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Transverse spin in QCD: Radiative corrections
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In this paper we address various issues connected with transverse spin in light front QCD. The transverse
spin operators, in th&* =0 gauge, expressed in terms of the dynamical variables are explicitly interaction
dependent unlike the helicity operator which is interaction independent in the topologically trivial sector of
light-front QCD. Although it cannot be separated into an orbital and a spin part, we have shown that there
exists an interesting decomposition of the transverse spin operator. We discuss the physical relevance of such
a decomposition. We perform a one loop renormalization of the full transverse spin operator in light-front
Hamiltonian perturbation theory for a dressed quark state. We explicitly show that all the terms dependent on
the center of mass momenta get canceled in the matrix element. The entire nonvanishing contribution comes
from the fermion intrinsiclike part of the transverse spin operator as a result of cancellation between the
gluonic intrinsiclike and the orbital-like part of the transverse spin operator. We compare and contrast the
calculations of transverse spin and helicity of a dressed quark in perturbation theory.
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[. INTRODUCTION particle. This implies that even thoudt performs “rota-
tions” about the transverse axes, they have continuous spec-
From the early days of quantum field theory, it has beertrum. It is, however, known how to solve this problem. In
recognized that the issues associated with the spin of a conterms of the rest of the Poincagenerators, one knowg]
posite system in an arbitrary frame are highly complex anchow to construct spin operatotg' that together with the
non-trivial [1]. In equal-time quantization, the problems arisehelicity .72 obey theSU(2) algebra. One observes that is
because of the fact that the Pauli-Lubanski operators, startingteraction dependent and has a highly nontrivial operator
from which one can construct the spin operators in a movingtructure in contrast wit#°. Further, unlike73, 7' cannot
frame, are interaction dependent for a composite object. Fuibe separated into orbital and spin parts. So far, most of the
ther, it is quite difficult to separate the center of mass andtudies of the transverse spin operators in light-front field
internal variables which is mandatory in the calculation oftheory are restricted to free field thed]. Even in this case,
spin. Because of these difficulties, there has been rarely artyie operators have a highly complicated structure. However,
attempt to study the spin of a moving composite system irone can write these operators as a sum of orbital and spin
the conventional equal time formulation of even simple fieldparts, which can be achieved via a unitary transformation,
theoretic models, let alone quantum chromodynamicgalled Melosh transformatiof]. In interacting theory, pre-
(QCD). sumably this can be achieved order by order in a suitable
It is well known that in light-front field theory, in addition expansion paramet€b] which is justifiable only in a weakly
to the Hamiltonian, two other operators that belong to thecoupled theory.
Poincaregroup, namelyF'(i=1,2), are interaction depen- Knowledge about transverse rotation operators and trans-
dent. This implies interaction dependent spin operators anderse spin operators is mandatory for addressing issues con-
this complication is generally thought to be a penalty one haserning Lorentz invariance in light-front theory. Unfortu-
to pay for working with light-front dynamics. In contrast, the nately, very little is known 6] regarding the field theoretic
angular momentum operators in the familiar instant form ofaspects of the interaction dependent spin operatesem-
field theory are interaction independent. It is interesting tophasize that in a moving frame, the spin operators are inter-
investigate whether one can understand better the physicattion dependent irrespective of whether one considers
origin of the interaction dependence in the light-front case. equal-time field theory or light-front field thearyo the best
A second problem is that, together with the light-front of our knowledge, in gauge field theory, the canonical struc-
helicity 73, F' do not obeySU(2) algebra, the commuta- ture of spin operators of a composite system irasbitrary
tion relations obeyed by the spin operators of a massive paframe has never been studied.
ticle. They obeyE(2) algebra, appropriate for a massless Recently it was shown thdf7], starting from the mani-
festly gauge invariant symmetric energy momentum tensor,
in light-front QCD (the gaugeA* =0 and light-front vari-
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"Email address: asmita@tnp.saha.ernet.in comes explicitly interaction independent and can be sepa-
*Email address: raghu@cts.iisc.ernet.in rated into quark and gluon orbital and spin operators. Thus

0556-2821/2001/63)/04500618)/$15.00 63 045006-1 ©2001 The American Physical Society



HARINDRANATH, MUKHERJEE, AND RATABOLE PHYSICAL REVIEW D63 045006

one can write down a helicity sum rule which has a cleartransverse rotation operatofs. In the gaugeA*™=0, we
physical meaning. The orbital and intrinsic parts of the light-eliminated the constrained variables. In the completely gauge
front helicity operator have also been analyzed recently irfixed sector, in terms of the dynamical variables, we have
[8]. Even though7' cannot be separated into orbital and spinshown that one can decompogé=7\+ .7\, + 7!, where
parts and they are interaction dependent, one can still asnly 7, has explicit coordinatex(",x') dependence in its
whether one can identify distinct operator structures7in integrand. The operatotg}, and j}” arise from the fermi-

andl\(vhether ONE can propose a physically inter'es'ging decon2)'nic and bosonic parts respectively of the gauge invariant
position. Is this decomposition protected by radiative Correcénergy momentum tensaf’ is orbital-like and7', and.7' |
tions? If distinct operators indeed emerge, do they have an e AR

phenomenological consequences especially in deep inelas e fermion intrinsic-like and gluon intrinsic-like spin opera-

scattering which is a light cone dominated process? tors res_pectlvely. .
Another important issue concerns renormalization. In [N this work, we explore the theoretical consequences of

light-front QCD Hamiltonian, quark mass appearsrésand the decompositic_)n of7'. We compare and contrast the con-
m terms,m? in the free helicity non-flip part of the Hamil- Seduences of this decomposition and the corresponding de-
tonian andm in the interaction dependent helicity flip part of composition of the helicity operator into orbital and spin
the Hamiltonian. It is known tham? and m renormalize  Parts. Next we address the issue of radiative corrections by
differently. m? and m also appear in7'. Do they undergo carrying out the calculation of the transverse spin of a
renormalization? Sincg’ are interaction dependent, do they dressed quark in perturbative QCD (PQCD) in the old-
require new counterterms in addition to those necessary ttshioned Hamiltonian formalism. To the best of our knowl-
renormalize the Hamiltonian? edge, this is for the first time that such a calculation has been
In order to resolve the above mentioned problems angberformed in quantum field theory. This calculation is facili-
puzzles, we have undertaken an investigation of the spin of tated by the fact that boost is kinematical in the light-front
composite system in an arbitrary reference frame in QCDformalism. Thus we are able to isolate the internal motion
We have compared and contrasted both the instant form anghich is only physically relevant from the spurious center of
front form formulations. In instant form, even though the mass motion. We carry out the calculations in a reference
angular momentum operators are interaction independenfiame with arbitrary transverse momentiih and explicitly
they qualify as spin operators only in the rest frame of theverify the frame independence of our results. We find that
system. In an arbitrary reference frame, the appropriate spibecause of cancellation between various interaction indepen-
operators involve, in addition to angular momentum operadent and dependent operator matrix elements, only one coun-
tors, also interaction dependent boost operators. Thus onerterm is needed. We establish the fact the mass counterterm
puzzle is resolved, namely, the interaction dependence of thier the renormalization of/' is the same mass counterterm
spin of a composite system in an arbitrary reference frame igequired for the linear mass term appearing in the interaction
not a peculiarity of light-front dynamics, it is a general fea- dependent helicity flip vertex in QCD. It is important to men-
ture in any formulation of quantum field theory. What is tion that the divergence structure and renormalization in
peculiar to light-front dynamics is that one can at most golight-front theory is entirely different from the usual equal-
only to the transverse rest frame of the particle. No framaime theory. If one uses constituent momentum cutoff, one
exists in whichP™=0 and one is so to speak “always in a violates boost invariance and also encounters non-analytic
moving frame.” As a consequence, spin measured in anyehavior in the structure of counterterfii®]. In this paper,
direction other than that d®* cannot be separated into or- we have done one loop renormalization of the transverse spin
bital and intrinsic parts. This is to be contrasted with theoperators by imposing cutoff on the relative transverse mo-
light-front helicity 7° which is independent of interactions menta and on the longitudinal momentum fraction. Up to one
and further can be separated in to orbital and intrinsic partdoop, we find that all infrared divergencés the longitudi-
The situation is quite analogous to that of a light-like par-nal momentum fractionget canceled in the result. The
ticle. In this case it is well known that since there is no restrenormalization of these operators using similarity renormal-
frame, one can uniquely identify the spin of the particle onlyization techniqug10] is to be done in future.
along the direction of motion since only along this direction  The plan of the paper is as follows. In Sec. Il first, we
one can disentangle rotation from translation for a massledsriefly review the complexities associated with the descrip-
particle. Also, in any direction other than the direction of tion of the spin of a composite system in a moving frame in
motion, one cannot separate the angular momentum into othe conventional equal time quantization. Then we give the
bital and intrinsic parts. explicit form of transverse rotation operators in light-front
_In our earlier papef9], we have shown that even though QCD. In Sec. lll, we discuss the physical relevance of the
J' cannot be separated into orbital and intrinsic parts, onelecomposition of the transverse spin operator and also com-
can still achieve a separation into three distinct operatopare and contrast it with the helicity operator. In Sec. IV, we
structures. Specifically, starting from the manifestly gaugepresent the calculation of the transverse spin for a dressed
invariant symmetric energy momentum tensor in QCD, wequark state up t@®(as) in perturbation theory. Discussion
have derived expressions for the interaction dependent tranand conclusions are given in Sec. V. The explicit forms of
verse spin operatot$' (i =1,2) which are responsible for the the kinematical operators and the Hamiltonian in light-front
helicity flip of the nucleon in light-front quantization. In or- QCD starting from the gauge invariant symmetric interaction
der to construct/', first we have derived expressions for the dependent energy momentum tensor are derived in Appendix
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A. The evaluation of the transverse spin of a system of two A further complication arises in equal time quantization.
free fermions is given in Appendix B. The detailed deriva-In order to describe the intrinsic spin of a composite system,
tion of the transverse rotation operators in QCD, which areone should be able to separate the center of mass motion
needed for the construction of the transverse spin operatorspom the internal motion. Even in free field theory, this turns
is given in Appendix C. The full evaluation of the transverseout to be quite involved(see Ref.[12] and references
spin operator for a dressed quark in an arbitrary referenctherein). On the other hand, in light-front theory, since trans-
frame is given in Appendix D. There we also show the mani-verse boosts are simply Galilean boosts, separation of center
fest cancellation of all the center of mass momentum depersf mass motion and internal motion is as simple as in non-
dent terms. Some details of the calculation are provided imelativistic theory(see Appendix D

Appendix E. A gauge invariant separation of the nucleon angular mo-
mentum is performed in Ref13]. However, as far the spin
Il. THE TRANSVERSE SPIN OPERATORS IN QCD operator in an arbitrary reference frame is concerned, the

. . . . . _analysis of this reference is valid only in the rest frame

_In this section we first discuss the complexities associategihere spin coincides with total angular momentum operator.
with the spin operators for a composite system in equal-timg-yrther, there is no mention of the complications in the equal
formulation and also compare with the light-front case. Thenjme theory, which arise from the need to project out the
we give the expressions for interaction dependent transvers@nter of mass motion in an arbitrary reference frame. More-
rotation operators in light-front QCD starting from the mani- gyer, the distinction between the longitudinal and transverse

festly gauge invariant energy momentum tensor. components of the spin is not made. It is crucial to make this
The angular momentum density distinction since physically the longitudinal and transverse
M @B = g B@ T — X V@ R, 2.1) components of the spin carry qwt_e distinct informatias is
clear, for example, from the spin of a massless paiticle

composite system in a moving frame, there is crucial differ-
ence between equal time and light front casg$.(helicity)

is interaction independent where&3 is interaction depen-
dent in general except when measured along the direction of
The rotation operators atB="*M¥. Thus in a non-gauge P.

theory, all the three components of the rotation operators are In light-front theory, generalized angular momentum
manifestly interaction independent. However, the spin opera-

torsS' for a composite system in a moving frame involves, in , 1 oy

addition toJ', the boost operatori&'=M% which are inter- M# :Ef dx—do M A (2.4
action dependent. Intrinsic spin operators in an arbitrary ref-

erence frame in equal-time quantization are givéf] in 33 which is related to the helicity is given by
terms of the Poincargenerators by,

M“%ifd&ﬂ4wﬁ (2.2

. i B P\/\/O J3= M 12:%j dxleXL[Xl®+2_X2®+l] (25)
M M+H
po P J-P P and is interaction independent. On the other hand, the trans-
VIS Vi =1 vy (2.3 verse rotation operators which are related to the transverse

spin are given by
where W are the space components of the Pauli-Lubanski 1
operator, W“=—%e*""*M , P,. H, P are equal time Fi=M‘i:—f dx d2x [x @ —x®"].
Hamiltonian and momentum operators respectively obtained 2
by integrating the energy momentum tensor over a spacelike

surface and] andK are the equal time rotation and boost They are interaction dependent even in a non-gauge theory

. . . . > since® ™~ is the Hamiltonian density.
generators respectively, which are obtained by integrating For a massive particle, the transverse spin operd@irs

the angular momentum density over a spacelike surface,, in light-front theory are given in terms of Poinéagen-
Since boosK is dynamical,all the three components &

) . . . - erators by
are interaction dependenn the equal time quantization.
Nevertheless, the component®alongP remains kinemati- 1 1
cal. This is to be compared with light-front quantization \ 71=wW!—pl73=2F2p++K3p2—ZE2p~ —P1 73,
wherethe third component of the light-front spin operator 2 2
J? is kinematical This arises from the facts that boost op- (2.6
erators are kinematical on the light front, the interaction de- . .
pendence of light-front spin operatarg arises solely from 2 W2 D273 Trlpt w3pli Selp- o2 73
the rotation operators, and the third component of the rotan =WmPTT= 2 PP KR 2 S
tion operator® is kinematical on the light front. 2.7
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The first term in Eqs(2.6) and(2.7) contains both center of struction of F' which is algebraically quite involved is car-
mass motion and internal motion and the next three terms iried out in Appendix C. The final form d#' is also given in
these equations serve to remove the center of mass motiofRef. [9]. The construction of the rest of the kinematical op-

The helicity operator is given by erators is given in Appendix A. In this Appendix we have
presented all the operators in the manifestly Hermitian form,
which is necessary, as we shall see later.

In order to have a physical picture of the complicated
situation at hand, it is instructive to calculate the spin opera-
Here, J® contain both center of mass motion and internalior in free field theory. The case of two free massive fermi-
motion and the other two terms serve to remove the center Qfns is carried out in Appendix B.
mass moti_on. The_operatoﬁ obey the angular momentum In light-front theory we set the gaugs™ =0 and elimi-
commutation relations nate the dependent variablgs andA~ using the equations

[ 7]=i ek 7k 2.9 gf gongtraint. We hav'e shown thgd)] (f_or detqil; of the
erivation see Appendix)Cin the topologically trivial sector

In order to calculate the transverse spin operators, first waf the theory one can write the transverse rotation operator as
need to construct the Poincare generators 2_r2, 2,2
P*, Pl, P, K3 E', J®andF' in light-front QCD. The FE=Fr R R (210
explicit form of the operatod? is given Ref.[7]. The con-  where

+

Wi 1
j32F2J3+ F(Elpz_EZPl)- (28)

F,2=%f dx~d?>x [ X" P§—x2(Ho+ V)], (2.1
1
Fﬁ:%f dx”dx* g*[a3al+m2]ﬁi+g+ %(algw—ngf) 3 +%j dx~d?‘m| £ i‘;—@ - i%gTol 3
1 1 1 ..
+§f dx d?x'g §Ta—+[(—|03A1+A2)§]+a—+[§T(|a3A1+A2)]§}, (2.12

1 4 1 2
Foi=— J dx”d?x 2(7'ANA? = 5 J dx"d*' g7 (§'T*¢) A%~ 5 J dx”d?x- g fePe—r (APg T A A%,
(213

Here Py is the free momentum density{, is the free by Eq. (2.6). In [7] it has been shown explicitly that the

Hamiltonian density and’ are the interaction terms in the helicity operator7® in the light-front gauge, in terms of the

Hamiltonian in manifestly Hermitian fornisee Appendix dynamical fields in the topologically trivial sector of QCD

A). The operator§? andF?, whose integrands do not ex- can be written as

plicitly depend upon coordinates arise from the fermionic

and bosonic parts respectively of the gauge invariant sym- j3:jf’i+j?0+ jgo+ Jgi (3.1

metric energy momentum tensor in QCD. The above separa-

tion is slightly different from that if9]. From Eq.(2.6) in

Sec. Il it follows that the transverse spin operatgfs (i

=1,2) can also be written as the sum of three parts,

whose integrand has explicit coordinate dependergg,

which arises from the fermionic part, agd,, which arises

from the bosonic part of the energy momentum tensor. 1 1
In the next section, we propose a decomposition of trans- —(PY| T3+ T3+ jSo+ jSi|pg\>: +—. (3.2

verse spin in analogy with the helicity case and compare and N 2

contrast the two cases.

where 73, is the fermion intrinsic part.73, is the fermion
orbital part,7;,, is the gluon orbital part and’y; is the gluon
intrinsic part. The helicity sum rule is given by, for a longi-
tudinally polarized fermion state,

In the transverse rest fram@®{=0), the helicity sum rule
takes the form
Ill. THE DECOMPOSITION OF TRANSVERSE SPIN

The transverse spin operatqQfsin light-front theory for a i 133432 £33 + 33 |pd :+E
massive particle can be given in terms of Poingererators /\/<Pg|‘]f Jiot Jgot Jgil PS) T2 @3
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For a boson state, RHS of the above equation should b®ne has to regularize them by imposing momentum cutoffs
replaced with the corresponding helicity. Heiéjs the nor-  and in the regularized theory the Poincatgebra as well as
malization constant of the state. Unlike the helicity operatorthe commutation relation obeyed by the spin operators are
which can be separated into orbital and spin parts, the transdolated[14]. One has to introduce appropriate counterterms
verse spin operators cannot be written as a sum of orbital artd restore the algebra. In the next section, we perform the
spin contributions. Only in the free theory, one can writerenormalization of the full transverse spin operator up to
them as a sum of orbital and spin parts by a unitary transforO(a;) in light-front Hamiltonian perturbation theory by
mation called Melosh transformation. However, we haveevaluating the matrix element for a quark state dressed with
shown that they can be separated into three distinct comp@ne gluon. This calculation also verifies the relatiBr) up
nents. At this point, we would also like to contrast our workto O(as) in perturbation theory.
with Ref. [13], where a gauge invariant decomposition of
nucleon spin has been done. The analysis in REd] has
been performed in the rest frame of the hadron and no dis- V. TRANSVERSE SPIN OF A DRESSED QUARK

tinction is made between helicity and transverse spin, IN PERTURBATION THEORY
whereas, we have worked in the gauge fixed theory in an
arbitrary reference frame. In this section, we evaluate the expectation value of the

In analogy with the helicity sum rule, we propose a de-transverse spin operator in perturbative QCD for a dressed
composition of the transverse spin, which can be written agyuark state.

1 1 The dressed quark state with fixed helicitycan be ex-
K/<P5l|~7i|+»7i| +J |P8L>:i§ (3.4  Panded in Fock space as

for a fermion state polarized in the transverse direction. For a IP,o)= ¢gbf(p,0)|o>
bosonic state, RHS will be replaced with the corresponding

transverse component of spin. dkfdzkf dk2+d2k§
What is the physical relevance of such a decomposition of +

the transverse spin operator? The fermion intrinsic part of the 1.2 \/2(27-r)3k1+ \/2(27-r)3k2+

helicity operator can be related to the first moment of the

quark helicity distribution measured in longitudinally polar- XN2(2m)3P* 3(P—ky—ky)

ized deep inelastic scattering. In the case of the transverse - )
spin operator, we have show8] that there exists a direct x¢01’N2(P'|k1"kZ)bT(kl'"1)aT(k2')‘2)|0>'
connection between the hadron expectation value of the fer- 4.1)
mionic intrinsic-like part of the transverse spin operafty

and the integral of the quark distribution functigi that

appear in transversely polarized deep inelastic scatteringve are considering dressing with one gluon since we shall
Also we can identify[9] the operators that are present in the evaluate the expectation value up@gg?). The normaliza-
hadron expectation value of),, with the operator structures tion of the state is given by

that are present in the integral of the gluon distribution func-

tion that appear in transverse polarized hard scattering. The

physical relevance of the decomposition is made clear from (k’,\'|k,\)=2(2m)3k™ 8y,  s(k" —k’ ") 8(kt —k'*).

the identification. Our results show the intimate connection (4.2
between transverse spin in light-front QCD and transverse

polarized deep inelastic scattering. As far as we know, such ) ) S
connections are not established so far in instant form of field he quark target transversely polarized in fhirection can
theory and this is the first time that the first momengefis ~ be expressed in terms of helicity up and down states by
related to a conserved quantity. It is already known that the
interaction independent light-front helicity operatg? can

be separated ag®= 5+ Tq0)t Ty T To) and fur-
ther, hadron expectation value g‘fg(i) is directly related to
the integral of the deep inelastic helicity structure function
g,. Thus we find natural physical explanation for the sim-

plicity and complexity of operator structures appearing in theyith s'= +mg, wherems is the renormalized mass of the
structure functiongy; and g; respectively. Another impor- quark.

tant p.oint is t_hat in perturba_tion theory, the helicity ﬂ_ip iN- " We introduce the boost invariant amplitudds} and
teracyons wh|ch are proportional to. mass play a crucial rol (xr L (%,0) respectively by SMNk)=dh and
both ing; and in the transverse spin operator whereas they ’1%2
- : o o (Kky ko) = (LKD) DPY | (x,07), where x=k;/P*
are not important in the case of the helicity operator. A\ R R2 A\ 1
Because the transverse spin operators are interaction dand g =kj —xP*. From the light-front QCD Hamiltonian,
pendent, they acquire divergences in perturbation theoryto lowest order in perturbative QCD, we have

1
Ktk shy=— (k" k5, 1) =]k Kk 4.3
| s \/E(l D=l 1)
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X(1—X) 1
P o) = D P Vi
g ot-g

2—+
1-x X

(P, a'| 1)P+|Pa'>

1 1
« 5L =(P,q] Ef dxdzqix—P§§P+|P,o'>

g TaXT
V2(2m)® T

_ 1-x

—Ftim—
X

*o'
e

— 20 * O 1
X)\'(eﬁz)* (I)q (44) ) &, f dXdzq q (I)(rl)\ X +H.c. (47)

Herem is the quark mass andis the longitudinal momen-
tum carried by the quark. Alsar*=¢? anda?=—o'. It is

to be noted that then dependence in the above wave func-
tion arises from the helicity flip part of the light-front QCD 1
Hamiltonian. This term plays a very important role in the =(P,o| Ef dxd*q*x? Po P*IP,a")
case of transversely polarized target states.

For simplicity, in this section, we calculate the matrix _ P
element of the transverse spin operator for a dressed quark _ b 2 N N
state in a frame where the transverse momentum of the quark T4 xXoq L,
is zero. It can be seen from E.6) that the sole contribu-
tion in this case comes from the first term in the RHS, (1 X X

(P, 0'| 2)P+|P0'>

(o8

g\
1 132
A _2_(9q ()

dxd?q*
4 spin J

r)\,

spin

namely the transverse rotation operator. A detailed calcula- “x ﬁ

tion of the matrix elements of the transverse spin operator in

an arbitrary reference frame is given in Appendix D where Id°

we have explicitly shown that all the terms dependingPon > 1-x o*e

get canceled. x o gg?
The matrix elements presented below have been evaluated

between states of different helicities, namelando’. Since  In the above two equations, both the single particle and two

the transversely polarized state can be expressed in terms pérticle diagonal matrix elements contribute. Here, H.c. is

the longitudinally polarizedhelicity) states by Eq(4.3), the  the Hermitian conjugatezsp,n is the summation over

matrix elements of these operators between transversely Pe- .05 M, \|. Py is the free part of the Hamiltonian den-
larized states can be easily obtained from these expressionsy:
Here, we have used the manifest Hermitian form of all the
operators. It is necessary to keep manifest Hermiticity at
each intermediate step to cancel terms containing derivativgp, 0'| F2(3)PT|P,o")
of delta function.
The operator;F2P* can be separated into three parts

+H.c. 4.9

1 1

[15], :<P,a|£f dxcPq Py S PP,

1 1 1 1

SF2PT=CFPT+ ZFiPY+ZF3, P, (45 g i

2 2 2 2 _ 9 fdxdzq _ groyt

V2(2)3 spin 1-x\ 4

whereF?, F3 andF3, have been defined earlier. The ma- B _
trix elements of the different parts of these for a dressed (0" €)o? ,

X| o (ot €+

quark state are given below. The evaluation of the matrix Xo, Pt H. C-)-
element of%FfP+ is quite complicated since it involves de-
rivatives of delta functions. A part of this calculation has (4.9
been given in some detail in Appendix E. The operator
Pint is the interaction part of the light-front QCD Hamil-
1 1 tonian density. Only thejqg part of it contributes to the
§F|2P+ =§|:|2(1)P+ - §|:|2(2)P+ —EFF(3)P+- dressed quark matrix element.
(4.6) The operato%FlzI P* which originates from the fermionic
part of the energy momentum tensor, can be separated into

The first term contains the momentum density, the secon!'€€ parts:

and the third terms contain the free and the interaction parts .

of the Hamiltonian density respectively. The matrix elements L +_TpE2 p+ 4 i
are given by 2F,,P 2Fm,,P + 2FqL“P + 2Fg,,P (4.10
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where 3 Fm”P+ is the explicit mass dependent part of the
operator,3F lIIP+ is the part containing derivatives with

respect toc* and FS,,P+ is the interaction part. The matrix

1
(P.S'IMJYP,S")=(P,S!| 5 F?P T+ K*P?

elements are given by — %Ezp— —PL73|P,Sh).
(P, ‘T| mII +|Pv‘7,> (419
Since we are in the reference frame with z&b, only the
_ _(I,*oq)u T E f dx gt first term in the RHS, i.e. theF?P ™" term will contribute, as
2 $pin mentioned earlier. We substitute fdrg , using Eq.(4.4).
C 1 The final forms of the matrix elements are given by
xo T Ca—
X(I)g-l)\Xo-lo' Xo’ 10 1)\; X' (41]) Q2 L.
(P,SYMT}(1)|P,SY=— In ) dx(1+x),
(P, 0'| 5FauP IP.o") (4.16
ma 2 (1-e¢
o1 (P.S'IMT7(2)|P, SN = ] “Cyln ng dx(1-2x),
13 [ oo .
2 spin 1 X (4.1
(4.12

(P.SIMII(3)|P,SH) =~

Q2 1-¢€
In FJE dx(1—x)
(4.18

1 whereM 71(1), MJ1(2) andM 7(3) are related respec-
_ fdxdz tively to F2(1), F2(2) andF?2(3) defined earliery is the

4 2(277)3 spin hadronic factorization scale for separating the “hard” and
“soft” dynamics of QCD, i.e. we have set a hadronic scale
such thaig*|?> u?>m?. € is a small cutoff on the longitu-

1
(P,o] 2Fg”P+|P,o">

: * O
1017 xo(—i0°e+ €)X, dinal momentum fraction.
So we obtain, from the above three expressions, using Eq.
1 faa o o (4.6,
— ;XU('U et )Xo, | PoptHC. (4.13 ,
(P,S'MT}|P, S =~ In %z (4.19

In Egs.(4.11) and(4.12), contributions come from only di-
agonal matrix elements whereas E4.13 contain only off-
diagonal matrix elements. The matrix elementi®i, P*
which comes from the gluonic part, is given by

The contribution to the matrix element &l 75 entirely
comes fronF3 . The various parts of this matrix element are

given by
1
2 + ’ 1 o
<P10'|2F|||P P.o’) (P,Sl|Mj,1m,|P,Sl>=§m|<1>1|2
g J o, 1 | Ma Q*(l-e 1
. - dxd S
V2(2m)3 SEP;H a V1=Xx " on 27 O In;z dxl X’
R — 29
TN (1 X) < Q? [1-e
(P.S'MJg., IP.SH =~ —Cln FJ dx(1—x),
* O €
fdxdzq - 2 mal@ (4.14 4.20

2
The first term in the RHS s the off-diagonal contribution <p,51||v|jé“|p1sl>: 2 °C;In Q_Z% (4.22
which comes from the interaction dependent part of the op- ™ 2
erator. The second term is the diagonal contribution coming
from the free part. whereM Jm”, Mqu” andeg” are related respectively
The expectation value of the transverse spin operator bdo F,,, F2 ¢t and Fg” In Eq. (4.20 we have to use the

tween transversely polarized states is given by normallzatlon condition,
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1+x

Q2
(4.23 ml 1+ 225¢, I ;z) (4.29

1- E
|®Y|2= 1——Cf In —Zf mg=

A

Up to O(ay), the normalization condition will contribute

- / In the light-front formulation of QCD, there are two mass
only in the first term of Eq(4.20. We get, from Eq(4.20),

terms in the Hamiltonian, one is quadratic im which is
present in the free part and does not break chiral symmetry,

1 1 1
(P, S IM T P.S%) the other is linear inrm which we discuss here and which

1 Mag Q2 (1-e 2 1+ x2 explicitly cause chiral symmetry breaking. An important fea-
= §m+ ch In —Zf dx(m— 1_)() ture of light-front QCD is that, these two mass scales are
K e renormalized differently even in the perturbative region. The

(4.24 renormalization ofm? is different from the result stated

above.
It is clear that the singularity at=1 is canceled due to the Adding all the parts, for a dressed quark in perturbation
contribution from the normalization condition. The overall theory up toO(g?), the expectation value of the transverse
contribution coming froniv j,ll is given by spin operator is given by

m 2
(P.SMTHIP.SHY=Z| 1+ cf in 2 ) 429  (PSUMIYP,SH=(P,SIMTi+MT}+MT;|P,SY
Mg
which does not involve any divergence. The matrix ele- =5 (4.30

ment of M 7},, is given by

It is important to mention that here we are calculating the
expectation value of the operatht.7'. In order to extract
the eigenvalue of/' one has to know the eigenvalue M
Both M 7' andM are dynamical operators. However, in this
ccase, the mash! in the LHS in the renormalized theory is
othing but the renormalized mass of the quark, which there-
ore gets canceled from the above equation, and we get

cfan Jl “(1-x)dx.
(4.26

It is to be noted that all the contributing matrix elements are
proportional to the quark mass. Among the different parts o
the operator, only/,,, and a part of the interaction terms in
J\ [see Eq.(2.11)] are proportional to the quark mass
These mass dependent terms flip the quark helicity. It is also
to be noted that the terms proportionalmd do not flip the
helicity. In all the other terms, though the operators do not
depend omm explicitly, the contributions to the matrix ele-
ments arise from the interference of timgerms in the wave The identification of 7 with sp|n therefore requ|res
function of Eq. (4.4), with the nonm dependent terms knowledge of the mass eigenvalue, independently of the
through the different parts of the transverse spin operatolhoost invariance properties of the light-front dynamics.
Since in |Ight -front formulation, heI|C|ty and chlrallty are the We can exp||c|t|y Venfy the relation between the mtegraj
same, these linear im terms are explicit chiral symmetry of g; and the expectation value of the fermion intrinsic-like
breaking terms. From Edq4.19 and Eq.(4.26 we find that  part of the transverse spin operator to orderin perturba-
tive QCD. The transverse polarized structure function for a
dressed quark is giveld7] by

<P S1|,\/|‘7III|F’ Sl>

1
(PSP S =(P,STH+ Th+ T [P.H= 5
(4.3)

(P.SYMT+MTL, P, SY
1—€

2
~25ciin Q f (1-2x)dx=0 (4.27) e
€ gr(x,Q%) =

which means that the entire contribution to the matrix ele-

4 Q2

m
251[5(1 x)+ Cfln

ment of the transverse spin operator is given by 1+2x—x? ! ,1+X,2
—— = 48(1-x) | dx ;
1-x 0 1-x
m Q2
(P,Sl|Mj1|P,Sl>=E cf In (4.289 1
+§5(1—x) } (4.32

This contribution entirely comes fromv 7:; . Contribution
from the orbital-like part 1.7, |1) exactly cancels the contri-

so we get
bution from the gluon intrinsic-like part\ 77;,). 9

The renormalized massg of the quark is given in terms
of the bare mass up to ordes in light-front Hamiltonian
perturbation theory by16]

2

1 e
JO gr(x)dx= Z—Sql(P,Sl|Mj|1,|P,Sl> (4.33
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which explicitly shows the connection between the integral V. SUMMARY AND CONCLUSIONS
of the transverse polarized structure function and the matrix
element of the fermion intrinsic-like part of the transverse

Spin operator. major difficulties in the description of the spin of a compos-

It is quite instructive to compare our calculation of the ite system in an arbitrary reference frame. They @ethe
transverse spin of the dressed quark with the helicity of the Y y ' y

dressed quark7] in perturbative QCD. All the operators complicated interaction dependence arising from dynamical

contributing to helicity are kinematicdinteraction indepen- boost operators an_(Q) the d'fﬂcqlty in the s_,eparatlon of
dent and hence all of them give rise to only diagonal con-center of mass motion from the internal motion. Because of

tributions. Further, in this calculation mass of the quark carfn€Se severe difficulties, there have been hardly any attempt

be completely ignored since they give rise to only power-to study spin operators of a moving composite system in the

suppressed contribution. In the massless limit, helicity isconventional equal time formulation of quantum field theory.
conserved at the quark gluon vertex. This means that the In light-front theory, on the other hand, the longitudinal
quark in the quark-gluon state has the same helicity as th&Pin operatoflight-front helicity) is interaction independent
parent quark. Since the transverse gluon carry helicity, — and the interaction dependence of transverse spin operators
we get a non-vanishing contribution from the gluon intrinsicarises solely from that of transverse rotation operators. More-
helicity operator. However, both the quark and the gluon inover, in this case the separation of center of mass motion
the quark-gluon state have non-vanishing orbital angular mofrom internal motion is trivial since light-front transverse
mentum due to transverse motion. Total helicity conservaboosts are simple Galilean boosts.
tion implies that orbital contribution has to cancel gluon in- It is extremely interesting to contrast the cases of longitu-
trinsic helicity contribution. This is precisely what happensdinal and transverse spin operators in light-front field theory.
[7] and we find that the total quark plus gluon orbital partIn the case of longitudinal spin operattight-front helicity),
exactly canceled the intrinsic gluon contribution and thein the gauge fixed theory, the operator is interaction indepen-
overall contribution to the helicity is-3, which entirely —dent and can be separated into orbital and spin parts for
comes from the intrinsic part of the fermionic helicity opera- quarks and gluons. It is known for a long time that the trans-
tor. verse spin operators in light-front field theory cannot be
In contrast, in the case of transverse spin operator, it haseparated into orbital and spin parts except in the trivial case
both interaction independent and interaction dependent partsf free field theoryln this work, we have shown that, in spite
The latter gives rise to off-diagonal matrix elements and theyf the complexities, a physically interesting separation is in-
play a very important role. Of special interest is the gluondeed possible for the transverse spin operatorsich is
intrinsic-like transverse spin operator. This operator givegjuite different from the separation into orbital and spin parts
vanishing matrix elements for a free gluon. However, sincdn the rest frame familiar in the equal time picture. We have
gluon in the quark-gluon state has intrinsic transverse modiscussed the physical significance of this separation. Also
mentum, both diagonal and off-diagonal terms give rise tdransverse rotational symmetry is not manifest in light-front
non-vanishing contributions and we get a net non-vanishingheory and a study of these operators is needed for questions
matrix element for the gluon intrinsic-like transverse spinregarding Lorentz invariance in the thedi].
operator. However, we find that contribution from this ma- In analogy with the helicity sum rule, we have proposed a
trix element is completely canceled by that from the matrixdecomposition for the transverse spin. Elsewhere we have
elements of orbital-like transverse spin operators. This ishown[9] the relationship between nucleon matrix elements
analogous to what happens in the helicity case. of J,, and J)},, and the first moments of quark and gluon
In this section, the calculation of the matrix elements hasstructure functions respectively, appearing in transverse po-
been done in the frame witR* =0. The complete calcula- larized hard scattering. This is the first time that the integral
tion of the matrix element of the transverse spin operator irof g is related to a conserved quantity, namely the trans-
an arbitrary reference frame is given in Appendix D. It isverse spin operator. It is important to mention here that the
clear from the expressions there that all the terms explicitlyproposed decomposition of the transverse spin operator will
dependent orPt get canceled in the expectation value of not be affected if one adds a total derivative term to the
M 7. The parts that remain after the cancellation of fte  angular momentum density. Such a term can at most produce
dependent terms are those given above. In the above expres-surface term which we are neglecting since we have re-
sions, we have used the manifest Hermitian form of the opstricted ourselves to the topologically trivial sector of the
erators. We again stress the fact that this manifest cancelldheory. We have started with the angular momentum density
tion of contributions from center of mass motion is typical in defined in terms of the symmetric gauge invariant stress-
light-front field theory because the transverse boost operatonergy tensor, which is obtained from the Noether’s stress-
are kinematical. The situation in the equal time relativisticenergy tensor by a adding a total derivative term. Even
case is completely different and there one cannot separatbough the angular momentum density differs from the No-
out the center of mass motion from the internal motion in aether angular momentum density by a total derivative term,
straightforward way even in the free theory cd4€] be- both give rise to the same generators. Another point worth
cause of the complicated boost generators. Due to the maniaentioning is that we have worked in the gauge fixed theory.
fest cancellation of the center of mass momegtagan truly  In the light-front gaugeA* =0, the transverse spin operator
be identified as the transverse spin operator. can be separated into three parts, @i is related to the

In this paper, we have analyzed the transverse spin opera-
tors in QCD. In equal time quantization, one encounters two
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first moment ofgr measured in transverse polarized scatterin light-front QCD starting from the gauge invariant sym-
ing, which is a gauge invariant object. This is similar to themetric energy momentum tens@r”. To begin with,®*” is
helicity case, where only in the light-front gauge and usinginteraction dependent. In tlgauge fixedheory we find that
light-front quantization, the intrinsic fermionic helicity is re- the seven kinematical generators are manifestly independent
lated to the gauge invariant first momentgyf measured in  of the interaction.

|0ngitudina”y pOlaI’ized Scattering. The Corresponding gluon We Sha” Work in the gaugA*:O and ignore a” Surface
intrinsic helicity cannot be measured directly in polarizedierms, Thus we are working in the completely gauge fixed
deep inelastic lepton-nucleon scattering but in some othelacior of the theorj7]. The explicit form of the operatal®
process like polarized hadron-hadron scattering. A similat, his case is given in Ref7] which is manifestly free of

situation holds in the case of transverse spin. . _interaction at the operator level. The rotation operators are
A very important issue related to the transverse spin op-

erators is renormalization. Because of the interaction deperg-'ven 'Q?%C' Irll' 3 andE d d onl h
dence, the operators acquire divergences in perturbation At. X e the operatorsk( and E epend only on the
theory just like the Hamiltonian and therefore have to bed€NSity® ™. A straightforward calculation leads to
renormalized. The renormalization of only the intrinsic-like .o i i
fermion part of the transverse spin operyator has been dis- O =y oty +ITAGTA, (AD)
cussed in the literature so far. In this paper, we have carrieghen, longitudinal momentum operator,

out the renormalization of the full transverse spin operator

for the first time up tdD(«s) in light-front Hamiltonian per- 1

turbation theory by evaluating the matrix elements for a P+:§f dx~d*>@* "

dressed quark target. We have shown that the entire contri-

bution to the matrix element comes from the fermion 1 - . _
intrinsic-like part of the transverse spin operator and is equal =§f dx—d?x [yt TigTyT+aTAIGTAI,
to 3. The contributions from7, and 7,,, exactly get can-

celed. Also, the mass of the quark is very crucial in this case,

since the helicity flip interactions which are proportional to generator of longitudinal scaling,

the quark mass play a very important role. However, the
terms proportional tan? do not flip the helicity and do not
contribute. Since helicity flip is involved, we do not encoun-
ter any quadratic divergence unlike the case of renormaliza-
tion of the light-front Hamiltonian. Further, we have com-
pared and contrasted the calculations of transverse spin and
helicity of a dressed quark in perturbation theory.

We have also verified the frame independence of our re-
sults. We have explicitly shown that, in an arbitrary refer-transverse boost generators,
ence frame, all the terms depending on the center of mass
momenta manifestly get canceled in the matrix element. The
cancellation is as simple as in non-relativistic theory since
boost is kinematical on the light-front. For future studies, it
is an interesting problem to evaluate non-perturbatiy28|
the matrix element of the transverse spin operator in light-
front QCD. Also, in this work, we have used cutoff on the
relative transverse momenta and the smallvergence gets
canceled in the one loop result. The renormalization of thg,nq the transverse momentum operator
transverse spin operators using similarity renormalization
technique[10] is to be done in future.

(A2)

1
K3=— Zf dx d>'x @* "

1 - S
=— ‘—J dx daAx [yttiotyt+oTAlgT AT,

(A3)

) 1 )
E'=— EJ dx d3txe*t

1 4 - o
=— EJ dx d> Xyt Tiatyt+otAlgTAI.

(Ad)

1 .
P'=§f dx d>x- @ " (A5)
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APPENDIX A: POINCARE GENERATORS OF'=a"AIGAI— T AIGA
IN LIGHT-FRONT QCD S .
+a AP A =29y TATY T (A7)
In this appendix we derive the manifestly Hermitian kine-
matical Poincare generatofexcept)®) and the Hamiltonian  Thus
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1 - , S o whereH, is the free part given by
P':EJ dx d [yt Tid T+ AT IIA - Al gl Al

o —(a)2+m?
Ho= - AL 2A, | — T
—AlgTa'Al. (A8)
— ()% +m?
Thus we indeed verify that all the kinematical operators are - m—+§T}§- (A10)

explicitly independent of interactions.
Lastly, the Hamiltonian operator can be written in the The interaction terms are given by

manifestly Hermitian form as

Hint="Haqg+ Hgggt Haqggt Hagaqt Hoggg: (AL1)

1 1
-_- —A2yl@t+—=_ — 2yt :
P ‘2J dx~d>" @ zf dX A% (Ho+ Hin)  (AD)

1 ot _ _ 5 1 _ B 1
qug:_4g§T{9_+(aL‘AL)§+g(9_+[§T(OrL'Al)]a’lg-f—ng(OrL'Ai)a—_'_(()'l-&i)g—}-g (CTL'AL)E-I—QET(F

ﬁl
FfT)

~ ~ 1 ~ ~ 1
X(O*-ﬁi)(oi‘Al)&mgaT[fT(oi-AL)]§+ ngT(&‘AL)aT§+ mg

1 ~ 1 -
;5*)(&-Ai>f—mgsfﬁ—+[(oi~Ai>§].

(A12)
abc aiaj Al Al iili+i
Hggg=29F d'AZAL AT (9'Ay (3,_+(Ab‘7 A) |, (A13)
2| ¢t/ Ll'" 1 1 17 1\ 1 1abci+i1Ta
Haqeg=9°[ &' (07 A i&_+(‘7l'A )E— (& o -AN)ot A EF A7 (TR A (E1T78) |, (A14)
2 1 tra 1 tra
quqq:4g (9_+(§ T f)a_+(§ T%¢), (A15)
2
9 abcradd Al al Al Al « ot (AT ot AL AT A
Hgggg:?f f AbACAdAe+2&—+(Ab(9 Ac &T(Adé Ae) |- (A16)
[
APPENDIX B: TRANSVERSE SPIN FOR A SYSTEM 1 1
OF TWO NON-INTERACTING FERMIONS M T P)= §F2P++ K3p2— EEZP’— P1J3)|P>.
(B1)

In order to show the non-triviality of the transverse spin
operators even in the free theory and the manifest cancella- We introduce Jacobi momentas; (q") defined as
tion of the center of mass motion in this case, here we evalu-
ate the transverse spin for a composite system of two free
fermions.The manifest cancellation of the center of mass mo-
tion for the interacting theory is much more complicated andyjth sx,=1.
is given in Appendix D. HereM is the mass of the composite system aRd (P*)
Let the mass of each fermion bm and momenta zre the momenta of the center of mass.

(ki ki), i=1,2. We take the state to be|P) The partial derivatives with respect to the particle mo-
=b'(k;,s;)b'(k;,S,)|0), wheres,; ands, are the helicities. menta can be expressed in terms of these variables as

ki=q-+x.Pt, kz=—g-+x,P+, k'=xP"
(B2)
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J _ J N J J _ J N J B3
K Xeq TP g Mot aer (B9
and
J X 9 N J Pt g 84
G Pk, apt 2P aqe B4
a_x1a+a+PLa 85
aG P ax, Pt e gt B9
Then we have
|
1 d d\ s1qt s, qt
“E2PH PYV=li02 o — — x| 22 2
7P P)=ia X2 0%, xlaxz) 2 %X, 2 X% 2 (M
J J d
_iv2pl. Y ip2 v Yl ip+p2
iq°P &qi+|P X1X2 ax1+ %, +iP™P
. g P! .
+|(ql-Pi)W+ ?(lersz)—le |P).
Substituting
(m*+(q")?)
M2=¢, (B10)
X1X2
we get
MITHPY=iq?| Xo—— —X;— +i—(m2+(qi)2)
20x, toxy) 2
Xy X1\ @
EEE
Xy X/ d9
1 1
1 g (o
q S]_ 52 m ASy \S,
SRS P).
21Xy X)) 2% X1 X2
(B11)

PHYSICAL REVIEW D63 045006

Explicitly we see thaM 7! does not depend on the center of

mass momenta.

APPENDIX C: TRANSVERSE ROTATION
OPERATOR IN QCD

In this section we explicitly derive the expressions
interaction dependent transverse rotation operators in
front QCD starting from the manifestly gauge invariant
ergy momentum tensor.

We set the gaugd™ =0 and eliminate the dependent

variables~ and A~ using the equations of constraint.

this paper we restrict to the topologically trivial sector of the

[ d 3 d
3p2p\_| _ip2 T " ip2p+t
KP4 P) _ iP X1X2(<9X1+19X2 iPP 0P+}|P),
(B6)
—EEZP‘|P)=-—i—((Pi)2+M2)i+iP2 |P) (B7)
2 |2 aP? ’
[ 3 d
173Ip\—| _ipl{ 2" A1
PLT7IP) _ |P(q PRE QW)
S1 Sz
171 172
+P 2+P 2}|P>, (B8)
1 1
Xo X1 4 m Oxs; O,
+(gh)2) 22—
(a) )(Xl X2)3q2 2 ; ( X1 X2
J i 1 9 i 17
_(m2 142 4 (ply2___
et t M@ spe T (P ez
(B9)
|
theory and set the boundary conditiokl (x,x')—0 as
x'—oo, This completely fixes the gauge and sets all surface
terms to zero.
The transverse rotation operator
1 S
F'=§f dx dX x @ —xe*]. (C1
The symmetric gauge invariant energy momentum tensor
1— :
@“”=§¢[y“|DV+ Y iD#]p— FHRAE2— gry
1 24 0 AN
X _Z(F)\Ua) TPy D\ —m) g, (C2
where
. 1.
|D“=§|a/‘+gA",
F;L)\a:a;LAAa_ O',)\A,u,a_’_gfabcA;LbA)\C, (CS)
for FY2=0"A}— \A"+ g faPAPAL .
light- . o
en-First consider the fermionic part &@*:
v 1— HelZ Vi v\
n  OF =3¢y D"+ ID ]y gM P(y D — M)
(CH
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motion. F(II)

The coefficient ofg”” vanishes because of the equation of e2 J )
dx~d°x
Explicitly, the contribution toF? from the fermionic part

fofi o]

of ®#” is given b 1 o
e +gv Yidty (C7)
2 2
J’_
fdx ax l'//(y ID*+4D )y We have the equation of constraint
1— iat = —r L (il 1 0 +
—xziz//(fiD*er*iD*)zp 10"y =[a -(id-+gA")+y'm]y™, (C9
, X and the equation of motion
=FeytFean» (CH
where 10"y =—gA Y +[a" - (id"+gA")++° m]|(9+
L (i 1 0 +

Using the Eqs(C8) and (C9) we arrive at free ¢ indepen-
dend and interaction § dependentparts ofFﬁ. The free

(CH part of F2 is given by

1— o
+Zl[f‘ylio7+l,b,

1 - L _ —(a)2+m? —(d)2+m?
Fl%(free)zzf dx dzxi[x [gT[“?Zg]_['&ng]f]_xz gT[ ig" - io" gT €
1 1 _ ot
| €' [P +i07 ) b+ | (00?107 [£| v m) T g a+ glotlé (C10
We have introduced the two-component figld
3
+:
U 0}- (C1)
The interaction dependent part k'aﬁ(,) is
2 —d2yLly—eTpa2 1 —d2xt
FEmine=9 | dXTdx x™ 'A%+ 29 dx™d“x
T 1 i 3a1 2 1 Tri +3a1 2
X ga—+[(—|aA+A)§]+a—+[§ (10°A*+A%)]€|. (C12

The interaction dependent part Iéﬁ(”) is

1 1 1
FIZZ(II)int:ng dx~d*x* §Ta—+[(—i03Al+A2)§]+ a—+[§T(i03A1+AZ)]§}

- = de d?x*

t ~
e R C ST W S RS,

L
| (5 A 4 €15 A (50

1 ~ 1.
+m —Eng dx d?>xx? ¢Tot - AL i&—+(ri-(Ai§)

1 ~ 1 -
3—+§T)(04-Al)§—m§*a—+[(oi-Al)é]

—%(gf?ri.Al)Z}l-Aig : (C13
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We have introduced'= ¢ and o= — .
Next consider the gluonic part of the operakr.

1
=§J’ dx d? [x @72 -x20; 7], (C19
where
®;2:_F+)\a|:)2\a,
_ P
O, =-FaF %+ 79" (Froa)?-
(C1H
Using the constraint equation
1 + a_ ia abc 1 |b ic 1 tTa
5& A 3= Al gfabc_ (APt A )+Zga—+(§T £),
(C19

: : 1
Fg(mt) J dXdZXJ‘X( gfabC0+A'aA2bA'c+ g( 1:abca_Jr

1 g
N — A2y y2 abciipjapibpjc
2fdxdxx[zgf JARAPAI+ S

+g°

So the full transverse rotation operator in QCD can be writ-

ten as

F2=F2+F2+F%,, (C20

where the explicit forms of?, F3 and F3, have been
given in Sec. Il.

APPENDIX D: TRANSVERSE SPIN OF A DRESSED
QUARK IN AN ARBITRARY REFERENCE FRAME

We introduce a wave packet state

1
|¢U>=§f dP*d?PLf(P)|P,o) (D1)
which is normalized as
<¢0’| l;b(r’>: 50'0" . (DZ)

Heref(P) is a function ofP, the exact form of which is not
important. Using Eq(4.2 we get

fabc (Albo', AIC)+2 - gTTag)(fade (A]da+Aje)+2 fTTaf)]

PHYSICAL REVIEW D63 045006

we arrive at

2_p2
F2=F

g(free )+F

(C17

g(int)

where

1
Fotiree= JdX d2xH{x (A13gT P AZR— AZ35T gIAIR
+Aja(5’+(92Aja)—XZ(Aka(ﬁj)ZAka)}

-2 J dx~d?x-AZ35tAla, (C18

The interaction part

(Aib(9+Aic)+ 2%(§TTa§))a+A2a]

fabCfadeAibAchidAje+ zgé,iAia %(fabcAjbé,JrAjc_i_ ZfTTag)

(C19

%f dPTd?PLf* (P)f(P)(27)3P 1 =1. (D3)

The expectation values of the various operators involved in
the definition ofM 7' are given below. It is to be noted that
we have done the calculation in an arbitrary reference frame,
in order to show that the dependence on the total center of
mass momentaR",P") actually gets canceled in the expec-
tation value ofM 7',

The matrix elements presented below have been evaluated
between wave packet states of different helicities, namely
and ¢'. Since the transversely polarized state can be ex-
pressed in terms of the longitudinally polarizédelicity)
states by Eq(4.3), the matrix elements of these operators
between transversely polarized states can be easily obtained
from these expressions. We introduce

W=f(P)Y, Yo, =f(PI®S,. (D4

The matrix elements are given by
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. W
1 l//l (r)\
3p2 _- +42pL * T 2 2 +
(W,|K3P ) 2fdp d?Pt(2m)%Pt (2 175 PP +25§nfdxd2q P2y — o P +Hc) (D5)
1 LOUT (P2 4+m?
(V) 3P e~ | dP*dZPi(szP*(——wi eSilan
&lp NG m +( 2 1 L
o q-+xPh) ( qt+(1—x)PH)2
N 2
48plnfdxdq apol}\ ap2 " 1—x +H.c.|, (D6)

|EE2P7| —_LEJ dpPtd2pL(2 3P+2 dxca 1 ( o ﬁi,bg;)\ : _(qi-éi)
<‘r//0' 2 int w0’>_ m 2 ( 77) = xacq = |¢-1 apz X Ty
1(ot-e)(ot-gh) 1 1-x
__( < A )——im( )(’(;'Lel) Xo +H.C.). (D7)
2 X 2 X 1

Here H.c. is the Hermitian conjugatp, is summation overry, o3, N, N". P . is the free part and,, is the interaction
part of the light-front QCD Hamiltonian density.

J d
2 ddequl(zd,ol)\( —q —) ng v TH. c)

1
<¢,,|P1J3|¢;a'>:zj dPTd?P+(2m)3P "
spin q q

Jolxolzqip1 > whgzlpx, fdxdzqipl >N gp]. (D8)

!
N0y, 0'2 }\,01,0'1

The first term in the above expression is the quark-gluon orbital part, the second and the third terms are the intrinsic helicities
of the quark and gluon, respectively. Finally, the opergtefP* can be separated into three parts,

1 1 1 1
SF2Pr=_FP T+ —FiP 42

whereF?, F2 andF3, have been defined earlier. The matrix elements of the different parts of these operators for a dressed
quark state in an arbitrary reference frame are given below. A part of this calculation has been given in some detail in
Appendix E. We have

1 1 1 1
SFIPT=SFH(1P* ~ SFH2)P* —SFH3)P*. (D10

The matrix elements of these three parts are

1 1 1
(Wl PP 1) = () 5 [ dxeax PRSP 10,)

:Efdmdzpi(zw)gp —i—z//*"wgrp*P% fdxdzq 9’y P Mo
2 2% op7 2 &Gt 7N agt
Yo, Wi
_ * 0 p2 _ 2 2 1% 0
Zsplnfdxdzq Yo P =5+ 2Spmfdxdq P +H.c.|, (D11
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1 1 1
<wg|5F.2<2)P*|¢af>=<w(,|5f dxdzqiszaEP*lm

. o’ &t// ,
1 [ g (PL)2+m A
=—|[ dPTd?P+(27)3P| = y5° e dxdPat
Zf (@mP| Ul — o~ 4§ a'vin—
M@ XPY? QAP Wi
x + 52 | dxdatyin (g"-P")
X 1-—x spm 1 (9q
(wa 2y 1-x X —X 3% 2y
+— E dxcPqt gt < (g ——— 2 dxdqumz—z/;(,X +H.c.|.
4 spin 1 1- X spin 1 q
(D12
In the above two equations, both the single particle and two particle diagonal matrix elements contribute.
(S FHRIP ) =) [ Oxe i P
L PR B
=— dPTd?P+(2m)3P" J'dx q i Xo
V2(2m)? spm2 V1—x 9P?
(- €) 1(o-e)otq) 1 (1-x _
X| = - = ——im €) | Xo
1-x 2 X 2 X !
i . (ot €)o? ,
_Z‘VUXZ oot e+ XoWoptHC|. (D13

Only the off-diagonal matrix elements contribute in the above equation. The matrix elements of the three different parts of
1FZP" are given by,

(Wl 5 F2m|.P+|wUf>

:%f dP*d?P-(2m)%P* r; 4 +§s§n f dxdq" ¥ S x5 o X! z/fji;w%, (D14)
<¢a|;F§L..P+|</fgr>
fdP*dZPi(zw) E 22 f dxda" ¢S X, 0% X, w(,/wl
f dxdPgt X xplw’;;’zww], (D15)
No2,05
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<¢o’| 2 gIIP+|¢0'

9

1
4 \[2(2m)° $in 2

Xh(—ioe+ e)\))(gl

1
fdP+d2Pi(2w)3 fdxdzqi\/_(iap’{
1—x

(D16)

1
tri 3.1 2 !
_;X(r(lo- 6)\+€}\)er1 l/’gl)\—’_H-C- .

In Egs.(D14) and(D15), contributions come from only diagonal matrix elements wherea$Ef) contain only off-diagonal
matrix elements. The matrix element %)IF,ZII P* is given by

(¢ |EF2 Py ,>=—LEJ dP*d?Pt(2m)°P*| X dxdzqi;( $oe2y ;JrH.c.
HE 2(2m)° 2 Spin T i
1
—fdxdzqi(l_ ) DIV +fdxd2q Pt > wi:;w“] (D17)
N, oq 0' N,oq, o’l

Finally, the expectation value of the transverse spin operator is given by
1 1 2p+ 3p2 1 2p— 173
(UlM T ) = (st 5 F?P T+ KPP SE?P™ = PLT% ). (D19

From the above expressions it is clear that all the expRéitdependent terms get canceled in the final expression. To be
specific, it can be easily seen that all the terms in the expectation vaKiéP8f- $E?P;,,,— P173 11 areP* dependent and
they exactly cancel thB+ dependent terms n}iFl(free)P+ the two P! dependent terms in the intrinsic part®f.73 exactly
cancel the two similar terms in the expectation valug Bf P+ 3F3, P" and the expectation value 6E2P;,, completely
cancel all theP* dependent terms in the expectation value; Bf(lm)P

APPENDIX E: DETAILS OF THE CALCULATION

Here, we explicitly show the evaluation of one of the matrix elements of the interaction pé}t @onsider the operator

ot aL ~ P*
fdx d’xtx?g ( )5 (a-Aﬂ&T. (E1)
This can be written in Fock space as
) (o -ki—im) _
055 S | (ki [ (ako) [ aks]| b(ky satks Mblisind, (5 e
S1.52, 1
d (o -ki—im)
X'752(277)353“@_'(2_ks)+bT(kl,Sl)aT(ksy)\)b(kzasz)Xslk—Jr((TLE )Xs,
1
J Pt
Xi—=2(2m)38%(k;— Ko+ Kg) | = (E2
k3 2

where @dk)=dk*d?k*/2(27)3/k* and[dk]=dk"d?k'/2(27)%k". We evaluate the expectation value of this operator for
the dressed quark state given by HJl). Only the off-diagonal parts of the matrix element will give non-zero contribution.
The matrix element is given by
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<¢g|0g|¢gr>=g Py f(dP)’f{dpl}J{dpz}v2(2w)3P+é\°’(P—p1—pz)

ot pt—
X[ pI T(P—Im)(("L Gx)Xol¢g>\r|_22(27T)35€(P P1—P2)5 P++HC] (E3)

-5 ey [ qap) [ 1apy 3 Vazme:

ot Pt—
X| ¢1 &P2¢01)\6‘3(P P1—P2) p1X0(|3—+|rm( € Xo |2(2m)383(P—py—p,) P +H.c.
[ 1 B
:_Zg\/m \ f(dp) dedzq r— LGP im) (€)X HHLC.
g1,
: 1 -
IA? NeoE J(dP) dedzq \/—[lﬂ ngxXZUZ(Oi~€i)xar+H.c.] (E4)

where{dp}=dp*d?p*/\2(27)%p" and dP)’=3dP"d?p-2(27)°P".
The other terms can also be evaluated in a similar method.
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