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Renormalization of periodic potentials
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The renormalization of the periodic potential is investigated in the framework of the Euclidean one-
component scalar field theory by means of the differential RG approach. Some known results about the
sine-Gordon model are recovered in an extremely simple manner. There are two phases: an ordered one with
asymptotical freedom and a disordered one where the model is nonrenormalizable and trivial. The order
parameter of the periodicity, the winding number, indicates spontaneous symmetry breaking in the ordered
phase where the fundamental group symmetry is broken and the solitons acquire dynamical stability. It is
argued that the periodicity and the convexity are such strong constraints on the effective potential that it always
becomes flat. This flattening is reproduced by integrating out the RG equation.
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I. INTRODUCTION

The dynamics generated by a periodic potential repres
a challenge in quantum field theory where the usual str
gies to obtain the solution are based on the Taylor expan
which violate the essential symmetry of the problem,
periodicity. One expects two kinds of problems. A local on
the perturbation expansion for the small fluctuations aro
a minima of the potential should deal with infinitely man
vertices in order to preserve the periodicity. A global pro
lem appears in the construction of the effective potentia
an instability, a conflict between the periodicity and the co
vexity which can be resolved in a trivial manner only, bei
the constant the only function which is periodic and conv
at the same time. Another global problem, made rather p
zling by the flatness of the effective potential, is to find
order parameter distinguishing the phase with periodic
from the one where the periodicity is broken spontaneou

The goal of this paper is to give a brief presentation
these issues in the case of a two-dimensional scalar mo
The pertinent features of the sine-Gordon model, the s
plest realization of a periodicity, and the more detailed go
of this paper are presented in Sec. II. Section III contain
very brief introduction into the Wegner-Houghton equatio
applied for the periodic potential in Sec. IV. The lineariz
renormalization group flow is given around the tw
dimensional Gaussian fixed point and the periodic opera
of the potential are classified in Sec. V. The nonlinear flow
discussed in Sec. VI by means of numerical integration
the renormalization group equation. Section VII contain
few remarks about the signatures of the spontaneous br
down of the fundamental group symmetry. Finally, Sec. V
is for the summary of our findings.
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II. THE SINE-GORDON, X-Y AND FERMIONIC MODELS

The simplest example for periodic potential is the tw
dimensional sine-Gordon model which is described by
Lagrangian

L5 1
2 ~]mf!21V~f!, ~1!

with

V~f!5u cosbf. ~2!

The dynamics and the renormalization have been discu
by means of the straight perturbation expansion and the m
pings between the sine-Gordon, the Thirring, and theX-Y
planar models@1–8# The duality transformation connectin
the sine-Gordon and theX-Y models provides the renorma
ization group flow in the complete coupling constant spa
@9,10#.

The mappings between the different models are not ex
In fact, the bosonization of the Thirring model@1# and the
Coulomb-gas representation of a periodic potential@7# are
obtained perturbatively. The duality is established up to
relevant terms in the action@10#. An exact equivalence exist
between theX-Y and the compactified sine-Gordon mod
which is obtained by expressing~1! in terms of the compac
variable@11#

z~x!5ebf(x). ~3!

Such a parametrization makes the kinetic energy periodi

L5
1

2b2 ]mz* ]mz1
u

2
~z1z* ! ~4!
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TABLE I. Comparison of theXY and the sine-Gordon model.

XY model with external field Compactified sine-Gordon mod

External fieldh Fourier amplitudeu5h/b2

TemperatureT Coupling constantb2

Molecular phase of the vortex gasT,Tc Weak coupling phaseb2,bc
2

Ionized phase of the vortex gasT.Tc Strong coupling phaseb2.bc
2

Vortex, antivortex Soliton creation and annihilatio
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and introduces vortices in the dynamics. The models~1! and
~4! are equivalent in any order of the perturbation expans
in continuous space-time. The modification of the regula
amounts to the introduction of nonrenormalizable terms
the action which are irrelevant in the UV scaling regim
Thus the equivalence is reached asymptotically only w
the cutoff is removed. In lattice regularization the theory~4!
is in the same universality class as theX-Y model which is
described by the action

S5
1

T (
^x,x8&

cos~ux2ux8!1(
x

h cos~ux!, ~5!

with T5b2. The renormalization of theX-Y model induces a
nontrivial value for the vortex fugacityy which appears as a
additional evolving coupling constant in the compactifi
sine-Gordon model@11#. Therefore the complete couplin
constant space contains three coupling constants, the ext
field h, the temperatureT, and the vortex fugacityy.

As it is well known, there are two phases in they2T
plane connected by the Kosterlitz-Thouless transition@9#. In
the low temperature, molecular phaseT,TKT the vortices
and antivortices form closely bound pairs while above
transition temperatureT.TKT , in the ionized phase the
dissociate into a plasma. Due to the duality transformat
the corresponding two phases appear in theh2T plane as
well as those of the dual electric Coulomb gas~DCG!. In the
h2T plane the ionized phase of DCG is realized at lo
temperature, i.e., at weak couplingb2,bc

2 whereas the mo-
lecular phase of DCG is positioned at high temperature,
at strong couplingb2.bc

2 . Instead of this duality transfor
mation connecting theX-Y and the sine-Gordon models w
shall rely in this paper on the more direct equivalence of E
~4! and ~5! as noted above@11#, which identifies the weakly
coupled~small b) and the strongly coupled~largeb) phase
of the sine-Gordon model with the molecular and the ioniz
phase of theX-Y model. The vortices of Eqs.~4! and ~5!
correspond to each other in this scheme.

The transition between the phases can be characte
either perturbatively or by means of the vortex dynamics.
far as the perturbation expansion is concerned, the nor
ordering is sufficient to remove the UV divergences for we
couplings. Though the divergence structure of the individ
graphs is the same in either phase, the partial resummatio
the perturbation expansion inu produces new UV diver-
gences forb2.8p @1,4,5#. A further UV divergence was
found at b254p @5#. The double expansion inu and
b2/8p21 @8# indicates no special singularities atb254p
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and shows that the adjustment ofu and the introduction of a
wave function renormalization constant for the fieldf in the
strong coupling phase is sufficient to remove the UV div
gences.

The inspection of the vortex dynamics allows us to follo
the transition line for larger values ofu. One way the vortices
arise is that the vertices appearing in the perturbation exp
sion in Eq.~2! form a gas of vortices described by theX-Y
model@7#. Another way to identify the vortices is to use th
equivalence of Eqs.~4! and~5! in lattice regularization when
the continuum limit is approached. Both ways indicate th
the weak and the strong coupling phases are the molecul
the ionized phases, respectively, from the point of view
the vortex gas and that the phases are separated by
Kosterlitz-Thouless transition. It is worthwhile noting th
this transition is rather peculiar because~i! its driving force,
the vortex dynamics is generated by the UV modes rat
than the IR ones as in the case of spontaneous symm
breaking, and~ii ! it is a higher than second order since t
correlation length is infinite in the molecular phase and
verges faster than any power of the reduced temperature~ex-
ponentially!, therefore one cannot introduce the critical e
ponentn in the usual manner.

The sine-Gordon model possesses a topological curre

j m~x!5
b

2p
emn]nf~x!, ~6!

which is conserved in the semiclassical expansion, when
path integral is saturated by field configurations with analy
space-time dependence. The flux defined byj m is the vortex
number, called the vorticity and the soliton number in t
same time. In this manner the world lines of the sine-Gord
solitons end at theX-Y model vortices, making the soliton
unstable and the topological current anomalous in the i
ized phase where field configurations with singular spa
time dependence survive the removal of the cutoff@11#. This
destroys or at least modifies the bosonization transforma
in the high temperature, ionized phase of the vortex gas
fact, the nonconservation of the topological current requi
fermion number nonconserving terms in the fermionic rep
sentation, a fundamental violation of the rules inferred fro
the weak coupling expansion.

The relation between the sine-Gordon and theX-Y model
is summarized in Table I.
2-2
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RENORMALIZATION OF PERIODIC POTENTIALS PHYSICAL REVIEW D63 045022
III. DIFFERENTIAL RG APPROACH
IN MOMENTUM SPACE

The challenge in developing a renormalization gro
~RG! method for the sine-Gordon model is that it shou
follow the mixing of all the operators which become releva
in either phase. Since there is an infinite amount of relev
operators in two dimensions, one needs the functional fo
of the evolution equations for the blocked Wilsonian acti
@12–18#. We shall use the leading order gradient expans
in the Wegner-Houghton equation@12# to study the renor-
malization group flow of a generalized model with an ar
trary periodic potential. Such a drastic truncation leav
some doubts due to the supposed role of the wave func
renormalization constant in the ionized phase. But the hig
order contribution of the gradient expansion can only
treated consistently by the use of the effective action inst
of the bare one. We shall find that the instability arising fro
the periodicity of the effective potential makes the Legen
transformation highly nontrivial and prevents us to use
effective action in the infrared regime of the molecu
phase.

The differential RG transformations are realized by in
grating out the high-frequency Fourier components of
field variable, in infinitesimal steps in momentum space s
cessively from the UV cutoffk to k2dk,

e2Sk2dk[f]5E D@f8#e2Sk[f1f8] , ~7!

whereSk@f# stands for the blocked action with cutoffk and
the field variablesf and f8 contain Fourier component
with momentap,k2dk, andk2dk,p,k, respectively. In
every infinitesimal step, the path integration in Eq.~7! is
evaluated by the help of the saddle point approximation
the saddle point is atf850, one can find an integro
differential equation for the blocked action, called t
Wegner-Houghton equation@12#. In the local potential ap-
proximation one uses the leading order expression for
action in the gradient expansion

Sk5E ddx@ 1
2 „]mf~x!…21Vk„f~x!…#, ~8!

and the Wegner-Houghton equation reduces to a differen
equation for the scale dependent potentialVk(f) @16#

k]kVk~f!52kda ln„k21]f
2 Vk~f!…, ~9!

with a5 1
2 Vd(2p)2d, and the solid angleVd in dimension

d.
Notice that the argument of the logarithm in Eq.~9! must

be non-negative for the expansion made around a st
saddle point. If the argument becomes negative at a crit
valuekcr.0, given bykcr

2 52]f
2 Vkcr

(f) then the Wegner-

Houghton equation looses its validity fork,kcr and the
saddle point becomes nonzero and the tree-level bloc
relation must be used. We simplify the saddle point struct
of the blocking~7! by retaining the plane waves only and w
find the evolution equation
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Vk2dk~f!5min
r

Fk2r21
1

2E21

1

duVk@f12r cos~pu!#G ,
~10!

wherer is the amplitude of the plane wave@19#.

IV. PERIODICITY OF THE POTENTIAL

The symmetry of the action under the transformation

f~x!→f~x!1D ~11!

is to be preserved by the blocking and the potentialVk(F)
must be periodic with period lengthD. It is actually obvious
that the blocking, the transformation

kVk2dk~f!5kVk~f!1@kda ln„k21]f
2 Vk~f!…#dk

~12!

preserves that periodicity of the potential. The impact of
periodicity of the potential on the dynamics can be und
stood by recalling thatVk(F) tends to the effective potentia
Ve f f(F) in the IR limit, k→0. This is because both potentia
give the action density within the functional spaceF
5^f(x)&. The Legendre transform imposes the condition
the convexity on the effective potential@20# and thereby on
Vk50(F). Since the only periodic and convex function is th
constant there is no way to have nontrivial effective poten
when the transformation~11! is a formal symmetry of the
action. Notice that this statement holds for any dimensio
The detailed RG study of the sine-Gordon model is purs
here to check such a general conjecture in a simpler cas

One could object by pointing out that it is enough
implement the horizontal Maxwell cut of the effective pote
tial between the inflexion pointsVe f f9 (F)50, where the
function is concave. But the problem left by this constructi
is just at the inflection point where the potential obtained
this manner has singular higher derivatives. This is unacc
able, as one can see by placing the system in a large
finite box. On one hand, the effective potential should
close enough to the one obtained in the thermodynam
limit, i.e., the Maxwell cut should be present up to finite si
corrections. On the other hand, the effective potential sho
be regular in the absence of IR divergences. It is easy to
that the singularity at the inflexion point gives rise to smoo
but concave region for finite systems after being rounded
and the Maxwell cut must be extended further. In the case
the f4 model where the symmetry which is broken spon
neously isf→2f such an extension of the Maxwell cu
leads to the degeneracy of the effective potential between
minima @19#. When the symmetry~11! is broken then infi-
nitely many minima are expected in the effective potent
The only Maxwell cut which is stable in the thermodynam
cal limit is thus the one which rendersVe f f(F) constant.

In order to allow a convenient truncation of the potent
for the numerical solution of the evolution equation and
preserve the periodicity we write theVk(f) as a Fourier
series,
2-3
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Vk~f!5 (
n50

`

un~k!cos~nbf!. ~13!

For the sake of simplicity we consider only potentials w
Z~2! symmetry,Vk(f)5Vk(2f). The whole scale depen
dence occurs in the Fourier amplitudesun(k), the ‘‘coupling
constants’’ of the scale dependent potential. In the case
nontrivial saddle point, Eq.~10! can be rewritten as

Vk2dk~f!5min
r

Fk2r21 (
n51

`

un~k!cos~nbf!J0~2nbr!G ,

~14!

whereJ0 stands for the Bessel function andb52p/D. Let
rk(f) denote the position of the minimum of the bracket
the right-hand-side of Eq.~14!. Then rk(f) is periodic
rk(f1D)5rk(f), since one has to minimize the same e
pression ofr for f andf1D. Note that Eq.~14! preserves
the periodicity.

The retaining of the higher order contributions in the g
dient expansion, among them the leading order being
inclusion of a wavefunction renormalization consta
Zk@f(x)# into the kinetic energy of the action~8! changes
the situation. The action keeps its period length in the b
field under any circumstance. But the period length in ter
of the renormalized fieldfR,k(x)5Zk

1/2(f0)f(x), wheref0

minimizes the potentialVk(f), is DZk
1/2(f0). Such sublead-

ing contributions of the gradient expansion are neglecte
the present work. We believe that their contribution will n
change our results qualitatively.

It is easier to use the derivative of Eq.~9! with respect to
f rather than the original equation itself. For dimensiond the
general form of the evolution equation reads as follows:

ab2kd22n2vn~k!5~d1k]k!vn~k!

2 1
2 bkd22(

p51

N

Anp~k!~d1k]k!vp~k!,

~15!

where N is the truncation in the Fourier series,vn(k)
5nbun(k) and

Anp~k!5~n2p!vn2pQ~n>p!

1~p2n!vp2nQ~p>n!

2~n1p!vp1nQ~N>n1p!, ~16!

with Q(n>n8)5$1 if n>n8,0 if n,n8%.
Reaching the critical valuekcr one has to change auto

matically from the system of Eqs.~15! to Eq. ~14!. In every
stepdk in the momentum space, the potential at the scak
2dk is then found by minimizing the expression on t
right-hand side~r.h.s.! of Eq. ~14!. After the minimization,
the potentialVk2dk(f) is expanded in Fourier-series to d
fine the new Fourier amplitudes at the scalek2dk. One
repeats this algorithm step by step untilk50.
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V. LINEARIZED SOLUTION

According to the power counting, theories with polyn
mial interactions are super-renormalizable in dimensiond
52. Furthermore, the super-renormalizable interactions c
respond to relevant operators in the UV scaling regime. H
can we have new UV divergences in the ionized phase w
the set of the renormalizable operators is fixed? The sou
of the complication is that in the usual perturbative proof
the renormalizability each monomial vertex is treated ind
pendently. This strategy is sufficient for polynomial intera
tions but is not necessarily applicable for periodic potenti
where the symmetry is destroyed by any truncation of
Taylor expansion.

The treatment of an infinite series of operators instead
a single monomial may cause complications, an impress
of having renormalized a manifestly nonrenormalizab
model. In fact, we may find an infinite series of irreleva
operators in a renormalizable model, showing the possib
of the removal of the cutoff in the presence of nonrenorm
izable operators. An obvious example is when a regula
represented as an interaction vertex, yields irrelevant op
tors. We find this situation by introducing the finite diffe
ence operator appearing in the lattice regularized theorie
the continuum. The finite difference operator generates
infinite power series of the gradient whose monomials
nonrenormalizable. The basic question in the removal of
cutoff is whether the series of the irrelevant operators is c
sen in such a manner that the divergences can be remove
the fine-tuning of a finite number of parameters in the acti
The infinite series of irrelevant operators is usually requi
by some symmetry of the theory, such as the periodicity
momentum space on the lattice@21#, the globalO(N) sym-
metry of the nonlinear sigma model@22#, or gauge theories
on the lattice@23#. The symmetry imposes such constrain
on the radiative corrections that the divergences can in
be removed within the given functional family of the actio
and the apparently nonrenormalizable model becomes re
malizable.

One touches upon here a fundamental difference betw
the ways renormalization group is used in statistical mech
ics and particle physics. In statistical mechanics the UV c
off is physical and we may not ignore the effects taking pla
at that scale. In particle physics we insist that the cutoff
sufficiently far from the scale of the phenomenon we a
interested even in the effective theories. The gain com
from this constraining of the set of observables is that u
versality arguments apply and it is enough to consider ren
malizable models.1 We may need irrelevant operators in st
tistical mechanics which lead to complicate
nonrenormalizable models. The error caused by the omis
of the irrelevant pieces in the particle physical applications
negligible. We can turn this insensitivity into a freedom. T
suppression mechanism responsible of this simplificat
gives us the possibility to include irrelevant pieces in t

1The universality might need certain generalization in case of s
eral scaling regimes or instabilities@19,24#.
2-4
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RENORMALIZATION OF PERIODIC POTENTIALS PHYSICAL REVIEW D63 045022
theories without specific fine tuning of their coupling co
stants in particle physics so long as the UV divergences
be removed.

In the case of the periodic potential we have the oppo
effect, a restriction on the renormalizability due to the pr
ence of infinitely many vertices in the model. This is becau
the new UV divergences of the ionized phase arise from
summation of infinitely many, individually finite graph
@4,5,8#. We show that this highly nontrivial effect can b
reproduced in a very simple manner in the framework of
functional form of the renormalization group method. W
shall use the Fourier amplitudesun(k) as coupling constant
and we linearize thed52 dimensional renormalization
group flow ~15! around the fixed pointun50 by assuming
u]f

2 Vk(f)u!k2. Notice that the UV Gaussian fixed point
well defined in any dimensions because modes with non
nishing momentum are considered in the blocking. The s
gularity building up at or below the lower critical dimensio
can be found in the flow generated by such a blocking p
cedure as an instability and as an inconsistency of the m
less IR fixed point without influencing the UV scaling law

It is more natural to express the flow in terms of t
dimensionless coupling constants,ũ(k)5k2du(k). The solu-
tion of the linearized renormalization group equation satis
ing the initial conditionsũn(k5L)5ũnL is

ũn~k!5ũnLS k

L D (ab2n222)

. ~17!

Thus, the coupling constantsũn(k) are relevant, marginal, o
irrelevant for b2,8p/n2, b258p/n2, or b2.8p/n2, re-
spectively.

For b2.8p all dimensionless coupling constants are
relevant and Eq.~17! is consistent and keeps the trivi
saddle point of the blocking stable. This result indicates
inaccessibility of the Gaussian fixed point in the UV lim
the nonrenormalizability of the model. The infrared fixe
point is a trivial, noninteracting massless theory.

It is instructive to compare this result with theO(u3)
prediction of the double expansion inu andb2/8p21 of the
sine-Gordon model which shows the possibility of absorb
the UV divergences intou and a wave function renormaliza
tion constant for the field@8#. The doubt that the higher orde
contributions of the perturbation expansion may render
theory nonrenormalizable is resolved in Ref.@8# by relying
on the bosonization method. Unfortunately there are pr
lems with the bosonization in the ionized phase which is
surprising since this mapping is based either on the sa
point or the weak coupling expansion. The problem is
anomaly of the topological current which requires the pr
ence of fermionic operators with odd power in the fermi
field @11#. We believe that the theory is nonrenormalizable
this phase but the real proof requires further efforts.

The potential becomes flat under RG transformation in
limit k→0 and the flat effective potential suggests the pr
ence of a massless particle which is in contradiction with
dimensionality of the system@25#. The resolution of this ap-
parent contradiction is that according to Eq.~17!, the non-
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Gaussian vertices of the model tend to zero sufficiently f
in the infrared limit to suppress the IR divergences of t
perturbation expansion when each mode in the loop inte
is coupled to the effective coupling constants at the app
priate scale.

The critical point atb258p is a well-known result for
the sine-Gordon model. Furthermore it was known that
higher harmonics, corresponding to the vortices with hig
vorticity are irrelevant around the critical point@8#. What is
interesting in our solution is that one sees a change in
scaling laws for the higher harmonics at a finite distan
away from this critical point. In fact, thenth harmonic is
found to be relevant forb2<8p/n2. The apparency of a new
relevant operator implies not only a new renormalizati
condition but the possibility of new ultraviolet divergence
Though we find no evidence for the singularity atb254p
@5#, a series of new singularities is expected atb258p/n2,
due to the vortices with higher vorticity.

VI. NUMERICAL SOLUTION

For b2,8p the first few Fourier-amplitudes are relevan
that is they increase for decreasing value ofk and conse-
quently the linearization ceases to be reliable. The solu
can only be found numerically in this case. Monitoring t
coupling constants numerically we compare the solution
Eq. ~15! with the result obtained from the analogous relati
for the polynomial potential@19#,

Vk~f!5(
1

n!
gnfn. ~18!

The initial conditions for the polynomial potential were ch
sen g2520.001, g450.01, andgn50, if n.4. Then the
saddle point remains trivial for anyk and the singularity of
Eq. ~9! at kcr

2 (f)52]f
2 Vk(f) is avoided. In order to com-

pare the periodic and the polynomial cases we choose
initial conditions for the Fourier-amplitudesun(k5L) for
b250.1bc

2 such that after Taylor expansion the initial co
ditions for the polynomial case are recovered. Therefore,
initial conditions for various truncationsN of the Fourier
series are different. For the increasing values ofN the cou-
pling constantsgn(k) determined from the periodic potentia
by the Taylor expansion approach the running coupling c
stants of the polynomial potential in the UV regime. This
understandable since the quantum fieldf does not feel the
global properties of the potential, i.e., the periodicity due
its small fluctuations in the UV regime. Just the oppos
holds in the IR regime, where the field fluctuations beco
larger and they make the global features of the poten
manifest. Therefore, it is expected that the solutions for
periodic and the polynomial potentials become different
the IR regime.

We integrated numerically Eq.~15! starting from the UV
cutoff L51 down to the critical value kcr

2 (f)5

2]f
2 Vkcr

(f) by using the fourth-order Runge-Kutta metho

anddk5102pk with p53 or p54. There were no change
in the numerical results by increasingp further. In Figs. 1
and 2 we show the scaling of the dimensionful coupli
2-5
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constantsg2 and g4 for different truncationsN. Increasing
the value ofN the differences in the results obtained for t
periodic potential decrease.

There are relevant coupling constants forb2,8p which
become large enough to destabilize the trivial saddle poin
the blocking and we reach a nonvanishing critical valuekcr
where the saddle point becomes nontrivial and the tree-l
blocking Eq.~10! must be used. By following the solution o
this equation all dimensionful Fourier-amplitudes are fou
to approach zero ask→0. The typical behavior is depicted i
Figs. 1 and 2.

There is a remarkable difference in the behavior of
theory with a periodic potential and that with the correspo
ing polynomial potential@26#. Namely, that all the dimen
sionful coupling constantsgn(k) obtained for the periodic
potential tend to zero in contrary to those of the polynom
potential which remain finite ask→0. In Fig. 3 we show this
flattening starting from the valuekcr .

Integrating numerically Eq.~14! we have shown that un
der the successive infinitesimal RG transformations the p
odic potential becomes a constant potential up to the a

FIG. 1. Comparison of the scaling of the dimensionful coupli
constantg2 obtained for the polynomial~dashed line with stars! and
for the periodic potential for various values of the truncationN
52,3,10,20,30 in the Fourier series. The figures on the left~right!
show the scaling of the coupling above~below! kcr . Below kcr we
show the scaling ofg2 for the casesN52,3,10. The increasing
order of the full-line curves corresponds to increasingN.

FIG. 2. The scaling of the dimensionful coupling constantg4 in
the same cases as forg2 in Fig. 1. The figures on the left~right!
show the scaling of the coupling above~below! kcr .
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racy 1025. We compared our results with the analyt
formula for the saddle point amplituderk(f) obtained for
the polynomial potential@19#:

rk~f!5 1
2 @fvac~k!2ufu#. ~19!

For periodic potentialsV(F1D)5V(F), the amplitude
rk(f) should be periodic in the field variable with the leng
of periodD for any scalek @see Eq.~14!#. Thus, for periodic
potentials, an expression similar to Eq.~19! is valid in the
period fP@2D/2,D/2# and then the same pattern of th
function rk(f) is repeated in all other periods. In the pa
ticular case investigated by us, the minus sign in express
~19! should be changed to a plus sign and the field indep
dent term isfvac

per(kcr)52D/2 and fvac
per(0)50. Therefore

we can compare the resultrk50
per (f)5 1

2 ufu with that obtained
by numerical integration of Eq.~14!, see Fig. 4. We have
established that with the increasing number of Fourier-mo
taken into account the computed curves get closer to
dashed line defined byrk50

per (f)5 1
2 ufu.

VII. SPONTANEOUS SYMMETRY BREAKING

We found two different phases of the model,b2,8p and
b2.8p, for small u with different scaling laws. The effec
tive potential flattens out in either case. How can we rec
cile this result with the usual perturbation expansion of

FIG. 3. Flattening of the periodic potential belowkcr . The de-
creasing order of the curves corresponds to decreasing values o
scalek with the stepdk5kcr/10.

FIG. 4. Comparison of the functionrk50(f) obtained by nu-
merical integration of Eq.~14! with the analytic expression
rk50

per (f)5
1
2 ufu ~dashed line!.
2-6
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RENORMALIZATION OF PERIODIC POTENTIALS PHYSICAL REVIEW D63 045022
sine-Gordon model@1# where one expects small fluctuation
around one of the minima of the periodic potential forb2

,8p? What does happen with the symmetryf→f12p?
The flattening of the effective potential makes the naive
der parameter to detect the realization of the periodic
*dxf(x), useless. What is the corresponding order para
eter?

The common difficulty behind these questions is that
physical configuration space is actually multiply connect
In fact, the sine-Gordon Hamiltonian describes a family
coupled pendulums and the configurationsf(x) and f(x)
1D are physically indistinguishable. We may use either
multiply connected description in terms of the complex va
able e2p if(x)/DPU(1) or the unconstrainedf(x)PR vari-
able on the covering space for the description of the syst
and the transformation~11! belongs to the fundamenta
groupp1@U(1)#5Z.

The special difficulty in detecting the spontaneous bre
down of the fundamental group symmetry is the degener
of the vacuum energy density, the only resolution of t
conflict between the periodicity and the convexity of the
fective potential in either phase. The flattening of the eff
tive action in the region of the Maxwell-cut indicates th
weakness of the restoring force acting on the fluctuati
around the equilibrium position and raises the possibility
the collapse of the topological stability of the solitons. Th
in turn, suggests the winding number as an order param
to distinguish between the phases with the usual and
unusual realization of the fundamental group symmetry. T
circumstance reflects a further similarity with gauge mod
at finite temperature@27#.

To understand these questions better we start by dis
guishing the local potential of the effective theoryVk(f)
with a low cutoff k from the effective potential,Ve f f(f)
5Vk50(f). In theories with infrared stable dynamics th
limit k→0 is safe and this difference is negligible. But th
infrared instability inducing the mixed phase and the Ma
well cut in the effective potential makes the limitk→0 more
involved even for theories with massive particles only@19#.
By turning this complication into an advantage, we sugg
to consider the infrared instabilities as the signature of
spontaneous symmetry breaking.

Let us consider the dynamics of the modes with mom
tum p,k5” 0. The local potentialVk(f) of the correspond-
ing effective theory is nontrivial and periodic and the pert
bation expansion might be justified around one of
minima for k.0. The real question is the relative speed t
different coupling constants approach 0 ask→0, and
whether the saddle point and the perturbation expansion
main consistent in this limit. As mentioned above, we ad
the infrared instability, i.e., the stability of the trivial sadd
point of the blocking as a signature of the absence of
change of the symmetry pattern of the model.

The saddle point of the blocking remains trivial in th
ionic phase and we expect no spontaneous symmetry br
ing there. The coupling constants decrease ask→0, the
theory becomes trivial as it happens with other nonrenorm
izable models. The infinitesimal fluctuations gradually fill u
the valleys of the local potential and the naive order para
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eter for the periodicity,*dxf(x), decouples.
The large amplitude, tree level fluctuations which lie b

yond the realm of the perturbation expansion but are pic
up by the tree-level renormalization start to fill up the valle
of the potential in the molecular phase already at a fin
scale,k,kcr . We take this instability as the indication o
spontaneous symmetry breaking. This seems to be in ag
ment with the perturbative approach which is meaning
only when the potential has a nontrivial structure.

In order to identify the order parameter for the periodic
we elucidate the topological differences between the t
phases. Let us introduce periodic boundary conditions in
Euclidean space-time and consider the following quantit
One of them is the winding number,

Q~x0!5E dx1 j 0~x0,x1!, ~20!

the space integral of the topological current density a
given time,x0. We shall argue that this is the order param
eter for the fundamental group symmetry. One can const
another independent topological invariant by exchanging
time and the space axes. But this does not modify the
cussion what follows. The other quantities are the vorticit
of the space-time regions before and after the timex0,

V65E
6(x02y0).0

d2y]m j m~y!. ~21!

The flux of the topological current agrees with the vortic
of the enclosed vorticesQ5V252V1 @11#.

In the molecular phase the distance between the vor
antivortex pairs is shrinking with the increasing UV cuto
and the quantum fluctuations cannot change the value oQ.
This makes the path integration consistent when constra
within a homotopy class, characterized by a fixed value ofQ.
In fact, the consistency of the path integration is the requ
ment that the path integral as the function of the end poin
the trajectories should satisfy the~functional! Schrödinger
equation. The Schro¨dinger equation can be derived for th
path integral by performing infinitesimal variations on th
trajectories at the final time. Thus the path integral is con
tent if the functional space over which it is evaluated
closed with respect to infinitesimal deformation of the traje
tories. Since the discontinuous field configurations are s
pressed in the path integral the quantization process is
defined in a given homotopy class@27#. Note that the con-
sistent constraining the functional integration into a giv
homotopy class removes the fundamental group symme
This is obvious in the semiclassical quantization of a soli
where the dynamical stability of the whole constructi
comes from the spontaneous breakdown, the suppressio
the winding number changing processes. Thus the condi
for the stability of the solitons, the sufficient smoothness
the configurations dominating the path integral, is in t
same time the signature of the breakdown of the fundame
group symmetry.

There are vortex-antivortex pairs with cutoff independe
separation in the ionized phase andQ fluctuates in an uncon
2-7
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trollable manner. The path integration cannot be constrai
into a given homotopy sector, the fundamental group sy
metry is realized but the semiclassical structure based
smoothness is destroyed, the solitons become unstable. I
same time the bosonization relations are either lost or fun
mentally modified because the soliton~fermion number!
nonconserving processes require the introduction of op
tors with odd powers of the fermion field in the action.

The susceptibility of the topological charge,

x5^Q2&2^Q&2 ~22!

may serve as a disorder parameter to distinguish the diffe
realizations of the periodicity. In fact, the vortex fugaci
tends to zero or stays finite in the molecular phase or
ionized phase when the cutoff is removed according to
Kosterlitz-Thouless RG flow. Since the topological susce
bility is vanishing whenever the fugacity is zero, the form
may serve as an order parameter.

VIII. SUMMARY

A simple two dimensional scalar model with periodic p
tential was investigated in this paper. The first question c
sidered was the renormalization of the potential. The st
of this problem requires the handling of infinitely many o
erators which was achieved by the Wegner-Houghton eq
tion. We found a disordered phase where the model is n
renormalizable and trivial. In another, ordered phase
relevant operators compatible with the symmetry were id
tified.

The periodicity and the convexity impose triviality on th
effective potential, a phenomenon verified in detail in bo
phases. The coupling constants approach zero regular
the disordered phase as the theory becomes trivial, leadin
the flattening of the effective potential. Instabilities we
found in the ordered phase where the effective potentia
flattened out by the Maxwell construction only, indicating
nontrivial dynamics behind the trivial final result.

It was pointed out that the configuration space of
model is multiply connected and that the winding numbe
suggested as a nonlocal order parameter distinguishing
explicit realization and the spontaneous breakdown of
fundamental group, the shift of the field variable by the p
riod length of the potential. The relation between the ap
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cability of the semiclassical arguments and the spontane
breakdown of the fundamental group symmetry is shown
the context of our model.

We have started to extend this work to include the wa
function renormalization constant for the field, and to inve
tigate the phase structure in higher dimensions. The sc
model with periodic potential can be considered as a non
ear O(2) model with a symmetry breaking term, and o
expects similarities with non-Abelian gauge theories due
the compact nature of the dynamical variable. In fact,
molecular phase is asymptotically free and the vacuum
filled up with vortices in its large distance structure. Furth
more, the spontaneous breakdown of the fundamental gr
symmetry is reminiscent of the breakdown of the center sy
metry in finite temperature gauge theories. Thus, our res
offer interesting lessons to be learned in constructing
quark confinement mechanism.

We ignored the wave function renormalization constan
this work. In order to go beyond this approximation and
take into account some higher order contributions in the g
dient expansion one has to turn to the evolution equations
the effective action, instead of the bare action@15,17,18#. But
the problem is just that the effective action, appearing in
renormalization group treatment, hides a large part of
dynamics due to the Maxwell cut. This is because the eff
tive action, obtained by a smooth cutoff, is after all the Le
endre transform of the logarithm of a path integral whi
does contain the IR modes. These modes, though they ap
with small amplitude, generate the Maxwell cut. It is n
clear to us how to improve the renormalization group meth
to make it applicable for models with spontaneous symme
breaking or with compact variables~e.g., gauge models with
gauge fixing which are based on compact gauge group! be-
yond the local potential approximation.

ACKNOWLEDGMENTS

One of the authors~I.N.! thanks J. Alexandre, and V
Branchina, and G. Plunien for the useful discussions. T
work is supported by the NATO grant PST.CLG.975722, t
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