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Gauge invariant derivative expansion of the effective action at finite temperature and density
and the scalar field in 2+1 dimensions
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A method is presented for the computation of the one-loop effective action at finite temperature and density.
The method is based on an expansion in the number of spatial covariant derivatives. It applies to general
background field configurations with an arbitrary internal symmetry group and space-time dependence. Full
invariance under small and large gauge transformations is preserved without assuming stationary or Abelian
fields or fixing the gauge. The method is applied to the computation of the effective action of spin zero
particles in 2+ 1 dimensions at finite temperature and density and in the presence of background gauge fields.
The calculation is carried out through second order in the number of spatial covariant derivatives. Some
limiting cases are worked out.
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[. INTRODUCTION turbation theory corresponds to a Taylor expansion of that
function. Clearly, the property of being periodic is not main-
In their pioneering work, Deser, Jackiw, and Templetontained in general by a truncated Taylor expansion. In Ref.
[1] noted that gauge theories in odd-dimensional spacedl] it was noted that full gauge invariance is always a prop-
naturally admit a local term of topological nature, known aserty of the exact result, since it follows straightforwardly
the Chern-Simons terfi?] (see Ref[3] for a recent review  from using aZ-function regularization. In Ref12] the exact
One of the interesting properties of the non-Abelian Cherneffective action of fermions in 21 dimensions was ob-
Simons term is that under gauge transformations it changesined for the case of Abelian and stationary background
proportionally to the winding number of the transformation. gauge fields.
Thus when the action contains a Chern-Simons term, the The problem of preserving full gauge invariance at finite
partition functional of the system is only well defined if the temperature is not tied to odd-dimensional theof%-17
coupling constant of the Chern-Simons term is properlynor to fermions[18,19. It appears whenever perturbation
quantized. theory is involved. This is unfortunate, since, as noted in
It was later realized4—6] that the Chern-Simons term is Ref.[3], “at finite temperature, perturbation theory is one of
induced by quantum fluctuations when gauge fields ar¢he few tools we have.” In this work we show that it is
coupled to odd-dimensional fermions. Such a term comes oyiossible to carry out detailed calculations of the effective
with the correctly quantized coupling constant and so fullaction fully preserving gauge invariance, without restricting
gauge invariance is preservéthough possibly at the price oneself to particular configurations such as Abelian or sta-
of spoiling parity invariancg4]). Because the Chern-Simons tionary ones, and without choosing a particular gauge. The
term is a polynomial in the gauge fields and their derivativesstudy of simple caselsl0—12 shows that the problem with
it can be obtained through a combination of perturbative angjauge invariance comes through the scalar poteAtjék).
derivative expansions. The finite temperature effective action is nonlocal in time but
In the so-called imaginary time formalism for field theory it is local in the space variables. This suggests to consider an
at finite temperatur¢7,8], the space time has a nontrivial expansion in the number of spatial covariant derivatives
topology, since the time is effectively compactified to aonly. The time component is treated nonperturbatively in or-
circle. This allows the existence of topologically large gaugeder to avoid destroying gauge invarian¢8ee Ref[20] for
transformations even in the Abelian case. When the probleranother discussion of derivative expansions at finite tempera-
of the induced Chern-Simons term is studied using theure)
method just mentioned of retaining a low number of fields It should be emphasized that the expansion in the number
and of derivatives, a puzzling situation appears, namely, thef spatial covariant derivatives is not tied to a particular
coefficient of the Chern-Simons term turns out to be amethod of computation, since it can be obtained from the
smooth function of the temperature, and hence it violates thexact result(namely, by considering an appropriate spatial
quantization conditiorf9]. The situation has recently been dilatation of the background fieltdand is fully gauge invari-
clarified by considering a simple+01-dimensional model ant. What is shown here is that it is also amenable to explicit
[10] which can be computed in closed form. There it is seercomputation order by order, through a combination of the
that full gauge invariance holds for the exact result but it ismethod of symbols and afunction, for instance. This com-
broken by perturbation theory. This is not difficult to under- bination works very well and has been applied at zero tem-
stand, since in simple cases gauge invariance under largerature for fermions with locdl21] and nonlocal actions
gauge transformations is equivalent to periodicity of the ef{22]. At finite temperature it has been applied to fermions in
fective action as a function of the gauge field, whereas peredd dimensiong23] as well as in even dimensiord7],
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however, for technical reasons, this has been done choosing Although slightly pedantic, it will occasionally be conve-
a particular gauge. In the present work we remove the necesient to regard not as functions but rather as multiplicative
sity of any choice of gauge. It turns out that previous formu-operators irf+, i.e., operators commuting with the operators
las in Refs[23] and[17] can be reinterpreted and rewritten x,, and otherwise with arbitrary structure in internal space.
in a manifest gauge invariant form. Likewise D, are differential operators of the for@, +A,
Although a naive perturbative expansion Ay breaks  with A, multiplicative. The quantityf(M,D) denotes an op-
gauge invariance, the very method of calculation suggests arator constructed out d#l andD,, in the algebraic sense,
expansion in powers of the temporal covariant derivative irthat is, f(M,D) is a linear combinatiorfor serie$ of prod-
the adjoint representation which preserves gauge invariancects of M and D,, multiplied in any order with constant
This yields the remarkable result that, even at finite temperae-number coefficients. In order favl and D, to be well-
ture, the theory is local if expressed in the appropriate varidefined operators iftt, M(x), andA ,(x) are required to be
ables. periodic functions ok,. In addition we will assume that the
The method is explicitly applied to the case of relativistic fields are sufficiently convergent at infinity and the function
scalar particles in 2 1 dimensions. The computation is car- f is well behaved. This means, in particular, tiids one-
ried out through second order in the number of spatial covavalued and sufficiently convergent at infinity as a function of
riant derivatives. Contact is made with the relativistic BoseD , to ensure the existence of the tragy avoiding ultra-
gas. violet divergences
A gauge transformed configuratioM{,A") is one of the
Il. GAUGE INVARIANT DERIVATIVE EXPANSION AT form
FINITE TEMPERATURE
MY()=U"OM(x)U(x),
A. The mathematical problem (4
The aim of this section is to present a scheme to address A, (X)=U"1(x)d,U(x)+U " (x)A,(x)U(X),
the computation of the one-loop effective action at finite
temperature preserving gauge invariance at every ¢fgp. Where the gauge transformatiai(x) is a periodic function
note that gauge invariance in this work refers always to vecof Xo which takes values on matrices in internal space. This
tor gauge transformationsTo fix ideas consider the case of corresponds to a similarity transformation bf,, namely,
scalar particles ind+1 dimensions in presence of back- Dj,=d,+A;=U"'D,U where U is to be regarded as a
ground gauge fields. This case will be worked out later formultiplicative operator iri{. Becausd (M,D) is constructed

d=2. The Euclidean action of the system is with M, D andc numbers, it follows thaf(M,D) also trans-
forms under a similarity transformation
— d+1 t 2 4t
S—f d®"*x[(D,¢) (D, ¢)+m-d ], (1) f(MY,DY)=U"1f(M,D)U (5)

whereD ,=d,+A, is the covariant derivative. The finite and so

temperature condition can be implemented by using the U AU

imaginary time formalism, that is, by compactification of the I[M",A"]=T[M,A] (6)
Euclidean time to a circle so that the fielgsand A, are
periodic functions ofx, with period 8=1/T (T being the
temperature After functional integration ove#(x), the Eu-
clidean effective action is formally given by

using the cyclic property of the trace, which holds due to our
regularity assumptions fa(M,D).!

B. The method of symbols

— D24 m2 -
Wslm,A]=Tr, log(—Dj,+m). @) Assuming that the operatdr=f(M,D) admits a com-

nPlete set of eigenfunction§|n)=X,|n), the functional trace
his simply I'[M,A]=ZX,\,. In this form gauge invariance is

The subindex recalls that the functional trace is to be take
in the Hilbert space of bosonic wave functions, i.e., wit

periodic boundary conditions. obvious sincef andfY are related by a similarity transfor-
Presently the mathematical problem to be addressed is thgation and hence they have the same spectrum.
computation of quantities of the form The gauge invariance df[M,A] is also manifest com-

puting the trace in the basix) of eigenfunctions ofx,,,
I'[M,A]=Tr(f(M,D)), )

whereD , is the covariant derivative anll (x) collectively Yn practice,I'[M,A] is only computed for a subset of configura-
denote one or more matrix valued functionsxgfrepresent-  ons (M,A) and only the subgroup of gauge transformations which
ing other external fields in addition to the gauge fields. Thagaye invariant such a subset are relevant. For fermions, the internal
trace refers to the Hilbert spadé¢ of wave functions with  space includes Dirac space as well as flavor degrees of freedom,
space time and internal degrees of freedom, the space-timgqg they,, matrices are included iM (they are not numbers. In
manifold has topology\, ;= S'X My and the wave func-  this case only gauge transformations in flavor space are relevant
tions are periodic for bosons and antiperiodic for fermions. since they are the ones that preserve the forny of

045016-2



GAUGE INVARIANT DERIVATIVE EXPANSION OF THE. .. PHYSICAL REVIEW D 63 045016

normalized agx|x’)=8(x—x") (a periodic delta function in It follows that d,, appearing insidé(M,D+p) in Eq. (11)

the temporal direction acts derivating everything to its righor its left, by part$
and then vanishes after it reach@ (or (0|). This is a
ITM Al= d+1 f(M D 7 well-defined working rule and from it stems the usefulness of
[M.A] fd XU(x|F(M.D)x) @ the symbols method.

Unfortunately, gauge invariance is no longer manifest
(where tr refers to internal spgceecause is a multiplica-  when using the momentum basis. In fact({Off (M,D
tive operator and so(x|f(M,D)|x) is gauge invariant with- 4+ p)|0) is not gauge invariant becaut@) (or more gener-
out integration ovex. However, computationally it is more ajly |p)) is not covariant under local transformations. For
convenient to use a basis in momentum sgaje instance, according to the rules given in Etp),

(xIp)=e",  (plp")=PBpp(2m)*S(p—p') (8
0 tr(O|Di|0)=tr<O|Ai|0>=J d Ixt[AZ(x)]  (14)

[to avoid unessential factors ofwe take the convention of

using purely imaginary moments, but fd’p below denotes  breaks gauge invariance. However,

the usual integral inkY and 8(p—p’) denotes the corre-

sponding delta functiojp The frequency takes the Matsubara

values po=2in/p for bosons andpy=27i(n+3)/3 for

fermions. Note that we have assumed that the space manifold

tr<0|[Dﬂ,Dy]2|O)=fdd“xtr[Ffw(x)] (15)

My has a topologyRY. In this basis does not. Note thafD,,D,] is a multiplicative operator
) WhereasDi is not. As a rule, when an operatg(M,D) (a

1 d% gauge covariant operajois multiplicative, Eq.(13) applies
F[M'A]:Epzo f(zw)dtdplf(M,D)lp). ©  and t(0|g(M,D)|0) is gauge invarian{21]. In Eq. (12)

gauge invariance is only recovered after integration over mo-
At this point the symbols method can be usede, e.g., menta and sum over frequencfe$his will be further dis-

Refs.[21] and[24]): let |0) denote the state with=0, then cussed subsequently.
using the identitiesp) =e*P|0) (wheree*? acts as a multi-

plicative operator and the quantitig are constant num- C. The derivative expansion at finite temperature
berg as well ase™*"D ,e**=D,+p,, e *"Me*’=M, one By computing the functional trace we essentially mean to
obtains end up with purely multiplicative operators, since this im-
B plies that the functional is expressed as the integral of a
(p[f(M,D)|p)=(0le”*Pf(M,D)e*?|0) function over space time. At zero temperature this is usually
=(0|f(M,D+p)|0), (10) _eqL_JivaIent to saying that all _d_erivz_itive operat@rg appear
inside commutators. In addition it means to carry out as
and so the functional trace can be cast in the form many implied sums and integratioriever frequencies and

momenta or other parametgi@s possible.
d In general it is not possible to compuf¢M,A] in closed
1 dp L
— f tr(0|f(M,D+p)|0). (11)  form and one must resort to approximations. The standard
B J (2m)d approach is to make power expansions in one or more op-
erators appearing if(M,D) while the remaining operators
In this expression it is clear the requirement of regularity onare treated nonperturbatively. As will be clear below, a naive
f: the functional trace comes after integration over moment&xpansion in powers ob, would break gauge invariance,
and sum over frequencies and this requife® be suffi-  therefore, because it is in general difficult to work with two
ciently convergent for large,, . Let us remark thaf0) is  or more nonperturbative operators unless they are commut-
periodic rather than antiperiodic in the temporal direction.ing, and our present emphasis is in the preservation of mani-
The information on whether we are dealing with bosons offest gauge invariance rather than in a particular computation,
fermions is now contained solely in the values takerppy  we will keep D, as the only operator to be treated nonper-
The statg0) satisfies turbatively, and expand in all other operatdisandD.
Before proceeding, let us be more precise about the mean-
ing of expanding in powers dl andD. A convenient way
to define the expansion is by introducing constanmumber

T[M,A]=

(x|oy=1, 4,]0)=(0]a,=0, <o|o>=fdd+1x.

(12
In addition, whenh is a multiplicative operator,h|x) 2An elegant method has been presented in [ which yields
=h(x)[x), gauge invariant expressions prior to momentum integration, at the
price of introducing derivatives with respectiig . The method has
Sy — d+1 not yet been extended to include discrete momenta, as required at
<O|h|0> f ™" x hi(x). 13 finite temperature but it can be applied to the integration @ver
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bookkeeping parameters,(M,Dg,D)— f(\;M,Dg,\,D), commutators, but counts the contribution from the terms
so that counting powers of those operators is equivalent t#ith unsaturated. However, it is clear that there is no such
counting powers of\; ,. This procedure preserves gauge contribution after integration over momenta sireean be
invariance since it amounts to a modification of the functioncompensated by a similar shift in the integration varigble

f. After applying the symbols methofthrough D,—D,, Thus at the end, al! opera;dfsappear in commutators only.
+p,., cf. Eq. (11)] the factor\, will affect D andp, how- (The same result. is obtamgd .dlrectly using the method of
ever, this can be brought to the forfi\;M, Do+ p,\,D Pletnev and Baniri24].) A similar argument would break

+p) by a redefinition ofp. Therefore the expansion can be down for Do a shift toDq +a, cannot, in general, be com-
formulated as an expansion in powers b and D in pensated by a shift ipy since at finite temperature the fre-

. A guency is a discrete variable.
f(M,D+p).® Equivalently, the expansion ifD can be : : L
. : ) From the previous discussion it follows that we only have
obtained directly from the functional [ M,A] by means P y

. . X ) to retain those terms where all operat@rsare in commuta-
of a covariant spatial dilatation, namelyM(xo.X) o Because all operators are now multiplicative space,
—M(Xg,A2X),  Ag(X0,X)—=Ao(Xo,A2X), and A(Xq,X)

) A0 X becomes just a parameter in what follows. Let us consider
—N2A(Xg,\2X). This guarantees that the expansion is well

a typical term:
defined, i.e., it depends on the functional itself and not on P

how it is written or computed. 1 d9p
The situation is completely different for an expansion in == j ——— (0] ay(Do+ Po,p)
powers ofD,. A bookkeeping parameté&,— \3D, can be B J (2m)
introduced inf(M,D) and this defines a news-dependent X Xa(Do+Po,p)Yas(Do+ po,p)|0).  (16)

gauge invariant functional. Nevertheless this functional is
not useful since it presents an essential singularithat X and Y are multiplicative and gauge covariant operators
=0, as can be seen in the simple case of fermions-itL10 constructed witD , andM, and thea;(x,y) are some func-
dimensions[10]. (The dependence ok, , is analytic or at tions. At this point the integration over, is nontrivial[even
least asymptotic under suitable regularity conditions on theor the simplest forms of the functions (x,y)] becausep,
fields and on the functior.) After applying the symbols appears in different and noncommuting operators. A possible
method, f(M,\3Do+\3pg,D) is obtained. However, be- approach is to express the operators in terms of their matrix
causep, is a discrete variable this is not equivalent to elements using as basis a complete set of eigenstat®g of
f(M,\3Do+po,D). Therefore expanding in the explidit,  (in the Hilbert space of time and internal degrees of free-
in f(M,D + p) does not correspond to a modificationf@éind  dom). These matrix elements are then ordinary functions of
in fact violates gauge invariance. Also, it is not possible tOpM_ Instead of that, we will use the equivalent prescription
introduce\ ; by means of a rescaling of typg— A 35X, of the  of labelling the operator®, according to their position with
field configuration W1,A) since this transformation violates respect taX andY: the symbolsD;, Do, andD g3 will be
the periodicity condition on the wave functions & used to denote the operatby, in positions 1(beforeX), 2
After expansion there will be all kind of terms which will (betweenX and Y), and 3 (after Y), respectively. In this
be products of single factors M andD as well as operators notation,

depending nonperturbatively @, (by this we merely mean

that all orders oD, are retainef It is always possible to 1 d

bring all D operators to the right producing commutators, so TT= B > J 5 5r(0[a1(Do1+ po.p)

that we end up with two kind of termsi) terms in which all Po (2m)

operatorsD appear only in commutatorfsnore precisely, in X ap(D oo+ Po.P) as(Dog+ Po.P)XY[0).  (17)

the form[D,]) and(ii) terms with unsaturated factob at
the right(i.e., D not inside a commutatprThe terms of the An immediate consequence is that the labeled operators are
first type are multiplicative operators regardingspace, al-  effectively commuting and the momentum integration and
though they are still differentialor pseudodifferentialop- ~ frequency summation can be carried out as for ordinary func-
erators with respect te, space. The terms of the second typetions. The result can be written as

are nonmultiplicative irk space. As we have argued above, B

these latter terms break gauge invariance and in fact they will TT=1r(0[g(Do1,D02, D03 X Y[0), (18)
cancel after integration over. This.can be seen as follows: | hare the functiory is defined by

let us replaceD by D+a, wherea is a constant number.
This replacement has no effect on the terms whris in

1 dd
g(x,y,Z)=Ep20 Jﬁm(xwo,p)az(ywo,m

30f course, the actual expansion in powersDbinust be done X a3(Z+Pg,p). (19
after arriving at Eq.(11) (or other similar formulas in other ap- ) ) ]
proaches, such as Schwinger proper time metfias, afterD , has (Note that thgre. will be two versions of the bOSO_""C one
becomeD ,+p,, , since otherwise powers of, would be generated and the fermionic one, which are related by a shift of 5
as well and that would destroy the ultraviolet convergence of thén their argument$.By construction the functiony is peri-
formula. odic:
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2i 2i 2 uct fromx, to xp+t (with x fixed) transforms withU (xg,x)
g(x.y.z)=g| x+ 7,y+ 7’Z+ B 20 atthe right andJ ~}(xo+t,x) at the left, and this latter factor
is transformed intoU %(x,,x) after commutation with
This is an immediate consequence of the sum over Matsule~t, thus the product of the two factors transforms covari-
ara frequencies and ultraviolet convergence of the expresntly at (x,,x), ase ™ 'Po.
sions. In particular, by taking = 8 in the previous formula, one
This periodicity property is essential to codify the gaugeobtains the identity
invariance of the original expression. To see this, let us in-
troduce the operationD, which is defined asD,X e PPo=g Ah(), (27
=[D,,X] for any operatoX. Consistently with our previous
notation, we will denote byD,, the action ofD, in positon ~ Where
1 (i.e., onX) and byD,, the action ofD; in position 2(i.e.,

Xo+ B
onY). Then clearly Q(x)zTexp{ —f ° Ao(xé,x)dx(g). (28
Xo

Dp1=Do1~Do2:  Do2=Do2—Dogs. (21) _ .
(Again e A% () is to be understood as the product of two
The interesting point is that these formulas hold for arbitraryoperators. Beyond the intervaJ0,8] Ao(x) is defined as a
functions of Dy, 9“dADog25 WE”- This follows from the periodic function of the time, s6)(x) is also periodic. Al-
well-known identitye*Be™#=el*IB: for anyc number\,  though(Q(x) is nonlocal in terms of,, it behaves as a local
_ _ field which takes values on the gauge group. In particular it
N(D D — D AD — (a\D — aND,
eMPoi~DPod X Y= ePox e Doy = (e)PoX)Y=¢ °1XY(’22) transforms covariantly at:

U —11-1
and this identity immediately extends to arbitrary functions Q70)=U"700Q209U(X). (29

of Dy;—Dyp, and analogously foDy,. This allows us to

The matriceq€)(x) at different values oky, but equak, are
make everywhere the replacements

related by similarity transformations and their trace, the
Doy=Do;— Doy, Dos=Dos— Do~ Dop (23) groc%zlr(&visloop, is independent of,. Another important
and useDy;, Dy, and Dy, as the independent variables to
work with. The advantage of doing this is that the action of
Dy1 and Dy, on X and Y produces multiplicative and gauge
covariant operators. On the other hand, the presence of ”{8
operatorD g, which is outside commutators, combined with
the gauge noncovariant operati¢®] |0), still can introduce
gauge noninvariant contributions. This is avoided thanks t
the periodicity property ofj(x,y,z) as we will show now.
Indeed, the periodicity property allows to write the term as

Dy =[Dy,0]=0. (30)

On the other hand, the effect of the operator exg{y) is
produce the shifky,—Xxy— B, therefore it is equivalent to

the identity operator on the space of periodic functions in
which we are workingas noted the periodic wave function
‘TO) appears regardless of whether we are considering bosons
of fermiong. So in this space

—BD _
TT=1r(0] @(&™ P01, Dy, Dp) XY]0), (24) e =0 (31)

where the functions is defined by This produces the manifestly gauge invariant expression

@(eiﬁx,y,Z):g(X,X_y,X_y_Z). (25) TT:tr<O|QD(Ql,DOl,Doz)XY|O> (32)
[The label 1 inQ) indicates to put this operator in position 1.
The relative order betweeRy; and(); is immaterial due to
Eq. (30).]

It can be noted that all previous manipulations, starting
from Eq. (16), hold also without taking ¢O||0). Inside
tr(0| |0) integration by parts implies thay, is equivalent to
— Dy, (or equivalently, thaDy3;=Dy;), and so we have the

Heret is just a parameter anfl denotes time ordered prod- (Inal formula
uct. (The quantitieD, dy, andx, represent operators and

the product refers to a product of operators so that not

directly derivatingx,.) This equation can be easily proved \ypere

by the standard procedure of showing that the two expres-

sions satisfy the same first order differential equationand o(w,y)=¢(w,—V,y). (34)
coincide att=0. The left-hand side is a manifestly gauge

covariant operator. It is interesting to see how gauge covariThe whole point of these manipulations was to end up with a
ance is realized in the right-hand side: the time-ordered prodmanifestly gauge covariant and multiplicative operator so

The periodicity condition ofg ensures that the function
¢o(w,y,z) is one-valuedit depends onw and not just on
log(w)]. In order to bring the expression into a manifestly
gauge invariant form, we will use the following property:

eftDo:eft"’OTeffngAo(Xé'X)dxé’, t=0. (26)

TT=tr(0](Q;,Dor) XY|0), (33
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that tf ¢(Q1,Dgp) XY] is just a gauge invariant function &f *
constructed with the fielda.,(x) and M (x): <p(w,y)=n20 Pl @)y (37)
TT:f d9 I tr[ @(Q4, Do) X Y. (35  The interest of doing that is, of course, that, at least at lower
orders, the result is simpler than the full result. This can be

) o i regarded as the finite temperature generalization of the usual
The fact thag(x,y,2) is periodic is essential to produce yerivative expansion at zero temperature. Recall Ehat-

the gauge covariant operat@(x). This periodicity property  yeady was restricted to appear in commutators only, so this is
would be lost in an expansion in powersDf. We should a4y an expansion in powers of, . As usual, higher orders
remark that no restriction has been put on the field configuzre increasingly ultraviolet convergent. It can be noted that
ration, which is completely generahay be non-Abelian and i, the Abelian and stationary caga vanish identicallyon
nonstatlonaryand also no ch0|ce_ of gauge has been ”eede%ultiplicative operators, such asandY in Eq. (36)] there-
Perhaps it should be emphasized how exactly the lack 9fyre the zeroth order in the above expansion becomes exact.
periodicity would break gauge invariance. To see this it IS Neyertheless, it should be noted that such an expansion is
sufficient to consider & 1-dimensional fermions in presence o1 45 well defined as for instance the expansion in powers of
of an Abelian configuration10]. The corresﬁpondlng effec- b The latter is defined from the functional itself, since it
tive action is of the formgg(a) with a=/gdx,Ao. The  corresponds to spatial dilatations of the fields. No such trans-
quantitya is invariant under topologically small gauge trans- formation is known for the expansion in powersR§. So in
formations Ag = Ag+doA [A(Xo) being a periodic functioch  principle it should be expected that different ways of ex-
but under a large gauge transformation, e.8g=A, pressing the functional in terms ¢ and D, would yield
+2rin/ B [which corresponds ttJ(x,) = exp(2minX,/B)], a  different expansions, only the sum of all orders being unam-
changes by an integer multiple ofr2, sog(a) will not be  biguously defined. This can be seen more clearly as follows.
invariant in general. Wheg is periodic the effective action Recalling that insidg0||0) the operatord,; and Dy, are
becomegB¢(2) with ) =exp(—a) and it is invariant under equivalent, the typical term considered above, @§), takes
all gauge transformations. See Sec. IV A for further remarksthe form
D. Relation with the calculation fixing the gauge TT=1r(0[g(D1,D02) X Y|0) (38)
In Refs. [23] and [17] the kind of calculation just de- [with g(x,y)=g(x,y,x)]. Using the final form Eq(33), it is

scribed was carried out for fermions but fixing the gaugeeasily established that it can also be written as
through the gauge conditiafyAy=0. (The idea was that the

two operators treated not perturbatively,andA,, are then TT=tr(0|g(Dgy,Dg1)Y X0}, (39
commuting) No loss of generality is actually implied by this

approach since such a gauge always eXi28. However, because in E¢(33) all operators are multiplicative and there-
because it is not unique, it is necessary to find all remainingore integration by parts and the cyclic symmetry can be
gauge transformations allowed within th&y-stationary used. Now, in the frequent case of contributions wh¥re
gauge, and then check that all of them produce the sameY, this implies that only the symmetric part of the function
result. This was shown to be equivalent to the periodicityg(x,y) is actually contributing. However, it is easy to write
condition that follows from summing over Matsubara fre- purely antisymmetric and periodic functiorggx,y) such
guencies, Eq(20). All this is unnecessary in the present that when used in Eq36), each order is nonvanishing, al-
approach since the gauge has not been fixed. Using gaugigough of course their full contribution vanish when summed
invariance, the results obtained within thi,-stationary to all orders. This particular kind of ambiguity can be fixed
gauge can directly be taken over as follows. Whgy\, by imposing a symmetry restriction ayx,y) before carry-
=0, the fieldQ) becomese™#%0, so it is only necessary to ing out the expansion i®,. This ambiguity is further dis-
replacee#%o of the calculation inAy-stationary gauge by cussed in Sec. IV B.

Q(x) to obtain the result expressed in an arbitrary gauge.

Further comments are made in Sec. IV A. E. lllustration of the method

To illustrate the previous manipulations in a practical

E. Expansion in space-time derivatives at finite temperature case, we will consider the quantity

As noted, expanding in powers &f, breaks periodicity

and hence gauge invariance, however, in principle nothing 1 1 2 3
prevents from expanding in powers @, in Eqg. (35), C[m’A]__ZTrb D2+ E‘TMVFW +O(FL,),
namely, m (40)
T=> f A9 X tr] o, (Q)XDOY] (36) which will appear later in the study of the scalar field in 2
n=0 " orr +1 dimensions. In this expressiok,,=[D,,D,] and

"w:%[h ,¥»] (Wherey, are Hermitian Dirac matrices in
where 2+1 dimensions mis ac number.
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C[m,A] is ultraviolet finite and so it is a well-defined and
unambiguous quantity. We will compute it through second %
order in an expansion in the number of spatial covariant de-  g(X{,X,)=— [T v f dt
rivatives. Clearly the expansion starts at second order and it X1 X2
is sufficient to retain the explicit term in EGA0) since terms B
of O(Fiv) must contain four or more spatial indices. cotr{g(ﬁxz)
First, the symbols method, Eql1), is applied. After- -———— | +ppc, (45)
wards, taking the trace in Dirac space and keeping just terms 2t—X1tXz
with two spatial covariant derivatives, produces

B
cotr{E(Hxl)

2t+X1— X5

where p.p.c(which stands for pseudoparity conjugatefers
to the same expression with the replacements —x; and

[m,A]= 1f op 1 Xg— = X.
C2 (2m)2 B Correspondingly,
2
X > (0|tr E| ||0), C [m,A]:j d3x trf @(Q4, Do) E?] (46)
o o —(Do+po)?+p*+m? ]' > i o
4D with
wherep?=—p?, po=2min/B, andE=[Dy,D]. 1 1 (= 1 efto
To proceed to the integration over momenta and sum over e(w,y)= 167 yf t Zt——y Bt
frequencies we use the trick of adding a label 1 or 2 to the m e o
operatorsD to indicate their actual position in the expres- 1 Bt 4,
sion, namel _ .
y 2t+yeﬁ(t+y)_w)+p'p'c" (47)
2
C,[m,A]= 1] dp 1 p.p.c. corresponds tp— —y andw— o~ 1. This is the final
(2m)? ,3 expression which contains all contributions@pm,A] with
two spatial Lorentz indices and any number of zeroth indi-
XE oltr 1 ces. As expected at finite temperature, it is nonlocal in time
oo { — (Do Po)2+ p2+ m? but local inx. Note thatC,[m,A] is an even function ofn.*

We can now consider a further expansion in power®gf
since it respects gauge invariance. An explicit computation
|0) shows thatp(w,y) is an analytic function ofy. At leading
(zeroth order inD, the result from Eq(47) is

1
X
—(Dog+ Po)?+p?+m?

=2

:=(0[tr[g(Do1,D ) E?]|0). (42

3
C,y[m,A]= 16m 2mfdxr eﬁm_Q+eBm_Q—1

efM+Q e3m+91) .

The momentum integration yields

+0O(Dy). (48)
g(X1,Xo) = — L1 1 Note that this result, unlike the full result in Eggl6) and
87 B By (X1+ Po)>— (Xp+Po)? (47), does not contain an integral over the mag§dt). This
property holds to all orders if,.
m?— (X1 + Po)?
Xlog| 50— (43
—(X2+ Po) G. The effective action

In this subsection we summarize some properties of the
In order to sum over frequencies, it is convenient to reduceffective action which will be needed later.
the expression to a rational form. This is achieved by derivat- The effective actioriThe Euclidean effective action is de-
ing with respectm and then integrating backusing that fined as minus the logarithm of the partition functional. For
g(Xq,X,) vanishes asn—o]. Then the identity noninteracting fields it takes the form

1
n X1+i7Tn X2+i7Tn

=coth(x;) —coth(xz), (44) “This can be shown by noting that(w,y;m)— ¢(w,y; —m) is
given by the same formuléd7) with replacemenim— —«, and
then showing that the integrand is convergent and odd as a function
can be applied. This produces of t.
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W[M,A]=c Trlog[K(M,D)]=clog DefK(M,D)], metries can be restored simultaneously the theory presents an
(49) essential anomaly. All symmetries which are implemented
through a similarity transformation dk(M,D) leave the
where K(M,D) is a differential operatofe.g., the Klein-  spectrum invariant thus because #unction prescription
Gordon operator as in E@2) or the Dirac operatdrandc  defines the determinant of a differential operator by regular-
some constant. izing the product of its eigenvalues, it follows that for these
Ultraviolet ambiguitiesThe previous expression needs to symmetries the-function version of Det) is always free
be regularized, and a number of methods can be used i anomalies. This applies in particular to vector gauge in-
obtain a renormalized version of it. The key observation isyariance (Axial gauge transformations and scale transforma-
that all renormalized versions of the effective action mustions, for instance, are not implemented by similarity trans-
yield the same ultraviolet finite contributions and so twoformations and they can be anomalou3herefore the
such versions can differ at most by a term which is a locapartition functional is always invariant under gauge transfor-
polynomial in the external fields and their derivatives, with mations. On the other hand the effective action can change
canonical dimension no more thaht+1 (in d+1 dimen- by integer multiples of i, since the logarithm is a many-
siong. Note that for this discussion a massplays the role  valued function.(We are assuming that no zero modes are
of an external scalar field which happens to take a constanfvolved. They would induce changes multiplesi efin the
c-number configuration and so, in particular, the ambiguityeffective action. By continuity, this can only happen for
in the renormalized action will depend polynomically on  topologically large gauge transformations. For a scalar field
This implies that any sensiblehat is, correctly describing the multivaluation cannot occur since the corresponding
the ultraviolet finite contributionsregularization plus renor-  /-function renormalized effective action is purely real. For
malization prescription can be used to make the effectivgermions the multivaluation may take place depending on the
action flnlte, the actual effective action describing the phySi10p0|ogica| numbers of the gauge transformation and the
cal system at hand will correspond to adding the appropriatgauge field configuration and this indicates the presence of
local polynomial action to the previous result. Another con-topological pieces in the effective actiph,4,5. Such mul-

sequence is that formal identities can be applied so long ast@aluation is indeed found in the explicit calculation for 2
violation of them is allowed in the form of a local polyno- 4 1-dimensional fermions of Ref23].

mial of degreed+1 or less. _ . Locality and finite temperaturdn previous subsections
The g'fUnCtlon methodThe effective action can be de- we have considered Operators of the fOf(TM,D) with f
fined through the-function prescription, namely one-valued and ultraviolet convergent. Actually, one wants
q to compute the effective action which contains multivalua-
Trlog(K)= —Tr(KS) _ (50) t|pn and ultravplet dlvgrggnces, E®9). !n many expan-
ds <0 sions (perturbative, derivative, fd, etc) higher orders are

ultraviolet finite and thus they are also free of multivaluation.
(An analytical extension is is understood from sufficiently For those terms all our previous considerations hold directly.
negative values o) When K admits a complete set of In particular, we find a remarkable result, namely, that the
eigenvectors, TKK®)=3 \;, \,, being the eigenvalues &. effective action at finite temperature can be written| efs
If the calculation has to be made using some expansion it iEq. (36)]
convenient to use the following formul&5]:

4z 1 W[M,A]=§ f d9* It o (Q) O], (52
S\ — S
TT(K )—Trjrz—q_riz ﬁ, (51)
whereg,, are some functions an@, are gauge covariant and
where the patf” encloses counterclockwise the eigenvaluedocal operators constructed out &, and M. In this sense
of K but notz=0. This method is practical in actual calcu- the theory at finite temperature is local in the usual sense
lations combined with the symbols method: after applying(i-e., the effective action admits an expansionZip) pro-
Eq. (11) to expand the functional trace, it is straightforward vided that the field)(x) is regarded as local.
to make an explicit expansion M andD, for instance. This For the ultraviolet divergent terms, some oddities appear
method has been used for fermions in Réfl] and for a  which are necessary in order to accommodate the existence
nonlocal Dirac operator in Reff22] at zero temperature, and of anomalies, topological terms and multivaluation, all these
at finite temperature for odd dimensional fermions in Ref.issues being related. For instance, when the expansion in
[23] and even dimensional fermions in REL7]. spatial covariant derivatives is computed for fermions in 2
Anomalies.If the effective action breaks a symmetry of +1 dimensiong23] the functionse, of lower orders are
the action there is an anomaly. In general the anomaly can b®any-valued(a property belonging to the exact result in 0
defined as the difference between the effective action of the-1 dimensiong10] and in 2+ 1 dimension for Abelian and
original and the transformed configuratioftd the external  stationary configurationgl2]). In addition, negative powers
fields) and by construction is a local polynomial. It may hap- of Dy, may appear when one goes beyond the Abelian and
pen that the symmetry can be restored by adding an apprstationary case. This was handled in R&8] by introducing
priate local polynomial to the effective action. In this casethe fields A(x), defined as any solution of the equation
the breaking is an unessential anomaly. When not all symDoE=D(2,.A. There it was shown that the ambiguity in the
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definition of LA cancels and all solutions yield the same ef-the partition function of the associated 0-dimensional Hamil-

fective action. In terms of thed(x) and Q(x) the finite  tonian system in a gauge whetg is time independent. The

temperature effective action remains local. energy spectrum is then obtained directly from the Klein-
Gordon equation written as

Ill. THE SCALAR FIELD IN 2 +1 DIMENSIONS

In what follows we will apply the previous ideas to the Thus for each flavor there are two single particle levels
computation of the effective action of2L-dimensional sca- ¢, ,=+m+A,, (a=1, ... N; labelling the eigenvalues of
lar particles at finite temperature and density. The Euclideathe matrixA, in flavor space The standard textbook result

action of the system is that of E(l). There, the fieldp(x)  for the partition function of a system of noninteracting
is a Lorentz scalar and a vector in the internal symmetnhosons then applies:

space which will collectively be referred to as flavor space,

with dimensionN;. The covariant derivative is defined as N

D,=d,+A,, where the gauge field,(x) is an anti- Z{m,A]= 11 aHl n}_:O e~ Alom+Aoan (54)

Hermitian matrix in flavor space. Correspondingly, the gauge T

transformationsJ(x) are unitary matrices. The massis @ o equivalently

space-time constant and a realumber in flavor space. The

more general case of an arbitrary scalar fieliék) replacing Wy m,A]=trlog[(1— e AM*Ad)(1—g Al-M+Ad)],

m will not be considered here. The effective action is given (55

by Eq.(2). ) )
Relevant Symmetries of the prob|em are pseudoparity anahe trace refers to flavor space. This result can be rewritten

gauge transformations. Pseudoparity corresponds to changs

ing the sign of every Lorentz zeroth index, i.exq(X)—

(—Xg,X) and Aq— —Aq. Since the spectrum of the Klein-

- N2 2 ) )
?ordop oprc]arat?r D.ﬂ+m |s|, u.nch.anged un.de.r this tr:_;l(;]s The first term is the 8 1-dimensional Chern-Simons action
ormation the/-function regularization prescription provides which breaks pseudoparity and can be removed by a local

a pse_udoparjty preserying effective 'acti'on. Sug:h EUCIideaBolynomial counterterm. The second term(ig to a con-
effective action contains only contributions with an even )

number of Lorentz zeroth indices, it does not contain the

Levi-Civita pseudotensor, and thus it is purely real. Any B B

other renormalization prescription can only produce imagi- I'{m,A]=trlog| 4 sin!‘(E(erAo))sinl-(E(m—Ao))}.
nary contributions which are local polynomials. As noted, (57)
the ¢-function regularized effective action will be strictly

gauge invariant since it is real. In fact no essential anomalieghis effective action is an even function ofandA,, so it
are present in the case of scalar fields inl2dimensions preserves parity and pseudoparity. It can be written in a

oo

W m,A]=—=B8Tr(Ay+I'ymA]. (56)

(scale anomalies are absent in odd dimens[@6$). manifestly gauge invariant form as
There is a third symmetry, namely, the transformation
— —m which is trivial for scalar particles and again free I'{m,A]=trlogefM+e fM"—Q—-0"1]. (59

from anomalies using thé-function regularization. Within

other renormalization schemes there can appear terms breaks in the case of fermiongl0], periodicity of the effective
ing this symmetry but they will be removable by adding aaction as a function gBA, would be lost within a perturba-
local polynomial. In the case of odd-dimensional fermionstive expansion, i.e., an expansion in powersAgf

neither pseudoparity nor the transformatiom——m are Sincel'{ m,A] enjoys all symmetries of the action it co-
symmetries, however, their product gives the parity transforincides with thef-function regularized effective action, up to
mation. Parity is a symmetry of the fermionic action but isa constantsince any other local polynomial must be of de-
not a similarity transformation of the Dirac operator, so it isgree one inm or A, and would break parily The result in
not guaranteed to be preserved by th&unction renormal-  Ref. [18] corresponds td'm,A]—I"'{{m,0] in Minkowski
ization prescription. As is well known, parity for odd- space. It is noteworthy that the partition function defined
dimensional fermions is in general in conflict with invariancedirectly from the Hamiltonian breaks pseudopafitue to
under large gauge transformations and if the latter invariancthe Chern-Simons term in E@56)] even if no ultraviolet
is enforced, parity may present an anomaly, depending odivergences are introduced i+ dimensions in the ca-
the number of flavor$4]. nonical formalism.

A. The 0+ 1-dimensional model B. Computation of the effective action in 2+1 dimensions:

The above-mentioned remarks can be illustrated with the Relation to the fermionic case

0+ 1-dimensional version of the system. The corresponding The effective action of the 2 1-dimensional model can-
effective action has been computed in H&8]. Perhaps the not be computed in closed form for arbitrary space-time and
simplest way to derive this effective action is by computinginternal symmetry configurations. Our approach will be to
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expand the effective action in the number of spatial covarianaction can be further added at the énd.
derivatives, or equivalently, in the number of spatial Lorentz  The first correction amounts to dividing the fermionic re-
indices. The computation will be carried out through secondsult by the trace of unity in Dirac space which is two in the
order, that is, we will keep terms with zero or two Lorentz 2+ 1-dimensional calculation in Ref23]. The second cor-
indices.(There are no odd order terms in the expangi®he  rection can also be tackled straightforwardly. The Matsubara
zeroth Lorentz index dependency is treated exactly since thisequency(related tod, in D) takes discrete values (n
guarantees the preservation of the periodicity conditior+2)/3 for fermions and 2rin/B for bosons, thus the func-
which is essential for gauge invariance. tional trace computed in the fermionic Hilbert space is re-
The calculation can be done by applying tiidunction  lated to the bosonic one after the replacemégt—A,
regularization prescription with the help of the symbols —i#/g8. This is equivalent ta)(x)— —Q(x). [Q(x) has
method, as described in R¢R23], however, it is more eco- been defined in Eq28).]
nomical to use the results already established for fermions in
that reference. This can be done as follows. The effective
action for fermions is

W m,Al=—-W; m,AO—%,A}—C[m,A]. (62)

Wim,A]=—Tr¢log(y,D,+m). (59 The termC[m,A] takes into account the spurious contribu-

tions coming from— %awF which have to be removed
The functional trace is taken in the space of antiperiodidrom the Fermionic result.
wave functions and includes Dirac degrees of freedom, in This formula can be illustrated in thet0L-dimensional
addition to space time and flavor degrees of freedom. Thenodel, where it readswWym,A]=—2W; [m,Aq—i=/A]
gamma matrices are Hermitian and satisfy,y,=d,, (note that Dirac space is one-dimensional it D dimen-
+0,,. Actually, there are two inequivalent irreducible rep- sions so the factor 2 is not canceled in this case, and
resentations of the Dirac algebra which are distinguished bglso C[m,A]=0). The simplest way to obtain the
the labeln= =1 in the relationy,y,y,=i7ne€,,,. Soify, 0+ 1l-dimensional fermionic effective action is again using
is one of the representations; y, provides another in- the Hamiltonian formalisnffixing doAq=0). Since there is a
equivalent representation of the Dirac algebra. The Ighisl  single-particle level with energy,= nm+A,, for each fla-
attached to the Levi-Civita pseudotensor and thus a changer (where = +1 is the Dirac matrixy, in 0+1 dimen-
in 7 is equivalent to a pseudoparity transformation. Theresiong it follows that
fore the fermionic effective action can be split into two com-

ponents: Ny

Wf[m,A]:—IogH E e Alam+Agg)n
a=1 n=0,1

=—trlog[1+ e~ A("M*TAd], (63)

uvo

Wi [m,Al=W; [m,A]+ »W; [m,A], (60)

whereW; is real and even under pseudoparity ad is  The result in Ref[10] correspond<up to a local polyno-
imaginary and pseudoparity od@f course, this relation can mial) to W;[ m,A]—W;[m,0] with »= 1. This version of the
be violated by adding a local polynomigNext, note that the  effective action does not directly satisfy E@O), i.e., the
formal identity Trlog@B)=Trlog(A)+Trlog(B) holds for  pseudoparity transformatioA,— — A, is not equivalent to
the functional trace up to ultraviolet divergent contributionsthe transformationp— — % in the previous formula. How-
and so it holds modulo local polynomial terms. This impliesever, subtracting an appropriate-dependent polynomial
that yields

. 1 W;[m,A]=—trlog[ 1+ e AM*740)]

Wf [mlA]:_ETrf |09[(7’MDM+m)(_7,LD#+m)] :_trlog[l_f_efﬁmﬂn], (64)

which does satisfy Eq(60). This is the /-function result

__ ETrf log — D2 +m?— EU = [23]. It is readily verified thal’ m,A] in Eq. (58) coincides
2 " 2wk with  —2W! [m,A,—i#/B] plus a polynomial,
Jdxg tr(m).
(Fu.,=[D,.D,]. (61)

SAlternatively, one can choose to change— —m instead ofy,
So WJm,A] [cf. Eq. (2)] is closely related ton; [m,A]. — — v, in the second factor in the logarithm in E@1), and then
The differences between both expressions (8r¢he Dirac  relate W[ m,A] to W[ m,A]+W;[—m,A]. Up to a local polyno-
degree of freedom which is absent in the scalar c@igehe  mial, this procedure is equivalent to the one used in the text.
different (periodic versus antiperiodidboundary conditions,  ®To wit, 8(— ) fdx, tr(zm+A,), which is temperature indepen-
and (i) the extra term— %UWFM which is not present in  dent. This is consistent with the fact that the finite temperature does
the Klein-Gordon operator. In addition, a local polynomial not introduce new ultraviolet divergences.
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In 2+ 1 dimensions the subtractid®[ m,A] can be com-
puted in an expansion in powers %JfrWFM. The term of
first order does not contributsince the trace o, in Dirac
space vanisheshus the leading term is that with two powers
of F,,, namely, the expression in Eq40). Because
C[m,A] is ultraviolet finite it is free from anomalies, i.e., it
enjoys all symmetries of the bosonic action. This term ha
been computed, up to two spatial derivatives, in Sec. Il F.

Let us quote the results for the pseudoparity even comp
nent of the effective action of fermions int2l dimensions
[23]. At zeroth order in the number of spatial covariant de-
rivatives the result is

1 2\2 B
Wf,O[maA]:Etr<o|[(E m¢1(§(m—D0))
2\% (B
_(E> b E(m—Do)> |0)+p.p.c.
(65
At second order
N 1 1(2\* (B
Wf,z[m,A]=—gtr<0| E(E) ¢1(§(m_D01)>
2 B 1 m
_E¢o(§(m_DoD)<Z(D02_DoD+E)

- fwdttanr(g(t— D01)>

1
Z(Doz_Doﬁz"' m?

1 =2

X 3E
(Do>— Doy

|0)

(66)

2t + D02_ DOl
+ Xt p.p.c.

In these formulas, p.p.c. means pseudoparity conjudxge,

— —Dg, andXy, means the same expression exchanging the

labels 1 and 2.

The functions¢,(z) are given by
(0—2)"
o Ltanhz)—1],

(67)

¢n<w>=Pn+1(w>—f "4z

n=0,12..., Rdw)>0,

(o]

PHYSICAL REVIEW D 63 045016

These formulas fow,(w) refer to Re)>0. When Ref)
<0 the propertyp,(— w)=(—1)"¢,(w) can be used.

C. The effective action

We can now use Eq62) to obtain the effective action of
he 2+ 1-dimensional scalar field. Up to two Lorentz indices,

[m,A] equals C,[m,A] which is given in Eg. (46).
W;’[m,A] is given in Eqs.(65) and(66). In these latter ex-
pressions the functiong,(z) are made explicit using Eq.
(67), and the variable€ andD, are used instead @ ,; and
D, (cf. Sec. Il Q. In addition, we introduce a chemical po-
tential by means of the replaceméx— Ay — u [8] whereu
is a real constart number(recall thatA, is anti-Hermitian.
This shift is gauge invariant and it is equivalent f®
Heﬁ”Q.

The effective action up to two spatial covariant deriva-
tives at finite temperature and density is thus

Ws,o[m.A]=f d3x trf po(€°#Q2)], (69)
Wodmal= | Pxile (40, DE?. (70
The functionse, and ¢, are given by
11 +oo
-~ Zim3 2_ 2
¢o(®) 4W(glml +J|m| d(t m)eﬁt_w)
+p.p.c., (77
_ 1 1|1 1/1 ) )
<P2(w,Y)——gF §|m|y+§ Zy —m
o 2T, [ 22
O S —_—
9 2m—y) " )i e
t?-m? 1 2w
x 2t—y 2 _eﬁ(t+y)_w
t?>-m? 1 2
X 2t+y+§y +p.p.c. (72

In these formulas p.p.c. corresponds yo~—y and w
—w L

The formulas(69) and (70), expanded in Egs(71) and
(72), constitute the main result of this section. They are nec-

where the integration path runs parallel to the real pOSitiveessarily complicated looking since an infinite number of

axis towards+o. The P,(w) are polynomials of degree,

Pi(w)=w,
1, 1fim)\?
Palw)=50"= 515

w

1 1 2
P3(a))=6w3—g< 2) . (68

Feynman graphéwith any number of temporal gauge fields,
cf. Sec. IV B are being added, and the effective action is
nonlocal in time at finite temperature. A much simpler for-
mula is presented below if only the lowest order is retained
in a further expansion in the number of temporal covariant
derivatives.

Some remarks are in order. In writing the formula we
have already used the fact that the effective action is an even

function of m (since this is already true fal; [m,A]). The
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condition Ref)>0 in Eq. (67), implies that the previous At zero temperature Lorentz invariance is a symmetry of
formulas refer to the physically relevant cdge<|m| only.  the action. Such symmetry is not obviousify / m,A] since

All polynomial contributions introduced by ,(w) in Eq. it sums all orders D, but not inD;, i=1,2. However,
(67) combine in such a way that all the polynomial depen-considering an expansion in inverse powersiofa Lorentz
dence orD, cancels and the result is a periodic function of invariant expansiongives

Do;. This cancellation requires the explicit as well as the

p.p.c. terms to hold and it is a nontrivial check of the formu- 1 1

las. (Of course, the periodicity holds also for the fermionic WsAmA]=— 70— Wf d>x t[E?]+0O(m™3). (77)
effective actions in the pseudoparity even sector,

W/ [m,A].) The argument of the logarithm ip,(w,y) is to
be taken in the interval- 7,7) andt runs on the real posi-
tive axis. (Note thaty representsD, and thus it is purely
imaginary)

The same result follows from E@73). This expression ad-
mits a unique Lorentz invariant completion, namely

1

_— 2 -3
967 [m| Fi[TO(m™2).

(78

1
= 13
67T|m| +

_ 3

D. Expansion in space-time derivatives at finite temperature Wm.A] f dxtr
A simpler expression fow, ;[ m,A] is obtained retaining

only the leading order in an expansion . This corre- . ] o

sponds to expand in powers pin the functiong,(w,y). As  T1his formula comes also from a direct application of the

noted this expansion does not break any symmetry and is "§sults in Ref[27] thereby being a check for our formulas.
natural one in the present context. This produces At next order in Iih several Lorentz invariant operators of

dimension 6 can appear and E@®6) puts a constraint on
_ 3 B ) their coefficients. Note that the last two formulas hold also at
Wsdm,Al= | d™Xt@o o €“DET]+O(Do), (73 finjte temperature since the temperature-dependent correc-
tions areO(e~ M) (see also Sec. IV C
with

1 1 e28m_ w2—2,3me5mw F. The partition function

Prow)=—5—— +p.p.c. The effective action at finite temperature and density is
967 m (efM— w)? . . X
directly related to the grand-canonical potential, namely
Wy m,A; B, u]=BQ(B,1). (Note thatu introduced by the
B 1 14d efM+ w replacementy— do— w couples to the charge and not to the
T 96 mdm| Mgam_,,| T P-PC (74 number of particles which is not conserved in the relativistic

case[28]). However, strictly speaking, a system at equilib-
Note thate, ) is an even function ofn. This formula is  1lum with temperatur@ and chemical potentigk can only

manifestly invariant under all symmetries of the action. TwoP®€ Stationary. In addition, the physical effect ofregative
nontrivial checks of the calculation af® that negative pow- constant extgrnal scalar potentlal_ is mdlstlngwshable from
ers ofy have canceled an€ii) that ¢, ) no longer con- that of a(positive chemical potential, since both add to the

tains parametric integralé.e., ffm‘dt). As noted, this ex- €Nergy for positive charges and subtract for negative ones,

pression is exact folVg o] m,A] in the Abelian and stationary thus for_ the pa_rtltlon funct_lomo_should not be W'(.:k rotated,
case ' and A, is real instead of imaginary. All expressions depend

only on the combinatiol\,— . (It would be algebraically
inconsistent not to rotatd, to its Euclidean version in the
general case, but not within the subset of stationary configu-
The zero temperature limit of Eq€71) and (72) is rations) Note that the fact thad, is real or imaginary does
straightforward: becaude|<|m| and() is unitary, the term not affect the functional form; in any case the functional
e?! always dominates, thus the limit— o just removes the derivative of the effective action with respectAg yields the
terms Withfﬁmdt and the dependence jm is also canceled charge density and the derivative with respecttgields the

E. Zero temperature limit

(we are assuming fixed asT—0). That is, total charge:
1 3 3 %) oWy 0 1 oW 79
=—— = X)=——, =—— .
Ws o m,A] 67rf d3xtr[|m|°], (T=0), (75 P 5Ag(X) B
1 3 1, In view of the relation between partition function and ef-
Wsdm,Al=—o— | d’tr) E|[m[Do+| 7Do—m fective action, it follows thatW,, describes a two-
dimensional relativistic ideal gas in presence of an almost
2lm|+Dp\ ] 1 space-time constant scalar potenfigl. An explicit calcula-
X log m } 3 (76)  tion of the charge density using/s, in Eq. (71) and inte-
m 0 grating by parts yields
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cotl’(E(t—,u,) —cot E(H—,u,) ,

N;=tr(1) is the number of flavors. We are assuming that
couples equally to all flavors and we have droppgdsince
it can be recovered from. This formula can rewritten in the
standard fornj 28]

d?k

po~ f (27)?
wherew(k) = Vk?+ m?.

Likewise, the termW; , adds a contribution to the density
coupled toA,. Let us consider the Abelian caga addition
to stationary, thenD, vanishes and Eq73) becomes exact.

—ijmdtt
Po 4 -

(80)

Ny Ny
Plol)—n_q  ghlotrul_

PHYSICAL REVIEW D 63 045016

m[®

1
Ws,o[m,A]:—Ef d3x tr 3

+2T3[ B|m|Liy(2)

+Lis(2)]|+p.p.c., (86)

wherez= e~ Am=x+A0) js the fugacity, and the correspond-
ing density becomes

N;T?
Po= 2

[BIm|Liy(2)+Lix(z)]—p.p.c. (87

o
in agreement with Ref.30].

As a final comment related to the partition function, we
note that the relation Eq62) can also be written using the

chemical potential instead of the scalar poterdigl That is,
if Qp(B,u) andQ¢(B,u) represent the grand-canonical po-

There will be two contributions to the charge density, onetentials of a system of noninteracting particles in presence of

coming from the explicit dependence @&, and another
through the dependence ih The latter is a total derivative

external fields, treated as bosons or fermions, respectively,
then

and does not contribute to the total charge. Both contribution

can be combined to give

Ny 1o d
P2X)="ger mdm|™

- gcosecﬁ(g(m—,quAo)) E?

(82

+2 cot?‘(g(m—,quAo) VE“ —p.p.c.

(Note thatA,, u, and E are pseudoparity oddAt zero
temperaturgassuming m|>|u—A,|, or else at finite tem-
perature but large masthis simplifies to

Ny

pa(X)=— EWVE’ (83

which also follows from Eq(77).

It is also interesting to note the relation of our results with

other formulas using polylogarithnisThe functionse,(w)
introduced in Ref[23] and Sec. Il B are directly related to
polylogarithms, namely

$n(@)=Ppy1(@) = (—2) "Lip1(—€72).

This relation is easily established from E&7) by noting
that it verifies the following defining properties of (k):

(84

Lig(2)=

= Li,(0)=0.

(89)

d .
Zd_ZLI n(Z) = LI n—l(z),
In this notation W in Egs.(69) and(71) becomes

"The polylogarithms are defined E29]

Lin(2)= —,
n(2) &

qua,m:—nb(ﬁ,w'—” . 89

B

The minus sign comes because the functional integral with
Grassman variables gives the determinant of the quadratic
form instead of the inverse determinant. The shift>u
+im/ B accounts for the different boundary conditions. Of
course a shiffu— p+2i/ B must leave the partition func-
tion invariant, sinceu is coupled to an integer-quantized
charge. This is another manifestation of gauge invariance.
For interacting particles Eq88) can be extended using the
well-known prescription of adding a minus sign for each
particle loop[Eq. (88) corresponds to the particular case of
one-loog.

IV. FURTHER GENERAL REMARKS ON THE METHOD
A. Remarks on gauge invariance

As noted in the Introduction, topologically large gauge
transformations have played a prominent role in the devel-
opment of this field by putting severe constraints on the al-
lowable forms of the effective action functional. On the other
hand it seems that in our present approach such a role is
played instead by the periodicity constraint which prompts
the appearance of the Polyakov lofqx). In this subsec-
tion we will make some remarks to try to clarify the relation
between both concepts.

8An equivalent procedure would be to compute the grand-
canonical potential fon replicas of the particles and then seto
—1 at the end. That is, in the notation of REF1] the Hamiltonian
becomes

n n
_ T T4t
H= 2 haﬁ 2 azx(ra 0’+ 2 v apyd 2 aa(rlaﬂlrzaﬁﬁzayﬂl'
B o=1 a,B,7,0 ay,09p=1

(89
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Let G be the gauge group, and [Etbe the relevant ho- period 27/ 3. The necessity of this requirement follows im-
motopy group controlling the existence of topologically largemediately from considering the following class of gauge
gauge transformations at finite temperature. th10dimen-  transformations
sionsI’ = 74(G), therefore there are large gauge transforma-
tions for the Abelian group (1) but not for simply con- U(x) =exd xoA(X)], (92
nected groups such as StJ( In d+1 dimensiongwith d
different from zerg, let us assume for this discussion that the
spatial boundary conditions are such that the space becom
effectively compactified to a sphere. Hende contains
classes of mappings from the space-time manifolck S [Ao(X),A(x)]=0, exdBA(X)]=1 (93)
into the gauge grouf®, where the factor Scorresponds to oL ’ '
the compactified Euclidean time anfl ® thed-dimensional  The second condition means that the eigenvalues(aj are
Space(Note that, unless otherwise stated, we will require a”of the form)\j :277inj /ﬁ, for integernj (SUCh integers ane
functions to be continuous on the Space-time manifold, an%dependent by Continui)yand it ensures that the corre-
in particular, periodic as a function of timelheorem 4.4 of  spondingU(x) is periodic in the temporal direction. Under
Ref. [32] then implies that such a gauge transformation

where the time-independent function(x) takes values on
Lie algebra ofs and is restricted by the following con-
itions

I/ my:1(G)=m1(G) X 74(G). (90 AY(X)=Ag(X)+ A(X), (94)

Let us consider the cage=2. Because the group,(G) is e the spectrum oA, is shifted by multiples of Zi/g and
always trivial for any(compact Lie groupG, this simplifies e functionsg,,(z) must be periodic.
to I'/m3(G) = m,(G). Two typical cases are as follows. Before proceeding, an important point should be noted
(i) G=U(1). In this cases is trivial andmy is 7, soI'  regarding the approach used in this work. Namely, at the
=Z. There are nontrivial gauge transformations which windpyrice of working with asymptotic expansions, we can afford
n imes around thé" factor of the space-time. They can be to derive formulas which are “universal” in the sense that
realized by space-independent, but time-dependent, gaug restriction is put on the algebraic properties of the internal
transformations. _ o space, in particular, the formulas must hold for any gauge
(it) G=SU(n) (n=2). In this casem, is trivial but m3  group. This means for instance that the functiangz)
=7 and so once agaifi=Z. In this case the corresponding apove are the same for all theories and configurations. The
large gauge transformations must be space-time dependenfequirement of universality puts stronger constraints on the
Note that time-independent gauge transformations argnctionals that cannot be appreciated when working with
controlled by the homotopy group,(G) which is trivial,  concrete theories onljfor instance, in particular theories
and so they are always topologically small in two spatialsome of the operator®, can vanish identically and so the
dimensions. _ ) o corresponding functiog,(z) does not play a role
Let us now turn to the point of view used in this work.  The transformations introduced in E@2), subjected to
The periodicity constraint refers to the fact that a gauge inthe conditions Eq(93), have been named discrete transfor-
variant functional must depend ofl(x) and not just on  mations associated t8,(x) in Ref. [23] since in general
logl€}(x)]. The cleanest way to formalize this is by working they form a discrete set due to the conditiop=2in; /.
on the gaugelpAo=0, in which Q=exg—BA¢(X)]. Thus  Note that this set depends on the particular time-independent
both {) and A, are time independent in this gauge. Let usfield A,, through the conditiofAy,A]=0. Clearly, these
remark that takingf\ to be time independent is not merely a transformations leave invariant the gauge conditig@\,
restriction on the set of pOSSible gauge field Configurations, it 0. Likewise, the gauge condition is also preserved by time-
is a choice of gauge in the sense that every gauge field cofndependent gauge transformations. In R28] it is proven
figuration admits a gauge transformed configuration which ishat these two kinds of transformations are the most general
Ao stationary[23]. In this gauge the periodicity constraint gnes which preserve thé,-stationary conditiod® This
expresses that a gauge invariant functional must be a pefjneans that within this gauge a functional suchl'a,A]
odic functional ofAy. To be concrete consider a generic gpgve is gauge invariant if and only if the functiogs(z)

expression of the forrfcf. Eq. (52)] are periodic. Then it can be written in a manifestly gauge
invariant form (without gauge fixing as in the right-hand
[[M,A]=, f A9 X tr gn(Ag) Onl, (91  side of Eq.(52) with @n(e P =g,(2). Note that invariance
n

where O,, are gauge covariant local operators, then gauge

invariance requires the functioms,(2) to be periodic with OThis is the generic case which we will assume. It holds when-

ever exppBAy(X)] is either nowhere degenerated or at least the re-
gions of degeneracy are sufficiently small that a unique eigenbasis
can be selecte(up to normalizationby continuity[23]. In this case

®Whend=0 the theorem is consistent with= ,(G) X m(G) Ap(Xx) is also nowhere degenerated and thus) is completely
which follows from S°={1,—1}. Physically, we want the spatial determined by its eigenvalues. So generically the discrete transfor-
manifold atd=0 to be just{1} and sol'=7,(G). mations form a discrete set.

045016-14



GAUGE INVARIANT DERIVATIVE EXPANSION OF THE. .. PHYSICAL REVIEW D 63 045016

under time-independent gauge transformations does not inthis is strictly correct for Abelian theories only. In non-
pose further constraints on tlgg(z). Abelian theories infinitesimal gauge transformations mix dif-

The previous discussion suggests a comparison betwederent orders, however, the mixing is mild since it only in-
large gauge transformations, on the one hand, and discrei@lves finite sets of Feynman graph®n the other hand, we
transformations, on the other. Two questions pose themhave just seen that expanding a functional sucli[dd,A]
selves at this point. Are the discrete transformations large i powers ofA, (which is a perturbative expansipdestroys
the topological sense? Is it necessary to rely on large gaugseriodicity and thus gauge invariance under discrete transfor-
invariance in order to arrive to afy,-stationary gauge? mations. This looks paradoxical since the breaking occurs

The first question can be answered as foll¢28]. For a  even if the discrete transformations are topologically small,
multiply connected group such as(1), the nontrivial dis-  and no breaking was expected in this case.
crete transformations are topologically large since they l0op The resolution comes from the observation that the right-
once or more on the temporal circg. On the other hand, hand side of Eq(91) refers solely to configurations in the
for a simply connected group such as 8Y(in more than  gauged,A,=0. Within this gauge the only allowed infini-
one space-time dimensipthe discrete transformations asso- tesimal transformations are the time-independent ones, for
ciated to some gauge configuration may be large or smallyhich no breaking occurs. Nontrivial discrete gauge trans-
depending onAy(x). For instance ifAy(x) is everywhere formations, even small ones, cannot be reached continuously
diagonal,A(x) is also diagonal and in fact a constant. In this within the Ay-stationary gauge. In this sense they are always
case the discrete transformation describes a single loop a@pologically large. It should be realized that the concept of
the gauge group for ak and it is homotopically trivial. I homotopically trivial is a relative one. A transformation
general, however, discrete transformations can be topologivhich is topologically large within the gauge gro@ can
cally large. It might seem that the form of the discrete gaugeyecome small ifG is regarded as a subgroup of a larger
transformations in E(92) factorizes time and space and so group G’ and deformations withirG’ are allowed. Con-
it is always classified by the homotopy groug(G) being  versely, a small discrete gauge transformation becomes ho-
always small for a simply connected group. This is true whermotopically nontrivial if one insists on preserving the gauge
A(x) is constant or homotopic to a constant, but in generatondition 9,A,=0. The usefulness of the concept of small
this is not the case. The reason is that althoddlx) is @  and large transformations remains: perturbation theory pro-
map fromS? into the Lie algebra of5 (a vector space, and vides a functional valid in the region of small fields, this
thus contractilg it cannot be contracted to a point since theregion is preserved by infinitesimal transformations and thus
spectrum ofA (x) is constrained to be in (@i/B8)Z. An ex-  the perturbative functional must be small gauge invariant.
plicit SU(2) example in 2+ 1 dimensions is provided in Ref. Large transformations, on the other hand, necessarily move
[23], namely, the gauge configuration away from the perturbative region
and thus the response of the perturbative functional under
large transformations is not trustworthy. As a consequence
invariance under large transformations provides useful non-
perturbative information and puts nontrivial constraints on
where 7 are the Pauli matrices andlies on the unit sphere the functional. This holds whether the transformations are
S in R3. U(x) covers SW2) 2n times and thus it is homo- large from the point of view o6 or from the point of view
topically large for nonvanishing. of the submanifold ofA,-stationary configurations.

Regarding the second question, whether a given gauge For another argument, we can recall our previous remark
configuration can be brought toAs-stationary gauge using that a functional such ag[M,A] in Eq. (91) must hold for
only small transformations, it also depends on the group andll theories at the same time. It is not surprising to find a
the configuratior{23]. For the group Wl), any gauge con- breaking of gauge invariance under discrete transformations
figuration is in the same homotopy class as one whiokyis in a perturbative expansion, when such transformations hap-
stationary. For a simply connected group such asr§J  pen to be large, and conclude that nontrivial nonperturbative
depends on the initiahg(x). conditions, namely, periodicity, are required to avoid the

An apparent paradox arises here. As emphasized in Refbreaking. However, as we have emphasized, the property of
[11] and [13], although perturbation theory breaks large being topologically large or small depends on the group,
gauge invariance, it respects invariance under small transfowhereas the formula must hold in all cases, and so periodic-
mations, or equivalent, under infinitesimal oné&ctually, ity must follow in all cases too.

In this subsection we have considered a gauge fixing con-
dition in order to deal with the quantity Idg in a simple
UThis can be seen as follows. L&4(x) be someA,-stationary ~ WaY- We must recall, however, that the expressions derived

configuration for which all its discrete transformations are small,With the method studied in this work are all fully gauge
and let us further assume that time-independent transformations af8variant, provided some regularity conditions are met, since
also small(for instanced=2). It follows that all A,-stationary ~ they depend off). This does not mean that large or discrete
configurations related to the previous one by a gauge transformatiodduge transformations play no role whatsoever. This is be-
are in the same homotopy class. ThusA}f(x) is a gauge trans- cause the regularity conditions fail for the ultraviolet diver-
formed configuration withJ (x) large, no small transformation will gent pieces of the effective action. This translates into the
bring it to theA,-stationary gauge. fact that the functionsp,(Q) [cf. Eq. (52)], can be many

2mNXg .
U(x)=exp< 3 |1-x), ne7, (95)
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valued (althoughQ =0 needs not be one of the branching the winding number of the gauge transformation &nde-
pointg. A typical example is the effective action of pends on the gauge group and the sign of the rtiadsgher
0+ 1-dimensional fermions, Eq64). Further let us consider spatial dimensions it may also depend on the homotopic
the Abelian U1) case, which admits large transformations class of the gauge field configuratjon
and they coincide with the nontrivial discrete transformations Because the # 1-dimensional formula is exact, all Feyn-
in the Ag-stationary gauge. Choosing=+1 the branching man graphs are included in this case. This suggests that all
point is atQ) = —exp(Bm). Under a large transformation, the graphs are required in order to reconstruct the Polyakov loop
argument of the logarithm may go into a different Riemann{} appearing in the formula. We conclude that large gauge
sheet(depending on the sign ofi), yet the functional is such invariance does not act selecting a certain subset of graphs.
that it changes, at most, by an integer multiple ofi2re-  The same conclusion is expected to hold in higher dimen-
flecting the fact that the partition functional is one-valued.sional formulas since the dependence(drihere is qualita-
This is a general property which puts constraints on the functively similar to that of the one-dimensional case.
tions ¢,(2). To further discuss this point let us restrict ourselves to the
Perhaps this is a good place to remark that the gaugease of an Abelian gauge group. In this case large gauge
invariance implied by the use of thiefunction prescription, transformations correspond to discrete shiftsaef—log (2
Eqg. (50), has two level§23]. One the one hand, there is the =[dx A, and
somewhat trivial gauge invariance implied by the fact that , )
the regularization depends solely on the spectrum. Since the Wi(a+2min)=Wi(a)+2mikn, (96)
spectrum of the operatdf is left unchanged by gauger
more generally similaritytransformations, gauge invariance
follows. However, the definition of thé-function introduces
a branch cut in the manifold of operatdfs each singular
operators being a branching point on such a manifold. On a Wi(a)=P(a)+ka, P(a+2min)=P(a). (97)
given Riemann sheet, the effective action functional may dis-
play a jump discontinuity along the branch cut. Because th@herefore large gauge invariance is equivalent to the strict
determinant oK, being the regularized product of eigenval- periodicity of the functionP(a)=W;(a)—ka. Feynman
ues, is a smooth functional, it follows that the jump must begraphs correspond to expand in powersoand looking for
an integer multiple of zZri. This is a tighter constraint on top large gauge invariance in terms of Feynman graphs corre-
of the trivial gauge invariance noted above. For instance, weponds to detect periodicity of a function from its Taylor
have noted in the Introduction that perturbation theory forexpansion. This seems to be a difficult task.
fermions at finite temperature yields a Chern-Simons term A related issue is studying to what extent large gauge
which is renormalized by a temperature-dependent coeffinvariance determines the effective action. In the previous
cient. Under large gauge transformations this would intro-0+ 1-dimensional Abelian case we have seen that to comply
duce an unacceptable change in the effective action by with gauge invariancel(a) must be periodic, i.e.,
quantity which is not a multiple of 2i. It would be tempt-
ing to “solve” the problem by simply replacing the Chern-
Simons term by a suitable gauge invariant version of it,
namely, then invariant. This prescription restores gauge in-
variance but introduces jumps which again are proportionalor some (infinite number of coefficientsc,. No further
to the temperature-dependent coefficient and thus it can baformation can be extracted from gauge invariance, and the
ruled out. The exact result known in particular but nontrivial coefficientsc,, are not determined. In order to achieve further
caseq10-17 shows that this is not the correct mechanismrestrictions on the functioR(a), more information has to be
and that the determinant is a continuous functional, with ngrovided. If, for instance, one knows that the partition func-
jumps. tion Z(a)=exd —W;(a)] (a periodic functioh contains only
a finite number of periodic modes, the corresponding Fourier
o coefficients can then be determined from a few perturbative
B. Feynman graphs and large gauge invariance terms. This is actually the case ir-d dimensiong19], and
We have already noted in Sec. Il C that expressions suchan be traced back to the fact that the corresponding Hamil-
as those in Eqg69) and(70) involve an infinite number of tonian contains a finite number of states, namely, the vacuum
Feynman graphs. It seems interesting to understand whichr the one-fermion statécf. Sec. Il B. In higher dimen-
Feynman graphs are being added and gain some insight @ions, besides the number of fermions, there is a momentum
how preservation of full gauge invariance is related to this. qguantum number and a corresponding kinetic energy contrib-
To this end, we will first consider the simpler case of 0 uting to the eigenvalues of the Hamiltonian, thus in general
+ 1-dimensional fermion§10]. The corresponding exact ef- the partition function will contain all kinds of Fourier modes.
fective action is given in Eq64) and that formula holds for To see how this works, it is sufficient to consider fermions in
arbitrary gauge fields which need not be Abelian nor stationthe Abelian case witth;=0 andA, a space-time constant
ary. As noted, when the gauge group is not simply connectetBuchA, cannot be gauged away at finite temperaturet
it supports large gauge transformations, which augment the denote the single-particle levels of the Hamiltonian when
value of the effective action by2ikn, n,keZ, wherenis Ay is set to zerdthat is, the kinetic energy onhand lete,

where the integer constaktis known. This equation con-
tains all the information on large gauge transformations, and
it is completely equivalent to the statement

P(a)= nEZ c,e"?, (98)
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be the levels wher, is switched on. Clearlye,= e+ A,, C. Large mass expansions
and the labek is related to the momentum of the fermion. | 5rge mass expansions of the effective action can be also
The partition function is considered, as done in R¢L3] for fermions using the heat-
kernel technique. Inspection of our formulas in Secs. Ill C
Z[m,a]=H (1+efBEk):H (1+Qe*ﬁ5(k])' O=e 2, and Il E, show that as the mass becomes large the tempera-
k k ture dependence is exponentially suppressed, being

(99 O(e‘ﬁ‘m‘), thus the large mass expansion is an asymptotic
expansion with temperature-independent coefficients. This is
unlessd=0. Whend=2, integration over the labélyields a consistent with the fact that the coefficients are local opera-
: . tors independent of the global topology of the space-time
particular case of the formula f#/; J m,A] in Eq. (65). manifold [13]. Therefore in order to carry out a large mass
In more than one dimension we have proposed an exparg, nansion oﬁe can simplify and start Witl’)l/ a zero te?n erature
sion in the number of spatial covariant derivatives. The ze- P € can simp . P ;
; : L theory. The simplification of working at zero temperature is
roth order{e.g., Eq.(69)], which contains no spatial indices, : : X
. enormous to the point that this problem can be considered a
corresponds to the sum of all Feynman graphs with the spa:

tial momentap; (of the external gauge fieltlset to zero and _solvet():i ohn;a. 'Il;here IS a (\j/efry ]!argg b0d3|’ of vlvork on th|§ Scl;b
no legs with spatiah,;, but any number o\, external legs ject, both for bosons and for fermions, largely summarized in

and the full dependence in the frequenty. There are no Ref. _[33] and refe_rences _therein. Large mass e_xpansipns for
odd-order terms in the expansion, The secbnd dielex, Eq fe_rmlons with arbitrary D|ra(_: operators and arbltrz_iry d|men7
(70)] corresponds to all graphs with twh or p; , that |s (i). sion, computed along the lines of the method discussed in

i . I this paper for finite temperature, can be found in Red].
graphs W.'th pi=0 and two spatial gauge flelt_js, plds) The large mass expansion can also be used as a check of the
graphs .W'th one\; andp; kept up to f"?.t order in a_Taonr finite temperature formulas. In Sec. Ill E we have already
expansion of the Green functions, plgs) graphs with N0 noted that Eq(78) is consistent with the result more straight-
legsA; andp; kept up to second order in a Taylor eXp"’ms'onforwardly obtained from the zero temperature method pre-
around zero spatial momentum. Note that the method a

hat th h Gy Th buti ‘ ented in Ref[27]. Likewise, for 2+ 1-dimensional fermi-
sumes that the space has topo e contribution o ons, and starting from the full finite temperature calculation,
higher orders follows a similar pattern. Eventually, all con- . finds[23]

tributions, all Feynman graphs, are added up.

The previous conclusions follow from inspection of the 1 1 1
formulas or else from making the expansion by introducing a WH=—— —j d3x tr(F?2 Dt O( —) ,
bookkeeping parameter in order to count spatial indices, as 48 [m| g m?
explained in Sec. Il C. For the simpler formulas obtained by

Z[ m,a] will be periodic ina but with many periodic modes,

further expanding in powers @by, [e.g., Eq.(73)], we have W™ =500 (—om)Wcs
noted that this expansion does not seem to follow from in- ,
sertion of a bookkeeping parameter and so different expan- _ 7 S(m)J' d®xe,, tr(F 4, D.Fpz)
. K . . unva Bu*a’ Bv
sions can be obtained, all of them being equivalent when 87 12m?
added to all orders. The problem and its interpretation in
terms of Feynman graphs can be seen in a particularly simple 1
case: let us assume that the gauge group is AbelianAthat +0 @ (10D

is a space-time constant aWg are space independent al-
though time dependent. In this case the Green functions dggy the pseudoparity even and odd components, respectively.

pend only on the frequencieg,=2min/g of the fieldsA;:  (1n these formulasVcg is the Chern-Simons tern@ and e
denote the step and sign functions, respectively,+1 de-
W=fo(Q)+ >, f2(Q, k) A DA pt e, pends on the irreducible representation of the Dirac gamma
n matrices taken, andr=*1 distinguish the two possible

(100  ¢-function definitions of the effective action, depending on
Ai(Xo)= 1 E eFXoA, the branch cut in the functior®.) These results also derive
Y b more directly from the zero temperature formulas in Ref.
[21]. The term withF2, in W* is that withH , in Eq. (4.11)
In addition, Dy is equivalent taJp and so an expansion By of Ref. [13], already noted there, whereas the term with

is just a Taylor expansion in powers @f,, to be made on F, D F,, is that with Ps in Eq. (4.12 of the same refer-
top of the expansion in powers @&f . This gives the inter- ence.

pretation in terms of Feynman graphs. Becauses a dis-
crete variable, the functiof, (and similarly for higher or-
derg is only well-defined at those discrete values. The
ambiguity comes when it is smoothly extended to continuous Our findings can be summarized as follows.

values of x,, in order to carry out the Taylor expansion. (1) The one-loop effective action at finite temperature and
Presumably this ambiguity can be removed by using thelensity, for bosonic or fermionic particles in presence of
choice suggested by Carlson’s theorem. background fieldgboth gauge and nongaugeith arbitrary

V. SUMMARY AND CONCLUSIONS
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internal symmetry group and arbitrary space-time depenoperatorgi.e., constructed wittD,=[D,,] andM) times a
dence, can be written as a syam asymptotic series in gen- function of the fieldQ(x), which also transforms locally
era) of terms ordered by the number of spatial Lorentz in-under gauge transformations. For those terms containing
dices. Each term is well defined from the effective actionanomalies, topological pieces and multivaluation, the effec-
functional itself and is separately gauge invariant under altive action still looks local in terms of a suitable gauge co-
gauge transformations. variant version ofA(x), in addition toM, D, , andQ.

(2) These terms are amenable to explicit computation us- (4) The method is explicitly applied to the problem of
ing a combination off-function and symbols method. We relativistic scalar particles in 21 dimensions. The corre-
have shown that this kind of calculation can be carried ousponding effective action is computed up to terms with two
preserving full gauge invariance throughout, without assumspatial Lorentz indices. The result is checked against the
ing particular internal symmetry groups or special space-timgnown result at zero temperature and also the known parti-
configurations for the background fields. The same argution function of a relativistic Bose gas. The corrections to the
ments show that previous calculations done fixing the gauggensity are also computed. Finally, a simple rule is noted
through the conditiorsoA,=0 can be repeated lifting this relating the bosonic and fermionic versions of the grand-
condition, and this is equivalent to rewrite the final original canonical potentials of ideal or interacting systems.
result in a manifestly gauge invariant way.

(3) A further gauge invariant expansion can be taken in ACKNOWLEDGMENTS
the number of temporal covariant derivatives in the adjoint
representation. Within this expansion, all ultraviolet finite  This work was supported in part by funds provided by the
terms and more generally, all terms not related to essentid@@panish DGICYT grant no. PB98-1367 and Junta de An-
anomalies, can be written as a sum of gauge invariant localaluca grant No. FQM-225.
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