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Critical slowing down of the relaxation of the order parameter has phenomenological consequences in early
universe cosmology and in ultrarelativistic heavy ion collisions. We study the relaxation rate of long-
wavelength fluctuations of the order parameter inC{iN) scalar theory near the critical point to model the
non-equilibrium dynamics of critical fluctuations near the chiral phase transition. A lowest order perturbative
calculation(two loops in the coupling\.) reveals the breakdown of perturbation theory for long-wavelength
fluctuations in the critical region and the emergence of a hierarchy of scales witly&ardsemisoftT>q
>A\T and soft \T>q loop momenta which are widely separated in the weak coupling limit. A non-
perturbative resummation is implemented to leading order in the Iardjenit which reveals the infrared
renormalization of the static scattering amplitude and the crossover to an effective three dimensional theory for
the soft loop momenta near the critical point. The effective three dimensional coupling is driven to the
Wilson-Fisher three dimensional fixed point in the soft limit. This resummation provides an infrared screening
and for critical fluctuations of the order parameter with wave vectdrs k> kg or near the critical tempera-
ture A\T>m;>ks with the ultrasoft scalek,s=(\T/47)exd —4m/\] the relaxation rate is dominated by
classicalsemisoft loop momentum leading Ik, T)=\T/(27N). For wave vector&<k,s the damping rate
is dominated by hard loop momenta and giverlt{k, T) =4=T/[ 3N In(T/K)]. Analogously, for homogeneous
fluctuations in the ultracritical regiom;<<ks the damping rate is given byy(m;,T)=4=T/[ 3N In(T/my)].

Thus critical slowing down emerges for ultrasoft fluctuations. In such a regime the rate is independent of the
coupling\ and both perturbation theory and the classical approximation within the hatigeit break down.
The strong coupling regime and the shortcomings of the quasiparticle interpretation are discussed.

DOI: 10.1103/PhysRevD.63.045007 PACS nunifer11.10.Wx, 11.15.Pg, 12.38.Mh, 64.60.Ht

I. INTRODUCTION AND MOTIVATION analysis of hadronic and electromagnetic observables.
For QCD with only two flavors of massless quartksd) it
The program of relativistic heavy ion collisions both at has been argug@®,4] that the chiral phase transition at finite

Brookhaven and at CERN seeks to understand the phase di@mperature but vanishing baryon number density is of sec-
gram of QCD in conditions of temperatures that wereond order and described by the universality class &)O
achieved during the first 1fs after the big bang or densities Heisenberg ferromagnets. It has also been suggested recently
several times that of nuclear matter which could exist at thehat at finite baryon density there is a second order critical
center of neutron stars. Current theoretical understaridihg point described by the Ising universality cld$d. Second
leads to the conclusion that QCD could undergo two phaserder critical points are characterized by strong critical long-
transitions: a confinement-deconfineméait hadronization ~ wavelength fluctuations and a diverging correlation length
and the chiral phase transition. Current lattice data seem tthat could lead to important experimental signatufés
suggest that both occur at about the same temperdiure These signatures would be akin to critical opalescence near
~160 MeV[1]. The consensus emerging in the field is thatthe critical point in binary fluid$6] and could be observed in
several types of observables will have to be studied simultaan event-by-event analysis of the fluctuations of the charged
neously and event-by-event analysis of data will have to bgarticle transverse momentum distributidmainly pions
carried out to extract unambiguous signals both hadronic anb]. These fluctuations are characterized by the typical cor-
electromagnetic to reveal the presence of a quark-gluorelation length of the order parameter and it has been sug-
plasma(QGP phase. Recent results reported from CERNgested that the phenomenon of critical slowing down, ubig-
Super Proton SynchrotrofSPS [2] seem to indicate a uitous near the critical point of second order phase
strong evidence for the existence of the QGP in Pb-Pb coltransitions, can lead to strong departures from equilibrium
lisions, and the Relativistic Heavy lon CollidéRHIC) at  that will determine the value of the correlation length when
Brookhaven will begin operation soon with Au-Au collisions long-wavelength fluctuations freeze qf. Critical slowing
with four dedicated detectors capable of event-by-eventiown of long-wavelength fluctuations near a second order
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critical point is the statement that the long-wavelength Fouthey could lead to important observables in the momentum
rier components of the order parameter relax very slowlydistributions of charged pions in relativistic heavy ion colli-
towards equilibrium[8]. In mean-field theory irclassical ~ sions[6,7,10.

critical phenomenathe relaxation time diverges proportional ~ Indeed there are simpler experimental situations where
to the susceptibility near the critical temperature but thermathis is the case, in typical normal fluids a collisional relax-
fluctuations renormalize the relaxation time to be of the form@tion time (away from the critical pointis of the order of
7(k=0)= £ with ¢ the correlation length, or at critical point 10 * secs while near the critical poiréven at 10% of the

s . " critical temperature critical slowing down becomes very
7(K) >k® with za dynamical critical exponeti8,9]. Another dramatic and thermalization time scales become of the order

similar manifestation of an anomalously slow relaxation ofof minutes if not hourg11,16,17

long-wavelength fluctuations arises in weakly first order " rp \s'the phenomenological importance of critical slowing

phase transitions when the system enters into the mixegyn for the QCD phase transition both in relativistic heavy

phase where thésothermal speed of sound, which deter- o collisions as well as in early universe cosmology moti-

mines the velocity of propagation of long-wavelength presvates us to study this phenomenon in a model quantum field

sure waves, becomes anomalously small resulting in the sofiheory that bears on the low ener¢phiral) phenomenology

est point of the equation of state. In this case there have alsg QCD, the O(N) linear sigma model. Furthermore the

been suggestions that there are experimental consequencess@ifdy of critical slowing down is the precursor to a more

this softening in relativistic heavy ion collisions in observ- complete program to understand transport phenomena and

ables related to collective flow and the transverse momentunhe relaxation of hydrodynamic modes at or near a critical

distributions of particles at freezeoltQ]. point.

In classical normal fluids near the critical point the van-

ishing of the (isothermal speed of sound, critical opales- A. Goal

cence(strong scattering of light by long-wavelength fluctua- . ) , , , .
Our goal is to provide a consistent microscopic descrip-

tions) and critical slowing down are all relatdd 1], and in , " . o .
ferromagnets the spin diffusion constant vanishes near thgP" of critical slowing down at or near criticality directly
critical point again signaling critical slowing dowi.1]. from an underlying quantum field theory that is at least phe-

The softening of the equation of state near the critical?omenologically motivated to study the QCD phase transi-
point of QCD could also have important cosmological impli- tions. This will be a first step in a program that seeks to offer

cations. When the the QGP enters the mixed phase with had consistent description of transport near critical points that
rons, the speed of sound becomes anomalously small and tf¥entually may be merged with a hydrodynamic description

time scale for propagation of pressure waves over a giveFﬁ obtain a more reliable picture of critical phenomena near
critical wavelength becomes longer than the free fall time fortn® deconfinement and chiral phase transitions and an assess-

gravitational collapse which is then unhindered by the pres-ment of the potential phenomenological observables both in

sure of the hadronic gas. This could lead to the formation Oparlly.universe cosmolqu as well as in. relat.ivistic heavy_ion
primordial black holeg12] with a possible imprint in the collisions. We begin this program in this article by focusing

acoustic peaks in the cosmic microwave backgro[t@. on the relaxation rate of Iong-wavel_e_ngth fl_uct_uations of the
Other possible cosmological relics from the QCD phase tranorder parameter at and near the critical point in a consistent
sition with a mixed phase had been predicted, from strang80N-Perturbative framework. , _
quark nuggets to massive compact halo obj@tACHO's) Slnce. we are concerned with cnnp_al slowing down during
[14,15. the cooling stagg of a phase tran3|t|9n, we focuslour study
A familiar argument is typically invoked to state that either at the critical temperature or slightly above it.
while the QCD phase transition in the early Universe oc-
curred in local thermodynamic equilibriug TE) this may B. Strategy
not be the case in relativistic heavy ion collisions. The argu- we begin our study of critical slowing down by analyzing
ment compares the typical collisional relaxation time scalehe relaxation rate of long-wavelength fluctuations of the or-
obtained from a strong interaction process;~10"?*secs  der parameter at and near the critical point inG(iN) scalar
to the time scale for cooling near the critical temperaturefield theory, which is a phenomenological arena to study the
~160 MeV, i.e. T/T~H 1~10° secs. The argument is relaxation of sigma mesons and pions. Our first step is to
that sincer,,;<H ! the phase transition occurs in LTE in obtain the relaxation rate to lowest order in perturbation
cosmology, whereas in relativistic heavy ion collisions attheory (two loopg. This calculation reveals clearly the
RHIC and CERN Large Hadron CollidgtHC) energies breakdown of the perturbative expansion for long-
these time scales will be comparable. However this argumenwavelength fluctuations at or near the critical point as a re-
completely neglects the possibility that long-wavelengthsult of the strong infrared behavior for soft loop momentum
fluctuations could undergo critical slowing down and freezeand the necessity for a non-perturbative treatment. We then
out, i.e. fall out of local thermal equilibrium, evdreforethe  implement a non-perturbative resummation of bubble-type
phase transition. The freeze-out of long-wavelength fluctuadiagrams via the larghl approximation to obtain the damp-
tions during the phase transition could result in importanting rate in the next-to-leading order in the lafgdimit. The
non-equilibrium effects on the size and distribution of pri- resummation implied by the largd limit to order 1N is
mordial black holes or any other cosmological relic just asakin to that obtained via the renormalization group with the
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one loop beta function and reveals the softening of the scator k,m<k_ the classical approximation breaks down and
tering amplitude and the crossover to an effective three dithe damping rate at the critical pointy=0 for k<kg is
mensional theory for momentg<\T with \ the quartic given by

ling.
coupling etk

'k, T) =

1
1+0[ —=| |- (1.2)
3N InE InE

C. Summary of main results

We have obtained the relaxation rate for long-wavelength
fluctuations of the order parameter at the critical point and ) -
for homogeneous fluctuations near criticality both to lowest O homogelgeous fluctuations near the critical ok 0,
order in perturbation theortwo loops and near the critical M| T~ Tc[“#0) the damping rate is given by

point to next to leading order in the lardelimit. mr<kye - 1

_ The two-loop res:ults for the relaxation rate for a flqgtua- To(my,T) = 1+ O = |- (1.3
tion of wavevectork of the order parameter at the critical 3N In— n—

point is found to bd(k, T)«\?T?/k whereas near the criti- M my

cal point, homogeneous fluctuatiofveith k=0) relax with a " ) ) o )
rate T'o(mMy, T)<N2T2/my. Here myoc|T—T|Y2<T, is the Thu_s cntu_:al slowing down, i.e., the vanishing qf the quasi-
effective thermal mass. These results clearly reveal th@article widthl” for long-wavelengths emerges in the ultra-
breakdown of the perturbative expansion in the long waveSOft limit k<k,s or very near the critical poinmr<kys
length limitk—0 atT=T, and forT— T, andk=0. wher.e it vam;hes Iogar_lthmlcally slow in tm‘amTHO limit .

A detailed analysis of the different contributions to theset© this order in IN. Notice that in such regimes the rate is
results for the relaxation rate shows that the rate is dominateidependent of the coupling. . . .
by very soft loop momenturg<\T which in the weak cou- In particular, the effective three dimensional theory dis-
pling limit A<1 are classical. The implementation of a non-cussed above corresponds to the vicinity of the fixed point
perturbative resummation via the larde limit explicity ~ Which is effective forAT>q, whereas the damping rate in
leads to an effective scattering amplitude that vanishes in th&'e Soft region is determined by loop momefita q>AT
static long-wavelength limit as a consequence of the crossand in the ultrasoft region by loop momergz T. Thus, the
over to a three dimensional theory for loop momenta three d_|menS|onaI fixed point is not directly describing the
<\T. This effective scattering amplitude allows us to recog-dynamics. o o
nize that the effectivehree dimensionatoupling for soft ~The largeN approximation is not limited to weak cou-
momenta approaches the three dimensional non-triviaPling and our results apply just as well to a strong coupling
(Wilson-Fishey fixed point in the long-wavelength limit near €asé\=1 wherein we find that the relaxation rate is given
the critical point. The largél resummation for the relaxation by Eds. (1.2, (1.3. However this analysis clearly reveals
rate incorporates this effective three dimensional coupling irthat for weak coupling there emergesiararchy of widely
the spectral density that determines the imaginary part of th&eparated scales for loop momenta: from giedl to semi-
retarded self-energy for the order parameter. Since the effe€0ft T>0g>AT, and soft\T>q that lead to different contri-
tive three dimensional coupling is driven to its fixed point atbutions to the relaxation rate. Which is the relevant scale for
long wavelength, the contribution from very soft loop mo- the damping rate is determined by the wavevector of the
mentaq<\T which give the strongest infrared behavior in fluctuation of the order parameter and the proximity to the
lowest order in perturbation theory is effectively screened byeritical temperature. Fdt, mr> ks the classical approxima-
this renormalization of the coupling. Consequently the mostion does apply and the damping rate is dominated by the
important contribution to the relaxation rate arises both fromsoft and semisoft classical loop momeritsith the resuilt
the semisoft classicalegion of loop momenturT>qs>\T  (1.1], whereas fork, mr<k, the classical approximation
and also from théhard regionq=T. A detailed analysis of Preaks down and the damping rate is dominated by hard loop
the contribution from the loop momenta reveals a non‘momentag=T [with the results(1.2), (1.3)].

perturbativeultrasoft scale A similar hierarchy exists in non-Abelian pIa;mEttS—
21] and we compare and contrast our results in the scalar
AT theory with those in the hard thermal loop approximation in
kus”—‘ﬂe : Abelian and non-Abelian plasm$8—21].

This article is organized as follows: in Sec. Il we intro-
duce the model, obtain the real-time equation of motion for

We find that for soft moment&>k,, the damping rate is the order parameter and describe the strategy followed to

dominated by classical semisoft loop momenta and given bgbt_ain the relaxation rate. In Sec. Ill we carry out a pertur-
ative analysis of the relaxation rate to two loops order, rec-

ognize the breakdown of perturbation theory and compare to

k>kys 3\ T 1 the case of the hard thermal loop resummation program in
rkT) = 5N 1+0 —| | (1)  gauge thepries. In Seps. v gnd VvV we introduc;e the. IaMge
™ Ino_ limit, obtain the effective static scattering amplitude in lead-
k ing order in the largeN and discuss the dimensional cross-

045007-3



D. BOYANOVSKY, H. J. DE VEGA, AND M. SIMIONATO PHYSICAL REVIEW D63 045007

over for soft momenta and the effective three dimensionalvhere we chose the particular direction “1” by choosing
coupling being driven to the three dimensional fixed point.external source term to be different from zero along this
We then use these results to obtain the relaxation rate ardirection to give the field an expectation val(sze below.

near Crltlcallty to Ordel@(l/N) in the IargeN limit and ex- The equation of motion forp()_(),t) is obtained by imposing
plicitly discuss the screening of the soft loop momenta. Th hat<7’i()'(’ t))=0 consistently in the perturbative expansion
contribution from classical soft and semisoft momenta an 23] In térms of the spatial Fourier transform of the order
that of hard loop momenta are analyzed separately to hig barametere and following the steps detailed in Appendix
light the important differences. In this section we discus A2 (see alsd23]) we find

further the validity of a quasiparticle interpretation of the

collective long-wavelength fluctuations of the order param-

eter. In Sec. VI we summarize our conclusions and results @k(t) +[K2+mi+ m*(T) + mp(T) Jei(t)
and discuss the next step of the program. In Appendix A the "
equations of motion in the largd limit are derived and in + J, S rerk(t—t ) @(t)dt’ =Jy (1)

Appendix B the polarization integral is computed.

where J,(t) is the external source that generates the initial
value problem and ¢ (t—t") is the two-loops retarded

We study the model of scalar fieldB(x) in the vector ~Self-energy without the tadpole contributions. The one and
representation o®(N), which is conjectured to describe the tVVZO"OOPS tadpole contributiongocal) are accountzed for in
equilibrium universality class for the chiral phase transition Miaq(T). As described above, the countertedm=(T) is

with two light quarks forN=4 [4]. The Lagrangian density fixed consistently in perturbation theory by requesting that it
is given by cancels all constar(in space and timecontributions to the

self-energy(such as the tadpolgese.,

Il. PRELIMINARIES: THE MODEL AND THE STRATEGY

1 P 2 2 2 2
L= 5(0#CI>) — i[mT+ om=(T)]P(x) om=(T¢)+mg,(T.)=0.
N o : . : o
A TSI 2.2) The retarded self-energy Eas a d|§per3|ve representation in
2N terms of the spectral densip(w,k) given by
where the external curredthas been introduced to generate ) ' o' (-t p(w,K)
an expectation value for the scalar fiéig. the order param- Treru(t—t")= f o5 € f do o— —ie
eten by choosing it to be nonzero along a particulsigma 2.3
direction. .

The countertermsm?(T) is introduced to cancel the tad-
pole contributions(local term$ so that perturbation theory
(or the largeN expansioh is carried out in terms of the
effective thermal masmi;. In particular to leading order in
the largeN expansion there is the hard thermal loop contri-

bution given by the usual tadpole terfi22] oc)\<<f>2>/N
«\T? which combined with the zero temperatyreegative
mass squared leads to an effective finite temperature masggere wp(K) is the position of the pole in the propagator,
m2oc(T2—T2). The critical theory corresponds To=T,, i i h i i i i

= 9. y ponds1o=T,, i.e. i.e., the true dispersion relation. For the perturbative two
m;=0. In this case the counterterdm?(T) is adjusted con- loops or to leading order in the lardélimit as studied here
sistently order by order to set the effective finite temperatureof)(k)=k2+ m3, which at T=T, takes the forma (k)
mass equal to zero. "

. . . . =K.

As §tated in the .Introducnon, our goal is to obtain the \wjith the purpose of clearly revealing the breakdown of
relaxation ratedamping ratgof the order parameter at and the perturbative expansion for soft momekta\ T we will
near the critical point. This will be achieved by obtaining the pegin our analysis by focusing first on the perturbative evalu-
equation of motion for the expectation value of the scalafyiion of the damping rate. At one loop order the only contri-
field, i.e., the order parameter and treating its evolution iny,tion to the self energy is given by the tadpole term
real time as an initial value problem. This is achieved by)\<q32(>z,t)>/N which is local, determines to lowest order the

coupling an external source that serves the purpose of pr?émperature dependent masse|T—T,|“2 and determines
C

paring the initial state. From the equation of mo'tlon We reCne counterterni22]. Furthermore this is the leading contri-
ognize the self-energy and compute the relaxation rate fro

its imaginary part on shell. We write "Bution in the hard thermal loop 1imift18,22. The lowest

' order contribution to the absorptiy@naginary part of the
. R R . self-energy arises at two loops and is studied in detail in the
D3(x,t)=@(X,1) 8>+ 2(x,1);  (7(x,1))=0 (2.20  next section.

in terms of which the relaxatiofdamping rate is given by
[18]

L'(k,T)=— ‘plwp(k) K, T) (2.9

ar
20,(K)
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lIl. PERTURBATION THEORY: TWO LOOPS

N+2 ( d°p 1
We begin our study by carrying out a perturbative evalu- o(do.q) =2\ N f (2m)3 4p|5+a|
ation of the damping rate to lowest order, i.e. to two loops to
reveal several important features of the soft momentum limit, X{[1+ng, 5+ n;1[8(do— P+ —p)
and to pave the way to implement a non-perturbative evalu- L
ation of the self-energy in the larde limit. Furthermore, as - 8(qp+|p+ql+ P)1+[ng—ng:pl
it will become clear during the course of the calculation, the S .
lowest order contribution contains some of the important in- X[8(go—|p+al+p)—8(qot|p+al—
gredients of the larg®\ limit and will highlight the contri- (3.2
bution to the relaxation rate from different regions of loop
momentum.
After substracting the one and two loops tadpole contriyye find
butions which are cancelled by the counterterm, the spatial
Fourier transform of the retarded self-energy reads

S7(do,a)=[1+n(do)]1o(do.q),

N+2( dp diq
I — 2 = ’
Freu 1) =8 N2 f(ZW)s (277)3{Gl2+d(t_t :

S™(9o.,a)=n(do)o(o.a) 3.3
><G,;+a(t t)G (t—t")— Gk+q(t t')
XGﬁﬂi(t—t’)Gﬁ(t-t')}@(t—t’) (3.1 where
where the Wightmann functior@~,G < are given in Appen-
dix A1, 1 __1
With the purpose of comparing with the results of later N(Qo) = Flo_1’ K GBN_q1 (3.4
sections, it proves convenient to introduce the intermediate
guantities

The near critical case is considered in Sec. Il C.
. A lengthy but straighforward calculation with the Bose-
Gq(t=—t)= _27‘_[ (2)3 p+q(t_t )G (t=t) Einstein distribution functions for massless particles leads to
the following expression foo(qg,q):

:quoe"%“’”s>(qo,q)

O (|aol—q)sgn(ap)

LN N#2
U(Qo:Q)—QT

1—e laotalr2T
el R

1— e lao—al2T

(t t)———(N 2)f (t t')

+2TI
xGF;(t—t’) q :

:f dgoe ™% ")S(qp,q) . _ .
It is important to emphasize that the second, finite tempera-

ture term is the combination of two different contributions: a
and using the expression for the Wightmann functionswo massless particle cut with support in the regig>q
Gy (t—t ),Gg (t—t ) given in Appendix A1, itis a straight- and a Landau damping cut with support in the regieq
forward exerC|se to show that the spectral functions<Qo<gd.

S5(90,9);S7(g9,q) o©obey the Kobo-Martin-Schwinger Introducing the Fourier representation of the theta func-
(KMS) condition tion
S™(do,q) =€ #%S”(qo,q). -
dw e—lw(t—t )
Ot-t)=—| 74—+ (3.6

Introducing the spectral density 27 wtie

a(0o,d)=S"(do,q) — S™(do.q)
in the expression for the self-ener¢y.1), we find the spec-
which at the critical poinT=T,, i.e.my=0 is found to be tral density that enters in the dispersive representation of the
given by retarded self-energ§2.3) to be given by
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A\ d3q _dgo . Lo
w0k = f o (Go, D1+ NG+ (Ao [ 8(w— o |K+Gl) — 8w+ o+ [K+))]

(2m)® 2|k+q|
A d3q
= f(ZW)g Jkra |{o(q ;= [K+a))[Ng = n([k+d|— @)1+ o(d, 0+ [K+g))[ NG~ n(w+|K+a)]}
3.7
[

with a(qq,q) given by Eq.(3.5 and we used that |k+q|+q+k

k+q|—q+k
0(=0o,d)==0(do.q), 1+Nn(—0o)=—N(do)- Jz(k,T):fd3q = | ﬁqug SATREY)

qlk+al*(lk+al+k)

Although this seems to be a cumbersome manner to write
down the two loop contribution, it does prove convenient toThe angular integrals can be performed analytically &nd
establish contact with the largd description in the next can be scaled out of the integral by introducing the variable
section. x=g/k leading to the final expression
We are interested in the relaxation of long-wavelength
fluctuations of the order parameter, hence we will consider N2T2 N+ 2 [
the soft limitk<T. o _ Ik, T)= — _zj dx F[x] (3.10
We study the contributions coming from saft<T and 16wk N7 Jo
hardg=T loop-momenta separately.

with the functionF[x] given by
A. The soft momenta contribution (classical regior)

This is the classical region where the Bose-Einstein dis- 2 Inx x+1
I . ; FIx]==| 2X—— +In|—
tribution functions can be approximated abw)~T/w,ng x| x—1 x—1
~TI/k.
In this regime the contribution of the soft momerga

and is depicted in Fig. 1. In principle, the upper limit in the
integral in Eq.(3.10 should beaT/k with «<1 to restrict
the integral to the soft momenta where the classical approxi-
mation is valid, but the integrand falls off asxi/for x>1

<T yields

- NT?w N+2 [ diq 1
pcl(w!k):_ 2772 sz

(2m)® qlk+q|? and the integral is dominated by the smalkregion 0<x
.o L =<1 as shown in Fig. 1. The integral fror=0 to x=< in
w—|k+q|+q w+|k+q|+q Eq. (3.10 gives 272 and the contribution from the classical
: w—|K+q|- w+|K+q|— loop momenta)<T to the damping rate to two loops order is
— —— thus given by
o—|k+q] o+ |k+q|

where we only kept the contribution of ordé&ro o(qg,q).

We evaluate the spectral densityat k leading to the fol- 27
lowing form for the soft momenta contribution to the damp-
ing rate(2.4), 20
AT|2N+2 2151
FC|(k1T): T 27T4N2[‘Jl(k1T)+‘J2(k1T)]! (38)
10
with J;(k,T) and J,(k,T) given by the following expres-
sions: 51
||Z+(i| +q— k 0 T T T T T
—_ 0 2 4 6 8 10
k+qg|—qg— X
(k,T)=f 3g__ | : Q|Q -
alk+ql?(|k+q|—k) FIG. 1. The functiorF[x] vs x=q/k.
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N?T? N+2 oo T
Fc|(k,T)= m —Nz— (31]) Fhard(krT)oc)\ T InE

As will be seen in detail in the next section, the lafge L .
resummation leads to a screening of the soft loop momenturfyNich is a factor k/T)In(T/k)<1 smaller than the contribu-
which cuts off the contribution of momentug< A T. Hence, ~ tion from the classical loop moment&.11) for k/T<1. In

with the purpose of comparing the perturbative two-loop re-Summary, when the external momentum is SORAT the

sult with that in the largeN limit, it proves convenient to da@mping rate is completely determined by the classical re-
obtain the contribution to the damping rate from the regiondionq<T of loop momenta and given by E.11). That in

of semisoft loop momenta WithT<q<aT with A<a<1 @ scalar theory the leading temperature effects are deter-

for the case of soft external momentit/k>1. mined by the classical region of loop momenta was already
The contribution to the integral of the functiéiix] from  anticipated in Refs.24,25 but the computation above iden-
this region is given by tifies the contribution to the relaxation rate from several dif-
ferent regions of loop momentum. This identification will
aTlk 4k \T become important to understand the result obtained from the
j dx F{x]~ =In—— large N limit
AT/K AT K '
therefore this region of loop momentum gives a contribution C. Near criticality

to the damping rate given b
Ping g y A calculation very similar to that in the critical inhomo-

AT N+2 AT geneous case can be carried out for homogeneous fluctua-
s goat™ o7 N2 nT' (3.12  tions (k=0) near the critical point with the effective thermal
massma« \ (T2—T2) straightforwardly. In this case the an-
Thus we see that the contribution from the soft region ofgular integrals are trivial and most of the steps are similar to
internal loop momentung<\T contributes a factonT/k  the critical case leading t(see alsd24,25)
>1 larger than the region of_ momenturg=>AT for soft N2T2 N4-2
external momentunk<\T. This observation will become oMy, T)= o—— —— .
important when we compare with the larjeresult, because 8mmr N
as we will show explicitly below, the resummation of the
effective scattering amplitude will lead to a softening of the o simjlar analysis for contributions from different regions of
effective vertex and hence screening of very soft momenta ilhop momentum is obtained by replacikg-my in the ar-
the loop. guments above.
o The resonance parametefk, T)/ w, with w, the position
B. The hard momenta contribution of the single(quas) particle pole determines how broad is
We now focus on obtaining the contribution to the damp-the resonance. If'(k,T)<w, the quasiparticle can be de-
ing rate from hard loop momentg=T. From the expression Scribed by a narrow resonance and its decay occurs on time
of the finite temperature contribution to the spectral densitys¢ales much longer than those of the microscopic oscillations
o(do,q) (3.5 it is clear that hard momentg,,q=T willbe @, - On the other hand fof (k,T)>w, the notion of qua-
exponentially suppressednless either |q—qo|<T or |q  Siparticle is not appropriate and the excitation is described by
+qo|<T. Consider the expression for the spectral density?2 Very short lived broad resonance. N .
(3.7) for =k and consider the contribution from the delta  The two loops calculation reveals that, at the critical point
function with support forqo=k—|K+g[: it is straightfor- M7=
ward to see that the other delta function will give a similar
contribution. For g=T>k we find thath0+q|=k|1 T(k,T) ™k N+2(\T)|?
—cos#| where 6 is the angle betweek andq and|q0—q| K gaN2| k. ;
=2T, hence the region of loop momentum that dominates
corresponds to the emissidor absorption of a pair of sca- o )
lars (the particles in the loopwith total center of mass mo- @analogously, near criticality for homogeneous fluctuatikns

mentumcollinear with the external momentum. =0

Keeping the leading termIn(|gy+q|/2T) in o(qy,q) and
thefull occupation factors in the expression fothe spectral C(mp,T) 7™ N+2(\T)2
density(3.7) becomes my = SWNZ\m_T)

~ T
_ N _
plo=kK)o—A"Tkin k Hence up to this order a quasiparticle interpretati®mot

reliable fork, mr<<AT.
and the contribution to the damping rate from the hard loop Moreover, for very soft external momenta or very near the
momentum region is critical temperaturek;m;<<AT the perturbative expansion
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clearly breaks down and a non-perturbative scheme must b

invoked to study the damping rate. 77T ‘ """"" = * o Q """"" *
This situation is similar to that in the hard thermal loops

(HTL) program in the sense that for external momekta

<\T (in gauge theoriea. must be replaced by the gauge 7777 Q """"" O """"" *

coupling squareda non-perturbative resummation is needed
[18,19. However, here the similarity ends and the major

difference with the HTL program is revealed: whereas in the F\ /_\ /_\ PR
HTL case the non-perturbative region is dominatechayd U U U

internal loop momentay=T, the relaxational dynamics at o o ) )

the critical point is dominated bgoft classicalland as will FIG. 2. Propagator for the auxiliary field in leading order in the

become clear below, also semi-gdiftternal loop momenta largeN limit. There is a facton/A/N for each vertex and a factdt
! for each bubble. The propagator is©f1) in the largeN limit.

g<<T. The difference can also be clearly seen formally by

restoring thes in the contributions: the temperature always o ] o ) )

appears in the combinatioi/% (from the distribution func- detail this resummatlon at finite tgmperatgre which will re-

tions, in the HTL program the gauge coupling constantveal the screening of the scattering gmplltude for s_oft mo-

squarede?—e?# (since this is the loop counting parameter _menta which in turn will be responsﬂ_ole for screening the

hence the HTL scale?T?— e2T2/%. However in the scalar Nfrared behavior of the spectral functions and the damping

case the loop counting parametenis-\#, hence the con- &€ , , o

tribution N?T? is classicali.e. independent ofi. Therefore In this section we will focus on the critical theoryr

whereas in the HTL program perturbation theory breaks= Q- The analysis of the off-critical case is given in Sec. V.

down at a semiclassical scdtee T/, at the critical point

of a scalar field theory the perturbative expansion breaks A. Effective scattering amplitude

down.at aclassical scalt_ekoc)\T.. In_the _HTL program the To leading order in the largdl the two particle to two

dgmpmg rate of c'ollec'tlve excitations is typically of 'order particle scattering amplitude is dominated &ghannel ex-

e°T and the quasiparticle poleplasmons and plasminbs change and is completely determined by the propagator of

are of orderwpoce_T/\/f_L— hence for weak coupling the 1ong-  the auxiliary fieldy. Figure 2 shows the Dyson sum for the

wavelength quasiparticles are always relatively narrow ressrgpagator of the auxiliary field in leading order in the large

nances. This is in striking contrast with the case of a criticaly |imit and Fig. 3 shows the-channel scattering amplitude

scalar theory where the long-wavelength excitation of then |eading order, the and u-channel contributions are sub-

order parameter is gapless. leading. The bubble diagram which is the building block of
the propagator of the auxiliary fieldand therefore the
s-channel scattering amplitudis simpler to be calculated in

IV. LARGE N the Matsubara formulation of finite temperature field theory
with an external frequency,=2mnT and given by
Having recognized the non-perturbative nature of the re-

laxation for the long-wavelength components of the order d3p 1

parameter, we seek to use a consistent non-perturbative de- Ibub(¥n :Q):z)\TVZ W m

scription and study the relaxation of the order parameter in " m™ P

the largeN limit. This limit is best studied by introducing an 1

auxiliary field that replaces the quartic interaction via a X - 4.2
Gaussian integratioi26] (Hubbard-Stratonovich transfor- (vmtvn)“+(p+a)

mation, hence the Lagrangian density becomes

L‘—}(& d)2— \ﬁ (x)+ }(m2+ SmM(T)) | PA(x)
2\ NX o My

1 - o
+ EX2(X)+J(X)~®(X). (4.1
Before we engage in a study of the damping rate, it is _-k"_-q' 0
important to highlight that the largd expansion effectively -2’

provides a reorganization of the perturbative series which for

example at leading order and at zero temperature is akin to FIG. 3. Two particle s-channel scattering amplitude in the static
the resummation of the leading logarithms via the renormaland largeN limit. g, q,=0 are the transferred momentum and
ization group for the scattering amplitude. We now study infrequency carried by the propagator of the auxiliary field.
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To illustrate the resummation in a more clear manner, we
focus on the static limit which is obtained by setting the .
external Matsubara frequency to zero. The strongest infrared
behavior and leading contribution in the high temperature ; i
limit arises from the termrm=0 in the Matsubara sum, the : 1

remaining spatial momentum integral is carried out leading
to FIG. 4. The self-energy of the scalar field at ordeM.1/

lous(0.9) = AT 4.3 The main point is that this effective three-dimensional cou-

bubt ™ 4 pling is driven to the three-dimensional Wilson-Fisher fixed
point A\* =1 in the soft momentum limig—0, while the

and thes-channel scattering amplitude in the static limit is effective four dimensionalcoupling (4.4) is driven to the

given by (see Fig. 3 trivial fixed point in this limit. Hence, whereas the three
) dimensional coupling\3(q) =\T/4q diverges in theq—0
- q . q N limit, the largeN (equivalent to the renormalization group
M| Ok+ 30—kt 5= 1+ 1 0) effective coupling\s11(q) is driven to a finite fixed point in

the soft momentum limit. Therefore the lareesummation
5. effectively screening the infrared divergences associated

dent coupling constant, defined as the coefficient of i with the soft momentum limit much in the same manner as

the s-channel scattering amplitude in the static limit, is giverf€ resummation implied by the renormalization group
by within the e expansion. Obviously, in exactly three Euclid-

ean dimensions one could hardly justify the validity ofen

We see that the effective temperature and momentum depe

A expansion, but the largd limit provides a non-perturbative
Netf(d) = T (4.4 framework that includes a similar resummation. The main
1+ T point of this discussion is the realization that the resumma-
q

tion implied by the largeN limit provides an effective cou-
ing constant that is well behaved in the infrared limit, thus
ading to the conclusion that the simple point-like scattering
Srertex must be resummed before attempting to compute the
damping rate or any other transport coefficient near the criti-

This expression reveals several noteworthy features. Firs&I
we see that at high temperature in the critical region th
actual expansion parameter in the sum of bubblesTis
with g the spatial momentum tranferred into the loop. The | redi
factor T is a consequence of the dimensional reduction ang@fegon. - .
. . : The analysis in this section reveals the role played by the
the factor\T can be interpreted as the dimensionful three o
dimensional coupling. Since the expansion is in terms mscale )\Ti mterna_l Iqop momentaq<)\T Iea_ld to non-
dimensionless quantities the factgrin the denominator is Perturbative contributions, in the weak coupling limit<1
required for dimensional reasons. In fact this can be undeiN€Se non-perturbative scales afessical on the other hand
stood via a parallel with the calculation at zero temperaturd®r G>AT the effective couplinggeither four or three di-
in 4— e space-time Euclidean dimensions with a Coup"ngmensmna)l are small for weak coupling and the effective
AT with T now some dimensionful scale, the loop integral vertices coincide with the bare vertices. The implications of
for the massless theory produces a faq:Iﬁf and fore=1 this discussion will be important to understand the different
i.e. the three dimensional theory one finds the result for th€ontributions to the relaxation rate.
finite temperature loop in the static limit. Secondly, the ex-
pression for the effective couplingt.4) is a result of the
largeN resummation to leading order and is the same as that B. The relaxation rate
obtained from the solution to the renormalization group
equation for the running coupling using the one-loop beta As discussed above at leading order in the laxgkmit
function obtained in the: expansion and setting=1, i.e.  the only contribution to the scalar self-energy is a tadpole
the largeN resummation is akin to the resummation obtainedx ) ($2?)/N~ (1), which results in the effective thermal
from the renormalization group in euclidean field theory, inmassmye|T— T, and is cancelled by the mass counter-
the sense that the leading order in the lalgdeads to @ term. In this section we consider the theory at the critical
running coupling which is the same as that obtained from theemperature where the renormalized temperature dependent
o.ne—loop beta fgnchon. Thirdly, since .the ef.fe.ctlve expan-mass exactly vanishes.
sion parameter in the sum of bubbles\i$/4q it is conve- At next-to-leading orde®(1/N) the self-energy obtains
nient to introduce thethree dimensionalcoupling A5(d)  an absorptive part and is given by the diagram shown in Fig.
=\T/4q and its effective counterpart 4.
In Appendix A2 we provide the details necessary to ob-
Naar(q) = A3(Q) _ AT 4.5 tain the retarded self-energy in terms of a dispersion relation
et D= T 0(q) ~aq+aT ' as in Eq.(2.3), with the spectral density
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A\ d3q  dqo I L
Pwk)= f(z gz Qo L NG (@8 G~ k46— o ot -+ G

N d3q 1
= 2 ks e|{p(w—|k+q| NG+~ N(k+9|— )]+ p(o+|K+al,a)[ng+i—N(w+|k+q|)]}.
(4.6)

We performed here the integral ovgy by using the delta functions thereby setting the combinan}H|c]+ IZ| =+ o for the
respective delta functions.
In Appendix A1 we show in detail that

i I1,(00.9)
7 [1+T1g(do,q) 12+ 117(q0,q)’

wherell,(qq,q) is given by the leading order in the larglimit of the two loop spectral densit{B.2), as

p(do,q)= 4.7

dp

(2m)3 W{[H Ng+ 5+ N1 8(do—|Pp+0|—p)— 8(do+|p+al+p)]

H.(qo,q>=2mf

+[n;—ng4 510 8(do—|p+al+p)— 8(do+|p+al—p) 1}

The first term, proportional to the sum of the occupationested in the case of soft external momenks\ T i.e. long-
factors, corresponds to the two particle cut while the second@vavelength fluctuations of the order parameter.

term proportional to the difference is obviously only present In the high temperature limit the spectral dengifyg,,q)
in the medium and corresponds to Landau dampl@} The takes the explicit form

real and imaginary parts of the polarization of the auxiliary

field I1(qg,q) are related by a dispersion relation, i.e.,

4q
- T
- - 1f ol b1 s p(k+|k+al,a)= aq 2
R(QOvQ)— T w I(qaw) w_qo' . {ﬁ—'_l _|_|_%r
Keeping the leading temperature dependence we obtain
T |1-e laotareT o i—?_L_
00 8= 7 N e | TR (49 ek +0) = g
—| +L2
In Appendix B we show explicitly that the leading tempera- [ AT }

ture dependence for the real part of the polarization operator

of the auxiliary field is given by where we used Eq$4.9), (4.10 analyzing carefully the sup-

port of the theta functions iblz(qy,q) and defined

AT
[Tr(de,9)= E[®(q—qo)—®(—q—qo)]+(’)(>\ InT)
(4.10 k+|k+q|+q

k=*|k+q|—

which in the static limit reduces to E¢4.3).

It is clear from Eq.(4.9) that just like in the case of
perturbation theory up to two loops, there are two important
regions to conside(i) the classical region Witqo,q<T and Introducing in the integra{4.6) the dimensionless variable
(i) the hard region withy,,q=T but with either|q—qq| q/k andx=cos# (where# is the angle between the vec-
<T or |g+qo|<T the other regions of hard momentum be- tors k andq) and settingw=k yields for the damping rate
ing exponentially suppressed. We will be primarily inter- (2.4

045007-10



RELAXING NEAR THE CRITICAL POINT PHYSICAL REVIEW D63 045007

k? 1 1 L. (x.y)
I'(k,T)= NTJ y® YJ w(x y) ePkWxY) — 1 eBKWxy) -1 7 4ky 5
[F+l +L+(X,y)
1 1 L_(Xy)
P 1 PIWH I 1 |[akyar 5 (4.1
[)\—T +L2(X,Y)
|
where AT
kUSE —e Az/N
1¥w(xy)+y A
L.o(xy)=logli—~—"
FW(xy) -y is the ultrasoft scale.
and As it will be discussed in detail below, fdt<k,s hard
momenta dominate the contributions to the widitfk, T).
W(X,y)=\1+y%+2xy. We analyze in the subsequent section the widtk, T) in

the two regimes: soft for whicAi>k>ks and ultrasoftk
For AT/4k>1 the region of smaly (small momentumis  <k..

screened by the resummation of the scattering amplitude and
leads to a small contribution to the damping rate of otder
Fory>\T/k the screening is not effective and the integrals
in Eq. (4.11) are dominated by the neighborhood of the point ~ To obtain the contribution from classical momente T
y=y* at whichL2(x,y) is of the same order as the other We perform the following approximationsi) approximate
square in the denominators, i.p4ky/\T]2. For largey we  I1i(Go.q) Dy its limit for qo,q<T,
can expandv(x,y) as follows:

C. Classical contribution

QO+q
do—q|’

IT,(qo,0) =

47Tq

1 1
W(x,y)=y+x+0()—/)=y 1+O()—/”. (4.12

with the real part given by the leading temperature contribu-

We thus find tion (4.10 and (ii) approximate the Bose-Einstein occupa-
tion factors by their classical limit, i.e. in Eq4.6) we re-
AT AT lace
yr=—In—r. P
47k 4wk
[For k<T the 1 in the denominator of the first term of Eq. 1+ng4 5+ n(Go) = TM.
(4.1)) is irrelevant in the determination o ]. dola+p|

The classical approximation for the occupation numbers,
e., loop momenta<T can be used at=y* providedky* We thus find from Eq(4.11) for the classical limit contribu-

<T andA <1, i.e., fork>k,s where tion to the damping rate
aT/k 1 L. (xy) 1 L_(xy)
K T)= — j j n
I y*dy Z(X y) ! 1-w(x,y) 1 2 k) 1+w(x,y) 1 1 r+L2 )
——— +Li(Xy Na(kV)  N* -\
MNeryl haardiy) 2

(4.13

with N 3.¢¢(q) being theeffectivethree dimensional coupling dimensional effective couplindse¢¢(q) given by Eq.(4.5
given by Eq.(4.5 and\* =1 the three dimensional fixed and its non-trivial(three dimensional Wilson-Fishefixed
point. We have introduced an explicit upper momentum cutpoint A* =1 reached in the soft limig—0. The phenom-
off gmax= a@T with @<<1 that restricts the integration domain enon of screening of the infrared behavior by the renormal-
to the region where the classical approximation is valid. ization of the coupling is now explicit, the region of soft loop
The expression4.13 clearly reveals the role of the three momentumg<<AT is independent of the coupling and tem-
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perature because the effective three dimensional coupling is (iii) However wherg,,,;,=T the logarithmic terms are the
near its non-trivial fixed point. The only scale in the integraldominant terms in the denominators of the integrands and
in the soft-momentum region lsand a dimensional analysis this region is sensitive to the hard loop momeqtaT and
reveals that the contribution from this region is proportionalthe classical approximation is not warranted. This region re-
to k. quires the full Bose-Einstein distributions and will be studied

On the other hand, when the loop momentungis\T in detail below.
the renormalization of the coupling is ineffective and the After this preliminary assessment, we now provide a
effective coupling coincides with the three dimensional cou-quantitative analysis of the different regions.
pling AT/4q. For weak couplingn<1 and loop momentg As argued above in the region< (k) =\T/(4Kk), i.e.
>\T the effective three dimensional coupling Xs ¢+(0) g<<\T, the integrals in Eq(4.13 are independent of;(k)
~N\3(q)=\T/4q<1 and the denominators in EG.13 are  (i.e., of both the coupling constant and temperatared in-
dominated by the terms X4¢¢¢(q). If the logarithms can be frared finite, contributing to the damping rate a term that is
neglected we clearly see that this contribution is the same g&oportional tok. This is the region of loop momenta for
that given by the integrald,(k,T) and J,(k,T) given by  which the effective coupling is near the three dimensional
Egs. (3.9 in the two loop computation of the damping rate Wilson-Fisher fixed point. The screening of the scattering
(3.8), which is proportional to.>T?/k. This region begins to amplitude is ineffective for loop momen@=\T i.e., the
dominate for g>\TIn(AT/k) when 1A3.¢(q) becomes semisoft scales, in this regigr>\3(k)In A5(kK) and the term
larger than the logarithm in the denominators in both inte{y\3(k)]? dominates over the logarithms leading to a con-
grals in Eq.(4.13. If the loop momenta are such thBq in  tribution to the damping rate proportional ka 3(k) =\T/4.
this region, i.e. the classical approximation is valid, the conSince in this regiony>\3(k)>1 we can approximate
tribution of this region to the integral can be estimated byw(x,y) according to Eq(4.12 and the integrals simplify
cutting off the integrals in Eq4.13 at a lower momentum considerably.
of ordergmin=\T In(AT/K). Hence following the same argu- Up to 1A 5(k) corrections we find
ments as for the two loops case that led to the estiial®)
we conclude that the region efassical semi-softoop mo- aT/k
mentumT>q>q,,;, leads to a contribution to the damping Fo(k,T)= ) f dx
rate~\T. However ak becomes smalleq,,;, approaches °
the cutoff aT, i.e. the limit of validity of the classical ap- 2y
proximation and the logarithmic terms cannot be neglected. I”ﬁ
In particular fork=<k,s with ks the ultrasoft scale intro- X 2
duced above the integral becomes sensitive to momenta of 772[_.,.
order of T and the classical approximation breaks down. For A 1+x
these ultrasoft momenta of the fluctuations the damping rate
is determined by the region of hard loop momentgeaT. In——

This analysis yields to a preliminary assessment of how n 1+x 1 ”
different regions of loop momentum will contribute to the wy? , 2y Na(K)/) |
damping rate: N Tx

(i) The soft region of loop momentum<\T is domi-
nated by the three dimensional fixed point and contributes to (4.14
the damping rate

2
+1n? _y

1+0

Now the angular integralver the variablex) can be per-
I qeart=k. formed changing the integration variablesyte A 3(k)u and
expanding in inverse powers of ig(k), since forh<a<<1
(ii) The semisoft region of loop momentufi®g>A\T is
still dominated by classical modes but the renormalization of
the scattering amplitude is irrelevant. df,;,=~\T IN(AT/K)
<T the logarithms can be neglected and the integrals in Eq.
(4.13 behave similarly to the perturbative two loops compu-This is certainly a slowly converging approximation for soft
tation. For momentd >q>q,,,i,~ AT IN(AT/K) the integrals momenta but numerical calculations show it to be reliable
are dominated by the terms in the denominators proportiongkee Figs. 5—7 belowThen we find from Eq(4.14)
to 1l)\§(q) leading to a contribution

27 4(K)u
1=x

1+0| ———~

=In[2)4(K)] e

2kN3(k) (= In[2N\5(k

I1sgsqy, AT 72U+ 1)+ In?[ 2N 5(K)]

The validity of the classical approximation and the domi- N In[2\3(k) ] Hl O( 1 ”
nance of semisoft loop momenta is warranted for weak cou- (mu)2+In?[2N5(K)] In\3(k)
pling when there is a clear separation between the hard scales

with q=T the semisoft scales witli>q=AT and the soft AT 1+(’)( 1 ) (4.15
scales for whicl\T>q. 2N InAs(k)/ | ’
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25 ' I I N éamma/‘l’ Vs. InI[T/k] for Iambdali=12 —
lambda/[2 pi] for lambda=12
4 pi3 In[T/K]} vs. In[T/K] --------
2 - -
5L | FIG. 5. NI'(k, T)/T vs In(T/K] for A\=12.0.

We also plot the classical valug[27] and the

asymptotic  ultrasoft behavior NI'(k,T)/T

1 =47/3 In[T/k]. We see in this strong coupling

1+ . regime that the ultrasoft asymptotics correctly de-
; scribes the relaxation rate.

A detailed analysis of both integrals above reveal the pres- k>\Te ¥\,

ence oftwo important scales(a) the cutoff scaley= aT/K,

that isq=aT with «<1 that determines the regime of va- It is clear thaty* becomes of the order df/k and therefore
lidity of the classical approximation when the Bose-Einsteinthe crossover scale becomes of ord@&r for k~ks
occupation factors may be replaced by their classical coun=(\T/4m)e *™*. Hence for wave vectors>k, the clas-
terparts and(b) a scaley*=N\3(k)In\3(K)+--- at which  sjcal approximation is valid and the damping rate is domi-
there is a crossover of behavior in the denominators of th@ated by semisoft classical loop momertaqg>\T and
integrals. Fory<y*,y/\;3(k)<Iny and the denominator is given by

dominated by the logarithm, whereas fgpey*, y/\3(k)

>Iny and the integrands behave agiy? which is the same

AT AT,
Tk T)=5—|1+0 for k>Ee aaih

behavior as that in the integralg(k,T) andJ,(k,T) in Egs. 2N NT ||
(3.9 for the two loop computation. In the case whgh |”?
<aT/k the integrand falls off very fast and the integral is (4.16

independent of the upper cutoff.
The result(4.195 is confirmed by a careful numerical In the opposite limit, i.e. fok<k,s the crossover scalg*
study of the integrals in this range and displayed in Figs>aT/k and the termgy/\3(k)]? in the denominators are

5-7. negligible as compared to ()7 in this range. In this case
The condition thay* <« T/k translates into the following the integrals can be evaluated by neglecting[y 5(k) ]2
condition fork: in the denominators with the result

0-35 : 3 T T T T T
] N Gamma/T vs. In[T/k] for lambda=1 ——
lambda/[2 pi] for lambda=1 -------
4 pi/{3 In[T/K]} vs. IN[T/K] --------

03 .

035 i FIG. 6. NI'(k,T)/T vs I T/K] for \=1.0. We
also plot the classical valua/[27] and the
asymptotic  ultrasoft  behavior NI'(k,T)/T
02 ] =47/3 IN[T/k]. For this intermediate coupling
regime the classical approximation provides a
e SO qualitative estimate whereas the ultrasoft regime

015 |- 1 will be reached fok/T<3x 107",
il N ]
0.05 : ' : ' ' '

0 5 10 15 20 25 30 35
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018 ' ' "N Gamma/T v&. In[T/K] for lambda=0.2 ——
lambda/[2 pi] for lambda=0.2 -------
4-pi{3 IN[T/K]} vs. In[T/K] -
0.16 |- i
0.14 .
FIG. 7.NI'(k, T)/T vs INT/k] for A=0.2. We
0.12 | . also plot the classical valua/[27] and the
asymptotic ultrasoft behavior NI'(k,T)/T
01k 4 =47/3 In[T/K]. In the small coupling regime the
classical approximation describes very well the
65 L | behavior of the relaxation rate. The ultrasoft re-
' gime will only be reached for extremely small
momentak/T<8x 1073,
0.06 i
0.04 .
002 1 1 1 1 1
5 10 15 20 25 30 35

aT Since in this region the logarithm dominates, we neglect the
ek, T)~ naTik) terms 4rg/\T in the denominators. We thus find

This cutoff dependence signals theeakdown of the classi-
cal approximationsince the integrand is sensitive to hard KT) = f f

( T) o=z | yidy
momenta of ordeq= aT. Fork<Kk, the crossover scalg* N7 T 1 W(X, Y) (
becomes of ordef/k, i.e.,q~T and we must keep the full
occupation numbers, this is the regime dominated by the _ L. (xy) n 1
hard loop momentum, which is studied below. i+ Li(x,y) L_.(x,y)|

Thus we conclude that the non-perturbative region of
wavevectors for which thelassicalapproximation is valid is
AT>k>(\T/4m)e *™* and in this region the relaxation In order to perform the integration it is convenient to change
rate is given by Eq(4.16. However for long-wavelength Vvariables to
fluctuations with wave vectors<k,s~(\T/4m)e 4™ the
classical approximation breaks down and we must consider
the contribution from the hard loop momenta.

This analysis of the classical contribution reveals fliat
the screening of loop momentg=A T by the infrared renor-
malization of the scattering amplitude makes the damping .
rate a factork/AT<1 smaller than the lowest ordeftwo  T'he width then takes the form
loops computation(ii) the damping rate is independent of
momentum fork> (A T/4m)e” 4" and given by Eq(4.16
i.e. there is no critical slowing down in the regime of validity |
of the classical approximation to this order in the latge k2T f‘” e’v3dv J’ do

expansion. FleT) =57 o (e°=1)2 ), o2

kW)

PRy 12

2k w(x,y)—1
T y+1-w(x,y)"

[wix,y)—1], o=

—| =

To

n 1+T

2 +1In?

D. Ultrasoft scale: k< (AT/44)e ™ 4™/*

We now focus on the computation of the damping rate in b 3
the regime of ultra-soft fluctuations of the order parameter, foo v dy foo d_U —1
e, k<(\T/4m)e 47\, a0t (=172 ), o [To
In this limit we expand thealifferenceof the occupation L e
numbers to ordek/T insidethe integrand in Eq(4.12) .
!

_ IE efntx) ) E ? We can further approximate these expressions by expanding
T (ePKWxy) —1)2 T in inverse powers of INT/k). We set

1 1 X[1+0

PR ] gPRWYI=IT_ 1
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To (i) To leading order in the larg8l limit, the finite tem-
= dor In{ 1+ K sdo 1 1 perature effective mass squared is given by
fu [ v ‘L?ﬁ 1ol =
7°+In?| 1+ — In— In— ) )
k k k m2oc\ (T2~ T2)
1 1
=— 1+0 -
vln— In— therefore the effective maséinverse of the correlation
k k length vanishes near the critical temperature mgx|T
—T.|Y? which is the mean-field behavior consistent. Since
the absorptive part of the self-energy is next to leading order
»do 1 1 1 - . ; "
j _ — 1+ 0 — O(1/N) we consistently use this effective mass near the criti-
-

v 0° | (TU ) T ' cal point. Therefore to this order the frequencies are given by
n—-1 vin— In— =
k k k w;=\p2+mZ.
(i) The effective static scattering amplitude can be ob-
tained by replacing the massless Matsubara propagators in
Eqg. (4.2 by the corresponding massive ones, and is now

The asymptotic form of the width thus becomes

k<kus 4T 1 given by
r'k,T) = @ —| I (4.17
3N|I”IE InE
where we used the integrg27] A a l = A
el my'm AT q
T T
1+ —arctg —
2mq 42mT

» elp’dy
fo (e'=1)* 3~
which now reveals the vanishing of the effective coupling
There are two important noteworthy features of this re-
sult: (i) the damping rate for ultrasoft fluctuationsiglepen-
dent of the coupling@nd (ii) critical slowing down of long-
wavelength fluctuations emerges in thiérasoft momentum T Y
limit with the damping rate vanishing only logarithmically as )\eff< 0,—) ==
KO mr i+ AT
The intermediate regime between the soft and ultrasoft 4mmy
scales is difficult to study analytically, we therefore studied
the damping rate in a wide range of momentkmumeri-
cally. for my— 0 [compare with Eq(4.4)].
Figures 5—7 display the dimensionless ratib' (k,T)/T The critical region of relevance correspondsnig<<iT
as a function of I{/K) for three fixed values of the coupling: for T—T_ . In the case under consideration, for homoge-

A=12.0,1.0 and 0.2 respectively as obtained via a numericaleous fluctuations of the order parametkr=0) the only
integration of Eq.(4.11. We see that the damping rate is a gimensionful quantity is the effective mass, which regu-
monotonically decreasing function d¥k for large enough |5es the infrared behavior of the integrals. Thus, just as in

values of T/k. The smaller is the coupling, the slower ihe critical case studied above two different regimes emerge
NI'(k,T)/T decreases as a function dfk. Furthermore we which we refer to as(i) the semicritical regimemsy

have established numerically the reliability of the results |n<)\T/(4W); and (i) the ultracrical regime my

the sof_t e_md ultrasoft regimes, thus confirming our deta|led<)\.r/(4w)e_4w,%_ It will become clear below that the semi-
analysis in these cases.

critical and the ultracritical regimes correspond respectively
. to the soft and the ultrasoft regimes discussed afl., k

V. NEAR CRITICAL REGIME:  k=0|T—Tc|<Tc #0. Since the relevant loop momenta are semisb#,q

Having understood in detail the critical case we are now>AT and hardq=T it is clear that the effective coupling

in position to complete the study of relaxation by considering(5.1) behaves just as in the critical case fo~0 studied
the near-critical case, i.¢T—T.|<T.. The general case of above since for this range of loop momenan>1.
k#0,T#T, is rather complicated but we can learn much by In order to compute the damping rate we need the general
focusing on the homogeneous case0. There are two im- expression for the resummed spectral densgitygo.q) in

portant modifications of the previous results that are requiregresence of a non-zero thermal mass, which is now given by
to study in detail the near-critical case: [see Eq(4.9)]

(5.9
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A d3q dao

plw,k)= (2m)° 2000q 5 ——p(do,D[L+N(w|g+k) +N(do) ][ @—do— w[g+q) — @+ ot @ik+g))]

A d3q 1

= (271_)3 Zw‘* Q{P(w @K+q| s Q)[I’l(w‘qukl) n(w|k+q\ w)]

+p(w+ O+ g ,q)[n(w‘a+|z|)—n(w+w|12+d\)]}

wherewﬁzm$+ k?, n(qp) is the Bose-Einstein distribution functigB.4) andp(w+ o|k+g|»d) is the massive spectral density
at leading order in the ¥ expansion, given by Eq4.7) with the following expression fofl,(w=* w¢, q/,0) Which enters in
the spectral densit{4.7) [28]:

N R A LT 1-e Ao w2 a2 AT 1-e 00
(@.P)=1g- wz_pzsgr(w) arp N [ gper | [ Ol TP AmD N T e (PP D)
. | p 4m$
wi=|oxir/1- 5.2
p 2 2 wz_pz ( )
|
We notice that Eq(5.2) reduces to Eq(4.9) in the critical N d3q
limit m{/T—0. I'o(my, T)=—+ 3 —{[N(wg) —N(wg—my)]
Keeping the leading correction iwm% yields in the high (2m)° @q

temperature regime, X p(Mr—wq,q) +[N(wg) —N(wg+my)]

wip| amipisgrio) X p(Mr-+ g, Q)}. 59

P PR

AT
Iy (w,p)= 51 log

The integral (5.5 is much simpler than the analogous

+[0(w®—p®—4mi) — 6(w?—p?)] expression fok#0, since the angular integration is trivial.
Nevertheless, a complete evalution of Ef.5 requires a
w+tp 4 numerical integration. We refer to Figs. 8 and 9 for a numeri-
X + ) . : S . L ;
log w— O(mT)} .3 cal evalutation of the dimensionless rabd’o(m+,T)/T in

the intermediate X=1.0) and small coupling regimes\ (
=0.2).

Just as in the critical case in the near-critical regime with
my<<\T/(4) the integral(5.5) is dominated by loop mo-
menta of order q=q* =(AT/47)INn(\T/47m;)>\T/4%

The real parflz(w,p) can now be obtained via the disper-
sion relation(4.8),

AT
[r(qe,9)= E{(ﬂ(q—qo)—@(—q—qo)

\\
i AN
4m$_ { q2 0.3 .
+ — ~
2042 2_2 “
7(q°~qp) 9?-q} 0.25¢ .
~
a5 q° O.2r T ]
X|—=—1+In— +O(mT) G4 T
9’ 0 0.15} ]
. , . L 0.1
The damping rate for homogeneous configurations is giver
by 0.05}
0 5 10 15 20 25

_mp(w. k) mp(my,0)
Fo(my, T)=—1im =— , :
koo 2wy 2my FIG. 8. Damping rateNI'o(m+,T)/T vs INT/my] for homog-
enous configurationkE& 0,T#T,) compared with the classical ap-
proximation NI';,(m,T)/T=\/(27) and the asymptotic expres-
which is now given explicitly by sion in the medium coupling regime=1.0.
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0.175Ff < screened by the resummation of the scattering amplitude and

™~ determine the leading contributions to the damping rate.
0.15 As argued above, the dominat loop momenta in the inte-
0.125 gral (5.5 are of order g=q* =(\T/47)In(\T/47my)
>\T/47>m; hence we can approximate

0.1
0.075 N(wg) —N(wg—Mp)=n(ws+mr) —n(wgy)=n"(q)mr,

0.05 wq=(
0.025f , . , _

/ allowing an analytical estimate the damping rate from the

approximate expression

0 5 10 15 20 25
FIG. 9. Damping rateNI'g(my,T)/T vs INT/my] for homog- L S P dq
enous configurationsk&0,T+#T,) compared with the classical ap- I'o(ms,T) —— —zqzn’(q)
proximation NI';;(m+,T)/T=\/(27) and the asymptotic expres- NTJa 27
sion in the small coupling regime=0.2. L(q)
q
X
>m; hence we can approximal& (gy,q) andIlz(qg,q) at - 49 1 : L(q)2
Jo=Mr+ wa=mr=q as follows: 5 T L@
29 m$) L(q)
IIy(mxg,9)=*—|In——1+ 0| — +—0 |, .
(Mr=0,0)= =77 I e g : (5.6
7| L@
AT

AT

—+ [ J— — — — —
Hr(mr=q.9) 4q | (460~ O(~q~ o) The resulting integrals are infrared finite but having rec-
ognized that the leading contribution arises from the semisoft
loop momentag=\T we have introduced an explicit infra-
red cutoffa=Cmy; with C>1. Since the integral is domi-

m%)}
q2

o nated by semisoft and hard loop momenta>\T we can
where we have used Eq$.3) and(5.4). Thus as anticipated gpnroximate further ¢/AT+1=4g/\T whence the two

by the discussion of the effective static scattering amplitudgontributions to the damping rate coincide. Moreover, the
in the near critical case.1) we see that the real part of the gependence i is negligible in the critical limit. This is
polarization is indeed similar to the one in the critical casezgnfirmed by our numerical analysis which uses the exact
for the relevant loop momenta up to corrections of ordergypression(s.5), the results of which are displayed in Figs. 8
my/q<mr /AT in the region of semisoft loop momenta.  ang 9. The integrals in Eq5.6) again reveal a crossover
Therefore neglecting terms of orden/AT which are  gcaleq* at which 47g* /NT~L(g*). For g<g* the loga-
negligible in the region of interest, we find for the spectraljthmic term L%(q) dominates in the denominators and for
densities expressions similar to these in the critical case: q>q* the term (4rq*/\T)? dominates and the integrand
falls off just as in the perturbative two loops case.
4q L(a) We now distinguish between the following two possibili-

2
q
n—+1
mr

_2my
24

Tq

+0

p(Mrtoq,q)= 3= [ 49 2o ties:
7 g 1 HLa) AT/(4m)e 4" <m;<\T/(47), to which we refer as
the semicritical regime. In this cagg <T is soft and the
4q L(q) classical approximation to the Bose-Einstein distribution
P(mT—wq,Q)=—)\—Tﬁ2—, functions applies. Furthermore, we can expand in inverse
[)?_T +L2(q) powers of the logarithm logs(my)=log(A\T/4m;) and a

straightforward analysis along the lines presented for the
critical case reveals that the damping rate is approximately

where we have introduced .
constant and given by

2q

1—‘O(rnT 1T)

= —_— J,— J——

27N ! O( In 7\3(m-|-))
An analysis similar to that in the critical case reveals that

soft loop momentag<\T are effectively screened by the This is the same result as in the cdseT. ,k#0, Eq.(4.15.

renormalization of the scattering amplitude in the near criti-This result is of course expected, in the semisoft region of

cal region, leading to a contribution of ord@x to the damp-
ing rate. Semisoft and hard loop momemtz AT are not

loop momentumT>qg>\T and for AT/(47)e *™ <m;
<\T/(4m) the screening of the scattering amplitude is inef-
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fective and the termd/\T) dominates over the logarithms, of soft loop momentaj<\T these are effectively screened

therefore the dependence on the mass is negligible in thisy the infrared renormalization of the coupling which is near

region. the three dimensional fixed point. The dominant contribution
my<\T/(4m)e”*™, which we refer to as the ultracriti- now arises from the semisofi>\T and hardg=T loop

cal regime. In this casg*>T is hard and the classical ap- momentum. In the perturbative computation at two loops

proximation breaks down and the full Bose-Einstein occupathese scales provided subleading contributions of okder

tion factors must be kept. In this regime the logarithm givesand \?T respectively to the damping rate.

the dominant contribution in the denominators and the Clearly the resummation via the lardé approximation

asymptotic damping rate is given by incorporates the screening of the soft loop momentum scales
. , but also reveals the emergence of alrasoft scale k¢
To(my,T)=— ij , (@) ~(\T/4m)e 4™ At the critical temperature fok>k, or
7NTJa | 2q for homogeneous fluctuations near the critical point
Ogﬁ >m:>Kk,s the damping rate is determined by the contribu-
tion of the classical, semisoftoop momentum scale§>q
_ 4_77 T 140 L (5.7 >\T, the soft scaled T>q being screened by the infrared
3N log(T/my) T renormalization of the coupling and the crossover to a three
Inm_T dimensional effective theory. For long-wavelength fluctua-

tions of the order parameter at the critical temperature with
which is exactly the same result as in Hg.17) with the  k=<k_ or for homogeneous fluctuations near criticality in the
momentum scalk replaced by the thermal mass:. It must  ultracritical region my<<k,s the classical approximation
be noticed that in this regime therens dependence on the breaks down and the damping rate is completely determined
coupling\. by the hard loop momentg=T. Critical slowing down, i.e.
Thus we conclude that the relaxation rate near the criticathe vanishing of the relaxation rate &s»0 or for k=0 as

point |T—T,/<\T. andk=0 has the same features as theT— T, only emerges in this ultrasoft limit as shown by Egs.
critical rate fork#0 andT=T,, provided we exchange the (4.17) and(5.7).
infrared scalesny andk. Thus, whereas the lardé expansion has provided a con-
sistent resummation and the important ingredient of screen-
ing of the couplings for the soft loop momentum modes and
o . leads to critical slowing down of long wavelength fluctua-

The two loops calculation in perturbation theory at thetions important limitations of the results obtained here re-
critical point revealed the imp_ortance of the different scalesnain. As we argued in the beginning sections a quasiparticle
of loop momentum. The loop integrals are dominated by thenterpretation of the long-wavelength collective excitations
contribution of the soft momentum scalg@s<AT. The con-  of the order parameter requires that the resonance parameter
tribution from semisoft loop moment&>q>\T is sub- I'(k,T)/ w,(k)<1 with w,(k) being the position of the qua-
dominant by a factor K/AT)IN[AT/K]<1 in the long- sjparticle pole or effectively the microscopic time scale of
wavelength limitk<AT and the contribution from hard loop oscillations of these fluctuations. To leading order in the
momentum modeg|=T is suppressed even further in the large N limit o (k):\/ml in the calculation of the

. .. . p T

weak coupling limit by an extra power of the coupling  gamping rate and the resonance parameter. Although critical

The largeN limit leads to a non-perturbative resummation slowing down emerges from the lardelimit, we see that
and results in an infrared renormalization of the static scaty,; results to this order indicate thB(k, T)/w,(k)>1 for
tering amplitude as a consequencedofhensional reduction k,m;—0. P
and crossover to an effective three dimensional theory for - there are several possible alternatives: either the quasi-

momentaq<AT. _ , , particle picture is not appropriate to describe the collective
The effective three dimensional coupling that emergesyctations of the order parameter at or near the critical

from this analysis of the static scattering amplitude at the,int or further resummations and or other contributions
critical point iSAze(q) =AT/(4q+AT) which is driven ©0 st pe taken into account to obtain a description of critical
the Wilson-Fisher three dimensional fixed point @s:0.  gjowing down of collective fluctuations that can be under-
Thus soft loop momentg<\T are effectively screened by sio0d within a quasiparticle picture. In particular an assess-
this infrared renormalization of the coupling but semisoft ,ant of (i) vertex corrections, andi) wave function renor-
loop momenta&>\T are coupled with the three dimensional majization must be pursued which, however, are beyond the
couplingA 3(q) =AT/4q and infrared screening is ineffective |eading order in the largl studied here and thus outside the
for these. The importance of this effective coupling for thescope and goals of this article. We are currently studying

damping rate can be understood intuitively from Figs. 2, 3inese contributions and expect to report our conclusions in a
and 4: the resummation of bubbles that leads to the effectivg, thcoming article.

scattering amplitude also renormalizes the spectral density

Discussion of the results

that determines the self-energy, as shown in Fig. 4. VI. CONCLUSIONS AND FURTHER QUESTIONS
This is precisely the most important mechanism that leads
to our results in the larghl limit. Whereas the lowest order In this article we have begun the program of studying

perturbative calculation was dominated by the contributiortransport and relaxation at and near the critical point in sec-
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ond order phase transitions. The focus here is to provide menta which is different from the hard thermal loop program
systematic study of critical slowing down of long- of Abelian and non-Abelian gauge plasmas. A perturbative
wavelength fluctuations during the cooling stages of a phastvo loop calculation reveals clearly the emergence of a hier-
transition, either at or slightly above the critical temperaturearchy of loop momentum scales from haye: T to semisoft
from first principles in a phenomenologically motivated T>g>\T and softAT>q, for weak couplingh<1 the
quantum field theory. The ultimate goal of this program is toscales in this hierarchy are widely separated and the semisoft
assess the potential experimental signatures associated wiRd soft scales are classical. Recognizing the shortcomings
the critical slowing down of long wavelength fluctuations atof a perturbative treatment for long-wavelength fluctuations,
the chiral phase transition. Obtaining a robust understandingge implemented a non-perturbative resummation via the
of such phenomena will have important implications in thelarge N limit to next to leading order. The larghl limit
QGP and or chiral phase transitions in early universe cosProvides a consistent non-perturbative framework for resum-
mology and ultrarelativistic heavy ion collisions. mation of infrared contributions. It clearly displays the infra-
Our study reveals novel phenomena that require a noned renormalization of the scattering amplitude in the static
perturbative framework for their consistent and sistematidimit at or near the critical point and the crossover to three
treatment which is different from the hard thermal loop re-dimensional physics for soft loop momentum. The resumma-
summation program used in gauge theories. tion of the scattering amplitude leads to an effective three
Whereas critical slowing down has been studied thordimensional coupling that interpolates between the bare cou-
oughly inclassicalcritical phenomen$8,9] and these results pling for loop momentag>\T and the three dimensional
were used for preliminary estimates of the correlation lengthVilson-Fisher fixed point fog<\T.
at freezeout in heavy ion collisiofig], we are aware of only ~ The infrared renormalization of the effective coupling
one prior attempf29] to study critical slowing down in a full ~ screens the contribution from soft loop momentum to the
relativistic quantum field theory and a similar recent analysisself-energy and the relaxation rate, which is now dominated
[30]. In Refs.[29,3( the Wilson renormalization group was by the contribution ofsemisoft and hard loop momenta T
used to explore the relaxation of tke=0 mode of the order >@>\T. Furthermore a newltrasoft(in the weak coupling
parameter slightly away from criticality working &l=1. limit) non-perturbative scale emergkg~(\T/4m)e 4™
The final results 029,3Q are that fort=(T—T.)/T. ap- that signals the breakdown of the classical approximation
proaching the critical limit the damping rate for homogenousand the dominance of hard loop momentum modes.
configurations vanishes aglogt with »=0.5—-0.6. The Fork,my> ks the damping rate is dominated by the clas-
analysis 0f29,30, relies on a truncation of the exact renor- sical semisoft scales and given by(k,T)=\T/2Nx
malization group equations and their numerical evolution. whereas fok<ks the hard loop momenta region dominates
In our opinion an important limitation of this approach is and leads to the damping rai&k,T)=4x7T/3NInT/k at
the simplified treatment of the absorptive parts. These wereriticality or I'o(my,T) =47 T/3N In T/my near criticality for
associated with the scattering vertex rather than the selfiomogeneous fluctuations, which reveal the slowing down of
energy, but more importantly, this simplified treatment doegelaxation of critical ultrasoft fluctuations with a damping
not include consistently the Landau damping and multiplerate that isindependent of the coupling
particle thresholds that are the important ingredients in a As discussed above, however, these results and those
consistent and sistematic description of damping and relaxfound in[29,30 seem to indicate a breakdown of the quasi-
ation. particle picture of collective excitations of the order param-
In our study we have systematically focused on the im-eter because the resonance parametdsT)/w,(k)>1 in
portant aspects associated with Landau damping, manyhe long-wavelength limit and the excitation decays on time
particle threshold effects and a consistent study of real-timscales much shorter than the natural oscillation twgé(k).
phenomena at finite temperature. As is evident in our studwt this stage it is not clear if this feature is a true physical
of absorptive parts of the self-energy in Secs. Il and Il amanifestation of relaxation of collective excitations at or
simplified treatment that does not include consistently thesaear the critical point or that further resummation and other
can hardly reveal the rich hierarchy of scales and the differeontributions that are beyond the leading order in the l&tge
ent physics associated with these: the soft sckle must be accounted for. We are currently studying this possi-
=\T/(47) and the ultrasoft scalk,;=AT exd —4a/(\T)]. bility by introducing the renormalization group at finite tem-
Consistently to next to leading order in the lafgdimit we  perature and analyzing in detail the contribution from vertex
see that slowing down of relaxation of long-wavelength fluc-and wave function renormalizations and expect to report on
tuations only begins to emerge at the ultra-soft scale and ifurther understanding on these issues in a forthcoming ar-
contrast to the results obtained [29,30, we obtainT’ ticle. At this stage our study has revealed a wealth of new
~T/[Nlogt]. Thus, although there is agreement on the statephenomena and a hierarchy of scales which will require a
ment that the relaxation rate vanishes at criticality the condeeper understanding for a complete and consistent treatment
sistent largeN resummation leads to a very different behav-of transport and eventually hydrodynamics near or at the
ior of the relaxation rate. critical point. We postpone to further study the analysis of
Our main results can be summarized as follows: a consiseritical slowing down in the broken symmetry phase and the
tent treatment of critical slowing down and of transport phe-influence of Goldstone bosons on the relaxation of long-
nomena at or near a critical point requires a non-perturbativevavelength fluctuations.
framework to resum the contributions froeoft loop mo- Only a thorough understanding of these phenomena can
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lead to an unambiguous assessment of the phenomenological G?+(t,t’) =G (t,t)
implications of critical fluctuations either in the formation of K k
cosmological relics in the early universe or in experimental
observables in ultrarelativistic heavy ion collisions thus mo-
tivating and justifying their study.

Gf (L,t)=G;(t',1), (A2)

where(A(t)B(t"))=Tr[A(t)B(t")p(0)] denotes the expec-

tation value of Heisenberg field operators with respect to the
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versity. Gri(t,t) =Gy "(tt) =Gy (t,t)
APPENDIX A: EQUATIONS OF MOTION AND =[G|;>(t,t’)—GE(t,t’)]@(t—t’),
SPECTRAL DENSITIES IN THE LARGE N LIMIT
n_n~t+ ’ -+ ’
We study the relaxation of the order parameter via the real Gak(t,t)=Gg (tLt)—G; (t,t)
time description of non-equilibrium quantum field theory. <., >, .
This formulation requires the time evolved density matrix =[G (L) =G ()]0 —1),

and is cast in terms of a path integral along a contour in _ _ o _
complex time, a forward branch corresponds to the forwardvhere for the cases under consideration with fields in ther-
time evolution of the density matrix via the unitary time Mal equilibrium
evolution operator and the backward branch represents the i

inverse unitary time evolution that post-multiplies the den- Go(tt) = ! Ja—ik(t=t") 4 n-aik(t—t")

. . - (t,t")==-[[1+ng]e +nge , (A3
sity matrix. Consequently there are four propagators: corre- < (L) 2k[[ d K 1 (A3
sponding to fields on either branch. For a more complete

description of this formulation the reader is referred 28] . i ik(—t") iK(t-t")

and references therein. The main ingredient in this program  Gi (L.t) =5 [nie +[1+ngle 1,

are the free field Wightmann and Green’s functions for the (A4)
bosonic fieldd. In terms of the spatial Fourier transform of
the bosonic fieIde),; these are given by 1
k= exp Bwg)—1"

(PRa(OP g p(t))o=(Pp (DD (1))

) - ., From the Lagrangian density in terms of the auxiliary fields

=—10pGy (4,1), given by Eq.(4.1) it is straightforward to find the free field
real time correlation functions for the auxiliary fields. In

((I)l;a(t’)(I)_,;,b(t))OE@)ga(t’)QDflz,b(t))O terms of the spatial Fourier transform of the auxiliary field

_ _ x« these are given by
:_Iéa,bGR (t,t'),

L L (X (DX ((t))o=18(t=1")
(P (DD ())o=—182Gp (L),

_ _ , _ (Xg (DX _(t"))o=—id(t—t")
(D (DD L (1)o=—18,pG; (L), (A1)

(DX t))o=(xg (DX ((t))o=0.
GE+(t,t')=GE(t,t')@(t—t’) <Xk X_g >o <Xk X_k >o
Figures 10a) and 1@b) depict the series of Feynman dia-
grams for thefull (x™x™) propagator and for th&ull plus-
plus component of the propagator of the composite field

+Gg (t,1)0(t' —t),

"N ’ ’
Gy (L)=C (L)'~ (B)2=d., i.e. (B")X(D")?). Figures 11a), 11(b) and
+Gf(t t)O(t—t') 12(a), 12(b) depict similar relations for théx™ x~) and
ki ' (x~x~) propagators. Thus using the free field propagators
=, ., <. ., for the auxiliary field given above we find the following
Gy (L) =G (L), relations toall orders for the full propagators
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FIG. 10. (@ Feynman diagrams for the correlator ~FIG. 11. (@ Feynman diagrams for the correlator
(xt(xH)xt(x',t)); (b) Feynman diagrams for the correlator (x (X,t)x (x'.t")); (b) Feynman diagrams for the correlator

B (X )ADH (X, )]2). (D (01D (x'.1)]?).
+ I PR +,2 +.20 Writing the retarded correlator for the auxiliary fields as a
O (DX (1)) =T8(t=t) + M (P (1)) spectral representation
(A5)
(i Ox () = (xg (Dx (1)
(e (DXt =N@ DD 1) (A6) KAk Ak
‘ _ i < F :iI%P (o, k)e~do(t=t")
(g (Dx_(t)==i8(t—t")+ NP (D (1)) 2 PO ’
(A7)
using the spectral representatid@s), (A9) and the repre-
with the definition sentation for®(t—t’) given by Eq.(3.6) we obtain the re-
lation between the spectral representation for the retarded
220 | sy KX Dy R correlator of the auxiliary field and that for the bilinear com-
Py (t)_J' d*xe™T=(x,1) - D7 (X, 1). posite in the following form:
The correlation functions of the bilinear composite operator - _ 1—e Be
can be written in terms of spectral densities in the following Px(Go.K)=1+X\ d“’P¢2¢2(w'k)qo_w+iE (A11)
manner:

where we have used the KMS conditiohl10). The next step
o0 d At =f d > ) O(t—t’ of the program is to obtain the spectral density(qo,k) to
(POP () ol gege @ik) (1) leading order in the largdl limit. This is achieved through
linear response analysis for the expectation value of the aux-

+p g0k Ot —0)]e D i el

(A8)

(@; 00 F4)= [ dopjaalwioe 0. 29

eigenstates in the trace lead to the KMS condition

Psz,z(w;k):eBwPZZ(ﬁz(w;k)- (A10)
The main reason for presenting these formal steps is that thD + Q*—---*
auxiliary field itselfdoes nohave a KMS relationship for its i *
spectral functions because it is not a canonical field but a
Lagrange multiplier. However the relation6A5)—(A7) (b)

which hold toall ordersrelate the correlators of the auxiliary .
field to those of the bilinear composite operator for whichthe FIG. 12. (8 Feynman diagrams for the correlator

spectral functions associated with their correlators do obeyx (x,t)x (x'.t")); (b) Feynman diagrams for the correlator
the KMS condition. ([P~ (x,t) 1D (X', t")]?).
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1. Linear response for the auxiliary field (X0 =800+ x(x,0);  (X(x,1)=0
The real time expectation value of the auxiliary field is
obtained by coupling an external source to the auxiliary fieldand requiring tha(}(i,t»:o to all orders in perturbation
in the original Lagrangiart4.1) £— L£+J, x with the same  theory. A counterterm is added to the Lagrangian to cancel
external source for the two time branches. Assuming the adhe tadpole contributions so as to make the expectation value
dition of counterterms in the Lagrangian to ensure that thef the auxiliary field to vanish in the absence of the source
expectation value of the auxiliary field vanishes for vanish-term thus allowing to extract the spectral density straightfor-

ing external source we have wardly.
N To leading order in the largd limit we obtain the equa-
() =(xi (1)) tion of motion (after the cancellation of the tadpole tertn
be given by

=i [ A3, GOH O {06 O )
5(>Z,t)+f d3x’ dt'TL (X=X, t—t") 8(X",t) = = J (X,t)
Introducing the Fourier transforms

dqo o with the retarded polarization given by
5(t)= J 5 (do.Kye 190

I, (x—x',t—t")
L) — ddo K)e~idot A - - - >
L= | 57 o ke =21 3 (@ XDD (X DN P (KD (X))

we find (D7 (RO, (KDDL (K DDy (3 D)].

0(k,80) == J,(K:Go) (K Go)- In terms of the spatial Fourier transform the equation of mo-
We now use the tadpole meth@23] to obtain the equation tion becomes
of motion for the expectation value of the auxiliary field in
leading order in the larg®l limit, thereby obtaining an ex-
plicit expression forpX(qO,IZ) to this order. The implemen-

tation of the tadpole method begins by shifting the auxiliary
field and the retarded polarization kernel simplifies to

S0+ [ U -t st = —3, 40

3

d > . > . < . <
Hk,r(t—t')zzn\f(z q) [(—iG; (t=t))(—iG, ((t—t") = (—iG (t—t")(=iG , (t—t')]O(t—t")

7T3
_4AJ'EEL“;L“ﬂ1+“*+“*ﬂﬁd(-HE+*Du—vn
B (2m)° 4q|k+q| ™ Ng+)SING q
+(ng—ng+psin ([k+al—a)(t—t)H 1O (t—t"),

using the representation of the theta function given by B¢ we find the time-Fourier representation of the retarded
polarization to be given by

d R ’
Hkv’(t_t,):fZ_TH(QO,Q)eﬂqO(t*t ).

The Fourier transform of the polarization is now written as a dispersion integral in terms of the spectral density as

Hl(qaw)
wqo_w+i€

1
Mgo0)=— - o

where
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d®p 1 .. .
1 ,zzxf—T1+n~»+n~a—+——5+++
(0, @) =2\ (277)34p|p+q|{[ g+pt Nplld(w—[p+q|—p)—d(w+[p+q/+p)]

+[n—ngs sl 8(w—|p+al+p)— (w+|p+a|—p)T}. (A12)

Finally, in terms of the time Fourier transform the equa-tive expansion. In terms of the spatial Fourier transform of
tion of motion for the expectation value of the auxiliary field the order parametes(t) we find
is given by )
. . QD)+ K2+ SMAT) + ME (T Te(t)
8(do,q)[1+11(do,a) 1= —J,(do,q)

and we can read off the propagators for the auxiliary field in + J_mzfetvk(t_t )e(t)dt’=Jy(t)
Fourier space

where J,(t) is the external source that generates the initial
) L S, )
G )= ——. (A13)  Vvalue problem an g, (T) ~{((P(x,t)°)~O(N) is the tad-
o, = 7 1(do,q) pole contribution which is the leading order in the lafge

. . . . limit. The O(1/N) contribution to the self-energy is calcu-
The series of diagrams that are being summed leading to thgied in terms of the auxiliary field and is given by
propagator for the auxiliary field is shown in Fig. 2.

We now have all of the elements necessary to obtain 4in [ d%q
i ' L+t ,
Pzz¢2(QO,Q),P22¢2(QOaQ)a writing  I1(qo,0) =1IIr(do.q) Drerk(t—t =N > SL(ZIG 4 (t=t)
+ill,(qg,q) and comparing the imaginary parts of Egs. (2)
(A1l1) and (A13) and using the KMS conditioriA10) we X(Xg(t)xia(t'»—(—iGEJ:a(t_t'))

finally find
X(xq (Dx_4t')]

> 1 I1i(do,q)[1+n(qp)]
)\p¢2¢2(q01q):_ > 2 . + . + -
T [1+11r(0o,a)]1*+117(qo.a) with (x4 () x_4(t")) and (x4 () x_4(t")) the full propaga-
(A14)  tors up toO(1/N) given by Eqs.(A5), (A6) in terms of the
spectral representations given by E@a8), (A9) with the
- 1 IT,(qe.9)n(qq) spectral densities given in terms of the self-energy of the
)\P¢2¢2(QOvQ): P 1410 2,12 auxiliary field by Eqs(A14), (A15). The contribution to the
[ R(Go.d)] ! (qo’q)(Als) propagator of the scalar field up to ord@¢1/N) is depicted
in Fig. 4. The contribution to the auxiliary field propagators
1 from the delta functionstis(t—t") gives a local tadpole
_ which is cancelled along with the leading ord@{1) tadpole
efdo—1 contribution by the counterterm to set the theory at the criti-
cal point up to this order in the lardé expansion. Using the
We postpone the evaluation bff(gg,q) to Appendix B and  spectral representation for the propagators of the auxiliary
now focus on obtaining the resummed self energy for theield and the free field propagators for the bosonic fields

n(do) =

order parameter. given by Eqgs(A3), (A4) and after some straightforward al-
gebra using the relationdn(—qgp) = —n(qp) we finally ob-
2. Equation of motion for the order parameter tain

We now obtain the equation of motion for the order pa- o
rameter toO(1/N) in the linearized approximation again via Eret’k(t—t’)=f plw,K)siMw(t—t")]dw
the tadpole method and recognize the self-energy to this or- m
der. To this effect we write the field as in E@.2) with -
with p(w,k) given by Eqs(4.6)—(4.8).
(@'(X))=e(x,0)81; (7'(x,1))=0
APPENDIX B: THE RETARDED POLARIZATION OF THE
where we chose the particular direction “1” by choosing AUXILIARY EIELD

explicitly the external source in Eq(2.1) as Ji(i,t) The spectral densityA12) is the same as Eq3.5) up 1o
e ) sl ; - ; ; -

—_J(x,_t)(S'_ to give the field an expectation value solely in yq factor N+ 2)/N, a relatively straightforward calculation
this direction. The equation of motion fgr(x,t) is obtained  with the Bose-Einstein distribution functions for massless
by imposing that 7'(x,t))=0 consistently in the perturba- particles then leads to
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A Y = g X
Mi(g0,a)=g 1 O(|dol —a)sgrigo) H(s,q)=(zﬂ)zqf0 dx—5-singx[2mTxcoth(2aTX) ~ 1]
2T |1—e laotalreT N gP+s?
+F|I’l m . (B1) —ﬁln ,LLZ

The real part must be obtained via the dispersive integralt is convenient to split this integral into two terms,
(4.8). We are only interested in the finite temperature contri- Cex
bution to both the real and imaginary part therefore we only __* "

. . i II(s,q)= > dx
consider the second term in E®1). It proves convenient to (2m)<q| Jo X
write the polarization as a dispersion relation

singx
X

o0 e~ SX
+J dx [27T cotr(ZTrTx)sinqx—l]}
0

. 1 e Hl(qu) X
H(qo—lo,q)— ;j_m dwm
A I q’+s?
and to analytically continue ©iqy=s. Using the fact that 872 : w?
IT,(w,q) is an odd function ofw we obtain the dispersion
relation We carried out the integration explicitly with the resp2{]

AT (= w
II(s,q)= 5 f d
ar

w n
0 w’+s?

1— e—|w+q|/2T‘|

1— e—|a)—q|/2T

M S q
2 = - =4z
q - I1(s,q) (2m)? 1+In47ﬂ_+ qarctgg
A +s
——In d > (B2)
812 M

is+q) ( is+q)
r — T 1+ —
whereu? is a subtraction point. n 4T 4T

We compute this integral using the sine-Fourier transform q F( iS—Q) ( n iS—Q)
as follows. The integrand of EqB2) is the product of two AT AT
odd functions ofw:

iTT

where we used Malmsten formula for the Gamma functions
l—e" |w+Q|/2T1 [27].

w
filw)= Tsz and fy(w)=In Back in real frequencies we have
w

[1(ge*i0,q)=1Ig(qe,q) =i11;(qo,q)

wherell,(qy,q9) is given by Eq.(B1) and

1—e” lo—q|/2T

We can then apply the Plancherel formula

| ottt [ “axtioo T
0 0

(o) = — (WZTW )= 6(—a—0o)]
3 3 rR(do,d (2m?| d d—do 4—do
where f1(x) and f,(x) are the sine-Fourier transforms of
f,(w) andf,(w), respectively. That is, “ Qo |9+0do
+In——=+=—1In
47T 29 |9—Qo
~ 2 (=
fi(x)z\/:j do fi(w)sinwx 27T d—do gd+do
7Jo + q Imin/ T"| 1+ 27T rii1+ 2T [
wherei=1,2. We find[27] The limit T/g>>1 can be taken in a straightforward manner
and we obtain the high temperature limit of the polarization
F v ~ [T —sx to be given by
f100) \[Ze
__INT fgotietq N )
and (ao.a+ie)= z N G Fie—q (277)2['”47TT
~  |2singx o (Qotie+q 1
fz(X)— \/;W[Z’JTTXCOU’(ZWTX)_].] + Eln(m) +2’y +0 T)
We have now that wherey is the Euler-Mascheroni constant.
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