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Electroweak bubble nucleation, nonperturbatively
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We present a lattice method to compute bubble nucleation rates at radiatively induced first order phase
transitions, in high temperature, weakly coupled field theories, nonperturbatively. A generalization of Langer’s
approach, it makes no recourse to saddle point expansions and includes completely the dynamical prefactor.
We test the technique by applying it to the electroweak phase transition in the minimal standard model, at an
unphysically small Higgs boson mass which gives a reasonably strong phase transitjés 0.036, which
corresponds tm,, /my,= 0.54 at the tree level but does not correspond to a positive physical Higgs boson mass
when radiative effects of the top quark are includehd compare the results to older perturbative and other
estimates. While two loop perturbation theory slightly underestimates the strength of the transition measured
by the latent heat, it overestimates the amount of supercooling by a factor of 2.
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[. INTRODUCTION electroweak phase transitid,3]. The electroweak phase
transition, if there is one, is radiatively induced, and deter-

Electroweak baryogenesis provides one of the best motimining its order and strength is a difficult problem with a
vated and most testable mechanisms for the origin of théong history. In summary, perturbation theory proves to be of
cosmological baryon number abundance. However, severabme limited use when the phase transition is strong, but a
ingredients are missing before we can make quantitative preeliable calculation of the strength of the electroweak phase
dictions. One set of needed ingredients is particle physictransition requires a nonperturbative lattice calculation. The
inputs. For instance, it is difficult to say much about elec-equipment for performing an accurate lattice calculation now
troweak matter at temperaturds~100 GeV, where elec- exists, using either a 3-dimensional effective the@y8] or
troweak symmetry is “restored”and baryogenesis may oc- 4-dimensional S(2) gauge+ Higgs theory[9,10], so this
cur, when we still do not know the Higgs boson mass. It ispart of the problem is solved.
also absolutely necessary to know what other light ( If the electroweak phase transition is first order, then the
<150 Ge\j scalars there are, what couplings they have withuniverse will remain in the “symmetric” phase even after it
the Higgs bosofs), and whatCP violation is operative at is no longer thermodynamically favored. How deeply it su-
electroweak energy and temperature scales. Answering thepgrcools is the topic of this paper and we will return to it
questions will require new experimental results, and we willmomentarily. After sufficiently deep supercooling, critical
not have more to say about that here. bubbles of the broken phase form at a cosmologically rel-

However, even if we knew the complete electroweakevant rate, expand, and coalesce, completing the phase
theory we could not at this time make accurate predictions ofransition® It is the expansion of these bubbles into the sym-
what baryon number would be cosmologically produced, bemetric phase which is expected to generate the baryon num-
cause we do not have a complete set of reliable computder. Specifically, the moving phase interfadribble wal)
tional tools for studying the electroweak phase transition angan inject aCP violating flux of particles into the symmetric
the physical processes responsible for baryogenesis. This phase [12], where baryon number violation is efficient
best illustrated by briefly reviewing what the scenario is, and 13,14. Recently, the efficiency of the baryon number vio-
which aspects we do or do not currently have good controlation has been pinned down fairly accuratel$—19. How-
of. ever, neither the expansion of bubbles into the symmetric

Assuming a standard thermal history for the early uni-phase nor the generation and propagatiorCéf violating
verse back tH T~100 GeV, electroweak baryogenesis ap-particle fluxes can yet be calculated with much precision or
pears to be possible only if there is a fairly strong first orderconfidence, though there has been recent progress on both
problems[20-23.

The bubble nucleation rate enters the final baryon number
asymmetry by determining the amount of supercooling

There is no qualitative distinction between the “symmetric” and which occurs. The more supercooling, the greater the free

“broken” electroweak phases, which are in fact analytically con-
nected, and the symmetry is never truly “broken” even in vacuum,
but when the phase transition is reasonably strong their quantitative

behavior is very different. We will use the “symmetric” and “bro- 3|t has been argued that the phase transition can also proceed by

ken” terminology because it is convenient and widespread. coalescence of “subcritical bubbles” with almost no supercooling
2See[1] for an interesting discussion of what could happen if this[11]. We feel our technique and results, presented here, put this idea
assumption were not true. to rest for the phase transition strength we are interested in.
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energy difference between the phases, and the faster phasecleation from a metastable to a stable state to happen dur-
interfaces propagate. This in turn would mean a larger ining a straightforward standafdeal-time simulation. This is
jectedCP violating flux (since the flux must vanish in equi- also the case for the recent work of Borsaayal. [26].

librium in a CPT respecting theopy However, it would also However, in this work we are interested in extremely
mean that the phase interface would more quickly catch bac&trongly suppressed nucleation. Indeed, very slow nucleation
up with particles it injected into the symmetric phase, whichrates are a quite common characteristic of the first order
could have the reverse effect. The detailed dependence ghase transitions in nature: fundamentally, this is due to the
supercooling and bubble wall velocity may be complicated;fact that the external parameters which drive the transition
see for instancg24,23. How deep the supercooling pro- (temperature, sayusually vary on several orders of magni-
ceeds can also be important because the universe heats dtifde longer time scales than the microscopic interaction
ing the phase transition, as the latent heat of the symmetrigcale. This physical situation is out of reach of any numerical
phase iS released. We f|nd belOW that the SuperCOO“ng iS |e$§al_time Simu|ati0n method re'ying on Spontaneous appear-
than in perturbation theory, while the latent heat is somegznce of bubbles in the metastable phase. On the other hand,
times more; so this effect is more important than one migh_{he method presented in this work can be applied to an al-

have anticipated. For the parameters we will study, there ig, gt arhitrarily slow nucleation. This method has also been
enough latent heat and little enough supercooling such thfﬁfsed with the 3-dimensional cubic anisotropy md@]
the universe reheats to the equilibrium temperaflygbe- A - ; '

n outline of th ri follows. In L w
fore all space has converted to the broken phéBee re- outine of e paper IS as Totows Sec. Il, we

- present the approach and discuss the obstacles. The discus-
maining space would convert much more slowly, as the ex:

pansion of the universe continues to absorb heat from thg'on does not ”?"y in any way on the specmcs of the_elec-

plasmal troweak nucleation problem, except that it can be considered
We are interested in a regime where the bubble nucleatioff & Problem in classical statistical mechartiosth in the

rate is extremely small. This is because the phase transitigii€'modynamics and in the dynamics of the systegec-

completes when the bubble nucleation rate is, very roughlylions Il A and II B, together with Sec. IV B, are the most

around one bubble per Hubble volume per Hubble time. Butmportant parts of the paper to understand; we encourage the

at T~100 GeV, a Hubble time ishubble’vHilepI/Tz reader to concentrate on them. In Sec. Ill, we review why it

~10Y/T: so the rate of bubble nucleations must beiS true that the physics of the electroweak phase transition
~(1071T)*=10"%8T*=e " °"T%. A more careful calcula- can be considered, both thermodynamically and dynami-
tion, accounting for how much time the phase transitioncally, as a classical statistical mechanics problem. This sec-
takes to complete, shows that the nucleation rate must béon is a review of previous literature, included mostly to
aboute 1%T%. When the nucleation rate is so small, it is make the paper self-contained. In Sec. IV we present the
“almost” a thermodynamical quantity, set by the free energynumerical tools we use and the details of the calculation. It
of the “critical bubble.” This gives us a hint at how to ends with a presentation of our results. Section V presents a
determine it on the lattice; we must determine the free ennumber of alternative, “more perturbative” and less numeri-
ergy of a critical bubble. However, deciding what preciselycally intensive ways to try to determine the bubble nucle-
this means and how to go about doing it, and relating theytion rate, most of which have previously been used in the
result to the real time rate for a rare process, require SOM@erature. We systematically compare these approaches to
work. In this paper we present a quantitative approach t@he nonperturbatively determined result, to analyze the reli-
address this problem, and we carry out our program for th@pijlity of the other approaches. Of these, the most trustwor-
minimal standard model, at zero Weinberg angle and an unhy are the thin wall approximation using nonperturbative
physical Higgs boson mass. Clearly this case will not be ofnputs(surface tension and latent hgatnd two loop pertur-
direct physical interest. However, it allows us to determinepation theory including Higgs field wave function correc-
how well the technique works, and to compare the bubblgjons. Each of these approaches makes errors of order 20%;
nucleation rate to what we would get using one of severahther approaches, including those most widely used in the

less rigorous methods, such as a perturbative calculation gferature, give results off by almost a factor of 2. Finally,
the critical bubble free energy or a “thin wall” treatment sec. V| presents our conclusions.

from either perturbative or nonperturbative inputs. We find

that the “thin wall” treatment gives a reasonable answer but

is not extremely accurate, while the pertu_rbanve approach IS || STRATEGY TO DETERMINE NUCLEATION RATE

quite bad unless Higgs field wave function corrections are

included. The next section will show why the calculation of the
Dynamical processes in a first order phase transition havleubble nucleation rate at the electroweak phase transition is a

been studied before with lattice simulations in theproblem in classical statistical mechanics. In this section we

3-dimensional Ising mod€l25]. However, in these studies will assume this to be the case, and discuss a strategy for

the parameters of the simulations were chosen so that theolving this statistical mechanics problem. The basic idea is

nucleation rate was relatively large, so that the nucleatiorthat nucleation from the metastable symmetric phase to the

time scale was, at most, only a few orders of magnitudestable broken phase is limited by the rarity of “critical

larger than the microscopic interaction time scale. Thus, théubble” configurations which lie in between. A “critical

nucleation process could be observed simply by waiting fobubble” is, roughly, a configuration which in the medium
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ternf' is about equally likely to evolve towards the broken F/T=-In(P)
and homogeneous symmetric phases. An outline of the strat-
egy is the following:

(1) Choose a measurable which will distinguish which
field configurations are near the metastable symmetric phase,
which are near the broken phase, and which are near the
critical bubble.

(2) Evaluate the probability to be in th@xponentially
rare critical bubble configurations.

(3) Determine how quickly a “critical bubble” evolves A x A o,
towards one of thémetgstable phases. N | mived s boh )
(4) Determine the ‘“dynamical prefactor,” which tells SPhasevalie  ndb phase value

what fraction of imputed “critical bubbles” really represent

midpoints on a trajectory carrying the metastable symmetric FIG. 1. Cartoon of how the constrained free energy—log
phase to the stable broken one. (probability of ¢3,) varies with ¢35, at the equilibrium temperature

This section elucidates what we mean by each of thén a large volume. The vertical axis gives minus the logarithm of
above and why the whole approach is possible. Our strate e fraction of states in the canonical ensemble with the given value
is similar to Langer’s classic methd@8], except that the f ¢ The dotted line gives the free eneray obpatially homo-
saddle point treatment of the “critical” configurations is re- geneouso nf'gqrat'on Y‘"th that v alue oy, ; the tr.my most prob- i
placed by a Monte Carlo calculation, and we take care téﬂble configurations at intermediate values are mixed phase configu-
treat completely the microscopic dynamics during “parrier o0
crossing.” Essentially the same technique has already been : : .
appliedgto determineythe broken phasg “sphaleron ra)t/e” i (1) both the thermodynamics and the real time evolution

. : - .. of the system are amenable to numerical analysis,
Eﬁgiqb;;;gr;ve will not assume the reader is familiar with (2) there is an observable which can unambiguously dis-

; L L . ' tinguish the phases and can resolve the potential barrier be-
Everything we say in this section is generic to first ordertWeen them. and

phase transitions of liquid-gas type, i.e. where there is no : _ . :
breaking of a global symmetry but the phases can be dist _m(afs‘l)I the potential barrier is large and the tunneling rate is

guished by the value of the volume average of a single, sca-

lar local measurable(However, this method is also fully The first two conditions are quite generic, and if the third
applicable to transitions exhibiting a real global symmetry.,ngition is not satisfiedfor example, in “quenching” type
breaking) In our case the volume averaggd obgervablze Willyroblems, then one can make straightforward real-time
be the average of thélength” of the Higgs field, ¢5,  simulation of the decay without relying on the special meth-
=(IN)[d®x2dTd. If it makes the reader more comfort- ods described here.

able, she can think of water and gas below the critical tem-
perature, with the density as a measurable distinguishing the
phases and pressure as a control parameter or of a ferromag-
net below the Curie temperature, with the magnetization as a
measurable and an applied external field as a control param- Fix the ratio of the scalar self-coupling and gauge cou-
eter, rather than the electroweak model with, as a mea-  plings, \/g?, to a value where there is a first order elec-
surable and temperature as a control parameter. The big difoweak phase transitiofor fix T to a value below the Curie
ference from the liquid gas system is that we know how totemperature for a ferromagnet @rbelow the critical tem-
simulate the microscopic physics accurately even away fronerature for a liquid-gas systenand ask how the canonical
the second order endpoint, so Monte Carlo techniques aghsemble is distributed close to the critical temperature. In
plied to a first principles microscopic description of the ther-particular, consider how the constrained free end¥¢y2,)

A. General picture of homogeneous nucleation
after weak supercooling

modynamics can give reliable results. varies as a function of

With suitable generalizations the method described here 1
can be applied to almost any metastable state decay problem, — _f d3x[ 2 Td (x) — counterter 21
provided that Py Vv [ 0 i, 2.9

where the counterterm is needed to subtract UV divergences
so the whole is well defined. We could consider any other

“We will distinguish three time scales. The short time scale is the easurable which has UV finite variance ﬁ will prove
longest time scale of typical thermalization processes in eithe ’ P

phase~1/g*T. The long time scale is the time scale for nucleation particularly convenient b_elm_N' In avery large Volume]'@& .
to occur,~el%T. By the medium term we mean on a time scale _(or Zero exter_nal mag_nenc fieldin a ferromagnet, or the boil-
well separated from the short and long time scales. At many pointi?d Pressure in a liquid-gas systgrthe constrained free en-
in our discussion there will be ambiguities of order the ratio of two €rgy density dependence @ih:iv will qualitatively resemble

of these time scales, but for strongly exponentially suppressethat of Fig. 1. The constrained free energy meafis times
nucleation problems such ambiguities are tiny. the logarithm of the weight of configurations in the canonical
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FIG. 2. Same as Fig. 1, but in a finite volume where the free energy of the interface between phases is not considered negligible. The free
energy of a mixed phase state is higher than either pure phase because of the surface tension of the phase boundary. The figure also illustrate
the physical appearances of the states which dominate the ensemble at intermediate wafyes of

ensemble which have the specific valuegdf,. Very low or ~ phases due to the free energy cost of the interface separating
very high values o2, are extremely rare, but values inter- € two phases, but it is much lower than it would be if we
mediate between the two bulk phases have free energy pi'ﬁd to stick with spatially homogeneous intermediate states.

volume equal to those of the bulk phases. This is becausd '€ Parier is roughly the surface tension of the interface
besides the “expensive way” of getting an intermediate imes its area, which scales as the length squared of the box,

2 T . ) while an extensive quantity would scale as length cubed.
value of g—having® @ equal the desired value homoge The free energy at values ¢f§\, between the stable phases

neou”sly through the volume of interest—there Isa “Cheapebives us information about the free energy cost of mixed
way,” which is to have part of the volume be in one phaseyaqe configurations: in particular, the free energy near the
and the rest in thTe other phase. Then the disfavored intermgy mmetric phase tells about the cost to have a small bubble
diate values ofb'® are only achieved in an interface be- of the broken phase in the symmetric phase. To see the value
tween the regions, whose volume does not scale extensivepf this, in determining the rate of bubble nucleation, we now
with the system volumgNote that the fact that intermediate discuss how the picture changes when we change the tem-
values of®T® are disfavored is exactly the statement thatperature. The short answer is that one should “tip” Fig. 2,
there is a first order phase transition with different values ofdding a linear ing2, term to the free energy. In fact, for a
®'® in the two phase3) special measurable this statement is exact, as we now discuss
What if we ask about a smaller volume, where the amounin some detail.
of space in the interface between extensive phases is not In the 3D effective theory approximation we are working
negligible? A qualitative cartoon of the answer is given inin (see next sectigna variationsT of the temperature cor-
Fig. 2. There is a free energy “barrier” between the two responds to a changémﬁT in the thermal Higgs mass
squared. The size of the change can be read off from Eq.
(3.3). Henceforth we will only talk about changimg?; . The
SStrictly speaking, when we talk about spatial variationsbdfp ~ Way that one determines the constrained free energy plots we
or spatially homogeneoush'® we actually mean a “coarse- have been discussing is that one finds the probability that a
grained” quantity: normallydd® fluctuates wildly from point to ~ configuration drawn from the canonical ensemble has the
point even in the pure symmetric or broken phaéess, indeed, Vvalue of ¢2, of interest. If we are interested in the free en-
UV divergen). The coarse-graine®'® is obtained by averaging ergy as a function of an operat6t, we want to know
over length scales- bulk correlation lengtlt. This is equivalent to

. . . _ F(Op)
integrating out spatial momenta larger than'. In the pure bulk o _ f . _ _
phases the coarse-graindd'® is almost homogeneous by con- T In | DA, ©)exp(—H/T) (O(A,®) = Op),
struction and non-homogeneous only in the mixed phase. (2.2
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Free energy
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Free Energy Plot at Equilibrium
Temperature Free Energy Plot Below Equilibrium
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A: metastable minimum
B: "too small” bubble
C: "critical" bubble

D: "too big" bubble

FIG. 3. Cartoon showing how free energy in a finite box changes when we lower the temperature. For small temperature changes, both
minima survive, but on€A) is no longer globally stable. The least likely configuration on the way to the stable minim{@ tise critical
bubble: its unlikelihood restrains the rate at which configurations ¢&ago to the true minimum.

up to an overall constant which is uninterestiagd depends F(¢2,0 s o

on how we define the normalization of the path integrabr ———=—I|ne (M7~ mO)V‘f’anZTj D(A; ,®)e Hm=m,/T
the special case that our operato¢i§,, the constrained free

energy has an extremely convenient property. Observe from X 5(¢§V— ¢§V’O)

Eq. (3.7) that the way thamf|T enters the Hamiltonian is (2 2y
Myt — Mg
o by In f D(A; ®)

H=H +de3x2qﬁq>(x) 2 2
m=MMg 2 ' X @~ Hm=my/T o( d’av_ ¢av,0)' (2.9

The second term here is independenntf; ; it can be de-
termined once and used at any value rof;; thereafter.
Hence the effect off (¢2) of shiftingm? is very simple; it
just adds an extensive, linear 2, term to F. (The same
thing would happen if we considered the magnetization in a
ferromagnetic system where we vary the external magnetic

field or the density in a liquid-gas system where we vary the
pressure. The key is to consider a measurable which appears

2 2
Myr— Mo

=Hpom* = V2, (2.3

with m(z) any particular value we might choose. The con-
strained free energy as a function ¢f, is

F($2,0) s o o in the Hamiltonian next to the control parameter which takes
— = —InJ D(A; ,@)e Hm=my/Te ™ (Myr=Mp)V5/2T us through the transitionlf we used a different measurable
T the qualitative behavior would be the same—the free energy
X 8(p2— b2, 0, (2.4  asafunction of that measurable would be roughly a “tilted"
' version of itsT., appearance—but this would not hold as an
exact quantitative statement.
but we can now use the delta function to replaig in the Now consider how the free energy plot looks when we
exponential withqsfwyo, which is not integrated over; pulling shift mﬁT. A cartoon is provided in Fig. 3. For small
it out of the integral gives amounts of supercooling, the symmetric phase minimum
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shifts over slightly, but persists as a local minimum of the P(|¢2 p d<el2)
free energy. It is labele@) in the figure. Since we will be R
concerned with classical dynamics, for an element of the € P(da< dav,0

thermal ensemble atd) to get to the global minimum, it 5 F( 2 &_sz) -1
must pass throughg), (C), and D). The time evolution of = f"’avvcex% av. av )W’iv} ,
a configuration afB) is almost certain, in the medium term, small T

not to go to C), becaus&/T is —log(probability) ; there are 2.7
vastly more states withp2, equal the value atB) than the

value at C), so only a tiny fraction will evolve tgC) in the

medium term, since time evolution preserves the canonicaggg ‘{gllrf?neéalzjzaﬁsbﬁ'h2/'?nnégncgﬁfncaelC?Aagggjfug?nze?
ensemble. On the other hand, configurationg[at are al- g4 ge, 9

most certain not to “go back,” and will continue to the hitude, of ¢, in a time intervalAt, sampled over configu

. . . . . rations at the critical bubble. Provided we také¢ shorter
broken phase minimum. It is the rarity of configurations at h ical infrared le—i icular it should b
(C) which limits the rate at which configurations ne@) than any typical infrared scale—in particular it should be
. X . shorter than the time scale to go from a configuration with
time evolve into the broken phase. If it were true that ever

Yp2 = $2 . to one whereF/T differs by order 1—

' . a~ Pave y order 1—then the
Cﬁnflguratlon a(fC) WeLe obn tEe Waﬁ/ fron@g\\) to ;he br_orljen ratio will tell the number of configurations which pass from
P aselor going from the broken phase t A thenwith a o6 side of the critical bubble to the other in a time interval
little dynamical information we could determine the nucle-At times the time interval and divided by the number of
ation _rﬁte. It may bfe, thé)ugh(,jtha_t mobst ionﬁgurauon@t symmetric phase configurations. In other words, the combi-
are either coming rondB) an going bac there or coMINg - hation gives the flux of configurations in the canonical en-
from (D) and going back thergThis might happen if the semble through the critical bubble.

choice of measurable is not optimal, for instande. this

leati ¢ th ic 1o the brok h This flux is not the bubble nucleation rate we are after,
case, nucieations irom the Symmetric 1o the broken p asfﬁough it is clearly an upper bound. We have to multiply by
would be even rarer than the free energy of statefCat

implies. So th v of P i id the fraction of critical bubble crossings which actually me-
IMplies. S0 the rarity of configurations &) provides an - diate a change from phase to phase. To this end we define a
upper bound on the nucleation rate, which can be turned int

0, : 0
A . e C . _“dynamical prefactor,”d, as
a determination with some additional dynamical information. y P

trajectories getting fromiB) to (D)
crossings dfC)

B. Real time rate, dynamical prefactor d (2.9

Now we discuss how to turn the discussion and cartoons
of the last section into a calculation of a real time rate for . . . . .
nucleations. Suppose we have, by multicanonical tools digh other_words, i we consider aI_I real ime tra{factor|dss
cussed in Sec. IV B, computed the constrained free energy 42€ fraction of crossings dfC) which represent “permanent

a function of some measurable, which we take tofe. It changes” from one side to the other of the barrier. To deter-
' ' mine it we sample the ensemble of configurations restricted

is al ible for I mple of th nonical " i

Snzesrabﬁ)gsrzgtﬁctz d ut?) tgo(;r?eer?;r?oi\(/a ra?neecq)bé;, Ei‘o(iain? Cato those at the critical bubble, and for each element of this
h iah ﬂ‘li he | gl'k I, | f ensemble we construct a trajectory forward and backwards in

stance, the range right aroud, . the least likely value of 6 '1ong enough to see the configuration come from and go

2 .
bay- What to we do with them? _ _ to an exponentially more common value ¢f,. Sampling
The first thing to do is to determine how exponentially trajectories evenAt, d is

suppressed critical bubbles are. But the answer depends on
the measurable and does not give a real time rate. The second

step is to determine what the flux of states in the canonical 1 1 change sides
ensemble through the critical bubble is, normalized to the d=< ' x{ 9 §
probability to be in the symmetric phase. That is, we should No. of crossings |0 do not change side
determine (2.9
. P pa— davd<e€l2) [| Add,
probability flux= > > , . . .
€P(¢<da0 At #2, o The average is over the canonical ensemble, restricted to

configurations with| ¢3,— ¢3, d<e€/2, and over trajectories
through those configurations. The measure to be used is the
canonical one, timels\ ¢2/At| evaluated where the crossing
with P(condition) denoting the fraction of the canonical en-takes place; so the sample is precisely the sample of the flux
semble which satisfies the condition, and wafinfinitesi-  of states throughp?,= g{)g\,’c. In Eq.(2.9), (No. of crossings
mal. The first term here is the probability density to be at themeans the number of crossings of the critical bubble a tra-
critical value ¢2, ¢ of ¢2,, which is our “definition” of the  jectory makes in the medium term. To determine this we
critical bubble. It could equally be written as need to follow the trajectory until it reaches an exponentially
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more common value 0@2\“ i.e. point(B) or (D) in Fig. 38 What we want is the nucleation rate in very large vol-
The trajectory “changes sides” if it goes frofB) to (D) or ~ Umes. In practice it is impossible to work directly in a very
vice versa, and does not change sides if it returns to the sanfi@rge volume, for reasons of numerical cost. Naively the cost
side it came from. In our case, the real time evolution will beof performing the Monte Carlo calculation scales as the vol-
Langevin evolution(see the next sectiophand the forward ume, but in practice the scaling is still more severe, because
and backwards time evolutions are just two Langevin evoluof memory and communication costs and because the Monte
tions with two different realizations of the random force. For Carlo becomes less efficient in large volumes, particularly at
the case of Hamiltonian dynamics, the forward evolutionthe value of #2, where the typical configuration changes
would be evolution with a set of momenta drawn from thefrom being homogeneous, supercooled symmetric phase to
canonical ensemble and the backwards evolution would bgging an isolated bubble.

evolution with the same momenta, but sign reverseé¢n- ~ (3) Resolving the critical bubbl&here is another reason
jugated. In either case we are approximating the expectanorq,vhy we would like to work in a small volume. This is be-

values in Eq.2.9) with an average over a sample of trajec- cause any volume averaged measurable, for exarqbﬁ\]e

tories; I.e., we take the average in K29 by a Monte Carlo féuctuates also in the pure symmetric or broken phase. The
integration. We discuss why this procedure gives the correct . X
nucleation rate at more length in the Appendix. Width of these fluctuations behave as/¥/ V the volume,

For Hamiltonian dynamics, in an UV regulated theory, whereas the contribution of a fixed size bubblef scales

both d and (|A ¢2/At|) should have well-defined smalit as 1V. Thus, if we keep the size of the critical bubble con-
“ stant but increas¥, the fluctuations oiﬁg\, in the pure sym-

limits. This is not the case for Langevin dynamics, however. X ! .
If we sample a Langevin trajectory with a smallét, the metric phase outside of the bubble increase and degrade the
’ he “cleanliness” of ¢2, as a description of the critical

number of crossing should grow, as each crossing gets “rel

solved” into potentially more; this is a normal feature of a bubble. ) o
Brownian path. HoweverQIAqSﬁ\/Atl) will also depend on Concretely, what we mean by this degradation is that the

At by a compensating amount. For suitably shatt the more symrznetric phase th_ere is, th.e. more likely i.t is th.at the
time history ofqﬁg\, near each crossing looks like a Brownian vz_alue of ¢y co_nsustent with the critical bubblgpoint C in
random walk. By well known properties of Brownian ran- Fig. 3 r_eally arises from tgo small a bub_ble-plus an upward
dom walks,<|Aqb§\/At|> scales as&t)~ Y2 while d scales as fI_uctuatlon in the symmetric phase con_tr|but|onqi§, or t_oo
(At)Y2 and the product has a finite smalt limit. Hence, big a b.ubble and a downward fluctuation. The result is that,
for Langevin dynamics, neithet nor (|Aq§§\/At|> are well Ets we increase the volume, theeasuredree en:argy”of the
defined but the product is. ubble should _faII somewhat faster than the “true” bubble
It is finally the product f_ree energyfwhich decreases aslog(\_/), due to the transla-
’ tional zero modes of the bubble configurafiodowever, the
measured value of the “dynamical prefactod, Eg. (2.9),
(2.10 should become smaller, since it is more likely that an im-
puted critical bubble is really on one or the other side and
will begin and end at the same phase. These effects cancel
which we are interested in. The factor of (1/2) is becauseexactly, so that the nucleation rate has a well-defined infinite
half of the permanent crossings the algorithm findsiate  volume limit. However, asl becomes smaller, it takes more
the symmetric phase. The factoi1turns the nucleation rate work to measure it with good relative accuracy. This effect
into a rate per unit volume. also degrades the efficiency of the Monte Carlo simulation.
(b) Maximum size of the critical bubbl&or the above
reasons it is to our advantage to use as small a volume for a
given size bubble as we can get away with. Naively, this
In this subsection we discuss some complications withmeans we should use the smallest volume for which the criti-
applying our technique, arising from finite volume effects.cal bubble is unable to “see itself” around our periodic
The conclusion will be that the volume must be fairly large, boundary conditions(We choose to work in a cubic box
so the bubble interior fills at most about 15% of it, and thatwith periodic boundary conditions. It appears necessary to
as a consequence, it is best to choose a measurable withuge a box which has everywhere a flat spatial metric, and
very small variance in the metastable phase. The impatierfoes not have boundaries, because either effect could modify
reader may want to skip this section and just accept thaghe bubble free energyVery naively, this means we must
conclusion. ensure that the radius of the critical bubblg,, is less than
half the box length_, r < L/2.
In fact the criterion for a sufficiently largke is more se-
SWe must also check that this criterion is sufficient to ensure thaV€'® thanL.>2r.,. The reason is that a spherical broken
it is very unlikely for the trajectory to return again t€), whichis ~ Phase bubble with /3<r<L/2 is at best only metastable: a
not necessarily ensured; the ensemble of configurationé®gt —configuration with a cylinder of the broken phase, extending
which have just evolved from configurations(&) is not the same through the length of the box and having the same volume as
as the ensemble of all configurations &) ( In practice this does the bubble, will have smaller phase interface area and hence
not prove to be a problem. smaller total free energy. To compare the favorability of dif-

nucleation rate 1 bability fi q
~volume 2y Proba ility fluxxd,

C. Complications: Peculiar behavior in finite volumes
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TABLE I. Area and volume as functions of and area as func- we find that the sphere and cylinder are degenerateV/for
tion of volume, for each possible geometry for phase coexistences | 3x 47/81=0.154_3, and the cylinder and planes are de-
and derived volume range where the geometry is preferred angenerate foV=L3%/7. A plot of the free energy in a very
where it is metastable in the strict thin wall limit. The upper end Oflarge box should approximately resemble the solid line in
the sphere and cylinder metastability ranges are where they touqhig_ 4. It will have slope discontinuities where one geometry
themselves across the periodic boundary conditions. The loweéives way to the next. The metastability of one geometry
metas_tability limit on t_he cylinder is where it becomes unstable to aagainst another can be quite strong, and this makes it chal-
or =sin(2mzlL) excitation. lenging to perform a multicanonical Monte Carlo determina-
tion of the free energy in a volume large enough that the

Geometry Sphere Cylinder Planes interfaces are thin compared It unless one only wants the
Areal(r) 4qr? 2L 212 plot in the region where one geometry is relevaiortu-
- nately this will be the case for ys.
Volume(r) ?r?’ mriL any Since both the cylinder and the planar geometry have free
1/3 5 energies which clearly depend essentially on the box geom-
Vg(anzeS (gﬁ\;/)& , :/VSI'_-\l//W 1/77_?1‘_ 1) etry and volume, the part of the free energy plot where they
where stable dor_nlnate describes finite volume artifacts rather than physics
which has any correspondence to that at larger volumes.
Volumes 0— /6 1/dar— ml4 0-1

However, the radius of the sphere where the cylinder be-
comes equally favorable is onty=L/3, safely small enough
that the sphere will not “see itself” around the periodic

ferent geometries as a function of broken phase volume frad2oundary conditiongunlessL is only a few times the inter-
tion, we will make a “thin wall” approximation in which the face W|dth..Hence we can expect the sphere geometry, until
interface between phases is treated as a geometrical surfadeStOPS being the favored geometry, not to care about the

and the free energy is equal to its area times the surfadg€riodic boundary conditions but to represent more or less
tension:F = o-A. This approximation is correct in the limit faithfully the behavior of an isolated bubble in a larger vol-

that the box size. is much larger than the wall thickness. ume. | hat | itablv | | h
Though our simulations will not be strictly in this limit, it is W(.a.may also expect that, in a suitably large volume, the
a suitable approximation for understanding the relative fairansition rate between the spherical and cylindrical geom-

vorabilities of different mixed phase geometries. One cal f[r_ies is sufficiently slow that we could .Fe'y on the metasta-
then write down how the area and volume vary as a functior?!lly Of the sphere to explore larger radii tharr L/3. How-

of radius for a sphere and a cylinder extending the length ofVel» We will conservatively not do so in what follows, but
the box, and for a pair of planar interfaces. The results ardill restrict ourselves to such volume and bubble size com-

shown in Table | and compared in Fig. 4. Equating the areaQi”atiO”ZS that the critical2 bubble we obtain will hav,
at fixed volume, <0.15¢3 (broken}t 0.85¢5 (symmetric). We will also

check to see that the bubbles we analyze are approximately
AV) sphere= (36mV2) YB= 4LV =A(V) cyiinder, spherical and not cylindrical and that they do not touch
(21 across the periodic boundary.

where metastable

sl . - h lll. ELECTROWEAK BUBBLE NUCLEATION AS A

A \\\\N,.«"' "\_w,/’/ . PROBLEM IN CLASSICAL STATISTICAL MECHANICS

[ TN 1 In this section we briefly review why we can view the
2 e s bubble nucleation problem as a problem in classical statisti-

cal mechanics for Yang-Mills Higgs field theory. Nothing in

1 this section is new; it reviews the last few years’ develop-
7 N 1 ments both in the thermodynamics of the electroweak phase
transition and in the dynamics of infrared Yang-Mills Higgs
fields. We include it here to make the paper more self-
contained. Readers who are already familiar with this mate-
rial may want to skip this section.

Area /12

0 0.2 04 0.6 08 1

Volume fraction
) A. Thermodynamics: Dimensional reduction
FIG. 4. Area, and hence free energy, as a function of volume ) . .
fraction, in the thin wall approximation. The solid line is the mini- _ Here we review how the thermodynamics of infrared

mum over interface geometries; the large volume free energy curviields in the SW2) sector of the standard model is well ap-
would follow the solid line. Dotted lines are the metastable extenProximated ly a 3 dimensional path integral, which is the
sions of the sphere geometfsloping or the planar boundary ge- Same as the partition function of classi¢at1)-dimensional
ometry(flat), while the dashed lines show metastable extensions oB8U(2) Higgs theory at finite temperatufand with suitable
the cylindrical geometry. regulation and counterterms
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S 1 .,

| +(D;®)T(D;®) + M3 D TD+ N (DT D)2

thickness=1/T 5 5
(9°+0O(g°ay))
4

1 o1
4—ngF}F2+ E(DiAO)a(DiAO)a

FIG. 5. Cartoon of how &3+1)-dimensional spacetimei® +m3AZAS+ AAZDTD
x St, drawn here as 21 dimensional, can look effectively 3 di-
mensional for long distances.

+0(g%ay) (ASA%)?+ DIM 6 |, (3.2

The full theory we are interested in has thermodynamics
described by the path integrdlorentz indices are Euclidean \yhere “Dim 6” indicates dimension 6 and higher induced

with positive metric; Greek indices range over space angperators, which have an irrelevantly small effect on the in-
time, Latin indicesi,j,k only over space; indicea,b,c are  frared physics, so we immediately drop them. The fields we

SU(2) group indice$ write here correspond to the zero frequency components of
the 4 dimensional fields; i.e® in Eq.(3.2) is Tfd7®(x,7),
Z:f D(d,A, ,etdexp —Se/h), with ®(x,7) the field appearing in the path integral in Eq.
® (3.1). In this expression. andg? are couplings of an effec-

tive 3D theory, whichafter dropping dimension 6 operatprs
is super-renormalizable; they do not run. Their relation to the
1 coefficients of the full theory, and a detailed discussion of
—F?2 F§”+(DM<D)T(D“<D) the matching procedure used to derive them, is givelbin

#IT
SE=f drf d3x
0

2" wmy

49 In particular we mention that the Higgs mass squamﬁ;i,,

. 2 2 -y . .

+(mao+)\¢)fq))q)1'<p receivesO(g-T<) positive thermal corrections:

39+ 4yZ+8\
mir=ma,  + —— 1 T2
+hypercharge-fermionstglue|. (3.1 HT ™ vacren 16

+[ « dependen®©(g*T?)]. (3.3

Here and throughou is g,, the weak coupling. The inte-  Herey, is the top quark Yukawa coupling. Since,c renis
gration has periodic boundary conditions for bosons and arPégative, varyingl can change the sign of the Higgs mass
tiperiodic boundary conditions for fermions. Beginning hereSqu"“Ed and induce a phase transifi¢for generic values of
we will neglect hypercharge, to simplify things. This is not M9° czprrelat!on lengths at the phase transition are of order
too bad an approximatio3]. Including it would be a &~1/9°T, which is why we can drop the dimension 6 op-
straightforward extension of what we discuss. erators. )

There are two things to observe right away about this NOt€ that the form ofSg/# looks very much like the

. . . . Boltzmann factorE/T, of a classical theory. The main dif-
theory. First, mean field theory predicts thamf,0 changes, f?rence is that in classical $2) Higgs theory, we expect the

there is a second order phase transition. Second, at the sCallk.ctric fi . :
. : ctric field strength and the Higgs field momentuin
T (which will be of order the weak scal&,~80 Ge\), the ratherl th::on to aSpear' 'ggs 1

coupling is weak. This is just the statement that the weak
sector of the standard model is indeed weakly coupled.

Hence, if there is a phase transition, barring some large hi- chzf D(E},A?,®,IT)exp( —H/T)
erarchy of couplings such adg?<1, it will be weak, and
correlation lengths will be&>1/T.

As motivated in Fig. 5, at such infrared scales the effec-
tive behavior is 3 dimensional. This is just because any field
varying only on the length scale>1/T will not vary appre- f 4

H= X

igr?®
X & ot 92 IM+c.c.

|

1 1
4—92F5}FQ+EE?E?+HTH

(DiE)®+

ciably across the Euclidean time width of the “slab.” One
sees this formally by Fourier transforming thelirection in
Eq. (3.1). The Euclidean frequencies arise from transforming
a compact range and so are discrdte:®(7)]?> becomes +(|3i<1>)‘r(|3icp)+maTcp‘rq)Jr)\(quq))2
(27nT)2®2 for bosons, whileyy°d,y(r) becomes](2n

+1)7T]nyotb, for fermions. All but then=0 bosonic

mode are very heavy and can be integrated out. The result’Note that botkma.l_ andm%~ng2 renormalize logarithmically at
(continuing to use 4 dimensional notation for fields and couthe two loop level, §m?/dIn u)~g*T? so the sign ofm?; near
plings) is the transition is actually renormalization point dependent.

. (349
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Here the delta function enforces Gauss’ law. But as notedionperturbative way to separate the condensate from the
by Ambjorn and Krasnit432], if we implement Gauss’ law fluctuations. When gauge field fluctuations become large, the
by introducing a Lagrange multiplier, which we suggestivelywhole perturbative approach becomes questionable. Never-
nameA,, theless, when the phase transition is strong, perturbation

theory is useful, essentially because gauge field fluctuations
_ . 3. na a are suppressed in the broken phéasékich is therefore well
o ')_f Dho eXpl"f d XAO((DiE‘) describedl At one loop, and neglecting scalar loops as is
appropriate in the./g?<1 approximation,

/ T}’ (39 My g

V1 loop= 2 5T A g 3.8
e T (3.9

igr?

+| @ IM+c.c.

then theE andIl integrations are Gaussian and can be per-

formed, generatin . . : -
g g This effective potential can have two minima because of the

1 g? (one loop negative¢? term. Since it is a loop effect which
H2 5 (DiAg)*(DiAg)*+ ZASAS‘I’T‘P allows a first order phase transition, we say the transition is
radiatively induced first order. At the transition, the broken
+(0+ radiatively induced AA2. (3.6) phase value o# is such that the cubic term arttiee leve)

A ¢* term are of the same order. Since this requires a one
Here the bare Debye mass is zero but one is radiatively inloop effect to be of the same size as a tree level one, it either
duced, with a linear divergent coefficient in any regulationimplies that\/g><1 or that perturbation theory will not be a
where such terms do not identically vaniguch as the lat- reliable expansion. Hence perturbation theory determines at-
tice). Hence, the thermodynamics of the full thedigeslook ~ tributes of the transition at best as an expansion/gr. It is
like that of the classical theory, except that the Debye masthis relatively poor performance for perturbation theory
of the classical theory is radiatively induced and regulatiorwhich makes a nonperturbative treatment necessary.
dependent, and there are very sn@(lga,,) extra interac- Nonperturbatively it is known that, as expected, the phase
tion terms involving theA, field, present in the actual ther- transition is well described by perturbation theory for small
modynamics but not in the thermodynamics of the classicak/g?, but perturbation theory is completely wrong for larger
system. values[3,7]. In fact there isno phase transition in the MSM

It is a good approximation, for the thermodynamics bothabove a critical value./g?=0.09830.0015[8]. In exten-

of the classical theory and of the dimensionally reduced fullsions of the standard model with new bosons which are light
theory, to integrate out thA, field, including it by the ra- at the phase transition, we must include the new light bosons
diative corrections it will induce in the remaining couplings. in the effective theory considered. At least for the case of an
In this approximation one shifts slightly the coefficients of added scalar top, the strength of the phase transition is sig-
the terms in Eq(3.2 which do not containrA,, and drop nificantly enhanced33,34. It would be straightforward but
those which do. The change in the coefficients is computeghore numerically expensive to apply the tools developed
in [5]. After this approximation, the classical thermodynam-here to this physically interesting case.
ics and the dimensionally reduced thermodynamics coincide
exactly. The final form of the partition function describing B. Dynamics: Classical effective theories

the thermodynamics is then
y es | The infrared thermodynamics of the &) sector of the

standard model match those of classi&*1)-dimensional
ZZJ D(A; ,P)exp(—H/T), SU(2) Higgs theory, as discussed above. Does this matching
also apply at the dynamical level, as originally conjectured
1 [in a (1+1)-dimensional contextby Grigoriev and Rubakov
H:J d3x —F;”}Fﬁ+(Di(I))T(Di<I>) [35]? In other words, is the dynamics of the infrared(2U
49? Higgs fields described by classical Hamiltonian dynamics?
The answer is “no, it is more complicated than th&tA's

2 4t 2 we now discuss, the dynamics of infrared gauge and Higgs

M RN P) 3.7 fields are indeed classical, but they are not described by clas-
sical Hamiltonian dynamics. They are, to leading order in the

If this final integration over thé\, field is not deemed reli-
able enough, it is straightforward to modify what we will do

below to_lllncllude It |n_ the tfhermodylnamlc caltg:ul_atlon.d 8In defense of Grigoriev and Rubakov we should mention that the
We will also mention a few results, perturbative an non'(:omplications discussed in this subsection do not arisetifh di-

perturbative, which have been obtained for the partition,ensjons, where the UV behavior is much more mild; hence their
function shown above. Perturbatively we can describe th@gnjectureis correct for the problem they were addressing, namely
strength of the phase transition by studying the effective pothe gynamics of thé1+1)-dimensional Abelian Higgs model. The
tential for the (gauge fixed Higgs field ¢, ¢ problem is applying it to thé3+1)-dimensional problem of interest
=2® . fPcone Note that there is no good gauge invariant, instead.
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logarithm of g, described by “classical” Langevin dynam- rupted by collisions in the plasma. It coincides with the free
ics. Because a factor of 2 error in the treatment of the dypath of a charge carrier to undergo large angle scattering.
namics will change our determined rate bexp(*1), while On scales much longer thah.,;, a magnetic field
the rate itself is~exp(—100)T*, we will find it sufficient —evolves as if it were in a conducto®D XB=]=o¢E
to make this approximation and take the dynamics to be= oeDoA, Whereay is the electric conductivity. This is just
Langevin. Langevin dynamics; the time derivative of the fidlA is

To see that the dynamics of the real system is not classic&roportional to—dH/dA=D X B. In a thermal bath there is
Hamiltonian dynamics, look again at the thermodynamic dis2ls0 @ “noise™ term uniquely determined by the thermody-
cussion, especially E¢3.4) and Eq.(3.6). We see that there Namics(fluctuation dissipation On scales betweel, and
are linear UV divergences in the classical Debye mass for thbscatthe story is significantly more complicated because the
A, field, and yet the\, field is related to the electric fields homogeneity scale is shorter than the free path over which an
which generate the Hamiltonian dynamics for the gaugeelectric current propagates. In this regime the field evolution
fields. This implies that there are divergent UV corrections tdS described by an equation with a wave number dependent
the gauge field dynamics of the classical fields. As first adconductivity, which is nonlocal in real space.
vocated by Bdeker, McLerran, and Smilg@6], we should Now consider the case of a non-Abelian theory. The key
consider this a potential problem for the study of the classidifference is that, for the non-Abelian theoryscay
cal field dynamics. In fact, as argued by Arnold, Son, and™1/g°T log(1/g). The reason is that non-Abelian collisions
Yaffe [37], what it means is that the classical Hamiltonian€xchange non-Abelian chargécolor” ), so any collision,
dynamics does not have a good regulation independent limiftowever soft, can destroy the current a particle is carrying.
Hence, the infrared gauge field dynamics of the classicaencelsyis of order the mean free path fany scattering,
theory technically do not exist. The dynamics of the full not just large angle scattering. Hence, on the length scale
theory can scarcely coincide with those of the classicall/g®T, the dynamics are given by a simple Langevin equa-

theory if the classical theory’s dynamics is sick. tion [18],
The physical origin of this problem is actually well-
known plasma physics. Transverse electric fields in a plasma JH ., 3

feel Landau damping. This leads to very slow, overdamped TeDoAI =~ ,9_Ai' Tel _F%
evolution of infrared magnetic fields, as is typical in a con-

ducting medium. As the classical theory cutoff is lifted, there 5
are more and more “plasma” degrees of freedom, and the _ Ng“T In@+3 04 3.9
damping becomes ever more efficient. The correct treatment Y ' ' ’

is to make the damping have the same efficiency as in the

quantum theory. This requires studying the classical theory,;i, N.=2 for our SU2) application. Herer, is the non-

with hard thermal loop(HTL) effects[38] included. (The  apelian (“color” ) conductivity.

hard thermal loops are the non-Abelian generalization of De-  1ne extension of these ideas to the case where there is a
bye screening, Landau damping, and other plasma effeci§jggs field turns out to be remarkably simple; one also
fam|I|_ar from electromagnetic plasmaSuch a classu:_al, but oyolves the Higgs fields under Langevin dynamics, but giv-
HTL included, treatment should be correct at leading ordefnq the Higgs fields a much larger diffusion constant than the
in thg couplingg. Two nymencal |.mplementat|ons of such a gauge fields. For a discussion $&6]. These are the dynam-
classical theory now exist; ori89] is based on a proposal by 5 e will apply for the real time part of our studies below.
Hu and Miller [40], and on€[17] is based on a proposal by Nte that they are only justified ahext to[18]) leading
Bodeker, McLerran, and Smilg&6], and more recently dis- 5 qer in 1/log(1g), not a very good expansion, but we are
cussed by lancl41]. Both are extremely complicated. Prob- ijing to accept an approximation which will yield an error

ably the second method could be utilized in the type of comyt -+ 1 the exponent of the nucleation rate, since the rate
putation we are going to discuss, but the numerical efforticqif is ~exp(—100).

would be substantially greater than what we discuss below.
As first demonstrated by Bieker[15], and further dis-
cussed and clarified both by Beker[42], Arnold, Son, and IV. COMPUTATIONAL DETAILS AND NUMERICS
Yaffe [43], and Litim and Manue[44], inclusion of the hard
thermal loops in the infrared equations of motion is actually
unnecessary, because at leading order in Igg(thle dynam- In the discussion above we always chose to consider
ics of the gauge fields is simple Langevin dynamics. We willthe space averaged Higgs field length squared, as the observ-
not attempt to reproduce their arguments in detail here, buable used to distinguish the phases and the critical bubble.
will only physically motivate them. This has been the traditional “order parameter” observable
First, consider the behavior of an Abelian plasma. Wein Monte Carlo simulations of S@2) + Higgs theory. It is
will distinguish two characteristic length scales: the Debyeeasy to measure, and, because its variance is UV finite, given
length Ip~1/mp~1/gT and the scattering lengths.,x large enough volume, it can unambiguously separate the
~1/g*T log(1/g). The former is the shortest length scale symmetric and broken phases. Also, as we have seen, it is an
where plasma effects are important. The latter is the meaaxtremely convenient choice because it makes it quite easy
length over which a current can propagate, before it is disto use one set of multicanonical data to study a range of

A. Our choice for a measurable
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temperatures. Further, after UV counterterm subtractions, iwery bad measurable. We will not discuss what measurables
has a good zero lattice spacing limit. might be useful for studying this nucleation rate, which for-
However,a priori it is not obvious that thisor almost any  tunately is not cosmologically interesting.
othepn measurable can distinguish the critical bubble well Note that the value for the scalar self-coupling we use,
enough for practical calculations. In particular we mightproduces a Higgs boson mass lighter than the experimental
worry that there is too large a “noise” contribution from the limit; in fact there isno physical Higgs boson mass which
85% of the volume which must be in the symmetric phasagives such a small value for the ratio ©fg? (parameters of
(see the discussion in Sec. I).CA necessarybut insuffi-  a 3D effective theory[5]. We study this case as a toy ex-
ciend criterion for a good measurable, needed to avoid thimample, because the phase transition is relatively strong here
problem, is that it has a small variance in the symmetricand perturbation theory arguably should be reasonable.
phase. It turns out thap2, does indeed have a very small
variance in the symmetric phase. The leading order pertur-
bative result for the variance @2, in the symmetric phase,
in a volumeV much larger than mgymm, with mgymm the
symmetric phase scalar mass, is

B. Multicanonical method

As described in Sec. Il, by far the dominant factor in the
bubble nucleation rate is determined by the constrained free

energy F(¢2) = —Tlog Peaf ¢2,), Where P $2) is the

) 1 canonical probability distribution ofzﬁg\, for a particular
T2, sy 2 d3x d®y ( p2(X) (V) connected value ofméy:
= @ T Pead 930 | DA ®)exit—HITI 8| ¢3-S 20701V .
-/ X
VI (2m)® (pP+m?)?

4.3
T2 ATJ2M/g?

= = oM ;
MV =y , (4.1 (The 2 next to®'d is for the customary complex normal

ization of the Higgs field. This probability distribution has
to be determined for the whole range of values from the

where in the last approximate equality we have substituted igymmetric phase to somewhat beyond the critical bubble
the equilibrium, one loop symmetric phase Higgs mass fog,g),e 2 < see Fig. 3
av,C? " "

m. This variance is to be compared to the broken phase vari- In principle, Pcar(cbiv) can be calculated with a standard

{ahnce, which dgets r?_nhaﬁded cont(rjlbuuon from fluctuations MNattice Monte Carlo computation, where the configurations
€ zero mode, which has a condensage are sampled with the canonical probability

2
2 _ 29T __ AT e
U(biv, broken m2V O-dfw, symm ()\/gz)gzv U(bi\f symm
(4.2

PeartceXp—H/T), (4.9

whereH is given in Eq.(3.7). Algorithms for such a sam-
pling are well known, typically taking the form of a Markov
chain in which each configuration is a relatively small modi-
Tication of the previous one.

However, in the problem we are interested in, the prob-

which is much larger for small\/g?). To get a phase tran-
sition strong enough to preserve baryon number after its co
clusion, we will consider the ca9€'g?=0.036; for this case

e boken phase vatance o about 100 s g, a1 iy can vary by  fctr of-exp(A00) aver e range
(1] s -2 . .. . . . .
tributed by this volume greatly exceeds that contributed by¢a" of interest. A finite, canonical sample will simply contain

the symmetric phase; symmetric phase fluctuations will nof © representatives for much of the ranged, of interest,

pose a problem. Also note that the broken phase fluc:tuation%nd hence give no information on the free energy in that part

are dominated by the motion of the condensate, and we e>9—f the range; hence it will fail to determin@,. For our

pect that fluctuations in the condensate size are directly imprOblean:.’ t_he Cangn'fﬁl &/_Iogtef Car:;)l methr:)d IS ut;cte_rly use-
portant to whether a bubble is more or less than critical, S(gess. IS 1S exactly the kind of problem where muiticanoni-

these fluctuations may also not be dangerous. cal Monte (_:arlo ”?ethoqs exqel. .
A posteriori we will of course determine whether the In a multicanonical simulation, the Monte Carlo sampling

choice of measurable was a good one. For instance Whé?{obability of configurations is modified so that the whole
. y 2 . . . .

determiningd, we can determine what fraction of trajectories Pay rang%o:;_llrltereit_ 'S samr;])_led ;wkt)h an appln_roxn;]]ately fc on-

crossing¢§vz ¢§VVC, actually lead to a nucleation. We will stant probability. This is achieved by sampling the configu-

i > i rations according to the probability

find that ¢3, is in fact a good measurable; the fraction of

trajectories crossing the critical bubble which lead to a nucle- 9

ation is statistically compatible with 1/2, which is the maxi- Prmuca €XH — H/T+W(#3)], (4.9
mum possible under Langevin dynamics. Note however that

the above arguments suggest that, if we were studying nuclevhere theweight function V(/d)ﬁv) is carefully tuned so that
ation out of thebrokenphase, thembgv would probably be a the multicanonical probability distribution
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5 How does the computational cost scale in a multicanoni-
Pmuca(¢av)°‘J D(A; ,@)exd —H/T+W] cal simulation? Ideally, if we have guess&d(¢2) cor-
rectly, the system performs a random walk in #&, range
5| $2— 2001V of interest, say, fromp, to $3,. Let us consider what
X happens if keep the range fogv considered fixed as we
cexd W(p2) 1Pead $2) (4.9  increase the volume of the system. Now, if we require that
the system “random walks” through the range a comparable
is approximately constant. This condition is met if number of times as the volume is increased, the computa-

tional cost is proportional tog?2,— ¢2,)?V?. The factorv?
2N . 2 avi av
W(dba) 109 Pearf ¢2,) + const. 4.7 appears becaus@i\, is an intensive variable. For compari-

The canonical expectation value of any observablean  SON. in a canonical simulation at a first order phase transition,
. . . ; ; 2
then be obtained from a multicanonically sampled set of conthe ~ numerical ~ cost rises as  m@aXPcafba) ]/

figurations by reweighting the individual measurements Withmin¢2 [Pead #2)]1. In a large box, as previously discussed,

the weight function: this scales as the exponential of an interface surface area,

) ) ~exp(2V??), which is a vastly more severe increase.
(0y=2 O Wa) | > e W, (4.9 In realistic situations there are often “hidden” barriers,
: . which can hinder the random walk through the range of in-

where the sums go over all configurations in the sample. It iderest. Fo_r instance, in our case such a metastability occurs in
not difficult to find an algorithm to perform the multicanoni- 12rge cubic volumes when the surface geometry changes: as
cal update; if one has a Markovian canonical Monte CarloShown in  Fig. 4, there can be sphereylinder and
algorithm, application of the Metropolis accept-reject unde,cyllnder<—>sla_1b transitions. At the transition point two differ-
the weight function expW(¢2,)] after each update yields a ent geometries have equal volume fractions and surface area.
multicanonical algorithm. Ai;'/¢221v is an easy observable to During a simulation the transition must occur by the Monte

measure numerically, the numerical cost of this extra step ig a_rlo algorithm f|_nd|ng a series of mlxed_phase geometries
o : 2 . which smoothly interpolate between cylinder and sphere,
negligible. (However, sincegy, is a global quantity, some

extra work is needed when using parallel computer architecwhich means that the surface area must increase for a fixed
wres) gp P volume fraction. Thus, if we use extremely large volumes,
the transitions between geometries become exponentially

multicanonical method: we have to know the result we ar suppressed, even if the total multicanonical probability re-
u ! » W v W Uit We arg, ains constanfOf course for the study of bubble nucleation

after, P.,,, t0 some accuracy, before we can even start th .
multicanonical simulation. This requires some kind of boot-%ve will not have to study the range Gﬁ“’ where such tran

strap process, to be discussed below, in order to determine %ﬁIr?QSeotgizgl(?slgeV\gheﬁg \/)/Wi(ta Ci??goﬁ—r%‘g s?r: i?siziesu\;\(laet:\;aso
initial guess forP,,; after the multicanonical simulation, we : '

get an improved estimate fd.,, from Eq. (4.6). observe some metastability at the value ¢ff, where the

In the above discussion we implicitly assumed that thedomlnant configuration changes from being homogeneous

weight function W has been optimized for one particular symmetric phase to a smaII_ broke_n phase buﬂ)b_le.
value of m;. However, because of the factorization prop- The success of the multicanonical method hinges on the
> i o i accurate determination of the weight function. If we require
erty of themi;r term in the Hamiltonian, Eq2.5), we obtain  {hat the resulting probability distributioR ., be constant
the canonical probability., for a whole range ofnfir val-  up to factor of 2, say, then the weight function must be
ues from a Single multicanonical Monte Carlo run: for ex- determined up to an accuracy of |Og@7 Worse accuracy
ample, if the multicanonical weight function has been origi-in determiningw significantly degrades the efficiency of the
nally calculated withmf;=m? (and we have the resulting subsequent Monte Carlo calculation, so such a requirement
distribution P ,,c9, We have on the accuracy oWV is actually necessary. The variation of
S ) W across the range of interest in this work is of ordet00
Pead M3 b3)  Prucd ¢a) [that is, we have to boost the probability of suppressed phase
v space regions by a factor of exp(100)]. Thus, the weight
2 2_ 2\ 2 i i
Xexr{ —W(3)+ ==(mf—m3) ¢3,|. function has to be determined to an overall accuracy better
2T than 1%.
4.9 We use a continuous, piecewise linear ansatz for the
weight function. We determine the weight function with an
Naturally we can only determin@,{m?; ¢2,) for values of  automatic iterative calculation procedure, using variations of
¢2, where our P, determination is accurate. Strictly the procedures presented [84,30. One approach is to
speaking, when we perform a multicanonical run it does nothoose a starting guess Mf($2) (for instance, a constant
correspond taany particular value ofm?, since we can al- and to perform a Monte Carlo under ttidlarkov chain
ways absorb then? term in the action into the weight func- algorithm which would generate the distribution, £4.5).
tion. However, after each update swe®p,js decremented at the
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10°F ' L - geometry makes the interfaces tend to form parallel to the

} (x,y) plane, and_, should then be long enough so that the
two interfaces do not interact appreciably. This is seen as a
flat minimum in the probability distributions.

We perform a multicanonical Monte Carlo simulation
with the same lattice action and update [8$, using the
improved relation between lattice and continuum parameters
found in[6]. In Fig. 6 we show the probability distributions
, \‘ from 162X 128 and 24x80 lattices at 4/4°Ta)=9 and
sitso | N/g?=0.036° measured at the criticah?, which is deter-
105 - mined by requiring that the symmetric and broken phases

) / have equal probabilistic weightHence, the technique also
provides an accurate determination of the the critical value of
0 N B m?, which we will need for comparison later 9rThe larger

0 oz 3 4 lattice is not quite long enough to have the flat central part
@/ TH the smaller lattice has. Note the striking difference in widths
between the symmetrigeft) and broker(right) phase peaks;
this reflects the large ratio in thg?2, variance in the two
phases, discussed in Sec. IV A.

The surface tension is obtained from [18g,.,/P minl/
current value of3,. Thus, if some region of3, is getting  (2L.2) . ¢/T, asV— . In practice, the infinite volume value
sampled very ofter\ is reduced there so it will be sampled of ¢ is reached in such large volumes that finite volume
less often. This procedure will caugéto evolve towards the analysis becomes necessary. Following REfZ,48, we fit

correct form, but imperfectly because the recent history othe data with the ansatz which takes into account the trans-
the Monte Carlo calculation is over-reflected in the resultingjation modes of the surfaces and capillary fluctuations:
W. To fix this, the size of the decrements is reduced every

16°x128

._.
Ol
T

probability
g
s
T

FIG. 6. Probability distributions o3, measured from cylindri-
cal lattices at8=4/(g’Ta)=9 and\/g?>=0.036.

time the evolution successfully explores the full range;bét o, 1 max 3
from bottom to top and back. When the total chang@tan Ta = ;109 5—+5 logL,a—logL,a+const.
. . . 2(Lya) min
the time the Monte Carlo evolution spans the rangé@f, is 4.10

negligible, the weight function has been determined with suf-

ficient accuracy. Measurements Bf,, then consist of tWo  The result of the fit from these two lattices is

parts: first, we perform a run during which the weight func-

tion is iteratively improved to a required accuracy. Second, o=(0.079+0.004g*T3. (4.12
using this weight function, we perform a normal multica-

nonical run, which gives us the final probability distribution. \ye a1s0 obtain the equilibrium? and the difference irabfw
The determination ofV typically accounts for 30—-50 % of between the two phases, which in physical unitsAi$§v

the total computational effort. = ¢2 (broken) 2 (symm)=2.53°T2.
The surface tension can be obtained much more economi-
C. An application: Surface tension cally with an alternative method due to Moore and Turok

We illustrate how the multicanonical method works by [49]. This method i's based on analyging the spectrum of.the
measuring the surface tension—i.e. The free energy/area transverse fluctuations of the phase interfaces; the magnitude

carried by the phase interface—uwith the histogram metho®f the fluctuations is inversely proportional t6o/T. We

[45]. This has become the standard and well-understoofefer the reader to the reference for a complete discussion.
method for computing the surface tension in a variety of'V& apply this method using multicanonical tools to sample

lattice theories, including work closely related to ours(®U  configurations in a very large box, but now choositige?,)
gauge+ Higgs theories3,46,9 and effective theories for to very strongly preferp, within 5% of the average be-
the minimal supersymmetric standard modiSSM) [34]. tween symmetric and broken values; hence the volume al-

As discussed in Sec. Il A, at the phase transition value ofvays contains large regions of each phase, with two approxi-
mZ1, where the symmetric and broken phases are equalifpately planar interfaces separating them. We show an
probable, the mixed phase configurations with approximatelxample of such an interface in Fig. 7, and present the de-
equal volume fractions of symmetric and broken phases artermined surface tension, as a function of lattice spacing, in
exponentially suppresséHig. 2). The suppression is propor- Table Il. The results agree within error with the histogram
tional to explFqyacd T) = €Xp(—oxareall). This is seen Method. If we extrapolate the values given in the table to
as a valley in the probability distribution Qﬁg\,; see Fig. 6.

For the interface tension measurements it is advantageous
to use lattices with cyIindricaI geometri,>L,= Ly. Be- 9Corresponding to an “unimproved” lattice8g=9.6674, X
cause we use periodic boundary conditions, there will be a&)\/g?=0.0389. For the lattice to continuum relations fof and
least two interfaces which span the lattice. The cylindricalg? see[6].
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TABLE Il. Surface tension as a function of lattice spacing.
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FIG. 7. Geometric shape of a phase interface, from @2/ spacing dependence, and from a 120x at 4/@°Ta)=9,
across box. The height of the fluctuations goes®s§Y% Fourier  which gives weak information on volume dependence. The
analyzing and averaging over hundreds of such surfaces can yielgitio of probabilities between the metastable minimum
an accurate determination of and the critical bubble, P{ ¢§V: ¢§v,&/Pcar(¢§v
=¢§v(symm)), is plotted for each lattice as a function of

m?=m2;— mZ(equilib) in Fig. 9. This figure corresponds
to the difference in height, in Fig. 8, between the local maxi-
mum and local minimum. For each curve in the figure, the
statistical error bars are abotitl, with strong correlation in
the error along the curve. The finer spacing lattices agree
within errors. This is dweak check on volume dependence,
Fut it is also a check of the code, since the 1208d 124
rolume computations were performed with completely inde-
pendent sets of code, on machines of different architecture.
The coarser lattice data differs by between 2% and 3%. This
D. Results: Probability distribution probably represents lattice spacing errors; if we extrapolate

Let us now turn to our main problem, the determination ofassuminga’ errors(the first order which should be present,
the probability distribution in the region relevant to bubble due to our lattice improvemepntwe estimate the difference
nucleation; see Fig. 3. The procedure is very similar to thdetween the finer lattice and the continuum is 1.5 times as
surface tension calculation with the histogram method de-
scribed above. However, there are two crucial points where it log(P) versus ¢2, at 3 supercoolings
differs: (1) we need very large, preferably cubical volumes in i B s B
order for the bubbles to fit in the lattice comfortably. The TN
size makes it next to impossible to compute the full probabil- L ¥ e e 6m2=—.010g*T?
ity distribution from the symmetric to the broken phase with . v .
our computational resources. HowevéR) we need the 2 v Tommee- om?=—.009g'T* 1
weight function only in the ranged?(symm)< g2, [ ]
<[0.85¢42 (symm)+0.1542 (broken)], as discussed in Sec.

Il C. This guarantees that we do not yet enter the “cylinder”

and “slab” regions of the phase space; see Fig. 4. Using the
random walk argument, calculating the distribution in this .
restricted range only requires a factor of (025).02 of the I g0 -
resources needed for the full weight function. [

In Fig. 8 we show the probability distributions from a = |
124 |attice, with 4/@?Ta)=9. The result of a single multi- | e
canonical run has been reweighted to 3 different values of I
mZ;, namely (0.008,0.009,0.01¢4T? below the equilib-

—0 assumingD(a?) errors, as should be the case since we
use anO(a) corrected lattice-continuum match, we obtain
the result

o=(0.0749-0.0027g*T3, a=0, (4.12
with a lattice spacing dependence which is small and consi

tent with zero. This indicates that our lattice spacing error
are under control.

)

Sm?=—.008g*T?

2
av
=

log(P(¢

/T

rium value. The critical bubbles correspond to the minimum 400 | .
locations of the probability. Note that the value@j\,for the Lo ]
critical bubble moves to smaller values as we increase the 0 o1 02 03
supercooling; this is because the critical bubble gets smaller (¢2,— 92, (symm))/g?T?

at larger supercooling, anﬂg\, is a volume average. We also

have results from a $2ox at 4/(g2Ta)=7, to study lattice FIG. 8. The probability distribution fogp;, at three values of

sm?, —0.0085*T? (solid curve, —0.0095*T? (dashed curve and
—0.01@y*T? (dotted curvg for 124 lattice atg?aT=4/9. In each
case the local maximum is the supercooled symmetric phase; the

0This discounts the “barriers” at the bubbie cylinder < slab local minimum is the critical bubble. The three curves are obtained
transitions, which would make the full computation even moreby reweighting the same multicanonical run. Greater supercooling
costly. leads to less suppression of the critical bubble.
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(E?(X,t)g?(x’ rt,)> = 20-e|T5ij 5ab5(X_X')5(t—t’),
(Eo(X,DELX" 1)) =2n0T 18(x—x") 8(t—t"),

whereH is given in Eq.(3.7), 1 is the identity in component
space for the Higgs field ang is the ratio of the speeds of
Langevin evolution, which is parametricalty 1/«,,, and so
should be taken large.

It is possible to perform numerical Langevin evolution on
lattice fields, but it is slow and unnecessary; any dissipative
update will do, if the relation between the number of updates
and Langevin time is known. Hence we use the heat bath
—6m?/giT? algorithm to update the gauge fields; the relation between the

number of heat bath updates, and the time stale the
equations above, is discussed at some length6h At lead-

ing order in smalk the relation is that, for random order heat
bath updates of the lattice links, updates per link corre-
Irr§ponds toAt=a’o,n/4. (Note that this relation is specifi-
cally for our choice of lattice action, namely “Wilson glue”;

it would be different for an improved action. It can also
differ if the sites are updated in a specific, rather than ran-

large as the difference in the curves. Where the ratio of propdom. order, and in fact depends on the order of upilsive.
abilities isel® this would be a correction @ in the nucle- update the Higgs fields with a mixture of the over-relaxation

ation rate, or about a 2.5% correctionam?. It remains to  &/dorithm presented if8] and a Higgs field heat bath algo-

integrate the area in the symmetric phase minimum, to comfithm. Note that our “real time” evolution algorithm can be

pute the dynamical contributions, and divide by the volume,"i‘za""ecj as a canonical Monte Carlo evolution algorithm at
to convert this result into the real time rate.

lOg (Pmax/Pmin)

0.008 0.009 0.01 0.011

FIG. 9. Logarithm of ratio of probabilities log.,{meta)/
P.adcrit), as a function ofsm? the supercooling from the equilib-
rium m2. The solid line is the 1lattice, and the dashed line is the
120 lattice, at (44°Ta)=9. Each has a statistical error af1, so
they agree within expected error. The dotted line is the data fro
the 92 lattice at (44°Ta)=7. Its disagreement represents definite,
but small, lattice spacing error.

m =m§q— sm?; hence there is no concern that it somehow
spoils the thermodynamigas might happen for Langevin or
Hamiltonian evolution with a finite time step, due to time
step size errojs

To determine the real time rate for nucleations, we now As described in Sec. Il B, we calculate the “dynamical
have to perform real time evolution on each of a sample oprefactor” d, Eq. (2.8), by evolving a critical bubble con-
configurations withg3,= ¢3, c. We get the sample of such figuration both forward and backwards in time, long enough
configurations by, first, choosing &m? to consider, and, to see whether the system evolves either towards the sym-
next, by performing a multicanonical Monte Carlo simula- metric or the broken phase. Since forward and backwards
tion, as just described, and recording those configurations fdrangevin evolutions are equivalent, in practice we generate a
which ¢2, lies within a narrow tolerance oﬂ;iwc (which  few Langevin trajectories from each initial critical bubble
depends orsm?; see Fig. 8 In fact we can speed up the configuration; each pair can be joined together to form a full
sampling process by choosing a weight funct|W(¢§v) trajectory (see Fig. 10 and by considering all pairings we
which favors ¢2,= ¢2, - even more strongly than the one somewhat improve the statistics. The dynamical prefactor is
used to determine the probability distribution in the last secthen the expectation value
tion. Then, we must study the real time evolution of each
configuration in the sample, at the thermal Higgs maé§ d= i Stunnel
— 6m2, Ny i No. of crossings

As discussed in Sec. Il B, the appropriate dynamics, at
leading logarithm, is Langevin dynamics. The gauge fieldsyhere 5, is 1 if the trajectory leads to tunneling, 0 oth-
evolve according to Eq(3.9), and the Higgs fields also erwise, and(No. of crossingsis the number of times the
evolve under Langevin dynamics, with a mugiarametri-  trajectory crosses the critical bubble value ¢f,. When
cally)_faster time scale. In continuum notation, t_hls means;omputing the error in the determination dfwe must ac-
evolving the fields under the following Langevin field equa- coynt for the dependence of the several trajectories involving

E. Dynamical prefactor, tools and calculation

(4.19

tions (normalizingE so E?/2g? appears in the action a common critical bubble.
One legitimate concern is that the Langevin dynamics we
E2(x)= — H+ £3(x,1), 41 consider are only correct at leading logarithm, and as argued
e (X) AAZ(X) Gy .13 in [19], the treatment should break down when there is a

large Higgs field condensate. Hence our treatment of the dy-
3 namics may not be better than @{1) treatment. However,
oD@ (X)=— 7 H+ Ep(X,1), our determination of the thermodynamic likelihood of a criti-
aDT(x) cal bubble was only good t&r 1 in the exponent, so aB(1)
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FIG. 10. A tunneling trajectory and a trajectory which does not
lead to tunneling, measured from £2@lume and at supercooling the
dm?=—0.0082g*T2. The horizontal dashed line is the critical
bubble value oqug\,. Two half-trajectorieqpositive and negative
timestep valugsare evaluated starting from a configuration at the
critical value of¢§v and glued together at time step 0 to form a full
trajectory.

FIG. 11. Two time histories in the 1340lume, both starting at
critical bubble: that in which the gauge field is not updated
(stays nearly constanand that in which the gauge field is updated.
When both fields are updated, the critical bubble can grow or, in
this case, collapse; if only the Higgs fields are updated, it does not
evolve.

i 2
error in the dynamics is no worse; in any case, since thIIke to know how the product(|A 4,/At|)d depends on

2. .
. . L m<; we ex hat th ndence is weak.
nucleation rate is-e~19°T*, a factor of 2 error in its deter- ; we expect that the dependence is wea

mination only represents a 1% error in the exponent, and To check this we have used two valuesmf =5 and
0 1 — 2
somewhat less than a 1% error in the determinatiofinof, 7=10, and measured and<|A¢aJAt|> for each(on a 124

i 2_ _ 412 .
as seen in Fig. 9. It would be possible to do a better job b jattice atom-= —0.008"T7). The results are presented in

using the full HTL dynamics by the technique developed inyl'able lll, which Sho‘_’VS that the produdt{|A ¢Z/At]) is in-
dependent ofp, within numerical errors. We have also re-

[17]; however, this approach is much more numerically ex- | h  tra . 120 half
pensive. It also requires the inclusion of tAg field in the analyzed the same set of trajectories, sampmjg alf as

thermodynamic treatment, and it could be difficult to elimi- Often; we find as expected thdtand(|A ¢3/At|) each de-
nate finite time step errors in the dynamics, which couldPend strongly on the sampling rate, but the product does not.
make the thermodynamics explored by the evolution slightly We have also varied the degree of supercooling, to con-
incorrect. firm that the dependence of the dynamical prefactors is not
The reader might also be concerned that the dynamics oféry strong. In the 120box we have results at 3 different
a broken phase bubble will not have a good limitags ~ Values of supercoolingsm?/(g*T?)=—0.0082, —0.0093
taken large. If the Higgs fields are allowed to evolve muchand —0.0104. These correspond to significantly different
faster than the gauge fields, will not the bubble either colubble probabilities, as shown in Table IV: the largest super-
lapse or expand on a time scale set by the rate of the Higggooling corresponds to bubbles which ar@> times more
field evolution? The answer is no. If we choose a startindikely to nucleate than with the smallest supercooling. The
configuration with a broken phase bubble, and we evolve th@ubble probability density, Ed2.7), is readily evaluated by
Higgs fields without allowing the gauge fields to evolve, theintegrating the data shown in Fig. 8. However, as expected,
bubble doesot collapse but remains a critical bubble indefi-
nitely. It is essential that the electroweak phase transition is a TABLE IIl. Dynamical information(|A ¢2/At|) andd, varying
radiatively induced phase transition; the state of the gauge and sampling each data series at two réadison a 124 lattice at
field fluctuations, alone, is sufficient to indicate which phasesm?= —0.0082)*T?). Each pair of data at fixegg comes from the
a configuration is in, and the Higgs condensate cannot exsame set of trajectories; comparison shows thand(|A ¢2/At|)
pand into the symmetric phase, or collapse inside the bubblelepend strongly on sampling frequency, but the product does not.
without the gauge field fluctuations changing as well. ToThe(fully independentdata sets with differeny agree within error
demonstrate this point, we have performedsanc evolu-  for (|A¢3/At|) d, showing this quantity has good largebehavior.
tion, meaning an evolution in which only the Higgs fields,

and not the gauge fields, are allowed to evolve. It is com-  4Aat AL\ og A2, T
pared to an evolution in which both evolve, but the gauge”? —— At BT d At d BT
fields evolve much more slowly, in Fig. 11. Naturally, the el W W
value of (;ng changes during each evolution, but in the evo-5 1 3668 0.0169 0.0028 6.21.0
lution with frozen gauge fields, it just bounces around a cen-5 2 240+ 7 0.0264-0.0048 6.31.2
tral value, and the bubble is stable. We should expect, then,g 1 500+ 10 0.01460.0037 7318
that (|A ¢5/At|) andd will depend ony. But as we must 19 2 322:6 0.0218-0.0048 7.0:1.6

check, the product should have a finite limit. We would also.
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TABLE IV. The nucleation rate calculated with 3 different supercoolings, in &,188T a=4/9 lattice.
Pc is the probability density tha¢§v= ¢§VYC, calculated from Eq(2.7). The nucleation rate in the fifth
column isPc(|A ¢2/At|)d/2.

S AG |\ oy rate oo /T

i —log[PcX o, T? d —log| —

9T 0g[Pex aT] <‘ At a\‘?’vT‘l log V. oadT4
-0.00835 94.%0.6 3436 0.025+0.008 97.:0.7
-0.00951 71.60.5 3319 0.020+0.005 74.1-0.6
-0.01057 54.8 0.6 3148 0.009+0.004 58.80.7

the dynamical factors are seen to be fairly stable throughoutyst be~ 1/(tnucdﬁuc)- The time scale is set by how fast the
this region, varying only by approximately a factor of 2 or 3, yycleation rate is changing: t,,=(dSdt)~!
which is in practice insignificant when compared with the —[H(T)Td9dT] "%, with H(T) the Hubble’s constant at
differences in probabllltyz. . _ temperaturel. The separation isl, o~ vdnue, With vg the

Note the units orf| A ¢3/At[). The units on the first term  sound speed-1; this is because a bubble is preceded by a
in Eq. (2.6) are the same as @}~ 1/a,, T% while to get a  shock front propagating at approximataly, which heats
rate per unit volume we must divide by the volumey 1/ the plasma, and nucleations are suppressed in the heated re-
~a3VT3. Hence the parametric appearance of the nucleatiogion. Hence the nucleations take place when
rate isocas’vT4 log(1/g), using oo~ T/log(1/g). This arises
simply from the relation between dimensionless lattice quan-

tities and physical quantities.
physical q rate=

(4.19

’ Tds| *
dT
F. Numerical results and relation to cosmology

The previous two subsections contain all the ingredientg-. ., Fig. 12, and from the mass-temperature relation, Eq
needed to determine the real time rate for bubble nucleatioges 3, we .see,TdS/dT~2><104 while from the Friedma’n '

It remains, first, to put the ingredients together and, secon . _ 2 ~38. .
. . g . equation,H = \47°g, /45(T?/m,) ~e *°5T. Hence the in-
to determine what value for the nucleation rate is mteresnngﬂeresting value ofS is 16+ S~106, or S~90. The g?Ta

cosmologically. We write the bubble nucleation rate as — 4/7 data show this value is obtained &m2=(— 0.00880
+0.00010p*T?, while the finer

rate [ g2T2 lattice data give
~ = log( 1/g)a§vT4 exp(—9). (4.15 (—0.00864-0.00010p*T2. An extrapolation to zero lattice
v mp spacing, assumingd(a?) errors, gives dm?=—0.00840

+0.00020. Again, this is fon/g?=0.036; naturally the
For the realistic standard model value§=(11/6)g°T? and
a,,~1/30, minus the logarithm of the term in frofgvaluat- O T T T
ing log(1h) using Eq.(3.9)], is 16, so the rate is ekp (S @ TN
+16)]T%. Our result forSis shown, as a function afm?, in o
Fig. 12. This represents our final numerical result. It is un- g,
fortunate that the numerical effort is too large to perform the » &
calculation for several couplings, and we have also not con- S
sidered a realistic set of parameters in the MSSM. 2
What are the errors din Fig. 12? Using the numbers in 9

100 - 4

80 - -

Table IV, for example, we see that the final statistical errors ® - B=9 result
are strongly dominated by the errors of the probability dis-~— 6o .
tribution P. In addition, there is the systematical error of the e B=7 lresu“ | -]
real-time update evol_:Jtl_omsieg gebc. 2I2V E Bogh c(;jf thesed 0.008 0.009 0.01 0.011
error sources are easily include error band aroun

Yy Y- —5m?2/g*T?

Sin Fig. 12.

We want to know at what value @ the phase transition FIG

. 2 .

occurs, so W_e can determirden E_md the_ref(_)re the amount degree of supercooling, for thnga:4/7 (dotted curve and
of supercooling. The relevant picture is discussed5l. 9°Ta=4/9, 124 lattice (solid curvé data, each using
The bubbles of the broken phase which convert most of the|z 42 /at|)d as evaluated am?=—0.0082*T2. The points are
volume into the broken phase nucleate over a characteristige 12 data, using the three evaluations (A $2/At|)d at the
period of timet,,c, and with a mean separatialy,c, which  values ofsm? where they were evaluated. Error bars, not shown,
is also the diameter they grow to. For one such bubble t@re dominated by the error in the determined probability distribu-
nucleate perd3,. volume in timet,,, the nucleation rate tion, and are about1 in S

12. S, as defined in the text, as a function 8Mm?, the
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amount of supercooling is strongly dependent on the strengtWwhere the technique really provides us no way of getting the
of the phase transition, and hence Xfg?. This is our final  non-exponential term we write, but we guess that this is cor-

numerical result. rect on parametric grounds.
For comparison with the case we have studied numeri-
V. OTHER APPROACHES cally, we solve for the value odm? required to makee/T

=S=90, using the nonperturbatively determined values of

Since we have only computed the nucleation rate nonperand A ¢2(T.) from the last sectiono=0.07%*T® and
turbatively for a single set of parameters, the main app"camgv(TeO):z.sz?. Substituting into

tion of this work is as a benchmark for studying the perfor-

mance of other, fewer first principles means of determining 3 12
the nucleation temperature, which have previously been used s 64mo
in the literature. For this purpose, we will apply a few of 3[A¢221\/(Teq)]2E
these techniques to the current set of parameters, to see how

. 2 . . .
accurately they getermln&n . (This actuall)é gives an optl- gives dm?= —0.007@*T2. This is low by about 20% from
mistic appraisal; the dependence bn ém” is strong, so the nonperturbative value

the relative error irSthe logarithm of the nucleation rate is Alternately, we could ask how accurately the thin wall

typically almost twice the relative error ibm?) approximation predicts the nucleation rate at the actual value
of ém?. Plugging in the value ofm? found in the last sec-
A. Thin wall approximation estimate tion givesS=62, which is off by almost a third.

The idea of the thin wall approximation is to hope or It iS Clear that the th|n Wa” appl’OXimation iS doomed to
assume that the critical bubble is “thin walled,” which tech- errors of this magnitude when applied whéz€l ~90. Note
nically means we assume 3 things: that the radius of the critical bubble, faim? determined

(1) The bubble radius is much greater than the thicknesgbove, is
of the phase interface, so we can treat the interface as an
infinitely thin geometric surface. ( 3E )1’2

(5.9

(2) The surface tension of the interface, at the nucleation r=
temperature, is the same as at the equilibrium temperature.

(3) The free energy difference between the phases i
given by the leading order expressidV/=I1AT/T, with |
the latent heat at equilibrium. This neglects the change in
between the nucleation and equilibrium temperatures.

In the limit of small supercooling, all three approxima-
tions become exact. Hence the thin wall approximation i
appropriate if we are interested in very smah?, where the

critical bubble free energy is huge. The approximation is inPUtd doﬁs pkrjetty well. hat. althouah the thin wall .
expecting it to continue to work down to where the critical We should comment that, although the thin wall approxi-
bubble free energy i~ 90T, mation requires nonperturbative inputs, it is much easier to

The thin wall approximation is that a bubble of radius determineA ¢, ando on the lattice than to directly compute
will have energy the nucleation rate. In particular, we could think realistically
of doing a “scan” ofA¢§v and o at several parameter val-

(5.6

Ao

%ut it is impossible for the thickness of the interface to be
less than~ \T/o; even if the intrinsic thickness were some-
how thinner, the surface fluctuations would generate such a
thickness. Hence never greatly exceeds the surface thick-
Jess if we are interested B/ T~90. However, all consider-
ing, the thin wall approximatiorigiven nonperturbative in-

B ) T 5 ues, in the standard model or one of its extensions, but to do
E(r)=4nrfo——=Tr7AV, (5.9 the nucleation rate at numerous values of parameters would
probably be beyond what is currently a reasonable amount of
with o the equilibrium surface tension and numerical effort. Hence the thin wall approximation may be
a reasonable approach to getting “rough and ready” nucle-
leAT — Sm? ) ation information.
AV= T =3 AdaTeg- (5.2

B. Perturbative estimate

We find the extremum over af The traditional method for determining the bubble nucle-

3 ation rate in the context of a perturbative treatment of the
JE 20 _ 16mo strength of the phase transitiésee for instancé50—52) is
=-—, E= . (5.3 . . :
ar AV 3[AV]? to approximate the free enerdegffective action to be the
tree kinetic term for theégauge fixedl Higgs condensate,
We now estimate that the nucleation rate will be plus an effective potential term computed at some order in
the loop expansion:

272

g
3 )afvlog(llg)T“, (5.9 E:f d3x(%(V¢)2+V(¢))- (5.7

D

rate=exp(—E/T)
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It is also possible to consider radiative corrections to the One then assumes, reasonably, that the critical bubble, the
Higgs field kinetic energy, as we discuss in the nextsaddle point of Eq(5.7), will have spherical symmetry, and
subsectiort! looks for the saddle point of

We begin with the simplest possible estimate. We take the
one loop effective potential, Eq3.8), reproduced here for
convenience:

© (1
e=an [ S 0onrve) 61
0

maT g® over all ¢(r), with the boundary condition thab(r) go to

A
Vi I00p:T¢2_ @‘153-” Z¢4- (5.9 zero at large, so we have a bubble in the symmetric phase.
One finds the saddle point free energy as a functiomip{E

Here we have neglected scalar loops, which give a contribu@nd looks for where it takes on the desired Vazlue_’ Bay

from Eq. (5.8 that at degree of supercooling we are aftéks in the previous sec-
tion we will simply assume that the bubble zero modes etc.
672 give a dimensionful prefactor of-a2T* Since even a
maTz m% (1 loop = 5 (5.9 change in the numerical value of this prefactor by a factor of
& 8m\ 1000 would represent only a change of 7 in the logarithm of
the nucleation rate, our results depend only weakly on this
there are two degenerate minima with treatment.
We are not aware of a purely analytic way to find the
9T saddle point of Eq(5.11), but the well-known overshoot-
$=0 and ¢=¢o(1 loop=—-. (5.10  undershoot algorithm is both efficient and accurate. We find,
for N/g?=0.036, that
At best perturbation theory is an expansion-~{gT/my,) Sm2=—0.0058°T2,

~gT/¢; hence in\/g2. Two loop corrections will give a
correction tog, of order (\/g?) ¢, Which is larger than the

scalar loop contribution we neglected above. This justifies L Vdp— g°T®
neglect of the scalar loofg. Tequilibrium™ | 2Vdg= 3072273\ 52
=0.0302)*T2. (5.12

e note that a full-fledged analytical computation of the nucle-

ation rate in the spirit of the Langer method is very difficult in In comparison to the nonperturbative values these are both

radiatively induced first order transitions. The problem is how tofalrly far off. The degree Of, supercoolmg is 2/3 of the r|gh.t
distinguish the fluctuations which give the effective potential from value and the surface tenglon IS 400/9 of the nonperturbative
the fluctuations of the bubble in this potential. The results from avalue. One loop pertyrbatlon theory n®t accurate even at
cubic anisotropy modela simple spin modglcalculation by Stru- \/g®=0.036, though it is not completely wrong.
mia and Tetradi§53] display a dramatic dependence on how the ~We therefore go on to the two loop effective potential.
separation of the fluctuations is done; since the physics cannot déNeglecting powers ok and settingnyr<<m, to zero within
pend on the separation of fluctuations, this effect must be an artifadoops, the new term in the effective potential &)
of the approximations done in the calculation. On the other hand, if
there is a sufficiently strong first order transition already at the tree
level, the Langer method is relatively straightforward to apply reli- V2 100p= V1 loop™
ably [54-56.

?As an aside we mention that the expressions usually written fo
scalar loopgRefs.[57,58, though not Ref[59]) must be inconsis-

tent because they depend mﬁ,T in a way which does not satisfy . e D L .
Eq. (2.5. The problem is that they were derived using a Higgsabsorbed into a shift imy ;. The justification for neglecting

boson mass in loops which does not correspond to the curvature §palar effects is the same as before; for more discussion see
the potential; the value of? used in loops includes the second footnote 12. _ _ _ _
derivative of thex ¢* potential term but not of the negative cubic  Including this term in the effective potential, we find that,
term, which is of the same size in the interesting region and canndhile $3=2.19 is still smaller than the nonperturbative
be neglected in any consistent approximation scheme. If we includé& d)iv, we now get too large a surface tension and too much
terms in the effective potential in the spirit of an expansionfig?,  supercooling, by a substantial margin:

then no reference to the scalar self-couplingnfzrT appears in any

loop induced term untiD((A/g?)*?), when an infinite class of dia- 02 100ps= 0.088)T3,  5m*(2 loopg = —0.016&y*T2.

grams must be resummed, corresponding to a single Higgs loop but (5.19
including iterated one loop mass corrections from gauge boson

loops within the 3D theorynot just the nonzero Matsubara fre- The amount of supercooling is too large by a factor of 2. At
quency loops the value of dm? found nonperturbativelyS, loop™ 260 is

9*¢?T?log(¢/gT), (5.13

51272

Where the choice of T inside the logarithm is a convenient
choice of renormalization point; a different choice can be
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TABLE V. Supercooling and surface tension, using several ana- 80
lytical or semi-analytical approaches, compared with the full non-
perturbative answeflast ling. The meanings 0Zp,geandZe,, are
explained in the next subsection. The one loop result gives too
small results; all other results give too large an answer.

Potential used Wave functiah — ém?/g*T?  o/g*T?® E wh
1 loop Tree 0.0058 0.0302 E
(o]
Tree 0.0168 0088 o
2 loop Zeo 0.0109 0.072 °
Zpade 0.0115 0074 &
=
Tree 0.0151 0097 T *[
“Nonperturbative” Zexp 0.0110 0.083
Zpade 0.0114 0.084
Nonpert. Result 0.0084 0.075

A R W R S S S I Y S WA SR RN S S S S|

almost 3 times too large. All the results for various effective
potentials are summarized in Table V.

It is also possible to define a nonperturbative “effective
potential for¢,” as follows. We first find the largest volume
for which the configurations withbi\, intermediate between
the pure phase values do not show phase segregation. Th
turns out to be a surprisingly large volume. To see this, recall
why, in a larger box, a configuration with?, intermediate
between homogeneous phase values is a mixed phase co
figuration, rather than an extensive region with the interme-x
diate field value. The effective potential we will eventually <,
derive is shown in Fig. 13. The state halfway between ™.
minima has negative curvature. Infrared Higgs field fluctua- > 4r
tions are therefore spinodally unstable. If we forqbé\, to g
maintain its value, this prevents the zero mode from grow- <
ing; i.e., it keeps¢ from shifting value homogeneously
through the box, but smak modes will be unstable. Any 2
mode withk<w_, with o _=+—V" evaluated at the un-
stable point in question, will be unstable to grow. However,
in a finite volume, there is a discrete spectrumkahodes.
The lowest nontrivial mode hds=2=/L; so in any volume
smaller thanL=27/w_, configurations with intermediate

[o2]

0

05 1
¢§V will be homogeneous. In larger boxes they will be inho- T
mogeneous, containing a region closer to one phase and . ¢/ g
region closer to the other. FIG. 13. Left: free energy —In(probability)] distribution as a

~ Now, we determineF (¢3,), meaning—log[Prob(qSi_V)], function of ¢2, in a 4G box ata=4/99°T (8=9). The numerical
in such a “large but not very large” volume. In practice We errors are<0.2 and not shown on the plot. Right: plot at left inter-
use a 49 lattice at3=9, meaning a volume 17@7T ona  preted as an effective potential fak, as described in the text.
side. This is pretty big, though the volumes we used to studyrhe dotted line is the 2 loop perturbative result, included for
critical bubbles were typically 3 times longer on a side. Wecomparison.
then write V=F/V and ¢= /¢~ ¢3S phase), with
$4(s phase) the lower local minimum d¥ (43, at Teq-  and will show the disappearance of the phase transition at
That is, we throw away the part of the picture on the left inlarge \/g2. The disadvantages are that it is numerically ex-
Fig. 13 which lies at smalleg2, than the first minimum, and pensive(though less so than a direct determination of the
rescale thex axis for the rest. We take the result to be anucleation ratg is somewhat arbitrarghow exactly do we
“nonperturbative measured( ¢),” shown at the right inthe choose a volume, for instange@and is still only approxima-
figure. tive. In particular, it is not at all clear that it is reasonable to
The advantages of getting an effective potential in thisassume that) as defined above will have canonically nor-
way are that it should automatically get the right latent heatmalized gradient energies.
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in agreement with the expression found bydBker et al.
f/\_/\‘L [61] (see alsd62], where these wave function corrections
have been considered at length
Both corrections from Higgs fields, and from higher order
in the p<m,y, expansion, will give at mosD(\*?g®) cor-
rections too and Sm7;, whereas we see from the estimate
FIG. 14. Diagrams which lead t®(\/g?) important Higgs  for ¢, that the above term contributes @(\/g?). It will
wave function correc_tions. The vertices in the diagram at right onlyqrive down botho and sm?, since it lowers the gradient
exist because there is a condensate. energy contribution to the energy, and so makes it cheaper to

B _ ) . have bubbles or interfaces. We should mention that to com-
The “nonperturbative effective potential” has a larger pute the §/g?)%2 corrections, we would have to perform a

separation between minima, but the height of the barrier riseg,ctyation determinant, since the Higgs field mass and the
relative to the two loop potential more weakly thandfs s width of the interface are parametrically the sathe.
a result it gives a slightly _Iower degree of supercooling, UnfortunatelyZ( ) goes to zero at a finite value gf. At
ém?=—0.0151, as summarized in Table V. Note howeverthe value of where this happens, the condensate is so weak
that the surface tension is further off than in two loop per-that perturbation theory is also breaking down; the failure
turbation theory. What this exercise teaches us is that thgignals that neglected higher order effects become essential.
difference between the perturbative and the nonperturbativgg geal with this, we will make an ansatz for those effects,
values ofo and sm? are not primarily because of the limi- chosen to maintain the correct largebehavior ofZ(¢) but
tations of the 2 loop effective potential. to preventZ(¢) from going to zero. We have considered two
choices to approximate:

C. Perturbative estimates including wave function corrections

We have just found that estimates of the degree of super-
cooling and of the surface tension were not substantially im-
proved by passing from the one loop to the two loop effec-
tive potential, using the tree level Higgs field kinetic term in Since we do not know the higher order behavioZofve do

each case. In fact this result is not surprising. While the two . ; .
} . > not know which of these is more sensible. If the answers we
loop effective potential can tell us the latent héatpy, at

. . v =" . get depend strongly on which one we take, that is an indica-
next to leading order in/g?, the procedure we used is still g b gy

. . o tion that the perturbative expansion is failing and we cannot
correct only at leading order in/g? for determining the P P g

i t b it d ti te th trlust either.
quantities we want, because it does not incorporate thermal™y,, o0\ e re-computém? and o, including these wave

corrections to the Higgs field wave function. In this SUbseC'function corrections, we get a result which is much closer to

tion we see what happens when we incorporate Higgs Wave nonperturbative value; see Table V. Further, the choice

function correctlons whlchzmake the calculation complete toOf how to resum higher terms @(¢) appears not to matter
next to leading order im/g-.

Using the one loop effective potential, we can get themuch. However, the supercooling is still over-estimated by
. : ' . about 25%. Atém? where the nonperturbative calculation
parametric estimate,~g>T/\, so my($)~g*T/\ in the ° b

broken phase and inside the wall. The wall thickness, on thﬁqhg vzvslo?pe p%T:rS]E a}r\;av?tﬁtg) :Sdtt: Slf; rr[::ae:jci’el\?-/ ?{;ﬁgi/igrore .
other hand, is set by the Higgs boson mass in either phas

fions givesS= 143, more than 50% high
~ ~0g3 i - ' . ) .
Lwai~ 1myr~g°T/ Y\ There;ore, up to a correction sup In summary, using a perturbatively computed effective
pressed by a half power a’.ﬂ g, we may take thav bPSO”S potential but tree Higgs kinetic terms appears to work badly.
to be heavy compared with the reciprocal wall width, and

he Hi d h back q iggs wave function corrections are important and improve
treat the Higgs condensate as a homogeneous background (e rformance of the perturbative treatment; they should be
them. For this reason it is possible to incorporate the leadin

. : X X theluded in any subsequent work which tries to study elec-

non-potential correction as a wave function correction for the[roweak bubble nucleation by perturbative means. However

Higgs field, even with wave function corrections, perturbation theory is
Z(¢) still not a very accurate way to treat bubble nucleation.

1
§(V¢)2:>T(V¢)2- (5.19

1
Zexp: exr( - 52) and ZPade: m . (517)

Expanding the diagrams shown in Fig. 14 to second order in 1such a fluctuation determinant calculation has been performed

external momentéreated as much less tham,), we find a by Baacke[63], and has also recently been considered by Par-
correction to the Higgs gradient term which is, in LandaunaCheV and Yaff§64], but since neither reference uses the two loop
gauge ! effective potential, their results cannot be considered correct

through toO(N/g?). It is not clear to us how to simultaneously

2 perform the fluctuation determinant and to incorporate the two loop

_1 E: _ £ ﬂ- gauge contributions to the effective potential. Without resolving

327 my, 167 ¢’ this question, the calculation of the fluctuation determinant is not
(5.19 justified in the sense of an expansionhifg?.

Z(p)=1+06Z(p)=1—
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VI. CONCLUSIONS the determined rate should be independent of the choice of

In this paper we have presented a technique for determinmegsurable'. i _
Fix attention on a particular volume and a particular value

ing bubble nucleation rates in theories with classical infrared

thermodynamics and dynamics, in a fully nonperturbative®’ T<Teq at which the nucleation rate is small. We must

way—even where the rate is exponentially small. The techpegin by clarifying thedefinitionof the nucleation rate. First,

nigue can be considered a generalization of Langer’s formal\f;’]e must be S‘Ible :]o say_l\f\;]hether or notha configuration is in
ism [28], which replaces the approximate saddle point ex-N€ Metastable phase. This requires that we poss@se
easurable in terms of which the free energy shows a “two

pansion of that method with a nonperturbative Monte Carld"¢&; - : . L
calculation and takes care to treat correctly the microscopi¥VeII _structure, like Fig. 3, with the pr qbab|llty E(K.:) expo-
dynamics of the nucleation process. The procedure uses &gntially smalzler than aw). For simplicity of notation let us
interesting mixture of multicanonical Monte Carlo and real2SSUme thaty, serves this purpose. .
time techniques. Within the context of the dimensional re- We can now draw two lines, roughly &B) and (D) in
duction approximation for the thermodynamics anddglo  Fig- 3; all we require is that they be well betwe(@) and the
er's effective theory for the dynami¢d5], our treatment is ocal minima, such that the likelihood to be @) is expo-
exact up to small and controllable numerical errors. It isnentially greater than the likelihood to be &) but expo-
useful when the microscopic physics is known well enougrentially less likely than to be a#) [and similarly (D) is
and suitably amenable to a lattice treatment to permit agXPonentially more likely thariC) but less likely than the
accurate first principles Monte Carlo calculation. In particu-Proken phase We say that a configuration is “definitely in
lar, it can be applied at the electroweak phase transition. the metastable phase” if it has a value ¢, to the left of

We have applied the technique to the electroweak phasdd) and is “definitely in the broken phase” if it has a value
transition in the standard model, at a value of the coupling0 the right of O).
which is just enough to preserve any baryon number after the The intuitive meaning of the nucleation rate is the follow-
transition; the ratio of 3D effective theory couplingswas  ing. Take the canonical ensemble, and throw out all the con-
taken as\/g?>=0.036. The degree of supercooling is suchfigurations to the right of B), leaving only the ones which
that the thermal Higgs boson mass squared fallsshy are clearly in the metastable minimum. Now carry out the
= —0.0084@*T? from its equilibrium value. time evolution for a “medium” amount of timetegium,

The main value of this measurement is that we can comexponentially longer than any microscopic time scale, but
pare it to the results of more traditional and fewer first prin-€xponentially shorter than the time it takes for most of the
ciples calculations. We find that the most common method irinetastable configurations to escape to the broken phase. At
the recent literature, using the two loop effective potentiatthe end of the time evolution, look to see how much of the
but tree level Higgs kinetic term, is very unreliable. For theensemble is definitely in the broken phase, i.e. to the right of
parameters considered it overestimates the amount of supdD). Define that fraction, divided bytyeqium, to be the
cooling by a factor of 2, even though it gefg, the length of ~ Spacetime rate of nucleations.
the Higgs field in the broken phase, to within 10% error. If ~ This intuitive meaning of the nucleation rate will be our
one considers thaction of the critical bubble, it is even definition. Note that it is equivalent to the following. Con-
further off. Including Higgs field wave function corrections sider the set of all trajectories of lengtfegium, starting from
substantially improves the accuracy; the amount of super@ny configuration(symmetric, broken, or in betwegmith
cooling is then only overestimated by about 25%. The reappropriate Boltzmann weight. The nucleation rate per unit
maining discrepancy cannot be attributed to the inaccuracyolume is
of the effective potential; a nonperturbative “effective poten-
tial for ¢” is off by the same amount. On the other hand, a rate= P(symm- broken (AD)
thin wall estimate, with nonperturbative inputs, does quite VimediunP(Symm—symm)’
well—it is off by 20%, in the opposite direction.

It should be straightforward to apply our technique to thewhere (P) means the fraction of the trajectories satisfying the
more phenomenologically interesting MSSM or NMSSM, given condition. In other words, find what fraction of trajec-

which can support viable baryogenesis. tories start in the symmetric phase and end in the broken one,
and divide by the number which start and end in the sym-
ACKNOWLEDGMENTS metric phase, the volume, and the tini¢he denominator

should read Bsymm-— left of (D)), but since configurations
between(B) and (D) are exponentially rare the difference is
exponentially small. This definition of a rate depends on our
%xact choices forB), (D), andtegium» DUt the sensitivity
'should be exponentially weak—unless there is some addi-
tional long time scale in the problem, besides the nucleation
rate, in which case our technique probably fails. We can
think of the nucleation problem in terms of sampling over
the space of real time trajectories, and the sampling may be
In this appendix we justify why the procedure presentedtaken using the equilibrium ensemble. The goal is now to
in Sec. Il of the main text “works,” and in particular why show that our technique correctly determines the number of
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CT97-0122. A part of the simulations have been run on th
Cray T3E at the Center for Scientific Computing, Espoo
Finland.

APPENDIX: DISCUSSION OF THE INDEPENDENCE
OF THE CHOICE OF MEASURABLE
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crossing trajectories, relative to all trajectories which remain  Space of configurations ines of constant_order parameter
near the symmetric phase, and that this does not depend sen-
sitively on our choice of measurable.

From here on we will consider our technique applied to
two classes of dynamics. The first is Hamiltonian dynamics,
for a system where the phase space is the tangent bundle

Broken

over the space of configurations. We further assume that the | Metastable Phase
. . . . . Symmetric
Hamiltonian is a function of space pl@s constant timeghe Phase

inner product function on the tangent space. In other words,
the momenta appear quadratically in the Hamiltonian, and in
any orthonormal basis for the momenta the quadratic form is
a multiple of the identity. Probably these conditions are too
strong, and we could work with any Hamiltonian system

which could be written as a fiber bundle over a configuration

space, but the treatment would be more complicated. The Surface B Surface D
other class of dynamics we consider is Langevin dynamics, This line of constant
where the noise term is Gaussian, white, and additive. White order parameter is the

separatrix for that order parameter

means there are no unequal time correlators in the noise, in
which case it is described by a weight function on the tan- FIG. 15. A cartoon of how configuration space is foliated by a
gent space; we take that weight function to be of the sameneasurable—here the lines of constant measurable do not coincide
form as the momentum distribution just described for thewith the ones which determine the surfagandD.

Hamiltonian case. Probably one could extend our technique

to the case where the noise is stronger in some coordinate Oigeaf cONfig
directions or has an amplitude which varies in space. How- 5 _
ever, such Langevin systems are notoriously subtle; see e.g. :f ‘ O (paLconfigtmegium ) <(B)).
[65 66] traj through config
Consider two measurables; call thefh and O,. (They (A2)

could for instance b2, and some other volume average of Oy, of a configuration is the fraction of trajectories, starting

a local observable, af, could for instance be the maximum at that configuration, which are in the metastable phase after
over all centerpoints for spheres of radiysf [ gyne@®'®.)  time tyeqium. For Hamiltonian dynamics, the measure on the
For each observable we can make a free energy plot argPace of trajectories through a configuration is just the ca-
identify some least likely value a, O;. The measurable Nonical measure of the tangent space; a point in the tangent
O is a map from the space of configurations to the real numzPace uniquely defines a trajectory. For Langevin dy”am'c.s’
bers: the subspace which gives a particular valu®ds a the measure for the space of trajectories thro_ugh a point is

. . : . . iven by the measure of realizations of the noise, with each
codimension 1 surface in the space of configurations. Hencgiectory corresponding to the noise realization which gen-
defining a measurable also defines a foliation of the configugrates it. We do not us®,., in our work because its mea-
ration space. We will call the special surface, consisting okurement is impractical.
all configurations withO= O, the separatrixfor the mea- The method presented in the main text for the determina-
surableQ. This notation is in keeping witf67], where many tion of the nucleation rate, applied to an observaBlecan
of the root ideas of our algorithm can be found. One wouldbe phrased as follows: first, we find the probability distribu-
like the separatrix to separate the configurations more likelytion as a function of the value aD; that is, we find the
under time evolution, to go to the symmetric phase, fromintegral along each surface of consté&hof the weight of the
those more likely to go to the broken phase. canonical ensemble. This gives

Note that(B) and(D) also give codimension 1 surfaces in

. : P(|O_Ocrit|<€/2)
the configuration space, namely the surfaces Whé(,&akes o d(surf areaexp(— H/T)
on the valuegB) and (D); we will call these surfaceB and € PO<Oci) surf
D. To one side of the ;urfada is the metastable_phase, to X[dO/d(norma)] %, (A3)
the far side of surfac® is the broken phase, and in between
are intermediate configurations. For the measurébte be  the integral over the surface of the Boltzmann weigtit,
useful, we require that th@® separatrix carry all but an ex- vided bythe surface normal derivative @. The surface
ponentially small part of its weight between the surfaBes normal derivative appears because the larger the derivative
andD. We give a cartoon of how these surfaces in configudis, the narrower is the region over which differs by less
ration space look, in Fig. 15. than e/2 from Oy .

It is possible to define an ideal operat6kge,;, which will Multiplying by (|AO/At|) precisely compensates for this
provide an ideal separatrix for distinguishing configurationsnormal derivative factor. This is because the mean value of
which are in the domain of attraction of one or the other|A(/At|, at any point in configuration space, is proportional
phase. Namely, we define to the gradient ofD at that point. To see this, note first that
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Separatrix One and returns to the phase it came from, like trajectory 1 in the
figure. If the trajectory crosses times, it gets counteah
S times in the sampling procedure, once at each crossing of the
separatrix. Each count is with the same weight. For Hamil-
tonian dynamics this is because the evolution conserves en-
ergy (hence the Boltzmann factors are all the saraed
R : phase space measure. For Langevin dynamics it is because
the Langevin dynamics correctly generates the thermal en-
Trajectory 3 {‘ semble. In either case, the number of times the trajectory gets
S sampled is in proportion to its contribution to the flux, and
each time it contributes zero th henced correctly accounts
/( for the number of nucleationzerg the trajectory causes.
Next consider a trajectory which does get from the meta-
Separatrix Two stable phase to the stable one. It is guaranteed to cross both
, separatrices an odd number of times, because each is to the
_FIG. ;6. Car@oon of separatrices for twq measurables and S_Omﬁght of B where the trajectory starts and to the left Df
Lraje_ctones. Trajectory 1 crosses separatrix 2 but not separatrix 1o it ends. If the trajectory crosses a separattimes, it
ut it (therefore)'c_rosses an even number of times, and leads t_o a Qi appear in the average, used to determine times, each
entry in determiningly,. Similarly trajectory 2 crosses separatrix 1 . - .
but not separatrix 2, but also does not contributég. Trajectory with the Samg ngght, and each appearance contrllbutes., g
to the determination ofl, so the number of nucleations is

3 does lead to a nucleation. It is sampled 3 times in computig . .
each time contributing1/3), and sampled once in compultirig,, correctly counted as 1. Again, the Boltzmann weighted

contributing 1. Hence it gives the same contribution to the total rat@mount of flux the t,rajeCtory C_rossmg repre_sents Is th_e same
computation for each measurable. at each of its crossings—of either separatrix. Hence if there

is a larger total flux through, say, the separatrix @y, then
only motion normal to the surface of constafit matters. this individual trajectory represents a smaller fraction of that

Next note that, by our requirements on the dynamics, the rmiuX, and gets an appropriately smaller weight in the sam-
metric distance traveled in one direction, on averaging oveP!ing for determiningdy,. Its positive contribution to the
possible momentéor Langevin noise realizationsis inde- value of dp; is correspondingly smaller. Since the set of

pendent of the position in configuration space or directiorf@ectories which mediate nucleations are the same, which-
considered. Therefore ever separatrix we use to sample them, the smaller size of

exactly compensates for the larger flux through the separa-

Trajectory 1 T \Trajectory 2

< ‘ A_O’> trix. This is why the total rate computed is the same for each
At choice of O.
While different observables give the same answer for the
J d(surf aregaexp(—H/T) nucleation rate, they are not equally convenient as numerical
surf

o tools. A good measurable must satisfy two conditions. First,
o it must be easy to measure it, so it can be used practically in
Lurfd(surf aregexp( —H/T)[dO/d(norma) ] reweighting configurations in the Monte Carlo calculation
(see Sec. IV B Second, when determinirdy statistics must
(Ad) accumulate with a reasonable sample of configurations,
The product is proportional to the Boltzmann weighted areavhich means that a reasonable fraction of trajectories
of the separatrix, and hence the flux through the separatrithrough the separatrix must actually lead to bubble nucle-
as claimed in the body of the paper. ation. Otherwise it may take an exponentially large sample
The flux through the separatrix will clearly differ for dif- of trajectories to determiné with good statistical accuracy.
ferent choices of), as illustrated in Fig. 16. It remains to Roughly, this will require that the separatrix of the observ-
show thatd,, as defined in Eq(2.9), precisely turns the able be close to degenerate with the separatrixOgt,,.
correctly normalized flux of trajectories through the separaNote that, by construction, under Langevin dynamics half of
trix into a count of trajectories which mediate nucleations.the trajectories through theD;4, Separatrix lead to
Figure 16 illustrates why this is true. First consider a trajecucleations, and that this is the upper bound among all
tory which crosses the separatrix an even number of timesbservables.
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