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Gauge invariant derivative expansion of the effective action at finite temperature and density
and the scalar field in 2¿1 dimensions
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A method is presented for the computation of the one-loop effective action at finite temperature and density.
The method is based on an expansion in the number of spatial covariant derivatives. It applies to general
background field configurations with an arbitrary internal symmetry group and space-time dependence. Full
invariance under small and large gauge transformations is preserved without assuming stationary or Abelian
fields or fixing the gauge. The method is applied to the computation of the effective action of spin zero
particles in 211 dimensions at finite temperature and density and in the presence of background gauge fields.
The calculation is carried out through second order in the number of spatial covariant derivatives. Some
limiting cases are worked out.
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I. INTRODUCTION

In their pioneering work, Deser, Jackiw, and Templet
@1# noted that gauge theories in odd-dimensional spa
naturally admit a local term of topological nature, known
the Chern-Simons term@2# ~see Ref.@3# for a recent review!.
One of the interesting properties of the non-Abelian Che
Simons term is that under gauge transformations it chan
proportionally to the winding number of the transformatio
Thus when the action contains a Chern-Simons term,
partition functional of the system is only well defined if th
coupling constant of the Chern-Simons term is prope
quantized.

It was later realized@4–6# that the Chern-Simons term i
induced by quantum fluctuations when gauge fields
coupled to odd-dimensional fermions. Such a term comes
with the correctly quantized coupling constant and so
gauge invariance is preserved~although possibly at the pric
of spoiling parity invariance@4#!. Because the Chern-Simon
term is a polynomial in the gauge fields and their derivativ
it can be obtained through a combination of perturbative
derivative expansions.

In the so-called imaginary time formalism for field theo
at finite temperature@7,8#, the space time has a nontrivia
topology, since the time is effectively compactified to
circle. This allows the existence of topologically large gau
transformations even in the Abelian case. When the prob
of the induced Chern-Simons term is studied using
method just mentioned of retaining a low number of fie
and of derivatives, a puzzling situation appears, namely,
coefficient of the Chern-Simons term turns out to be
smooth function of the temperature, and hence it violates
quantization condition@9#. The situation has recently bee
clarified by considering a simple 011-dimensional mode
@10# which can be computed in closed form. There it is se
that full gauge invariance holds for the exact result but i
broken by perturbation theory. This is not difficult to unde
stand, since in simple cases gauge invariance under l
gauge transformations is equivalent to periodicity of the
fective action as a function of the gauge field, whereas p
0556-2821/2001/63~4!/045016~19!/$15.00 63 0450
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turbation theory corresponds to a Taylor expansion of t
function. Clearly, the property of being periodic is not mai
tained in general by a truncated Taylor expansion. In R
@11# it was noted that full gauge invariance is always a pro
erty of the exact result, since it follows straightforward
from using az-function regularization. In Ref.@12# the exact
effective action of fermions in 211 dimensions was ob
tained for the case of Abelian and stationary backgrou
gauge fields.

The problem of preserving full gauge invariance at fin
temperature is not tied to odd-dimensional theories@13–17#
nor to fermions@18,19#. It appears whenever perturbatio
theory is involved. This is unfortunate, since, as noted
Ref. @3#, ‘‘at finite temperature, perturbation theory is one
the few tools we have.’’ In this work we show that it i
possible to carry out detailed calculations of the effect
action fully preserving gauge invariance, without restricti
oneself to particular configurations such as Abelian or s
tionary ones, and without choosing a particular gauge. T
study of simple cases@10–12# shows that the problem with
gauge invariance comes through the scalar potentialA0(x).
The finite temperature effective action is nonlocal in time b
it is local in the space variables. This suggests to conside
expansion in the number of spatial covariant derivativ
only. The time component is treated nonperturbatively in
der to avoid destroying gauge invariance.~See Ref.@20# for
another discussion of derivative expansions at finite temp
ture.!

It should be emphasized that the expansion in the num
of spatial covariant derivatives is not tied to a particu
method of computation, since it can be obtained from
exact result~namely, by considering an appropriate spat
dilatation of the background fields! and is fully gauge invari-
ant. What is shown here is that it is also amenable to exp
computation order by order, through a combination of t
method of symbols and az function, for instance. This com
bination works very well and has been applied at zero te
perature for fermions with local@21# and nonlocal actions
@22#. At finite temperature it has been applied to fermions
odd dimensions@23# as well as in even dimensions@17#,
©2001 The American Physical Society16-1
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however, for technical reasons, this has been done choo
a particular gauge. In the present work we remove the ne
sity of any choice of gauge. It turns out that previous form
las in Refs.@23# and @17# can be reinterpreted and rewritte
in a manifest gauge invariant form.

Although a naive perturbative expansion inA0 breaks
gauge invariance, the very method of calculation suggest
expansion in powers of the temporal covariant derivative
the adjoint representation which preserves gauge invaria
This yields the remarkable result that, even at finite tempe
ture, the theory is local if expressed in the appropriate v
ables.

The method is explicitly applied to the case of relativis
scalar particles in 211 dimensions. The computation is ca
ried out through second order in the number of spatial co
riant derivatives. Contact is made with the relativistic Bo
gas.

II. GAUGE INVARIANT DERIVATIVE EXPANSION AT
FINITE TEMPERATURE

A. The mathematical problem

The aim of this section is to present a scheme to add
the computation of the one-loop effective action at fin
temperature preserving gauge invariance at every step.~We
note that gauge invariance in this work refers always to v
tor gauge transformations.! To fix ideas consider the case o
scalar particles ind11 dimensions in presence of bac
ground gauge fields. This case will be worked out later
d52. The Euclidean action of the system is

S5E dd11x@~Dmf!†~Dmf!1m2f†f#, ~1!

where Dm5]m1Am is the covariant derivative. The finit
temperature condition can be implemented by using
imaginary time formalism, that is, by compactification of t
Euclidean time to a circle so that the fieldsf and Am are
periodic functions ofx0 with period b51/T (T being the
temperature!. After functional integration overf(x), the Eu-
clidean effective action is formally given by

Ws@m,A#5Trb log~2Dm
2 1m2!. ~2!

The subindexb recalls that the functional trace is to be tak
in the Hilbert space of bosonic wave functions, i.e., w
periodic boundary conditions.

Presently the mathematical problem to be addressed is
computation of quantities of the form

G@M ,A#5Tr„f ~M ,D !…, ~3!

whereDm is the covariant derivative andM (x) collectively
denote one or more matrix valued functions ofxm represent-
ing other external fields in addition to the gauge fields. T
trace refers to the Hilbert spaceH of wave functions with
space time and internal degrees of freedom, the space-
manifold has topologyMd115S13Md and the wave func-
tions are periodic for bosons and antiperiodic for fermion
04501
ing
s-
-

an
n
e.

a-
i-

-
e

ss

-

r

e

he

e

e

Although slightly pedantic, it will occasionally be conve
nient to regardM not as functions but rather as multiplicativ
operators inH, i.e., operators commuting with the operato
xm and otherwise with arbitrary structure in internal spa
Likewise Dm are differential operators of the form]m1Am
with Am multiplicative. The quantityf (M ,D) denotes an op-
erator constructed out ofM and Dm in the algebraic sense
that is, f (M ,D) is a linear combination~or series! of prod-
ucts of M and Dm multiplied in any order with constan
c-number coefficients. In order forM and Dm to be well-
defined operators inH, M (x), andAm(x) are required to be
periodic functions ofx0 . In addition we will assume that the
fields are sufficiently convergent at infinity and the functi
f is well behaved. This means, in particular, thatf is one-
valued and sufficiently convergent at infinity as a function
Dm to ensure the existence of the trace~by avoiding ultra-
violet divergences!.

A gauge transformed configuration (MU,AU) is one of the
form

MU~x!5U21~x!M ~x!U~x!,
~4!

Am
U~x!5U21~x!]mU~x!1U21~x!Am~x!U~x!,

where the gauge transformationU(x) is a periodic function
of x0 which takes values on matrices in internal space. T
corresponds to a similarity transformation ofDm , namely,
Dm

U5]m1Am
U5U21DmU where U is to be regarded as

multiplicative operator inH. Becausef (M ,D) is constructed
with M, D andc numbers, it follows thatf (M ,D) also trans-
forms under a similarity transformation

f ~MU,DU!5U21f ~M ,D !U ~5!

and so

G@MU,AU#5G@M ,A# ~6!

using the cyclic property of the trace, which holds due to o
regularity assumptions forf (M ,D).1

B. The method of symbols

Assuming that the operatorf̂ 5 f (M ,D) admits a com-
plete set of eigenfunctions,f̂ un&5lnun&, the functional trace
is simply G@M ,A#5(nln . In this form gauge invariance is
obvious sincef̂ and f̂ U are related by a similarity transfor
mation and hence they have the same spectrum.

The gauge invariance ofG@M ,A# is also manifest com-
puting the trace in the basisux& of eigenfunctions ofxm ,

1In practice,G@M ,A# is only computed for a subset of configura
tions (M ,A) and only the subgroup of gauge transformations wh
leave invariant such a subset are relevant. For fermions, the inte
space includes Dirac space as well as flavor degrees of freed
and thegm matrices are included inM ~they are notc numbers!. In
this case only gauge transformations in flavor space are rele
since they are the ones that preserve the form ofgm .
6-2
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GAUGE INVARIANT DERIVATIVE EXPANSION OF THE . . . PHYSICAL REVIEW D 63 045016
normalized aŝxux8&5d(x2x8) ~a periodic delta function in
the temporal direction!,

G@M ,A#5E dd11x tr^xu f ~M ,D !ux& ~7!

~where tr refers to internal space! becauseU is a multiplica-
tive operator and so tr^xu f (M ,D)ux& is gauge invariant with-
out integration overx. However, computationally it is more
convenient to use a basis in momentum spaceup&,

^xup&5epx, ^pup8&5bdp0p
08
~2p!dd~p2p8! ~8!

@to avoid unessential factors ofi we take the convention o
using purely imaginary momentapm but *ddp below denotes
the usual integral inRd and d(p2p8) denotes the corre
sponding delta function#. The frequency takes the Matsuba
valuesp052p in/b for bosons andp052p i (n1 1

2 )/b for
fermions. Note that we have assumed that the space man
Md has a topologyRd. In this basis

G@M ,A#5
1

b (
p0

E ddp

~2p!d
tr^pu f ~M ,D !up&. ~9!

At this point the symbols method can be used~see, e.g.,
Refs.@21# and@24#!: let u0& denote the state withp50, then
using the identitiesup&5expu0& ~whereexp acts as a multi-
plicative operator and the quantitiespm are constantc num-
bers! as well ase2xpDmexp5Dm1pm , e2xpMexp5M , one
obtains

^pu f ~M ,D !up&5^0ue2xpf ~M ,D !expu0&

5^0u f ~M ,D1p!u0&, ~10!

and so the functional trace can be cast in the form

G@M ,A#5
1

b (
p0

E ddp

~2p!d
tr^0u f ~M ,D1p!u0&. ~11!

In this expression it is clear the requirement of regularity
f: the functional trace comes after integration over mome
and sum over frequencies and this requiresf to be suffi-
ciently convergent for largepm . Let us remark thatu0& is
periodic rather than antiperiodic in the temporal directio
The information on whether we are dealing with bosons
fermions is now contained solely in the values taken byp0 .
The stateu0& satisfies

^xu0&51, ]mu0&5^0u]m50, ^0u0&5E dd11x.

~12!

In addition, when ĥ is a multiplicative operator,ĥux&
5h(x)ux&,

^0uĥu0&5E dd11x h~x!. ~13!
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It follows that ]m appearing insidef (M ,D1p) in Eq. ~11!
acts derivating everything to its right~or its left, by parts!
and then vanishes after it reachesu0& ~or ^0u). This is a
well-defined working rule and from it stems the usefulness
the symbols method.

Unfortunately, gauge invariance is no longer manife
when using the momentum basis. In fact, tr^0u f (M ,D
1p)u0& is not gauge invariant becauseu0& ~or more gener-
ally up&) is not covariant under local transformations. F
instance, according to the rules given in Eq.~12!,

tr^0uDm
2 u0&5tr^0uAm

2 u0&5E dd11x tr@Am
2 ~x!# ~14!

breaks gauge invariance. However,

tr^0u@Dm ,Dn#2u0&5E dd11x tr@Fmn
2 ~x!# ~15!

does not. Note that@Dm ,Dn# is a multiplicative operator
whereasDm

2 is not. As a rule, when an operatorg(M ,D) ~a
gauge covariant operator! is multiplicative, Eq.~13! applies
and tr̂ 0ug(M ,D)u0& is gauge invariant@21#. In Eq. ~11!
gauge invariance is only recovered after integration over m
menta and sum over frequencies.2 This will be further dis-
cussed subsequently.

C. The derivative expansion at finite temperature

By computing the functional trace we essentially mean
end up with purely multiplicative operators, since this im
plies that the functional is expressed as the integral o
function over space time. At zero temperature this is usu
equivalent to saying that all derivative operatorsDm appear
inside commutators. In addition it means to carry out
many implied sums and integrations~over frequencies and
momenta or other parameters! as possible.

In general it is not possible to computeG@M ,A# in closed
form and one must resort to approximations. The stand
approach is to make power expansions in one or more
erators appearing inf (M ,D) while the remaining operator
are treated nonperturbatively. As will be clear below, a na
expansion in powers ofD0 would break gauge invariance
therefore, because it is in general difficult to work with tw
or more nonperturbative operators unless they are comm
ing, and our present emphasis is in the preservation of m
fest gauge invariance rather than in a particular computat
we will keep D0 as the only operator to be treated nonp
turbatively, and expand in all other operatorsM andD.

Before proceeding, let us be more precise about the me
ing of expanding in powers ofM andD. A convenient way
to define the expansion is by introducing constantc-number

2An elegant method has been presented in Ref.@24# which yields
gauge invariant expressions prior to momentum integration, at
price of introducing derivatives with respect topm . The method has
not yet been extended to include discrete momenta, as require
finite temperature but it can be applied to the integration overp.
6-3
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bookkeeping parameters,f (M ,D0 ,D)→ f (l1M ,D0 ,l2D),
so that counting powers of those operators is equivalen
counting powers ofl1,2. This procedure preserves gau
invariance since it amounts to a modification of the funct
f. After applying the symbols method@through Dm→Dm

1pm , cf. Eq. ~11!# the factorl2 will affect D andp, how-
ever, this can be brought to the formf (l1M ,D01p0 ,l2D
1p) by a redefinition ofp. Therefore the expansion can b
formulated as an expansion in powers ofM and D in
f (M ,D1p).3 Equivalently, the expansion inD can be
obtained directly from the functionalG@M ,A# by means
of a covariant spatial dilatation, namely,M (x0 ,x)
→M (x0 ,l2x), A0(x0 ,x)→A0(x0 ,l2x), and A(x0 ,x)
→l2A(x0 ,l2x). This guarantees that the expansion is w
defined, i.e., it depends on the functional itself and not
how it is written or computed.

The situation is completely different for an expansion
powers ofD0 . A bookkeeping parameterD0→l3D0 can be
introduced inf (M ,D) and this defines a newl3-dependent
gauge invariant functional. Nevertheless this functional
not useful since it presents an essential singularity atl3
50, as can be seen in the simple case of fermions in 011
dimensions@10#. ~The dependence onl1,2 is analytic or at
least asymptotic under suitable regularity conditions on
fields and on the functionf.! After applying the symbols
method, f (M ,l3D01l3p0 ,D) is obtained. However, be
causep0 is a discrete variable this is not equivalent
f (M ,l3D01p0 ,D). Therefore expanding in the explicitD0
in f (M ,D1p) does not correspond to a modification off and
in fact violates gauge invariance. Also, it is not possible
introducel3 by means of a rescaling of typex0→l3x0 of the
field configuration (M ,A) since this transformation violate
the periodicity condition on the wave functions ofH.

After expansion there will be all kind of terms which wi
be products of single factors ofM andD as well as operators
depending nonperturbatively onD0 ~by this we merely mean
that all orders ofD0 are retained!. It is always possible to
bring all D operators to the right producing commutators,
that we end up with two kind of terms:~i! terms in which all
operatorsD appear only in commutators~more precisely, in
the form @D,#) and ~ii ! terms with unsaturated factorsD at
the right ~i.e., D not inside a commutator!. The terms of the
first type are multiplicative operators regardingx space, al-
though they are still differential~or pseudodifferential! op-
erators with respect tox0 space. The terms of the second ty
are nonmultiplicative inx space. As we have argued abov
these latter terms break gauge invariance and in fact they
cancel after integration overp. This can be seen as follows
let us replaceD by D1a, wherea is a constantc number.
This replacement has no effect on the terms whereD is in

3Of course, the actual expansion in powers ofD must be done
after arriving at Eq.~11! ~or other similar formulas in other ap
proaches, such as Schwinger proper time method!, i.e., afterDm has
becomeDm1pm , since otherwise powers ofpm would be generated
as well and that would destroy the ultraviolet convergence of
formula.
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commutators, but counts the contribution from the ter
with unsaturatedD. However, it is clear that there is no suc
contribution after integration over momenta sincea can be
compensated by a similar shift in the integration variablep.
Thus at the end, all operatorsD appear in commutators only
~The same result is obtained directly using the method
Pletnev and Banin@24#.! A similar argument would break
down for D0 : a shift toD01a0 cannot, in general, be com
pensated by a shift inp0 since at finite temperature the fre
quency is a discrete variable.

From the previous discussion it follows that we only ha
to retain those terms where all operatorsD are in commuta-
tors. Because all operators are now multiplicative inx space,
x becomes just a parameter in what follows. Let us consi
a typical term:

TT5
1

b (
p0

E ddp

~2p!d
tr^0ua1~D01p0 ,p!

3Xa2~D01p0 ,p!Ya3~D01p0 ,p!u0&. ~16!

X and Y are multiplicative and gauge covariant operato
constructed withDm andM, and thea i(x,y) are some func-
tions. At this point the integration overpm is nontrivial@even
for the simplest forms of the functionsa i(x,y)# becausepm
appears in different and noncommuting operators. A poss
approach is to express the operators in terms of their ma
elements using as basis a complete set of eigenstates oD0
~in the Hilbert space of time and internal degrees of fre
dom!. These matrix elements are then ordinary functions
pm . Instead of that, we will use the equivalent prescripti
of labelling the operatorsD0 according to their position with
respect toX andY: the symbolsD01, D02, andD03 will be
used to denote the operatorD0 in positions 1~beforeX), 2
~betweenX and Y), and 3 ~after Y), respectively. In this
notation,

TT5
1

b (
p0

E ddp

~2p!d
tr^0ua1~D011p0 ,p!

3a2~D021p0 ,p!a3~D031p0 ,p!XYu0&. ~17!

An immediate consequence is that the labeled operators
effectively commuting and the momentum integration a
frequency summation can be carried out as for ordinary fu
tions. The result can be written as

TT5tr^0ug~D01,D02,D03!XYu0&, ~18!

where the functiong is defined by

g~x,y,z!5
1

b (
p0

E ddp

~2p!d
a1~x1p0 ,p!a2~y1p0 ,p!

3a3~z1p0 ,p!. ~19!

~Note that there will be two versions ofg, the bosonic one
and the fermionic one, which are related by a shift ofip/b
in their arguments.! By construction the functiong is peri-
odic:

e

6-4
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g~x,y,z!5gS x1
2p i

b
,y1

2p i

b
,z1

2p i

b D . ~20!

This is an immediate consequence of the sum over Mats
ara frequencies and ultraviolet convergence of the exp
sions.

This periodicity property is essential to codify the gau
invariance of the original expression. To see this, let us
troduce the operationDm which is defined asDmX
5@Dm ,X# for any operatorX. Consistently with our previous
notation, we will denote byD01 the action ofD0 in position
1 ~i.e., onX) and byD02 the action ofD0 in position 2~i.e.,
on Y). Then clearly

D015D012D02, D025D022D03. ~21!

The interesting point is that these formulas hold for arbitr
functions of D01 and D02 as well. This follows from the
well-known identityeABe2A5e[A,]B: for any c numberl,

el(D012D02)XY5elD0Xe2lD0Y5~elD0X!Y5elD01XY,
~22!

and this identity immediately extends to arbitrary functio
of D012D02, and analogously forD02. This allows us to
make everywhere the replacements

D025D012D01, D035D012D012D02 ~23!

and useD01, D01, andD02 as the independent variables
work with. The advantage of doing this is that the action
D01 andD02 on X andY produces multiplicative and gaug
covariant operators. On the other hand, the presence o
operatorD01, which is outside commutators, combined wi
the gauge noncovariant operation^0u u0&, still can introduce
gauge noninvariant contributions. This is avoided thanks
the periodicity property ofg(x,y,z) as we will show now.
Indeed, the periodicity property allows to write the term a

TT5tr^0uw~e2bD01,D01,D02!XYu0&, ~24!

where the functionw is defined by

w~e2bx,y,z!5g~x,x2y,x2y2z!. ~25!

The periodicity condition ofg ensures that the functio
w(v,y,z) is one-valued@it depends onv and not just on
log(v)#. In order to bring the expression into a manifes
gauge invariant form, we will use the following property:

e2tD05e2t]0Te2*
x0

x01t
A0(x08 ,x)dx08, t>0. ~26!

Here t is just a parameter andT denotes time ordered prod
uct. ~The quantitiesD0 , ]0 , andxm represent operators an
the product refers to a product of operators so that]0 is not
directly derivatingx0 .! This equation can be easily prove
by the standard procedure of showing that the two exp
sions satisfy the same first order differential equation int and
coincide att50. The left-hand side is a manifestly gaug
covariant operator. It is interesting to see how gauge cov
ance is realized in the right-hand side: the time-ordered p
04501
b-
s-

-

y

f

he

o

s-

ri-
d-

uct fromx0 to x01t ~with x fixed! transforms withU(x0 ,x)
at the right andU21(x01t,x) at the left, and this latter facto
is transformed intoU21(x0 ,x) after commutation with
e2t]0, thus the product of the two factors transforms cova
antly at (x0 ,x), ase2tD0.

In particular, by takingt5b in the previous formula, one
obtains the identity

e2bD05e2b]0V, ~27!

where

V~x!5T expS 2E
x0

x01b

A0~x08 ,x!dx08D . ~28!

~Again e2b]0 V is to be understood as the product of tw
operators.! Beyond the interval@0,b# A0(x) is defined as a
periodic function of the time, soV(x) is also periodic. Al-
thoughV(x) is nonlocal in terms ofA0 , it behaves as a loca
field which takes values on the gauge group. In particula
transforms covariantly atx:

VU~x!5U21~x!V~x!U~x!. ~29!

The matricesV(x) at different values ofx0 , but equalx, are
related by similarity transformations and their trace, t
Polyakov loop, is independent ofx0 . Another important
property is

D0V5@D0 ,V#50. ~30!

On the other hand, the effect of the operator exp(2b]0) is
to produce the shiftx0→x02b, therefore it is equivalent to
the identity operator on the space of periodic functions
which we are working~as noted the periodic wave functio
u0& appears regardless of whether we are considering bo
of fermions!. So in this space

e2bD05V. ~31!

This produces the manifestly gauge invariant expression

TT5tr^0uw~V1 ,D01,D02!XYu0&. ~32!

@The label 1 inV indicates to put this operator in position 1
The relative order betweenD01 andV1 is immaterial due to
Eq. ~30!.#

It can be noted that all previous manipulations, start
from Eq. ~16!, hold also without taking tr^0u u0&. Inside
tr^0u u0& integration by parts implies thatD01 is equivalent to
2D02 ~or equivalently, thatD035D01), and so we have the
final formula

TT5tr^0uw~V1 ,D02!XYu0&, ~33!

where

w~v,y!5w~v,2y,y!. ~34!

The whole point of these manipulations was to end up wit
manifestly gauge covariant and multiplicative operator
6-5
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that tr@w(V1 ,D02)XY# is just a gauge invariant function ofx,
constructed with the fieldsAm(x) andM (x):

TT5E dd11x tr@w~V1 ,D02!XY#. ~35!

The fact thatg(x,y,z) is periodic is essential to produc
the gauge covariant operatorV(x). This periodicity property
would be lost in an expansion in powers ofD0 . We should
remark that no restriction has been put on the field confi
ration, which is completely general~may be non-Abelian and
nonstationary! and also no choice of gauge has been need

Perhaps it should be emphasized how exactly the lac
periodicity would break gauge invariance. To see this it
sufficient to consider 011-dimensional fermions in presenc
of an Abelian configuration@10#. The corresponding effec
tive action is of the formbg(a) with a5*0

bdx0 A0 . The
quantitya is invariant under topologically small gauge tran
formations,A0

U5A01]0L @L(x0) being a periodic function#
but under a large gauge transformation, e.g.,A0

U5A0

12p in/b @which corresponds toU(x0)5exp(2pinx0 /b)#, a
changes by an integer multiple of 2p i , so g(a) will not be
invariant in general. Wheng is periodic the effective action
becomesbw(V) with V5exp(2a) and it is invariant under
all gauge transformations. See Sec. IV A for further remar

D. Relation with the calculation fixing the gauge

In Refs. @23# and @17# the kind of calculation just de
scribed was carried out for fermions but fixing the gau
through the gauge condition]0A050. ~The idea was that the
two operators treated not perturbatively,]0 andA0 , are then
commuting.! No loss of generality is actually implied by thi
approach since such a gauge always exists@23#. However,
because it is not unique, it is necessary to find all remain
gauge transformations allowed within theA0-stationary
gauge, and then check that all of them produce the s
result. This was shown to be equivalent to the periodic
condition that follows from summing over Matsubara fr
quencies, Eq.~20!. All this is unnecessary in the prese
approach since the gauge has not been fixed. Using g
invariance, the results obtained within theA0-stationary
gauge can directly be taken over as follows. When]0A0
50, the fieldV becomese2bA0, so it is only necessary to
replacee2bA0 of the calculation inA0-stationary gauge by
V(x) to obtain the result expressed in an arbitrary gau
Further comments are made in Sec. IV A.

E. Expansion in space-time derivatives at finite temperature

As noted, expanding in powers ofD0 breaks periodicity
and hence gauge invariance, however, in principle noth
prevents from expanding in powers ofD0 in Eq. ~35!,
namely,

TT5 (
n50

` E dd11x tr@wn~V!XD 0
nY#, ~36!

where
04501
-

d.
of
s

s.

e

g

e
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ge
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g

w~v,y!5 (
n50

`

wn~v!yn. ~37!

The interest of doing that is, of course, that, at least at low
orders, the result is simpler than the full result. This can
regarded as the finite temperature generalization of the u
derivative expansion at zero temperature. Recall thatD al-
ready was restricted to appear in commutators only, so th
really an expansion in powers ofDm . As usual, higher orders
are increasingly ultraviolet convergent. It can be noted t
in the Abelian and stationary caseD0 vanish identically@on
multiplicative operators, such asX andY in Eq. ~36!# there-
fore the zeroth order in the above expansion becomes ex

Nevertheless, it should be noted that such an expansio
not as well defined as for instance the expansion in power
D. The latter is defined from the functional itself, since
corresponds to spatial dilatations of the fields. No such tra
formation is known for the expansion in powers ofD0 . So in
principle it should be expected that different ways of e
pressing the functional in terms ofV and D0 would yield
different expansions, only the sum of all orders being una
biguously defined. This can be seen more clearly as follo
Recalling that insidê 0uu0& the operatorsD03 and D01 are
equivalent, the typical term considered above, Eq.~18!, takes
the form

TT5tr^0ug~D01,D02!XYu0& ~38!

@with g(x,y)5g(x,y,x)#. Using the final form Eq.~33!, it is
easily established that it can also be written as

TT5tr^0ug~D02,D01!YXu0&, ~39!

because in Eq.~33! all operators are multiplicative and there
fore integration by parts and the cyclic symmetry can
used. Now, in the frequent case of contributions whereX
5Y, this implies that only the symmetric part of the functio
g(x,y) is actually contributing. However, it is easy to writ
purely antisymmetric and periodic functionsg(x,y) such
that when used in Eq.~36!, each order is nonvanishing, a
though of course their full contribution vanish when summ
to all orders. This particular kind of ambiguity can be fixe
by imposing a symmetry restriction ong(x,y) before carry-
ing out the expansion inD0 . This ambiguity is further dis-
cussed in Sec. IV B.

F. Illustration of the method

To illustrate the previous manipulations in a practic
case, we will consider the quantity

C@m,A#52
1

4
TrbF S 1

2Dm
2 1m2

1

2
smnFmnD 2G1O~Fmn

3 !,

~40!

which will appear later in the study of the scalar field in
11 dimensions. In this expressionFmn5@Dm ,Dn# and
smn5 1

2 @gm ,gn# ~wheregm are Hermitian Dirac matrices in
211 dimensions!. m is a c number.
6-6
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C@m,A# is ultraviolet finite and so it is a well-defined an
unambiguous quantity. We will compute it through seco
order in an expansion in the number of spatial covariant
rivatives. Clearly the expansion starts at second order an
is sufficient to retain the explicit term in Eq.~40! since terms
of O(Fmn

3 ) must contain four or more spatial indices.
First, the symbols method, Eq.~11!, is applied. After-

wards, taking the trace in Dirac space and keeping just te
with two spatial covariant derivatives, produces

C2@m,A#5
1

2E d2p

~2p!2

1

b

3(
p0

^0utrF S 1

2~D01p0!21p21m2
ED 2G u0&,

~41!

wherep252pi
2 , p052p in/b, andE5@D0 ,D#.

To proceed to the integration over momenta and sum o
frequencies we use the trick of adding a label 1 or 2 to
operatorsD0 to indicate their actual position in the expre
sion, namely

C2@m,A#5
1

2E d2p

~2p!2

1

b

3(
p0

^0utrF 1

2~D011p0!21p21m2

3
1

2~D021p0!21p21m2
E2G u0&

ª^0utr@g~D01,D02!E
2#u0&. ~42!

The momentum integration yields

g~x1 ,x2!52
1

8p

1

b (
p0

1

~x11p0!22~x21p0!2

3 logS m22~x11p0!2

m22~x21p0!2D . ~43!

In order to sum over frequencies, it is convenient to red
the expression to a rational form. This is achieved by deriv
ing with respectm and then integrating back@using that
g(x1 ,x2) vanishes asm→`#. Then the identity

(
n

S 1

x11 ipn
2

1

x21 ipnD5coth~x1!2coth~x2!, ~44!

can be applied. This produces
04501
d
-
it

s

er
e

e
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g~x1 ,x2!52
1

16p

1

x12x2
E

m

`

dtS cothFb2 ~ t1x1!G
2t1x12x2

2

cothFb2 ~ t1x2!G
2t2x11x2

D 1p.p.c., ~45!

where p.p.c.~which stands for pseudoparity conjugate! refers
to the same expression with the replacementsx1→2x1 and
x2→2x2 .

Correspondingly,

C2@m,A#5E d3x tr@w~V1 ,D02!E
2# ~46!

with

w~v,y!5
1

16p

1

yEm

`

dtS 1

2t2y

ebt1v

ebt2v

2
1

2t1y

eb(t1y)1v

eb(t1y)2v
D 1p.p.c.; ~47!

p.p.c. corresponds toy→2y andv→v21. This is the final
expression which contains all contributions toC@m,A# with
two spatial Lorentz indices and any number of zeroth in
ces. As expected at finite temperature, it is nonlocal in ti
but local inx. Note thatC2@m,A# is an even function ofm.4

We can now consider a further expansion in powers ofD0
since it respects gauge invariance. An explicit computat
shows thatw(v,y) is an analytic function ofy. At leading
~zeroth! order inD0 the result from Eq.~47! is

C2@m,A#5
1

16p

1

2mE d3x trF S ebm1V

ebm2V
1

ebm1V21

ebm2V21D E2G
1O~D0!. ~48!

Note that this result, unlike the full result in Eqs.~46! and
~47!, does not contain an integral over the mass (*m

`dt). This
property holds to all orders inD0 .

G. The effective action

In this subsection we summarize some properties of
effective action which will be needed later.

The effective action.The Euclidean effective action is de
fined as minus the logarithm of the partition functional. F
noninteracting fields it takes the form

4This can be shown by noting thatw(v,y;m)2w(v,y;2m) is
given by the same formula~47! with replacementm→2`, and
then showing that the integrand is convergent and odd as a func
of t.
6-7
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W@M ,A#5c Tr log@K~M ,D !#5c log Det@K~M ,D !#,
~49!

where K(M ,D) is a differential operator@e.g., the Klein-
Gordon operator as in Eq.~2! or the Dirac operator# and c
some constant.

Ultraviolet ambiguities.The previous expression needs
be regularized, and a number of methods can be use
obtain a renormalized version of it. The key observation
that all renormalized versions of the effective action m
yield the same ultraviolet finite contributions and so tw
such versions can differ at most by a term which is a lo
polynomial in the external fields and their derivatives, w
canonical dimension no more thand11 ~in d11 dimen-
sions!. Note that for this discussion a massm plays the role
of an external scalar field which happens to take a cons
c-number configuration and so, in particular, the ambigu
in the renormalized action will depend polynomically onm.
This implies that any sensible~that is, correctly describing
the ultraviolet finite contributions! regularization plus renor
malization prescription can be used to make the effec
action finite; the actual effective action describing the phy
cal system at hand will correspond to adding the appropr
local polynomial action to the previous result. Another co
sequence is that formal identities can be applied so long
violation of them is allowed in the form of a local polyno
mial of degreed11 or less.

The z-function method.The effective action can be de
fined through thez-function prescription, namely

Tr log~K !5
d

ds
Tr~Ks!U

s50

. ~50!

~An analytical extension ins is understood from sufficiently
negative values ofs.! When K admits a complete set o
eigenvectors, Tr(Ks)5(nln

s , ln being the eigenvalues ofK.
If the calculation has to be made using some expansion
convenient to use the following formula@25#:

Tr~Ks!5TrE
G

dz

2p i
zs

1

z2K
, ~51!

where the pathG encloses counterclockwise the eigenvalu
of K but notz50. This method is practical in actual calcu
lations combined with the symbols method: after apply
Eq. ~11! to expand the functional trace, it is straightforwa
to make an explicit expansion inM andD, for instance. This
method has been used for fermions in Ref.@21# and for a
nonlocal Dirac operator in Ref.@22# at zero temperature, an
at finite temperature for odd dimensional fermions in R
@23# and even dimensional fermions in Ref.@17#.

Anomalies.If the effective action breaks a symmetry
the action there is an anomaly. In general the anomaly ca
defined as the difference between the effective action of
original and the transformed configurations~of the external
fields! and by construction is a local polynomial. It may ha
pen that the symmetry can be restored by adding an ap
priate local polynomial to the effective action. In this ca
the breaking is an unessential anomaly. When not all s
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metries can be restored simultaneously the theory presen
essential anomaly. All symmetries which are implemen
through a similarity transformation ofK(M ,D) leave the
spectrum invariant thus because thez-function prescription
defines the determinant of a differential operator by regu
izing the product of its eigenvalues, it follows that for the
symmetries thez-function version of Det(K) is always free
of anomalies. This applies in particular to vector gauge
variance.~Axial gauge transformations and scale transform
tions, for instance, are not implemented by similarity tran
formations and they can be anomalous.! Therefore the
partition functional is always invariant under gauge transf
mations. On the other hand the effective action can cha
by integer multiples of 2p i , since the logarithm is a many
valued function.~We are assuming that no zero modes a
involved. They would induce changes multiples ofip in the
effective action.! By continuity, this can only happen fo
topologically large gauge transformations. For a scalar fi
the multivaluation cannot occur since the correspond
z-function renormalized effective action is purely real. F
fermions the multivaluation may take place depending on
topological numbers of the gauge transformation and
gauge field configuration and this indicates the presenc
topological pieces in the effective action@1,4,5#. Such mul-
tivaluation is indeed found in the explicit calculation for
11-dimensional fermions of Ref.@23#.

Locality and finite temperature.In previous subsections
we have considered operators of the formf (M ,D) with f
one-valued and ultraviolet convergent. Actually, one wa
to compute the effective action which contains multivalu
tion and ultraviolet divergences, Eq.~49!. In many expan-
sions ~perturbative, derivative, 1/m, etc.! higher orders are
ultraviolet finite and thus they are also free of multivaluatio
For those terms all our previous considerations hold direc
In particular, we find a remarkable result, namely, that
effective action at finite temperature can be written as@cf.
Eq. ~36!#

W@M ,A#5(
n
E dd11x tr@wn~V!On#, ~52!

wherewn are some functions andOn are gauge covariant an
local operators constructed out ofDm and M. In this sense
the theory at finite temperature is local in the usual se
~i.e., the effective action admits an expansion inDm) pro-
vided that the fieldV(x) is regarded as local.

For the ultraviolet divergent terms, some oddities app
which are necessary in order to accommodate the existe
of anomalies, topological terms and multivaluation, all the
issues being related. For instance, when the expansio
spatial covariant derivatives is computed for fermions in
11 dimensions@23# the functionswn of lower orders are
many-valued~a property belonging to the exact result in
11 dimensions@10# and in 211 dimension for Abelian and
stationary configurations@12#!. In addition, negative powers
of D0 may appear when one goes beyond the Abelian
stationary case. This was handled in Ref.@23# by introducing
the fieldsA(x), defined as any solution of the equatio
D0E5D 0

2A. There it was shown that the ambiguity in th
6-8
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definition ofA cancels and all solutions yield the same
fective action. In terms of theA(x) and V(x) the finite
temperature effective action remains local.

III. THE SCALAR FIELD IN 2 ¿1 DIMENSIONS

In what follows we will apply the previous ideas to th
computation of the effective action of 211-dimensional sca-
lar particles at finite temperature and density. The Euclid
action of the system is that of Eq.~1!. There, the fieldf(x)
is a Lorentz scalar and a vector in the internal symme
space which will collectively be referred to as flavor spa
with dimensionNf . The covariant derivative is defined a
Dm5]m1Am , where the gauge fieldAm(x) is an anti-
Hermitian matrix in flavor space. Correspondingly, the gau
transformationsU(x) are unitary matrices. The massm is a
space-time constant and a realc number in flavor space. Th
more general case of an arbitrary scalar fieldM (x) replacing
m will not be considered here. The effective action is giv
by Eq. ~2!.

Relevant symmetries of the problem are pseudoparity
gauge transformations. Pseudoparity corresponds to ch
ing the sign of every Lorentz zeroth index, i.e., (x0 ,x)→
(2x0 ,x) and A0→2A0 . Since the spectrum of the Klein
Gordon operator2Dm

2 1m2 is unchanged under this tran
formation thez-function regularization prescription provide
a pseudoparity preserving effective action. Such Euclid
effective action contains only contributions with an ev
number of Lorentz zeroth indices, it does not contain
Levi-Civita pseudotensor, and thus it is purely real. A
other renormalization prescription can only produce ima
nary contributions which are local polynomials. As note
the z-function regularized effective action will be strictl
gauge invariant since it is real. In fact no essential anoma
are present in the case of scalar fields in 211 dimensions
~scale anomalies are absent in odd dimensions@26#!.

There is a third symmetry, namely, the transformationm
→2m which is trivial for scalar particles and again fre
from anomalies using thez-function regularization. Within
other renormalization schemes there can appear terms b
ing this symmetry but they will be removable by adding
local polynomial. In the case of odd-dimensional fermio
neither pseudoparity nor the transformationm→2m are
symmetries, however, their product gives the parity trans
mation. Parity is a symmetry of the fermionic action but
not a similarity transformation of the Dirac operator, so it
not guaranteed to be preserved by thez-function renormal-
ization prescription. As is well known, parity for odd
dimensional fermions is in general in conflict with invarian
under large gauge transformations and if the latter invaria
is enforced, parity may present an anomaly, depending
the number of flavors@4#.

A. The 0¿1-dimensional model

The above-mentioned remarks can be illustrated with
011-dimensional version of the system. The correspond
effective action has been computed in Ref.@18#. Perhaps the
simplest way to derive this effective action is by computi
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the partition function of the associated 0-dimensional Ham
tonian system in a gauge whereA0 is time independent. The
energy spectrum is then obtained directly from the Kle
Gordon equation written as

2]0f5~6m1A0!f. ~53!

Thus for each flavor there are two single particle lev
e6,a56m1A0,a (a51, . . . ,Nf labelling the eigenvalues o
the matrixA0 in flavor space!. The standard textbook resu
for the partition function of a system of noninteractin
bosons then applies:

Zs@m,A#5 )
s56

)
a51

Nf

(
n50

`

e2b(sm1A0,a)n, ~54!

or equivalently

Ws@m,A#5tr log@~12e2b(m1A0)!~12e2b(2m1A0)!#.
~55!

The trace refers to flavor space. This result can be rewri
as

Ws@m,A#52b Tr~A0!1Gs@m,A#. ~56!

The first term is the 011-dimensional Chern-Simons actio
which breaks pseudoparity and can be removed by a lo
polynomial counterterm. The second term is~up to a con-
stant!

Gs@m,A#5tr logF4 sinhS b

2
~m1A0! D sinhS b

2
~m2A0! D G .

~57!

This effective action is an even function ofm andA0 , so it
preserves parity and pseudoparity. It can be written in
manifestly gauge invariant form as

Gs@m,A#5tr log@ebm1e2bm2V2V21#. ~58!

As in the case of fermions@10#, periodicity of the effective
action as a function ofbA0 would be lost within a perturba
tive expansion, i.e., an expansion in powers ofA0 .

SinceGs@m,A# enjoys all symmetries of the action it co
incides with thez-function regularized effective action, up t
a constant~since any other local polynomial must be of d
gree one inm or A0 and would break parity!. The result in
Ref. @18# corresponds toGs@m,A#2Gs@m,0# in Minkowski
space. It is noteworthy that the partition function defin
directly from the Hamiltonian breaks pseudoparity@due to
the Chern-Simons term in Eq.~56!# even if no ultraviolet
divergences are introduced in 011 dimensions in the ca
nonical formalism.

B. Computation of the effective action in 2¿1 dimensions:
Relation to the fermionic case

The effective action of the 211-dimensional model can
not be computed in closed form for arbitrary space-time a
internal symmetry configurations. Our approach will be
6-9
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C. GARCÍA-RECIO AND L. L. SALCEDO PHYSICAL REVIEW D63 045016
expand the effective action in the number of spatial covar
derivatives, or equivalently, in the number of spatial Lore
indices. The computation will be carried out through seco
order, that is, we will keep terms with zero or two Loren
indices.~There are no odd order terms in the expansion.! The
zeroth Lorentz index dependency is treated exactly since
guarantees the preservation of the periodicity condit
which is essential for gauge invariance.

The calculation can be done by applying thez-function
regularization prescription with the help of the symbo
method, as described in Ref.@23#, however, it is more eco
nomical to use the results already established for fermion
that reference. This can be done as follows. The effec
action for fermions is

Wf@m,A#52Trf log~gmDm1m!. ~59!

The functional trace is taken in the space of antiperio
wave functions and includes Dirac degrees of freedom
addition to space time and flavor degrees of freedom.
gamma matrices are Hermitian and satisfygmgn5dmn

1smn . Actually, there are two inequivalent irreducible re
resentations of the Dirac algebra which are distinguished
the labelh561 in the relationgmgngr5 ihemnr . So if gm
is one of the representations,2gm provides another in-
equivalent representation of the Dirac algebra. The labelh is
attached to the Levi-Civita pseudotensor and thus a cha
in h is equivalent to a pseudoparity transformation. The
fore the fermionic effective action can be split into two com
ponents:

Wf@m,A#5Wf
1@m,A#1hWf

2@m,A#, ~60!

whereWf
1 is real and even under pseudoparity andWf

2 is
imaginary and pseudoparity odd.~Of course, this relation can
be violated by adding a local polynomial.! Next, note that the
formal identity Tr log(AB)5Tr log(A)1Tr log(B) holds for
the functional trace up to ultraviolet divergent contributio
and so it holds modulo local polynomial terms. This impli
that

Wf
1@m,A#52

1

2
Trf log@~gmDm1m!~2gmDm1m!#

52
1

2
Trf logF2Dm

2 1m22
1

2
smnFmnG ,

~Fmn5@Dm ,Dn#!. ~61!

So Ws@m,A# @cf. Eq. ~2!# is closely related toWf
1@m,A#.

The differences between both expressions are~i! the Dirac
degree of freedom which is absent in the scalar case,~ii ! the
different ~periodic versus antiperiodic! boundary conditions,
and ~iii ! the extra term2 1

2 smnFmn which is not present in
the Klein-Gordon operator. In addition, a local polynom
04501
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action can be further added at the end.5

The first correction amounts to dividing the fermionic r
sult by the trace of unity in Dirac space which is two in th
211-dimensional calculation in Ref.@23#. The second cor-
rection can also be tackled straightforwardly. The Matsub
frequency~related to]0 in D0) takes discrete values 2p i (n
1 1

2 )/b for fermions and 2p in/b for bosons, thus the func
tional trace computed in the fermionic Hilbert space is
lated to the bosonic one after the replacementA0→A0
2 ip/b. This is equivalent toV(x)→2V(x). @V(x) has
been defined in Eq.~28!.#

Ws@m,A#52Wf
1Fm,A02

ip

b
,AG2C@m,A#. ~62!

The termC@m,A# takes into account the spurious contrib
tions coming from2 1

2 smnFmn , which have to be removed
from the Fermionic result.

This formula can be illustrated in the 011-dimensional
model, where it readsWs@m,A#522Wf

1@m,A02 ip/b#
~note that Dirac space is one-dimensional in 011 dimen-
sions so the factor 2 is not canceled in this case,
also C@m,A#50). The simplest way to obtain th
011-dimensional fermionic effective action is again usi
the Hamiltonian formalism~fixing ]0A050). Since there is a
single-particle level with energyea5hm1A0,a for each fla-
vor ~whereh561 is the Dirac matrixg0 in 011 dimen-
sions! it follows that

Wf@m,A#52 log)
a51

Nf

(
n50,1

e2b(hm1A0,a)n

52tr log@11e2b(hm1A0)#. ~63!

The result in Ref.@10# corresponds~up to a local polyno-
mial! to Wf@m,A#2Wf@m,0# with h51. This version of the
effective action does not directly satisfy Eq.~60!, i.e., the
pseudoparity transformationA0→2A0 is not equivalent to
the transformationh→2h in the previous formula. How-
ever, subtracting an appropriateh-dependent polynomial6

yields

Wf8@m,A#52tr log@11e2b(m1hA0)#

52tr log@11e2bmVh#, ~64!

which does satisfy Eq.~60!. This is thez-function result
@23#. It is readily verified thatGs@m,A# in Eq. ~58! coincides
with 22Wf8

1@m,A02 ip/b# plus a polynomial,
*dx0 tr(m).

5Alternatively, one can choose to changem→2m instead ofgm

→2gm in the second factor in the logarithm in Eq.~61!, and then
relateWs@m,A# to Wf@m,A#1Wf@2m,A#. Up to a local polyno-
mial, this procedure is equivalent to the one used in the text.

6To wit, u(2h)*dx0 tr(hm1A0), which is temperature indepen
dent. This is consistent with the fact that the finite temperature d
not introduce new ultraviolet divergences.
6-10
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In 211 dimensions the subtractionC@m,A# can be com-
puted in an expansion in powers of1

2 smnFmn . The term of
first order does not contribute~since the trace ofsmn in Dirac
space vanishes! thus the leading term is that with two powe
of Fmn , namely, the expression in Eq.~40!. Because
C@m,A# is ultraviolet finite it is free from anomalies, i.e.,
enjoys all symmetries of the bosonic action. This term h
been computed, up to two spatial derivatives, in Sec. II F

Let us quote the results for the pseudoparity even com
nent of the effective action of fermions in 211 dimensions
@23#. At zeroth order in the number of spatial covariant d
rivatives the result is

Wf ,0@m,A#5
1

4p
tr^0uF S 2

b D 2

mf1S b

2
~m2D0! D

2S 2

b D 3

f2S b

2
~m2D0! D G u0&1p.p.c.

~65!

At second order

Wf ,2
1 @m,A#52

1

8p
tr^0uH F 1

2 S 2

b D 2

f1S b

2
~m2D01! D

2
2

b
f0S b

2
~m2D01! D S 1

4
~D022D01!1

m

2 D
2E

m

`

dt tanhS b

2
~ t2D01! D

3

F1

4
~D022D01!

21m2G
2t1D022D01

G 1

~D022D01!
3
E2J u0&

1X121p.p.c. ~66!

In these formulas, p.p.c. means pseudoparity conjugateD0
→2D0 , andX12 means the same expression exchanging
labels 1 and 2.

The functionsfn(z) are given by

fn~v!5Pn11~v!2E
v

1`

dz
~v2z!n

n!
@ tanh~z!21#,

~67!
n50,1,2, . . . , Re~v!.0,

where the integration path runs parallel to the real posi
axis towards1`. The Pn(v) are polynomials of degreen,

P1~v!5v,

P2~v!5
1

2
v22

1

6 S ip

2 D 2

,

P3~v!5
1

6
v32

1

6 S ip

2 D 2

v. ~68!
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These formulas forfn(v) refer to Re(v).0. When Re(v)
,0 the propertyfn(2v)5(21)nfn(v) can be used.

C. The effective action

We can now use Eq.~62! to obtain the effective action o
the 211-dimensional scalar field. Up to two Lorentz indice
C@m,A# equals C2@m,A# which is given in Eq. ~46!.
Wf

1@m,A# is given in Eqs.~65! and ~66!. In these latter ex-
pressions the functionsfn(z) are made explicit using Eq
~67!, and the variablesV andD0 are used instead ofD01 and
D02 ~cf. Sec. II C!. In addition, we introduce a chemical po
tential by means of the replacementA0→A02m @8# wherem
is a real constantc number~recall thatA0 is anti-Hermitian!.
This shift is gauge invariant and it is equivalent toV
→ebmV.

The effective action up to two spatial covariant deriv
tives at finite temperature and density is thus

Ws,0@m,A#5E d3x tr@w0~ebmV!#, ~69!

Ws,2@m,A#5E d3x tr@w2~ebmV1 ,D02!E
2#. ~70!

The functionsw0 andw2 are given by

w0~v!52
1

4p S 1

3
umu31E

umu

1`

dt~ t22m2!
v

ebt2v
D

1p.p.c., ~71!

w2~v,y!52
1

8p

1

y3 H 1

2
umuy1

1

2 S 1

4
y22m2D

3 logS 2umu1y

2umu2yD1E
umu

`

dtF 2v

ebt2v

3S t22m2

2t2y
2

1

2
yD2

2v

eb(t1y)2v

3S t22m2

2t1y
1

1

2
yD G J 1p.p.c. ~72!

In these formulas p.p.c. corresponds toy→2y and v
→v21.

The formulas~69! and ~70!, expanded in Eqs.~71! and
~72!, constitute the main result of this section. They are n
essarily complicated looking since an infinite number
Feynman graphs~with any number of temporal gauge field
cf. Sec. IV B! are being added, and the effective action
nonlocal in time at finite temperature. A much simpler fo
mula is presented below if only the lowest order is retain
in a further expansion in the number of temporal covari
derivatives.

Some remarks are in order. In writing the formula w
have already used the fact that the effective action is an e
function ofm ~since this is already true forWf

1@m,A#). The
6-11
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condition Re(v).0 in Eq. ~67!, implies that the previous
formulas refer to the physically relevant caseumu,umu only.
All polynomial contributions introduced byPn(v) in Eq.
~67! combine in such a way that all the polynomial depe
dence onD01 cancels and the result is a periodic function
D01. This cancellation requires the explicit as well as t
p.p.c. terms to hold and it is a nontrivial check of the form
las. ~Of course, the periodicity holds also for the fermion
effective actions in the pseudoparity even sect
Wf

1@m,A#.! The argument of the logarithm inw2(v,y) is to
be taken in the interval (2p,p) and t runs on the real posi
tive axis. ~Note thaty representsD0 and thus it is purely
imaginary.!

D. Expansion in space-time derivatives at finite temperature

A simpler expression forWs,2@m,A# is obtained retaining
only the leading order in an expansion inD0 . This corre-
sponds to expand in powers ofy in the functionw2(v,y). As
noted this expansion does not break any symmetry and
natural one in the present context. This produces

Ws,2@m,A#5E d3x tr@w2,0~ebmV!E2#1O~D0!, ~73!

with

w2,0~v!52
1

96p

1

m

e2bm2v222bmebmv

~ebm2v!2
1p.p.c.

52
1

96p

1

m

d

dmFm
ebm1v

ebm2v
G1p.p.c. ~74!

Note thatw2,0(v) is an even function ofm. This formula is
manifestly invariant under all symmetries of the action. Tw
nontrivial checks of the calculation are~i! that negative pow-
ers of y have canceled and~ii ! that w2,0(v) no longer con-
tains parametric integrals~i.e., * umu

` dt). As noted, this ex-
pression is exact forWs,2@m,A# in the Abelian and stationary
case.

E. Zero temperature limit

The zero temperature limit of Eqs.~71! and ~72! is
straightforward: becauseumu,umu andV is unitary, the term
ebt always dominates, thus the limitb→` just removes the
terms with* umu

` dt and the dependence inm is also canceled
~we are assumingm fixed asT→0). That is,

Ws,0@m,A#52
1

6pE d3x tr@ umu3#, ~T50!, ~75!

Ws,2@m,A#52
1

8pE d3x trH EF umuD01S 1

4
D 0

22m2D
3 logS 2umu1D0

2umu2D0
D G 1

D 0
3
EJ . ~76!
04501
-
f

-
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At zero temperature Lorentz invariance is a symmetry
the action. Such symmetry is not obvious inWs,2@m,A# since
it sums all orders inD0 but not in Di , i 51,2. However,
considering an expansion in inverse powers ofm ~a Lorentz
invariant expansion! gives

Ws,2@m,A#52
1

48p

1

umu E d3x tr@E2#1O~m23!. ~77!

The same result follows from Eq.~73!. This expression ad-
mits a unique Lorentz invariant completion, namely

Ws@m,A#52E d3x trF 1

6p
umu31

1

96p

1

umu
Fmn

2 G1O~m23!.

~78!

This formula comes also from a direct application of t
results in Ref.@27# thereby being a check for our formula
At next order in 1/m several Lorentz invariant operators o
dimension 6 can appear and Eq.~76! puts a constraint on
their coefficients. Note that the last two formulas hold also
finite temperature since the temperature-dependent co
tions areO(e2bumu) ~see also Sec. IV C!.

F. The partition function

The effective action at finite temperature and density
directly related to the grand-canonical potential, nam
Ws@m,A;b,m#5bV(b,m). ~Note thatm introduced by the
replacement]0→]02m couples to the charge and not to th
number of particles which is not conserved in the relativis
case@28#!. However, strictly speaking, a system at equili
rium with temperatureT and chemical potentialm can only
be stationary. In addition, the physical effect of a~negative!
constant external scalar potential is indistinguishable fr
that of a~positive! chemical potential, since both add to th
energy for positive charges and subtract for negative on
thus for the partition functionA0 should not be Wick rotated
andA0 is real instead of imaginary. All expressions depe
only on the combinationA02m. ~It would be algebraically
inconsistent not to rotateA0 to its Euclidean version in the
general case, but not within the subset of stationary confi
rations.! Note that the fact thatA0 is real or imaginary does
not affect the functional form; in any case the function
derivative of the effective action with respect toA0 yields the
charge density and the derivative with respect tom yields the
total charge:

r~x!5
dWs

dA0~x!
, Q52

1

b

]Ws

]m
. ~79!

In view of the relation between partition function and e
fective action, it follows that Ws,0 describes a two-
dimensional relativistic ideal gas in presence of an alm
space-time constant scalar potentialA0 . An explicit calcula-
tion of the charge density usingWs,0 in Eq. ~71! and inte-
grating by parts yields
6-12
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r05
Nf

4pEumu

`

dt tFcothS b

2
~ t2m! D2cothS b

2
~ t1m! D G ,

~80!

Nf5tr(1) is the number of flavors. We are assuming tham
couples equally to all flavors and we have droppedA0 since
it can be recovered fromm. This formula can rewritten in the
standard form@28#

r05E d2k

~2p!2 S Nf

eb[v(k)2m]21
2

Nf

eb[v(k)1m]21
D , ~81!

wherev(k)5Ak21m2.
Likewise, the termWs,2 adds a contribution to the densit

coupled toA0 . Let us consider the Abelian case~in addition
to stationary!, thenD0 vanishes and Eq.~73! becomes exact
There will be two contributions to the charge density, o
coming from the explicit dependence onA0 and another
through the dependence inE. The latter is a total derivative
and does not contribute to the total charge. Both contribu
can be combined to give

r2~x!52
Nf

96p

1

m

d

dmH mF2
b

2
cosech2S b

2
~m2m1A0! DE2

12 cothS b

2
~m2m1A0! D“EG J 2p.p.c. ~82!

~Note that A0 , m, and E are pseudoparity odd.! At zero
temperature~assumingumu.um2A0u, or else at finite tem-
perature but large mass! this simplifies to

r2~x!52
Nf

24p

1

umu
“E, ~83!

which also follows from Eq.~77!.
It is also interesting to note the relation of our results w

other formulas using polylogarithms.7 The functionsfn(v)
introduced in Ref.@23# and Sec. III B are directly related t
polylogarithms, namely

fn~v!5Pn11~v!2~22!2nLin11~2e22v!. ~84!

This relation is easily established from Eq.~67! by noting
that it verifies the following defining properties of Lin(z):

Li 0~z!5
z

12z
, z

d

dz
Lin~z!5Lin21~z!, Lin~0!50.

~85!

In this notation,Ws,0 in Eqs.~69! and ~71! becomes

7The polylogarithms are defined as@29#

Lin~z!5(
k51

`
zk

kn
.

04501
e

n

Ws,0@m,A#52
1

4pE d3x trF umu3

3
12T3@bumuLi2~z!

1Li3~z!#G1p.p.c., ~86!

wherez5e2b(umu2m1A0) is the fugacity, and the correspond
ing density becomes

r05
NfT

2

2p
@bumuLi1~z!1Li2~z!#2p.p.c. ~87!

in agreement with Ref.@30#.
As a final comment related to the partition function, w

note that the relation Eq.~62! can also be written using th
chemical potential instead of the scalar potentialA0 . That is,
if Vb(b,m) andV f(b,m) represent the grand-canonical p
tentials of a system of noninteracting particles in presenc
external fields, treated as bosons or fermions, respectiv
then

V f~b,m!52VbS b,m1
ip

b D . ~88!

The minus sign comes because the functional integral w
Grassman variables gives the determinant of the quad
form instead of the inverse determinant. The shiftm→m
1 ip/b accounts for the different boundary conditions. O
course a shiftm→m12p i /b must leave the partition func
tion invariant, sincem is coupled to an integer-quantize
charge. This is another manifestation of gauge invarian
For interacting particles Eq.~88! can be extended using th
well-known prescription of adding a minus sign for ea
particle loop@Eq. ~88! corresponds to the particular case
one-loop#.8

IV. FURTHER GENERAL REMARKS ON THE METHOD

A. Remarks on gauge invariance

As noted in the Introduction, topologically large gaug
transformations have played a prominent role in the dev
opment of this field by putting severe constraints on the
lowable forms of the effective action functional. On the oth
hand it seems that in our present approach such a ro
played instead by the periodicity constraint which prom
the appearance of the Polyakov loopV(x). In this subsec-
tion we will make some remarks to try to clarify the relatio
between both concepts.

8An equivalent procedure would be to compute the gra
canonical potential forn replicas of the particles and then setn to
21 at the end. That is, in the notation of Ref.@31# the Hamiltonian
becomes

H5(
a,b

hab(
s51

n

aas
† abs1 (

a,b,g,d
vabgd (

s1 ,s251

n

aas1

† abs2

† ads2
ags1

.

~89!
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C. GARCÍA-RECIO AND L. L. SALCEDO PHYSICAL REVIEW D63 045016
Let G be the gauge group, and letG be the relevant ho-
motopy group controlling the existence of topologically lar
gauge transformations at finite temperature. In 011 dimen-
sionsG5p1(G), therefore there are large gauge transform
tions for the Abelian group U~1! but not for simply con-
nected groups such as SU(n). In d11 dimensions~with d
different from zero!, let us assume for this discussion that t
spatial boundary conditions are such that the space beco
effectively compactified to a sphere. HenceG contains
classes of mappings from the space-time manifold S13Sd

into the gauge groupG, where the factor S1 corresponds to
the compactified Euclidean time and Sd to thed-dimensional
space.~Note that, unless otherwise stated, we will require
functions to be continuous on the space-time manifold,
in particular, periodic as a function of time.! Theorem 4.4 of
Ref. @32# then implies that9

G/pd11~G!5p1~G!3pd~G!. ~90!

Let us consider the cased52. Because the groupp2(G) is
always trivial for any~compact! Lie groupG, this simplifies
to G/p3(G)5p1(G). Two typical cases are as follows.

~i! G5U(1). In this casep3 is trivial andp1 is Z, soG
5Z. There are nontrivial gauge transformations which wi
n times around theS1 factor of the space-time. They can b
realized by space-independent, but time-dependent, g
transformations.

~ii ! G5SU(n) (n>2). In this casep1 is trivial but p3
5Z and so once againG5Z. In this case the correspondin
large gauge transformations must be space-time depend

Note that time-independent gauge transformations
controlled by the homotopy groupp2(G) which is trivial,
and so they are always topologically small in two spa
dimensions.

Let us now turn to the point of view used in this wor
The periodicity constraint refers to the fact that a gauge
variant functional must depend onV(x) and not just on
log@V(x)#. The cleanest way to formalize this is by workin
on the gauge]0A050, in which V5exp@2bA0(x)#. Thus
both V and A0 are time independent in this gauge. Let
remark that takingA0 to be time independent is not merely
restriction on the set of possible gauge field configuration
is a choice of gauge in the sense that every gauge field
figuration admits a gauge transformed configuration whic
A0 stationary@23#. In this gauge the periodicity constrain
expresses that a gauge invariant functional must be a p
odic functional ofA0 . To be concrete consider a gener
expression of the form@cf. Eq. ~52!#

G@M ,A#5(
n
E dd11x tr@gn~A0!On#, ~91!

where On are gauge covariant local operators, then ga
invariance requires the functionsgn(z) to be periodic with

9When d50 the theorem is consistent withG5p1(G)3p1(G)
which follows from S05$1,21%. Physically, we want the spatia
manifold atd50 to be just$1% and soG5p1(G).
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period 2p i /b. The necessity of this requirement follows im
mediately from considering the following class of gau
transformations

U~x!5exp@x0L~x!#, ~92!

where the time-independent functionL(x) takes values on
the Lie algebra ofG and is restricted by the following con
ditions

@A0~x!,L~x!#50, exp@bL~x!#51. ~93!

The second condition means that the eigenvalues ofL(x) are
of the forml j52p in j /b, for integernj ~such integers arex
independent by continuity! and it ensures that the corre
spondingU(x) is periodic in the temporal direction. Unde
such a gauge transformation

A0
U~x!5A0~x!1L~x!, ~94!

i.e., the spectrum ofA0 is shifted by multiples of 2p i /b and
the functionsgn(z) must be periodic.

Before proceeding, an important point should be no
regarding the approach used in this work. Namely, at
price of working with asymptotic expansions, we can affo
to derive formulas which are ‘‘universal’’ in the sense th
no restriction is put on the algebraic properties of the inter
space, in particular, the formulas must hold for any gau
group. This means for instance that the functionsgn(z)
above are the same for all theories and configurations.
requirement of universality puts stronger constraints on
functionals that cannot be appreciated when working w
concrete theories only@for instance, in particular theorie
some of the operatorsOn can vanish identically and so th
corresponding functiongn(z) does not play a role#.

The transformations introduced in Eq.~92!, subjected to
the conditions Eq.~93!, have been named discrete transfo
mations associated toA0(x) in Ref. @23# since in general
they form a discrete set due to the conditionl j52p in j /b.
Note that this set depends on the particular time-indepen
field A0 , through the condition@A0 ,L#50. Clearly, these
transformations leave invariant the gauge condition]0A0
50. Likewise, the gauge condition is also preserved by tim
independent gauge transformations. In Ref.@23# it is proven
that these two kinds of transformations are the most gen
ones which preserve theA0-stationary condition.10 This
means that within this gauge a functional such asG@M ,A#
above is gauge invariant if and only if the functionsgn(z)
are periodic. Then it can be written in a manifestly gau
invariant form ~without gauge fixing! as in the right-hand
side of Eq.~52! with wn(e2bz)5gn(z). Note that invariance

10This is the generic case which we will assume. It holds wh
ever exp@bA0(x)# is either nowhere degenerated or at least the
gions of degeneracy are sufficiently small that a unique eigenb
can be selected~up to normalization! by continuity@23#. In this case
A0(x) is also nowhere degenerated and thusL(x) is completely
determined by its eigenvalues. So generically the discrete trans
mations form a discrete set.
6-14



im

e
re

em
e
u

o
,

o-
a

is

og
g

so

e
ra

he

.

-

u

an

e
ge
fo

-
if-

n-

for-
urs
all,

ht-
e
-

for
ns-
usly
ys
of

n

er

ho-
ge
all
ro-
is
hus
nt.
ove
ion
der
nce
on-
on
are

ark

a
ions
ap-

tive
he
y of
up,
dic-

on-

ved
e
ce
te
be-
r-
the

al
s

ti

l

GAUGE INVARIANT DERIVATIVE EXPANSION OF THE . . . PHYSICAL REVIEW D 63 045016
under time-independent gauge transformations does not
pose further constraints on thegn(z).

The previous discussion suggests a comparison betw
large gauge transformations, on the one hand, and disc
transformations, on the other. Two questions pose th
selves at this point. Are the discrete transformations larg
the topological sense? Is it necessary to rely on large ga
invariance in order to arrive to anA0-stationary gauge?

The first question can be answered as follows@23#. For a
multiply connected group such as U~1!, the nontrivial dis-
crete transformations are topologically large since they lo
once or more on the temporal circleS1. On the other hand
for a simply connected group such as SU(n) ~in more than
one space-time dimension! the discrete transformations ass
ciated to some gauge configuration may be large or sm
depending onA0(x). For instance ifA0(x) is everywhere
diagonal,L(x) is also diagonal and in fact a constant. In th
case the discrete transformation describes a single loop
the gauge group for allx and it is homotopically trivial. In
general, however, discrete transformations can be topol
cally large. It might seem that the form of the discrete gau
transformations in Eq.~92! factorizes time and space and
it is always classified by the homotopy groupp1(G) being
always small for a simply connected group. This is true wh
L(x) is constant or homotopic to a constant, but in gene
this is not the case. The reason is that althoughL(x) is a
map fromS2 into the Lie algebra ofG ~a vector space, and
thus contractile!, it cannot be contracted to a point since t
spectrum ofL(x) is constrained to be in (2p i /b)Z. An ex-
plicit SU~2! example in 211 dimensions is provided in Ref
@23#, namely,

U~x!5expS 2pnx0

b
i txD , nPZ, ~95!

wheret are the Pauli matrices andx lies on the unit sphere
S2 in R3. U(x) covers SU~2! 2n times and thus it is homo
topically large for nonvanishingn.

Regarding the second question, whether a given ga
configuration can be brought to aA0-stationary gauge using
only small transformations, it also depends on the group
the configuration@23#. For the group U~1!, any gauge con-
figuration is in the same homotopy class as one which isA0
stationary. For a simply connected group such as SU(n), it
depends on the initialA0(x).11

An apparent paradox arises here. As emphasized in R
@11# and @13#, although perturbation theory breaks lar
gauge invariance, it respects invariance under small trans
mations, or equivalent, under infinitesimal ones.~Actually,

11This can be seen as follows. LetA0(x) be someA0-stationary
configuration for which all its discrete transformations are sm
and let us further assume that time-independent transformation
also small ~for instanced52). It follows that all A0-stationary
configurations related to the previous one by a gauge transforma
are in the same homotopy class. Thus, ifA0

U(x) is a gauge trans-
formed configuration withU(x) large, no small transformation wil
bring it to theA0-stationary gauge.
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this is strictly correct for Abelian theories only. In non
Abelian theories infinitesimal gauge transformations mix d
ferent orders, however, the mixing is mild since it only i
volves finite sets of Feynman graphs.! On the other hand, we
have just seen that expanding a functional such asG@M ,A#
in powers ofA0 ~which is a perturbative expansion! destroys
periodicity and thus gauge invariance under discrete trans
mations. This looks paradoxical since the breaking occ
even if the discrete transformations are topologically sm
and no breaking was expected in this case.

The resolution comes from the observation that the rig
hand side of Eq.~91! refers solely to configurations in th
gauge]0A050. Within this gauge the only allowed infini
tesimal transformations are the time-independent ones,
which no breaking occurs. Nontrivial discrete gauge tra
formations, even small ones, cannot be reached continuo
within theA0-stationary gauge. In this sense they are alwa
topologically large. It should be realized that the concept
homotopically trivial is a relative one. A transformatio
which is topologically large within the gauge groupG can
become small ifG is regarded as a subgroup of a larg
group G8 and deformations withinG8 are allowed. Con-
versely, a small discrete gauge transformation becomes
motopically nontrivial if one insists on preserving the gau
condition ]0A050. The usefulness of the concept of sm
and large transformations remains: perturbation theory p
vides a functional valid in the region of small fields, th
region is preserved by infinitesimal transformations and t
the perturbative functional must be small gauge invaria
Large transformations, on the other hand, necessarily m
the gauge configuration away from the perturbative reg
and thus the response of the perturbative functional un
large transformations is not trustworthy. As a conseque
invariance under large transformations provides useful n
perturbative information and puts nontrivial constraints
the functional. This holds whether the transformations
large from the point of view ofG or from the point of view
of the submanifold ofA0-stationary configurations.

For another argument, we can recall our previous rem
that a functional such asG@M ,A# in Eq. ~91! must hold for
all theories at the same time. It is not surprising to find
breaking of gauge invariance under discrete transformat
in a perturbative expansion, when such transformations h
pen to be large, and conclude that nontrivial nonperturba
conditions, namely, periodicity, are required to avoid t
breaking. However, as we have emphasized, the propert
being topologically large or small depends on the gro
whereas the formula must hold in all cases, and so perio
ity must follow in all cases too.

In this subsection we have considered a gauge fixing c
dition in order to deal with the quantity logV in a simple
way. We must recall, however, that the expressions deri
with the method studied in this work are all fully gaug
invariant, provided some regularity conditions are met, sin
they depend onV. This does not mean that large or discre
gauge transformations play no role whatsoever. This is
cause the regularity conditions fail for the ultraviolet dive
gent pieces of the effective action. This translates into
fact that the functionswn(V) @cf. Eq. ~52!#, can be many
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valued ~althoughV50 needs not be one of the branchin
points!. A typical example is the effective action o
011-dimensional fermions, Eq.~64!. Further let us conside
the Abelian U~1! case, which admits large transformatio
and they coincide with the nontrivial discrete transformatio
in the A0-stationary gauge. Choosingh511 the branching
point is atV52exp(bm). Under a large transformation, th
argument of the logarithm may go into a different Riema
sheet~depending on the sign ofm), yet the functional is such
that it changes, at most, by an integer multiple of 2p i , re-
flecting the fact that the partition functional is one-value
This is a general property which puts constraints on the fu
tions wn(V).

Perhaps this is a good place to remark that the ga
invariance implied by the use of thez-function prescription,
Eq. ~50!, has two levels@23#. One the one hand, there is th
somewhat trivial gauge invariance implied by the fact th
the regularization depends solely on the spectrum. Since
spectrum of the operatorK is left unchanged by gauge~or
more generally similarity! transformations, gauge invarianc
follows. However, the definition of thez-function introduces
a branch cut in the manifold of operatorsK, each singular
operators being a branching point on such a manifold. O
given Riemann sheet, the effective action functional may d
play a jump discontinuity along the branch cut. Because
determinant ofK, being the regularized product of eigenva
ues, is a smooth functional, it follows that the jump must
an integer multiple of 2p i . This is a tighter constraint on to
of the trivial gauge invariance noted above. For instance,
have noted in the Introduction that perturbation theory
fermions at finite temperature yields a Chern-Simons te
which is renormalized by a temperature-dependent co
cient. Under large gauge transformations this would int
duce an unacceptable change in the effective action b
quantity which is not a multiple of 2p i . It would be tempt-
ing to ‘‘solve’’ the problem by simply replacing the Chern
Simons term by a suitable gauge invariant version of
namely, theh invariant. This prescription restores gauge
variance but introduces jumps which again are proportio
to the temperature-dependent coefficient and thus it can
ruled out. The exact result known in particular but nontriv
cases@10–12# shows that this is not the correct mechanis
and that the determinant is a continuous functional, with
jumps.

B. Feynman graphs and large gauge invariance

We have already noted in Sec. III C that expressions s
as those in Eqs.~69! and ~70! involve an infinite number of
Feynman graphs. It seems interesting to understand w
Feynman graphs are being added and gain some insigh
how preservation of full gauge invariance is related to th

To this end, we will first consider the simpler case of
11-dimensional fermions@10#. The corresponding exact e
fective action is given in Eq.~64! and that formula holds for
arbitrary gauge fields which need not be Abelian nor stati
ary. As noted, when the gauge group is not simply connec
it supports large gauge transformations, which augment
value of the effective action by 2p ikn, n,kPZ, wheren is
04501
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the winding number of the gauge transformation andk de-
pends on the gauge group and the sign of the mass~in higher
spatial dimensions it may also depend on the homoto
class of the gauge field configuration!.

Because the 011-dimensional formula is exact, all Feyn
man graphs are included in this case. This suggests tha
graphs are required in order to reconstruct the Polyakov l
V appearing in the formula. We conclude that large gau
invariance does not act selecting a certain subset of gra
The same conclusion is expected to hold in higher dim
sional formulas since the dependence onV there is qualita-
tively similar to that of the one-dimensional case.

To further discuss this point let us restrict ourselves to
case of an Abelian gauge group. In this case large ga
transformations correspond to discrete shifts ofa52 logV
5*dx0 A0 and

Wf~a12p in !5Wf~a!12p ikn, ~96!

where the integer constantk is known. This equation con
tains all the information on large gauge transformations, a
it is completely equivalent to the statement

Wf~a!5P~a!1ka, P~a12p in !5P~a!. ~97!

Therefore large gauge invariance is equivalent to the s
periodicity of the function P(a)5Wf(a)2ka. Feynman
graphs correspond to expand in powers ofa, and looking for
large gauge invariance in terms of Feynman graphs co
sponds to detect periodicity of a function from its Tayl
expansion. This seems to be a difficult task.

A related issue is studying to what extent large gau
invariance determines the effective action. In the previo
011-dimensional Abelian case we have seen that to com
with gauge invariance,P(a) must be periodic, i.e.,

P~a!5 (
nPZ

cnena, ~98!

for some ~infinite number of! coefficientscn . No further
information can be extracted from gauge invariance, and
coefficientscn are not determined. In order to achieve furth
restrictions on the functionP(a), more information has to be
provided. If, for instance, one knows that the partition fun
tion Z(a)5exp@2Wf(a)# ~a periodic function! contains only
a finite number of periodic modes, the corresponding Fou
coefficients can then be determined from a few perturba
terms. This is actually the case in 011 dimensions@19#, and
can be traced back to the fact that the corresponding Ha
tonian contains a finite number of states, namely, the vacu
or the one-fermion state~cf. Sec. III B!. In higher dimen-
sions, besides the number of fermions, there is a momen
quantum number and a corresponding kinetic energy con
uting to the eigenvalues of the Hamiltonian, thus in gene
the partition function will contain all kinds of Fourier mode
To see how this works, it is sufficient to consider fermions
the Abelian case withAi50 andA0 a space-time constan
~suchA0 cannot be gauged away at finite temperature!. Let
ek

0 denote the single-particle levels of the Hamiltonian wh
A0 is set to zero~that is, the kinetic energy only! and letek
6-16
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be the levels whenA0 is switched on. Clearly,ek5ek
01A0 ,

and the labelk is related to the momentum of the fermio
The partition function is

Z@m,a#5)
k

~11e2bek!5)
k

~11Ve2bek
0
!, V5e2a.

~99!

Z@m,a# will be periodic ina but with many periodic modes
unlessd50. Whend52, integration over the labelk yields a
particular case of the formula forWf ,0@m,A# in Eq. ~65!.

In more than one dimension we have proposed an exp
sion in the number of spatial covariant derivatives. The
roth order@e.g., Eq.~69!#, which contains no spatial indices
corresponds to the sum of all Feynman graphs with the s
tial momentapi ~of the external gauge fields! set to zero and
no legs with spatialAi , but any number ofA0 external legs
and the full dependence in the frequencyp0 . There are no
odd-order terms in the expansion. The second order@e.g., Eq.
~70!# corresponds to all graphs with twoAi or pi , that is,~i!
graphs withpi50 and two spatial gauge fields, plus~ii !
graphs with oneAi andpi kept up to first order in a Taylo
expansion of the Green functions, plus~iii ! graphs with no
legsAi andpi kept up to second order in a Taylor expansi
around zero spatial momentum. Note that the method
sumes that the space has topologyRd. The contribution of
higher orders follows a similar pattern. Eventually, all co
tributions, all Feynman graphs, are added up.

The previous conclusions follow from inspection of th
formulas or else from making the expansion by introducin
bookkeeping parameter in order to count spatial indices
explained in Sec. II C. For the simpler formulas obtained
further expanding in powers ofD0 , @e.g., Eq.~73!#, we have
noted that this expansion does not seem to follow from
sertion of a bookkeeping parameter and so different exp
sions can be obtained, all of them being equivalent wh
added to all orders. The problem and its interpretation
terms of Feynman graphs can be seen in a particularly sim
case: let us assume that the gauge group is Abelian, thaA0
is a space-time constant andAi are space independent a
though time dependent. In this case the Green functions
pend only on the frequencieskn52p in/b of the fieldsAi :

W5 f 0~V!1(
n

f 2~V,kn!Ai ,nAi ,2n1•••,

~100!

Ai~x0!5
1

b (
n

eknx0Ai ,n .

In addition,D0 is equivalent to]0 and so an expansion inD0
is just a Taylor expansion in powers ofkn , to be made on
top of the expansion in powers ofAi . This gives the inter-
pretation in terms of Feynman graphs. Becausekn is a dis-
crete variable, the functionf 2 ~and similarly for higher or-
ders! is only well-defined at those discrete values. T
ambiguity comes when it is smoothly extended to continu
values of kn in order to carry out the Taylor expansio
Presumably this ambiguity can be removed by using
choice suggested by Carlson’s theorem.
04501
n-
-

a-

s-

-

a
as
y

-
n-
n
n
le

e-

s

e

C. Large mass expansions

Large mass expansions of the effective action can be
considered, as done in Ref.@13# for fermions using the heat
kernel technique. Inspection of our formulas in Secs. III
and III E, show that as the mass becomes large the temp
ture dependence is exponentially suppressed, be
O(e2bumu), thus the large mass expansion is an asympt
expansion with temperature-independent coefficients. Th
consistent with the fact that the coefficients are local ope
tors independent of the global topology of the space-ti
manifold @13#. Therefore in order to carry out a large ma
expansion one can simplify and start with a zero tempera
theory. The simplification of working at zero temperature
enormous to the point that this problem can be considere
solved one. There is a very large body of work on this su
ject, both for bosons and for fermions, largely summarized
Ref. @33# and references therein. Large mass expansions
fermions with arbitrary Dirac operators and arbitrary dime
sion, computed along the lines of the method discusse
this paper for finite temperature, can be found in Ref.@21#.
The large mass expansion can also be used as a check o
finite temperature formulas. In Sec. III E we have alrea
noted that Eq.~78! is consistent with the result more straigh
forwardly obtained from the zero temperature method p
sented in Ref.@27#. Likewise, for 211-dimensional fermi-
ons, and starting from the full finite temperature calculatio
one finds@23#

W152
1

48p

1

umu E d3x tr~Fmn
2 !1OS 1

m3D ,

W25hsQ~2sm!WCS

2
ih

8p

«~m!

12m2E d3 xemna tr~FbmDaFbn!

1OS 1

m3D ~101!

for the pseudoparity even and odd components, respectiv
~In these formulasWCS is the Chern-Simons term,Q and«
denote the step and sign functions, respectively,h561 de-
pends on the irreducible representation of the Dirac gam
matrices taken, ands561 distinguish the two possible
z-function definitions of the effective action, depending
the branch cut in the functionzs.! These results also deriv
more directly from the zero temperature formulas in R
@21#. The term withFmn

2 in W1 is that withH4 in Eq. ~4.11!
of Ref. @13#, already noted there, whereas the term w
FbmDaFbn is that with P5 in Eq. ~4.12! of the same refer-
ence.

V. SUMMARY AND CONCLUSIONS

Our findings can be summarized as follows.
~1! The one-loop effective action at finite temperature a

density, for bosonic or fermionic particles in presence
background fields~both gauge and nongauge! with arbitrary
6-17



en
-
in
on
a

u
e
ou
m

im
gu
ug
s
a

i
in

ite
nt
c

ing
ec-
o-

f
-
wo
the
rti-
he
ted
d-

he
n-

C. GARCÍA-RECIO AND L. L. SALCEDO PHYSICAL REVIEW D63 045016
internal symmetry group and arbitrary space-time dep
dence, can be written as a sum~an asymptotic series in gen
eral! of terms ordered by the number of spatial Lorentz
dices. Each term is well defined from the effective acti
functional itself and is separately gauge invariant under
gauge transformations.

~2! These terms are amenable to explicit computation
ing a combination ofz-function and symbols method. W
have shown that this kind of calculation can be carried
preserving full gauge invariance throughout, without assu
ing particular internal symmetry groups or special space-t
configurations for the background fields. The same ar
ments show that previous calculations done fixing the ga
through the condition]0A050 can be repeated lifting thi
condition, and this is equivalent to rewrite the final origin
result in a manifestly gauge invariant way.

~3! A further gauge invariant expansion can be taken
the number of temporal covariant derivatives in the adjo
representation. Within this expansion, all ultraviolet fin
terms and more generally, all terms not related to esse
anomalies, can be written as a sum of gauge invariant lo
l o
w
9

o
e

.

.

c
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operators~i.e., constructed withDm5@Dm ,# andM ) times a
function of the fieldV(x), which also transforms locally
under gauge transformations. For those terms contain
anomalies, topological pieces and multivaluation, the eff
tive action still looks local in terms of a suitable gauge c
variant version ofA(x), in addition toM, Dm , andV.

~4! The method is explicitly applied to the problem o
relativistic scalar particles in 211 dimensions. The corre
sponding effective action is computed up to terms with t
spatial Lorentz indices. The result is checked against
known result at zero temperature and also the known pa
tion function of a relativistic Bose gas. The corrections to t
density are also computed. Finally, a simple rule is no
relating the bosonic and fermionic versions of the gran
canonical potentials of ideal or interacting systems.
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