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The renormalization of the periodic potential is investigated in the framework of the Euclidean one-
component scalar field theory by means of the differential RG approach. Some known results about the
sine-Gordon model are recovered in an extremely simple manner. There are two phases: an ordered one with
asymptotical freedom and a disordered one where the model is nonrenormalizable and trivial. The order
parameter of the periodicity, the winding number, indicates spontaneous symmetry breaking in the ordered
phase where the fundamental group symmetry is broken and the solitons acquire dynamical stability. It is
argued that the periodicity and the convexity are such strong constraints on the effective potential that it always
becomes flat. This flattening is reproduced by integrating out the RG equation.
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I. INTRODUCTION Il. THE SINE-GORDON, X-Y AND FERMIONIC MODELS

The simplest example for periodic potential is the two-

The dynamics generated by a periodic potential representgmensional sine-Gordon model which is described by the
a challenge in quantum field theory where the usual strate-agrangian
gies to obtain the solution are based on the Taylor expansion
which violate the essential symmetry of the problem, the L
periodicity. One expects two kinds of problems. A local one:
the perturbation expansion for the small fluctuations aroundvith
a minima of the potential should deal with infinitely many
vertices in order to preserve the periodicity. A global prob- V(¢)=ucosBa¢. 2
lem appears in the construction of the effective potential as
an instability, a conflict between the periodicity and the con-The dynamics and the renormalization have been discussed
vexity which can be resolved in a trivial manner only, beingby means of the straight perturbation expansion and the map-
the constant the only function which is periodic and convexpings between the sine-Gordon, the Thirring, and Xa¥
at the same time. Another global problem, made rather puzslanar modelg§1—-8] The duality transformation connecting
zling by the flatness of the effective potential, is to find anthe sine-Gordon and thé-Y models provides the renormal-
order parameter distinguishing the phase with periodicityization group flow in the complete coupling constant space
from the one where the periodicity is broken spontaneousiyi.9,10].

The goal of this paper is to give a brief presentation of The mappings between the different models are not exact.
these issues in the case of a two-dimensional scalar moddn fact, the bosonization of the Thirring modgl] and the
The pertinent features of the sine-Gordon model, the simCoulomb-gas representation of a periodic poteriffdlare
plest realization of a periodicity, and the more detailed goal®Ptained perturbatively. The duality is established up to ir-
of this paper are presented in Sec. II. Section Il contains 4elévant terms in the actidd0]. An exact equivalence exists
very brief introduction into the Wegner-Houghton equation,?€tween theX-Y and the compactified sine-Gordon model
applied for the periodic potential in Sec. IV. The linearized Which is obtained by expressing) in terms of the compact

renormalization group flow is given around the two- variable[11]
dimensional Gaussian fixed point and the periodic operators

of the potential are classified in Sec. V. The nonlinear flow is

discussed in Sec. VI by means of numerical integration of o o o
the renormalization group equation. Section VII contains a>Uch @ parametrization makes the kinetic energy periodic,
few remarks about the signatures of the spontaneous break-

down of the fundamental group symmetry. Finally, Sec. VIII L= i
is for the summary of our findings. 23°

3(9,8)*+V(9), 1)

z(x)=eP*M), 3

u
4,2*d,z+ E(Z+Z*) (4)
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TABLE I. Comparison of theXY and the sine-Gordon model.

XY model with external field Compactified sine-Gordon model
External fieldh Fourier amplitudeu=h/ 82
Temperaturel Coupling constang?

Molecular phase of the vortex gads<T, Weak coupling phasg?< 32
lonized phase of the vortex gas>T, Strong coupling phasg?> 82
Vortex, antivortex Soliton creation and annihilation

and introduces vortices in the dynamics. The modBlsand  and shows that the adjustmentwénd the introduction of a
(4) are equivalent in any order of the perturbation expansionwave function renormalization constant for the figldn the
in continuous space-time. The modification of the regulatostrong coupling phase is sufficient to remove the UV diver-
amounts to the introduction of nonrenormalizable terms ingences.
the action which are irrelevant in the UV scaling regime.  The inspection of the vortex dynamics allows us to follow
Thus the equivalence is reached asymptotically only whefhe transition line for larger values af One way the vortices
the cutoff is removed. In lattice regularization the the6ty  grise is that the vertices appearing in the perturbation expan-
is in t_he same unlversallty class as teY model which is  gion in Eq.(2) form a gas of vortices described by tHeY
described by the action model[7]. Another way to identify the vortices is to use the
equivalence of Eqg4) and(5) in lattice regularization when
S= 1 > cod b,— )+ D, hcog 6y), (5)  the continuum limit is approached. Both ways indicate that
(x,x") X the weak and the strong coupling phases are the molecular or
the ionized phases, respectively, from the point of view of
with T= 2. The renormalization of th¥-Y model induces a the vortex gas and that the phases are separated by the
nontrivial value for the vortex fugacity which appears as an Kosterlitz-Thouless transition. It is worthwhile noting that
additional evolving coupling constant in the compactifiedthis transition is rather peculiar becau$gits driving force,
sine-Gordon mode[11]. Therefore the complete coupling the vortex dynamics is generated by the UV modes rather
constant space contains three coupling constants, the exterighn the IR ones as in the case of spontaneous symmetry
field h, the temperaturd, and the vortex fugacity. breaking, andii) it is a higher than second order since the
As it is well known, there are two phases |n.tyeT correlation length is infinite in the molecular phase and di-
plane connected by the Kosterlitz-Thouless transi@ip In verges faster than any power of the reduced temperégore
the Iow_tem_perature, molecular pha‘ﬁe('_l’KT th_e vortices eponentially, therefore one cannot introduce the critical ex-
and antivortices form closely bound pairs while above th .
" X o ponentv in the usual manner.
transition temperaturd>Tx1, in the ionized phase they The sine-Gord del topoloaical i
dissociate into a plasma. Due to the duality transformation, € sine-Lordon model possesses a topological curren
the corresponding two phases appear in HheT plane as
well as those of the dual electric Coulomb ¢B<G). In the
h—T plane the ionized phase of DCG is realized at low ; — ﬁ
: ) > 1 u(X) €9, P(X), (6)
temperature, i.e., at weak coupli®f< 82 whereas the mo- 2m
lecular phase of DCG is positioned at high temperature, i.e.,
at strong couplingd?> [;’g. Instead of this duality transfor-
mation connecting th&-Y and the sine-Gordon models we Which is conserved in the semiclassical expansion, when the
shall rely in this paper on the more direct equivalence of Eqspath integral is saturated by field configurations with analytic
(4) and(5) as noted abovgl1], which identifies the weakly —space-time dependence. The flux defined pys the vortex
coupled(small 8) and the strongly coupletlarge 8) phase number, called the vorticity and the soliton number in the
of the sine-Gordon model with the molecular and the ionizedsame time. In this manner the world lines of the sine-Gordon
phase of theX-Y model. The vortices of Eqg4) and (5) solitons end at th&X-Y model vortices, making the soliton
correspond to each other in this scheme. unstable and the topological current anomalous in the ion-
The transition between the phases can be characterizézed phase where field configurations with singular space-
either perturbatively or by means of the vortex dynamics. Asime dependence survive the removal of the cutbff]. This
far as the perturbation expansion is concerned, the normalestroys or at least modifies the bosonization transformation
ordering is sufficient to remove the UV divergences for weakin the high temperature, ionized phase of the vortex gas. In
couplings. Though the divergence structure of the individuafact, the nonconservation of the topological current requires
graphs is the same in either phase, the partial resummation éérmion number nonconserving terms in the fermionic repre-
the perturbation expansion in produces new UV diver- sentation, a fundamental violation of the rules inferred from
gences forp?>8x [1,4,5. A further UV divergence was the weak coupling expansion.
found at B2=4x [5]. The double expansion in and The relation between the sine-Gordon and Xh¥ model
B?187—1 [8] indicates no special singularities gt=41r is summarized in Table I.
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lll. DIFFERENTIAL RG APPROACH

111
IN MOMENTUM SPACE Vi se( ) =min| k?p?+ Ej duVi[ ¢+2pcogmu)]|,
-1
P

The challenge in developing a renormalization group (10)
(RG) method for the sine-Gordon model is that it should
follow the mixing of all the operators which become relevantwherep is the amplitude of the plane way&9].
in either phase. Since there is an infinite amount of relevant
operators in two dimensions, one needs the functional form
of the evolution equations for the blocked Wilsonian action
[12-18. We shall use the leading order gradient expansion The symmetry of the action under the transformation
in the Wegner-Houghton equatidd?] to study the renor-
malization group flow of a generalized model with an arbi- H(X)— d(X)+ A (11)
trary periodic potential. Such a drastic truncation leaves

some doubts due to the supposed role of the wave functiog {, pe preserved by the blocking and the potentigid)

renormalization constant in the ionized phase. But the higheﬁqust be periodic with period length. It is actually obvious
order contribution of the gradient expansion can only bet

X . o Awat the blocking, the transformation
treated consistently by the use of the effective action instea
of the bare one. We shall find that the instability arising from
the periodicity of the effective potential makes the Legendre
transformation highly nontrivial and prevents us to use the
effective action in the infrared regime of the molecular
phase.

IV. PERIODICITY OF THE POTENTIAL

KVi— sl ) =KVi( ) +[Ka In(K?+ 55V $))] 5k 1
12

preserves that periodicity of the potential. The impact of the
The differential RG transformations are realized by inte-Periodicity of the potential on the dynamics can be under-

grating out the high-frequency Fourier components of thestood by recalling tha¥,(®) tends to the effective potential,

field variable, in infinitesimal steps in momentum space suc~ef{(®) in the IR limit, k—0. This is because both potential
cessively from the UV cutofk to k— ok, give the action density within the functional spade

=(¢(x)). The Legendre transform imposes the condition of
, the convexity on the effective potentig20] and thereby on

e_sk*‘*[‘b]:j D[¢'Je Sdo+ e, (1) Vy_o(P). Since the only periodic and convex function is the

constant there is no way to have nontrivial effective potential

whereS,[ ¢] stands for the blocked action with cutdffand ~ when the transformatiofll) is a formal symmetry of the
the field variables¢p and ¢’ contain Fourier components action. Notice that this statement holds for any dimensions.
with momentap<k— 5k, andk— sk<p<Kk, respectively. In  The detailed RG study of the sine-Gordon model is pursued
every infinitesimal step, the path integration in K@) is here to check such a general conjecture in a simpler case.
evaluated by the help of the saddle point approximation. If One could object by pointing out that it is enough to
the saddle point is a®’=0, one can find an integro- implement the horizontal Maxwell cut of the effective poten-
differential equation for the blocked action, called thetial between the inflexion point®/g(®)=0, where the
Wegner-Houghton equatiofi2]. In the local potential ap- function is concave. But the problem left by this construction
proximation one uses the leading order expression for thé just at the inflection point where the potential obtained in
action in the gradient expansion this manner has singular higher derivatives. This is unaccept-
able, as one can see by placing the system in a large but
finite box. On one hand, the effective potential should be
Sk:f X[ 2 (9,4 (0))*+ Vidb(X)], ®  close enough to the one obtained in the thermodynamical
limit, i.e., the Maxwell cut should be present up to finite size
and the Wegner-Houghton equation reduces to a differentiaorrections. On the other hand, the effective potential should

equation for the scale dependent potentgl¢) [16] be regular in the absence of IR divergences. It is easy to see
§ ) 2 that the singularity at the inflexion point gives rise to smooth
ka V(@) = =K a In(k“+ d5Vi( ), (9 but concave region for finite systems after being rounded off

. L 4 ) o ) and the Maxwell cut must be extended further. In the case of
with a=304(2m) ", and the solid anglé}y in dimension  the 4* model where the symmetry which is broken sponta-
d. ) i ) neously is¢p— — ¢ such an extension of the Maxwell cut

Notice that the argument of the logarithm in K@) must  |eads to the degeneracy of the effective potential between the
be non-negative for the expansion made around a stablinima[19]. When the symmetry11) is broken then infi-
saddle point. If the argument Eecomes negative at a criticglitely many minima are expected in the effective potential.
valuek. >0, given bykg,=—d,Vy_(¢) then the Wegner-  The only Maxwell cut which is stable in the thermodynami-
Houghton equation looses its validity fde<k. and the cal limit is thus the one which rende¥4.;{(®) constant.
saddle point becomes nonzero and the tree-level blocking In order to allow a convenient truncation of the potential
relation must be used. We simplify the saddle point structuréor the numerical solution of the evolution equation and to
of the blocking(7) by retaining the plane waves only and we preserve the periodicity we write thé,(¢) as a Fourier
find the evolution equation series,
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© V. LINEARIZED SOLUTION
V()= un(k)cognBe). (13

A=0 According to the power counting, theories with polyno-
mial interactions are super-renormalizable in dimension

For the sake of simplicity we consider only potentials with =2. Furthermore, the super-renormalizable interactions cor-
Z(2) symmetry,V,(¢)=V,(— ¢). The whole scale depen- respond to relevant operators in the UV scaling regime. How
dence occurs in the Fourier amplitudggk), the “coupling  can we have new UV divergences in the ionized phase when
constants” of the scale dependent potential. In the case of ghe set of the renormalizable operators is fixed? The source
nontrivial saddle point, Eq:10) can be rewritten as of the complication is that in the usual perturbative proof of
the renormalizability each monomial vertex is treated inde-

pendently. This strategy is sufficient for polynomial interac-
tions but is not necessarily applicable for periodic potentials
(14) where the symmetry is destroyed by any truncation of the

Taylor expansion.

whereJ, stands for the Bessel function ag=27/A. Let The treatment of an infinite series of operators instead of
pr($) denote the position of the minimum of the bracket ona single monomial may cause complications, an impression
the right-hand-side of Eq(14). Then p.(¢) is periodic ~0of having renormalized a manifestly nonrenormalizable

p(b+A)=pi(¢), since one has to minimize the same ex-model. In fact, we may find an infinite series of irrelevant
pression ofp for ¢ and ¢+ A. Note that Eq(14) preserves Operators in a renormalizable model, showing the possibility
the periodicity. of the removal of the cutoff in the presence of nonrenormal-
The retaining of the higher order contributions in the gra-izable operators. An obvious example is when a regulator,
dient expansion, among them the leading order being théepresented as an interaction vertex, yields irrelevant opera-

inclusion of a wavefunction renormalization constanttors. We find this situation by introducing the finite differ-

ZJ ¢(x)] into the kinetic energy of the actiof8) changes €nce operator appearing in the lattice regularized theories in
the situation. The action keeps its period length in the baréhe continuum. The finite difference operator generates an
field under any circumstance. But the period length in termdnfinite power series of the gradient whose monomials are

minimizes the potential/k(g%)) is AZY%( ). Such sublead- cutoff is whether the series of the irrelevant operators is cho-

ing contributions of the gradient expansion are neglected iff€" IN Such a manner that the divergences can be removed by
the present work. We believe that their contribution will not th€ finé-tuning of a finite number of parameters in the action.

change our results qualitatively. The infinite series of irrelevant operators is usually required
It is easier to use the derivative of E®) with respect to by some symmetry of the the_ory, such as the periodicity in
¢ rather than the original equation itself. For dimensighe ~ Mementum space on the lattig21], the globalO(N) sym-

general form of the evolution equation reads as follows: ~ Metry of the nonlinear sigma modg22], or gauge theories
on the lattice[23]. The symmetry imposes such constraints

aB%k4~2n2y, (k)= (d+ka)v(K) on the radiativ_e porrecti(_)ns that the diverge_:nces can in_ fact
be removed within the given functional family of the action
N and the apparently nonrenormalizable model becomes renor-
=3Bk Ang(k)(d+kagup(k),  malizable.

p=1 One touches upon here a fundamental difference between

(150  the ways renormalization group is used in statistical mechan-

ics and particle physics. In statistical mechanics the UV cut-

where N is the truncation in the Fourier series, (k)  off is physical and we may not ignore the effects taking place

Vi s ¢)=min| k2p?+ 21 un(k)cognB¢)do(2n8p) |,
P n=

=npu,(k) and at that scale. In particle physics we insist that the cutoff is
sufficiently far from the scale of the phenomenon we are
Anp(k)=(n=p)v,-,0(n=p) interested even in the effective theories. The gain coming

from this constraining of the set of observables is that uni-

T (P=Mvp-n®(p=n) versality arguments apply and it is enough to consider renor-

—(N+P)vys O(N=n+p), (1) ~ Malizable model$.We may need irrelevant operators in sta-
. tistical mechanics which lead to complicated
with ©®(n=n")={1 if n=n’,0 if n<n’}. nonrenormalizable models. The error caused by the omission

Reaching the critical valu&., one has to change auto- Of the irrelevant pieces in the particle physical applications is
matically from the system of Eq$15) to Eq.(14). In every ~ negligible. We can turn this insensitivity into a freedom. The
step Sk in the momentum space, the potential at the skale SUPPression mechanism responsible of this simplification
— 5k is then found by minimizing the expression on the 9ives us the possibility to include irrelevant pieces in the
right-hand side(r.h.s) of Eq. (14). After the minimization,
the potentialVy _ 5(¢) is expanded in Fourier-series to de-
fine the new Fourier amplitudes at the scéle 5k. One The universality might need certain generalization in case of sev-
repeats this algorithm step by step uti# 0. eral scaling regimes or instabiliti¢9,24.
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theories without specific fine tuning of their coupling con- Gaussian vertices of the model tend to zero sufficiently fast
stants in particle physics so long as the UV divergences caim the infrared limit to suppress the IR divergences of the
be removed. perturbation expansion when each mode in the loop integral
In the case of the periodic potential we have the opposités coupled to the effective coupling constants at the appro-
effect, a restriction on the renormalizability due to the pres{riate scale.
ence of infinitely many vertices in the model. This is because The critical point at32=8 is a well-known result for
the new UV divergences of the ionized phase arise from thé¢he sine-Gordon model. Furthermore it was known that the
summation of infinitely many, individually finite graphs higher harmonics, corresponding to the vortices with higher
[4,5,8. We show that this highly nontrivial effect can be vorticity are irrelevant around the critical poif8]. What is
reproduced in a very simple manner in the framework of thanteresting in our solution is that one sees a change in the
functional form of the renormalization group method. We scaling laws for the higher harmonics at a finite distance
shall use the Fourier amplitudeg(k) as coupling constants away from this critical point. In fact, theth harmonic is
and we linearize thed=2 dimensional renormalization found to be relevant foB?<8/n?. The apparency of a new
group flow (15) around the fixed pointi,=0 by assuming relevant operator implies not only a new renormalization
|a§)vk(¢)|<k2. Notice that the UV Gaussian fixed point is condition but the possibility of new ultraviolet divergences.
well defined in any dimensions because modes with nonvaFhough we find no evidence for the singularity gt= 4
nishing momentum are considered in the blocking. The sin{5], a series of new singularities is expectedBat 87/n?,
gularity building up at or below the lower critical dimension due to the vortices with higher vorticity.
can be found in the flow generated by such a blocking pro-
cedure as an instability and as an inconsistency of the mass- VI. NUMERICAL SOLUTION
less IR fixed point without influencing the UV scaling laws. 5 i ) )
It is more natural to express the flow in terms of the For B<<8r the first few Fourier-amplitudes are relevant,

. . . ~ N —d that is they increase for decreasing valuekond conse-
dimensionless coupling constantgk) =k “u(k). The solu- . o . .

. ; ) N . .. quently the linearization ceases to be reliable. The solution
tion of the linearized renormalization group equation satisfy- . S o
) o T ~ 7 can only be found numerically in this case. Monitoring the
ing the initial conditionsu,(k=A)=un, is coupling constants numerically we compare the solution of
Eq. (15) with the result obtained from the analogous relation

for the polynomial potential19],

K\ (aB°n?-2)
) (17

Dn<k)=DnA(X

1
Vi) =2 —9nd" (18)

Thus, the coupling constants (k) are relevant, marginal, or
irrelevant for 82<8w/n?, B?=8w/n?, or B2>8mx/n?, re-
spectively.

For 8?>8r all dimensionless coupling constants are ir-

The initial conditions for the polynomial potential were cho-
seng,=—0.001, g,=0.01, andg,=0, if n>4. Then the
saddle point remains trivial for any and the singularity of

relevant and Eq(17) is consistent and keeps the trivial 2 _ 2 . .
saddle point of the blocking stable. This result indicates thd=0- (9) atkg (¢)=—3,Vi(4) is avoided. In order to com-
pare the periodic and the polynomial cases we choose the

inaccessibility of the Gaussian fixed point in the UV limit, T* . - . .
the nonrenormalizability of the model. The infrared fixed m;tlal COQd'“O”S for the Founer-amphtudesn(k=_A_)_ for
point is a trivial, noninteracting massless theory. B~=0.15; such that after Taylor expansion the initial con-
It is instructive to compare this result with tf@(ud) _dm_ons for t_h_e polynomla_l case are re_zcovered. Therefo_re, the
prediction of the double expansionirand 8%/8=— 1 of the |n|t|_al condlt_lons for varlous_truncaponsl of the Fourier
sine-Gordon model which shows the possibility of absorbingS€/€s are different. For the increasing values\ahe cou-
the UV divergences inta and a wave function renormaliza- Pling constantgy,(k) determined from the periodic potential
tion constant for the fiel@8]. The doubt that the higher order PY the Taylor expansion approach the running coupling con-
contributions of the perturbation expansion may render th&t@nts of the polynomial potential in the UV regime. This is
theory nonrenormalizable is resolved in RES] by relying ~ Understandable since the quantum figidloes not feel the
on the bosonization method. Unfortunately there are probd!obal properties of the potential, i.e., the periodicity due to
lems with the bosonization in the ionized phase which is noftS small fluctuations in the UV regime. Just the opposite
surprising since this mapping is based either on the sadgfeolds in the IR regime, where the field fluctuations become
point or the weak coupling expansion. The problem is the@rger and they make the global features of the potential
anomaly of the topological current which requires the presmanifest. Therefore, it is expected that the solutions for the
ence of fermionic operators with odd power in the fermionP€riodic and the polynomial potentials become different in
field [11]. We believe that the theory is nonrenormalizable inthe IR regime. _ _
this phase but the real proof requires further efforts. We integrated numerically EG15) starting fromzthe uv
The potential becomes flat under RG transformation in th&Utoff | A=1 ~down to the critical value kg(¢)=
limit k—0 and the flat effective potential suggests the pres— 5V« (#) by using the fourth-order Runge-Kutta method
ence of a massless particle which is in contradiction with theand sk=10"Pk with p=3 or p=4. There were no changes
dimensionality of the systefi25]. The resolution of this ap- in the numerical results by increasimgfurther. In Figs. 1
parent contradiction is that according to EG7), the non- and 2 we show the scaling of the dimensionful coupling
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FIG. 3. Flattening of the periodic potential beldy, . The de-

FIG. 1. Comparison of the scaling of the dimensionful coupling creasing order of the curves corresponds to decreasing values of the
constang, obtained for the polynomiddashed line with stajand g5k with the stepsk=k.,/10.

for the periodic potential for various values of the truncatidn

=2,3,10,20,30 in the Fourier series. The figures on the(tafht) racy 105, We compared our results with the analytic

show the scaling of the coupling abodeelow) k. Belowke, we o 15 for the saddle point amplitude () obtained for
show the scaling ofy, for the casesN=2,3,10. The increasing the polynomial potentidl19]:

order of the full-line curves corresponds to increadig

pi( D) =3[ byac(k)—[]]. (19

. . . For periodic potentialsV(®+A)=V(d), the amplitude
Lheerigg:‘c’epgf';‘nttﬁ‘; gfgf;scfs in the results obtained for the ,, () should be periodic in the field variable with the length
Th | i I tants <8 hich of periodA for any scalek [see Eq(14)]. Thus, for periodic

ere are relevant coupling constants A o which otentials, an expression similar to E49) is valid in the
become large enough to destabilize the trivial saddle point Ogeriod be[—A2A/2] and then the same pattern of the

the blocking and we reach a nonvanishing critical vatye frnction pu(#) is repeated in all other periods. In the par-

where the saddle point becomes nontrivial and the tree-lev : ; . L .
blocking Eq.(10) must be used. By following the solution of Sicular case investigated by us, the minus sign in expression

this equation all dimensionful Fourier-amplitudes are found(lg) should be changed to a plus sign and the field indepen-
- i pper _ Per Ay —
to approach zero ds—0. The typical behavior is depicted in dent term is¢,zc(Ker) = —A/2 and ¢;,,(0)=0. Therefore

constantsg, and g, for different truncationdN. Increasing

vac vac
Figs. 1 and 2. we can compare the reswlf*( $) = 3| ¢| with that obtained

There is a remarkable difference in the behavior of theby numencal Integration of Ec{._14), see Fig. 4. WG.} have
theory with a periodic potential and that with the correspond-eStab"_Shed that with the increasing number of Fourier-modes
ing polynomial potentia[26]. Namely, that all the dimen- taken |nt_o aCC‘?“”t thepe(r:omputfd curves get closer to the
sionful coupling constantg,(k) obtained for the periodic dashed line defined by%o(¢)=z|4].
potential tend to zero in contrary to those of the polynomial
potential which remain finite as— 0. In Fig. 3 we show this VII. SPONTANEOUS SYMMETRY BREAKING

flattening starting from the value, . We found two different phases of the modgéf <8+ and

Integrating nLIJme.ric_aI.Iy Eq(.l4) we have ShOW.“ that un- B?>8r, for smallu with different scaling laws. The effec-
der the successive infinitesimal RG transformations the perlgve potential flattens out in either case. How can we recon-

odic potential becomes a constant potential up to the aCClle this result with the usual perturbation expansion of the

0.012 0.01
24(K) 24(®) /
""’f 7
0.008 0.005 " 74
/
/
//
0.004 0.0 Ve
0.0 -0.005 C R C
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.02 0.04 0.06 0.08 1.5 -1 -0.5 0 0.5 1 1.5 2
k k ¢
FIG. 2. The scaling of the dimensionful coupling constanin FIG. 4. Comparison of the functiop,_y(¢) obtained by nu-
the same cases as fgp in Fig. 1. The figures on the lefright) merical integration of Eq.(14) with the analytic expression
show the scaling of the coupling abouaelow) k., . PP (#)=3|¢| (dashed ling
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sine-Gordon mod€l1] where one expects small fluctuations eter for the periodicityfdx¢(x), decouples.

around one of the minima of the periodic potential fét The large amplitude, tree level fluctuations which lie be-
<8m? What does happen with the symmetby—¢+27?  yond the realm of the perturbation expansion but are picked
The flattening of the effective potential makes the naive orup by the tree-level renormalization start to fill up the valleys
der parameter to detect the realization of the periodicityof the potential in the molecular phase already at a finite
Jdx¢(x), useless. What is the corresponding order paramscale,k<<k... We take this instability as the indication of
eter? spontaneous symmetry breaking. This seems to be in agree-

The common difficulty behind these questions is that thement with the perturbative approach which is meaningful
physical configuration space is actually multiply connectedonly when the potential has a nontrivial structure.

In fact, the sine-Gordon Hamiltonian describes a family of In order to identify the order parameter for the periodicity
coupled pendulums and the configurationéx) and ¢(x)  we elucidate the topological differences between the two
+ A are physically indistinguishable. We may use either thephases. Let us introduce periodic boundary conditions in the
multiply connected description in terms of the complex vari-Euclidean space-time and consider the following quantities.
able e2™¢/A 2 (1) or the unconstrained(x) e R vari-  One of them is the winding number,

able on the covering space for the description of the system,

and the transformatio11) belongs to the fundamental o 10,00 o1

groupﬂ_l[u(l)]:Z. Q(X )_J dx JO(X X )a (20)

The special difficulty in detecting the spontaneous break-
down of the fundamental group symmetry is the degeneracthe space integral of the topological current density at a
of the vacuum energy density, the only resolution of thegiven time,x°. We shall argue that this is the order param-
conflict between the periodicity and the convexity of the ef-eter for the fundamental group symmetry. One can construct
fective potential in either phase. The flattening of the effec-another independent topological invariant by exchanging the
tive action in the region of the Maxwell-cut indicates the time and the space axes. But this does not modify the dis-
weakness of the restoring force acting on the fluctuationsussion what follows. The other quantities are the vorticities
around the equilibrium position and raises the possibility ofof the space-time regions before and after the tihe
the collapse of the topological stability of the solitons. This,
in turn, suggests the winding number as an order parameter B o
to distinguish between the phases with the usual and the V+_J+(x0y0)>0d Yul u(Y)-
unusual realization of the fundamental group symmetry. This
circumstance reflects a further similarity with gauge modelsThe flux of the topological current agrees with the vorticity
at finite temperatur€27]. of the enclosed vortice®=V_=—V, [11].

To understand these questions better we start by distin- |n the molecular phase the distance between the vortex-
guishing the local potential of the effective theowy(¢)  antivortex pairs is shrinking with the increasing UV cutoff
with a low cutoff k from the effective potentialVeti(¢)  and the quantum fluctuations cannot change the valu@. of
=Vi-o(¢). In theories with infrared stable dynamics the This makes the path integration consistent when constrained
limit k— 0 is safe and this difference is negligible. But the within a homotopy class, characterized by a fixed valu®.of
infrared instability inducing the mixed phase and the Max-In fact, the consistency of the path integration is the require-
well cut in the effective potential makes the lifkit~0 more  ment that the path integral as the function of the end point of
involved even for theories with massive particles ofl§].  the trajectories should satisfy thHéunctiona) Schralinger
By turning this complication into an advantage, we suggesequation. The Schobinger equation can be derived for the
to consider the infrared instabilities as the signature of theath integral by performing infinitesimal variations on the
spontaneous symmetry breaking. trajectories at the final time. Thus the path integral is consis-

Let us consider the dynamics of the modes with momenient if the functional space over which it is evaluated is
tum p<k#0. The local potentiaV,(¢) of the correspond- closed with respect to infinitesimal deformation of the trajec-
ing effective theory is nontrivial and periodic and the pertur-tories. Since the discontinuous field configurations are sup-
bation expansion might be justified around one of thepressed in the path integral the quantization process is well
minima fork>0. The real question is the relative speed thedefined in a given homotopy cla§&7]. Note that the con-
different coupling constants approach 0 &s-0, and sistent constraining the functional integration into a given
whether the saddle point and the perturbation expansion rdtomotopy class removes the fundamental group symmetry.
main consistent in this limit. As mentioned above, we adopfThis is obvious in the semiclassical quantization of a soliton
the infrared instability, i.e., the stability of the trivial saddle where the dynamical stability of the whole construction
point of the blocking as a signature of the absence of theomes from the spontaneous breakdown, the suppression of
change of the symmetry pattern of the model. the winding number changing processes. Thus the condition

The saddle point of the blocking remains trivial in the for the stability of the solitons, the sufficient smoothness of
ionic phase and we expect no spontaneous symmetry breatiie configurations dominating the path integral, is in the
ing there. The coupling constants decreasekasO, the  same time the signature of the breakdown of the fundamental
theory becomes trivial as it happens with other nonrenormalgroup symmetry.
izable models. The infinitesimal fluctuations gradually fillup  There are vortex-antivortex pairs with cutoff independent
the valleys of the local potential and the naive order paramseparation in the ionized phase a@@dluctuates in an uncon-

(21)
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trollable manner. The path integration cannot be constrainedability of the semiclassical arguments and the spontaneous
into a given homotopy sector, the fundamental group symbreakdown of the fundamental group symmetry is shown in
metry is realized but the semiclassical structure based offie context of our model.

smoothness is destroyed, the solitons become unstable. In the We have started to extend this work to include the wave
same time the bosonization relations are either lost or funddunction renormalization constant for the field, and to inves-
mentally modified because the solitdfermion number tigate the phase structure in higher dimensions. The scalar
nonconserving processes require the introduction of operdnodel with periodic potential can be considered as a nonlin-

tors with odd powers of the fermion field in the action. ear O(2) model with a symmetry breaking term, and one
The susceptibility of the topological charge, expects similarities with non-Abelian gauge theories due to
the compact nature of the dynamical variable. In fact, the

x=(Q%»—(Q)? (220 molecular phase is asymptotically free and the vacuum is

) o ) ) filled up with vortices in its large distance structure. Further-
may serve as a disorder parameter to distinguish the differegf ;e the spontaneous breakdown of the fundamental group
realizations of the periodicity. In fact, the vortex fugacity symmetry is reminiscent of the breakdown of the center sym-
tends to zero or stays finite in the molecular phase or thenetry in finite temperature gauge theories. Thus, our results
ionized phase when the cutoff is removed according t0 thgyfer interesting lessons to be learned in constructing the
Kosterlitz-Thouless RG flow. Since the topological susceptiquark confinement mechanism.

bility is vanishing whenever the fugacity is zero, the former * e ignored the wave function renormalization constant in

may serve as an order parameter. this work. In order to go beyond this approximation and to
take into account some higher order contributions in the gra-
VIIl. SUMMARY dient expansion one has to turn to the evolution equations for

the effective action, instead of the bare acfi®5,17,1§. But

A simple two dimensional scalar model with periodic po- h blem is iust that the effect i qin th
tential was investigated in this paper. The first question con- € probiem IS just that the effective action, appearing in the
renormalization group treatment, hides a large part of the

sidered was the renormalization of the potential. The study : g
of this problem requires the handling of infinitely many op- dynamics due to the Maxwell cut. This is because the effec-

erators which was achieved by the Wegner-Houghton equa{i-ve action, obtained by a smqoth cutoff, is af;er all the Leg-
tion. We found a disordered phase where the model is non(?ndre transform of the logarithm of a path integral which

renormalizable and trivial. In another, ordered phase théjoes contain the IR modes. These modes, though they appear

relevant operators compatible with the symmetry were idenVith small amplitude, generate the Maxwell cut. It is not
tified. clear to us how to improve the renormalization group method

The periodicity and the convexity impose triviality on the LO mike I appilhcable for EnOd(.aliIW'th spontaneou(sj slymr‘f:ﬁtry
effective potential, a phenomenon verified in detail in both reaking or with compact variablée.g., gauge models wi

phases. The coupling constants approach zero regularly payage fixing which are based on compact gauge groep

the disordered phase as the theory becomes trivial, leading Vc?nd the local potential approximation.
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