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Critical slowing down of the relaxation of the order parameter has phenomenological consequences in early
universe cosmology and in ultrarelativistic heavy ion collisions. We study the relaxation rate of long-
wavelength fluctuations of the order parameter in anO(N) scalar theory near the critical point to model the
non-equilibrium dynamics of critical fluctuations near the chiral phase transition. A lowest order perturbative
calculation~two loops in the couplingl) reveals the breakdown of perturbation theory for long-wavelength
fluctuations in the critical region and the emergence of a hierarchy of scales with hardq>T, semisoftT@q
@lT and soft lT@q loop momenta which are widely separated in the weak coupling limit. A non-
perturbative resummation is implemented to leading order in the largeN limit which reveals the infrared
renormalization of the static scattering amplitude and the crossover to an effective three dimensional theory for
the soft loop momenta near the critical point. The effective three dimensional coupling is driven to the
Wilson-Fisher three dimensional fixed point in the soft limit. This resummation provides an infrared screening
and for critical fluctuations of the order parameter with wave vectorslT@k@kus or near the critical tempera-
ture lT@mT@kus with the ultrasoft scalekus5(lT/4p)exp@24p/l# the relaxation rate is dominated by
classicalsemisoft loop momentum leading toG(k,T)5lT/(2pN). For wave vectorsk!kus the damping rate
is dominated by hard loop momenta and given byG(k,T)54pT/@3N ln(T/k)#. Analogously, for homogeneous
fluctuations in the ultracritical regionmT!kus the damping rate is given byG0(mT ,T)54pT/@3N ln(T/mT)#.
Thus critical slowing down emerges for ultrasoft fluctuations. In such a regime the rate is independent of the
couplingl and both perturbation theory and the classical approximation within the largeN limit break down.
The strong coupling regime and the shortcomings of the quasiparticle interpretation are discussed.

DOI: 10.1103/PhysRevD.63.045007 PACS number~s!: 11.10.Wx, 11.15.Pg, 12.38.Mh, 64.60.Ht
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I. INTRODUCTION AND MOTIVATION

The program of relativistic heavy ion collisions both
Brookhaven and at CERN seeks to understand the phase
gram of QCD in conditions of temperatures that we
achieved during the first 10ms after the big bang or densitie
several times that of nuclear matter which could exist at
center of neutron stars. Current theoretical understanding@1#
leads to the conclusion that QCD could undergo two ph
transitions: a confinement-deconfinement~or hadronization!
and the chiral phase transition. Current lattice data seem
suggest that both occur at about the same temperaturTc
'160 MeV @1#. The consensus emerging in the field is th
several types of observables will have to be studied simu
neously and event-by-event analysis of data will have to
carried out to extract unambiguous signals both hadronic
electromagnetic to reveal the presence of a quark-gl
plasma~QGP! phase. Recent results reported from CER
Super Proton Synchrotron~SPS! @2# seem to indicate a
strong evidence for the existence of the QGP in Pb-Pb
lisions, and the Relativistic Heavy Ion Collider~RHIC! at
Brookhaven will begin operation soon with Au-Au collision
with four dedicated detectors capable of event-by-ev
0556-2821/2001/63~4!/045007~25!/$15.00 63 0450
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analysis of hadronic and electromagnetic observables.
For QCD with only two flavors of massless quarks~u,d! it

has been argued@3,4# that the chiral phase transition at finit
temperature but vanishing baryon number density is of s
ond order and described by the universality class of O~4!
Heisenberg ferromagnets. It has also been suggested rec
that at finite baryon density there is a second order crit
point described by the Ising universality class@5#. Second
order critical points are characterized by strong critical lon
wavelength fluctuations and a diverging correlation len
that could lead to important experimental signatures@6#.
These signatures would be akin to critical opalescence n
the critical point in binary fluids@6# and could be observed in
an event-by-event analysis of the fluctuations of the char
particle transverse momentum distribution~mainly pions!
@6#. These fluctuations are characterized by the typical c
relation length of the order parameter and it has been s
gested that the phenomenon of critical slowing down, ub
uitous near the critical point of second order pha
transitions, can lead to strong departures from equilibri
that will determine the value of the correlation length wh
long-wavelength fluctuations freeze out@7#. Critical slowing
down of long-wavelength fluctuations near a second or
©2001 The American Physical Society07-1
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critical point is the statement that the long-wavelength F
rier components of the order parameter relax very slo
towards equilibrium@8#. In mean-field theory inclassical
critical phenomena, the relaxation time diverges proportion
to the susceptibility near the critical temperature but therm
fluctuations renormalize the relaxation time to be of the fo

t(kW50)}jz with j the correlation length, or at critical poin
t(k)}kz with z a dynamical critical exponent@8,9#. Another
similar manifestation of an anomalously slow relaxation
long-wavelength fluctuations arises in weakly first ord
phase transitions when the system enters into the m
phase where the~isothermal! speed of sound, which dete
mines the velocity of propagation of long-wavelength pr
sure waves, becomes anomalously small resulting in the s
est point of the equation of state. In this case there have
been suggestions that there are experimental consequenc
this softening in relativistic heavy ion collisions in obser
ables related to collective flow and the transverse momen
distributions of particles at freezeout@10#.

In classical normal fluids near the critical point the va
ishing of the ~isothermal! speed of sound, critical opales
cence~strong scattering of light by long-wavelength fluctu
tions! and critical slowing down are all related@11#, and in
ferromagnets the spin diffusion constant vanishes near
critical point again signaling critical slowing down@11#.

The softening of the equation of state near the criti
point of QCD could also have important cosmological imp
cations. When the the QGP enters the mixed phase with
rons, the speed of sound becomes anomalously small an
time scale for propagation of pressure waves over a gi
critical wavelength becomes longer than the free fall time
gravitational collapse which is then unhindered by the pr
sure of the hadronic gas. This could lead to the formation
primordial black holes@12# with a possible imprint in the
acoustic peaks in the cosmic microwave background@13#.
Other possible cosmological relics from the QCD phase tr
sition with a mixed phase had been predicted, from stra
quark nuggets to massive compact halo objects~MACHO’s!
@14,15#.

A familiar argument is typically invoked to state th
while the QCD phase transition in the early Universe o
curred in local thermodynamic equilibrium~LTE! this may
not be the case in relativistic heavy ion collisions. The ar
ment compares the typical collisional relaxation time sc
obtained from a strong interaction processtcoll;10222 secs
to the time scale for cooling near the critical temperat
;160 MeV, i.e. T/Ṫ;H21;1025 secs. The argument i
that sincetcoll!H21 the phase transition occurs in LTE i
cosmology, whereas in relativistic heavy ion collisions
RHIC and CERN Large Hadron Collider~LHC! energies
these time scales will be comparable. However this argum
completely neglects the possibility that long-waveleng
fluctuations could undergo critical slowing down and free
out, i.e. fall out of local thermal equilibrium, evenbeforethe
phase transition. The freeze-out of long-wavelength fluct
tions during the phase transition could result in import
non-equilibrium effects on the size and distribution of p
mordial black holes or any other cosmological relic just
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they could lead to important observables in the moment
distributions of charged pions in relativistic heavy ion col
sions@6,7,10#.

Indeed there are simpler experimental situations wh
this is the case, in typical normal fluids a collisional rela
ation time ~away from the critical point! is of the order of
1029 secs while near the critical point~even at 10% of the
critical temperature! critical slowing down becomes ver
dramatic and thermalization time scales become of the o
of minutes if not hours@11,16,17#.

Thus the phenomenological importance of critical slowi
down for the QCD phase transition both in relativistic hea
ion collisions as well as in early universe cosmology mo
vates us to study this phenomenon in a model quantum fi
theory that bears on the low energy~chiral! phenomenology
of QCD, the O(N) linear sigma model. Furthermore th
study of critical slowing down is the precursor to a mo
complete program to understand transport phenomena
the relaxation of hydrodynamic modes at or near a criti
point.

A. Goal

Our goal is to provide a consistent microscopic descr
tion of critical slowing down at or near criticality directly
from an underlying quantum field theory that is at least p
nomenologically motivated to study the QCD phase tran
tions. This will be a first step in a program that seeks to of
a consistent description of transport near critical points t
eventually may be merged with a hydrodynamic descript
to obtain a more reliable picture of critical phenomena n
the deconfinement and chiral phase transitions and an as
ment of the potential phenomenological observables bot
early universe cosmology as well as in relativistic heavy
collisions. We begin this program in this article by focusin
on the relaxation rate of long-wavelength fluctuations of
order parameter at and near the critical point in a consis
non-perturbative framework.

Since we are concerned with critical slowing down duri
the cooling stage of a phase transition, we focus our st
either at the critical temperature or slightly above it.

B. Strategy

We begin our study of critical slowing down by analyzin
the relaxation rate of long-wavelength fluctuations of the
der parameter at and near the critical point in anO(N) scalar
field theory, which is a phenomenological arena to study
relaxation of sigma mesons and pions. Our first step is
obtain the relaxation rate to lowest order in perturbat
theory ~two loops!. This calculation reveals clearly th
breakdown of the perturbative expansion for lon
wavelength fluctuations at or near the critical point as a
sult of the strong infrared behavior for soft loop momentu
and the necessity for a non-perturbative treatment. We t
implement a non-perturbative resummation of bubble-ty
diagrams via the largeN approximation to obtain the damp
ing rate in the next-to-leading order in the largeN limit. The
resummation implied by the largeN limit to order 1/N is
akin to that obtained via the renormalization group with t
7-2



ca
d

gt
n

es
l

a
al
-

th
ve

se
at

n

th
s

g

vi
r

n
i

th
ffe
a
o-
in
b
os
om

n

b

nd

si-
a-

is

is-
int

n

he

-
ing
n

ls

for
the
he
-
the

oop

alar
in

-
for

to
ur-
ec-
e to

in
e
d-
s-

RELAXING NEAR THE CRITICAL POINT PHYSICAL REVIEW D63 045007
one loop beta function and reveals the softening of the s
tering amplitude and the crossover to an effective three
mensional theory for momentaq!lT with l the quartic
coupling.

C. Summary of main results

We have obtained the relaxation rate for long-wavelen
fluctuations of the order parameter at the critical point a
for homogeneous fluctuations near criticality both to low
order in perturbation theory~two loops! and near the critica
point to next to leading order in the largeN limit.

The two-loop results for the relaxation rate for a fluctu
tion of wavevectorkW of the order parameter at the critic
point is found to beG(k,T)}l2T2/k whereas near the criti
cal point, homogeneous fluctuations~with kW50) relax with a
rate G0(mT ,T)}l2T2/mT . Here mT}uT2Tcu1/2!Tc is the
effective thermal mass. These results clearly reveal
breakdown of the perturbative expansion in the long wa
length limit k→0 at T5Tc and forT→Tc andk50.

A detailed analysis of the different contributions to the
results for the relaxation rate shows that the rate is domin
by very soft loop momentumq!lT which in the weak cou-
pling limit l!1 are classical. The implementation of a no
perturbative resummation via the largeN limit explicitly
leads to an effective scattering amplitude that vanishes in
static long-wavelength limit as a consequence of the cro
over to a three dimensional theory for loop momentaq
!lT. This effective scattering amplitude allows us to reco
nize that the effectivethree dimensionalcoupling for soft
momenta approaches the three dimensional non-tri
~Wilson-Fisher! fixed point in the long-wavelength limit nea
the critical point. The largeN resummation for the relaxatio
rate incorporates this effective three dimensional coupling
the spectral density that determines the imaginary part of
retarded self-energy for the order parameter. Since the e
tive three dimensional coupling is driven to its fixed point
long wavelength, the contribution from very soft loop m
mentaq!lT which give the strongest infrared behavior
lowest order in perturbation theory is effectively screened
this renormalization of the coupling. Consequently the m
important contribution to the relaxation rate arises both fr
the semisoft classicalregion of loop momentumT@q@lT
and also from thehard regionq>T. A detailed analysis of
the contribution from the loop momenta reveals a no
perturbativeultrasoft scale

kus.
lT

4p
e24p/l.

We find that for soft momentak@kus the damping rate is
dominated by classical semisoft loop momenta and given

G~k,T! 5

k@kus lT

2pNF 11OS 1

ln
lT

k
D G . ~1.1!
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For k,mT!kus the classical approximation breaks down a
the damping rate at the critical pointmT50 for k!kus is
given by

G~k,T! 5

k!kus 4pT

3N ln
T

k
F 11OS 1

ln
T

k
D G . ~1.2!

For homogeneous fluctuations near the critical point (k50,
mT}uT2Tcu1/2Þ0) the damping rate is given by

G0~mT ,T! 5

mT!kus 4pT

3N ln
T

mT

F 11OS 1

ln
T

mT

D G . ~1.3!

Thus critical slowing down, i.e., the vanishing of the qua
particle widthG for long-wavelengths emerges in the ultr
soft limit k!kus or very near the critical pointmT!kus
where it vanishes logarithmically slow in thek,mT→0 limit
to this order in 1/N. Notice that in such regimes the rate
independent of the couplingl.

In particular, the effective three dimensional theory d
cussed above corresponds to the vicinity of the fixed po
which is effective forlT@q, whereas the damping rate i
the soft region is determined by loop momentaT@q@lT
and in the ultrasoft region by loop momentaq>T. Thus, the
three dimensional fixed point is not directly describing t
dynamics.

The largeN approximation is not limited to weak cou
pling and our results apply just as well to a strong coupl
casel>1 wherein we find that the relaxation rate is give
by Eqs. ~1.2!, ~1.3!. However this analysis clearly revea
that for weak coupling there emerges ahierarchyof widely
separated scales for loop momenta: from hardq>T to semi-
soft T@q@lT, and softlT@q that lead to different contri-
butions to the relaxation rate. Which is the relevant scale
the damping rate is determined by the wavevector of
fluctuation of the order parameter and the proximity to t
critical temperature. Fork, mT@kus the classical approxima
tion does apply and the damping rate is dominated by
soft and semisoft classical loop momenta@with the result
~1.1!#, whereas fork, mT!kus the classical approximation
breaks down and the damping rate is dominated by hard l
momentaq>T @with the results~1.2!, ~1.3!#.

A similar hierarchy exists in non-Abelian plasmas@18–
21# and we compare and contrast our results in the sc
theory with those in the hard thermal loop approximation
Abelian and non-Abelian plasmas@18–21#.

This article is organized as follows: in Sec. II we intro
duce the model, obtain the real-time equation of motion
the order parameter and describe the strategy followed
obtain the relaxation rate. In Sec. III we carry out a pert
bative analysis of the relaxation rate to two loops order, r
ognize the breakdown of perturbation theory and compar
the case of the hard thermal loop resummation program
gauge theories. In Secs. IV and V we introduce the largN
limit, obtain the effective static scattering amplitude in lea
ing order in the largeN and discuss the dimensional cros
7-3
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over for soft momenta and the effective three dimensio
coupling being driven to the three dimensional fixed poi
We then use these results to obtain the relaxation rate
near criticality to orderO(1/N) in the largeN limit and ex-
plicitly discuss the screening of the soft loop momenta. T
contribution from classical soft and semisoft momenta a
that of hard loop momenta are analyzed separately to h
light the important differences. In this section we discu
further the validity of a quasiparticle interpretation of th
collective long-wavelength fluctuations of the order para
eter. In Sec. VI we summarize our conclusions and res
and discuss the next step of the program. In Appendix A
equations of motion in the largeN limit are derived and in
Appendix B the polarization integral is computed.

II. PRELIMINARIES: THE MODEL AND THE STRATEGY

We study the model of scalar fieldsFW (x) in the vector
representation ofO(N), which is conjectured to describe th
equilibrium universality class for the chiral phase transiti
with two light quarks forN54 @4#. The Lagrangian density
is given by

L5
1

2
~]mFW !22

1

2
@mT

21dm2~T!#FW 2~x!

2
l

2N
@FW 2~x!#21JW•FW ~2.1!

where the external currentJW has been introduced to genera
an expectation value for the scalar field~i.e. the order param
eter! by choosing it to be nonzero along a particular~sigma!
direction.

The countertermdm2(T) is introduced to cancel the tad
pole contributions~local terms! so that perturbation theor
~or the largeN expansion! is carried out in terms of the
effective thermal massmT . In particular to leading order in
the largeN expansion there is the hard thermal loop con
bution given by the usual tadpole term@22# }l^FW 2&/N
}lT2 which combined with the zero temperature~negative!
mass squared leads to an effective finite temperature m
mT

2}(T22Tc
2). The critical theory corresponds toT5Tc , i.e.

mT50. In this case the countertermdm2(T) is adjusted con-
sistently order by order to set the effective finite temperat
mass equal to zero.

As stated in the Introduction, our goal is to obtain t
relaxation rate~damping rate! of the order parameter at an
near the critical point. This will be achieved by obtaining t
equation of motion for the expectation value of the sca
field, i.e., the order parameter and treating its evolution
real time as an initial value problem. This is achieved
coupling an external source that serves the purpose of
paring the initial state. From the equation of motion we re
ognize the self-energy and compute the relaxation rate f
its imaginary part on shell. We write

Fa~xW ,t !5w~xW ,t !da,11ha~xW ,t !; ^hW ~xW ,t !&50 ~2.2!
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where we chose the particular direction ‘‘1’’ by choosin
external source term to be different from zero along t
direction to give the field an expectation value~see below!.
The equation of motion forw(xW ,t) is obtained by imposing
that ^h i(xW ,t)&50 consistently in the perturbative expansio
@23#. In terms of the spatial Fourier transform of the ord
parameterw and following the steps detailed in Append
A 2 ~see also@23#! we find

ẅk~ t !1@k21mT
21dm2~T!1mtad

2 ~T!#wk~ t !

1E
2`

`

S ret,k~ t2t8!wk~ t8!dt85Jk~ t !

whereJk(t) is the external source that generates the ini
value problem andS ret,k(t2t8) is the two-loops retarded
self-energy without the tadpole contributions. The one a
two-loops tadpole contributions~local! are accounted for in
mtad

2 (T). As described above, the countertermdm2(T) is
fixed consistently in perturbation theory by requesting tha
cancels all constant~in space and time! contributions to the
self-energy~such as the tadpoles! i.e.,

dm2~Tc!1mtad
2 ~Tc!50.

The retarded self-energy has a dispersive representatio
terms of the spectral densityr̃(v,k) given by

S ret,k~ t2t8!5E dv8

2p
e2 iv8(t2t8)E dv

r̃~v,k!

v2v82 i e
~2.3!

in terms of which the relaxation~damping! rate is given by
@18#

G~k,T!52
p

2vp~k!
r̃~vp~k!,k,T! ~2.4!

wherevp(k) is the position of the pole in the propagato
i.e., the true dispersion relation. For the perturbative t
loops or to leading order in the largeN limit as studied here
vp

2(k)5k21mT
2 , which at T5Tc takes the formvp(k)

5ukW u.
With the purpose of clearly revealing the breakdown

the perturbative expansion for soft momentak!lT we will
begin our analysis by focusing first on the perturbative eva
ation of the damping rate. At one loop order the only con
bution to the self energy is given by the tadpole te
l^FW 2(xW ,t)&/N which is local, determines to lowest order th
temperature dependent massmT}uT2Tcu1/2 and determines
the counterterm@22#. Furthermore this is the leading contr
bution in the hard thermal loop limit@18,22#. The lowest
order contribution to the absorptive~imaginary! part of the
self-energy arises at two loops and is studied in detail in
next section.
7-4
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III. PERTURBATION THEORY: TWO LOOPS

We begin our study by carrying out a perturbative eva
ation of the damping rate to lowest order, i.e. to two loops
reveal several important features of the soft momentum lim
and to pave the way to implement a non-perturbative ev
ation of the self-energy in the largeN limit. Furthermore, as
it will become clear during the course of the calculation, t
lowest order contribution contains some of the important
gredients of the largeN limit and will highlight the contri-
bution to the relaxation rate from different regions of lo
momentum.

After substracting the one and two loops tadpole con
butions which are cancelled by the counterterm, the spa
Fourier transform of the retarded self-energy reads

S ret,k~ t2t8!58l2
N12

N2 E d3p

~2p!3

d3q

~2p!3
$GkW1qW

.
~ t2t8!

3GpW 1qW
.

~ t2t8!GpW
.

~ t2t8!2GkW1qW
,

~ t2t8!

3GpW 1qW
,

~ t2t8!GpW
,

~ t2t8!%Q~ t2t8! ~3.1!

where the Wightmann functionsG.,G, are given in Appen-
dix A 1.

With the purpose of comparing with the results of la
sections, it proves convenient to introduce the intermed
quantities

G q
.~ t2t8!522l

N12

N E d3p

~2p!3
GpW 1qW

.
~ t2t8!GpW

.
~ t2t8!

5E dq0e2 iq0(t2t8)S.~q0 ,q!

G q
,~ t2t8!52

2l

N
~N12!E d3p

~2p!3
GpW 1qW

,
~ t2t8!

3GpW
,

~ t2t8!

5E dq0e2 iq0(t2t8)S,~q0 ,q!

and using the expression for the Wightmann functio
GkW

.(t2t8),GkW
,(t2t8) given in Appendix A 1, it is a straight-

forward exercise to show that the spectral functio
S,(q0 ,q);S.(q0 ,q) obey the Kobo-Martin-Schwinge
~KMS! condition

S,~q0 ,q!5e2bq0S.~q0 ,q!.

Introducing the spectral density

s~q0 ,q!5S.~q0 ,q!2S,~q0 ,q!

which at the critical pointT5Tc , i.e. mT50 is found to be
given by
04500
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s~q0 ,q!52l
N12

N E d3p

~2p!3

1

4pupW 1qW u

3$@11nqW 1pW1npW #@d~q02upW 1qW u2p!

2d~q01upW 1qW u1p!#1@npW2nqW 1pW #

3@d~q02upW 1qW u1p!2d~q01upW 1qW u2p!#%

~3.2!

we find

S.~q0 ,q!5@11n~q0!#s~q0 ,q!,

S,~q0 ,q!5n~q0!s~q0 ,q! ~3.3!

where

n~q0!5
1

ebq021
, nkW5

1

ebukW u21
. ~3.4!

The near critical case is considered in Sec. III C.
A lengthy but straighforward calculation with the Bos

Einstein distribution functions for massless particles leads
the following expression fors(q0 ,q):

s~q0 ,q!5
l

8p2

N12

N H Q~ uq0u2q!sgn~q0!

1
2T

q
lnF12e2uq01qu/2T

12e2uq02qu/2TG J . ~3.5!

It is important to emphasize that the second, finite tempe
ture term is the combination of two different contributions
two massless particle cut with support in the regionq0.q
and a Landau damping cut with support in the region2q
<q0<q.

Introducing the Fourier representation of the theta fu
tion

Q~ t2t8!52E dv

2p i

e2 iv(t2t8)

v1 i e
~3.6!

in the expression for the self-energy~3.1!, we find the spec-
tral density that enters in the dispersive representation of
retarded self-energy~2.3! to be given by
7-5
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r̃~v,k!52
4l

N E d3q

~2p!3

dq0

2ukW1qW u
s~q0 ,q!@11nqW 1kW1n~q0!#@d~v2q02ukW1qW u!2d~v1q01ukW1qW u!#

52
4l

N E d3q

~2p!3

1

2ukW1qW u
$s~q,v2ukW1qW u!@nqW 1kW2n~ ukW1qW u2v!#1s~q,v1ukW1qW u!@nqW 1kW2n~v1ukW1qW u!#%

~3.7!
ri
to

gt
de

is

p-

d
ble

e

oxi-

l
is
with s(q0 ,q) given by Eq.~3.5! and we used that

s~2q0 ,q!52s~q0 ,q!, 11n~2q0!52n~q0!.

Although this seems to be a cumbersome manner to w
down the two loop contribution, it does prove convenient
establish contact with the largeN description in the next
section.

We are interested in the relaxation of long-wavelen
fluctuations of the order parameter, hence we will consi
the soft limit k!T.

We study the contributions coming from softq!T and
hardq>T loop-momenta separately.

A. The soft momenta contribution „classical region…

This is the classical region where the Bose-Einstein d
tribution functions can be approximated asn(v)'T/v,nkW

'T/k.
In this regime the contribution of the soft momentaq

!T yields

r̃cl~v,k!52
l2T2v

2p2

N12

N2 E d3q

~2p!3

1

qukW1qW u2

3F lnU v2ukW1qW u1q

v2ukW1qW u2q
U

v2ukW1qW u
1

lnU v1ukW1qW u1q

v1ukW1qW u2q
U

v1ukW1qW u
G

where we only kept the contribution of orderT to s(q0 ,q).
We evaluate the spectral density atv5k leading to the fol-
lowing form for the soft momenta contribution to the dam
ing rate~2.4!,

Gcl~k,T!5S lT

4 D 2 N12

2p4N2
@J1~k,T!1J2~k,T!#, ~3.8!

with J1(k,T) and J2(k,T) given by the following expres-
sions:

J1~k,T!5E d3q

lnUukW1qW u1q2k

ukW1qW u2q2k
U

qukW1qW u2~ ukW1qW u2k!
04500
te

h
r

-

J2~k,T!5E d3q

lnUukW1qW u1q1k

ukW1qW u2q1k
U

qukW1qW u2~ ukW1qW u1k!
. ~3.9!

The angular integrals can be performed analytically ank
can be scaled out of the integral by introducing the varia
x5q/k leading to the final expression

Gcl~k,T!5
l2T2

16p3k

N12

N2 E
0

`

dx F@x# ~3.10!

with the functionF@x# given by

F@x#5
2

x F2x
ln x

x221
1 lnUx11

x21UG .
and is depicted in Fig. 1. In principle, the upper limit in th
integral in Eq.~3.10! should beaT/k with a!1 to restrict
the integral to the soft momenta where the classical appr
mation is valid, but the integrand falls off as 1/x2 for x@1
and the integral is dominated by the smallx region 0,x
<1 as shown in Fig. 1. The integral fromx50 to x5` in
Eq. ~3.10! gives 2p2 and the contribution from the classica
loop momentaq!T to the damping rate to two loops order
thus given by

FIG. 1. The functionF@x# vs x5q/k.
7-6
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Gcl~k,T!5
l2T2

8pk

N12

N2 . ~3.11!

As will be seen in detail in the next section, the largeN
resummation leads to a screening of the soft loop momen
which cuts off the contribution of momentumq,lT. Hence,
with the purpose of comparing the perturbative two-loop
sult with that in the largeN limit, it proves convenient to
obtain the contribution to the damping rate from the reg
of semisoft loop momenta withlT<q<aT with l!a!1
for the case of soft external momentumlT/k@1.

The contribution to the integral of the functionF@x# from
this region is given by

E
lT/k

aT/k

dx F@x#'
4k

lT
ln

lT

k

therefore this region of loop momentum gives a contribut
to the damping rate given by

GT@q.lT'
lT

2p

N12

N2 ln
lT

k
. ~3.12!

Thus we see that the contribution from the soft region
internal loop momentumq,lT contributes a factorlT/k
@1 larger than the region of momentumq.lT for soft
external momentumk!lT. This observation will become
important when we compare with the largeN result, because
as we will show explicitly below, the resummation of th
effective scattering amplitude will lead to a softening of t
effective vertex and hence screening of very soft moment
the loop.

B. The hard momenta contribution

We now focus on obtaining the contribution to the dam
ing rate from hard loop momentaq>T. From the expression
of the finite temperature contribution to the spectral den
s(q0 ,q) ~3.5! it is clear that hard momentaq0 ,q>T will be
exponentially suppressedunless either uq2q0u!T or uq
1q0u!T. Consider the expression for the spectral dens
~3.7! for v5k and consider the contribution from the del
function with support forq05k2ukW1qW u; it is straightfor-
ward to see that the other delta function will give a simi
contribution. For q>T@k we find that uq01qu5ku1
2cosuu whereu is the angle betweenkW andqW and uq02qu
>2T, hence the region of loop momentum that domina
corresponds to the emission~or absorption! of a pair of sca-
lars ~the particles in the loop! with total center of mass mo
mentumcollinear with the external momentum.

Keeping the leading term} ln(uq01qu/2T) in s(q0 ,q) and
the full occupation factors in the expression forr̃ the spectral
density~3.7! becomes

r̃~v5k,k!}2l2Tk ln
T

k

and the contribution to the damping rate from the hard lo
momentum region is
04500
m

-

n

n

f

in

-

y

y

r

s

p

Ghard~k,T!}l2T ln
T

k

which is a factor (k/T)ln(T/k)!1 smaller than the contribu
tion from the classical loop momenta~3.11! for k/T!1. In
summary, when the external momentum is softk!lT the
damping rate is completely determined by the classical
gion q!T of loop momenta and given by Eq.~3.11!. That in
a scalar theory the leading temperature effects are de
mined by the classical region of loop momenta was alre
anticipated in Refs.@24,25# but the computation above iden
tifies the contribution to the relaxation rate from several d
ferent regions of loop momentum. This identification w
become important to understand the result obtained from
largeN limit.

C. Near criticality

A calculation very similar to that in the critical inhomo
geneous case can be carried out for homogeneous fluc
tions (k50) near the critical point with the effective therm
massmT

2}l(T22Tc
2) straightforwardly. In this case the an

gular integrals are trivial and most of the steps are simila
the critical case leading to~see also@24,25#!

G0~mT ,T!5
l2T2

8pmT

N12

N2 .

A similar analysis for contributions from different regions
loop momentum is obtained by replacingk→mT in the ar-
guments above.

The resonance parameterG(k,T)/vp with vp the position
of the single~quasi! particle pole determines how broad
the resonance. IfG(k,T)!vp the quasiparticle can be de
scribed by a narrow resonance and its decay occurs on
scales much longer than those of the microscopic oscillati
vp

21 . On the other hand forG(k,T)@vp the notion of qua-
siparticle is not appropriate and the excitation is described
a very short lived broad resonance.

The two loops calculation reveals that, at the critical po
mT50,

G~k,T!

k
5

T@k N12

8pN2S lT

k D 2

;

analogously, near criticality for homogeneous fluctuationk
50

G~mT ,T!

mT
5

T@mT N12

8pN2S lT

mT
D 2

.

Hence up to this order a quasiparticle interpretationis not
reliable fork, mT!lT.

Moreover, for very soft external momenta or very near t
critical temperature,k;mT!lT the perturbative expansio
7-7
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clearly breaks down and a non-perturbative scheme mus
invoked to study the damping rate.

This situation is similar to that in the hard thermal loo
~HTL! program in the sense that for external momentak
!lT ~in gauge theoriesl must be replaced by the gaug
coupling squared! a non-perturbative resummation is need
@18,19#. However, here the similarity ends and the ma
difference with the HTL program is revealed: whereas in
HTL case the non-perturbative region is dominated byhard
internal loop momentaq>T, the relaxational dynamics a
the critical point is dominated bysoft classical~and as will
become clear below, also semi-soft! internal loop momenta
q!T. The difference can also be clearly seen formally
restoring the\ in the contributions: the temperature alwa
appears in the combinationT/\ ~from the distribution func-
tions!, in the HTL program the gauge coupling consta
squarede2→e2\ ~since this is the loop counting paramete!
hence the HTL scalee2T2→e2T2/\. However in the scalar
case the loop counting parameter isl→l\, hence the con-
tribution l2T2 is classical i.e. independent of\. Therefore
whereas in the HTL program perturbation theory brea
down at a semiclassical scalek}eT/A\, at the critical point
of a scalar field theory the perturbative expansion bre
down at aclassical scalek}lT. In the HTL program the
damping rate of collective excitations is typically of ord
e2T and the quasiparticle poles~plasmons and plasminos!
are of ordervp}eT/A\ hence for weak coupling the long
wavelength quasiparticles are always relatively narrow re
nances. This is in striking contrast with the case of a criti
scalar theory where the long-wavelength excitation of
order parameter is gapless.

IV. LARGE N

Having recognized the non-perturbative nature of the
laxation for the long-wavelength components of the or
parameter, we seek to use a consistent non-perturbative
scription and study the relaxation of the order paramete
the largeN limit. This limit is best studied by introducing a
auxiliary field that replaces the quartic interaction via
Gaussian integration@26# ~Hubbard-Stratonovich transfor
mation!, hence the Lagrangian density becomes

L5
1

2
~]mFW !22FAl

N
x~x!1

1

2
„mT

21dm2~T!…GFW 2~x!

1
1

2
x2~x!1JW~x!•FW ~x!. ~4.1!

Before we engage in a study of the damping rate, i
important to highlight that the largeN expansion effectively
provides a reorganization of the perturbative series which
example at leading order and at zero temperature is aki
the resummation of the leading logarithms via the renorm
ization group for the scattering amplitude. We now study
04500
be
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t
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detail this resummation at finite temperature which will r
veal the screening of the scattering amplitude for soft m
menta which in turn will be responsible for screening t
infrared behavior of the spectral functions and the damp
rate.

In this section we will focus on the critical theorymT
50. The analysis of the off-critical case is given in Sec.

A. Effective scattering amplitude

To leading order in the largeN the two particle to two
particle scattering amplitude is dominated bys-channel ex-
change and is completely determined by the propagato
the auxiliary fieldx. Figure 2 shows the Dyson sum for th
propagator of the auxiliary field in leading order in the lar
N limit and Fig. 3 shows thes-channel scattering amplitud
in leading order, thet and u-channel contributions are sub
leading. The bubble diagram which is the building block
the propagator of the auxiliary field~and therefore the
s-channel scattering amplitude! is simpler to be calculated in
the Matsubara formulation of finite temperature field theo
with an external frequencynn52pnT and given by

I bub~nn ,q!52lT(
nm

E d3p

~2p!3

1

nm
2 1pW 2

3
1

~nm1nn!21~pW 1qW !2
. ~4.2!

FIG. 2. Propagator for the auxiliary field in leading order in t
largeN limit. There is a factorAl/N for each vertex and a factorN
for each bubble. The propagator is ofO(1) in the largeN limit.

FIG. 3. Two particle s-channel scattering amplitude in the sta

and largeN limit. qW , q050 are the transferred momentum an
frequency carried by the propagator of the auxiliary field.
7-8
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To illustrate the resummation in a more clear manner,
focus on the static limit which is obtained by setting t
external Matsubara frequency to zero. The strongest infra
behavior and leading contribution in the high temperat
limit arises from the termm50 in the Matsubara sum, th
remaining spatial momentum integral is carried out lead
to

I bub~0,qW !5
lT

4q
~4.3!

and thes-channel scattering amplitude in the static limit
given by ~see Fig. 3!

M S 0,kW1
qW

2
;0,2kW1

qW

2
D 5

1

N

l

11I bub~0,qW !
.

We see that the effective temperature and momentum de
dent coupling constant, defined as the coefficient of 1/N in
the s-channel scattering amplitude in the static limit, is giv
by

le f f~q!5
l

11
lT

4q

. ~4.4!

This expression reveals several noteworthy features. F
we see that at high temperature in the critical region
actual expansion parameter in the sum of bubbles islT/q
with q the spatial momentum tranferred into the loop. T
factor T is a consequence of the dimensional reduction
the factorlT can be interpreted as the dimensionful thr
dimensional coupling. Since the expansion is in terms
dimensionless quantities the factorq in the denominator is
required for dimensional reasons. In fact this can be und
stood via a parallel with the calculation at zero temperat
in 42e space-time Euclidean dimensions with a coupli
lTe with T now some dimensionful scale, the loop integ
for the massless theory produces a factorq2e and fore51
i.e. the three dimensional theory one finds the result for
finite temperature loop in the static limit. Secondly, the e
pression for the effective coupling~4.4! is a result of the
largeN resummation to leading order and is the same as
obtained from the solution to the renormalization gro
equation for the running coupling using the one-loop b
function obtained in thee expansion and settinge51, i.e.
the largeN resummation is akin to the resummation obtain
from the renormalization group in euclidean field theory,
the sense that the leading order in the largeN leads to a
running coupling which is the same as that obtained from
one-loop beta function. Thirdly, since the effective expa
sion parameter in the sum of bubbles islT/4q it is conve-
nient to introduce thethree dimensionalcoupling l3(q)
5lT/4q and its effective counterpart

l3,e f f~q!5
l3~q!

11l3~q!
5

lT

4q1lT
. ~4.5!
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The main point is that this effective three-dimensional co
pling is driven to the three-dimensional Wilson-Fisher fix
point l* 51 in the soft momentum limitq→0, while the
effective four dimensionalcoupling ~4.4! is driven to the
trivial fixed point in this limit. Hence, whereas the thre
dimensional couplingl3(q)5lT/4q diverges in theq→0
limit, the largeN ~equivalent to the renormalization group!
effective couplingl3,e f f(q) is driven to a finite fixed point in
the soft momentum limit. Therefore the largeN resummation
is effectively screening the infrared divergences associa
with the soft momentum limit much in the same manner
the resummation implied by the renormalization gro
within the e expansion. Obviously, in exactly three Euclid
ean dimensions one could hardly justify the validity of ane
expansion, but the largeN limit provides a non-perturbative
framework that includes a similar resummation. The m
point of this discussion is the realization that the resumm
tion implied by the largeN limit provides an effective cou-
pling constant that is well behaved in the infrared limit, th
leading to the conclusion that the simple point-like scatter
vertex must be resummed before attempting to compute
damping rate or any other transport coefficient near the c
cal region.

The analysis in this section reveals the role played by
scale lT: internal loop momentaq!lT lead to non-
perturbative contributions, in the weak coupling limitl!1
these non-perturbative scales areclassical, on the other hand
for q@lT the effective couplings~either four or three di-
mensional! are small for weak couplingl and the effective
vertices coincide with the bare vertices. The implications
this discussion will be important to understand the differe
contributions to the relaxation rate.

B. The relaxation rate

As discussed above at leading order in the largeN limit
the only contribution to the scalar self-energy is a tadp

}l^FW 2&/N;O(1), which results in the effective therma
massmT}uT2Tcu1/2 and is cancelled by the mass counte
term. In this section we consider the theory at the criti
temperature where the renormalized temperature depen
mass exactly vanishes.

At next-to-leading orderO(1/N) the self-energy obtains
an absorptive part and is given by the diagram shown in F
4.

In Appendix A 2 we provide the details necessary to o
tain the retarded self-energy in terms of a dispersion rela
as in Eq.~2.3!, with the spectral density

FIG. 4. The self-energy of the scalar field at order 1/N.
7-9
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r̃~v,k!52
4l

N E d3q

~2p!3

dq0

2ukW1qW u
r~q0 ,q!@11nqW 1pW1n~q0!#@d~v2q02ukW1qW u!2d~v1q01ukW1qW u!#

52
2l

N E d3q

~2p!3

1

ukW1qW u
$r~v2ukW1qW u,q!@nqW 1kW2n~ ukW1qW u2v!#1r~v1ukW1qW u,q!@nqW 1kW2n~v1ukW1qW u!#%.

~4.6!

We performed here the integral overq0 by using the delta functions thereby setting the combinationq01uqW 1kW u56v for the
respective delta functions.

In Appendix A 1 we show in detail that

r~q0 ,q!5
1

p

P I~q0 ,q!

@11PR~q0 ,q!#21P I
2~q0 ,q!

, ~4.7!

whereP I(q0 ,q) is given by the leading order in the largeN limit of the two loop spectral density~3.2!, as

P I~q0 ,q!52lpE d3p

~2p!3

1

4pupW 1qW u
$@11nqW 1pW1npW #@d~q02upW 1qW u2p!2d~q01upW 1qW u1p!#

1@npW2nqW 1pW #@d~q02upW 1qW u1p!2d~q01upW 1qW u2p!#%.
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The first term, proportional to the sum of the occupati
factors, corresponds to the two particle cut while the sec
term proportional to the difference is obviously only prese
in the medium and corresponds to Landau damping@18#. The
real and imaginary parts of the polarization of the auxilia
field P(q0 ,q) are related by a dispersion relation, i.e.,

PR~q0 ,q!5
1

pE dvP I~q,v!P 1

v2q0
. ~4.8!

Keeping the leading temperature dependence we obtain

P I~q0 ,q!5
lT

4pq
lnF12e2uq01qu/2T

12e2uq02qu/2TG1O~lT0!. ~4.9!

In Appendix B we show explicitly that the leading temper
ture dependence for the real part of the polarization oper
of the auxiliary field is given by

PR~q0 ,q!5
lT

4q
@Q~q2q0!2Q~2q2q0!#1O~l ln T!

~4.10!

which in the static limit reduces to Eq.~4.3!.
It is clear from Eq.~4.9! that just like in the case o

perturbation theory up to two loops, there are two import
regions to consider:~i! the classical region withq0 ,q!T and
~ii ! the hard region withq0 ,q>T but with either uq2q0u
!T or uq1q0u!T the other regions of hard momentum b
ing exponentially suppressed. We will be primarily inte
04500
d
t

or

t

ested in the case of soft external momentumk!lT i.e. long-
wavelength fluctuations of the order parameter.

In the high temperature limit the spectral densityr(q0 ,q)
takes the explicit form

r~k1ukW1qW u,q!5

4q

lT
L1

p2F 4q

lT
11G2

1L1
2

r~k2ukW1qW u,q!5

4q

lT
L2

F4qp

lT G2

1L2
2

where we used Eqs.~4.9!, ~4.10! analyzing carefully the sup
port of the theta functions inPR(q0 ,q) and defined

L6[ logUk6ukW1qW u1q

k6ukW1qW u2q
U .

Introducing in the integral~4.6! the dimensionless variabl
y5q/k andx5cosu ~whereu is the angle between the vec
tors kW and qW ) and settingv5k yields for the damping rate
~2.4!
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G~k,T!5
k2

pNTE0

`

y3dyE
21

11 dx

w~x,y! H F 1

ebkw(x,y)21
2

1

ebk[w(x,y)21]21G L1~x,y!

p2F4ky

lT
11G2

1L1
2 ~x,y!

1F 1

ebkw(x,y)21
2

1

ebk[w(x,y)11]21G L2~x,y!

F4kyp

lT G2

1L2
2 ~x,y!J ~4.11!
a
r
als
in
er

q.

r

bu-
a-
where

L6~x,y!5 logU17w~x,y!1y

17w~x,y!2yU
and

w~x,y![A11y212xy.

For lT/4k@1 the region of smally ~small momentum! is
screened by the resummation of the scattering amplitude
leads to a small contribution to the damping rate of ordek.
For y.lT/k the screening is not effective and the integr
in Eq. ~4.11! are dominated by the neighborhood of the po
y5y* at which L6

2 (x,y) is of the same order as the oth
square in the denominators, i.e.,@4ky/lT#2. For largey we
can expandw(x,y) as follows:

w~x,y!5y1x1OS 1

yD5yF11OS 1

yD G . ~4.12!

We thus find

y* .
lT

4pk
ln

lT

4pk
.

@For k!T the 1 in the denominator of the first term of E
~4.11! is irrelevant in the determination ofy* #.

The classical approximation for the occupation numbe
i.e., loop momenta!T can be used aty5y* providedky*
!T andl!1, i.e., fork@kus where
d
u
in

e

04500
nd

t

s,

kus[
lT

4p
e24p/l

is theultrasoft scale.
As it will be discussed in detail below, fork<kus hard

momenta dominate the contributions to the widthG(k,T).
We analyze in the subsequent section the widthG(k,T) in

the two regimes: soft for whichT@k@kus and ultrasoftk
!kus .

C. Classical contribution

To obtain the contribution from classical momentaq!T
we perform the following approximations:~i! approximate
P I(q0 ,q) by its limit for q0 ,q!T,

P I~q0 ,q!5
lT

4pq
lnUq01q

q02qU,
with the real part given by the leading temperature contri
tion ~4.10! and ~ii ! approximate the Bose-Einstein occup
tion factors by their classical limit, i.e. in Eq.~4.6! we re-
place

11nqW 1pW1n~q0!5T
q01uqW 1pW u

q0uqW 1pW u
.

We thus find from Eq.~4.11! for the classical limit contribu-
tion to the damping rate
Gcl~k,T!5
k

pNE0

aT/k

y3dyE
21

11 dx

w2~x,y! H 1

12w~x,y!

L1~x,y!

1

l3,e f f
2 ~yk!

1L1
2 ~x,y!

1
1

11w~x,y!

L2~x,y!

F 1

l3,e f f~ky!
2

1

l* G2

1L2
2 ~x,y!J

~4.13!
al-
p
-

with l3,e f f(q) being theeffectivethree dimensional coupling
given by Eq.~4.5! and l* 51 the three dimensional fixe
point. We have introduced an explicit upper momentum c
off qmax5aT with a!1 that restricts the integration doma
to the region where the classical approximation is valid.

The expression~4.13! clearly reveals the role of the thre
t-

dimensional effective couplingl3,e f f(q) given by Eq.~4.5!
and its non-trivial~three dimensional Wilson-Fisher! fixed
point l* 51 reached in the soft limitq→0. The phenom-
enon of screening of the infrared behavior by the renorm
ization of the coupling is now explicit, the region of soft loo
momentumq!lT is independent of the coupling and tem
7-11



g
ra
s
a

he
u

e

te

te

on
b

-

g

-
te

a
o

ra

o
e

s

o

E
u

n

i
ou
a

and

re-
ed

a

is
r
nal
ing

n-

ft
ble

D. BOYANOVSKY, H. J. DE VEGA, AND M. SIMIONATO PHYSICAL REVIEW D63 045007
perature because the effective three dimensional couplin
near its non-trivial fixed point. The only scale in the integ
in the soft-momentum region isk and a dimensional analysi
reveals that the contribution from this region is proportion
to k.

On the other hand, when the loop momentum isq@lT
the renormalization of the coupling is ineffective and t
effective coupling coincides with the three dimensional co
pling lT/4q. For weak couplingl!1 and loop momentaq
@lT the effective three dimensional coupling isl3,e f f(q)
'l3(q)5lT/4q!1 and the denominators in Eq.~4.13! are
dominated by the terms 1/l3,e f f(q). If the logarithms can be
neglected we clearly see that this contribution is the sam
that given by the integralsJ1(k,T) and J2(k,T) given by
Eqs. ~3.9! in the two loop computation of the damping ra
~3.8!, which is proportional tol2T2/k. This region begins to
dominate for q.lT ln(lT/k) when 1/l3,e f f(q) becomes
larger than the logarithm in the denominators in both in
grals in Eq.~4.13!. If the loop momenta are such thatT@q in
this region, i.e. the classical approximation is valid, the c
tribution of this region to the integral can be estimated
cutting off the integrals in Eq.~4.13! at a lower momentum
of orderqmin'lT ln(lT/k). Hence following the same argu
ments as for the two loops case that led to the estimate~3.12!
we conclude that the region ofclassical semi-softloop mo-
mentumT@q@qmin leads to a contribution to the dampin
rate'lT. However ask becomes smaller,qmin approaches
the cutoff aT, i.e. the limit of validity of the classical ap
proximation and the logarithmic terms cannot be neglec
In particular for k<kus with kus the ultrasoft scale intro-
duced above the integral becomes sensitive to moment
order ofT and the classical approximation breaks down. F
these ultrasoft momenta of the fluctuations the damping
is determined by the region of hard loop momentumq>T.

This analysis yields to a preliminary assessment of h
different regions of loop momentum will contribute to th
damping rate:

~i! The soft region of loop momentumq!lT is domi-
nated by the three dimensional fixed point and contribute
the damping rate

Gq!lT}k.

~ii ! The semisoft region of loop momentumT@q@lT is
still dominated by classical modes but the renormalization
the scattering amplitude is irrelevant. Ifqmin'lT ln(lT/k)
!T the logarithms can be neglected and the integrals in
~4.13! behave similarly to the perturbative two loops comp
tation. For momentaT@q@qmin;lT ln(lT/k) the integrals
are dominated by the terms in the denominators proportio
to 1/l3

2(q) leading to a contribution

GT@q@qmin
}lT.

The validity of the classical approximation and the dom
nance of semisoft loop momenta is warranted for weak c
pling when there is a clear separation between the hard sc
with q>T the semisoft scales withT@q>lT and the soft
scales for whichlT@q.
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~iii ! However whenqmin>T the logarithmic terms are the
dominant terms in the denominators of the integrands
this region is sensitive to the hard loop momentaq>T and
the classical approximation is not warranted. This region
quires the full Bose-Einstein distributions and will be studi
in detail below.

After this preliminary assessment, we now provide
quantitative analysis of the different regions.

As argued above in the regiony!l3(k)5lT/(4k), i.e.
q!lT, the integrals in Eq.~4.13! are independent ofl3(k)
~i.e., of both the coupling constant and temperature! and in-
frared finite, contributing to the damping rate a term that
proportional tok. This is the region of loop momenta fo
which the effective coupling is near the three dimensio
Wilson-Fisher fixed point. The screening of the scatter
amplitude is ineffective for loop momentaq>lT i.e., the
semisoft scales, in this regiony@l3(k)ln l3(k) and the term
@yl3(k)#2 dominates over the logarithms leading to a co
tribution to the damping rate proportional tokl3(k)5lT/4.
Since in this regiony.l3(k)@1 we can approximate
w(x,y) according to Eq.~4.12! and the integrals simplify
considerably.

Up to 1/l3(k) corrections we find

Gcl~k,T!5
k

NpEl3(k)

aT/k

dyE
21

11

dx

3H ln
2y

12x

p2F y

l3~k!
11G2

1 ln2
2y

11x

1

ln
2y

11x

p2y2

l3
2~k!

1 ln2
2y

11x
J F11OS 1

l3~k! D G .
~4.14!

Now the angular integrals~over the variablex) can be per-
formed changing the integration variables toy5l3(k)u and
expanding in inverse powers of lnl3(k), since forl!a!1

lnF2l3~k!u

16x G5 ln@2l3~k!#F11OS 1

ln l3~k! D G .
This is certainly a slowly converging approximation for so
momenta but numerical calculations show it to be relia
~see Figs. 5–7 below!. Then we find from Eq.~4.14!

Gcl~k,T!5
2kl3~k!

Np E
1

`

duF ln@2l3~k!#

p2~u11!21 ln2@2l3~k!#

1
ln@2l3~k!#

~pu!21 ln2@2l3~k!#GF11OS 1

ln l3~k! D G
5

lT

2Np F11OS 1

ln l3~k! D G . ~4.15!
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FIG. 5. NG(k,T)/T vs ln@T/k# for l512.0.
We also plot the classical valuel/@2p# and the
asymptotic ultrasoft behavior NG(k,T)/T
54p/3 ln@T/k#. We see in this strong coupling
regime that the ultrasoft asymptotics correctly d
scribes the relaxation rate.
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A detailed analysis of both integrals above reveal the p
ence oftwo important scales: ~a! the cutoff scaley5aT/k,
that is q5aT with a!1 that determines the regime of va
lidity of the classical approximation when the Bose-Einst
occupation factors may be replaced by their classical co
terparts and~b! a scaley* .l3(k)ln l3(k)1••• at which
there is a crossover of behavior in the denominators of
integrals. Fory,y* ,y/l3(k)! ln y and the denominator is
dominated by the logarithm, whereas fory@y* , y/l3(k)
@ ln y and the integrands behave as lny/y2 which is the same
behavior as that in the integralsJ1(k,T) andJ2(k,T) in Eqs.
~3.9! for the two loop computation. In the case wheny*
!aT/k the integrand falls off very fast and the integral
independent of the upper cutoff.

The result ~4.15! is confirmed by a careful numerica
study of the integrals in this range and displayed in Fi
5–7.

The condition thaty* !aT/k translates into the following
condition fork:
04500
s-

n-

e

.

k@lTe2a/l.

It is clear thaty* becomes of the order ofT/k and therefore
the crossover scale becomes of orderT for k;kus
.(lT/4p)e24p/l. Hence for wave vectorsk@kus the clas-
sical approximation is valid and the damping rate is dom
nated by semisoft classical loop momentaT@q@lT and
given by

Gcl~k,T!5
lT

2Np F 11OS 1

ln
lT

k
D G ; for k@

lT

4p
e24p/l.

~4.16!

In the opposite limit, i.e. fork!kus the crossover scaley*
@aT/k and the terms@y/l3(k)#2 in the denominators are
negligible as compared to (lny)2 in this range. In this case
the integrals can be evaluated by neglecting the@y/l3(k)#2

in the denominators with the result
a
e

FIG. 6. NG(k,T)/T vs ln@T/k# for l51.0. We
also plot the classical valuel/@2p# and the
asymptotic ultrasoft behavior NG(k,T)/T
54p/3 ln@T/k#. For this intermediate coupling
regime the classical approximation provides
qualitative estimate whereas the ultrasoft regim
will be reached fork/T!331027.
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FIG. 7. NG(k,T)/T vs ln@T/k# for l50.2. We
also plot the classical valuel/@2p# and the
asymptotic ultrasoft behavior NG(k,T)/T
54p/3 ln@T/k#. In the small coupling regime the
classical approximation describes very well th
behavior of the relaxation rate. The ultrasoft r
gime will only be reached for extremely sma
momentak/T!8310230.
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Gcl~k,T!;
aT

ln~aT/k!
.

This cutoff dependence signals thebreakdown of the classi
cal approximationsince the integrand is sensitive to ha
momenta of orderq>aT. For k!kus the crossover scaley*
becomes of orderT/k, i.e., q;T and we must keep the ful
occupation numbers, this is the regime dominated by
hard loop momentum, which is studied below.

Thus we conclude that the non-perturbative region
wavevectors for which theclassicalapproximation is valid is
lT@k@(lT/4p)e24p/l and in this region the relaxatio
rate is given by Eq.~4.16!. However for long-wavelength
fluctuations with wave vectorsk!kus;(lT/4p)e24p/l the
classical approximation breaks down and we must cons
the contribution from the hard loop momenta.

This analysis of the classical contribution reveals that~i!
the screening of loop momentaq!lT by the infrared renor-
malization of the scattering amplitude makes the damp
rate a factork/lT!1 smaller than the lowest order~two
loops! computation,~ii ! the damping rate is independent
momentum fork@(lT/4p)e24p/l and given by Eq.~4.16!
i.e. there is no critical slowing down in the regime of validi
of the classical approximation to this order in the largeN
expansion.

D. Ultrasoft scale: k™„lTÕ4p…eÀ4pÕl

We now focus on the computation of the damping rate
the regime of ultra-soft fluctuations of the order parame
i.e., k!(lT/4p)e24p/l.

In this limit we expand thedifferenceof the occupation
numbers to orderk/T insidethe integrand in Eq.~4.11!

1

ebkw(x,y)21
2

1

ebk[w(x,y)71]21

57
k

T

ebkw(x,y)

~ebkw(x,y)21!2 1OS k

TD 2

.

04500
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Since in this region the logarithm dominates, we neglect
terms 4pq/lT in the denominators. We thus find

G~k,T! 5
T@k k3

NpT2E
0

`

y3dyE
21

11 dx

w~x,y!

ebkw(x,y)

~ebkw(x,y)21!2

3F2
L1~x,y!

p21L1
2 ~x,y!

1
1

L2~x,y!G .
In order to perform the integration it is convenient to chan
variables to

v[
k

T
@w~x,y!21#, s[

2k

T

w~x,y!21

y112w~x,y!
.

The width then takes the form

G~k,T! 5
T@k 2T

Np F E
0

` evv3dv
~ev21!2 E

v

` ds

s2

lnS 11
Ts

k D
p21 ln2S 11

Ts

k D

1E
2k/T

` evv3dv
~ev21!2 E

v

` ds

s2

1

lnS Ts

k
21D G

3F11OS k

TD G .
We can further approximate these expressions by expan
in inverse powers of ln (T/k). We set
7-14
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E
v

` ds

s2

lnS 11
Ts

k D
p21 ln2S 11

Ts

k D 5E
v

`ds

s2

1

ln
Ts

k
F 11OS 1

ln
T

k
D G

5
1

v ln
T

k
F 11OS 1

ln
T

k
D G

E
v

`ds

s2

1

lnS Ts

k
21D 5

1

v ln
T

k
F 11OS 1

ln
T

k
D G .

The asymptotic form of the width thus becomes

G~k,T! 5

k<kus 4pT

3N ln
T

k
F 11OS 1

ln
T

k
D G , ~4.17!

where we used the integral@27#

E
0

` evv2dv
~ev21!2 5

p2

3
.

There are two important noteworthy features of this
sult: ~i! the damping rate for ultrasoft fluctuations isindepen-
dent of the couplingand ~ii ! critical slowing down of long-
wavelength fluctuations emerges in theultrasoft momentum
limit with the damping rate vanishing only logarithmically a
k→0.

The intermediate regime between the soft and ultra
scales is difficult to study analytically, we therefore studi
the damping rate in a wide range of momentumk numeri-
cally.

Figures 5–7 display the dimensionless ratioNG(k,T)/T
as a function of ln(T/k) for three fixed values of the coupling
l512.0,1.0 and 0.2 respectively as obtained via a numer
integration of Eq.~4.11!. We see that the damping rate is
monotonically decreasing function ofT/k for large enough
values of T/k. The smaller is the coupling, the slowe
NG(k,T)/T decreases as a function ofT/k. Furthermore we
have established numerically the reliability of the results
the soft and ultrasoft regimes, thus confirming our detai
analysis in these cases.

V. NEAR CRITICAL REGIME: k¢Ä0,zTÀTCz™TC

Having understood in detail the critical case we are n
in position to complete the study of relaxation by consider
the near-critical case, i.e.uT2Tcu!Tc . The general case o
kWÞ0,TÞTc is rather complicated but we can learn much
focusing on the homogeneous casekW50. There are two im-
portant modifications of the previous results that are requ
to study in detail the near-critical case:
04500
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al
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g

d

~i! To leading order in the largeN limit, the finite tem-
perature effective mass squared is given by

mT
2}l~T22Tc

2!

therefore the effective mass~inverse of the correlation
length! vanishes near the critical temperature asmT}uT
2Tcu1/2 which is the mean-field behavior consistent. Sin
the absorptive part of the self-energy is next to leading or
O(1/N) we consistently use this effective mass near the c
cal point. Therefore to this order the frequencies are given

vpW5ApW 21mT
2.

~ii ! The effective static scattering amplitude can be o
tained by replacing the massless Matsubara propagato
Eq. ~4.2! by the corresponding massive ones, and is n
given by

le f fS q

mT
,

T

mT
D5

l

11
lT

2pq
arctgF q

2mT
G

which now reveals the vanishing of the effective coupling

le f fS 0,
T

mT
D5

l

11
lT

4pmT

~5.1!

for mT→0 @compare with Eq.~4.4!#.
The critical region of relevance corresponds tomT!lT

for T→Tc
1 . In the case under consideration, for homog

neous fluctuations of the order parameter (kW50) the only
dimensionful quantity is the effective massmT which regu-
lates the infrared behavior of the integrals. Thus, just as
the critical case studied above two different regimes eme
which we refer to as~i! the semicritical regimemT

!lT/(4p); and ~ii ! the ultracritical regime mT

!lT/(4p)e24p/l. It will become clear below that the sem
critical and the ultracritical regimes correspond respectiv
to the soft and the ultrasoft regimes discussed atT5Tc , k
Þ0. Since the relevant loop momenta are semisoft,T@q
@lT and hardq>T it is clear that the effective coupling

~5.1! behaves just as in the critical case forkWÞ0 studied
above since for this range of loop momentaq/mT@1.

In order to compute the damping rate we need the gen

expression for the resummed spectral densityr̃(q0 ,q) in
presence of a non-zero thermal mass, which is now given
@see Eq.~4.6!#
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r̃~v,k!52
4l

N E d3q

~2p!3

dq0

2v ukW1qW u
r~q0 ,q!@11n~v uqW 1kW u!1n~q0!#@d~v2q02v ukW1qW u!2d~v1q01v ukW1qW u!#

52
4l

N E d3q

~2p!3

1

2v ukW1qW u
$r~v2v ukW1qW u ,q!@n~v uqW 1kW u!2n~v ukW1qW u2v!#

1r~v1v ukW1qW u ,q!@n~v uqW 1kW u!2n~v1v ukW1qW u!#%

wherevk
2[mT

21k2, n(q0) is the Bose-Einstein distribution function~3.4! andr(v6v ukW1qW u ,q) is the massive spectral densi
at leading order in the 1/N expansion, given by Eq.~4.7! with the following expression forP I(v6v ukW1qW u ,q) which enters in
the spectral density~4.7! @28#:

P I~v,p!5H l

8p
A12

4mT
2

v22p2
sgn~v!1

lT

4pp
lnF12e2bvp

1

12e2bvp
2G J Q~v22p224mT

2!1
lT

4pp
lnF12e2bvp

1

12e2bvp
2GQ~p22v2!

vp
65Uv2 6

p

2
A12

4mT
2

v22p2U . ~5.2!
r-

ve

s
l.

ri-

ith

-
-

We notice that Eq.~5.2! reduces to Eq.~4.9! in the critical
limit mT /T→0.

Keeping the leading correction inmT
2 yields in the high

temperature regime,

P I~v,p!5
lT

4pp H logUv1p

v2pU2 4mT
2p2sgn~v!

~v22p2!2

1@u~v22p224mT
2!2u~v22p2!#

3 logUv1p

v2pU1O~mT
4!J . ~5.3!

The real partPR(v,p) can now be obtained via the dispe
sion relation~4.8!,

PR~q0 ,q!5
lT

4q H Q~q2q0!2Q~2q2q0!

1
4mT

2

p2~q22q0
2! F ln

q2

mT
2112

q2

q22q0
2

3S q0
2

q2 211 ln
q2

q0
2D G J 1O~mT

4!. ~5.4!

The damping rate for homogeneous configurations is gi
by

G0~mT ,T!52 lim
k→0

pr̃~vk ,k!

2vk
52

pr̃~mT,0!

2mT
,

which is now given explicitly by
04500
n

G0~mT ,T!5
pl

mTNE d3q

~2p!3

1

vq
$@n~vq!2n~vq2mT!#

3r~mT2vq ,q!1@n~vq!2n~vq1mT!#

3r~mT1vq ,q!%. ~5.5!

The integral ~5.5! is much simpler than the analogou
expression forkÞ0, since the angular integration is trivia
Nevertheless, a complete evalution of Eq.~5.5! requires a
numerical integration. We refer to Figs. 8 and 9 for a nume
cal evalutation of the dimensionless ratioNG0(mT ,T)/T in
the intermediate (l51.0) and small coupling regimes (l
50.2).

Just as in the critical case in the near-critical regime w
mT!lT/(4p) the integral~5.5! is dominated by loop mo-
menta of order q>q* 5(lT/4p)ln(lT/4pmT)@lT/4p

FIG. 8. Damping rateNG0(mT ,T)/T vs ln@T/mT# for homog-
enous configurations (k50,TÞTc) compared with the classical ap
proximation NGcl(mT ,T)/T5l/(2p) and the asymptotic expres
sion in the medium coupling regimel51.0.
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@mT hence we can approximateP I(q0 ,q) andPR(q0 ,q) at
q05mT6vq.mT6q as follows:

P I~mT6q,q!56
lT

4pq F ln
2q

mT
211OS mT

2

q2 D G
PR~mT6q,q!5

lT

4q H Q~q2q0!2Q~2q2q0!

7
2mT

p2q F ln
q2

mT
2 11G1OS mT

2

q2 D J
where we have used Eqs.~5.3! and~5.4!. Thus as anticipated
by the discussion of the effective static scattering amplitu
in the near critical case~5.1! we see that the real part of th
polarization is indeed similar to the one in the critical ca
for the relevant loop momenta up to corrections of ord
mT /q!mT /lT in the region of semisoft loop momenta.

Therefore neglecting terms of ordermT /lT which are
negligible in the region of interest, we find for the spect
densities expressions similar to these in the critical case

r~mT1vq ,q!5
4q

lT

L~q!

p2F 4q

lT
11G2

1L2~q!

,

r~mT2vq ,q!52
4q

lT

L~q!

F4qp

lT G2

1L2~q!

,

where we have introduced

L~q!5 log
2q

emT
.

An analysis similar to that in the critical case reveals t
soft loop momentaq!lT are effectively screened by th
renormalization of the scattering amplitude in the near cr
cal region, leading to a contribution of ordermT to the damp-
ing rate. Semisoft and hard loop momentaq.lT are not

FIG. 9. Damping rateNG0(mT ,T)/T vs ln@T/mT# for homog-
enous configurations (k50,TÞTc) compared with the classical ap
proximation NGcl(mT ,T)/T5l/(2p) and the asymptotic expres
sion in the small coupling regimel50.2.
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screened by the resummation of the scattering amplitude
determine the leading contributions to the damping rate.

As argued above, the dominat loop momenta in the in
gral ~5.5! are of order q>q* 5(lT/4p)ln(lT/4pmT)
@lT/4p@mT hence we can approximate

n~vq!2n~vq2mT!.n~vq1mT!2n~vq!.n8~q!mT ,

vq.q

allowing an analytical estimate the damping rate from
approximate expression

G0~mT ,T! 5

lT@mT

2
4

NTEa

` dq

2p2
q2n8~q!

3H L~q!

p2F 4q

lT
11G2

1L~q!2

1
L~q!

F4qp

lT G2

1L~q!2J . ~5.6!

The resulting integrals are infrared finite but having re
ognized that the leading contribution arises from the semi
loop momentaq>lT we have introduced an explicit infra
red cutoff a5CmT with C@1. Since the integral is domi
nated by semisoft and hard loop momentaq* @lT we can
approximate further 4q/lT11.4q/lT whence the two
contributions to the damping rate coincide. Moreover,
dependence ina is negligible in the critical limit. This is
confirmed by our numerical analysis which uses the ex
expression~5.5!, the results of which are displayed in Figs.
and 9. The integrals in Eq.~5.6! again reveal a crossove
scaleq* at which 4pq* /lT;L(q* ). For q!q* the loga-
rithmic term L2(q) dominates in the denominators and f
q@q* the term (4pq* /lT)2 dominates and the integran
falls off just as in the perturbative two loops case.

We now distinguish between the following two possibi
ties:

lT/(4p)e24p/l!mT!lT/(4p), to which we refer as
the semicritical regime. In this caseq* !T is soft and the
classical approximation to the Bose-Einstein distributi
functions applies. Furthermore, we can expand in inve
powers of the logarithm logl3(mT)5log(lT/4mT) and a
straightforward analysis along the lines presented for
critical case reveals that the damping rate is approxima
constant and given by

G0~mT ,T!5
lT

2pN F11OS 1

ln l3~mT! D G .
This is the same result as in the caseT5Tc ,kÞ0, Eq.~4.15!.
This result is of course expected, in the semisoft region
loop momentumT@q@lT and for lT/(4p)e24p/l!mT
!lT/(4p) the screening of the scattering amplitude is in
7-17
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fective and the term (q/lT) dominates over the logarithms
therefore the dependence on the mass is negligible in
region.

mT!lT/(4p)e24p/l, which we refer to as the ultracriti
cal regime. In this caseq* @T is hard and the classical ap
proximation breaks down and the full Bose-Einstein occu
tion factors must be kept. In this regime the logarithm giv
the dominant contribution in the denominators and
asymptotic damping rate is given by

G0~mT ,T!52
4

pNTEa

`

dqq2
n8~q!

log
2q

emT

5
4p

3N

T

log~T/mT! F 11OS 1

ln
T

mT

D G , ~5.7!

which is exactly the same result as in Eq.~4.17! with the
momentum scalek replaced by the thermal massmT . It must
be noticed that in this regime there isno dependence on th
couplingl.

Thus we conclude that the relaxation rate near the crit
point uT2Tcu!lTc and kW50 has the same features as t
critical rate forkÞ0 andT5Tc , provided we exchange th
infrared scalesmT andk.

Discussion of the results

The two loops calculation in perturbation theory at t
critical point revealed the importance of the different sca
of loop momentum. The loop integrals are dominated by
contribution of the soft momentum scalesq!lT. The con-
tribution from semisoft loop momentaT@q@lT is sub-
dominant by a factor (k/lT)ln@lT/k#!1 in the long-
wavelength limitk!lT and the contribution from hard loo
momentum modesq>T is suppressed even further in th
weak coupling limit by an extra power of the couplingl.

The largeN limit leads to a non-perturbative resummatio
and results in an infrared renormalization of the static sc
tering amplitude as a consequence ofdimensional reduction
and crossover to an effective three dimensional theory
momentaq!lT.

The effective three dimensional coupling that emerg
from this analysis of the static scattering amplitude at
critical point isl3,e f f(q)5lT/(4q1lT) which is driven to
the Wilson-Fisher three dimensional fixed point asq→0.
Thus soft loop momentaq!lT are effectively screened b
this infrared renormalization of the coupling but semis
loop momentaq.lT are coupled with the three dimension
couplingl3(q)5lT/4q and infrared screening is ineffectiv
for these. The importance of this effective coupling for t
damping rate can be understood intuitively from Figs. 2
and 4: the resummation of bubbles that leads to the effec
scattering amplitude also renormalizes the spectral den
that determines the self-energy, as shown in Fig. 4.

This is precisely the most important mechanism that le
to our results in the largeN limit. Whereas the lowest orde
perturbative calculation was dominated by the contribut
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of soft loop momentaq!lT these are effectively screene
by the infrared renormalization of the coupling which is ne
the three dimensional fixed point. The dominant contribut
now arises from the semisoftq@lT and hardq>T loop
momentum. In the perturbative computation at two loo
these scales provided subleading contributions of orderlT
andl2T respectively to the damping rate.

Clearly the resummation via the largeN approximation
incorporates the screening of the soft loop momentum sc
but also reveals the emergence of anultrasoft scale kus
;(lT/4p)e24p/l. At the critical temperature fork@kus or
for homogeneous fluctuations near the critical pointTc
@mT@kus the damping rate is determined by the contrib
tion of the classical, semisoftloop momentum scalesT@q
@lT, the soft scaleslT@q being screened by the infrare
renormalization of the coupling and the crossover to a th
dimensional effective theory. For long-wavelength fluctu
tions of the order parameter at the critical temperature w
k<kus or for homogeneous fluctuations near criticality in t
ultracritical region mT<kus the classical approximation
breaks down and the damping rate is completely determi
by the hard loop momentaq>T. Critical slowing down, i.e.
the vanishing of the relaxation rate ask→0 or for k50 as
T→Tc

1 only emerges in this ultrasoft limit as shown by Eq
~4.17! and ~5.7!.

Thus, whereas the largeN expansion has provided a con
sistent resummation and the important ingredient of scre
ing of the couplings for the soft loop momentum modes a
leads to critical slowing down of long wavelength fluctu
tions important limitations of the results obtained here
main. As we argued in the beginning sections a quasipart
interpretation of the long-wavelength collective excitatio
of the order parameter requires that the resonance param
G(k,T)/vp(k)!1 with vp(k) being the position of the qua
siparticle pole or effectively the microscopic time scale
oscillations of these fluctuations. To leading order in t
large N limit vp(k)5Ak21mT

2 in the calculation of the
damping rate and the resonance parameter. Although cri
slowing down emerges from the largeN limit, we see that
our results to this order indicate thatG(k,T)/vp(k)@1 for
k,mT→0.

There are several possible alternatives: either the qu
particle picture is not appropriate to describe the collect
fluctuations of the order parameter at or near the criti
point or further resummations and or other contributio
must be taken into account to obtain a description of criti
slowing down of collective fluctuations that can be und
stood within a quasiparticle picture. In particular an asse
ment of ~i! vertex corrections, and~ii ! wave function renor-
malization must be pursued which, however, are beyond
leading order in the largeN studied here and thus outside th
scope and goals of this article. We are currently study
these contributions and expect to report our conclusions
forthcoming article.

VI. CONCLUSIONS AND FURTHER QUESTIONS

In this article we have begun the program of studyi
transport and relaxation at and near the critical point in s
7-18
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ond order phase transitions. The focus here is to provid
systematic study of critical slowing down of long
wavelength fluctuations during the cooling stages of a ph
transition, either at or slightly above the critical temperatu
from first principles in a phenomenologically motivate
quantum field theory. The ultimate goal of this program is
assess the potential experimental signatures associated
the critical slowing down of long wavelength fluctuations
the chiral phase transition. Obtaining a robust understand
of such phenomena will have important implications in t
QGP and or chiral phase transitions in early universe c
mology and ultrarelativistic heavy ion collisions.

Our study reveals novel phenomena that require a n
perturbative framework for their consistent and sistema
treatment which is different from the hard thermal loop
summation program used in gauge theories.

Whereas critical slowing down has been studied th
oughly inclassicalcritical phenomena@8,9# and these results
were used for preliminary estimates of the correlation len
at freezeout in heavy ion collisions@7#, we are aware of only
one prior attempt@29# to study critical slowing down in a full
relativistic quantum field theory and a similar recent analy
@30#. In Refs.@29,30# the Wilson renormalization group wa
used to explore the relaxation of thek50 mode of the order
parameter slightly away from criticality working atN51.
The final results of@29,30# are that fort5(T2Tc)/Tc ap-
proaching the critical limit the damping rate for homogeno
configurations vanishes astn log t with n.0.520.6. The
analysis of@29,30#, relies on a truncation of the exact reno
malization group equations and their numerical evolution

In our opinion an important limitation of this approach
the simplified treatment of the absorptive parts. These w
associated with the scattering vertex rather than the s
energy, but more importantly, this simplified treatment do
not include consistently the Landau damping and multi
particle thresholds that are the important ingredients i
consistent and sistematic description of damping and re
ation.

In our study we have systematically focused on the
portant aspects associated with Landau damping, ma
particle threshold effects and a consistent study of real-t
phenomena at finite temperature. As is evident in our st
of absorptive parts of the self-energy in Secs. II and II
simplified treatment that does not include consistently th
can hardly reveal the rich hierarchy of scales and the dif
ent physics associated with these: the soft scaleks
.lT/(4p) and the ultrasoft scalekus.lT exp@24p/(lT)#.
Consistently to next to leading order in the largeN limit we
see that slowing down of relaxation of long-wavelength flu
tuations only begins to emerge at the ultra-soft scale an
contrast to the results obtained in@29,30#, we obtain G
;T/@N log t#. Thus, although there is agreement on the sta
ment that the relaxation rate vanishes at criticality the c
sistent largeN resummation leads to a very different beha
ior of the relaxation rate.

Our main results can be summarized as follows: a con
tent treatment of critical slowing down and of transport ph
nomena at or near a critical point requires a non-perturba
framework to resum the contributions fromsoft loop mo-
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menta which is different from the hard thermal loop progra
of Abelian and non-Abelian gauge plasmas. A perturbat
two loop calculation reveals clearly the emergence of a h
archy of loop momentum scales from hardq>T to semisoft
T@q@lT and soft lT@q, for weak couplingl!1 the
scales in this hierarchy are widely separated and the sem
and soft scales are classical. Recognizing the shortcom
of a perturbative treatment for long-wavelength fluctuatio
we implemented a non-perturbative resummation via
large N limit to next to leading order. The largeN limit
provides a consistent non-perturbative framework for resu
mation of infrared contributions. It clearly displays the infr
red renormalization of the scattering amplitude in the sta
limit at or near the critical point and the crossover to thr
dimensional physics for soft loop momentum. The resumm
tion of the scattering amplitude leads to an effective th
dimensional coupling that interpolates between the bare c
pling for loop momentaq@lT and the three dimensiona
Wilson-Fisher fixed point forq!lT.

The infrared renormalization of the effective couplin
screens the contribution from soft loop momentum to
self-energy and the relaxation rate, which is now domina
by the contribution ofsemisoft and hard loop momenta
@q@lT. Furthermore a newultrasoft ~in the weak coupling
limit ! non-perturbative scale emergeskus.(lT/4p)e24p/l

that signals the breakdown of the classical approximat
and the dominance of hard loop momentum modes.

For k,mT@kus the damping rate is dominated by the cla
sical semisoft scales and given byG(k,T)5lT/2Np
whereas fork<kus the hard loop momenta region dominat
and leads to the damping rateG(k,T)54pT/3N ln T/k at
criticality or G0(mT ,T)54pT/3N ln T/mT near criticality for
homogeneous fluctuations, which reveal the slowing down
relaxation of critical ultrasoft fluctuations with a dampin
rate that isindependent of the coupling.

As discussed above, however, these results and th
found in @29,30# seem to indicate a breakdown of the qua
particle picture of collective excitations of the order para
eter because the resonance parameterG(k,T)/vp(k)@1 in
the long-wavelength limit and the excitation decays on ti
scales much shorter than the natural oscillation timevp

21(k).
At this stage it is not clear if this feature is a true physic
manifestation of relaxation of collective excitations at
near the critical point or that further resummation and ot
contributions that are beyond the leading order in the largN
must be accounted for. We are currently studying this po
bility by introducing the renormalization group at finite tem
perature and analyzing in detail the contribution from ver
and wave function renormalizations and expect to report
further understanding on these issues in a forthcoming
ticle. At this stage our study has revealed a wealth of n
phenomena and a hierarchy of scales which will requir
deeper understanding for a complete and consistent treat
of transport and eventually hydrodynamics near or at
critical point. We postpone to further study the analysis
critical slowing down in the broken symmetry phase and
influence of Goldstone bosons on the relaxation of lon
wavelength fluctuations.

Only a thorough understanding of these phenomena
7-19
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D. BOYANOVSKY, H. J. DE VEGA, AND M. SIMIONATO PHYSICAL REVIEW D63 045007
lead to an unambiguous assessment of the phenomenolo
implications of critical fluctuations either in the formation
cosmological relics in the early universe or in experimen
observables in ultrarelativistic heavy ion collisions thus m
tivating and justifying their study.
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APPENDIX A: EQUATIONS OF MOTION AND
SPECTRAL DENSITIES IN THE LARGE N LIMIT

We study the relaxation of the order parameter via the
time description of non-equilibrium quantum field theor
This formulation requires the time evolved density mat
and is cast in terms of a path integral along a contour
complex time, a forward branch corresponds to the forw
time evolution of the density matrix via the unitary tim
evolution operator and the backward branch represents
inverse unitary time evolution that post-multiplies the de
sity matrix. Consequently there are four propagators: co
sponding to fields on either branch. For a more comp
description of this formulation the reader is referred to@23#
and references therein. The main ingredient in this prog
are the free field Wightmann and Green’s functions for
bosonic fieldFW . In terms of the spatial Fourier transform o
the bosonic fieldsFW kW these are given by

^FkW ,a~ t !F2kW ,b~ t8!&o[^FkW ,a
2

~ t !F
2kW ,b
1

~ t8!&o

52 ida,bGkW
.

~ t,t8!,

^FkW ,a~ t8!F2kW ,b~ t !&o[^FkW ,a
2

~ t8!F
2kW ,b
1

~ t !&o

52 ida,bGkW
,

~ t,t8!,

^FkW ,a
1

~ t !F
2kW ,b
1

~ t8!&o52 ida,bGkW
11

~ t,t8!,

^FkW ,a
2

~ t !F
2kW ,b
2

~ t8!&o52 ida,bGkW
22

~ t,t8!, ~A1!

GkW
11

~ t,t8!5GkW
.

~ t,t8!Q~ t2t8!

1GkW
,

~ t,t8!Q~ t82t !,

GkW
22

~ t,t8!5GkW
.

~ t,t8!Q~ t82t !

1GkW
,

~ t,t8!Q~ t2t8!,

GkW
12

~ t,t8!5GkW
,

~ t,t8!,
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GkW
21

~ t,t8!5GkW
.

~ t,t8!,

GkW
.

~ t,t8!5GkW
,

~ t8,t !, ~A2!

where^A(t)B(t8)&5Tr@A(t)B(t8)r(0)# denotes the expec
tation value of Heisenberg field operators with respect to
initial normalized density density matrix which is taken
describe a thermal state and the subscripto refers to free
fields. It is clear that these real time propagators satisfy
identity:

GkW
11

~ t,t8!1GkW
22

~ t,t8!2GkW
12

~ t,t8!2GkW
21

~ t,t8!50.

The retarded and advanced propagators are defined as

GR,kW~ t,t8!5GkW
11

~ t,t8!2GkW
12

~ t,t8!

5@GkW
.

~ t,t8!2GkW
,

~ t,t8!#Q~ t2t8!,

GA,kW~ t,t8!5GkW
11

~ t,t8!2GkW
21

~ t,t8!

5@GkW
,

~ t,t8!2GkW
.

~ t,t8!#Q~ t82t !,

where for the cases under consideration with fields in th
mal equilibrium

GkW
.

~ t,t8!5
i

2k
@@11nkW#e

2 ik(t2t8)1nkWe
ik(t2t8)#, ~A3!

GkW
,

~ t,t8!5
i

2k
@nkWe

2 ik(t2t8)1@11nkW#e
ik(t2t8)#,

~A4!

nkW5
1

exp~bvkW !21
.

From the Lagrangian density in terms of the auxiliary fiel
given by Eq.~4.1! it is straightforward to find the free field
real time correlation functions for the auxiliary fields. I
terms of the spatial Fourier transform of the auxiliary fie
xkW these are given by

^xkW
1

~ t !x
2kW
1

~ t8!&o5 id~ t2t8!

^xkW
2

~ t !x
2kW
2

~ t8!&o52 id~ t2t8!

^xkW
1

~ t !x
2kW
2

~ t8!&o5^xkW
2

~ t !x
2kW
1

~ t8!&o50.

Figures 10~a! and 10~b! depict the series of Feynman dia
grams for thefull ^x1x1& propagator and for thefull plus-
plus component of the propagator of the composite fi
(FW )25FW •FW , i.e. ^(FW 1)2(FW 1)2&. Figures 11~a!, 11~b! and
12~a!, 12~b! depict similar relations for thêx1x2& and
^x2x2& propagators. Thus using the free field propagat
for the auxiliary field given above we find the followin
relations toall orders for the full propagators
7-20



to
ng

rg

t t

t

y
th
be

a

ded
-

ux-

r

r

r

r

r

r

RELAXING NEAR THE CRITICAL POINT PHYSICAL REVIEW D63 045007
^xkW
1

~ t !x
2kW
1

~ t8!&5 id~ t2t8!1l^FkW
1,2

~ t !F
2kW
1,2

~ t8!&
~A5!

^xkW
1

~ t !x
2kW
2

~ t8!&5l^FkW
1,2

~ t !F
2kW
2,2

~ t8!& ~A6!

^xkW
2

~ t !x
2kW
2

~ t8!&52 id~ t2t8!1l^FkW
2,2

~ t !F
2kW
2,2

~ t8!&
~A7!

with the definition

FkW
6,2

~ t ![E d3xeikW•xWFW 6~xW ,t !•FW 6~xW ,t !.

The correlation functions of the bilinear composite opera
can be written in terms of spectral densities in the followi
manner:

^FkW
1,2

~ t !F
2kW
1,2

~ t8!&5E dv@rf2f2
.

~v;k!u~ t2t8!

1rf2f2
,

~v;k!u~ t82t !#e2 iv(t2t8)

~A8!

^FkW
1,2

~ t !F
2kW
2,2

~ t8!&5E dvrf2f2
,

~v;k!e2 iv(t2t8). ~A9!

Familiar manipulations introducing a complete set of ene
eigenstates in the trace lead to the KMS condition

rf2f2
,

~v;k!5ebvrf2f2
.

~v;k!. ~A10!

The main reason for presenting these formal steps is tha
auxiliary field itselfdoes nothave a KMS relationship for its
spectral functions because it is not a canonical field bu
Lagrange multiplier. However the relations~A5!–~A7!
which hold toall ordersrelate the correlators of the auxiliar
field to those of the bilinear composite operator for which
spectral functions associated with their correlators do o
the KMS condition.

FIG. 10. ~a! Feynman diagrams for the correlato

^x1(xW ,t)x1(xW8,t8)&; ~b! Feynman diagrams for the correlato

^@FW 1(xW ,t)#2@FW 1(xW8,t8)#2&.
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Writing the retarded correlator for the auxiliary fields as
spectral representation

^xkW
1

~ t !x
2kW
1

~ t8!&2^xkW
1

~ t !x
2kW
2

~ t8!&

5 i E dq0

2p
rx~q0 ,k!e2 iq0(t2t8),

using the spectral representations~A8!, ~A9! and the repre-
sentation forQ(t2t8) given by Eq.~3.6! we obtain the re-
lation between the spectral representation for the retar
correlator of the auxiliary field and that for the bilinear com
posite in the following form:

rx~q0 ,k!511lE dvrf2f2
.

~v;k!
12e2bv

q02v1 i e
~A11!

where we have used the KMS condition~A10!. The next step
of the program is to obtain the spectral densityrx(q0 ,k) to
leading order in the largeN limit. This is achieved through
linear response analysis for the expectation value of the a
iliary field.

FIG. 11. ~a! Feynman diagrams for the correlato

^x1(xW ,t)x2(xW8,t8)&; ~b! Feynman diagrams for the correlato

^@FW 1(xW ,t)#2@FW 2(xW8,t8)#2&.

FIG. 12. ~a! Feynman diagrams for the correlato

^x2(xW ,t)x2(xW8,t8)&; ~b! Feynman diagrams for the correlato

^@FW 2(xW ,t)#2@FW 2(xW8,t8)#2&.
7-21
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1. Linear response for the auxiliary field

The real time expectation value of the auxiliary field
obtained by coupling an external source to the auxiliary fi
in the original Lagrangian~4.1! L→L1Jxx with the same
external source for the two time branches. Assuming the
dition of counterterms in the Lagrangian to ensure that
expectation value of the auxiliary field vanishes for vanis
ing external source we have

dkW~ t ![^xkW
1

~ t !&

5 i E dt8Jx,kW~ t8!@^xkW
1

~ t !x
2kW
1

~ t8!&2^xkW
1

~ t !x
2kW
2

~ t8!&#.

Introducing the Fourier transforms

dkW~ t !5E dq0

2p
d~q0 ,kW !e2 iq0t;

Jx,kW~ t !5E dq0

2p
J~q0 ,kW !e2 iq0t

we find

d~kW ,q0!52Jx~kW ,q0!rx~k,q0!.

We now use the tadpole method@23# to obtain the equation
of motion for the expectation value of the auxiliary field
leading order in the largeN limit, thereby obtaining an ex-
plicit expression forrx(q0 ,kW ) to this order. The implemen
tation of the tadpole method begins by shifting the auxilia
field
04500
d

d-
e
-

x~xW ,t !5d~xW ,t !1x̃~xW ,t !; ^x̃~xW ,t !&50

and requiring that̂ x̃(xW ,t)&50 to all orders in perturbation
theory. A counterterm is added to the Lagrangian to can
the tadpole contributions so as to make the expectation v
of the auxiliary field to vanish in the absence of the sou
term thus allowing to extract the spectral density straightf
wardly.

To leading order in the largeN limit we obtain the equa-
tion of motion~after the cancellation of the tadpole term! to
be given by

d~xW ,t !1E d3x8dt8P r~xW2xW8,t2t8!d~xW8,t !52Jx~xW ,t !

with the retarded polarization given by

P r~xW2xW8,t2t8!

52i
l

N (
a,b

@^Fa
1~xW ,t !Fb

1~xW8,t !&^Fa
1~xW ,t !Fb

1~xW8,t !&

2^Fa
1~xW ,t !Fb

2~xW8,t !&^Fa
1~xW ,t !Fb

2~xW8,t !&#.

In terms of the spatial Fourier transform the equation of m
tion becomes

dkW~ t !1E
2`

`

dt8Pk,r~ t2t8!dkW~ t8!52Jx,kW~ t !

and the retarded polarization kernel simplifies to
ed
Pk,r~ t2t8!52ilE d3q

~2p!3
@„2 iGqW

.
~ t2t8!…„2 iGqW 1kW

.
~ t2t8!…2„2 iGqW

,
~ t2t8!…„2 iGqW 1kW

,
~ t2t8!…#Q~ t2t8!

54lE d3q

~2p!3

1

4qukW1qW u
$~11nqW1nqW 1kW !sin@~q1ukW1qW u!~ t2t8!#

1~nqW2nqW 1kW !sin@~ ukW1qW u2q!~ t2t8!#%Q~ t2t8!,

using the representation of the theta function given by Eq.~3.6! we find the time-Fourier representation of the retard
polarization to be given by

Pk,r~ t2t8!5E dq0

2p
P~q0 ,q!e2 iq0(t2t8).

The Fourier transform of the polarization is now written as a dispersion integral in terms of the spectral density as

P~q0 ,q!52
1

pE dv
P I~q,v!

q02v1 i e

where
7-22
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P I~q,v!52lpE d3p

~2p!3

1

4pupW 1qW u
$@11nqW 1pW1npW #@d~v2upW 1qW u2p!2d~v1upW 1qW u1p!#

1@npW2nqW 1pW #@d~v2upW 1qW u1p!2d~v1upW 1qW u2p!#%. ~A12!
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Finally, in terms of the time Fourier transform the equ
tion of motion for the expectation value of the auxiliary fie
is given by

d~q0 ,qW !@11P~q0 ,q!#52Jx~q0 ,qW !

and we can read off the propagators for the auxiliary field
Fourier space

Gx~q0 ,q!5
1

11P~q0 ,q!
. ~A13!

The series of diagrams that are being summed leading to
propagator for the auxiliary field is shown in Fig. 2.

We now have all of the elements necessary to ob
rf2f2

. (q0 ,q),rf2f2
, (q0 ,q), writing P(q0 ,q)5PR(q0 ,q)

1 iP I(q0 ,q) and comparing the imaginary parts of Eq
~A11! and ~A13! and using the KMS condition~A10! we
finally find

lrf2f2
.

~q0 ,q!5
1

p

P I~q0 ,q!@11n~q0!#

@11PR~q0 ,q!#21P I
2~q0 ,q!

~A14!

lrf2f2
,

~q0 ,q!5
1

p

P I~q0 ,q!n~q0!

@11PR~q0 ,q!#21P I
2~q0 ,q!

~A15!

n~q0!5
1

ebq021
.

We postpone the evaluation ofP(q0 ,q) to Appendix B and
now focus on obtaining the resummed self energy for
order parameter.

2. Equation of motion for the order parameter

We now obtain the equation of motion for the order p
rameter toO(1/N) in the linearized approximation again v
the tadpole method and recognize the self-energy to this
der. To this effect we write the field as in Eq.~2.2! with

^F i~xW ,t !&5w~xW ,t !d i ,1 ; ^h i~xW ,t !&50

where we chose the particular direction ‘‘1’’ by choosin
explicitly the external source in Eq.~2.1! as Ji(xW ,t)
5J(xW ,t)d i ,1 to give the field an expectation value solely
this direction. The equation of motion forw(xW ,t) is obtained
by imposing that̂ h i(xW ,t)&50 consistently in the perturba
04500
-

n
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.
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-
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tive expansion. In terms of the spatial Fourier transform
the order parameterw(t) we find

ẅk~ t !1@k21dM2~T!1Mtad
2 ~T!#wk~ t !

1E
2`

`

S ret,k~ t2t8!wk~ t8!dt85Jk~ t !

whereJk(t) is the external source that generates the ini
value problem andMtad

2 (T);^(FW (xW ,t)2&;O(N) is the tad-
pole contribution which is the leading order in the largeN
limit. The O(1/N) contribution to the self-energy is calcu
lated in terms of the auxiliary field and is given by

S ret,k~ t2t8!52
4il

N E d3q

~2p!3
@„2 iGkW1qW

11
~ t2t8!…

3^xqW
1

~ t !x
2qW
1

~ t8!&2„2 iGkW1qW
12

~ t2t8!…

3^xqW
1

~ t !x
2qW
2

~ t8!&#

with ^xqW
1(t)x

2qW
1 (t8)& and ^xqW

1(t)x
2qW
2 (t8)& the full propaga-

tors up toO(1/N) given by Eqs.~A5!, ~A6! in terms of the
spectral representations given by Eqs.~A8!, ~A9! with the
spectral densities given in terms of the self-energy of
auxiliary field by Eqs.~A14!, ~A15!. The contribution to the
propagator of the scalar field up to orderO(1/N) is depicted
in Fig. 4. The contribution to the auxiliary field propagato
from the delta functions6 id(t2t8) gives a local tadpole
which is cancelled along with the leading orderO(1) tadpole
contribution by the counterterm to set the theory at the cr
cal point up to this order in the largeN expansion. Using the
spectral representation for the propagators of the auxil
field and the free field propagators for the bosonic fie
given by Eqs.~A3!, ~A4! and after some straightforward a
gebra using the relation 11n(2q0)52n(q0) we finally ob-
tain

S ret,k~ t2t8!5E
2`

`

r̃~v,k!sin@v~ t2t8!#dv

with r̃(v,k) given by Eqs.~4.6!–~4.8!.

APPENDIX B: THE RETARDED POLARIZATION OF THE
AUXILIARY FIELD

The spectral density~A12! is the same as Eq.~3.5! up to
the factor (N12)/N, a relatively straightforward calculation
with the Bose-Einstein distribution functions for massle
particles then leads to
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P I~q0 ,q!5
l

8p H Q~ uq0u2q!sgn~q0!

1
2T

q
lnF12e2uq01qu/2T

12e2uq02qu/2TG J . ~B1!

The real part must be obtained via the dispersive inte
~4.8!. We are only interested in the finite temperature con
bution to both the real and imaginary part therefore we o
consider the second term in Eq.~B1!. It proves convenient to
write the polarization as a dispersion relation

P~q02 i0,q!5
1

pE2`

1`

dv
P I~v,q!

v2q01 i0

and to analytically continue 01 iq05s. Using the fact that
P I(v,q) is an odd function ofv we obtain the dispersion
relation

P~s,q!5
lT

2p2q
E

0

`

dv
v

v21s2
lnF12e2uv1qu/2T

12e2uv2qu/2TG
2

l

8p2
lnFq21s2

m2 G ~B2!

wherem2 is a subtraction point.
We compute this integral using the sine-Fourier transfo

as follows. The integrand of Eq.~B2! is the product of two
odd functions ofv:

f 1~v!5
v

v21s2
and f 2~v!5 lnF12e2 uv1qu/2T

12e2 uv2qu/2TG .

We can then apply the Plancherel formula

E
0

`

dv f 1~v! f 2~v!5E
0

`

dx f̃1~x! f̃ 2~x!

where f̃ 1(x) and f̃ 2(x) are the sine-Fourier transforms o
f 1(v) and f 2(v), respectively. That is,

f̃ i~x!5A2

pE0

`

dv f i~v!sinvx

wherei 51,2. We find@27#

f̃ 1~x!5Ap

2
e2sx

and

f̃ 2~x!5A2

p

sinqx

2Tx2 @2pTx coth~2pTx!21#.

We have now that
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P~s,q!5
l

~2p!2qE0

`

dx
e2sx

x2
sinqx@2pTx coth~2pTx!21#

2
l

8p2
ln

q21s2

m2 .

It is convenient to split this integral into two terms,

P~s,q!5
l

~2p!2q H E
0

`

dx
e2sx

x F12
sinqx

x G
1E

0

`

dx
e2sx

x
@2pT coth~2pTx!sinqx21#J

2
l

8p2
ln

q21s2

m2 .

We carried out the integration explicitly with the result@27#

P~s,q!5
l

~2p!2 H 211 ln
m

4pT
1

s

q
arctg

q

s

2
ipT

q
lnF GS is1q

4p iT DGS 11
is1q

4p iT D
GS is2q

4p iT DGS 11
is2q

4p iT D G J
where we used Malmsten formula for the Gamma functio
@27#.

Back in real frequencies we have

P~q06 i0,q!5PR~q0 ,q!6 iP I~q0 ,q!

whereP I(q0 ,q) is given by Eq.~B1! and

PR~q0 ,q!5
l

~2p!2 H p2T

q
@u~q2q0!2u~2q2q0!#

1 ln
m

4pT
1

q0

2q
lnUq1q0

q2q0
U

1
2pT

q
Im lnFGS 11

q2q0

4p iT DGS 11
q1q0

4p iT D G J .

The limit T/q@.1 can be taken in a straightforward mann
and we obtain the high temperature limit of the polarizati
to be given by

P~q0 ,q1 i e!5
ilT

4pq
lnFq01 i e1q

q01 i e2qG1
l

~2p!2 F ln
m

4pT

1
q0

2q
lnS q01 i e1q

q01 i e2qD12gG1OS 1

TD
whereg is the Euler-Mascheroni constant.
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