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Transverse spin in QCD: Radiative corrections
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In this paper we address various issues connected with transverse spin in light front QCD. The transverse
spin operators, in theA150 gauge, expressed in terms of the dynamical variables are explicitly interaction
dependent unlike the helicity operator which is interaction independent in the topologically trivial sector of
light-front QCD. Although it cannot be separated into an orbital and a spin part, we have shown that there
exists an interesting decomposition of the transverse spin operator. We discuss the physical relevance of such
a decomposition. We perform a one loop renormalization of the full transverse spin operator in light-front
Hamiltonian perturbation theory for a dressed quark state. We explicitly show that all the terms dependent on
the center of mass momenta get canceled in the matrix element. The entire nonvanishing contribution comes
from the fermion intrinsiclike part of the transverse spin operator as a result of cancellation between the
gluonic intrinsiclike and the orbital-like part of the transverse spin operator. We compare and contrast the
calculations of transverse spin and helicity of a dressed quark in perturbation theory.
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I. INTRODUCTION

From the early days of quantum field theory, it has be
recognized that the issues associated with the spin of a c
posite system in an arbitrary frame are highly complex a
non-trivial @1#. In equal-time quantization, the problems ari
because of the fact that the Pauli-Lubanski operators, sta
from which one can construct the spin operators in a mov
frame, are interaction dependent for a composite object.
ther, it is quite difficult to separate the center of mass a
internal variables which is mandatory in the calculation
spin. Because of these difficulties, there has been rarely
attempt to study the spin of a moving composite system
the conventional equal time formulation of even simple fie
theoretic models, let alone quantum chromodynam
~QCD!.

It is well known that in light-front field theory, in addition
to the Hamiltonian, two other operators that belong to
Poincare´ group, namely,Fi( i 51,2), are interaction depen
dent. This implies interaction dependent spin operators
this complication is generally thought to be a penalty one
to pay for working with light-front dynamics. In contrast, th
angular momentum operators in the familiar instant form
field theory are interaction independent. It is interesting
investigate whether one can understand better the phy
origin of the interaction dependence in the light-front cas

A second problem is that, together with the light-fro
helicity J 3, Fi do not obeySU(2) algebra, the commuta
tion relations obeyed by the spin operators of a massive
ticle. They obeyE(2) algebra, appropriate for a massle
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particle. This implies that even thoughFi performs ‘‘rota-
tions’’ about the transverse axes, they have continuous s
trum. It is, however, known how to solve this problem.
terms of the rest of the Poincare´ generators, one knows@2#
how to construct spin operatorsJ i that together with the
helicity J 3 obey theSU(2) algebra. One observes thatJ i is
interaction dependent and has a highly nontrivial opera
structure in contrast withJ 3. Further, unlikeJ 3, J i cannot
be separated into orbital and spin parts. So far, most of
studies of the transverse spin operators in light-front fi
theory are restricted to free field theory@3#. Even in this case,
the operators have a highly complicated structure. Howe
one can write these operators as a sum of orbital and
parts, which can be achieved via a unitary transformati
called Melosh transformation@4#. In interacting theory, pre-
sumably this can be achieved order by order in a suita
expansion parameter@5# which is justifiable only in a weakly
coupled theory.

Knowledge about transverse rotation operators and tra
verse spin operators is mandatory for addressing issues
cerning Lorentz invariance in light-front theory. Unfortu
nately, very little is known@6# regarding the field theoretic
aspects of the interaction dependent spin operators.We em-
phasize that in a moving frame, the spin operators are int
action dependent irrespective of whether one consid
equal-time field theory or light-front field theory. To the best
of our knowledge, in gauge field theory, the canonical str
ture of spin operators of a composite system in anarbitrary
frame has never been studied.

Recently it was shown that@7#, starting from the mani-
festly gauge invariant symmetric energy momentum tens
in light-front QCD ~the gaugeA150 and light-front vari-
ables!, after the elimination of constrained variables,J 3 be-
comes explicitly interaction independent and can be se
rated into quark and gluon orbital and spin operators. T
©2001 The American Physical Society06-1
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HARINDRANATH, MUKHERJEE, AND RATABOLE PHYSICAL REVIEW D63 045006
one can write down a helicity sum rule which has a cle
physical meaning. The orbital and intrinsic parts of the lig
front helicity operator have also been analyzed recently
@8#. Even thoughJ i cannot be separated into orbital and sp
parts and they are interaction dependent, one can still
whether one can identify distinct operator structures inJ i

and whether one can propose a physically interesting dec
position. Is this decomposition protected by radiative corr
tions? If distinct operators indeed emerge, do they have
phenomenological consequences especially in deep inel
scattering which is a light cone dominated process?

Another important issue concerns renormalization.
light-front QCD Hamiltonian, quark mass appears asm2 and
m terms,m2 in the free helicity non-flip part of the Hamil
tonian andm in the interaction dependent helicity flip part o
the Hamiltonian. It is known thatm2 and m renormalize
differently. m2 and m also appear inJ i . Do they undergo
renormalization? SinceJ i are interaction dependent, do the
require new counterterms in addition to those necessar
renormalize the Hamiltonian?

In order to resolve the above mentioned problems
puzzles, we have undertaken an investigation of the spin
composite system in an arbitrary reference frame in QC
We have compared and contrasted both the instant form
front form formulations. In instant form, even though th
angular momentum operators are interaction independ
they qualify as spin operators only in the rest frame of
system. In an arbitrary reference frame, the appropriate
operators involve, in addition to angular momentum ope
tors, also interaction dependent boost operators. Thus
puzzle is resolved, namely, the interaction dependence o
spin of a composite system in an arbitrary reference fram
not a peculiarity of light-front dynamics, it is a general fe
ture in any formulation of quantum field theory. What
peculiar to light-front dynamics is that one can at most
only to the transverse rest frame of the particle. No fra
exists in whichP150 and one is so to speak ‘‘always in
moving frame.’’ As a consequence, spin measured in
direction other than that ofP1 cannot be separated into o
bital and intrinsic parts. This is to be contrasted with t
light-front helicity J 3 which is independent of interaction
and further can be separated in to orbital and intrinsic pa
The situation is quite analogous to that of a light-like p
ticle. In this case it is well known that since there is no r
frame, one can uniquely identify the spin of the particle on
along the direction of motion since only along this directi
one can disentangle rotation from translation for a mass
particle. Also, in any direction other than the direction
motion, one cannot separate the angular momentum into
bital and intrinsic parts.

In our earlier paper@9#, we have shown that even thoug
J i cannot be separated into orbital and intrinsic parts,
can still achieve a separation into three distinct opera
structures. Specifically, starting from the manifestly gau
invariant symmetric energy momentum tensor in QCD,
have derived expressions for the interaction dependent tr
verse spin operatorsJ i( i 51,2) which are responsible for th
helicity flip of the nucleon in light-front quantization. In or
der to constructJ i , first we have derived expressions for th
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transverse rotation operatorsFi . In the gaugeA150, we
eliminated the constrained variables. In the completely ga
fixed sector, in terms of the dynamical variables, we ha
shown that one can decomposeJ i5J I

i 1J II
i 1J III

i where
only J I

i has explicit coordinate (x2,xi) dependence in its
integrand. The operatorsJ II

i andJ III
i arise from the fermi-

onic and bosonic parts respectively of the gauge invar
energy momentum tensor.J I

i is orbital-like andJ II
i andJ III

i

are fermion intrinsic-like and gluon intrinsic-like spin oper
tors respectively.

In this work, we explore the theoretical consequences
the decomposition ofJ i . We compare and contrast the co
sequences of this decomposition and the corresponding
composition of the helicity operator into orbital and sp
parts. Next we address the issue of radiative corrections
carrying out the calculation of the transverse spin of
dressed quark in perturbative QCD (PQCD) in the o
fashioned Hamiltonian formalism. To the best of our know
edge, this is for the first time that such a calculation has b
performed in quantum field theory. This calculation is faci
tated by the fact that boost is kinematical in the light-fro
formalism. Thus we are able to isolate the internal mot
which is only physically relevant from the spurious center
mass motion. We carry out the calculations in a refere
frame with arbitrary transverse momentumP' and explicitly
verify the frame independence of our results. We find t
because of cancellation between various interaction indep
dent and dependent operator matrix elements, only one c
terterm is needed. We establish the fact the mass counter
for the renormalization ofJ i is the same mass counterter
required for the linear mass term appearing in the interac
dependent helicity flip vertex in QCD. It is important to me
tion that the divergence structure and renormalization
light-front theory is entirely different from the usual equa
time theory. If one uses constituent momentum cutoff, o
violates boost invariance and also encounters non-ana
behavior in the structure of counterterms@10#. In this paper,
we have done one loop renormalization of the transverse
operators by imposing cutoff on the relative transverse m
menta and on the longitudinal momentum fraction. Up to o
loop, we find that all infrared divergences~in the longitudi-
nal momentum fraction! get canceled in the result. Th
renormalization of these operators using similarity renorm
ization technique@10# is to be done in future.

The plan of the paper is as follows. In Sec. II, first, w
briefly review the complexities associated with the descr
tion of the spin of a composite system in a moving frame
the conventional equal time quantization. Then we give
explicit form of transverse rotation operators in light-fro
QCD. In Sec. III, we discuss the physical relevance of
decomposition of the transverse spin operator and also c
pare and contrast it with the helicity operator. In Sec. IV, w
present the calculation of the transverse spin for a dres
quark state up toO(as) in perturbation theory. Discussio
and conclusions are given in Sec. V. The explicit forms
the kinematical operators and the Hamiltonian in light-fro
QCD starting from the gauge invariant symmetric interact
dependent energy momentum tensor are derived in Appe
6-2
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TRANSVERSE SPIN IN QCD: RADIATIVE CORRECTIONS PHYSICAL REVIEW D63 045006
A. The evaluation of the transverse spin of a system of t
free fermions is given in Appendix B. The detailed deriv
tion of the transverse rotation operators in QCD, which
needed for the construction of the transverse spin opera
is given in Appendix C. The full evaluation of the transver
spin operator for a dressed quark in an arbitrary refere
frame is given in Appendix D. There we also show the ma
fest cancellation of all the center of mass momentum dep
dent terms. Some details of the calculation are provided
Appendix E.

II. THE TRANSVERSE SPIN OPERATORS IN QCD

In this section we first discuss the complexities associa
with the spin operators for a composite system in equal-t
formulation and also compare with the light-front case. Th
we give the expressions for interaction dependent transv
rotation operators in light-front QCD starting from the man
festly gauge invariant energy momentum tensor.

The angular momentum density

M amn5xmQan2xnQam. ~2.1!

In equal time theory, generalized angular momentum

Mmn5E d3xM 0mn. ~2.2!

The rotation operators areJi5e i jkM jk. Thus in a non-gauge
theory, all the three components of the rotation operators
manifestly interaction independent. However, the spin ope
torsSi for a composite system in a moving frame involves,
addition toJi , the boost operatorsKi5M0i which are inter-
action dependent. Intrinsic spin operators in an arbitrary
erence frame in equal-time quantization are given@11# in
terms of the Poincare´ generators by,

S5
1

M FW2
PW0

M1HG
5J

P0

M
2K3

P

M
2

~J•P!

M1P0

P

M
~2.3!

where W are the space components of the Pauli-Luban
operator, Wm52 1

2 emnrlM nrPl . H, PW are equal time
Hamiltonian and momentum operators respectively obtai
by integrating the energy momentum tensor over a space
surface andJW and KW are the equal time rotation and boo
generators respectively, which are obtained by integra
the angular momentum density over a spacelike surfa
Since boostK is dynamical,all the three components ofS
are interaction dependentin the equal time quantization
Nevertheless, the component ofS alongP remains kinemati-
cal. This is to be compared with light-front quantizatio
where the third component of the light-front spin operat
J 3 is kinematical. This arises from the facts that boost o
erators are kinematical on the light front, the interaction
pendence of light-front spin operatorsJ i arises solely from
the rotation operators, and the third component of the ro
tion operatorJ3 is kinematical on the light front.
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A further complication arises in equal time quantizatio
In order to describe the intrinsic spin of a composite syste
one should be able to separate the center of mass mo
from the internal motion. Even in free field theory, this tur
out to be quite involved~see Ref. @12# and references
therein!. On the other hand, in light-front theory, since tran
verse boosts are simply Galilean boosts, separation of ce
of mass motion and internal motion is as simple as in n
relativistic theory~see Appendix D!.

A gauge invariant separation of the nucleon angular m
mentum is performed in Ref.@13#. However, as far the spin
operator in an arbitrary reference frame is concerned,
analysis of this reference is valid only in the rest fram
where spin coincides with total angular momentum opera
Further, there is no mention of the complications in the eq
time theory, which arise from the need to project out t
center of mass motion in an arbitrary reference frame. Mo
over, the distinction between the longitudinal and transve
components of the spin is not made. It is crucial to make t
distinction since physically the longitudinal and transve
components of the spin carry quite distinct information~as is
clear, for example, from the spin of a massless partic!.
Moreover, even for the third component of the spin of
composite system in a moving frame, there is crucial diff
ence between equal time and light front cases.J 3 ~helicity!
is interaction independent whereasS3 is interaction depen-
dent in general except when measured along the directio
P.

In light-front theory, generalized angular momentum

Mmn5
1

2E dx2d2x'M 1mn. ~2.4!

J3 which is related to the helicity is given by

J35M125
1

2E dx1d2x'@x1Q122x2Q11# ~2.5!

and is interaction independent. On the other hand, the tr
verse rotation operators which are related to the transv
spin are given by

Fi5M 2 i5
1

2E dx2d2x'@x2Q1 i2xiQ12#.

They are interaction dependent even in a non-gauge th
sinceQ12 is the Hamiltonian density.

For a massive particle, the transverse spin operators@2#
J i in light-front theory are given in terms of Poincare´ gen-
erators by

MJ 15W12P1J 35
1

2
F2P11K3P22

1

2
E2P22P1J 3,

~2.6!

MJ 25W22P2J 352
1

2
F1P12K3P11

1

2
E1P22P2J 3.

~2.7!
6-3
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HARINDRANATH, MUKHERJEE, AND RATABOLE PHYSICAL REVIEW D63 045006
The first term in Eqs.~2.6! and~2.7! contains both center o
mass motion and internal motion and the next three term
these equations serve to remove the center of mass mo

The helicity operator is given by

J 35
W1

P1 5J31
1

P1 ~E1P22E2P1!. ~2.8!

Here, J3 contain both center of mass motion and intern
motion and the other two terms serve to remove the cente
mass motion. The operatorsJ i obey the angular momentum
commutation relations

@J i ,J j #5 i e i jkJ k. ~2.9!

In order to calculate the transverse spin operators, first
need to construct the Poincare´ generators
P1, Pi , P2, K3, Ei , J3 andFi in light-front QCD. The
explicit form of the operatorJ3 is given Ref.@7#. The con-
e
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ym
ar

n
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struction ofFi which is algebraically quite involved is car
ried out in Appendix C. The final form ofFi is also given in
Ref. @9#. The construction of the rest of the kinematical o
erators is given in Appendix A. In this Appendix we hav
presented all the operators in the manifestly Hermitian fo
which is necessary, as we shall see later.

In order to have a physical picture of the complicat
situation at hand, it is instructive to calculate the spin ope
tor in free field theory. The case of two free massive ferm
ons is carried out in Appendix B.

In light-front theory we set the gaugeA150 and elimi-
nate the dependent variablesc2 andA2 using the equations
of constraint. We have shown that@9# ~for details of the
derivation see Appendix C!, in the topologically trivial sector
of the theory one can write the transverse rotation operato

F25FI
21FII

2 1FIII
2 , ~2.10!

where
FI
25

1

2E dx2d2x'@x2P 0
22x2~H01V!#, ~2.11!

FII
2 5

1

2E dx2d2x'Fj†@s3]11 i ]2#
1

]1 j1F 1

]1 ~]1j†s32 i ]2j†!GjG1
1

2E dx2d2x'mFj†F s1

i ]1 jG2F 1

i ]1 j†s1GjG
1

1

2E dx2d2x'gFj†
1

]1 @~2 is3A11A2!j#1
1

]1 @j†~ is3A11A2!#jG , ~2.12!

FIII
2 52E dx2d2x'2~]1A1!A22

1

2E dx2d2x'g
4

]1 ~j†Taj!A2a2
1

2E dx2d2x'g fabc
2

]1 ~Aib]1Aic!A2a.

~2.13!
e

D

i-
Here P 0
i is the free momentum density,Ho is the free

Hamiltonian density andV are the interaction terms in th
Hamiltonian in manifestly Hermitian form~see Appendix
A!. The operatorsFII

2 andFIII
2 whose integrands do not ex

plicitly depend upon coordinates arise from the fermio
and bosonic parts respectively of the gauge invariant s
metric energy momentum tensor in QCD. The above sep
tion is slightly different from that in@9#. From Eq.~2.6! in
Sec. II it follows that the transverse spin operatorsJ i , (i
51,2) can also be written as the sum of three parts,J I

i

whose integrand has explicit coordinate dependence,J II
i

which arises from the fermionic part, andJ III
i which arises

from the bosonic part of the energy momentum tensor.
In the next section, we propose a decomposition of tra

verse spin in analogy with the helicity case and compare
contrast the two cases.

III. THE DECOMPOSITION OF TRANSVERSE SPIN

The transverse spin operatorsJ i in light-front theory for a
massive particle can be given in terms of Poincare´ generators
-
a-

s-
d

by Eq. ~2.6!. In @7# it has been shown explicitly that th
helicity operatorJ 3 in the light-front gauge, in terms of the
dynamical fields in the topologically trivial sector of QC
can be written as

J 35J f i
3 1J f o

3 1J go
3 1J gi

3 ~3.1!

whereJ f i
3 is the fermion intrinsic part,J f o

3 is the fermion
orbital part,J go

3 is the gluon orbital part andJ gi
3 is the gluon

intrinsic part. The helicity sum rule is given by, for a long
tudinally polarized fermion state,

1

N ^PSiuJ f i
3 1J f o

3 1J go
3 1J gi

3 uPSi&56
1

2
. ~3.2!

In the transverse rest frame (P'50), the helicity sum rule
takes the form

1

N ^PSiuJf i
3 1Jf o

3 1Jgo
3 1Jgi

3 uPSi&56
1

2
. ~3.3!
6-4
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TRANSVERSE SPIN IN QCD: RADIATIVE CORRECTIONS PHYSICAL REVIEW D63 045006
For a boson state, RHS of the above equation should
replaced with the corresponding helicity. Here,N is the nor-
malization constant of the state. Unlike the helicity opera
which can be separated into orbital and spin parts, the tr
verse spin operators cannot be written as a sum of orbital
spin contributions. Only in the free theory, one can wr
them as a sum of orbital and spin parts by a unitary trans
mation called Melosh transformation. However, we ha
shown that they can be separated into three distinct com
nents. At this point, we would also like to contrast our wo
with Ref. @13#, where a gauge invariant decomposition
nucleon spin has been done. The analysis in Ref.@13# has
been performed in the rest frame of the hadron and no
tinction is made between helicity and transverse sp
whereas, we have worked in the gauge fixed theory in
arbitrary reference frame.

In analogy with the helicity sum rule, we propose a d
composition of the transverse spin, which can be written

1

N ^PS'uJ I
i 1J II

i 1J III
i uPS'&56

1

2
~3.4!

for a fermion state polarized in the transverse direction. F
bosonic state, RHS will be replaced with the correspond
transverse component of spin.

What is the physical relevance of such a decomposition
the transverse spin operator? The fermion intrinsic part of
helicity operator can be related to the first moment of
quark helicity distribution measured in longitudinally pola
ized deep inelastic scattering. In the case of the transv
spin operator, we have shown@9# that there exists a direc
connection between the hadron expectation value of the
mionic intrinsic-like part of the transverse spin operatorJ II

i

and the integral of the quark distribution functiongT that
appear in transversely polarized deep inelastic scatter
Also we can identify@9# the operators that are present in t
hadron expectation value ofJ III

i with the operator structure
that are present in the integral of the gluon distribution fu
tion that appear in transverse polarized hard scattering.
physical relevance of the decomposition is made clear fr
the identification. Our results show the intimate connect
between transverse spin in light-front QCD and transve
polarized deep inelastic scattering. As far as we know, s
connections are not established so far in instant form of fi
theory and this is the first time that the first moment ofgT is
related to a conserved quantity. It is already known that
interaction independent light-front helicity operatorJ 3 can
be separated asJ 35J q( i )

3 1J q(o)
3 1J g( i )

3 1J g(o)
3 and fur-

ther, hadron expectation value ofJ q( i )
3 is directly related to

the integral of the deep inelastic helicity structure functi
g1. Thus we find natural physical explanation for the si
plicity and complexity of operator structures appearing in
structure functionsg1 and gT respectively. Another impor-
tant point is that in perturbation theory, the helicity flip in
teractions which are proportional to mass play a crucial r
both in gT and in the transverse spin operator whereas t
are not important in the case of the helicity operator.

Because the transverse spin operators are interaction
pendent, they acquire divergences in perturbation the
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One has to regularize them by imposing momentum cuto
and in the regularized theory the Poincare´ algebra as well as
the commutation relation obeyed by the spin operators
violated@14#. One has to introduce appropriate counterter
to restore the algebra. In the next section, we perform
renormalization of the full transverse spin operator up
O(as) in light-front Hamiltonian perturbation theory b
evaluating the matrix element for a quark state dressed w
one gluon. This calculation also verifies the relation~3.4! up
to O(as) in perturbation theory.

IV. TRANSVERSE SPIN OF A DRESSED QUARK
IN PERTURBATION THEORY

In this section, we evaluate the expectation value of
transverse spin operator in perturbative QCD for a dres
quark state.

The dressed quark state with fixed helicitys can be ex-
panded in Fock space as

uP,s&5f1
lb†~P,s!u0&

1 (
s1 ,l2

E dk1
1d2k1

'

A2~2p!3k1
1
E dk2

1d2k2
'

A2~2p!3k2
1

3A2~2p!3P1d3~P2k12k2!

3fs1 ,l2

s ~P,uk1 ,;k2!b†~k1 ,s1!a†~k2 ,l2!u0&.

~4.1!

We are considering dressing with one gluon since we s
evaluate the expectation value up toO(g2). The normaliza-
tion of the state is given by

^k8,l8uk,l&52~2p!3k1dll8d~k12k81!d~k'2k8'!.
~4.2!

The quark target transversely polarized in thex direction can
be expressed in terms of helicity up and down states by

uk1,k',s1&5
1

A2
~ uk1,k',↑&6uk1,k',↓&) ~4.3!

with s156mR , wheremR is the renormalized mass of th
quark.

We introduce the boost invariant amplitudesF1
l and

Fs1l2

l (x,q') respectively by fl(k)5F1
l and

fl1l2

l (k;k1 ,k2)5(1/Ak1)Fl1l2

l (x,q'), where x5k1
1/P1

and q'5k1
'2xP'. From the light-front QCD Hamiltonian

to lowest order in perturbative QCD, we have
6-5
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Fs1 ,s2

l ~x,q'!52
x~12x!

~q'!21m2~12x!2

1

A12x

3
g

A2~2p!3
Taxs1

† F2
q'

12x
1

s̃'
•q'

x
s̃'

2s̃'im
12x

x
Gxl•~es2

' !* F1
l . ~4.4!

Herem is the quark mass andx is the longitudinal momen-
tum carried by the quark. Also,s̃15s2 and s̃252s1. It is
to be noted that them dependence in the above wave fun
tion arises from the helicity flip part of the light-front QCD
Hamiltonian. This term plays a very important role in th
case of transversely polarized target states.

For simplicity, in this section, we calculate the matr
element of the transverse spin operator for a dressed q
state in a frame where the transverse momentum of the q
is zero. It can be seen from Eq.~2.6! that the sole contribu-
tion in this case comes from the first term in the RH
namely the transverse rotation operator. A detailed calc
tion of the matrix elements of the transverse spin operato
an arbitrary reference frame is given in Appendix D whe
we have explicitly shown that all the terms depending onP'

get canceled.
The matrix elements presented below have been evalu

between states of different helicities, namelys ands8. Since
the transversely polarized state can be expressed in term
the longitudinally polarized~helicity! states by Eq.~4.3!, the
matrix elements of these operators between transversely
larized states can be easily obtained from these express

Here, we have used the manifest Hermitian form of all
operators. It is necessary to keep manifest Hermiticity
each intermediate step to cancel terms containing deriva
of delta function.

The operator1
2 F2P1 can be separated into three pa

@15#,

1

2
F2P15

1

2
FI

2P11
1

2
FII

2 P11
1

2
FIII

2 P1, ~4.5!

whereFI
2 , FII

2 andFIII
2 have been defined earlier. The m

trix elements of the different parts of these for a dres
quark state are given below. The evaluation of the ma
element of1

2 FI
2P1 is quite complicated since it involves de

rivatives of delta functions. A part of this calculation h
been given in some detail in Appendix E. The operator

1

2
FI

2P15
1

2
FI

2~1!P12
1

2
FI

2~2!P12
1

2
FI

2~3!P1.

~4.6!

The first term contains the momentum density, the sec
and the third terms contain the free and the interaction p
of the Hamiltonian density respectively. The matrix eleme
are given by
04500
rk
rk
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a-
in
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of
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ns.
e
t

ve

d
x

d
ts
s

^P,su
1

2
FI

2~1!P1uP,s8&

5^P,su
1

2E dxd2q'x2P0
2 1

2
P1uP,s8&

52
i

2 (
spin

E dxd2q'q2Fs1l* s
]Fs

18l8
* s8

]x
1H.c. ~4.7!

^P,su
1

2
FI

2~2!P1uP,s8&

5^P,su
1

2E dxd2q'x2P0
2

1

2
P1uP,s8&

5
i

4 (
spin

E dxd2q'Fs1l* s
]Fs

18l8
s8

]q2 ~q'!2

3S 12x

x
2

x

12xD1
i

4 (
spin

E dxd2q'm2

3
12x

x
Fs1l* s

]Fs
18l8

s8

]q2 1H.c. ~4.8!

In the above two equations, both the single particle and
particle diagonal matrix elements contribute. Here, H.c.
the Hermitian conjugate,(spin is the summation over
s1 ,s18 ,l1 ,l18 . P0

2 is the free part of the Hamiltonian den
sity:

^P,su
1

2
FI

2~3!P1uP,s8&

5^P,su
1

2
E dxd2q'x2Pint

2
1

2
P1uP,s8&

5
g

A2~2p!3
(
spin

E dxd2q'
1

A12x
S 2

i

4
F1*

sxs
†

3F s̃2~ s̃'
•e'!1

~ s̃'
•e'!s̃2

x
Gxs1

Fs1l
s8 1H.c.D .

~4.9!

Pint
2 is the interaction part of the light-front QCD Hami

tonian density. Only theqqg part of it contributes to the
dressed quark matrix element.

The operator12 FII
2 P1 which originates from the fermionic

part of the energy momentum tensor, can be separated
three parts:

1

2
FII

2 P15
1

2
FmII

2 P11
1

2
Fq'II

2 P11
1

2
FgII

2 P1 ~4.10!
6-6
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where 1
2 FmII

2 P1 is the explicit mass dependent part of t
operator, 1

2 Fq'II
2 P1 is the part containing derivatives wit

respect tox' and 1
2 FgII

2 P1 is the interaction part. The matri
elements are given by

^P,su
1

2
FmII

2 P1uP,s8&

5
m

2
F1*

sF1
s81

m

2 (
spin

E dxd2q'

3Fs1l* s xs1

† s1xs
18
Fs

18l8
s8 1

x
, ~4.11!

^P,su
1

2
Fq'II

2 P1uP,s8&

5
1

2 (
spin

E dxd2q'Fs1l* s xs1

† s3q1xs
18
Fs

18l8
s8 1

x
,

~4.12!

^P,su
1

2
FgII

2 P1uP,s8&

5
1

4

g

A2~2p!3
(
spin

E dxd2q'
1

A12x

3S iF1*
sFxs

†~2 is3el
11el

2!xs1

2
1

x
xs

†~ is3el
11el

2!xs1GFs1l
s8 1H.c.D . ~4.13!

In Eqs. ~4.11! and ~4.12!, contributions come from only di-
agonal matrix elements whereas Eq.~4.13! contain only off-
diagonal matrix elements. The matrix element of1

2 FIII
2 P1,

which comes from the gluonic part, is given by

^P,su
1

2
FIII

2 P1uP,s8&

52
g

A2~2p!3 (
spin

E dxd2q'
1

A12x

3S F1*
sel

2Fs1l
s8

1

i ~12x!
1H.c.D

2E dxd2q'
q1

~12x! (
l,s1 ,s18

lFs1l* s Fs
18l

s8 . ~4.14!

The first term in the RHS is the off-diagonal contributio
which comes from the interaction dependent part of the
erator. The second term is the diagonal contribution com
from the free part.

The expectation value of the transverse spin operator
tween transversely polarized states is given by
04500
-
g

e-

^P,S1uMJ 1uP,S1&5^P,S1u
1

2
F2P11K3P2

2
1

2
E2P22P1J 3uP,S1&.

~4.15!

Since we are in the reference frame with zeroP', only the
first term in the RHS, i.e. the12 F2P1 term will contribute, as
mentioned earlier. We substitute forFs1l

s using Eq.~4.4!.

The final forms of the matrix elements are given by

^P,S1uMJ I
1~1!uP,S1&52

mas

4p
Cf ln

Q2

m2E
e

12e

dx~11x!,

~4.16!

^P,S1uMJ I
1~2!uP,S1&5

mas

4p
Cf ln

Q2

m2E
e

12e

dx~122x!,

~4.17!

^P,S1uMJ I
1~3!uP,S1&52

mas

4p
Cf ln

Q2

m2E
e

12e

dx~12x!

~4.18!

whereMJ I
1(1), MJ I

1(2) andMJ I
1(3) are related respec

tively to FI
2(1), FI

2(2) andFI
2(3) defined earlier.m is the

hadronic factorization scale for separating the ‘‘hard’’ a
‘‘soft’’ dynamics of QCD, i.e. we have set a hadronic sca
such thatuq'u2@m2@m2. e is a small cutoff on the longitu-
dinal momentum fraction.

So we obtain, from the above three expressions, using
~4.6!,

^P,S1uMJ I
1uP,S1&52

mas

4p
Cf ln

Q2

m2 . ~4.19!

The contribution to the matrix element ofMJ II
1 entirely

comes fromFII
2 . The various parts of this matrix element a

given by

^P,S1uMJ mII
1 uP,S1&5

1

2
muF1

su2

1
mas

2p
Cf ln

Q2

m2E
e

12e

dx
1

12x
,

~4.20!

^P,S1uMJ q'II
1 uP,S1&52

mas

4p
Cf ln

Q2

m2E
e

12e

dx~12x!,

~4.21!

^P,S1uMJ gII
1 uP,S1&5

mas

4p
Cf ln

Q2

m2

1

2
, ~4.22!

whereMJ mII
1 , MJ q'II

1 andMJ gII
1 are related respectively

to FmII
2 , Fq'II

2 and FgII
2 . In Eq. ~4.20! we have to use the

normalization condition,
6-7
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uF1
su2512

as

2p
Cf ln

Q2

m2E
e

12e

dx
11x2

12x
. ~4.23!

Up to O(as), the normalization condition will contribute
only in the first term of Eq.~4.20!. We get, from Eq.~4.20!,

^P,S1uMJ mII
1 uP,S1&

5
1

2
m1

mas

4p
Cf ln

Q2

m2E
e

12e

dxS 2

12x
2

11x2

12x D .

~4.24!

It is clear that the singularity atx51 is canceled due to th
contribution from the normalization condition. The overa
contribution coming fromMJ II

1 is given by

^P,S1uMJ II
1 uP,S1&5

m

2 S 11
3as

4p
Cf ln

Q2

m2D , ~4.25!

which does not involve anyx divergence. The matrix ele
ment ofMJ III

1 is given by

^P,S1uMJ III
1 uP,S1&5

2mas

4p
Cf ln

Q2

m2E
e

12e

~12x!dx.

~4.26!

It is to be noted that all the contributing matrix elements
proportional to the quark mass. Among the different parts
the operator, onlyJ mII

i and a part of the interaction terms
J I

i @see Eq.~2.11!# are proportional to the quark massm.
These mass dependent terms flip the quark helicity. It is a
to be noted that the terms proportional tom2 do not flip the
helicity. In all the other terms, though the operators do
depend onm explicitly, the contributions to the matrix ele
ments arise from the interference of them terms in the wave
function of Eq. ~4.4!, with the non-m dependent terms
through the different parts of the transverse spin opera
Since in light-front formulation, helicity and chirality are th
same, these linear inm terms are explicit chiral symmetr
breaking terms. From Eq.~4.19! and Eq.~4.26! we find that

^P,S1uMJ I
11MJ III

1 uP,S1&

5
mas

4p
Cf ln

Q2

m2E
e

12e

~122x!dx50 ~4.27!

which means that the entire contribution to the matrix e
ment of the transverse spin operator is given by

^P,S1uMJ 1uP,S1&5
m

2 S 11
3as

4p
Cf ln

Q2

m2D . ~4.28!

This contribution entirely comes fromMJ II
1 . Contribution

from the orbital-like part (MJ I
1) exactly cancels the contri

bution from the gluon intrinsic-like part (MJ III
1 ).

The renormalized massmR of the quark is given in terms
of the bare mass up to orderas in light-front Hamiltonian
perturbation theory by@16#
04500
e
f

o

t

r.

-

mR5mS 11
3as

4p
Cf ln

Q2

m2D . ~4.29!

In the light-front formulation of QCD, there are two mas
terms in the Hamiltonian, one is quadratic inm which is
present in the free part and does not break chiral symme
the other is linear inm which we discuss here and whic
explicitly cause chiral symmetry breaking. An important fe
ture of light-front QCD is that, these two mass scales
renormalized differently even in the perturbative region. T
renormalization ofm2 is different from the result stated
above.

Adding all the parts, for a dressed quark in perturbat
theory up toO(g2), the expectation value of the transver
spin operator is given by

^P,S1uMJ 1uP,S1&5^P,S1uMJ I
11MJ II

1 1MJ III
1 uP,S1&

5
mR

2
. ~4.30!

It is important to mention that here we are calculating t
expectation value of the operatorMJ i . In order to extract
the eigenvalue ofJ i one has to know the eigenvalue ofM.
Both MJ i andM are dynamical operators. However, in th
case, the massM in the LHS in the renormalized theory i
nothing but the renormalized mass of the quark, which the
fore gets canceled from the above equation, and we get

^P,S1uJ 1uP,S1&5^P,S1uJ I
11J II

1 1J III
1 uP,S1&5

1

2
.

~4.31!

The identification of J with spin, therefore, requires
knowledge of the mass eigenvalue, independently of
boost invariance properties of the light-front dynamics.

We can explicitly verify the relation between the integr
of gT and the expectation value of the fermion intrinsic-lik
part of the transverse spin operator to orderas in perturba-
tive QCD. The transverse polarized structure function fo
dressed quark is given@17# by

gT~x,Q2!5
eq

2

2

m

S1 H d~12x!1
as

2p
Cf ln

Q2

m2

3F112x2x2

12x
2d~12x!E

0

1

dx8
11x82

12x8

1
1

2
d~12x!G J , ~4.32!

so we get

E
0

1

gT~x!dx5
eq

2

2S1 ^P,S1uMJ II
1 uP,S1& ~4.33!
6-8
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which explicitly shows the connection between the integ
of the transverse polarized structure function and the ma
element of the fermion intrinsic-like part of the transver
spin operator.

It is quite instructive to compare our calculation of th
transverse spin of the dressed quark with the helicity of
dressed quark@7# in perturbative QCD. All the operator
contributing to helicity are kinematical~interaction indepen-
dent! and hence all of them give rise to only diagonal co
tributions. Further, in this calculation mass of the quark c
be completely ignored since they give rise to only pow
suppressed contribution. In the massless limit, helicity
conserved at the quark gluon vertex. This means that
quark in the quark-gluon state has the same helicity as
parent quark. Since the transverse gluon carry helicity61,
we get a non-vanishing contribution from the gluon intrins
helicity operator. However, both the quark and the gluon
the quark-gluon state have non-vanishing orbital angular
mentum due to transverse motion. Total helicity conser
tion implies that orbital contribution has to cancel gluon
trinsic helicity contribution. This is precisely what happe
@7# and we find that the total quark plus gluon orbital p
exactly canceled the intrinsic gluon contribution and t
overall contribution to the helicity is6 1

2 , which entirely
comes from the intrinsic part of the fermionic helicity oper
tor.

In contrast, in the case of transverse spin operator, it
both interaction independent and interaction dependent p
The latter gives rise to off-diagonal matrix elements and th
play a very important role. Of special interest is the glu
intrinsic-like transverse spin operator. This operator giv
vanishing matrix elements for a free gluon. However, sin
gluon in the quark-gluon state has intrinsic transverse m
mentum, both diagonal and off-diagonal terms give rise
non-vanishing contributions and we get a net non-vanish
matrix element for the gluon intrinsic-like transverse sp
operator. However, we find that contribution from this m
trix element is completely canceled by that from the mat
elements of orbital-like transverse spin operators. This
analogous to what happens in the helicity case.

In this section, the calculation of the matrix elements h
been done in the frame withP'50. The complete calcula
tion of the matrix element of the transverse spin operato
an arbitrary reference frame is given in Appendix D. It
clear from the expressions there that all the terms explic
dependent onP' get canceled in the expectation value
MJ 1. The parts that remain after the cancellation of theP'

dependent terms are those given above. In the above ex
sions, we have used the manifest Hermitian form of the
erators. We again stress the fact that this manifest canc
tion of contributions from center of mass motion is typical
light-front field theory because the transverse boost opera
are kinematical. The situation in the equal time relativis
case is completely different and there one cannot sepa
out the center of mass motion from the internal motion in
straightforward way even in the free theory case@12# be-
cause of the complicated boost generators. Due to the m
fest cancellation of the center of mass momenta,J i can truly
be identified as the transverse spin operator.
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V. SUMMARY AND CONCLUSIONS

In this paper, we have analyzed the transverse spin op
tors in QCD. In equal time quantization, one encounters t
major difficulties in the description of the spin of a compo
ite system in an arbitrary reference frame. They are~1! the
complicated interaction dependence arising from dynam
boost operators and~2! the difficulty in the separation o
center of mass motion from the internal motion. Because
these severe difficulties, there have been hardly any atte
to study spin operators of a moving composite system in
conventional equal time formulation of quantum field theo

In light-front theory, on the other hand, the longitudin
spin operator~light-front helicity! is interaction independen
and the interaction dependence of transverse spin oper
arises solely from that of transverse rotation operators. Mo
over, in this case the separation of center of mass mo
from internal motion is trivial since light-front transvers
boosts are simple Galilean boosts.

It is extremely interesting to contrast the cases of long
dinal and transverse spin operators in light-front field theo
In the case of longitudinal spin operator~light-front helicity!,
in the gauge fixed theory, the operator is interaction indep
dent and can be separated into orbital and spin parts
quarks and gluons. It is known for a long time that the tra
verse spin operators in light-front field theory cannot
separated into orbital and spin parts except in the trivial c
of free field theory.In this work, we have shown that, in spi
of the complexities, a physically interesting separation is
deed possible for the transverse spin operatorswhich is
quite different from the separation into orbital and spin pa
in the rest frame familiar in the equal time picture. We ha
discussed the physical significance of this separation. A
transverse rotational symmetry is not manifest in light-fro
theory and a study of these operators is needed for ques
regarding Lorentz invariance in the theory@14#.

In analogy with the helicity sum rule, we have proposed
decomposition for the transverse spin. Elsewhere we h
shown@9# the relationship between nucleon matrix eleme
of J II

i and J III
i and the first moments of quark and gluo

structure functions respectively, appearing in transverse
larized hard scattering. This is the first time that the integ
of gT is related to a conserved quantity, namely the tra
verse spin operator. It is important to mention here that
proposed decomposition of the transverse spin operator
not be affected if one adds a total derivative term to
angular momentum density. Such a term can at most prod
a surface term which we are neglecting since we have
stricted ourselves to the topologically trivial sector of t
theory. We have started with the angular momentum den
defined in terms of the symmetric gauge invariant stre
energy tensor, which is obtained from the Noether’s stre
energy tensor by a adding a total derivative term. Ev
though the angular momentum density differs from the N
ether angular momentum density by a total derivative te
both give rise to the same generators. Another point wo
mentioning is that we have worked in the gauge fixed theo
In the light-front gauge,A150, the transverse spin operato
can be separated into three parts, andJ II

i is related to the
6-9
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first moment ofgT measured in transverse polarized scatt
ing, which is a gauge invariant object. This is similar to t
helicity case, where only in the light-front gauge and us
light-front quantization, the intrinsic fermionic helicity is re
lated to the gauge invariant first moment ofg1 measured in
longitudinally polarized scattering. The corresponding glu
intrinsic helicity cannot be measured directly in polariz
deep inelastic lepton-nucleon scattering but in some o
process like polarized hadron-hadron scattering. A sim
situation holds in the case of transverse spin.

A very important issue related to the transverse spin
erators is renormalization. Because of the interaction dep
dence, the operators acquire divergences in perturba
theory just like the Hamiltonian and therefore have to
renormalized. The renormalization of only the intrinsic-lik
fermion part of the transverse spin operator has been
cussed in the literature so far. In this paper, we have car
out the renormalization of the full transverse spin opera
for the first time up toO(as) in light-front Hamiltonian per-
turbation theory by evaluating the matrix elements for
dressed quark target. We have shown that the entire co
bution to the matrix element comes from the fermi
intrinsic-like part of the transverse spin operator and is eq
to 1

2 . The contributions fromJ I
i and J III

i exactly get can-
celed. Also, the mass of the quark is very crucial in this ca
since the helicity flip interactions which are proportional
the quark mass play a very important role. However,
terms proportional tom2 do not flip the helicity and do no
contribute. Since helicity flip is involved, we do not encou
ter any quadratic divergence unlike the case of renormal
tion of the light-front Hamiltonian. Further, we have com
pared and contrasted the calculations of transverse spin
helicity of a dressed quark in perturbation theory.

We have also verified the frame independence of our
sults. We have explicitly shown that, in an arbitrary refe
ence frame, all the terms depending on the center of m
momenta manifestly get canceled in the matrix element.
cancellation is as simple as in non-relativistic theory sin
boost is kinematical on the light-front. For future studies
is an interesting problem to evaluate non-perturbatively@18#
the matrix element of the transverse spin operator in lig
front QCD. Also, in this work, we have used cutoff on th
relative transverse momenta and the smallx divergence gets
canceled in the one loop result. The renormalization of
transverse spin operators using similarity renormalizat
technique@10# is to be done in future.
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APPENDIX A: POINCARE GENERATORS
IN LIGHT-FRONT QCD

In this appendix we derive the manifestly Hermitian kin
matical Poincare generators~exceptJ3) and the Hamiltonian
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in light-front QCD starting from the gauge invariant sym
metric energy momentum tensorQmn. To begin with,Qmn is
interaction dependent. In thegauge fixedtheory we find that
the seven kinematical generators are manifestly indepen
of the interaction.

We shall work in the gaugeA150 and ignore all surface
terms. Thus we are working in the completely gauge fix
sector of the theory@7#. The explicit form of the operatorJ3

in this case is given in Ref.@7# which is manifestly free of
interaction at the operator level. The rotation operators
given in Sec. II.

At x150, the operatorsK3 and Ei depend only on the
densityQ11. A straightforward calculation leads to

Q115c1†i ]J1c11]1Ai]1Ai , ~A1!

then, longitudinal momentum operator,

P15
1

2E dx2d2x'Q11

5
1

2E dx2d2x'@c1†i ]J1c11]1Aj]1Aj #,

~A2!

generator of longitudinal scaling,

K352
1

4E dx2d2x'x2Q11

52
1

4E dx2d2x'x2@c1†i ]J1c11]1Aj]1Aj #,

~A3!

transverse boost generators,

Ei52
1

2E dx2d2x'xiQ11

52
1

2E dx2d2x'xi@c1†i ]J1c11]1Aj]1Aj #.

~A4!

and the transverse momentum operator

Pi5
1

2E dx2d2x'Q1 i ~A5!

which appears to have explicit interaction dependence. Us
the constraint equations forc2 andA2, we have

Q1 i5QF
1 i1QG

1 i ,

QF
1 i52c1†i ] ic112gc1†Aic1, ~A6!

QG
1 i5]1Aj] iAj2]1Aj] jAi

1]1Ai] jAj22gc1†Aic1. ~A7!

Thus
6-10
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Pi5
1

2E dx2d2x'@c1†i ]Jic11Aj]1] jAi2Ai]1] jAj

2Aj]1] iAj #. ~A8!

Thus we indeed verify that all the kinematical operators
explicitly independent of interactions.

Lastly, the Hamiltonian operator can be written in t
manifestly Hermitian form as

P25
1

2E dx2d2x'Q125
1

2E dx2d2x'~H01Hint! ~A9!
in
el
al
fre
m
n

04500
e

whereH0 is the free part given by

H052Aa
j ~] i !2Aa

j 1j†F2~]'!21m2

i ]1 Gj
2F2~]'!21m2

i ]1 j†Gj. ~A10!

The interaction terms are given by

Hint5Hqqg1Hggg1Hqqgg1Hqqqq1Hgggg, ~A11!

where
Hqqg524gj†
1

]1 ~]'
•A'!j1g

]'

]1 @j†~ s̃'
•A'!#s̃'j1gj†~ s̃'

•A'!
1

]1 ~ s̃'
•]'!j1gS ]'

]1 j†D s̃'~ s̃'
•A'!j1gj†

1

]1

3~ s̃'
•]'!~ s̃'

•A'!j2mg
1

]1 @j†~ s̃'
•A'!#j1mgj†~ s̃'

•A'!
1

]1 j1mgS 1

]1 j†D ~ s̃'
•A'!j2mgj†

1

]1 @~ s̃'
•A'!j#,

~A12!

Hggg52g fabcF] iAa
j Ab

i Ac
j 1~] iAa

i !
1

]1 ~Ab
j ]1Ac

j !G , ~A13!

Hqqgg5g2Fj†~ s̃'
•A'!

1

i ]1 ~ s̃'
•A'!j2

1

i ]1 ~j†s̃'
•A'!s̃'

•A'j14
1

]1 ~ f abcAb
i ]1Ac

i !
1

]1~j†Taj!G , ~A14!

Hqqqq54g2
1

]1 ~j†Taj!
1

]1~j†Taj!, ~A15!

Hgggg5
g2

2
f abcf adeFAb

i Ac
j Ad

i Ae
j 12

1

]1 ~Ab
i ]1Ac

i !
1

]1 ~Ad
j ]1Ae

j !G . ~A16!
o-
APPENDIX B: TRANSVERSE SPIN FOR A SYSTEM
OF TWO NON-INTERACTING FERMIONS

In order to show the non-triviality of the transverse sp
operators even in the free theory and the manifest canc
tion of the center of mass motion in this case, here we ev
ate the transverse spin for a composite system of two
fermions.The manifest cancellation of the center of mass
tion for the interacting theory is much more complicated a
is given in Appendix D.

Let the mass of each fermion bem and momenta
(ki

1 ,ki
'), i 51,2. We take the state to beuP&

5b†(k1 ,s1)b†(k2 ,s2)u0&, wheres1 ands2 are the helicities.
la-
u-
e

o-
d

MJ 1uP&5S 1

2
F2P11K3P22

1

2
E2P22P1J 3D uP&.

~B1!

We introduce Jacobi momenta, (xi ,q') defined as

k1
'5q'1x1P', k2

'52q'1x2P', ki
15xi P

1

~B2!

with (xi51.
HereM is the mass of the composite system and (P1,P')

are the momenta of the center of mass.
The partial derivatives with respect to the particle m

menta can be expressed in terms of these variables as
6-11
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]

]k1
i 5x2

]

]qi 1
]

]Pi ,
]

]k2
i 52x1

]

]qi1
]

]Pi , ~B3!

and

]

]k1
15

x2

P1

]

]x1
1

]

]P1 2x2

P'

P1 •

]

]q' , ~B4!

]

]k2
15

x1

P1

]

]x2
1

]

]P1 1x1

P'

P1 •

]

]q' . ~B5!

Then we have
of

or
gh
n

nt
n
he

04500
K3P2uP&5F2 iP2x1x2S ]

]x1
1

]

]x2
D2 iP2P1

]

]P1G uP&,

~B6!

1

2
E2P2uP&5F2

i

2
„~P'!21M2

…

]

]P2 1 iP2G uP&, ~B7!

P1J 3uP&5F2 iP1S q2
]

]q1 2q1
]

]q2D
1P1

s1

2
1P1

s2

2 G uP&, ~B8!
1

2
F2P1uP&5F iq2S x2

]

]x1
2x1

]

]x2
D1

s1

2

q1

x1
2

s2

2

q1

x2
1

i

2
„m21~q'!2

…S x2

x1
2

x1

x2
D ]

]q2 1
m

2 (
l

S sls1

1

x1
1

sls2

1

x2
D

2 iq2P'
•

]

]q' 1 iP2x1x2S ]

]x1
1

]

]x2
D1 iP1P2

]

]P11
i

2
„m21~q'!2

…

1

x1x2

]

]P2 1
i

2
~P'!2

]

]P2

1 i ~q'
•P'!

]

]q21
P1

2
~s11s2!2 iP2G uP&. ~B9!
ce

r

Substituting

M25
„m21~q'!2

…

x1x2
, ~B10!

we get

MJ 1uP&5F iq2S x2

]

]x1
2x1

]

]x2
D1

i

2
„m21~q'!2

…

3S x2

x1
2

x1

x2
D ]

]q2

1
q1

2 S s1

x1
2

s2

x2
D1

m

2 (
l

S sls1

1

x1
1

sls2

1

x2
D G uP&.

~B11!

Explicitly we see thatMJ 1 does not depend on the center
mass momenta.

APPENDIX C: TRANSVERSE ROTATION
OPERATOR IN QCD

In this section we explicitly derive the expressions f
interaction dependent transverse rotation operators in li
front QCD starting from the manifestly gauge invariant e
ergy momentum tensor.

We set the gaugeA150 and eliminate the depende
variablesc2 and A2 using the equations of constraint. I
this paper we restrict to the topologically trivial sector of t
t-
-

theory and set the boundary conditionAi(x2,xi)→0 as
x2,i→`. This completely fixes the gauge and sets all surfa
terms to zero.

The transverse rotation operator

Fi5
1

2E dx2d2x'@x2Q1 i2xiQ12#. ~C1!

The symmetric gauge invariant energy momentum tenso

Qmn5
1

2
c̄@gmiD n1gniD m#c2FmlaFl

na2gmn

3F2
1

4
~Flsa!21c̄~gliD l2m!cG , ~C2!

where

iD m5
1

2
i ]Jm1gAm,

Fmla5]mAla2]lAma1g fabcAmbAlc, ~C3!

Fl
na5]nAl

a2]lAna1g fabcAnbAl
c .

First consider the fermionic part ofQmn:

QF
mn5

1

2
c̄@gmiD n1gniD m#c2gmnc̄~gliD l2m!c.

~C4!
6-12
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The coefficient ofgmn vanishes because of the equation
motion.

Explicitly, the contribution toF2 from the fermionic part
of Qmn is given by

FF
25

1

2E dx2d2x'Fx2
1

2
c̄~g1iD 21g2iD 1!c

2x2
1

2
c̄~g1iD 21g2iD 1!cG

5FF(I )
2 1FF(II )

2 , ~C5!

where

FF(I )
2 5

1

2E dx2d2x'x2Fc1†
1

2
i ]J 2c11c1†gA2c1

1
1

4
c̄g i i ]J1cG , ~C6!
04500
f
FF(II )

2 52
1

2E dx2d2x'x2Fc1†S 1

2
i ]J21gA2Dc1

1
1

4
c2†g i i ]J1c2G . ~C7!

We have the equation of constraint

i ]1c25@a'
•~ i ]'1gA'!1g0m#c1, ~C8!

and the equation of motion

i ]2c152gA2c11@a'
•~ i ]'1gA'!1g0m#

1

i ]1

3@a'
•~ i ]'1gA'!1g0m#c1. ~C9!

Using the Eqs.~C8! and ~C9! we arrive at free (g indepen-
dent! and interaction (g dependent! parts of FF

2 . The free
part of FF

2 is given by
FF( f ree)
2 5

1

2E dx2d2x'H x2
†j†@ i ]2j#2@ i ]2j†#j‡2x2Fj†F2~]'!21m2

i ]1 jG2F2~]'!21m2

i ]1 j†GjG
1Fj†@s3]11 i ]2#

1

]1 j1F 1

]1~]1j†s32 i ]2j†!GjG1mFj†F s1

i ]1 jG2F 1

i ]1 j†s1GjG J . ~C10!

We have introduced the two-component fieldj,

c15F j

0G . ~C11!

The interaction dependent part ofFF(I )
2 is

FF(I ) int
2 5gE dx2d2x'x2j†A2j1

1

4
gE dx2d2x'

3Fj†
1

]1 @~2 is3A11A2!j#1
1

]1 @j†~ is3A11A2!#jG . ~C12!

The interaction dependent part ofFF(II )
2 is

FF(II ) int
2 5

1

4
gE dx2d2x'Fj†

1

]1@~2 is3A11A2!j#1
1

]1@j†~ is3A11A2!#jG
2

1

2
gE dx2d2x'x2F ]'

]1 @j†~ s̃'
•A'!#s̃'j1j†~ s̃'

•A'!
1

]1 ~ s̃'
•]'!j

1S ]'

]1 j†D s̃'~ s̃'
•A'!j1j†

1

]1 ~ s̃'
•]'!~ s̃'

•A'!j2m
1

]1 @j†~ s̃'
•A'!#j1mj†~ s̃'

•A'!
1

]1 j

1mS 1

]1 j†D ~ s̃'
•A'!j2mj†

1

]1 @~ s̃'
•A'!j#G2

1

2
g2E dx2d2x'x2Fj†s̃'

•A'
1

i ]1s̃'
•~A'j!

2
1

i ]1 ~j†s̃'
•A'!s̃'

•A'jG . ~C13!
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We have introduceds̃15s2 and s̃252s1.
Next consider the gluonic part of the operatorF2:

Fg
25

1

2E dx2d2x'@x2Qg
122x2Qg

12#, ~C14!

where

Qg
1252F1laFl

2a ,

Qg
1252F1laFl

2a1
1

4
g12~Flsa!2.

~C15!

Using the constraint equation

1

2
]1A2a5] iAia1g fabc

1

]1 ~Aib]1Aic!12g
1

]1~j†Taj!,

~C16!
rit

t

04500
we arrive at

Fg
25Fg( f ree)

2 1Fg( int)
2 ~C17!

where

Fg( f ree)
2 5

1

2E dx2d2x'$x2~Aja]1] jA2a2A2a]1] jAja

1Aja]1]2Aja!2x2
„Aka~] j !2Aka

…%

22E dx2d2x'A2a]1A1a. ~C18!

The interaction part
Fg( int)
2 5

1

2E dx2d2x'x2H g fabc]1AiaA2bAic1gS f abc
1

]1 ~Aib]1Aic!12
1

]1 ~j†Taj! D ]1A2aJ
2

1

2E dx2d2x'x2H 2g fabc] iAjaAibAjc1
g2

2
f abc f adeAibAjcAidAje12g] iAia

1

]1~ f abcAjb]1Ajc12j†Taj!

1g2S f abc
1

]1 ~Aib]1Aic!12
1

]1 j†Taj D S f ade
1

]1 ~Ajd]1Aje!12
1

]1 j†Taj D J . ~C19!
in
t

me,
r of
c-

ated
y
ex-

rs
ined
So the full transverse rotation operator in QCD can be w
ten as

F25FI
21FII

2 1FIII
2 , ~C20!

where the explicit forms ofFI
2 , FII

2 and FIII
2 have been

given in Sec. II.

APPENDIX D: TRANSVERSE SPIN OF A DRESSED
QUARK IN AN ARBITRARY REFERENCE FRAME

We introduce a wave packet state

ucs&5
1

2E dP1d2P' f ~P!uP,s& ~D1!

which is normalized as

^csucs8&5dss8 . ~D2!

Here f (P) is a function ofP, the exact form of which is no
important. Using Eq.~4.2! we get
- 1

2E dP1d2P' f * ~P! f ~P!~2p!3P151. ~D3!

The expectation values of the various operators involved
the definition ofMJ i are given below. It is to be noted tha
we have done the calculation in an arbitrary reference fra
in order to show that the dependence on the total cente
mass momenta (P1,P') actually gets canceled in the expe
tation value ofMJ i .

The matrix elements presented below have been evalu
between wave packet states of different helicities, namels
and s8. Since the transversely polarized state can be
pressed in terms of the longitudinally polarized~helicity!
states by Eq.~4.3!, the matrix elements of these operato
between transversely polarized states can be easily obta
from these expressions. We introduce

c1
s5 f ~P!F1

s , cs1l
s 5 f ~P!Fs1l

s . ~D4!

The matrix elements are given by
6-14
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^csuK3P2ucs8&5
1

2E dP1d2P'~2p!3P1S i

2
c1*

s
]c1

s8

]P1 P1P21
i

2 (
spin

E dxd2q'P2cs1l
s*

]cs
18l8

s8

]P1 P11H.c.D , ~D5!

^csu
1

2
E2Pf ree

2 ucs8&5
1

2E dP1d2P'~2p!3P1S 2
i

4
c1*

s
]c1

s8

]P2 P1
~P'!21m2

P1

2
i

4 (
spin

E dxd2q'cs1l* s
]cs

18l8
s8

]P2 Fm21~q'1xP'!2

x
1

~2q'1~12x!P'!2

12x G1H.c.D , ~D6!

^csu
1

2
E2Pint

2 ucs8&52
g

A2~2p!3

1

2
E dP1d2P'~2p!3P1(

spin
E dxd2q'

1

A12x
S ic1

s*
]cs1l

s8

]P2 xs
†F2

~q'
•e'!

12x

2
1

2

~ s̃'
•e'!~ s̃'

•q'!

x
2

1

2
im

~12x!

x
~ s̃'

•e'!Gxs1
1H.c.D . ~D7!

Here H.c. is the Hermitian conjugate,(spin is summation overs1 ,s18 ,l,l8. Pf ree
2 is the free part andPint

2 is the interaction
part of the light-front QCD Hamiltonian density.

^csuP1J 3ucs8&5
1

2E dP1d2P'~2p!3P1F (spin
E dxd2q'P1S i

2
cs1l* s S q2

]

]q1 2q1
]

]q2Dcs
18l8

s8 1H.c.D
1

1

2E dxd2q'P1 (
l,s2 ,s28

lcls2
* s c

ls
28

s8 1E dxd2q'P1 (
l,s1 ,s18

lcs1l* s cs
18l

s8 G . ~D8!

The first term in the above expression is the quark-gluon orbital part, the second and the third terms are the intrinsic
of the quark and gluon, respectively. Finally, the operator1

2 F2P1 can be separated into three parts,

1

2
F2P15

1

2
FI

2P11
1

2
FII

2 P11
1

2
FIII

2 P1 ~D9!

whereFI
2 , FII

2 andFIII
2 have been defined earlier. The matrix elements of the different parts of these operators for a

quark state in an arbitrary reference frame are given below. A part of this calculation has been given in some d
Appendix E. We have

1

2
FI

2P15
1

2
FI

2~1!P12
1

2
FI

2~2!P12
1

2
FI

2~3!P1. ~D10!

The matrix elements of these three parts are

^csu
1

2
FI

2~1!P1ucs8&5^csu
1

2E dxd2q'x2P0
2 1

2
P1ucs8&

5
1

2E dP1d2P'~2p!3P1F2
i

2
c1*

s
]c1

s8

]P1 P1P21
i

2 (
spin

E dxd2q'q2cs1l* s P'

]cs
18l8

s8

]q'

2
i

2 (
spin

E dxd2q'cs1l* s P2
]cs

18l8
s8

]P1 P12
i

2 (
spin

E dxd2q'q2cs1l* s
]cs

18l8
* s8

]x
1H.c.G , ~D11!
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^csu
1

2
FI

2~2!P1ucs8&5^csu
1

2
E dxd2q'x2P0

2
1

2
P1ucs8&

5
1

2
E dP1d2P'~2p!3P1F i

4
c1*

s
]c1

s8

]P2

~P'!21m2

P1
P11

i

4
(
spin

E dxd2q'cs1l* s

]cs
18l8

s8

]P2

3Fm21~q'1xP'!2

x
1

~2q'1~12x!P'!2

12x
G1

i

2
(
spin

E dxd2q'cs1l* s

]cs
18l8

s8

]q2 ~q'
•P'!

1
i

4
(
spin

E dxd2q'cs1l* s

]cs
18l8

s8

]q2 ~q'!2S12x

x
2

x

12x
D1 i

4
(
spin

Edxd2q'm2
12x

x
cs1l* s

]cs
18l8

s8

]q2 1H.c.G .

~D12!

In the above two equations, both the single particle and two particle diagonal matrix elements contribute.

^csu
1

2
FI

2~3!P1ucs8&5^csu
1

2
E dxd2q'x2Pint

2
1

2
P1ucs8&

5
g

A2~2p!3
(
spin

1

2
E dP1d2P'~2p!3P1E dxd2q'

1

A12x
S ic1

s*
]cs1l

s8

]P2 xs
†

3F2
~q'

•e'!

12x
2

1

2

~ s̃'
•e'!~ s̃'

•q'!

x
2

1

2
im

~12x!

x
~ s̃'

•e'!Gxs1

2
i

4
c* sxs

†F s̃2~ s̃'
•e'!1

~ s̃'
•e'!s̃2

x
Gxs1

cs1l
s8 1H.c.D . ~D13!

Only the off-diagonal matrix elements contribute in the above equation. The matrix elements of the three different
1
2 FII

2 P1 are given by,

^csu
1

2
FmII

2 P1ucs8&

5
1

2E dP1d2P'~2p!3P1Fm

2
c1*

sc1
s81

m

2 (
spin

E dxd2q'cs1l* s xs1

† s1xs
18
cs

18l8
s8 1

xG , ~D14!

^csu
1

2
Fq'II

2 P1ucs8&

5
1

2E dP1d2P'~2p!3P1F1

2 (
spin

E dxd2q'cs1l* s xs1

† s3q1xs
18
cs

18l8
s8 1

x

1
1

2E dxd2q' (
l,s2 ,s28

lP1cls2
* s c

ls
28

s8 G , ~D15!
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^csu
1

2
FgII

2 P1ucs8&

5
1

4

g

A2~2p!3
(
spin

1

2
E dP1d2P'~2p!3P1E dxd2q'

1

A12x
S ic1*

sFxs
†~2 is3el

11el
2!xs1

2
1

x
xs

†~ is3el
11el

2!xs1Gcs1l
s8 1H.c.D . ~D16!

In Eqs.~D14! and~D15!, contributions come from only diagonal matrix elements whereas Eq.~D16! contain only off-diagonal
matrix elements. The matrix element of1

2 FIII
2 P1 is given by

^csu
1

2
FIII

2 P1ucs8&52
g

A2~2p!3

1

2
E dP1d2P'~2p!3P1F (spin

E dxd2q'
1

A12x
S c1*

sel
2cs1l

s8
1

i ~12x!
1H.c.D

2E dxd2q'
q1

~12x!
(

l,s1 ,s18

lcs1l* s cs
18l

s8 1E dxd2q'P1 (
l,s1 ,s18

lcs1l* s cs
18l

s8 G . ~D17!

Finally, the expectation value of the transverse spin operator is given by

^cs1uMJ 1ucs1&5^cs1u
1

2
F2P11K3P22

1

2
E2P22P1J 3ucs1&. ~D18!

From the above expressions it is clear that all the explicitP' dependent terms get canceled in the final expression. T
specific, it can be easily seen that all the terms in the expectation value ofK3P22 1

2 E2Pf ree
2 2P1J orbital

3 areP' dependent and
they exactly cancel theP' dependent terms in12 FI ( f ree)

2 P1; the twoP1 dependent terms in the intrinsic part ofP1J 3 exactly
cancel the two similar terms in the expectation value of1

2 FII
2 P11 1

2 FIII
2 P1 and the expectation value of1

2 E2Pint
2 completely

cancel all theP' dependent terms in the expectation value of1
2 FI ( int)

2 P1.

APPENDIX E: DETAILS OF THE CALCULATION

Here, we explicitly show the evaluation of one of the matrix elements of the interaction part ofFI
2 . Consider the operato

Og5
1

2E dx2d2x'x2gF ~ s̃'
•]'1m!

]1 j†G ~ s̃•A'!j
P1

2
. ~E1!

This can be written in Fock space as

Og5
g

2 (
s1 ,s2 ,l

E ~dk1!E ~dk2!E @dk3#S b†~k1 ,s1!a~k3 ,l!b~k2 ,s2!xs1

†
~ s̃'

•k1
'2 im!

k1
1

~ s̃'
•el

'!xs2

3 i
]

]k1
22~2p!3d3~k12k22k3!1b†~k1 ,s1!a†~k3 ,l!b~k2 ,s2!xs1

†
~ s̃'

•k1
'2 im!

k1
1

~ s̃'
•el*

'!xs2

3 i
]

]k1
22~2p!3d3~k12k21k3!D P1

2
~E2!

where (dk)5dk1d2k'/2(2p)3Ak1 and @dk#5dk1d2k'/2(2p)3k1. We evaluate the expectation value of this operator
the dressed quark state given by Eq.~D1!. Only the off-diagonal parts of the matrix element will give non-zero contributi
The matrix element is given by
045006-17
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^csuOgucs8&5
g

2 (
s1 ,l

E ~dP!8E $dp1%E $dp2%A2~2p!3P1d3~P2p12p2!

3H f1*
sAp1

1xs
† ~ s̃'

•P'2 im!

P1
~ s̃'

•el
'!xs1

fs1l8
s8 i

]

]P22~2p!3d3~P2p12p2!
1

2
P11H.c.J ~E3!

52
ig

4 E ~dP!8E $dp1%E $dp2% (
s1 ,l

A2~2p!3P1

3Ff1*
sF ]

]P2 fs1l
s8 d3~P2p12p2!Ap1

1xs
†~ s̃'

•P'2 im!

P1
~ s̃'

•el
'!xs8G2~2p!3d3~P2p12p2!P11H.c.G

52
ig

4

1

A2~2p!3 (
s1 ,l

E ~dP!8E dxd2q'
1

A12x
Fc1*

s
]cs1l

s8

]P2 xs
†~ s̃'

•P'2 im!~ s̃'
•el

'!xs81H.c.G
2

ig

4

1

A2~2p!3 (
s1 ,l

E ~dP!8E dxd2q'
1

A12x
@c1*

scs1l
s8 xs

† s̃2~ s̃'
•el

'!xs81H.c.# ~E4!

where$dp%5dp1d2p'/A2(2p)3p1 and (dP)85 1
2 dP1d2p'2(2p)3P1.

The other terms can also be evaluated in a similar method.
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