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Chiral condensates in the light-cone vacuum
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In light-cone quantization, the standard procedure to characterize the phases of a system by appropriate
ground state expectation values fails. The light-cone vacuum is determined kinematically. We show that
meaningful quantities which can serve as order parameters are obtained as expectation values of Heisenberg
operators in the equal~light-cone! time limit. These quantities differ from the purely kinematical expectation
values of the corresponding Schro¨dinger operators. For the Nambu–Jona-Lasinio and the Gross-Neveu model,
we describe the spontaneous breakdown of chiral symmetry; we derive within light-cone quantization the
corresponding gap equations and the values of the chiral condensate.
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Inherent to the light-cone description of quantum fie
theories is the triviality of the vacuum. Most of the simp
fying features of light-cone quantization as well as found
tion and phenomenological success of the quark-pa
model are, to a large extent, related to the simplicity of
structure of the vacuum~cf. the reviews on light-cone quan
tization @1,2#!. The simplicity of the vacuum is independe
of dynamics, it is of kinematical origin. In the light-con
formulation, Minkowski space-time is described by the m
ric

gmn5S 0 1 0 0

1 0 0 0

0 0 21 0

0 0 0 21

D ~1!

and parametrized by the coordinates

x65
1

A2
~x06x3!, x'5~x1,x2!.

With the form ~1! of the metric, the dispersion relationp2

5m2 leads to the following relation between thelight-cone
energy p1 and momentum componentsp2 ,p':

p15
p'

2 1m2

2p2
. ~2!

In contradistinction to the standard parametrization of spa
time, the light-cone energyp1 assigned to a single particl
state of a given momentum is unique. The sign of the ene
is determined by the sign of the momentum componentp2 .
Thus in the absence of interactions, the fermionic vacu
consists of occupied states with negativep2 and of empty
states with positivep2 . This vacuum structure does no
change when turning on interactions between the fermio
No other states with equal momentum are available wh
could be reached by collisions among the fermions. Thus
structure of the vacuum is independent of interactions.
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This triviality of the vacuum poses conceptual problem
when applying light-cone quantization to systems which
known to possess a non-trivial vacuum structure induced,
instance, by spontaneous symmetry breakdown, Hi
mechanism or topological properties. While the equivalen
of light-cone quantization with more standard quantizat
has been established perturbatively~cf. @2#! the triviality
problem points to a lack of understanding of this quanti
tion scheme in the non-perturbative regime. It remains to
understood how, in light-cone quantization, different pha
of a system can be built on a vacuum which is determin
kinematically. In particular, vacuum expectation valu
~VEV! such as the chiral condensate^0uc̄cu0& are trivial in
light-cone quantization and thus cannot serve as order
rameters characterizing the realization of symmetries. On
other hand, it is known from the study of low dimension
systems such as the ’t Hooft model@3# that light-cone quan-
tization can reproduce correctly spectra which contain Go
stone bosons; furthermore, by using properties of the sp
trum, the correct value of the quark condensate could
determined@4# although explicit calculation yields a vanish
ing VEV.

To clarify the physical relevance of the light-cone vacuu
we consider model theories in which spontaneous symm
breakdown of a continuous symmetry occurs with the en
ing emergence of Goldstone particles and formation of c
densates. In the Nambu–Jona-Lasinio model~NJL! @5# and
its two dimensional version, the~chiral! Gross-Neveu mode
~GN! @6#, the breakdown of the chiral symmetry is induce
by mass generation of the fermions. The Lagrangian of th
models has the following structure:

L5c̄~ i]mgm2m!c1Lint~c,c̄ !.

Lint is a 4-fermion self interaction. This expression conta
implicitly a sum over fermion species~‘‘color’’ ! while flavor
dependences important in phenomenological applications
of no importance for our discussion. In the following w
shall display the formalism for the~311!-dimensional NJL
model and we shall discuss later the necessary modificat
©2001 The American Physical Society18-1
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for the lower-dimensional GN model. We use a represen
tion of theg matrices in whichg5 and the projection opera
tors L6 are given by

g55S s3 0

0 s3
D , L65

1

2
~16g0g3!, g0g35S 1 0

0 21D .

~3!

The projection operatorsL6 decompose the 4-spinor int
2-spinors

c5221/4S w

x
D

and the Lagrangian becomes

L5 iw†]1w1 ix†]2x1
i

A2
~w†]̃mx1x†]mw!1Lint~w,x!

~4!

with

i]m5 is3]12]21s1m, i]̃m5 is3]11]21s1m.

Only the spinorw is dynamical, no time derivative ofx is
present. In canonical quantization,x is treated as a con
strained field. This reduction in the number of dynamic
degrees of freedom makes the single particle states
a

04501
a-

l
th

given momentum unique and thereby the light-cone vacu
trivial. In the representation~3!, chiral rotations are defined
by

w~x!→eias3w~x!, x~x!→eias3x~x!. ~5!

With the following choice of the 4-fermion interaction,

Lint5
g2

2
„~ c̄c!21~ ic̄g5c!2

…5
g2

4
„~w†s1x1x†s1w!2

1~w†s2x1x†s2w!2
…, ~6!

the NJL-Lagrangian is invariant under chiral rotations p
vided the~bare! massm vanishes. At this point we do no
follow the standard path in employing the canonical form
ism; the description in terms of light-cone Schro¨dinger op-
erators will turn out to be too restrictive. We rather study th
model by using functional techniques based on the gene
ing functional

Z@h,g#5E D@w,x#ei*d4x(L1w†h1h†w1x†g1g†x). ~7!

Since fermionic mass generation is the mechanism wh
drives the system into the spontaneously broken phase
correlation function related to the chiral condensate for
case of noninteracting (g50) massive fermions reveals th
difficulties in describing non-trivial vacua. We consider
C~x!5^0uT„w†~x!s1x~0!…u0&5 im23/2E d4p

~2p!4

eipx

p22m21 ie
~8!

5mA2S 1

2p D 3E d2p'E
0

` dp2

p2
e2 i[( p'

2
1m22 ie)/2p2] ux1u1 ip'x'2 ip2x2e(x1) ~9!

5
1

A2p2

m2

A2x2
K1~mA2x2!. ~10!
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As has been noted quite some time ago@7# in a discussion of
bosonic theories, values of such correlation functions are
tually not well defined. In particular evaluatingC(x) for
x150, using Eq.~9! yields

CS~x2,x'!5mA2S 1

2p D 3E d2p'E
0

` dp2

p2
eip'x'2 ip2x2

~11!

while using Eq.~10!

CH~x2,x'!5
1

A2p2

m2

Ax'
2

K1~mAx'
2 !. ~12!
c-
Expression~11! agrees with the result of the canonical fo
malism in which Schro¨dinger operators are used. This e
pression has only a trivial dependence onm, reflecting the
triviality of the vacuum. It is divergent even off the light
cone. On the other hand, the expression~12! is regular for
space- or timelike separations and depends non-trivially
the fermion mass. Furthermore it is invariant under Lore
transformations. The origin of this different behavior is
direct consequence of the light-cone dispersion relati
However smallx1 is chosen, there are always states w
sufficiently smallp2 available which give rise to oscillation
in the integrand in Eq.~9! and thereby regularize the 1/p2

singularity. In standard coordinates such an effect does
exist, x050 can be chosen at every level of the calculati
and the result agrees with Eq.~12!. From these observation
8-2
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we conclude: Expectation values of Schro¨dinger operators in
the light-cone vacuum do not agree with the limit of expe
tation values of Heisenberg operators

lim
x1→0

^0uT„w†~x!s1x~0!…u0&

Þ^0uw†~x1501,x2,x'!s1x~0!u0&. ~13!

Although we have computed these expectation values
non-interacting fermions, it is easy to see that these a
ments are essentially not changed when interactions
present. The triviality of the vacuum implies that VEV’s o
Schrödinger operators do not change when including int
actions; on the other hand the absence of singularitie
C(x) for arbitrary small but non-vanishingx1 andx2Þ0 is
easily demonstrated by inserting a complete set of st
~subtleties may only occur in 111 dimensional systems, i
massless particles are present.! Furthermore, covariance dic
tates that in the absence of singularities, vacuum expecta
values of Heisenberg operators at given spacelikex2 are the
same forx1→0 andx050

lim
x1→0

^0uT„w†~x!s1x~0!…u0&ux2

5^0uw†~x0501,x!s1x~0!u0&ux252x2

and coincide with the VEV of thex050 Schrödinger opera-
tors. Thus, on the light-cone, VEV’s of Heisenberg operat
in the equal light-cone limit and not VEV’s of Schro¨dinger
operators are physically meaningful quantities; in particu
they can serve in the limitx2→0 as order parameters t
characterize the phases of a system and properly define
finite x2 ‘‘observable’’ correlation functions.

We now demonstrate in a schematic light-cone calcu
tion for the NJL model the procedure for computing conde
sate values. In the first step, the spectrum of the light-c
Hamiltonian has to be determined. In the above model
step is done easily for largeN. Replacing in this limit the
bilinear (x†s1w) by a c-number

g2(
i 51

N

x i
†~x!s1w i~x!5g2(

i 51

N

w i
†~x!s1x i~x!'

m̂

A2
~14!

yields for m50, to leading order, the NJL-Lagrangian
which only quadratic fluctuations are kept

L5 iw†]1w1 ix†]2x1
i

A2
~w†]̃m̂x1x†]m̂w!.

Integrating out the constrained fieldx, the Hamiltonian of
a system of non-interacting massive fermions

H5
i

2E d3xw†]̃m̂

1

]2
]m̂w ~15!

is obtained. To determine the unknown mass parametem̂,
we require the sum in Eq.~14! to be given by the limit of the
vacuum expectation value of the sum over the correspon
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Heisenberg operators. In the largeN limit, determination of
the spectrum and computation of vacuum expectation va
of Heisenberg operators is simple. We obviously can use
above results withm→m̂ and obtain, using Eq.~12! and the
asymptotics of the Bessel functions in the limit of sm
spacelikex2 the well known gap equation of the NJL mod

m̂Fg2N

p2 S L21
m̂2

4
ln

m̂2

L2D 21G50 ~16!

with the cutoffL defined by the point splitting procedure

L25
1

2x2
.

This consistency condition is always solved trivially bym̂
50. Beyond a critical coupling~for fixed cutoff!, Eq. ~16!

has a solution withm̂Þ0 describing the phase with spont
neously broken chiral symmetry. In ordinary coordinates,
solution with the lower energy describes the stable phase
light-cone quantization with its kinematically determine
vacuum, the vacuum energy cannot be determined variat
ally; stability can be checked either by evaluation of the flu
tuations~the NJL meson spectrum@8#! or by calculation of
the associated values of the effective potential~cf. @9#!. Since
the effective potential is a Lorentz scalar, the values obtai
in ordinary coordinates are trivially reproduced for the so
tions of the gap equation~16!.

Identification of the chiral condensate with the limitin
VEV of light-cone Heisenberg operators is crucial. Use
VEV’s of Schrödinger operators@Eq. ~11!# yields

2Nm̂

~2p!3E d2p'E
0

` dp2

p2
5

m̂

g2
~17!

which admits only the solutionm̂50.
This procedure also works in the (111)-dimensional

~chiral! GN model with its even more severe infrared pro
lems. Since in two dimensionsx150 denotes points on the
light-‘‘cone,’’ VEV’s of products of Schro¨dinger operators
are necessarily singular; again they are regularized by po
splitting. The following substitution in Eq.~4!

i]m→2m, x'50, Lint5g2~w†x!~x†w!

defines the Gross-Neveu model in terms of the~one compo-
nent! fields w,x. The relevant two-point function for non
interacting massive fermions is

^0uT„w†~x!x~0!…u0&5
im

A2
E d2p

~2p!2p2

eipx

p12
m22 ie

2p2

5
m

pA2
K0~mA2x2!.

The basic largeN limit now reads
8-3
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g2(
i 51

N

x i
†~x!w i~x!5g2(

i 51

N

w i
†~x!x i~x!'2

m̂

A2

which yields, following the above arguments, the se
consistency equation

m̂S 11
Ng2

2p
ln

m̂2

L2D 50 ~18!
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04501
-

L25
4e22C

2x2
.

Equation ~18! again admits apart fromm̂50 a non-trivial
solution. This solution defines the running of the coupli
constant in terms of the physical massm̂; it breaks the (1
11)-dimensional chiral symmetry

w~x!→eiaw~x!, x~x!→e2 iax~x!. ~19!

Once more, the solution is selected according to stability
two dimensions the energy density is a Lorentz scalar wh
if regularized as2x2→0 limit of Heisenberg operators
e~m̂!5^0u@2 ix†~x!]2x~0!2g2
„w†~x!x~0!…„x†~0!w~x!…#u0&

52
m̂2

4p
ln

m̂2

L2 S 11
Ng2

2p
ln

m̂2

L2D , ~20!
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agrees with the values of the effective potential at the
tionary points, i.e., when the gap equation is satisfied.
particular one obtains

e~m̂!2e~0!52
m̂2

4p
.

Thus for both the GN and the NJL model, light-cone qua
tization reproduces the well known results of ordinary qu
tization. Within these models, the simplicity of the light-co
description is not spoiled by a dynamical symmetry bre
down.

Our resolution of the triviality problem of the light-con
vacuum differs from the outset from previous attempts wh
have focused on the VEV’s of Schro¨dinger operators. Regu
larization of VEV’s leading to expressions such as in E
~17! offers the possibility for introducing dynamical depe
dences into these purely kinematical objects. In the con
of the NJL model, rules for regularization have been p
posed by which the value of the chiral condensate obtai
in ordinary quantization could be reproduced@10–12#. How-
ever it is difficult to see how, by such rules, the difference
the dynamics of broken and unbroken phase could be
counted for or how covariance in the evaluation of the c
responding correlation functions for nonvanishing space
separations could be respected~cf. @13#!. In the approach we
have described, nontrivial vacuum properties are associ
with products of Heisenberg operators in the equal light-c
time limit. Unlike in standard quantization schemes, VEV
determined in such a limiting procedure do not agree w
VEV’s of products of the corresponding Schro¨dinger opera-
tors and it is only the latter ones whose VEV’s are trivial.
is by this subtle distinction between Schro¨dinger operators
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and the equal time limit of Heisenberg operators that c
densates serving as order parameters for spontaneously
ken symmetries can be defined despite the triviality of
ground state. From this point of view, the successful eva
ation of the chiral condensate of the ’t Hooft model in@4#
becomes plausible; it avoids completely light-cone Sch¨-
dinger operators and uses general properties of VEV’s wh
on the light-cone can be attributed only to expectation val
of limits of Heisenberg operators. In a similar vein one c
understand why the condensate issue could be bypassed
light-cone calculation of fermion-antifermion scattering a
bound states in the GN model@14#. Finally, in the correct
determination of the chiral condensate of the Schwin
model in @15#, the use of Heisenberg operators and po
splitting was an essential element.

With the identification of VEV’s of appropriate limits o
Heisenberg operators as the relevant quantities for defini
of order parameters, the standard tools of analyzing the
fects of broken symmetries become available to light-co
quantization@8#. Ward identities can be derived and the
consequences such as the Gell-Mann, Oakes, Renner rel
@16# can be studied within light-cone quantization; perturb
tive treatments of explicit symmetry violations become am
nable to the light-cone approach. Although our analysis
focused on fermionic theories, the extension to boson
straightforward unless the VEV to be considered is linear
the field operator. In this particular case, as has been a
cated in various studies~cf. @17–21#! the dynamics of a
single ~zero! mode may require a special treatment.

For light-cone studies of QCD the distinction betwe
VEV’s of Schrödinger operators and of limits of Heisenbe
operators will be significant not only for the description
the quark condensate but also for the gluon conden
which is quadratic and of higher order in the gauge fiel
8-4
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Extension to gauge theories introduces a novel dynam
element into the discussion. Definition of non-trivial vacuu
expectation values in light-cone quantization requires sp
ting in light-cone time; in turn, gauge invariance requires,
m

ys

s.
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light-cone gaugeA250, associated gauge strings to be i
troduced whose effects are expected to be enhanced by
infrared (p250) singularity characteristic for light-con
quantization.
ys.
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