p

~2p!32Ep
eip~x2x8!@cos2 bp~p”1m!e2 iEp~ t2t8!2sinbp cosbpeidp(p̂~p”1m!g5g0e2 iEp~ t1t8!

2sinbp cosbpe2 idp(p̂g5g0~p”1m!eiEp~ t1t8!1sin2 bpg5g0~p”1m!g5g0eiEp~ t2t8!#,

and

2 iSb
,~ t,x;t8,x8!5^0buc̄~ t8,x8!c~ t,x!u0b&

5E d3p

~2p!32Ep
eip~x2x8!@sin2 bp~p”1m!e2 iEp~ t2t8!1sinbp cosbpeidp(p̂~p”1m!g5g0e2 iEp~ t1t8!

1sinbp cosbpe2 idp(p̂g5g0~p”1m!eiEp~ t1t8!1cos2 bpg5g0~p”1m!g5g0eiEp~ t2t8!#. ~4.3!
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Perhaps the most striking feature of these Green’s fu
tions is their lack of time translational invariance, the ma
reason is that the Bogoliubov transformed states are
eigenstates of the bare particle number. We note that in
terms with t1t8 a translation of the time variables can b
compensated by a change in the phasedp , i.e., a gauge trans
formation of the fermionic fields.

It is this lack of time translational invariance that w
allow to cancel the initial time singularities as shown expl
itly below.

The evolution equation is obtained in the same manne
in the previous section and is exactly of the same form as
~2.2! with q50 as befits the homogeneous case, with
self-energy and tadpole kernels now given by the exp
sions~2.3!, ~2.4! but in terms of the Bogoliubov transforme
Green’s functions

Jb~ t !52 ig tr Sb
.~ t,x;t,x!

52gE d3p

~2p!32Ep
@4m cos 2bp

2~24p!sin 2bp cos~2Ept2dp!# ~4.4!

and

(b,0~ t,t8!522g2E d3p

~2p!32Ep

1

2Ep
$8p2 cos~2bp!

3sin@2Ep~ t2t8!#28pmsin~2bp!

3@sin~2Ept2dp!2sin~2Ept82dp!#%.

~4.5!

The first, time independent contribution toJb(t) in Eq.
~4.4! can be absorbed into a constant shift of the conden
much in the same way as in the untransformed case.
second, time dependent term will be used to cancel the in
time singularities.

The self-energy kernel~4.5! can be written asS0(t2t8)
1DSb,0(t,t8) with S0(t2t8) given by Eq.~3.1! and
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D(b,0~ t,t8!522g2E d3p

~2p!32Ep

1

2Ep
$8p2~cos 2bp21!

3sin@2Ep~ t2t8!#28pmsin 2bp

3@sin~2Ept2dp!2sin~2Ept82dp!#%.

We will assume in the following thatbp decreases suffi-
ciently fast withp so that terms proportional to sin 2bp and
cos(2bp)21 lead to convergent integrals. This in fact will b
checkeda posteriori when we find the required expressio
for bp below. Then the ultraviolet divergences in Eq.~4.5!
are the same as in the perturbative vacuum.

Integrating by parts now three times int8 in order to
single out the ultraviolet and equal-time singularities fro
Sb,0(t,t8) in the equation of motion, we find that just as
the untransformed case the ultraviolet divergences pro
tional tof0(t) andf̈0(t) are cancelled by the mass and wa
function renormalization counterterms~up to finite parts de-
pending on the renormalization prescription!.

The terms that result in initial-time singularities aris
from

F E
0

t

dt8(b,0~ t2t8!f0~ t8!GU
sing

52g2E d3p

~2p!32Ep

8p2

Ep
H 2

1

2Ep
f0~0!

3cos 2Ept2
1

~2Ep!2 ḟ0~0!sin 2Ept

1
1

~2Ep!3 f̈0~0!cos 2EptJ cos 2bp .

We now require that these terms be cancelled by the t
dependent terms ofJb(t), Eq. ~4.4!. This requirement leads
to the equation
3-6
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tan 2bp cos~2Ept2dp!

5g
2p

Ep
H 2

1

2Ep
f0~0!cos 2Ept2

1

~2Ep!2 ḟ0~0!

3sin 2Ept1
1

~2Ep!3 f̈0~0!cos 2EptJ .

Comparing the terms proportional to the sine and cosine
find two equations that determinedp ,bp . These equations
can be solved perturbatively with

bp5b1,pg1b2,pg21O~g3!.

To one loop order we only need to keep the linear term ig
leading to

bp cosdp5g
p

Ep
F2

1

2Ep
f0~0!1

1

~2Ep!3 f̈0~0!G ,
bp sindp5g

p

Ep
F2

1

~2Ep!2 ḟ0~0!G . ~4.6!

At this stage we recognize that there is freedom in cho
ing the Bogoliubov parameters to cancel the initial time s
gularities. The initial value problem will be free of singular
ties by choosing the coefficientsbp ;dp so as to cancel the
terms proportional to 1/p,1/p3 and so thatbp vanishes asp
→`.

Different choices of the Bogoliubov parameters that dif
only in higher inverse powers of the momenta lead to diff
ent initial quantum states, but the initial value problem is fr
of initial singularities. This freedom is similar to choosin
renormalization counterterms including finite parts, i.e., d
ferent renormalization prescriptions.

Now the Bogoliubov correction and the mass and wa
function renormalization counter terms remove exactly
ultraviolet and initial time divergences from the equation
motion. To lowest order we can setbp50 in the self-energy
in the equation of motion and having removed all ultravio
and initial time singularities and absorbing the time indep
dent contribution from the tadpole term in a constant shift
the condensate, we finally obtain the evolution equation
the case of the homogeneous condensate

f̈0~ t !1M2f0~ t !1E
0

t

dt8 (s~ t2t8!f̂0~ t8!50, ~4.7!

whereSs(t2t8) is the subtracted self-energy kernel

(s~ t2t8!52g2E d3p

~2p!32Ep

p2

Ep
4 cos@2Ep~ t2t8!#.

~4.8!

The equation of motion above should be compared to E
~7.21! and ~7.22! in @19#. The equation of motion obtaine
there differs from Eq.~4.7! by a finite renormalizationDZ
that corresponds to a different renormalization scheme
otherwise the equations are the same up to one loop ord
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V. LINEAR RESPONSE THEORY

The initial value problem can be obtained by establish
direct contact with linear response theory as presented
Ref. @24# in the case of scalar condensates and in Ref.@25#
for fermionic coherent states. This is achieved by coupl
an external sourceterm to the scalar field in the Lagrangia
density~2.1!

L@F,c,c̄#→L@F,c,c̄#1Jext~x!F~x!.

The expectation value of the scalar field induced by t
source term is given by

^F~x!&5 i E dx8 Jext~x8!@^F1~x!F1~x8!&

2^F1~x!F2~x8!&#, ~5.1!

where the superscripts6 refer to the forward and backwar
time branches in the real time generating functional. T
bracket in Eq.~5.1! is the retarded commutator. As discuss
in detail in Ref.@24# the inversion of Eq.~5.1! gives rise to
the equation of motion for the scalar field with an inhom
geneity given by the external source term. Following t
same steps detailed in the first section, we find the equa
of motion for an homogenous condensate to be given by

~11dZ!f̈0~ t !1~M21dM2!f0~ t !

1E
2`

t

dt8 (0~ t2t8!f0~ t8!2J5Jext,0~ t !,

which differs from Eq.~2.2! in the lower limit in the nonlo-
cal term with the self-energy. Assuming adiaba
switching-on of the interaction fromt52` we can now
rewrite this equation of motion in a form that is closer to E
~2.2! by integrating by parts the nonlocal term. Defining,

(0~ t2t8!5
d

dt8
(1,0~ t2t8!

5
d2

dt82 (2,0~ t2t8!

5
d3

dt83 (3,0~ t2t8!

and integrating by parts we obtain

~11dZ!f̈0~ t !1~M21dM2!f0~ t !1(1,0~0!f0~ t !

2(2,0~0!ḟ0~ t !1(3,0~0!f̈0~ t !

1E
2`

t

dt8 (s,0~ t2t8!f̂0~ t8!2J5Jext,0~ t !,

with Ss,0(t2t8) given by Eq.~4.8!. Using the explicit form
of S0(t) given by Eq.~3.1! we find
3-7
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(1,0~0!52g2E d3p

~2p!32Ep

4p2

Ep
2 52dM2, ~5.2!

(2,0~0!50,

(3,0~0!5g2E d3p

~2p!32Ep

4p2

Ep
4 52dZ. ~5.3!

Therefore the specific choice of external current

Jext~ t !5E
2`

0

dt8 (s~ t2t8!f̂0~ t8! ~5.4!

leads to the initial value problem described by Eq.~4.7!.
This current depends on the past history of the cond

sate, and in generaldoes not vanish for t.0 as it would be
desirable from the point of view of linear response. In line
response the initial value problem is envisaged to be p
pared by switching-on an external source and the interac
adiabatically fromt52`. The external source acts as a L
grange multiplier, slowly displacing the condensate to
value to be determined att50, and switching-off the source
suddenly at this time. This allows the condensate to
formed and dressed over a very long period of time. T
dressed condensate is then released when the external c
is switched-off. However, in an interacting renormalizab
theory this instantaneous switching-off of the external c
rent results in singularities. To set up a consistent, singula
free and renormalized initial value problem as is the goa
this article, the choice of the current~5.4! is the one that
establishes contact with a linear response formulation, in
case the current depends on the past history of the con
sate, which obviously need not be specified for an ini
value problem. On the other hand, such a choice of curr
depending on the past history is rather artificial from t
linear response point of view.

We note that the current can be made to vanish at
times with the particular choice

f0~ t !5f0~0!1ḟ0~0!t1
1

2
f̈0~0!t2

for t,0. Obviously this behavior manifests the problem
the initial time singularities as singularities in the behavior
the field at a remote past.

An alternative would be to assume that the exter
source and therefore the condensate is adiabatic
switched-on with a damping factoreet for t,0 but this re-
sults indiscontinuitiesin the first or second derivatives att
50 and that would produce additional contributions from t
integration by parts from these discontinuities.

There are two main conclusions of this discussion on
relationship with linear response.

We have established a direct relationship between
evolution equations in the linearized approximation and
ear response theory. The initial value problem free of U
and initial time singularities is shown to be obtained in t
context of linear response through a particular choice of
external current. Such external current depends on the
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history of the condensate and only a very specific form fo
leads to a singularity free initial value problem. From t
perspective of an initial value problem in which Cauchy da
are specified at some given initial time on a spacelike hyp
surface this is a consistent choice. However, from the po
of view of linear response this choice is somewhat artific
The resulting external currentdoes not vanishfor t.0. If we
instead require an instantaneous switching-off of the exte
current att50, initial time singularities become unavoidabl

The method of preparing a dressed initial state via a B
goliubov transformation leads to a satisfactory description
the initial value problem. The usual mass, wave functio
and coupling constant renormalization counterterms can
the ultraviolet divergences, and the Bogoliubov coefficie
are judiciously chosen to cancel the initial time divergenc
consistently in perturbation theory. To lowest order in t
Yukawa coupling and for a homogenous condensate su
choice is given by Eq.~4.6!.

Having studied in detail the simpler case of the homo
neous condensate, we now move on to our main point,
study of the evolution of inhomogeneous condensates.

VI. EQUATIONS OF MOTION FOR INHOMOGENEOUS
CONDENSATES

The equation of motion for nonhomogeneous condens
in the amplitude approximation and in terms of spatial Fo
rier transforms reads

~11dZ!@f̈q~ t !1q2fq~ t !#1~M21dM2!fq~ t !

1E
0

t

dt8 (q~ t,t8!fq~ t8!1Jb,q~ t !50.

From the discussions of the previous sections we h
learned that the Bogoliubov coefficients that define
dressed states at the initial time can be found consistentl
perturbation theory. Since the self-energy is already of s
ond order in the Yukawa coupling we will not need to co
sider the Bogoliubov corrections to the self-energy, but o
to the tadpole termJbq(t).

The one-loop self-energy is therefore the usual one
given by

i (q~ t2t8!54g2E d3p

~2p!32Ep2Ep2q

3@Ep1Ep2q1p~p2q!2m2#~22i !

3sin@~Ep1Ep2q!~ t2t8!#. ~6.1!

The derivation of the tadpole diagram that determin
Jb,q(t) using the Bogoliubov-transformed Green functions
given in Appendix B. We find

Jb,q~ t !54mgE d3p

~2p!32Ep

22E d3p

~2p!32Ep2Ep2q
@g* ~q,p!e2 i ~Ep1Ep2q!t

1g~q,p8!ei ~Ep1Ep2q!t#.
3-8
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The functiong(q,p) is a function related to the angles of the Bogoliubov transformation, that will be specified below su
to remove the initial time singularities.

The analysis of the singular and divergent contributions in the equation of motion proceeds as in the homogeneo
performing three integrations by parts with respect to the time in the nonlocal term, we find

E
0

t

dt8 sin@~Ep1Ep2q!~ t2t8!#fq~ t8!5
fq~ t !

Ep1Ep2q
2

fq~0!

Ep1Ep2q
cos@~Ep1Ep2q!t#2

ḟq~0!

~Ep1Ep2q!2 sin@~Ep1Ep2q!t#

2
f̈q~ t !

~Ep1Ep2q!3 1
f̈q~0!

~Ep1Ep2q!3 cos@~Ep1Ep2q!t#

1
1

~Ep1Ep2q!3 E
0

t

dt8 cos@~Ep1Ep2q!~ t2t8!#f̂q~ t8!.

The parts containingfq(0) and its derivatives lead to initial time singularities in the equation of motion, these can be is
by writing

F E
0

t

dt8 (q~ t2t8!fq~ t8!G
sing

528g2E d3p

~2p!32Ep2Ep2q
@EpEp2q1p~p2q!2m2#@t~q,p!e2 i ~Ep1Ep2q!t

1t* ~q,p!ei ~Ep1Ep2q!t#

with

t~q,p!5
1

2
F2

fq~0!

Ep1Ep2q
1 i

ḟq~0!

~Ep1Ep2q!2 1
f̈q~0!

~Ep1Ep2q!3G ;

note thatfq(0)5f2q* (0). With thechoice

g~q,p!524g@EpEp2q1p~p2q!2m2#t* ~q,p!

the currentJb,q(t) exactly cancels the initial time singularities in the nonlocal term with the self-energy. As in the hom
neous case, the currentJb,q(t), which is a Fourier transform of̂c(x)c(x8)& is nonvanishing.

The ultraviolet divergent contributions of the self-energy to the equation of motion are given by

F E
0

t

dt8 Sq~ t2t8!fq~ t8!G
UV div

528g2 E d3p

~2p!32Ep2Ep2q
@EpEp2q1p~p2q!2m2#F fq~ t !

Ep1Ep2q
2

f̈q~ t !

~Ep1Ep2q!3G
5S1~q2!fq~ t !1S̃3~q2!f̈q~ t !.

Here we define the UV divergent parts of the self energy kernel in dimensional regularization as

S̃1~q2!528g2 E d32ep

~2p!32e

EpEp2q1p~p2q!2m2

4EpEp2q~Ep1Ep2q!
,

S̃3~q2!58g2 E d32ep

~2p!32e

EpEp2q1p~p2q!2m2

4EpEp2q~Ep1Ep2q!3 .

These expressions have to be regularized to obtain the renormalized equation of motion. This is discussed in
Appendix C. The singular and ultraviolet divergent parts are cancelled by the appropriate choice of the mass and wave
renormalization and the Bogoliubov coefficient in the tadpole. The final form of the subtracted self-energy kernel is g

Ss,q~ t2t8!528g2 E d3p

~2p!32Ep2Ep2q

EpEp2q1p~p2q!2m2

~Ep1Ep2q!3 cos@~Ep1Ep2q!~ t2t8!#.

It follows from rotation invariance that the kernelSs,q(t) only depends onq2.
The equation of motion in momentum space becomes
045023-9
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@11dZ1S̃3~q2!#f̈q~ t !1@q2~11dZ!1M21dM21S̃1~q2!#fq~ t !1E
0

t

dt8S̃s,q~ t2t8!f̂q~ t8!50.

We show in Appendix C that we can decomposeS̃1(q2) and S̃3(q2) as

S̃1~q2!52dM22q2dZ1DS̃1~q2!, S̃3~q2!52dZ1DS̃3~q2!.

The divergent and finite parts are explicitly given in Appendix C. We finally obtain the renormalized equation of motion
is free from ultraviolet and initial time singularities

@11DS̃3~q2!#f̈q~ t !1@q21M21DS̃1~q2!#fq(t)E
0

t

dt8S̃s,q~ t2t8!f̂q~ t8!50, ~6.2!

where

S̃s,q~ t2t8!528g2 E d3p

~2p!34EpEp2q

EpEp2q1p~p2q!2m2

~Ep1Ep2q!3 cos@~Ep1Ep8!t#. ~6.3!

VII. SOLUTION OF THE EQUATION OF MOTION: NUMERICAL ANALYSIS

We have derived in the previous section the renormalized equation of motion. It can be solved in a standard
Laplace transform. We introduce

c̃q~s!5E
0

`

dt e2stfq~ t !

for the condensate, and

s̃s~s2,q2!5s E
0

`

dt e2stS̃s,q~ t !

for the self-energy@26#. We find

s̃s~s2,q2!528g2s E
0

`

dt e2st E d3p

~2p!34EpEp2q

EpEp2q1p~p2q!2m2

~Ep1Ep2q!3 cos@~Ep1Ep2q!t#

528g2s2 E d3p

~2p!34EpEp2q

EpEp2q1p~p2q!2m2

~Ep1Ep2q!3@~Ep1Ep2q!21s2#
. ~7.1!

The Laplace transformed renormalized equation of motion becomes

$s2@11DS̃3~q2!1s̃s~s2,q2!#1q21M21DS̃1~q2!%c̃q~s!

5@ḟq~0!1sfq~0!#@11DS̃3~q2!1s̃s~s2,q2!#1
f̈q~0!

s
s̃s~s2,q2!,

so that

c̃q~s!5
@ḟq~0!1sfq~0!#@11DS̃3~q2!1s̃s~s2,q!#1 f̈̃~0,q!s̃s~s2,q2!/s

s2@11DS̃3~q2!1s̃s~s2,q2!#1q21M21DS̃1~q2!
.

The solutionfq(t) then is obtained by the inverse transformation

fq~ t !5E
2 i`1c

i`1c ds

2p i
estc̃q~s!.

This solution is discussed in detail in Appendix D. The integral above is along the Bromwich contour withc a positive real
constant to the right of all the singularities of the Laplace transform. The result can be written as~see Appendix D for details!
045023-10
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fq~ t !5
2

p E
01

`

dvFcos~vt !fq~0! v Im F1~2v21 io,q2!1sin~vt !ḟq~0!Im F1~2v21 io,q2!

2
f̈q~0!

v
cos~vt !Im F2~2v21 io,q2!G ,

where

F1~s2,q2!5
11DS̃3~q2!1s̃s~s2,q2!

s2 @11DS̃3~q2!1s̃s~s2,q2!#1q21M21DS̃1~s2,q2!
,

F2~s2,q2!5
s̃s~s2,q2!

s2 @11DS̃3~q2!1s̃s~s2,q2!#1q21M21DS̃1~q2!
.

f̈q(0) is not an independent initial value, it is determined by settingt50 in the equation of motion~6.2! with the result

f̈q~0!52fq~0!
q21M21DS̃1~q2!

11DS̃3~q!2
.

It is then convenient to define a kernelF3 which combinesF1 andF2 with prefactors uniquely determined byfq(0). With the
definition

F3~v,q2!52
1

v
1

q21M21DS1

~11DS3!v
3

1

2v21
q21M21DS1

11DS31s̃s~2v21 io,q2!

the solution can be written as

fq~ t !5
2

p E
vc

`

dv @fq~0!cos~vt !Im F3~v2 io,q2!1ḟq~0!sin~vt !Im F1~2v21 io,q2!#.

The functionF3 which is, up to prefactors, the Laplace transform of the solution, exhibits a pole at

vR5vq1dv, vq5AM21q2,

with dv5O(g2). If M.2m the scalar field can decay into a fermion-antifermion pair, the pole actually describes a reso
In perturbation theory the width of this resonance is perturbatively small and near the resonance we can approxi
function F3 by a Breit-Wigner resonance

F3~v,q2!.
1

2

ZR

v2vR2 iGR
.

The resonance position is determined by

vR5Re
vq

21DS1

11DS31s̃s~2vq
21 io,q2!

,

the residueZR is given by

ZR5
vq

21DS1

~11DS3!vq

1

22vq1
d

dv FRe
vq

21DS1

11DS31s̃s~2v21 io,q2!
G

v5vq

,

and the width by
045023-11
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GR5
1

2vR
ImF vq

21DS1

11DS31s̃s~2v21 io,q2!
G

v5vq

.
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Numerical analysis

We are now in condition to study the evolution of a
initial scalar condensate numerically by performing the
verse Laplace and Fourier transforms since all the quant
are given by the subtracted one-loop self-energy.

We consider two separate cases:M.2m in which case
the scalar can decay into fermion-antifermion pairs, andM
,2m in which case the scalar particle is stable. In both ca
we studied the evolution for an initial spherical wave
Gaussian profile

f~0,x!5N0 exp~2x2/2R0
2!,

ḟ~0,x!50, with E d3x f~0,x!51. ~7.2!

Since this Gaussian wave packet has zero center of m
momentum, the peak of the wave packet will not displa
under time evolution, but the wave packet will disperse a
spread out in space-time.

M.2m. We have chosenM53m but there is a rathe
smooth variation of the wave function renormalization co
stant, position and width of the resonance for reasonable
ues of the ratio 2,M /m<10. As a first step we calculate
the value of the wave function renormalization numerica
and find thatZR differs from unity by less than 3% and tha
the ratio of the width to the position of the poleG/vR
'0.02 for g51 or smaller and 2,M /m<10. Therefore if
the coupling is of this order or smaller, the approximation
the spectral density~discontinuity across the cut! by the
imaginary part of the Breit-Wigner form given above is e
cellent. The agreement obtained from the full numerical e
lution and that obtained from the approximate Breit-Wign
form is excellent. The evolution in this case is depicted
Fig. 1 that displays the profile of the condensate as a func

FIG. 1. Unstable case:M53; m51; g51 with a Gaussian
profile for the condensate att50, given by Eq.~7.2! with R051
and normalized so that*d3x f(0,x)51.
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of t and uxW u for M53;m51;g51. We see that the propaga
tion is inside the light cone and damped in time. The peak
the origin is the center of mass of the wave packet, it os
lates in time with a frequency'vR and decays on a time
scaleG21. The evolution at very early times is smooth.

M,2m. In this case the scalar field is stable, the spec
density features poles atv56vR below the fermion-
antifermion cut. We find again thatZP'0.97, implying, that
the contribution from the fermion-antifermion continuum
negligible except for smallt. Figure 2 displays the time evo
lution of the Gaussian wave packet in this case. The w
packet spreads in space-time, the evolution is always be
the light cone as clearly illustrated in the figure. The amp
tude of the wave packet decreases as a result of spreadin
spatial integral, which is equal tof0(t), asymptotically os-
cillates with the pole frequency and amplitudeZP .

VIII. SCALAR THEORIES

The connection between the preparation of the initial st
via Bogoliubov transformations and the formulation in term
of linear response allows to generalize the study prese
above to scalar theories. In particular let us consider the c
of a scalar self-coupledlF4 model using the linear respons
analysis. Focusing on the evolution equation for a homo
neous condensate to orderl2 we find

~11dZ!f̈0~ t !1~M21dM2!f0~ t !1S1,0~0!f0~ t !

1S3,0~0!f̈0~ t !1E
2`

t

dt8 Ss,0~ t2t8!f̂0~ t8!5Jext,0~ t !.

~8.1!

The orderl tadpole has been absorbed intodM2 as a mass
renormalization and the self-energy to orderl2 is given by

FIG. 2. Stable case:M51; m51; g51 with a Gaussian profile
for the condensate att50, given by Eq.~7.2! with R051 and
normalized so that*d3x f(0,x)51.
3-12
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the sunset diagram. The choice of countertermsdZ,dM2 are
as given in Eqs.~5.2!, ~5.3! and the external source intro
duced for linear response is specifically chosen as in
~5.4!. In this manner we obtain the initial value problem fr
of ultraviolet and initial time singularities. An alternative in
terpretation of the external source associated with the lin
response formulation can be provided by introducing a H
tree factorization in the Lagrangian with a term of the fo
4lF^F3&. This term acts now as an explicit source in t
linearized equation of motion which is chosen so as to l
to a singularity free initial value problem, thus requiring
nontrivial Bogoliubov vacuum. The linear response analy
leads very simply to a well defined initial value problem f
a proper choice of the external source. The equivalence
tween the preparation of the state via a Bogoliubov trans
mation of the free field Fock vacuum~or density matrix! and
the initial value problem obtained from linear response
the proper choice of external source allows now to genera
the results obtained above for the linearized approximati

IX. CONCLUSIONS

The nonequilibrium evolution of condensates in real tim
requires to provide Cauchy data at some initial time, he
an initial value problem which requires the specification
an initially prepared quantum state or density matrix.
initial pure or mixed state of free field Fock quanta leads
initial time singularities. These have a simple interpretati
the evolution of expectation values or matrix elements in
interacting theory implies that the interaction is switched-
suddenly. The interaction rearranges the spectral densitie
the fields and the response to the sudden switching-on o
interaction results in initial time singularities which are e
hanced in a renormalizable theory. For systems with a fi
number of degrees of freedom such effects are also pre
but no singularities arise.

The Bogoliubov transformation~4.1! mix creation and an-
nihilation operators. It mixes the fermion creation opera
with the anti-fermion creation operator and similarly for t
annihilation operators. The scalar products between tra
formed and untransformed states vanish in the infinite v
ume limit. As a consequence of that the transformed
untransformed states belong to unitarily inequivalent rep
sentations of the CCR. The physical space of states is
transformed one and the physical quantity must be comp
there. Unlike the case of spontaneous breaking of chiral s
metry @5#, the Bogoliubov transformation does not chan
the physical properties of the system like the symmetries
any other basic property. It just describes the reaction of
quantum modes of the vacuum to the external field, a
leads, for the localized states considered later, to a vac
polarization induced by the localized classical field.

In summary, the time evolution of arbitrary quantu
states or density matrices in~interacting! field theory leads to
short time divergences. Only for appropriately prepared p
or mixed initial states, as those considered in this paper,
time evolution is well defined. By appropriately prepared
mean states where the filling for high energy quanta follo
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a precise law determined by the initial data, couplings, a
masses.

We have chosen to study these initial time singularit
and provide a consistent resolution in a Yukawa theory
311 dimensions, this theory being renormalizable allows
identify all of the divergences and singularities: ultravio
divergences associated with mass, coupling, and wa
function renormalizations and initial time singularities th
cannot be cancelled by the usual counterterms.

After recognizing the initial time singularities and the
physical significance in the case of homogeneous cond
sates, we have proposed a rather simple approach to pro
a singularity free initial value problem. We introduced B
goliubov transformed initial states that incorporate the
fects of dressing of states by the interaction. The Bogoliub
coefficients can be obtained in a systematic series expan
in the Yukawa coupling and we have obtained them to o
loop order in this theory. The usual renormalization count
terms cancel the ultraviolet divergences associated w
mass, coupling, and wave function, and the Bogoliubov
efficients are chosen consistently to cancel the initial ti
singularities. That is, their high energy behavior is fixed a
cording to the initial data~Sec. IV!.

We have established contact with linear response the
by obtaining the evolution equations for the scalar cond
sate and the initial value problem in the linearized appro
mation as the linear response to an external source cou
to the scalar condensate. This equivalent formulation cl
fies at once the relationship between the linearized appr
mation for the evolution equations of the condensate
linear response. The corresponding initial value proble
i.e., providing Cauchy data for the field and its first deriv
tive on a spatial hypersurface requires that the exte
source that couples to the scalar fielddoes not vanish after
the initial time. A very specific source term that depends
a given past history of the condensate furnished a singula
free initial value problem.

After presenting the method in the simpler homogene
case and establishing the relationship to linear respo
theory we focused on the important case of inhomogene
condensates. Following on the steps for the homogene
case we have constructed the proper Bogoliubov transfor
tion to lowest order in the Yukawa coupling and shown e
plicitly how a judicious choice of the Bogoliubov coeffi
cients in combination with the usual renormalizatio
counterterms leads to an initial value problem free of ult
violet and initial time singularities. As an example of th
consistent procedure we have provided a numerical stud
the space-time evolution of an inhomogeneous scalar c
densate both in the case in which the scalar can decay
fermion-antifermion pairs and in the case in which the sca
is light and stable.

We have also generalized the results of the fermionic c
to scalar field theories by exploiting the relation to line
response, thus providing a generalized and consistent ma
of describing nonequilibrium evolution of condensates
terms of an initial value problem free of ultraviolet dive
gences and initial time singularities.

Applications. We foresee several applications of the
3-13
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methods.~i! We can now study consistently the evolution
inhomogeneous pion condensates after a chiral phase tr
tion by setting up a physically reasonable initial value pro
lem that incorporates the important features of the transi
in the fully interacting initial state~or density matrix!. This
approach is complementary to that advocated in Ref.@12#.
~ii ! In cosmology we can now study the nonequilibrium d
namics of inhomogeneous configurations by providing
initial field profile and the first derivative on a spacelik
hypersurface and following the space-time evolution of t
configuration. In particular a very relevant setting for co
mology is that of supersymmetric theories during for e
ample the stages of rolling of the scalar field compone
Treating the dynamics as an initial value problem, the ini
conditions on the scalar field, displaced from the equilibriu
position breaks supersymmetry. This breakdown of sup
symmetry is not explicit at the level of the Lagrangian, b
by the quantum state. Our formulation allows us to follo
the dynamics consistently and study the consequences o
supersymmetry breaking. Work on these issues is
progress.

The next step in our program is to extend the results
tained in this article, valid in the linearized approximation,
a full nonlinear inhomogeneous problem. We expect to
port on progress on these and other issues in the near fu
,
he
o
s
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APPENDIX A: FERMIONIC GREEN’S FUNCTIONS
IN THE BOGOLIUBOV STATE

FOR THE HOMOGENEOUS CASE

The Green functionSb
.(t,x;t8,x8) in the Bogoliubov-

transformed stateu0b& is defined via

iSb
.~ t,x;t8,x8!5^0buc~ t,x!c̄~ t8,x8!u0b& ~A1!

and the~free! field operators are given, in terms of the cr
ation and annihilation operators, by
tion
c~ t,x!5(
s
E d3p

~2p!32Ep
eipx@b~p,s!U~p,s!e2 iEpt1d†~2p,s!V~2p,s!eiEpt#,

c̄~ t8,x8!5(
s8

E d3p8

~2p!32Ep8
e2 ip8x8@b†~p8,s8!Ū~p8,s8!e2 iEp8t81d~2p8,s8!V̄~2p8,s8!eiEp8t8#.

~A2!

We use the normalization for the spinorsŪ(p,s)U(p,s)52m so thatU†(p,s)U(p,s)51.
Using Eqs. ~4.1!, ~4.2!, ~A1!, and ~A2! we obtain the following expression for the transformed Green func

Sb
.(t,x;t8,x8):

iSb
.~ t,x;t8,x8!5^0buc~ t,x!c̄~ t8,x8!u0b&

5(
s
E d3p

~2p!32Ep
eip~x2x8!@cos2~bps!U~p,s!Ū~p,s!e2 iEp~ t2t8!2sinbps cosbpse

idpsU~p,s!V̄

3~2p,s!e2 iEp~ t1t8!2sinbps cosbpse
2 idpsV~2p,s!Ū~p,s!eiEp~ t1t8!1sin2 bpsV~2p,s!V̄~2p,s!eiEp~ t2t8!#.
his
a

As long as we consider homogeneous condensates
anglesbps and dps can be chosen to depend only on t
modulus upu, and on the helicities. The weight of the tw
possible helicities is still arbitrary and we consider the
angles to be functions of the helicity matrix

Sp̂5S sp̂ 0

0 sp̂D ,

wherep̂5p/upu. We have, e.g.,
the

e

f ~Sp̂!(
s

U~p,s!V̄~2p,s!5(
s

U~p,s!V̄~2p,s! f ~Sp̂!

5(
s

f ~s!U~p,s!V̄~2p,s!.

Sp̂ commutes with all other matrices that are relevant to t
discussion,g0 , g5, andpg, and can therefore be treated as
c number.
3-14
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Specifying the vectorpm to be on shell,pm5(Ep ,p), and
usingg0gg052g it is straightforward to find

(
s

U~p,s!Ū~p,s!5p”1m,

(
s

V~2p,s!V̄~2p,s!5g0~p”2m!g0

5g5g0~p”1m!g5g0 .

The mixed product can be found by resorting to the rep
sentation

U~p,s!5
p”1m

AEp1m
S xs

0 D ,

V~2p,s!52
g0~p”2m!g0

AEp1m
S 0
xs

D ,

where xs is an eigenspinor ofsp̂ with eigenvalues from
which we find

(
s

V~2p,s!Ū~p,s!5g5g0~p”1m!,

(
s

U~p,s!V̄~2p,s!5~p”1m!g5g0 .

We note that the phasedps appears in a combination suc
that a shift in this phase can be compensated by a shift in
origin of time, i.e., a time translationt→t1todps→dps
12Ept0 . Since the square of the helicity matrix is the ide
tity and the only odd function ofbps multiplies the mixed
terms, we found that the simplest Bogoliubov transformat
that is required to cancel the initial time singularities is su
that the phasedps is independent ofs and thatbps5Sp̂bp so
that

cosbps5cosbp ,

sinbps5Sp̂ sinbp .

Such a choice has proven to be appropriate for remov
the initial singularity for the full one-loop equations.

After some straightforward algebra, we find

iSb
.~ t,x;t8,x8!5^0buc~ t,x!c̄~ t8,x8!u0b&

5E d3p

~2p!32Ep
eip~x2x8!@cosbpeiEpt

2sinbpe2 idpSp̂g5g0eiEpt#~p”1m!

3@cosbpeiEpt8

2sinbpeidpg5g0Sp̂e2 iEpt8#, ~A3!

Upon reordering of the terms we find the Green’s funct
quoted in Eq.~4.3!.
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A similar calculation leads to the transformed Green fun
tion Sb

,(t,x;t8,x8) which is defined as

2 iSb
,~ t,x;t8,x8!5^0buc̄~ t8,x8!c~ t,x!u0b&.

Following the same steps leading to Eq.~A3! we find

2 iSb
,~ t,x;t8,x8!5^0buc̄~ t8,x8!c~ t,x!u0b&

5E d3p

~2p!32Ep
eip~x2x8!

3@sinbpeidpse2 iEptSp̂

1cosbpg5g0eiEpt#~p”1m!

3@sinbpe2 idpeiEpt8Sp̂

1cosbpg5g0e2 iEpt8#,

which upon reordering of terms gives the form quoted
expression~4.4!.

APPENDIX B: BOGOLIUBOV TRANSFORMATION AND
TADPOLE DIAGRAM FOR INHOMOGENEOUS

SYSTEMS

In this appendix we generalize the Bogoliubov transf
mations described in the homogeneous case to the cas
inhomogeneous condensates. Unlike the homogeneous
in which the generator of the Bogoliubov transformation c
ates particle-antiparticle pairs of zero total momentum, in
inhomogeneous case the total momentum of the pair is n
zero.

Consistent with perturbation theory we now find the co
responding Bogoliubov transformation to lowest order in t
Yukawa coupling, thus cosbps'1, sinbps'bps5O(g). Since
the self-energy is already ofO(g2), to lowest order we only
need to focus on the tadpole termJb(x,t).

The Bogoliubov transformation in lowest order reads

b~p,s!5bb~p,s!1E d3p8

~2p!32Ep8
rss8~p,p8!db

†

3~2p8,s8!,

d†~2p,s!52E d3p8

~2p!32Ep8
rs8s
* ~p8,p!bb~p8,s8!

1db
†~2p,s!,

with rss85O(g). With this choice the transformation leave
the canonical anticommutation relations unchanged up
terms of orderrss8

2 . In order to compute the transforme
Green functions we need the expectation values of bilin
combinations of creation and annihilation operator. We fi
the following expectation values that are necessary to c
pute the Green’s functions:
3-15
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^0bub~p,s!d~2p8,s8!u0b&5E d3p9

~2p!32Ep9
@2rs9s8~p9,p8!#^0bubb~p,s!bb

†~p9,s9!u0b&dss8~2p!32Epd3~p2p9!

52rss8~p,p8!,

^0bub~p,s!b†~p8,s8!u0b&5~2p!32Epdss8d
3~p2p8!,

^0bud†~2p,s!d~2p8,s8!u0b&50,

^0bud†~2p,s!b†~p8,s8!u0b&52rs8s
* ~p8,p!.

^0bud~p8,s8!d†~p,s!u0b&5~2p!32E0dss8d
3~p2p8!,

^0bub†~2p8,s8!b~2p,s!u0b&50,

^0bud~2p8,s8!b~p,s!u0b&5rss8~p,p8!,

^0bub†~p8,s8!d†~2p,s!u0b&5rs8s
* ~p8,p!.

This yields the transformed Green’s functions,

iSb
.~ t,x;t8,x8!5^0buc~ t,x!c̄~ t8,x8!u0b&

5(
s
E d3p

~2p!32Ep
eip~x2x8!U~p,s!Ū~p,s!e2 iEp~ t2t8!2(

ss8
E d3p

~2p!32Ep
E d3p8

~2p!32Ep8

3ei ~px2p8x8!$rs8s
* ~p8,p!V~2p,s!Ū~p8,s8!e2 i ~Ept1Ep8t8!1rss8~p,p8!U~p,s!V̄~2p8,s8!ei ~Ept1Ep8t8!%

and

2 iSb
,~ t,x;t8,x8!5^0buc̄~ t8,x8!c~ t,x!u0b&

5(
s
E d3p

~2p!32Ep
eip~x2x8!V~2p,s!V̄~2p,s!e2 iEp~ t2t8!1(

ss8
E d3p

~2p!32Ep
E d3p8

~2p!32Ep8

3ei ~px2p8s8!$rs8s
* ~p8,p!V~2p,s!Ū~p8,s8!e2 i ~Ept1Ep8t8!1rss8~p,p8!U~p,s!V̄~2p8,s8!ei ~Ept1Ep8t8!%,

to first order inrss8(p,p8).
Using these results we now can evaluate the tadpole graph in the inhomogeneous condensate. That is, the expect

of ^c̄c& which plays the roˆle of an external current in the equation of motion. Inserting the above explicit expressions w

Jb~ t,x!5 ig tr Sb
.~ t,x;t,x!

5g(
s
E d3p

~2p!32Ep
tr@U~p,s!Ū~p,s!#2(

ss8
E d3p

~2p!32Ep
E d3p8

~2p!32Ep8

3ei ~p2p8!x$rs8s
* ~p8,p!tr @V~2p,s!Ū~p8,s8!#ei ~Ep1Ep8!trss8~p,p8!tr @U~p,s!V̄~2p8,s8!#e2 i ~Ep1Ep8!t%.

The traces over the spinors yield

tr V~2p,s!Ū~p8,s8!5Ū~p8,s8!V~2p,s!

52dss8s@A~Ep2m!~Ep81m!1A~Ep1m!~Ep82m!#, ~B1!
045023-16
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tr U~p,s!V̄~2p8,s8!5V̄~2p8,s8!U~p,s!

52dss8s@A~Ep2m!~Ep81m!1A~Ep1m!~Ep82m!#.

We see that the relevant part ofrss8(p,p8) contributing to Eq.~B1! is odd ins and diagonal inss8. We therefore choose

rss8~p,p8!5g~p,p8!
sdss8

A~Ep2m!~Ep81m!1A~Ep1m!~Ep82m!
.

Then,

Jb~ t,x!54mgE d3p

~2p!32Ep
22E d3p

~2p!32Ep
E d3p8

~2p!32Ep8
ei ~p2p8!x$g* ~p8,p!e2 i ~Ep1Ep8!t1g~p,p8!ei ~Ep1Ep8!t%.

The first term is again space and time independent and is absorbed into a shift of the condensate. The second term
space and time dependence in a factored form. It will be used to compensate for the initial time singularities of the self

APPENDIX C: ANALYSIS OF THE SELF-ENERGY KERNEL

In this Appendix we provide the details for the various contributions to the self-energy. The integrals that enter
expression for the self-energy kernel can be related to the following one defined in dimensional regularization:

I ~q0
2,q2![ i E d32ep

~2p!32e

1

2E1E2

E11E2

~E11E2!22q0
2

5E d42ep

~2p!42e

1

@~p2q/2!22m21 io#@~p1q/2!22m21 io#

5
1

16p2 FLe1E
0

1

da ln
m2

m21a~12a!~q22q0
2!G ,
III
where we have introduced the shifted momentap65p
6q/2 and energiesE65Ap6

2 1m2. Le is defined as

Le5
2

e
2g1 ln

4pm2

m2 .

We now consider the various integrals defined in Sec. V
In doing so we will shift the integration variablep so that
p→p15p1q/2 andp85p2q→p25p2q/2. Then the nu-
merator arising from the Dirac trace takes the form

E1E21p1p22m25
1

2
~E11E2!222S m21

q2

4 D .

We then have

S̃1~q2!528g2I 1~q2!,

with
04502
.

I 1~q2!5E d32ep

~2p!32e

E1E21p1p22m2

4E1E2~E11E2!

5
1

8 E d32ep

~2p!32e S 1

E1
1

1

E2
D

2S m21
q2

4 D E d32ep

~2p!32e

1

2E1E2~E11E2!
.

The first integral, including the prefactor, is equal to

E d32ep

~2p!32e

1

4E
52

m2

32p2 ~Le11!.

The second integral is the basic integralI (q0
2,q2) at q0

250.
Altogether we obtain

S̃1~q2!5S̃1~0!1q2S̃18~0!1DS̃1~q2!,

with
3-17
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S̃1~0!52dM25
3m2g2

4p2 S Le1
1

3D ,

S̃18~0!52dZ5
g2

8p2 Le ,

DS̃1~q2!5S m21
q2

4 D g2

2p2 E
0

1

da ln
m2

m21a~12a!q2 .

~C1!

Here we have introduced the renormalization constants
responding to a renormalization atq250.

For S̃3(q2) we have

S̃3~q2!58g2I 3~q2!,

with

I 3~q2!5E d32ep

~2p!32e

1

4E1E2

~E11E2!2/222~m21q2/4!

~E11E2!3 .

This integral can be related to the integralI (q0
2,q2) and its

derivative with respect toq0
2, at q050. We find

S̃3~q2!52dZ1DS̃3~q2!,

wheredZ has been defined in Eq.~C1!. The finite part is

DS̃3~q2!52
g2

8p2 E
0

1

da lnF11a~12a!
q2

m2G
1

g2

2p2 S m21
q2

4 D E
0

1

da
a~12a!

m21a~12a!q2 .

From the way in which we have introduceddZ in S̃1 andS̃3

it is apparent that the covariant countertermsdZ( f̈̃1q2f̃) in
the equation of motion will absorb these divergences.

We finally consider the Laplace transform of the su
tracted self-energy kernel introduced in Eq.~7.1!

s̃s~s2,q2!528g2s2E d3p

~2p!3

1

4E1E2

3
~E11E2!2/222~m21q2/4!

~E11E2!3@~E11E2!21s2#
.

Comparing with the standard integralI (q0
2,q2) we see that

besides the continuation to the Euclidean region,q0
2→2s2

we have additional denominators. These can be obtained
subtraction. We have
04502
r-

-

ia

E d3p

~2p!3

1

2E1E2

1

~E11E2!@~E11E2!21s2#

52
1

s2 @ I ~2s2,q2!2I ~0,q2!#

52
1

s2

1

16p2 E
0

1

da ln
m21a~12a!q2

m21a~12a!~q21s2!
.

We proceed analogously for the second integral and fin
obtain

s̃s~s2,q2!5
g2

2p2 E
0

1

daH 1

s2 Fm21
1

4
~q21s2!G

3 ln
m21a~12a!q2

m21a~12a!~q21s2!

1S m21
q2

4 D a~12a!

m21a~12a!q2J . ~C2!

The a integrations can be performed analytically.

APPENDIX D: DETAILS OF THE ANALYTIC SOLUTION

We have obtained in section the solution of the equat
of motion and its solution via Laplace transform. We co
sider at first the unrenormalized equation. The solution re

cq~s!5
sfq~0!1ḟq~0!

s21M21q21s̃~s2,q2!
,

so that

fq~ t !5
1

2p i E2 i`1c

i`1c

ds est
sfq~0!1ḟq~0!

s21M21q21s̃~s2,q2!
.

As usual@16,17# we shift the contour to the left so that fi
nally it includes the cuts, and eventually poles, on the ima
narys axis and a circle atusu→` around the left half, which
does not contribute for positivet as the exponential expst
tends to zero there. In doing so we make use of the caus
condition that there are no zeros in the left half of the co
plex s plane, as required by causality. Along the cut ats
5 iv with 2Am21q2,v,` we define the real and imagi
nary parts of the kernels̃ by the convention

s̃@~ iv6e!2,q2#5s̃R~2v2,q2!6 i s̃ I~2v2,q2!.

As s only depends ons2 this also fixes the relative signs o
the imaginary parts ofs̃ on the lower cut for which2`
,v,22Am21q2. We then obtain
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fq~ t !5
1

2p i Evc

`

i dv eivtdisc
ivfq~0!1ḟq~0!

2v21M21p21s̃~2v26 i e,q2!

1
1

2p i Evc

`

~2 i !dv e2 ivtdisc
2 ivfq~0!1ḟq~0!

2v21M21p21s̃~2v27 i e,q2!
,

with vc52Aq21m2 for the two fermion cut. The spectral density is obtained from the discontinuity across the cut

S~v,q!5 idisc
1

2v21M21p21s̃~2v21 i e,q2!

5
2s̃ I~2v2,q2!

@2v21M21p21s̃R~2v21 i e,q2!#21s̃ I
2~2v21 i e,q2!

. ~D1!

In the case in which the scalar particle is unstable, i.e.,M.2m there is a resonance above the fermion-antiferm
threshold and no support for the spectral density below threshold@16,17#. However in the caseM,2m the scalar is stable an
cannot decay, now the spectral density has support above andbelowthreshold. Below threshold the spectral density is a de
function at the position of the renormalized pole, to include the stable pole below the two particle threshold in the des
we now definevc501 to distinguish that the origin is excluded from the integration region. The pole in the stable c
obtained from the identity

S~v,q! →
s1→0

pd@2v21M21p21s̃R~2v21 i e,q2!#,

so that

fq~ t !5
2

p E
01

`

dv cosvt
vfq~0!s̃ I~2v2,q2!

@2v21M21p21s̃R~2v21 i e,q2!#21s̃ I
2~2v21 i e,q2!

1
2

p E
01

`

dv sinvt
ḟq~0!s̃ I~2v2,q2!

@2v21M21p21s̃R~2v21 i e,q2!#21s̃ I
2~2v21 i e,q2!

. ~D2!

In order that this equation and its time derivative be consistent att50 we have to require the sum rule

15
2

p E
01

`

dv
vs̃ I~2v2,q2!

@2v21M21p21s̃R~2v21 i e,q2!#21s̃ I
2~2v21 i e,q2!

.

In order to derive this sume rule we require, as already mentioned above, that the denominators21q21M21s(s2,q2) has no
zeros in the left half of the complex plane. We have to assume furthermore thats̃(s2,q2) increases less strongly ass2 as
usu→` in the left half of the complex plane. Under these assumptions we have the identity

1

ip R ds
s

s21q21M21s̃~s2,q2!
50

if the integral is carried out along the contour enclosing the left half of the complex plane. The contour consists of an
along the left of the imaginarys axis and a semicircle atusu5`. The latter one contributes

1

ip E
C

ds

s
521.

The integral along the imaginary axis is given by

1

p E
0

`

dvF iv

s21q21M21s̃~2v22 io !
1

2 iv

s21q21M21s̃~2v21 io !G5
2

p E
vc

`

dv
vs̃ I~2v2,q2!

u2v21M21p21s̃~2v21 i e,q2!u2
.

~D3!

The two parts of the contour integral have to add up to zero, which yields the sum rule.
For the renormalized equation of motion we rewrite the result obtained in Sec. VII as
045023-19
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fq~ t !5
1

2p i E2 i`1c

i`1c

dsH @sfq~0!1ḟq~0!#F1~s2,q2!1f̈q~0!
1

s
F2~s2,q2!J ,

with

F1~s2,q2!5
11DS̃3~q2!1ss̃~s2,q2!

s2@11DS̃3~q2!1s̃s~s2,q2!#1q21M21DS̃1~s2,q2!
,

F2~s2,q2!5
s̃s~s2,q2!

s2@11DS̃3~q3!1s̃s~s2,q2!#1q21M21DS̃1~q2!
.

s
-
iv
g
g
-
le
e

he
to

a

he

te

ne

in
the

plic-
The functionF1(s2,q2) has analyticity properties analogou
to the fraction 1/(s21q21M21s̃) considered above. In par
ticular the discontinuities along the positive and negat
imaginary axis have the same relative signs, it has no sin
larities in the left half of the complex plane, and the limitin
behavior asusu→` is 1/s2. For the first property it is essen
tial to note thats̃s only depends on the square of the variab
s; see Eq.~C2!. For the last property is sufficient to notic
that s̃s(s

2,q2) behaves as lns2 as usu→`, so the terms pro-
portional tos̃s dominate in numerator and denominator. T
function F2(s2,q2) has analyticity properties analogous
those ofF1(s2,q2), and decreases asymptotically as 1/s2.
The relative signs of the imaginary parts along the cuts
the same as forF1(s2,q2). Collecting all terms we find

fq~ t !5
2

p E
vc

`

dvFcosvtfq~0!v Im F1~2v21 io,q2!

1sinvtḟq~0!Im F1~2v21 io,q2!

2
f̈q~0!

v
cosvt Im F2~2v21 io,q2!G . ~D4!

For the consistency of the left and right hand sides and t
first derivatives with respect tot the sum rule

15
2

p E
vc

`

dv v Im F1~2v21 io,q2! ~D5!

has to be satisfied. It follows again by considering the in
gral

1

ip R ds sF1~s2,q2!

along a closed contour around the left complex half pla
One needs, furthermore,
04502
e
u-

re

ir

-

.

05
2

p E
vc

`

dv
1

v
Im F2~2v21 io,q2!

which follows from analogous considerations, using that
this case the infinite semicircle does not contribute as
integrand behaves as 1/s3 there.

We next have to consider the term proportional tof̈q(0)
and the second time derivative of Eq.~D4!. From the renor-
malized equation of motion~6.2! at t50 we derive immedi-
ately

f̈q~0!52fq~0!
q21M21DS̃1~q2!

11DS̃3~q!2
. ~D6!

The second derivative of Eq.~D4! at t50 reads

f̈q~0!52
2

p E
vc

`

dv@fq~0!v3 Im F1~2v21 io,q2!

1v2f̈q~0!Im F2~2v21 io,q2!#.

We express, on the right hand side,fq(0) by f̈q(0), using
Eq. ~D6!. Then we can write the sum rule as

15
2

p
E

vc

`

dv v ImFv2F1~2v21 io,q2!

3
11DS̃3~q2!

q21M21DS̃1~q2!
1F2~2v21 io,q2!G . ~D7!

The expression in the square brackets can be written ex
itly as
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v2~11DS̃31s̃s!

2v2~11DS̃31s̃s!1q21M21DS̃1

11DS̃1

q21M21DS̃1

1
s̃s

2v2~11DS̃31s̃s!1q21M21DS̃1

52
11DS̃1

q21M21DS̃1

1
11DS̃31s̃s

2v2~11DS̃31s̃s!1q21M21DS̃1

.

Only the imaginary part of this expression occurs in the integrand. So the first term on the right-hand side does not co
and the second term is justF1 . The sum rule~D7! reduces therefore to the first one~D5!.
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