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Chiral condensates in the light-cone vacuum
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In light-cone quantization, the standard procedure to characterize the phases of a system by appropriate
ground state expectation values fails. The light-cone vacuum is determined kinematically. We show that
meaningful quantities which can serve as order parameters are obtained as expectation values of Heisenberg
operators in the equdlight-cone time limit. These quantities differ from the purely kinematical expectation
values of the corresponding Schinger operators. For the Nambu—Jona-Lasinio and the Gross-Neveu model,
we describe the spontaneous breakdown of chiral symmetry; we derive within light-cone quantization the
corresponding gap equations and the values of the chiral condensate.
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Inherent to the light-cone description of quantum field This triviality of the vacuum poses conceptual problems
theories is the triviality of the vacuum. Most of the simpli- when applying light-cone quantization to systems which are
fying features of light-cone quantization as well as founda-known to possess a non-trivial vacuum structure induced, for
tion and phenomenological success of the quark-partoimstance, by spontaneous symmetry breakdown, Higgs
model are, to a large extent, related to the simplicity of themechanism or topological properties. While the equivalence
structure of the vacuur(cf. the reviews on light-cone quan- of light-cone quantization with more standard quantization
tization[1,2]). The simplicity of the vacuum is independent has been established perturbativétf. [2]) the triviality
of dynamics, it is of kinematical origin. In the light-cone problem points to a lack of understanding of this quantiza-
formulation, Minkowski space-time is described by the met-tion scheme in the non-perturbative regime. It remains to be

ric understood how, in light-cone quantization, different phases
of a system can be built on a vacuum which is determined
61 0 © kinematically. In particular, vacuum expectation values
10 0 O (VEV) such as the chiral condens&® ¢s4/|0) are trivial in
Quv= 00 -1 0 (1) light-cone quantization and thus cannot serve as order pa-
rameters characterizing the realization of symmetries. On the
0 0 0 -1 other hand, it is known from the study of low dimensional

systems such as the 't Hooft mod@] that light-cone quan-
tization can reproduce correctly spectra which contain Gold-
stone bosons; furthermore, by using properties of the spec-

and parametrized by the coordinates

xi:i(xotxs’), xh=(xL,x?). trum, the correct value of the quark condensate could be
2 determined 4] although explicit calculation yields a vanish-
ing VEV.
With the form (1) of the metric, the dispersion relatiqu? To clarify the physical relevance of the light-cone vacuum
=m? leads to the following relation between tlight-cone  we consider model theories in which spontaneous symmetry
energy p. and momentum componengs. ,p, : breakdown of a continuous symmetry occurs with the ensu-

ing emergence of Goldstone particles and formation of con-
densates. In the Nambu—Jona-Lasinio mdd&lL) [5] and

its two dimensional version, thghiral) Gross-Neveu model
(GN) [6], the breakdown of the chiral symmetry is induced
In contradistinction to the standard parametrization of spaceby mass generation of the fermions. The Lagrangian of these
time, the light-cone energp, assigned to a single particle models has the following structure:

state of a given momentum is unique. The sign of the energy o o

is determined by the sign of the momentum comporent L=(id,y*=m) i+ Lin b, ).

Thus in the absence of interactions, the fermionic vacuum

consists of occupied states with negatiwve and of empty  L;, is a 4-fermion self interaction. This expression contains
states with positivep_ . This vacuum structure does not implicitly a sum over fermion specidscolor” ) while flavor
change when turning on interactions between the fermionglependences important in phenomenological applications are
No other states with equal momentum are available whiclof no importance for our discussion. In the following we
could be reached by collisions among the fermions. Thus thehall display the formalism for thé3+1)-dimensional NJL
structure of the vacuum is independent of interactions. model and we shall discuss later the necessary modifications

_pi+m’
T

)
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for the lower-dimensional GN model. We use a representagiven momentum unique and thereby the light-cone vacuum
tion of the y matrices in whichys and the projection opera- trivial. In the representatiofB), chiral rotations are defined

tors A are given by by
o3 0 L1 10 P(X)—€°%30(x),  x(X)—€*3x(x). )
73 With the following choice of the 4-fermion interaction,
)

2 2
g — — g
The projection operators * decompose the 4-spinor into Lint==(( i)+ (igrysp)?)= Z((<PT01X+XT01<P)2
2-spinors
+(elox+x'o20)?),  (6)
©

X

w: 2—1/4

the NJL-Lagrangian is invariant under chiral rotations pro-
vided the(bare massm vanishes. At this point we do not
and the Lagrangian becomes follow the standard path in employing the canonical formal-
ism; the description in terms of light-cone Sctimger op-
s . I - . erators will turn out to be too rest_rictive. We rather study this
L=ip'd otix 3—X+E(<P ImX+ X Om@) + Lind @,X) model by using functional techniques based on the generat-
4) ing functional

T T

with Z[U-Y]:f D[QD’X]eifdAX(E‘HPT??‘*'ﬂ etxTy+yT 7)

i0=10301— do+ ayM, 19 =i030,+ do+ oym.
Since fermionic mass generation is the mechanism which
Only the spinore is dynamical, no time derivative of is  drives the system into the spontaneously broken phase the
present. In canonical quantizatiog, is treated as a con- correlation function related to the chiral condensate for the
strained field. This reduction in the number of dynamicalcase of noninteractingg& 0) massive fermions reveals the
degrees of freedom makes the single particle states witHifficulties in describing non-trivial vacua. We consider

4

d ePx
C(x)=(0| T(¢"(x) 1x(0))|0) =im2%?2 f (27:4 2 ie (8)

( ) f f |[(pL+m —ie)2p_]|x*|+ip xt —ip_x"e(xT) (9)

As has been noted quite some time &gpin a discussion of Expression(11) agrees with the result of the canonical for-
bosonic theories, values of such correlation functions are agnalism in which Schrdinger operators are used. This ex-
tually not well defined. In particular evaluating(x) for  pression has only a trivial dependence mnreflecting the
=0, using Eq.(9) yields triviality of the vacuum. It is divergent even off the light-
cone. On the other hand, the expressit8) is regular for
space- or timelike separations and depends non-trivially on
Co(x™,x")= m\/—( ) fdzplf —— gPux Tipx the fermion mass. Furthermore it is invariant under Lorentz
(11) trgnsformations. The origin of this differgnt behavior is. a
direct consequence of the light-cone dispersion relation.
. ) However smallx® is chosen, there are always states with
while using Eq.(10) sufficiently smallp_ available which give rise to oscillations
in the integrand in Eq(9) and thereby regularize thepl/
singularity. In standard coordinates such an effect does not
n(X™,x) Kl(m\/g). (12 exist,x°=0 can be chosen at every level of the calculation
V2m \/Z and the result agrees with E@.2). From these observations
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we conclude: Expectation values of Satlirger operators in  Heisenberg operators. In the lartyelimit, determination of
the light-cone vacuum do not agree with the limit of expec-the spectrum and computation of vacuum expectation values

tation values of Heisenberg operators of Heisenberg operators is simple. We obviously can use our
. + above results wittm— m and obtain, using Eq12) and the
I+|m (0| T(¢"(x)1x(0))|0) asymptotics of the Bessel functions in the limit of small
x =0 spacelikex? the well known gap equation of the NJL model
#(0l¢T(x*=0" x" ,x")a1x(0)[0). (13 o a
SON( L, m o m?
Although we have computed these expectation values for m ? A +T|“P —1|=0 (16)

non-interacting fermions, it is easy to see that these argu-

ments are essentially not changed when interactions argim, the cutoff A defined by the point splitting procedure
present. The triviality of the vacuum implies that VEV’s of

Schralinger operators do not change when including inter- 1
actions; on the other hand the absence of singularities in A2=—2.
C(x) for arbitrary small but non-vanishing” andx?#0 is —X

easily demonstrated by inserting a complete set of states .
(subtleties may only occur in411 dimensional systems, if This consistency condition is always solved trivially by
massless particles are prespfurthermore, covariance dic- =0. Beyond a critical couplingfor fixed cutof, Eq. (16)
tates that in the absence of singularities, vacuum expectatidms a solution withm+ 0 describing the phase with sponta-
values of Heisenberg operators at given spacedfkare the  neously broken chiral symmetry. In ordinary coordinates, the

same forx" —0 andx®°=0 solution with the lower energy describes the stable phase. In
light-cone quantization with its kinematically determined
lim (0] T(¢"(x)o1x(0))|0)l,2 vacuum, the vacuum energy cannot be determined variation-
x"—0 ally; stability can be checked either by evaluation of the fluc-
=<0|goT(xO:O*,x)alx(0)|0>|xz:_xz tuations(the NJL meson spectrufi8]) or by calculation of

the associated values of the effective poteritiil[ 9]). Since
and coincide with the VEV of th&°=0 Schralinger opera- the effective potential is a Lorentz scalar, the values obtained
tors. Thus, on the light-cone, VEV's of Heisenberg operatorsi” ordinary coordinates are trivially reproduced for the solu-
in the equal light-cone limit and not VEV’s of Schtimger  tions of the gap equatio(i6).
operators are physically meaningful quantities; in particular Identification of the chiral condensate with the limiting
they can serve in the limik?>—0 as order parameters to VEV of light-cone Heisenberg operators is crucial. Use of
characterize the phases of a system and properly define fOEV's of Schradinger operator$Eg. (11)] yields

finite x> “observable” correlation functions. N N
We now demonstrate in a schematic light-cone calcula- 2Nmf *p f“ dp _m 17
tion for the NJL model the procedure for computing conden- (2m)3 Yo p- g2

sate values. In the first step, the spectrum of the light-cone
Hamiltonian has to be determined. In the above model thigyhich admits only the solutiom=0.
step is done easily for largl. Replacing in this limit the This procedure also works in the ¢11)-dimensional
bilinear (x'o1¢) by ac-number (chiral) GN model with its even more severe infrared prob-
N N lems. Since in two dimensions" =0 denotes points on the

m light-“cone,” VEV's of products of Schrdinger operators

gzzl X?(X)Ulcpi(x):gzi; ¢l () T1xi()~ E (14) agr]e necessarily singulaﬁ again they are regglarizgd by point-
splitting. The following substitution in Eq4)

yields for m=0, to leading order, the NJL-Lagrangian in

; _ _ —o2( ot T
which only quadratic fluctuations are kept idp——m, x*=0, Lin=9%(¢'X)(x"¢)
i defines the Gross-Neveu model in terms of thee compo-
L=ipta,o+ixTo_x+ —=(o9px+x"0me). nend fields ¢,x. The relevant two-point function for non-
2 interacting massive fermions is
Integrating out the constrained field the Hamiltonian of | . | im d’p apx
a system of non-interacting massive fermions 0[T(¢'(x)x(0))[0) = —f ;
y i ing iv i ( ¢ (X)x ) 2) 2m?p. e
i[ . o~ 1 To2p
H= > d°xe %I&ﬁq@ (15
m
- [ 2
is obtained. To determine the unknown mass paranmater W\/EKO(m x).

we require the sum in Eq14) to be given by the limit of the
vacuum expectation value of the sum over the corresponding The basic largeN limit now reads
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N N r’h 4e—2C
92>, X (@i (x) =022, ol () xi(x)~——= A2=
i=1 -1 \/E

—x2

Equation(18) again admits apart froom=0 a non-trivial

which yields, following the above arguments, the self-gqyiion, This solution defines the running of the coupling

consistency equation constant in terms of the physical mass it breaks the (1
+1)-dimensional chiral symmetry

. Ng> m? do i
m| 1+ - —In—|=0 (18) P(X)—€%(x),  x(X)—e x(X). (19
a
A Once more, the solution is selected according to stability. In
two dimensions the energy density is a Lorentz scalar which,
with if regularized as— x?—0 limit of Heisenberg operators

e(m)=(0|[—ix"(x)d_x(0)~ g*(¢" () x(0))(x"(0) ¢(x))]|0)

Ng? m?
1+ EInA— , (20

agrees with the values of the effective potential at the staand the equal time limit of Heisenberg operators that con-
tionary points, i.e., when the gap equation is satisfied. Irdensates serving as order parameters for spontaneously bro-
particular one obtains ken symmetries can be defined despite the triviality of the
ground state. From this point of view, the successful evalu-
- ation of the chiral condensate of the 't Hooft model[#l
(M) — (0)= — m- b_ecomes plausible; it avoids completely _Ilght-cone Schr_o
A7’ dinger operators and uses general properties of VEV’s which
on the light-cone can be attributed only to expectation values
of limits of Heisenberg operators. In a similar vein one can
Thus for both the GN and the NJL model, light-cone quan-ynderstand why the condensate issue could be bypassed in a
tization reproduces the well known results of ordinary quaniignt-cone calculation of fermion-antifermion scattering and
tlzathn._W|th|nthese models, the S|mpl_|C|ty of the light-cone pq,nd states in the GN modgL4]. Finally, in the correct
description is not spoiled by a dynamical symmetry bréaketermination of the chiral condensate of the Schwinger

down. . : X
. - . model in[15], the use of Heisenberg operators and point
Our resolution of the triviality problem of the light-cone plitting was an essential element,

. . .S
vacuum differs from the OljltSEt frqm'prewous attempts which With the identification of VEV'’s of appropriate limits of
have focused on the VEV'’s of Schtimger operators. Regu- . i L

Heisenberg operators as the relevant quantities for definition

larization of VEV’s leading to expressions such as in Eq. f ord i the standard tools of vzing the ef
(17) offers the possibility for introducing dynamical depen- ot order parameters, the standard t0ols of analyzing the ef-
cts of broken symmetries become available to light-cone

dences into these purely kinematical objects. In the contexf o - " . )
of the NJL model, rules for regularization have been pro_quantlzatlon[8]. Ward identities can be derived and their

posed by which the value of the chiral condensate obtaine@onseguences such as the Gell-Mann, Oakes, Renner relation
in ordinary quantization could be reprodudd®—12. How- [16] can be studied within light-cone quantization; perturba-
ever it is difficult to see how, by such rules, the difference intive treatments of explicit symmetry violations become ame-
the dynamics of broken and unbroken phase could be adwable to the light-cone approach. Although our analysis has
counted for or how covariance in the evaluation of the corfocused on fermionic theories, the extension to bosons is
responding correlation functions for nonvanishing spacelikestraightforward unless the VEV to be considered is linear in
separations could be respectefl [13]). In the approach we the field operator. In this particular case, as has been advo-
have described, nontrivial vacuum properties are associatezhted in various studietcf. [17—21) the dynamics of a
with products of Heisenberg operators in the equal light-conaingle (zero mode may require a special treatment.

time limit. Unlike in standard quantization schemes, VEV’s  For light-cone studies of QCD the distinction between
determined in such a limiting procedure do not agree withVEV'’s of Schradinger operators and of limits of Heisenberg
VEV’s of products of the corresponding Schimger opera- operators will be significant not only for the description of
tors and it is only the latter ones whose VEV'’s are trivial. It the quark condensate but also for the gluon condensate
is by this subtle distinction between Schioger operators which is quadratic and of higher order in the gauge fields.
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Extension to gauge theories introduces a novel dynamicdight-cone gaugeA_ =0, associated gauge strings to be in-
element into the discussion. Definition of non-trivial vacuumtroduced whose effects are expected to be enhanced by the
expectation values in light-cone quantization requires splitinfrared (_=0) singularity characteristic for light-cone
ting in light-cone time; in turn, gauge invariance requires, inquantization.
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