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Electroweak bubble nucleation, nonperturbatively
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We present a lattice method to compute bubble nucleation rates at radiatively induced first order phase
transitions, in high temperature, weakly coupled field theories, nonperturbatively. A generalization of Langer’s
approach, it makes no recourse to saddle point expansions and includes completely the dynamical prefactor.
We test the technique by applying it to the electroweak phase transition in the minimal standard model, at an
unphysically small Higgs boson mass which gives a reasonably strong phase transition (l/g250.036, which
corresponds tomH /mW50.54 at the tree level but does not correspond to a positive physical Higgs boson mass
when radiative effects of the top quark are included!, and compare the results to older perturbative and other
estimates. While two loop perturbation theory slightly underestimates the strength of the transition measured
by the latent heat, it overestimates the amount of supercooling by a factor of 2.
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I. INTRODUCTION

Electroweak baryogenesis provides one of the best m
vated and most testable mechanisms for the origin of
cosmological baryon number abundance. However, sev
ingredients are missing before we can make quantitative
dictions. One set of needed ingredients is particle phy
inputs. For instance, it is difficult to say much about ele
troweak matter at temperaturesT;100 GeV, where elec-
troweak symmetry is ‘‘restored’’1 and baryogenesis may oc
cur, when we still do not know the Higgs boson mass. It
also absolutely necessary to know what other lightm
&150 GeV! scalars there are, what couplings they have w
the Higgs boson~s!, and whatCP violation is operative at
electroweak energy and temperature scales. Answering t
questions will require new experimental results, and we w
not have more to say about that here.

However, even if we knew the complete electrowe
theory we could not at this time make accurate prediction
what baryon number would be cosmologically produced,
cause we do not have a complete set of reliable comp
tional tools for studying the electroweak phase transition
the physical processes responsible for baryogenesis. Th
best illustrated by briefly reviewing what the scenario is, a
which aspects we do or do not currently have good con
of.

Assuming a standard thermal history for the early u
verse back to2 T;100 GeV, electroweak baryogenesis a
pears to be possible only if there is a fairly strong first ord

1There is no qualitative distinction between the ‘‘symmetric’’ a
‘‘broken’’ electroweak phases, which are in fact analytically co
nected, and the symmetry is never truly ‘‘broken’’ even in vacuu
but when the phase transition is reasonably strong their quantita
behavior is very different. We will use the ‘‘symmetric’’ and ‘‘bro
ken’’ terminology because it is convenient and widespread.

2See@1# for an interesting discussion of what could happen if t
assumption were not true.
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electroweak phase transition@2,3#. The electroweak phas
transition, if there is one, is radiatively induced, and det
mining its order and strength is a difficult problem with
long history. In summary, perturbation theory proves to be
some limited use when the phase transition is strong, b
reliable calculation of the strength of the electroweak ph
transition requires a nonperturbative lattice calculation. T
equipment for performing an accurate lattice calculation n
exists, using either a 3-dimensional effective theory@3–8# or
4-dimensional SU~2! gauge1 Higgs theory@9,10#, so this
part of the problem is solved.

If the electroweak phase transition is first order, then
universe will remain in the ‘‘symmetric’’ phase even after
is no longer thermodynamically favored. How deeply it s
percools is the topic of this paper and we will return to
momentarily. After sufficiently deep supercooling, critic
bubbles of the broken phase form at a cosmologically
evant rate, expand, and coalesce, completing the ph
transition.3 It is the expansion of these bubbles into the sy
metric phase which is expected to generate the baryon n
ber. Specifically, the moving phase interface~bubble wall!
can inject aCP violating flux of particles into the symmetric
phase @12#, where baryon number violation is efficien
@13,14#. Recently, the efficiency of the baryon number vi
lation has been pinned down fairly accurately@15–19#. How-
ever, neither the expansion of bubbles into the symme
phase nor the generation and propagation ofCP violating
particle fluxes can yet be calculated with much precision
confidence, though there has been recent progress on
problems@20–23#.

The bubble nucleation rate enters the final baryon num
asymmetry by determining the amount of supercool
which occurs. The more supercooling, the greater the

-
,
ve

3It has been argued that the phase transition can also procee
coalescence of ‘‘subcritical bubbles’’ with almost no supercooli
@11#. We feel our technique and results, presented here, put this
to rest for the phase transition strength we are interested in.
©2001 The American Physical Society02-1
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energy difference between the phases, and the faster p
interfaces propagate. This in turn would mean a larger
jectedCP violating flux ~since the flux must vanish in equ
librium in a CPT respecting theory!. However, it would also
mean that the phase interface would more quickly catch b
up with particles it injected into the symmetric phase, wh
could have the reverse effect. The detailed dependenc
supercooling and bubble wall velocity may be complicat
see for instance@24,23#. How deep the supercooling pro
ceeds can also be important because the universe heats
ing the phase transition, as the latent heat of the symme
phase is released. We find below that the supercooling is
than in perturbation theory, while the latent heat is som
times more; so this effect is more important than one mi
have anticipated. For the parameters we will study, ther
enough latent heat and little enough supercooling such
the universe reheats to the equilibrium temperatureTeq be-
fore all space has converted to the broken phase.~The re-
maining space would convert much more slowly, as the
pansion of the universe continues to absorb heat from
plasma.!

We are interested in a regime where the bubble nuclea
rate is extremely small. This is because the phase trans
completes when the bubble nucleation rate is, very roug
around one bubble per Hubble volume per Hubble time.
at T;100 GeV, a Hubble time isthubble;H21;mpl /T

2

;1017/T; so the rate of bubble nucleations must
;(10217T)4510268T45e2157T4. A more careful calcula-
tion, accounting for how much time the phase transit
takes to complete, shows that the nucleation rate mus
about e2106T4. When the nucleation rate is so small, it
‘‘almost’’ a thermodynamical quantity, set by the free ener
of the ‘‘critical bubble.’’ This gives us a hint at how to
determine it on the lattice; we must determine the free
ergy of a critical bubble. However, deciding what precise
this means and how to go about doing it, and relating
result to the real time rate for a rare process, require so
work. In this paper we present a quantitative approach
address this problem, and we carry out our program for
minimal standard model, at zero Weinberg angle and an
physical Higgs boson mass. Clearly this case will not be
direct physical interest. However, it allows us to determ
how well the technique works, and to compare the bub
nucleation rate to what we would get using one of seve
less rigorous methods, such as a perturbative calculatio
the critical bubble free energy or a ‘‘thin wall’’ treatmen
from either perturbative or nonperturbative inputs. We fi
that the ‘‘thin wall’’ treatment gives a reasonable answer
is not extremely accurate, while the perturbative approac
quite bad unless Higgs field wave function corrections
included.

Dynamical processes in a first order phase transition h
been studied before with lattice simulations in t
3-dimensional Ising model@25#. However, in these studie
the parameters of the simulations were chosen so that
nucleation rate was relatively large, so that the nuclea
time scale was, at most, only a few orders of magnitu
larger than the microscopic interaction time scale. Thus,
nucleation process could be observed simply by waiting
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nucleation from a metastable to a stable state to happen
ing a straightforward standard~real-time! simulation. This is
also the case for the recent work of Borsanyiet al. @26#.

However, in this work we are interested in extreme
strongly suppressed nucleation. Indeed, very slow nuclea
rates are a quite common characteristic of the first or
phase transitions in nature: fundamentally, this is due to
fact that the external parameters which drive the transit
~temperature, say! usually vary on several orders of magn
tude longer time scales than the microscopic interact
scale. This physical situation is out of reach of any numeri
real-time simulation method relying on spontaneous app
ance of bubbles in the metastable phase. On the other h
the method presented in this work can be applied to an
most arbitrarily slow nucleation. This method has also be
used with the 3-dimensional cubic anisotropy model@27#.

An outline of the paper is as follows. In Sec. II, w
present the approach and discuss the obstacles. The di
sion does not rely in any way on the specifics of the el
troweak nucleation problem, except that it can be conside
as a problem in classical statistical mechanics~both in the
thermodynamics and in the dynamics of the system!. Sec-
tions II A and II B, together with Sec. IV B, are the mo
important parts of the paper to understand; we encourage
reader to concentrate on them. In Sec. III, we review wh
is true that the physics of the electroweak phase transi
can be considered, both thermodynamically and dyna
cally, as a classical statistical mechanics problem. This s
tion is a review of previous literature, included mostly
make the paper self-contained. In Sec. IV we present
numerical tools we use and the details of the calculation
ends with a presentation of our results. Section V presen
number of alternative, ‘‘more perturbative’’ and less nume
cally intensive ways to try to determine the bubble nuc
ation rate, most of which have previously been used in
literature. We systematically compare these approache
the nonperturbatively determined result, to analyze the r
ability of the other approaches. Of these, the most trustw
thy are the thin wall approximation using nonperturbati
inputs~surface tension and latent heat!, and two loop pertur-
bation theory including Higgs field wave function corre
tions. Each of these approaches makes errors of order 2
other approaches, including those most widely used in
literature, give results off by almost a factor of 2. Finall
Sec. VI presents our conclusions.

II. STRATEGY TO DETERMINE NUCLEATION RATE

The next section will show why the calculation of th
bubble nucleation rate at the electroweak phase transition
problem in classical statistical mechanics. In this section
will assume this to be the case, and discuss a strategy
solving this statistical mechanics problem. The basic ide
that nucleation from the metastable symmetric phase to
stable broken phase is limited by the rarity of ‘‘critica
bubble’’ configurations which lie in between. A ‘‘critica
bubble’’ is, roughly, a configuration which in the mediu
2-2
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term4 is about equally likely to evolve towards the broke
and homogeneous symmetric phases. An outline of the s
egy is the following:

~1! Choose a measurable which will distinguish whi
field configurations are near the metastable symmetric ph
which are near the broken phase, and which are near
critical bubble.

~2! Evaluate the probability to be in the~exponentially
rare! critical bubble configurations.

~3! Determine how quickly a ‘‘critical bubble’’ evolves
towards one of the~meta!stable phases.

~4! Determine the ‘‘dynamical prefactor,’’ which tell
what fraction of imputed ‘‘critical bubbles’’ really represen
midpoints on a trajectory carrying the metastable symme
phase to the stable broken one.

This section elucidates what we mean by each of
above and why the whole approach is possible. Our stra
is similar to Langer’s classic method@28#, except that the
saddle point treatment of the ‘‘critical’’ configurations is r
placed by a Monte Carlo calculation, and we take care
treat completely the microscopic dynamics during ‘‘barr
crossing.’’ Essentially the same technique has already b
applied to determine the broken phase ‘‘sphaleron rate’
@29,30#, but we will not assume the reader is familiar wi
those papers.

Everything we say in this section is generic to first ord
phase transitions of liquid-gas type, i.e. where there is
breaking of a global symmetry but the phases can be dis
guished by the value of the volume average of a single, s
lar local measurable.~However, this method is also fully
applicable to transitions exhibiting a real global symme
breaking.! In our case the volume averaged observable w
be the average of the~length!2 of the Higgs field, fav

2

[(1/V)*d3x2F†F. If it makes the reader more comfor
able, she can think of water and gas below the critical te
perature, with the density as a measurable distinguishing
phases and pressure as a control parameter or of a ferro
net below the Curie temperature, with the magnetization a
measurable and an applied external field as a control pa
eter, rather than the electroweak model withfav

2 as a mea-
surable and temperature as a control parameter. The big
ference from the liquid gas system is that we know how
simulate the microscopic physics accurately even away f
the second order endpoint, so Monte Carlo techniques
plied to a first principles microscopic description of the th
modynamics can give reliable results.

With suitable generalizations the method described h
can be applied to almost any metastable state decay prob
provided that

4We will distinguish three time scales. The short time scale is
longest time scale of typical thermalization processes in ei
phase,;1/g4T. The long time scale is the time scale for nucleati
to occur,;e100/T. By the medium term we mean on a time sca
well separated from the short and long time scales. At many po
in our discussion there will be ambiguities of order the ratio of t
of these time scales, but for strongly exponentially suppres
nucleation problems such ambiguities are tiny.
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~1! both the thermodynamics and the real time evolut
of the system are amenable to numerical analysis,

~2! there is an observable which can unambiguously d
tinguish the phases and can resolve the potential barrier
tween them, and

~3! the potential barrier is large and the tunneling rate
small.

The first two conditions are quite generic, and if the th
condition is not satisfied~for example, in ‘‘quenching’’ type
problems!, then one can make straightforward real-tim
simulation of the decay without relying on the special me
ods described here.

A. General picture of homogeneous nucleation
after weak supercooling

Fix the ratio of the scalar self-coupling and gauge co
plings, l/g2, to a value where there is a first order ele
troweak phase transition~or fix T to a value below the Curie
temperature for a ferromagnet orT below the critical tem-
perature for a liquid-gas system!, and ask how the canonica
ensemble is distributed close to the critical temperature
particular, consider how the constrained free energyF(fav

2 )
varies as a function of

fav
2 [

1

VE d3x@2F†F~x!2counterterm#, ~2.1!

where the counterterm is needed to subtract UV divergen
so the whole is well defined. We could consider any oth
measurable which has UV finite variance, butfav

2 will prove
particularly convenient below. In a very large volume, atTeq
~or zero external magnetic field in a ferromagnet, or the b
ing pressure in a liquid-gas system!, the constrained free en
ergy density dependence onfav

2 will qualitatively resemble
that of Fig. 1. The constrained free energy means2T times
the logarithm of the weight of configurations in the canonic

e
r

ts

d

FIG. 1. Cartoon of how the constrained free energy5 2 log
~probability of fav

2 ) varies withfav
2 at the equilibrium temperature

in a large volume. The vertical axis gives minus the logarithm
the fraction of states in the canonical ensemble with the given va
of fav

2 . The dotted line gives the free energy of aspatially homo-
geneousconfiguration with that value offav

2 ; the truly most prob-
able configurations at intermediate values are mixed phase con
rations.
2-3
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FIG. 2. Same as Fig. 1, but in a finite volume where the free energy of the interface between phases is not considered negligible
energy of a mixed phase state is higher than either pure phase because of the surface tension of the phase boundary. The figure al
the physical appearances of the states which dominate the ensemble at intermediate values offav

2 .
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ensemble which have the specific value offav
2 . Very low or

very high values offav
2 are extremely rare, but values inte

mediate between the two bulk phases have free energy
volume equal to those of the bulk phases. This is beca
besides the ‘‘expensive way’’ of getting an intermedia
value offav

2 —havingF†F equal the desired value homog
neously through the volume of interest—there is a ‘‘chea
way,’’ which is to have part of the volume be in one pha
and the rest in the other phase. Then the disfavored inter
diate values ofF†F are only achieved in an interface b
tween the regions, whose volume does not scale extens
with the system volume.~Note that the fact that intermediat
values ofF†F are disfavored is exactly the statement th
there is a first order phase transition with different values
F†F in the two phases.5!

What if we ask about a smaller volume, where the amo
of space in the interface between extensive phases is
negligible? A qualitative cartoon of the answer is given
Fig. 2. There is a free energy ‘‘barrier’’ between the tw

5Strictly speaking, when we talk about spatial variations ofF†F
or spatially homogeneousF†F we actually mean a ‘‘coarse
grained’’ quantity: normallyF†F fluctuates wildly from point to
point even in the pure symmetric or broken phases~it is, indeed,
UV divergent!. The coarse-grainedF†F is obtained by averaging
over length scales' bulk correlation lengthj. This is equivalent to
integrating out spatial momenta larger thanj21. In the pure bulk
phases the coarse-grainedF†F is almost homogeneous by con
struction and non-homogeneous only in the mixed phase.
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phases due to the free energy cost of the interface separ
the two phases, but it is much lower than it would be if w
had to stick with spatially homogeneous intermediate sta
The barrier is roughly the surface tension of the interfa
times its area, which scales as the length squared of the
while an extensive quantity would scale as length cubed

The free energy at values offav
2 between the stable phase

gives us information about the free energy cost of mix
phase configurations; in particular, the free energy near
symmetric phase tells about the cost to have a small bu
of the broken phase in the symmetric phase. To see the v
of this, in determining the rate of bubble nucleation, we n
discuss how the picture changes when we change the
perature. The short answer is that one should ‘‘tip’’ Fig.
adding a linear infav

2 term to the free energy. In fact, for
special measurable this statement is exact, as we now dis
in some detail.

In the 3D effective theory approximation we are workin
in ~see next section!, a variationdT of the temperature cor
responds to a changedmHT

2 in the thermal Higgs mass
squared. The size of the change can be read off from
~3.3!. Henceforth we will only talk about changingmHT

2 . The
way that one determines the constrained free energy plots
have been discussing is that one finds the probability th
configuration drawn from the canonical ensemble has
value of fav

2 of interest. If we are interested in the free e
ergy as a function of an operatorO, we want to know

F~O0!

T
52 lnE D~Ai ,F!exp~2H/T!d„O~A,F!2O0…,

~2.2!
2-4
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FIG. 3. Cartoon showing how free energy in a finite box changes when we lower the temperature. For small temperature chan
minima survive, but one~A! is no longer globally stable. The least likely configuration on the way to the stable minimum is~C! the critical
bubble: its unlikelihood restrains the rate at which configurations near~A! go to the true minimum.
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up to an overall constant which is uninteresting~and depends
on how we define the normalization of the path integral!. For
the special case that our operator isfav

2 , the constrained free
energy has an extremely convenient property. Observe f
Eq. ~3.7! that the way thatmHT

2 enters the Hamiltonian is

H5Hm5m0
1

mHT
2 2m0

2

2 E d3x2F†F~x!,

5Hm5m0
1

mHT
2 2m0

2

2
Vfav

2 , ~2.3!

with m0
2 any particular value we might choose. The co

strained free energy as a function offav
2 is

F~fav,0
2 !

T
52 lnE D~Ai ,F!e2Hm5m0

/Te2(mHT
2

2m0
2)Vfav

2 /2T

3d~fav
2 2fav,0

2 !, ~2.4!

but we can now use the delta function to replacefav
2 in the

exponential withfav,0
2 , which is not integrated over; pulling

it out of the integral gives
04500
m

-

F~fav,0
2 !

T
52 ln e2(mHT

2
2m0

2)Vfav,0
2 /2TE D~Ai ,F!e2Hm5m0

/T

3d~fav
2 2fav,0

2 !

5F ~mHT
2 2m0

2!V

2T
fav,0

2 G2 lnE D~Ai ,F!

3e2Hm5m0
/T d~fav

2 2fav,0
2 !. ~2.5!

The second term here is independent ofmHT
2 ; it can be de-

termined once and used at any value ofmHT
2 thereafter.

Hence the effect onF(fav
2 ) of shifting mHT

2 is very simple; it
just adds an extensive, linear infav

2 term to F. ~The same
thing would happen if we considered the magnetization i
ferromagnetic system where we vary the external magn
field or the density in a liquid-gas system where we vary
pressure. The key is to consider a measurable which app
in the Hamiltonian next to the control parameter which tak
us through the transition.! If we used a different measurabl
the qualitative behavior would be the same—the free ene
as a function of that measurable would be roughly a ‘‘tilted
version of itsTeq appearance—but this would not hold as
exact quantitative statement.

Now consider how the free energy plot looks when w
shift mHT

2 . A cartoon is provided in Fig. 3. For sma
amounts of supercooling, the symmetric phase minim
2-5
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shifts over slightly, but persists as a local minimum of t
free energy. It is labeled~A! in the figure. Since we will be
concerned with classical dynamics, for an element of
thermal ensemble at~A! to get to the global minimum, it
must pass through (B), (C), and (D). The time evolution of
a configuration at~B! is almost certain, in the medium term
not to go to (C), becauseF/T is 2 log(probability); there are
vastly more states withfav

2 equal the value at~B! than the
value at (C), so only a tiny fraction will evolve to~C! in the
medium term, since time evolution preserves the canon
ensemble. On the other hand, configurations at~D! are al-
most certain not to ‘‘go back,’’ and will continue to th
broken phase minimum. It is the rarity of configurations
~C! which limits the rate at which configurations near~A!
time evolve into the broken phase. If it were true that ev
configuration at~C! were on the way from~A! to the broken
phase@or going from the broken phase to (A)], then with a
little dynamical information we could determine the nuc
ation rate. It may be, though, that most configurations at~C!
are either coming from~B! and going back there or comin
from ~D! and going back there.~This might happen if the
choice of measurable is not optimal, for instance.! In this
case, nucleations from the symmetric to the broken ph
would be even rarer than the free energy of states at~C!
implies. So the rarity of configurations at~C! provides an
upper bound on the nucleation rate, which can be turned
a determination with some additional dynamical informatio

B. Real time rate, dynamical prefactor

Now we discuss how to turn the discussion and carto
of the last section into a calculation of a real time rate
nucleations. Suppose we have, by multicanonical tools
cussed in Sec. IV B, computed the constrained free energ
a function of some measurable, which we take to befav

2 . It
is also possible for us to collect a sample of the canon
ensemble restricted to some narrow range offav

2 , for in-
stance, the range right aroundfav,C

2 , the least likely value of
fav

2 . What to we do with them?
The first thing to do is to determine how exponentia

suppressed critical bubbles are. But the answer depend
the measurable and does not give a real time rate. The se
step is to determine what the flux of states in the canon
ensemble through the critical bubble is, normalized to
probability to be in the symmetric phase. That is, we sho
determine

probability flux[
P~ ufav

2 2fav,C
2 u,e/2!

e P~fav
2 ,fav,C

2 ! K U Dfav
2

Dt
U

f
av,C
2 L ,

~2.6!

with P(condition) denoting the fraction of the canonical e
semble which satisfies the condition, and withe infinitesi-
mal. The first term here is the probability density to be at
critical valuefav,C

2 of fav
2 , which is our ‘‘definition’’ of the

critical bubble. It could equally be written as
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P~ ufav
2 2fav,C

2 u,e/2!

e P~fav
2 ,fav,C

2 !

5F E
small

fav,C
2

expS F~fav,C
2 !2F~fav

2 !

T Ddfav
2 G21

,

~2.7!

and will be evaluated by Monte Carlo calculations. The s
ond term in Eq.~2.6! is the mean change, in absolute ma
nitude, offav

2 in a time intervalDt, sampled over configu-
rations at the critical bubble. Provided we takeDt shorter
than any typical infrared scale—in particular it should
shorter than the time scale to go from a configuration w
fav

2 5fav,C
2 to one whereF/T differs by order 1—then the

ratio will tell the number of configurations which pass fro
one side of the critical bubble to the other in a time interv
Dt, times the time interval and divided by the number
symmetric phase configurations. In other words, the com
nation gives the flux of configurations in the canonical e
semble through the critical bubble.

This flux is not the bubble nucleation rate we are afte
though it is clearly an upper bound. We have to multiply
the fraction of critical bubble crossings which actually m
diate a change from phase to phase. To this end we defi
‘‘dynamical prefactor,’’d, as

d[
trajectories getting from~B! to ~D !

crossings of~C!
. ~2.8!

In other words, if we consider all real time trajectories,d is
the fraction of crossings of~C! which represent ‘‘permanen
changes’’ from one side to the other of the barrier. To det
mine it we sample the ensemble of configurations restric
to those at the critical bubble, and for each element of t
ensemble we construct a trajectory forward and backward
time, long enough to see the configuration come from and
to an exponentially more common value offav

2 . Sampling
trajectories everyDt, d is

d5K 1

No. of crossings
3H 1 change sides

0 do not change sidesL .

~2.9!

The average is over the canonical ensemble, restricte
configurations withufav

2 2fav,C
2 u,e/2, and over trajectories

through those configurations. The measure to be used is
canonical one, timesuDfav

2 /Dtu evaluated where the crossin
takes place; so the sample is precisely the sample of the
of states throughfav

2 5fav,C
2 . In Eq. ~2.9!, ~No. of crossings!

means the number of crossings of the critical bubble a
jectory makes in the medium term. To determine this
need to follow the trajectory until it reaches an exponentia
2-6
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more common value offav
2 , i.e. point~B! or ~D! in Fig. 3.6

The trajectory ‘‘changes sides’’ if it goes from~B! to ~D! or
vice versa, and does not change sides if it returns to the s
side it came from. In our case, the real time evolution will
Langevin evolution~see the next section!, and the forward
and backwards time evolutions are just two Langevin evo
tions with two different realizations of the random force. F
the case of Hamiltonian dynamics, the forward evoluti
would be evolution with a set of momenta drawn from t
canonical ensemble and the backwards evolution would
evolution with the same momenta, but sign reversed (T con-
jugated!. In either case we are approximating the expectat
values in Eq.~2.9! with an average over a sample of traje
tories; i.e., we take the average in Eq.~2.9! by a Monte Carlo
integration. We discuss why this procedure gives the cor
nucleation rate at more length in the Appendix.

For Hamiltonian dynamics, in an UV regulated theo
both d and ^uDfav

2 /Dtu& should have well-defined smallDt
limits. This is not the case for Langevin dynamics, howev
If we sample a Langevin trajectory with a smallerDt, the
number of crossing should grow, as each crossing gets
solved’’ into potentially more; this is a normal feature of
Brownian path. However,̂uDfav

2 /Dtu& will also depend on
Dt by a compensating amount. For suitably shortDt, the
time history offav

2 near each crossing looks like a Brownia
random walk. By well known properties of Brownian ra
dom walks,̂ uDfav

2 /Dtu& scales as (Dt)21/2, while d scales as
(Dt)1/2, and the product has a finite smallDt limit. Hence,
for Langevin dynamics, neitherd nor ^uDfav

2 /Dtu& are well
defined but the product is.

It is finally the product,

nucleation rate

volume
5

1

2V
probability flux3d, ~2.10!

which we are interested in. The factor of (1/2) is becau
half of the permanent crossings the algorithm finds areinto
the symmetric phase. The factor 1/V turns the nucleation rate
into a rate per unit volume.

C. Complications: Peculiar behavior in finite volumes

In this subsection we discuss some complications w
applying our technique, arising from finite volume effec
The conclusion will be that the volume must be fairly larg
so the bubble interior fills at most about 15% of it, and th
as a consequence, it is best to choose a measurable w
very small variance in the metastable phase. The impat
reader may want to skip this section and just accept
conclusion.

6We must also check that this criterion is sufficient to ensure
it is very unlikely for the trajectory to return again to (C), which is
not necessarily ensured; the ensemble of configurations at~B!
which have just evolved from configurations at~C! is not the same
as the ensemble of all configurations at (B). In practice this does
not prove to be a problem.
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What we want is the nucleation rate in very large vo
umes. In practice it is impossible to work directly in a ve
large volume, for reasons of numerical cost. Naively the c
of performing the Monte Carlo calculation scales as the v
ume, but in practice the scaling is still more severe, beca
of memory and communication costs and because the M
Carlo becomes less efficient in large volumes, particularly
the value offav

2 where the typical configuration change
from being homogeneous, supercooled symmetric phas
being an isolated bubble.

(a) Resolving the critical bubble.There is another reaso
why we would like to work in a small volume. This is be
cause any volume averaged measurable, for examplefav

2 ,
fluctuates also in the pure symmetric or broken phase.
width of these fluctuations behave as 1/AV, V the volume,
whereas the contribution of a fixed size bubble tofav

2 scales
as 1/V. Thus, if we keep the size of the critical bubble co
stant but increaseV, the fluctuations offav

2 in the pure sym-
metric phase outside of the bubble increase and degrade
the ‘‘cleanliness’’ of fav

2 as a description of the critica
bubble.

Concretely, what we mean by this degradation is that
more symmetric phase there is, the more likely it is that
value of fav

2 consistent with the critical bubble~point C in
Fig. 3! really arises from too small a bubble plus an upwa
fluctuation in the symmetric phase contribution tofav

2 or too
big a bubble and a downward fluctuation. The result is th
as we increase the volume, themeasuredfree energy of the
bubble should fall somewhat faster than the ‘‘true’’ bubb
free energy@which decreases as2 log(V), due to the transla-
tional zero modes of the bubble configuration#. However, the
measured value of the ‘‘dynamical prefactor’’d, Eq. ~2.9!,
should become smaller, since it is more likely that an i
puted critical bubble is really on one or the other side a
will begin and end at the same phase. These effects ca
exactly, so that the nucleation rate has a well-defined infin
volume limit. However, asd becomes smaller, it takes mor
work to measure it with good relative accuracy. This effe
also degrades the efficiency of the Monte Carlo simulatio

(b) Maximum size of the critical bubble.For the above
reasons it is to our advantage to use as small a volume f
given size bubble as we can get away with. Naively, t
means we should use the smallest volume for which the c
cal bubble is unable to ‘‘see itself’’ around our period
boundary conditions.~We choose to work in a cubic bo
with periodic boundary conditions. It appears necessary
use a box which has everywhere a flat spatial metric,
does not have boundaries, because either effect could mo
the bubble free energy.! Very naively, this means we mus
ensure that the radius of the critical bubbler max is less than
half the box lengthL, r max,L/2.

In fact the criterion for a sufficiently largeL is more se-
vere thanL.2r max. The reason is that a spherical broke
phase bubble withL/3,r ,L/2 is at best only metastable:
configuration with a cylinder of the broken phase, extend
through the length of the box and having the same volume
the bubble, will have smaller phase interface area and he
smaller total free energy. To compare the favorability of d

t

2-7
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GUY D. MOORE AND KARI RUMMUKAINEN PHYSICAL REVIEW D 63 045002
ferent geometries as a function of broken phase volume f
tion, we will make a ‘‘thin wall’’ approximation in which the
interface between phases is treated as a geometrical sur
and the free energy is equal to its area times the sur
tension:F5sA. This approximation is correct in the limi
that the box sizeL is much larger than the wall thicknes
Though our simulations will not be strictly in this limit, it is
a suitable approximation for understanding the relative
vorabilities of different mixed phase geometries. One c
then write down how the area and volume vary as a func
of radius for a sphere and a cylinder extending the length
the box, and for a pair of planar interfaces. The results
shown in Table I and compared in Fig. 4. Equating the ar
at fixed volume,

A~V!sphere5~36pV2!1/35A4pLV5A~V!cylinder,
~2.11!

TABLE I. Area and volume as functions ofr, and area as func
tion of volume, for each possible geometry for phase coexiste
and derived volume range where the geometry is preferred
where it is metastable in the strict thin wall limit. The upper end
the sphere and cylinder metastability ranges are where they t
themselves across the periodic boundary conditions. The lo
metastability limit on the cylinder is where it becomes unstable t
dr 5sin(2pz/L) excitation.

Geometry Sphere Cylinder Planes

Area(r ) 4pr 2 2prL 2L2

Volume(r )
4p

3
r3 pr 2L any

A(V) (36pV2)1/3 2ApLV 2L2

Volumes
where stable

024p/81 4p/8121/p 1/p2(121/p)

Volumes
where metastable

02p/6 1/4p2p/4 021

FIG. 4. Area, and hence free energy, as a function of volu
fraction, in the thin wall approximation. The solid line is the min
mum over interface geometries; the large volume free energy c
would follow the solid line. Dotted lines are the metastable ext
sions of the sphere geometry~sloping! or the planar boundary ge
ometry~flat!, while the dashed lines show metastable extension
the cylindrical geometry.
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we find that the sphere and cylinder are degenerate foV
5L334p/81.0.155L3, and the cylinder and planes are d
generate forV5L3/p. A plot of the free energy in a very
large box should approximately resemble the solid line
Fig. 4. It will have slope discontinuities where one geome
gives way to the next. The metastability of one geome
against another can be quite strong, and this makes it c
lenging to perform a multicanonical Monte Carlo determin
tion of the free energy in a volume large enough that
interfaces are thin compared toL, unless one only wants th
plot in the region where one geometry is relevant.~Fortu-
nately this will be the case for us.!

Since both the cylinder and the planar geometry have
energies which clearly depend essentially on the box ge
etry and volume, the part of the free energy plot where th
dominate describes finite volume artifacts rather than phy
which has any correspondence to that at larger volum
However, the radius of the sphere where the cylinder
comes equally favorable is onlyr 5L/3, safely small enough
that the sphere will not ‘‘see itself’’ around the period
boundary conditions~unlessL is only a few times the inter-
face width!. Hence we can expect the sphere geometry, u
it stops being the favored geometry, not to care about
periodic boundary conditions but to represent more or l
faithfully the behavior of an isolated bubble in a larger vo
ume.

We may also expect that, in a suitably large volume,
transition rate between the spherical and cylindrical geo
etries is sufficiently slow that we could rely on the metas
bility of the sphere to explore larger radii thanr 5L/3. How-
ever, we will conservatively not do so in what follows, b
will restrict ourselves to such volume and bubble size co
binations that the critical bubble we obtain will havefav

2

,0.15fav
2 (broken)10.85fav

2 (symmetric). We will also
check to see that the bubbles we analyze are approxima
spherical and not cylindrical and that they do not tou
across the periodic boundary.

III. ELECTROWEAK BUBBLE NUCLEATION AS A
PROBLEM IN CLASSICAL STATISTICAL MECHANICS

In this section we briefly review why we can view th
bubble nucleation problem as a problem in classical stat
cal mechanics for Yang-Mills Higgs field theory. Nothing
this section is new; it reviews the last few years’ develo
ments both in the thermodynamics of the electroweak ph
transition and in the dynamics of infrared Yang-Mills Higg
fields. We include it here to make the paper more se
contained. Readers who are already familiar with this ma
rial may want to skip this section.

A. Thermodynamics: Dimensional reduction

Here we review how the thermodynamics of infrar
fields in the SU~2! sector of the standard model is well a
proximated by a 3 dimensional path integral, which is th
same as the partition function of classical~311!-dimensional
SU~2! Higgs theory at finite temperature~and with suitable
regulation and counterterms!.
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ELECTROWEAK BUBBLE NUCLEATION, NONPERTURBATIVELY PHYSICAL REVIEW D63 045002
The full theory we are interested in has thermodynam
described by the path integral@Lorentz indices are Euclidea
with positive metric; Greek indices range over space a
time, Latin indicesi , j ,k only over space; indicesa,b,c are
SU~2! group indices#

Z5E D~F,Am ,etc!exp~2SE/\!,

SE5E
0

\/T

dtE d3xF 1

4g2
Fmn

a Fa
mn1~DmF!†~DmF!

1~mHo
2 1lF†F!F†F

1hypercharge1fermions1glueG . ~3.1!

Here and throughoutg is gw the weak coupling. Thet inte-
gration has periodic boundary conditions for bosons and
tiperiodic boundary conditions for fermions. Beginning he
we will neglect hypercharge, to simplify things. This is n
too bad an approximation@31#. Including it would be a
straightforward extension of what we discuss.

There are two things to observe right away about t
theory. First, mean field theory predicts that ifmHo

2 changes,
there is a second order phase transition. Second, at the
T ~which will be of order the weak scale,T;80 GeV!, the
coupling is weak. This is just the statement that the we
sector of the standard model is indeed weakly coup
Hence, if there is a phase transition, barring some large
erarchy of couplings such asl/g2!1, it will be weak, and
correlation lengths will bej@1/T.

As motivated in Fig. 5, at such infrared scales the eff
tive behavior is 3 dimensional. This is just because any fi
varying only on the length scalej@1/T will not vary appre-
ciably across the Euclidean time width of the ‘‘slab.’’ On
sees this formally by Fourier transforming thet direction in
Eq. ~3.1!. The Euclidean frequencies arise from transform
a compact range and so are discrete:@]tF(t)#2 becomes
(2pnT)2Fn

2 for bosons, whilec̄g0]tc(t) becomes@(2n

11)pT#c̄ng0cn for fermions. All but then50 bosonic
mode are very heavy and can be integrated out. The re
~continuing to use 4 dimensional notation for fields and c
plings! is

FIG. 5. Cartoon of how a~311!-dimensional spacetime,R3

3S1, drawn here as 211 dimensional, can look effectively 3 di
mensional for long distances.
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1

TE d3xF 1

4g2
Fi j

a Fa
i j 1

1

2
~DiA0!a~DiA0!a

1~DiF!†~DiF!1mHT
2 F†F1l~F†F!2

1mD
2A0

aA0
a1

~g21O~g2aw!!

4
A0

aA0
aF†F

1O~g2aw!~A0
aA0

a!21 Dim 6 G , ~3.2!

where ‘‘Dim 6’’ indicates dimension 6 and higher induce
operators, which have an irrelevantly small effect on the
frared physics, so we immediately drop them. The fields
write here correspond to the zero frequency component
the 4 dimensional fields; i.e.,F in Eq. ~3.2! is T*dtF(x,t),
with F(x,t) the field appearing in the path integral in E
~3.1!. In this expressionl andg2 are couplings of an effec
tive 3D theory, which~after dropping dimension 6 operator!
is super-renormalizable; they do not run. Their relation to
coefficients of the full theory, and a detailed discussion
the matching procedure used to derive them, is given in@5#.
In particular we mention that the Higgs mass squared,mHT

2 ,
receivesO(g2T2) positive thermal corrections:

mHT
2 5mvac,ren

2 1
3g214yt

218l

16
T2

1@m dependentO~g4T2!#. ~3.3!

Here yt is the top quark Yukawa coupling. Sincemvac,ren is
negative, varyingT can change the sign of the Higgs ma
squared and induce a phase transition.7 For generic values of
l/g2, correlation lengths at the phase transition are of or
j;1/g2T, which is why we can drop the dimension 6 o
erators.

Note that the form ofSE/\ looks very much like the
Boltzmann factor,E/T, of a classical theory. The main dif
ference is that in classical SU~2! Higgs theory, we expect the
electric field strength and the Higgs field momentumP,
rather thanA0, to appear:

Zcl5E D~Ei
a ,Ai

a ,F,P!exp~2H/T!

3dS ~DiEi !
a1FF†

igta

2
P1c.c.G D ,

H5E d3xF 1

4g2
Fi j

a Fa
i j 1

1

2
Ei

aEi
a1P†P

1~DiF!†~DiF!1mHT
2 F†F1l~F†F!2G . ~3.4!

7Note that bothmHT
2 andmD

2;g2T2 renormalize logarithmically at
the two loop level, (]mHT

2 /] ln m);g4T2, so the sign ofmHT
2 near

the transition is actually renormalization point dependent.
2-9
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Here the delta function enforces Gauss’ law. But as no
by Ambjo”rn and Krasnitz@32#, if we implement Gauss’ law
by introducing a Lagrange multiplier, which we suggestive
nameA0,

d~••• !5E DA0 expH i E d3xA0
aS ~DiEi !

a

1FF†
igta

2
P1c.c.G D Y TJ , ~3.5!

then theE andP integrations are Gaussian and can be p
formed, generating

H.
1

2
~DiA0!a~DiA0!a1

g2

4
A0

aA0
aF†F

1~01 radiatively induced!A0
aA0

a . ~3.6!

Here the bare Debye mass is zero but one is radiatively
duced, with a linear divergent coefficient in any regulati
where such terms do not identically vanish~such as the lat-
tice!. Hence, the thermodynamics of the full theorydoeslook
like that of the classical theory, except that the Debye m
of the classical theory is radiatively induced and regulat
dependent, and there are very smallO(g2aw) extra interac-
tion terms involving theA0 field, present in the actual ther
modynamics but not in the thermodynamics of the class
system.

It is a good approximation, for the thermodynamics bo
of the classical theory and of the dimensionally reduced
theory, to integrate out theA0 field, including it by the ra-
diative corrections it will induce in the remaining coupling
In this approximation one shifts slightly the coefficients
the terms in Eq.~3.2! which do not containA0, and drop
those which do. The change in the coefficients is compu
in @5#. After this approximation, the classical thermodyna
ics and the dimensionally reduced thermodynamics coinc
exactly. The final form of the partition function describin
the thermodynamics is then

Z5E D~Ai ,F!exp~2H/T!,

H5E d3xF 1

4g2
Fi j

a Fi j
a 1~DiF!†~DiF!

1mHT
2 F†F1l~F†F!2G . ~3.7!

If this final integration over theA0 field is not deemed reli-
able enough, it is straightforward to modify what we will d
below to include it in the thermodynamic calculation.

We will also mention a few results, perturbative and no
perturbative, which have been obtained for the partit
function shown above. Perturbatively we can describe
strength of the phase transition by studying the effective
tential for the ~gauge fixed! Higgs field f, f
5A2Fcond

† Fcond. Note that there is no good gauge invaria
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nonperturbative way to separate the condensate from
fluctuations. When gauge field fluctuations become large,
whole perturbative approach becomes questionable. Ne
theless, when the phase transition is strong, perturba
theory is useful, essentially because gauge field fluctuat
are suppressed in the broken phase~which is therefore well
described!. At one loop, and neglecting scalar loops as
appropriate in thel/g2!1 approximation,

V1 loop5
mHT

2

2
f22

g3

16p
f3T1

l

4
f4. ~3.8!

This effective potential can have two minima because of
~one loop! negativef3 term. Since it is a loop effect which
allows a first order phase transition, we say the transition
radiatively induced first order. At the transition, the brok
phase value off is such that the cubic term and~tree level!
lf4 term are of the same order. Since this requires a
loop effect to be of the same size as a tree level one, it ei
implies thatl/g2!1 or that perturbation theory will not be
reliable expansion. Hence perturbation theory determines
tributes of the transition at best as an expansion inl/g2. It is
this relatively poor performance for perturbation theo
which makes a nonperturbative treatment necessary.

Nonperturbatively it is known that, as expected, the ph
transition is well described by perturbation theory for sm
l/g2, but perturbation theory is completely wrong for larg
values@3,7#. In fact there isno phase transition in the MSM
above a critical valuel/g2.0.098360.0015@8#. In exten-
sions of the standard model with new bosons which are li
at the phase transition, we must include the new light bos
in the effective theory considered. At least for the case of
added scalar top, the strength of the phase transition is
nificantly enhanced@33,34#. It would be straightforward but
more numerically expensive to apply the tools develop
here to this physically interesting case.

B. Dynamics: Classical effective theories

The infrared thermodynamics of the SU~2! sector of the
standard model match those of classical~311!-dimensional
SU~2! Higgs theory, as discussed above. Does this match
also apply at the dynamical level, as originally conjectur
@in a ~111!-dimensional context# by Grigoriev and Rubakov
@35#? In other words, is the dynamics of the infrared SU~2!
Higgs fields described by classical Hamiltonian dynamics

The answer is ‘‘no, it is more complicated than that.’’8 As
we now discuss, the dynamics of infrared gauge and Hi
fields are indeed classical, but they are not described by c
sical Hamiltonian dynamics. They are, to leading order in

8In defense of Grigoriev and Rubakov we should mention that
complications discussed in this subsection do not arise in 111 di-
mensions, where the UV behavior is much more mild; hence th
conjectureis correct for the problem they were addressing, nam
the dynamics of the~111!-dimensional Abelian Higgs model. Th
problem is applying it to the~311!-dimensional problem of interes
instead.
2-10
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ELECTROWEAK BUBBLE NUCLEATION, NONPERTURBATIVELY PHYSICAL REVIEW D63 045002
logarithm of g, described by ‘‘classical’’ Langevin dynam
ics. Because a factor of 2 error in the treatment of the
namics will change our determined rate by;exp(61), while
the rate itself is;exp(2100)T4, we will find it sufficient
to make this approximation and take the dynamics to
Langevin.

To see that the dynamics of the real system is not class
Hamiltonian dynamics, look again at the thermodynamic d
cussion, especially Eq.~3.4! and Eq.~3.6!. We see that there
are linear UV divergences in the classical Debye mass for
A0 field, and yet theA0 field is related to the electric fieldsE,
which generate the Hamiltonian dynamics for the gau
fields. This implies that there are divergent UV corrections
the gauge field dynamics of the classical fields. As first
vocated by Bo¨deker, McLerran, and Smilga@36#, we should
consider this a potential problem for the study of the clas
cal field dynamics. In fact, as argued by Arnold, Son, a
Yaffe @37#, what it means is that the classical Hamiltoni
dynamics does not have a good regulation independent li
Hence, the infrared gauge field dynamics of the class
theory technically do not exist. The dynamics of the f
theory can scarcely coincide with those of the class
theory if the classical theory’s dynamics is sick.

The physical origin of this problem is actually wel
known plasma physics. Transverse electric fields in a pla
feel Landau damping. This leads to very slow, overdam
evolution of infrared magnetic fields, as is typical in a co
ducting medium. As the classical theory cutoff is lifted, the
are more and more ‘‘plasma’’ degrees of freedom, and
damping becomes ever more efficient. The correct treatm
is to make the damping have the same efficiency as in
quantum theory. This requires studying the classical the
with hard thermal loop~HTL! effects @38# included. ~The
hard thermal loops are the non-Abelian generalization of
bye screening, Landau damping, and other plasma eff
familiar from electromagnetic plasmas.! Such a classical, bu
HTL included, treatment should be correct at leading or
in the couplingg. Two numerical implementations of such
classical theory now exist; one@39# is based on a proposal b
Hu and Müller @40#, and one@17# is based on a proposal b
Bödeker, McLerran, and Smilga@36#, and more recently dis
cussed by Iancu@41#. Both are extremely complicated. Pro
ably the second method could be utilized in the type of co
putation we are going to discuss, but the numerical ef
would be substantially greater than what we discuss belo

As first demonstrated by Bo¨deker @15#, and further dis-
cussed and clarified both by Bo¨deker@42#, Arnold, Son, and
Yaffe @43#, and Litim and Manuel@44#, inclusion of the hard
thermal loops in the infrared equations of motion is actua
unnecessary, because at leading order in log(1/g) the dynam-
ics of the gauge fields is simple Langevin dynamics. We w
not attempt to reproduce their arguments in detail here,
will only physically motivate them.

First, consider the behavior of an Abelian plasma. W
will distinguish two characteristic length scales: the Deb
length l D;1/mD;1/gT and the scattering lengthl scatt
;1/g4T log(1/g). The former is the shortest length sca
where plasma effects are important. The latter is the m
length over which a current can propagate, before it is d
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rupted by collisions in the plasma. It coincides with the fr
path of a charge carrier to undergo large angle scatterin

On scales much longer thanl scatt, a magnetic field
evolves as if it were in a conductor:D3B5 j 5selE
5selD0A, wheresel is the electric conductivity. This is jus
Langevin dynamics; the time derivative of the fieldD0A is
proportional to2dH/dA5D3B. In a thermal bath there is
also a ‘‘noise’’ term uniquely determined by the thermod
namics~fluctuation dissipation!. On scales betweenl D and
l scatt the story is significantly more complicated because
homogeneity scale is shorter than the free path over which
electric current propagates. In this regime the field evolut
is described by an equation with a wave number depend
conductivity, which is nonlocal in real space.

Now consider the case of a non-Abelian theory. The k
difference is that, for the non-Abelian theory,l scatt
;1/g2T log(1/g). The reason is that non-Abelian collision
exchange non-Abelian charge~‘‘color’’ !, so any collision,
however soft, can destroy the current a particle is carryi
Hencel scatt is of order the mean free path forany scattering,
not just large angle scattering. Hence, on the length s
1/g2T, the dynamics are given by a simple Langevin equ
tion @18#,

selD0Ai52
]H

]Ai
, sel

215
3

mD
2

g,

g5
Ncg

2T

4p F ln
mD

g
13.041G , ~3.9!

with Nc52 for our SU~2! application. Heresel is the non-
Abelian ~‘‘color’’ ! conductivity.

The extension of these ideas to the case where there
Higgs field turns out to be remarkably simple; one a
evolves the Higgs fields under Langevin dynamics, but g
ing the Higgs fields a much larger diffusion constant than
gauge fields. For a discussion see@19#. These are the dynam
ics we will apply for the real time part of our studies below
Note that they are only justified at~next to @18#! leading
order in 1/log(1/g), not a very good expansion, but we a
willing to accept an approximation which will yield an erro
of 61 in the exponent of the nucleation rate, since the r
itself is ;exp(2100).

IV. COMPUTATIONAL DETAILS AND NUMERICS

A. Our choice for a measurable

In the discussion above we always chose to considerfav
2 ,

the space averaged Higgs field length squared, as the ob
able used to distinguish the phases and the critical bub
This has been the traditional ‘‘order parameter’’ observa
in Monte Carlo simulations of SU~2! 1 Higgs theory. It is
easy to measure, and, because its variance is UV finite, g
large enough volume, it can unambiguously separate
symmetric and broken phases. Also, as we have seen, it
extremely convenient choice because it makes it quite e
to use one set of multicanonical data to study a range
2-11
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temperatures. Further, after UV counterterm subtraction
has a good zero lattice spacing limit.

However,a priori it is not obvious that this~or almost any
other! measurable can distinguish the critical bubble w
enough for practical calculations. In particular we mig
worry that there is too large a ‘‘noise’’ contribution from th
85% of the volume which must be in the symmetric pha
~see the discussion in Sec. II C!. A necessary~but insuffi-
cient! criterion for a good measurable, needed to avoid t
problem, is that it has a small variance in the symme
phase. It turns out thatfav

2 does indeed have a very sma
variance in the symmetric phase. The leading order per
bative result for the variance offav

2 in the symmetric phase
in a volumeV much larger than 1/msymm

3 , with msymm the
symmetric phase scalar mass, is

sf
av
2 , symm

2
5

1

V2E d3x d3y ^f2~x!f2~y!&connected

5
4

VE d3p

~2p!3

T2

~p21m2!2

5
T2

2pmV
.

4TA2l/g2

g2V
, ~4.1!

where in the last approximate equality we have substitute
the equilibrium, one loop symmetric phase Higgs mass
m. This variance is to be compared to the broken phase v
ance, which gets an added contribution from fluctuations
the zero mode, which has a condensatef0:

sf
av
2 , broken

2
5

2f0
2T

m2V
1sf

av
2 , symm

2
5

4T

~l/g2!g2V
1sf

av
2 , symm

2
,

~4.2!

which is much larger for small (l/g2). To get a phase tran
sition strong enough to preserve baryon number after its c
clusion, we will consider the casel/g250.036; for this case
the broken phase variance is about 100 times larger, an
15% of the volume is in the broken phase, the variance c
tributed by this volume greatly exceeds that contributed
the symmetric phase; symmetric phase fluctuations will
pose a problem. Also note that the broken phase fluctuat
are dominated by the motion of the condensate, and we
pect that fluctuations in the condensate size are directly
portant to whether a bubble is more or less than critical,
these fluctuations may also not be dangerous.

A posteriori we will of course determine whether th
choice of measurable was a good one. For instance, w
determiningd, we can determine what fraction of trajectori
crossingfav

2 5fav,C
2 , actually lead to a nucleation. We wi

find that fav
2 is in fact a good measurable; the fraction

trajectories crossing the critical bubble which lead to a nuc
ation is statistically compatible with 1/2, which is the max
mum possible under Langevin dynamics. Note however
the above arguments suggest that, if we were studying nu
ation out of thebrokenphase, thenfav

2 would probably be a
04500
it

l
t

e

is
c

r-

in
r
ri-
n

n-

if
n-
y
t

ns
x-
-

o

en

-

at
le-

very bad measurable. We will not discuss what measura
might be useful for studying this nucleation rate, which fo
tunately is not cosmologically interesting.

Note that the value for the scalar self-coupling we u
produces a Higgs boson mass lighter than the experime
limit; in fact there isno physical Higgs boson mass whic
gives such a small value for the ratio ofl/g2 ~parameters of
a 3D effective theory! @5#. We study this case as a toy ex
ample, because the phase transition is relatively strong
and perturbation theory arguably should be reasonable.

B. Multicanonical method

As described in Sec. II, by far the dominant factor in t
bubble nucleation rate is determined by the constrained
energy F(fav

2 )52T log Pcan(fav
2 ), where Pcan(fav

2 ) is the
canonical probability distribution offav

2 for a particular
value ofmHT

2 :

Pcan~fav
2 !}E D~Ai ,F!exp@2H/T# dS fav

2 2(
x

2F†F/VD .

~4.3!

~The 2 next toF†F is for the customary complex norma
ization of the Higgs field.! This probability distribution has
to be determined for the whole range of values from
symmetric phase to somewhat beyond the critical bub
valuefav,C

2 ; see Fig. 3.
In principle, Pcan(fav

2 ) can be calculated with a standa
lattice Monte Carlo computation, where the configuratio
are sampled with the canonical probability

pcan}exp~2H/T!, ~4.4!

whereH is given in Eq.~3.7!. Algorithms for such a sam-
pling are well known, typically taking the form of a Marko
chain in which each configuration is a relatively small mo
fication of the previous one.

However, in the problem we are interested in, the pro
ability can vary by a factor of;exp(100) over the range o
fav

2 of interest. A finite, canonical sample will simply conta
no representatives for much of the range offav

2 of interest,
and hence give no information on the free energy in that p
of the range; hence it will fail to determinePcan. For our
problem, the canonical Monte Carlo method is utterly u
less. This is exactly the kind of problem where multicano
cal Monte Carlo methods excel.

In a multicanonical simulation, the Monte Carlo samplin
probability of configurations is modified so that the who
fav

2 range of interest is sampled with an approximately co
stant probability. This is achieved by sampling the config
rations according to the probability

pmuca}exp@2H/T1W~fav
2 !#, ~4.5!

where theweight function W(fav
2 ) is carefully tuned so tha

the multicanonical probability distribution
2-12
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Pmuca~fav
2 !}E D~Ai ,F!exp@2H/T1W#

3dS fav
2 2(

x
2F†F/VD

}exp@W~fav
2 !#Pcan~fav

2 ! ~4.6!

is approximately constant. This condition is met if

W~fav
2 !'2 log Pcan~fav

2 !1const. ~4.7!

The canonical expectation value of any observableO can
then be obtained from a multicanonically sampled set of c
figurations by reweighting the individual measurements w
the weight function:

^O&5(
k

O ke
2W(fav,k

2 )Y (
k

e2W(fav,k
2 ), ~4.8!

where the sums go over all configurations in the sample.
not difficult to find an algorithm to perform the multicanon
cal update; if one has a Markovian canonical Monte Ca
algorithm, application of the Metropolis accept-reject und
the weight function exp@W(fav

2 )# after each update yields
multicanonical algorithm. Asfav

2 is an easy observable t
measure numerically, the numerical cost of this extra ste
negligible. ~However, sincefav

2 is a global quantity, some
extra work is needed when using parallel computer archi
tures.!

From Eqs.~4.6! and~4.7! we see the main difficulty of the
multicanonical method; we have to know the result we
after, Pcan, to some accuracy, before we can even start
multicanonical simulation. This requires some kind of bo
strap process, to be discussed below, in order to determin
initial guess forPcan; after the multicanonical simulation, w
get an improved estimate forPcan from Eq. ~4.6!.

In the above discussion we implicitly assumed that
weight function W has been optimized for one particul
value of mHT

2 . However, because of the factorization pro

erty of themHT
2 term in the Hamiltonian, Eq.~2.5!, we obtain

the canonical probabilityPcan for a whole range ofmHT
2 val-

ues from a single multicanonical Monte Carlo run: for e
ample, if the multicanonical weight function has been ori
nally calculated withmHT

2 5m1
2 ~and we have the resultin

distributionPmuca), we have

Pcan~m2
2 ;fav

2 !}Pmuca~fav
2 !

3expF2W~fav
2 !1

V

2T
~m1

22m2
2!fav

2 G .
~4.9!

Naturally we can only determinePcan(m
2;fav

2 ) for values of
fav

2 where our Pmuca determination is accurate. Strictl
speaking, when we perform a multicanonical run it does
correspond toany particular value ofm2, since we can al-
ways absorb them2 term in the action into the weight func
tion.
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How does the computational cost scale in a multicano
cal simulation? Ideally, if we have guessedW(fav

2 ) cor-
rectly, the system performs a random walk in thefav

2 range
of interest, say, fromfav

2
1 to fav

2
2. Let us consider what

happens if keep the range offav
2 considered fixed as we

increase the volume of the system. Now, if we require t
the system ‘‘random walks’’ through the range a compara
number of times as the volume is increased, the comp
tional cost is proportional to (fav

2
22fav

2
1)2V2. The factorV2

appears becausefav
2 is an intensive variable. For compar

son, in a canonical simulation at a first order phase transit
the numerical cost rises as maxf

av
2 @Pcan(fav

2 )#/

minf
av
2 @Pcan(fav

2 )#. In a large box, as previously discusse

this scales as the exponential of an interface surface a
;exp(2sV2/3), which is a vastly more severe increase.

In realistic situations there are often ‘‘hidden’’ barrier
which can hinder the random walk through the range of
terest. For instance, in our case such a metastability occu
large cubic volumes when the surface geometry changes
shown in Fig. 4, there can be sphere↔cylinder and
cylinder↔slab transitions. At the transition point two differ
ent geometries have equal volume fractions and surface a
During a simulation the transition must occur by the Mon
Carlo algorithm finding a series of mixed phase geomet
which smoothly interpolate between cylinder and sphe
which means that the surface area must increase for a fi
volume fraction. Thus, if we use extremely large volume
the transitions between geometries become exponent
suppressed, even if the total multicanonical probability
mains constant.@Of course for the study of bubble nucleatio
we will not have to study the range offav

2 where such tran-
sitions occur; but when we determineTeq, or measure the
surface tension~see below!, it can become an issue. We als
observe some metastability at the value offav

2 where the
dominant configuration changes from being homogene
symmetric phase to a small broken phase bubble.#

The success of the multicanonical method hinges on
accurate determination of the weight function. If we requ
that the resulting probability distributionPmuca be constant
up to factor of 2, say, then the weight function must
determined up to an accuracy of log(2)'0.7. Worse accuracy
in determiningW significantly degrades the efficiency of th
subsequent Monte Carlo calculation, so such a requirem
on the accuracy ofW is actually necessary. The variation o
W across the range of interest in this work is of order'100
@that is, we have to boost the probability of suppressed ph
space regions by a factor of exp(100)]. Thus, the wei
function has to be determined to an overall accuracy be
than 1%.

We use a continuous, piecewise linear ansatz for
weight function. We determine the weight function with a
automatic iterative calculation procedure, using variations
the procedures presented in@34,30#. One approach is to
choose a starting guess forW(fav

2 ) ~for instance, a constant!
and to perform a Monte Carlo under the~Markov chain!
algorithm which would generate the distribution, Eq.~4.5!.
However, after each update sweep,W is decremented at the
2-13
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current value offav
2 . Thus, if some region offav

2 is getting
sampled very often,W is reduced there so it will be sample
less often. This procedure will causeW to evolve towards the
correct form, but imperfectly because the recent history
the Monte Carlo calculation is over-reflected in the result
W. To fix this, the size of the decrements is reduced ev
time the evolution successfully explores the full range offav

2

from bottom to top and back. When the total change toW, in
the time the Monte Carlo evolution spans the range offav

2 , is
negligible, the weight function has been determined with s
ficient accuracy. Measurements ofPcan then consist of two
parts: first, we perform a run during which the weight fun
tion is iteratively improved to a required accuracy. Seco
using this weight function, we perform a normal multic
nonical run, which gives us the final probability distributio
The determination ofW typically accounts for 30–50 % o
the total computational effort.

C. An application: Surface tension

We illustrate how the multicanonical method works
measuring the surface tensions—i.e. The free energy/are
carried by the phase interface—with the histogram met
@45#. This has become the standard and well-underst
method for computing the surface tension in a variety
lattice theories, including work closely related to ours, SU~2!
gauge1 Higgs theories@3,46,9# and effective theories fo
the minimal supersymmetric standard model~MSSM! @34#.

As discussed in Sec. II A, at the phase transition value
mHT

2 , where the symmetric and broken phases are equ
probable, the mixed phase configurations with approxima
equal volume fractions of symmetric and broken phases
exponentially suppressed~Fig. 2!. The suppression is propor
tional to exp(2Fsurface/T)5exp(2s3area/T). This is seen
as a valley in the probability distribution offav

2 ; see Fig. 6.
For the interface tension measurements it is advantag

to use lattices with cylindrical geometry,Lz@Lx5Ly . Be-
cause we use periodic boundary conditions, there will be
least two interfaces which span the lattice. The cylindri

FIG. 6. Probability distributions offav
2 measured from cylindri-

cal lattices atb54/(g2Ta)59 andl/g250.036.
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geometry makes the interfaces tend to form parallel to
(x,y) plane, andLz should then be long enough so that t
two interfaces do not interact appreciably. This is seen a
flat minimum in the probability distributions.

We perform a multicanonical Monte Carlo simulatio
with the same lattice action and update as@3#, using the
improved relation between lattice and continuum parame
found in @6#. In Fig. 6 we show the probability distribution
from 1623128 and 242380 lattices at 4/(g2Ta)59 and
l/g250.036,9 measured at the criticalm2, which is deter-
mined by requiring that the symmetric and broken pha
have equal probabilistic weight.~Hence, the technique als
provides an accurate determination of the the critical value
m2, which we will need for comparison later on.! The larger
lattice is not quite long enough to have the flat central p
the smaller lattice has. Note the striking difference in widt
between the symmetric~left! and broken~right! phase peaks
this reflects the large ratio in thefav

2 variance in the two
phases, discussed in Sec. IV A.

The surface tension is obtained from log@Pmax/Pmin#/
(2Lx

2)→s/T, asV→`. In practice, the infinite volume value
of s is reached in such large volumes that finite volum
analysis becomes necessary. Following Refs.@47,48#, we fit
the data with the ansatz which takes into account the tra
lation modes of the surfaces and capillary fluctuations:

s

T
a25

1

2~Lxa!2 F log
Pmax

Pmin
1

3

2
logLza2 logLxa1constG .

~4.10!

The result of the fit from these two lattices is

s5~0.07960.004!g4T3. ~4.11!

We also obtain the equilibriumm2 and the difference infav
2

between the two phases, which in physical units isDfav
2

[fav
2 (broken)2fav

2 (symm)52.53g2T2.
The surface tension can be obtained much more econo

cally with an alternative method due to Moore and Tur
@49#. This method is based on analyzing the spectrum of
transverse fluctuations of the phase interfaces; the magni
of the fluctuations is inversely proportional toAs/T. We
refer the reader to the reference for a complete discuss
We apply this method using multicanonical tools to sam
configurations in a very large box, but now choosingW(fav

2 )
to very strongly preferfav

2 within 5% of the average be
tween symmetric and broken values; hence the volume
ways contains large regions of each phase, with two appr
mately planar interfaces separating them. We show
example of such an interface in Fig. 7, and present the
termined surface tension, as a function of lattice spacing
Table II. The results agree within error with the histogra
method. If we extrapolate the values given in the table toa

9Corresponding to an ‘‘unimproved’’ latticebG59.6674, x
[l/g250.0389. For the lattice to continuum relations form2 and
f2 see@6#.
2-14
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→0 assumingO(a2) errors, as should be the case since
use anO(a) corrected lattice-continuum match, we obta
the result

s5~0.074960.0027!g4T3, a50, ~4.12!

with a lattice spacing dependence which is small and con
tent with zero. This indicates that our lattice spacing err
are under control.

D. Results: Probability distribution

Let us now turn to our main problem, the determination
the probability distribution in the region relevant to bubb
nucleation; see Fig. 3. The procedure is very similar to
surface tension calculation with the histogram method
scribed above. However, there are two crucial points whe
differs: ~1! we need very large, preferably cubical volumes
order for the bubbles to fit in the lattice comfortably. Th
size makes it next to impossible to compute the full proba
ity distribution from the symmetric to the broken phase w
our computational resources. However,~2! we need the
weight function only in the rangefav

2 (symm)<fav
2

,@0.85fav
2 (symm)10.15fav

2 (broken)#, as discussed in Sec
II C. This guarantees that we do not yet enter the ‘‘cylinde
and ‘‘slab’’ regions of the phase space; see Fig. 4. Using
random walk argument, calculating the distribution in th
restricted range only requires a factor of (0.15)2'0.02 of the
resources needed for the full weight function.10

In Fig. 8 we show the probability distributions from
1243 lattice, with 4/(g2Ta)59. The result of a single multi-
canonical run has been reweighted to 3 different values
mHT

2 , namely (0.008,0.009,0.010)g4T2 below the equilib-
rium value. The critical bubbles correspond to the minimu
locations of the probability. Note that the value offav

2 for the
critical bubble moves to smaller values as we increase
supercooling; this is because the critical bubble gets sma
at larger supercooling, andfav

2 is a volume average. We als
have results from a 923 box at 4/(g2Ta)57, to study lattice

10This discounts the ‘‘barriers’’ at the bubble↔ cylinder↔ slab
transitions, which would make the full computation even mo
costly.

FIG. 7. Geometric shape of a phase interface, from a 62/g2T
across box. The height of the fluctuations goes as (T/s)1/2; Fourier
analyzing and averaging over hundreds of such surfaces can
an accurate determination ofs.
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spacing dependence, and from a 1203 box at 4/(g2Ta)59,
which gives weak information on volume dependence. T
ratio of probabilities between the metastable minimu
and the critical bubble, Pcan(fav

2 5fav,C
2 )/Pcan„fav

2

5fav
2 (symm)…, is plotted for each lattice as a function o

dm2[mHT
2 2mHT

2 (equilib) in Fig. 9. This figure correspond
to the difference in height, in Fig. 8, between the local ma
mum and local minimum. For each curve in the figure, t
statistical error bars are about61, with strong correlation in
the error along the curve. The finer spacing lattices ag
within errors. This is a~weak! check on volume dependenc
but it is also a check of the code, since the 1203 and 1243

volume computations were performed with completely ind
pendent sets of code, on machines of different architect
The coarser lattice data differs by between 2% and 3%. T
probably represents lattice spacing errors; if we extrapo
assuminga2 errors~the first order which should be presen
due to our lattice improvement!, we estimate the difference
between the finer lattice and the continuum is 1.5 times

TABLE II. Surface tension as a function of lattice spacing.

Spacing
a/g2T

Volumes used s

4/7 722396, 8023120, 10823144 (0.074960.0008)g4T3

4/9 6023144, 9623144, 10823160 (0.075860.0014)g4T3

4/12 12023160, 13223180 (0.073360.0025)g4T3

FIG. 8. The probability distribution forfav
2 at three values of

dm2, 20.008g4T2 ~solid curve!, 20.009g4T2 ~dashed curve!, and
20.010g4T2 ~dotted curve!, for 1243 lattice atg2aT54/9. In each
case the local maximum is the supercooled symmetric phase
local minimum is the critical bubble. The three curves are obtain
by reweighting the same multicanonical run. Greater supercoo
leads to less suppression of the critical bubble.

ld
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large as the difference in the curves. Where the ratio of pr
abilities ise100, this would be a correction ofe4 in the nucle-
ation rate, or about a 2.5% correction indm2. It remains to
integrate the area in the symmetric phase minimum, to c
pute the dynamical contributions, and divide by the volum
to convert this result into the real time rate.

E. Dynamical prefactor, tools and calculation

To determine the real time rate for nucleations, we n
have to perform real time evolution on each of a sample
configurations withfav

2 5fav,C
2 . We get the sample of suc

configurations by, first, choosing adm2 to consider, and,
next, by performing a multicanonical Monte Carlo simul
tion, as just described, and recording those configurations
which fav

2 lies within a narrow tolerance offav,C
2 ~which

depends ondm2; see Fig. 8!. In fact we can speed up th
sampling process by choosing a weight functionW(fav

2 )
which favorsfav

2 5fav,C
2 even more strongly than the on

used to determine the probability distribution in the last s
tion. Then, we must study the real time evolution of ea
configuration in the sample, at the thermal Higgs massmeq

2

2dm2.
As discussed in Sec. III B, the appropriate dynamics

leading logarithm, is Langevin dynamics. The gauge fie
evolve according to Eq.~3.9!, and the Higgs fields also
evolve under Langevin dynamics, with a much~parametri-
cally! faster time scale. In continuum notation, this mea
evolving the fields under the following Langevin field equ
tions ~normalizingE so E2/2g2 appears in the action!,

selEi
a~x!52

]

]Ai
a~x!

H1j i
a~x,t !, ~4.13!

selDtF~x!52h
]

]F†~x!
H1jF~x,t !,

FIG. 9. Logarithm of ratio of probabilities logPcan(meta)/
Pcan(crit), as a function ofdm2 the supercooling from the equilib
rium m2. The solid line is the 1243 lattice, and the dashed line is th
1203 lattice, at (4/g2Ta)59. Each has a statistical error of61, so
they agree within expected error. The dotted line is the data f
the 923 lattice at (4/g2Ta)57. Its disagreement represents defini
but small, lattice spacing error.
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^j i
a~x,t !j j

b~x8,t8!&52selTd i j d
abd~x2x8!d~ t2t8!,

^jF~x,t !jF
† ~x8,t8!&52hselT 1d~x2x8!d~ t2t8!,

whereH is given in Eq.~3.7!, 1 is the identity in componen
space for the Higgs field andh is the ratio of the speeds o
Langevin evolution, which is parametrically;1/aw , and so
should be taken large.

It is possible to perform numerical Langevin evolution o
lattice fields, but it is slow and unnecessary; any dissipa
update will do, if the relation between the number of upda
and Langevin time is known. Hence we use the heat b
algorithm to update the gauge fields; the relation between
number of heat bath updates, and the time scalet in the
equations above, is discussed at some length in@16#. At lead-
ing order in smalla the relation is that, for random order he
bath updates of the lattice links,n updates per link corre-
sponds toDt5a2seln/4. ~Note that this relation is specifi
cally for our choice of lattice action, namely ‘‘Wilson glue’’
it would be different for an improved action. It can als
differ if the sites are updated in a specific, rather than r
dom, order, and in fact depends on the order of update.! We
update the Higgs fields with a mixture of the over-relaxati
algorithm presented in@3# and a Higgs field heat bath algo
rithm. Note that our ‘‘real time’’ evolution algorithm can b
viewed as a canonical Monte Carlo evolution algorithm
m25meq

2 2dm2; hence there is no concern that it someho
spoils the thermodynamics~as might happen for Langevin o
Hamiltonian evolution with a finite time step, due to tim
step size errors!.

As described in Sec. II B, we calculate the ‘‘dynamic
prefactor’’ d, Eq. ~2.8!, by evolving a critical bubble con-
figuration both forward and backwards in time, long enou
to see whether the system evolves either towards the s
metric or the broken phase. Since forward and backwa
Langevin evolutions are equivalent, in practice we genera
few Langevin trajectories from each initial critical bubb
configuration; each pair can be joined together to form a
trajectory ~see Fig. 10!, and by considering all pairings w
somewhat improve the statistics. The dynamical prefacto
then the expectation value

d5
1

Ntraj
(
traj

d tunnel

No. of crossings
, ~4.14!

whered tunnel is 1 if the trajectory leads to tunneling, 0 oth
erwise, and~No. of crossings! is the number of times the
trajectory crosses the critical bubble value offav

2 . When
computing the error in the determination ofd we must ac-
count for the dependence of the several trajectories involv
a common critical bubble.

One legitimate concern is that the Langevin dynamics
consider are only correct at leading logarithm, and as arg
in @19#, the treatment should break down when there is
large Higgs field condensate. Hence our treatment of the
namics may not be better than anO(1) treatment. However
our determination of the thermodynamic likelihood of a cri
cal bubble was only good to61 in the exponent, so anO(1)

m
,
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error in the dynamics is no worse; in any case, since
nucleation rate is;e2100T4, a factor of 2 error in its deter
mination only represents a 1% error in the exponent,
somewhat less than a 1% error in the determination ofdm2,
as seen in Fig. 9. It would be possible to do a better job
using the full HTL dynamics by the technique developed
@17#; however, this approach is much more numerically e
pensive. It also requires the inclusion of theA0 field in the
thermodynamic treatment, and it could be difficult to elim
nate finite time step errors in the dynamics, which co
make the thermodynamics explored by the evolution sligh
incorrect.

The reader might also be concerned that the dynamic
a broken phase bubble will not have a good limit ash is
taken large. If the Higgs fields are allowed to evolve mu
faster than the gauge fields, will not the bubble either c
lapse or expand on a time scale set by the rate of the H
field evolution? The answer is no. If we choose a start
configuration with a broken phase bubble, and we evolve
Higgs fields without allowing the gauge fields to evolve, t
bubble doesnot collapse but remains a critical bubble inde
nitely. It is essential that the electroweak phase transition
radiatively induced phase transition; the state of the ga
field fluctuations, alone, is sufficient to indicate which pha
a configuration is in, and the Higgs condensate cannot
pand into the symmetric phase, or collapse inside the bub
without the gauge field fluctuations changing as well.
demonstrate this point, we have performed anh5` evolu-
tion, meaning an evolution in which only the Higgs field
and not the gauge fields, are allowed to evolve. It is co
pared to an evolution in which both evolve, but the gau
fields evolve much more slowly, in Fig. 11. Naturally, th
value offav

2 changes during each evolution, but in the ev
lution with frozen gauge fields, it just bounces around a c
tral value, and the bubble is stable. We should expect, th
that ^uDfav

2 /Dtu& and d will depend onh. But as we must
check, the product should have a finite limit. We would a

FIG. 10. A tunneling trajectory and a trajectory which does n
lead to tunneling, measured from 1203 volume and at supercooling
dm2520.0082g4T2. The horizontal dashed line is the critica
bubble value offav

2 . Two half-trajectories~positive and negative
timestep values! are evaluated starting from a configuration at t
critical value offav

2 and glued together at time step 0 to form a fu
trajectory.
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like to know how the product̂ uDfav
2 /Dtu& d depends on

dm2; we expect that the dependence is weak.
To check this we have used two values ofh, h55 and

h510, and measuredd and^uDfav
2 /Dtu& for each~on a 1243

lattice atdm2520.0082g4T2). The results are presented
Table III, which shows that the productd^uDfav

2 /Dtu& is in-
dependent ofh, within numerical errors. We have also re
analyzed the same set of trajectories, samplingfav

2 half as
often; we find as expected thatd and ^uDfav

2 /Dtu& each de-
pend strongly on the sampling rate, but the product does

We have also varied the degree of supercooling, to c
firm that the dependence of the dynamical prefactors is
very strong. In the 1203 box we have results at 3 differen
values of supercooling:dm2/(g4T2)520.0082, 20.0093
and 20.0104. These correspond to significantly differe
bubble probabilities, as shown in Table IV: the largest sup
cooling corresponds to bubbles which are'e39 times more
likely to nucleate than with the smallest supercooling. T
bubble probability density, Eq.~2.7!, is readily evaluated by
integrating the data shown in Fig. 8. However, as expec

t FIG. 11. Two time histories in the 1243 volume, both starting at
the critical bubble: that in which the gauge field is not upda
~stays nearly constant! and that in which the gauge field is update
When both fields are updated, the critical bubble can grow or
this case, collapse; if only the Higgs fields are updated, it does
evolve.

TABLE III. Dynamical information^uDfav
2 /Dtu& andd, varying

h and sampling each data series at two rates~all on a 1243 lattice at
dm2520.0082g4T2). Each pair of data at fixedh comes from the
same set of trajectories; comparison shows thatd and^uDfav

2 /Dtu&
depend strongly on sampling frequency, but the product does
The~fully independent! data sets with differenth agree within error
for ^uDfav

2 /Dtu& d, showing this quantity has good largeh behavior.

h
4 Dt

sela
2

K U Dfav
2

Dt
U L sel

aw
3 T4

d KUDfav
2

Dt
U L d

sel

aw
3 T4

5 1 36668 0.016960.0028 6.261.0
5 2 24067 0.026460.0048 6.361.2
10 1 500610 0.014660.0037 7.361.8
10 2 32266 0.021860.0048 7.061.6
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TABLE IV. The nucleation rate calculated with 3 different supercoolings, in a 1203, g2Ta54/9 lattice.
PC is the probability density thatfav

2 5fav,C
2 , calculated from Eq.~2.7!. The nucleation rate in the fifth

column isPC^uDfav
2 /Dtu&d/2.

dm2

g4T2
2 log@PC3awT2# KUDfav

2

Dt
U L sel

aw
3 T4

d 2logFrate

V

sel /T

aw
5 T4G

-0.00835 94.160.6 34366 0.02560.008 97.060.7
-0.00951 71.060.5 33169 0.02060.005 74.160.6
-0.01057 54.860.6 31468 0.00960.004 58.860.7
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the dynamical factors are seen to be fairly stable through
this region, varying only by approximately a factor of 2 or
which is in practice insignificant when compared with t
differences in probability.

Note the units on̂ uDfav
2 /Dtu&. The units on the first term

in Eq. ~2.6! are the same as 1/fav
2 ;1/awT2; while to get a

rate per unit volume we must divide by the volume, 1V
;aw

3 T3. Hence the parametric appearance of the nuclea
rate is }aw

5 T4 log(1/g), using sel;T/ log(1/g). This arises
simply from the relation between dimensionless lattice qu
tities and physical quantities.

F. Numerical results and relation to cosmology

The previous two subsections contain all the ingredie
needed to determine the real time rate for bubble nucleat
It remains, first, to put the ingredients together and, seco
to determine what value for the nucleation rate is interes
cosmologically. We write the bubble nucleation rate as

rate

V
5S g2T2

mD
2 D log~1/g!aw

5 T4 exp~2S!. ~4.15!

For the realistic standard model valuesmD
2 5(11/6)g2T2 and

aw.1/30, minus the logarithm of the term in front@evaluat-
ing log(1/g) using Eq.~3.9!#, is 16, so the rate is exp@2(S
116)#T4. Our result forS is shown, as a function ofdm2, in
Fig. 12. This represents our final numerical result. It is u
fortunate that the numerical effort is too large to perform
calculation for several couplings, and we have also not c
sidered a realistic set of parameters in the MSSM.

What are the errors ofS in Fig. 12? Using the numbers i
Table IV, for example, we see that the final statistical err
are strongly dominated by the errors of the probability d
tribution P. In addition, there is the systematical error of t
real-time update evolution~see Sec. IV E!. Both of these
error sources are easily included by a62 error band around
S in Fig. 12.

We want to know at what value ofS the phase transition
occurs, so we can determinedm2 and therefore the amoun
of supercooling. The relevant picture is discussed in@50#.
The bubbles of the broken phase which convert most of
volume into the broken phase nucleate over a character
period of timetnuc, and with a mean separationdnuc, which
is also the diameter they grow to. For one such bubble
nucleate perdnuc

3 volume in time tnuc, the nucleation rate
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must be;1/(tnucdnuc
3 ). The time scale is set by how fast th

nucleation rate is changing: tnuc.(dS/dt)21

.@H(T)TdS/dT#21, with H(T) the Hubble’s constant a
temperatureT. The separation isdnuc;vstnuc, with vs the
sound speed;1; this is because a bubble is preceded b
shock front propagating at approximatelyvs, which heats
the plasma, and nucleations are suppressed in the heate
gion. Hence the nucleations take place when

rate.S H
TdS

dT D 24

. ~4.16!

From Fig. 12, and from the mass-temperature relation,
~3.3!, we seeTdS/dT;23104, while from the Friedman
equation,H5A4p3g* /45(T2/mpl);e236.5T. Hence the in-
teresting value ofS is 161S.106, or S.90. The g2Ta
54/7 data show this value is obtained atdm25(20.00880
60.00010)g4T2, while the finer lattice data give
(20.0086460.00010)g4T2. An extrapolation to zero lattice
spacing, assumingO(a2) errors, givesdm2520.00840
60.00020. Again, this is forl/g250.036; naturally the

FIG. 12. S, as defined in the text, as a function ofdm2, the
degree of supercooling, for theg2Ta54/7 ~dotted curve! and
g2Ta54/9, 1243 lattice ~solid curve! data, each using
^uDfav

2 /Dtu&d as evaluated atdm2520.0082g4T2. The points are
the 1203 data, using the three evaluations of^uDfav

2 /Dtu&d at the
values ofdm2 where they were evaluated. Error bars, not show
are dominated by the error in the determined probability distri
tion, and are about61 in S.
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ELECTROWEAK BUBBLE NUCLEATION, NONPERTURBATIVELY PHYSICAL REVIEW D63 045002
amount of supercooling is strongly dependent on the stren
of the phase transition, and hence onl/g2. This is our final
numerical result.

V. OTHER APPROACHES

Since we have only computed the nucleation rate non
turbatively for a single set of parameters, the main appli
tion of this work is as a benchmark for studying the perf
mance of other, fewer first principles means of determin
the nucleation temperature, which have previously been u
in the literature. For this purpose, we will apply a few
these techniques to the current set of parameters, to see
accurately they determinedm2. ~This actually gives an opti-
mistic appraisal; the dependence ofS on dm2 is strong, so
the relative error inS the logarithm of the nucleation rate
typically almost twice the relative error indm2.!

A. Thin wall approximation estimate

The idea of the thin wall approximation is to hope
assume that the critical bubble is ‘‘thin walled,’’ which tec
nically means we assume 3 things:

~1! The bubble radius is much greater than the thickn
of the phase interface, so we can treat the interface a
infinitely thin geometric surface.

~2! The surface tension of the interface, at the nucleat
temperature, is the same as at the equilibrium temperatu

~3! The free energy difference between the phases
given by the leading order expressionDV5 lDT/T, with l
the latent heat at equilibrium. This neglects the changel
between the nucleation and equilibrium temperatures.

In the limit of small supercooling, all three approxim
tions become exact. Hence the thin wall approximation
appropriate if we are interested in very smalldm2, where the
critical bubble free energy is huge. The approximation is
expecting it to continue to work down to where the critic
bubble free energy isS;90T.

The thin wall approximation is that a bubble of radiusr
will have energy

E~r !54pr 2s2
4p

3
r 3DV, ~5.1!

with s the equilibrium surface tension and

DV5
l eqDT

T
5

2dm2

2
Dfav

2 ~Teq!. ~5.2!

We find the extremum over allr,

]E

]r
50⇒r 5

2s

DV
, E5

16ps3

3@DV#2
. ~5.3!

We now estimate that the nucleation rate will be

rate5exp~2E/T!S g2T2

mD
2 D aw

5 log~1/g!T4, ~5.4!
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where the technique really provides us no way of getting
non-exponential term we write, but we guess that this is c
rect on parametric grounds.

For comparison with the case we have studied num
cally, we solve for the value ofdm2 required to makeE/T
5S590, using the nonperturbatively determined values os
and Dfav

2 (Teq) from the last section,s50.075g4T3 and
Dfav

2 (Teq)52.53g2T2. Substituting into

2dm25S 64ps3

3@Dfav
2 ~Teq!#

2E
D 1/2

~5.5!

givesdm2520.0070g4T2. This is low by about 20% from
the nonperturbative value.

Alternately, we could ask how accurately the thin wa
approximation predicts the nucleation rate at the actual va
of dm2. Plugging in the value ofdm2 found in the last sec-
tion givesS562, which is off by almost a third.

It is clear that the thin wall approximation is doomed
errors of this magnitude when applied whereE/T;90. Note
that the radius of the critical bubble, fordm2 determined
above, is

r 5S 3E

4ps D 1/2

. ~5.6!

But it is impossible for the thickness of the interface to
less than;AT/s; even if the intrinsic thickness were som
how thinner, the surface fluctuations would generate suc
thickness. Hencer never greatly exceeds the surface thic
ness if we are interested inE/T;90. However, all consider-
ing, the thin wall approximation~given nonperturbative in-
puts! does pretty well.

We should comment that, although the thin wall appro
mation requires nonperturbative inputs, it is much easie
determineDfav

2 ands on the lattice than to directly comput
the nucleation rate. In particular, we could think realistica
of doing a ‘‘scan’’ of Dfav

2 ands at several parameter va
ues, in the standard model or one of its extensions, but to
the nucleation rate at numerous values of parameters w
probably be beyond what is currently a reasonable amoun
numerical effort. Hence the thin wall approximation may
a reasonable approach to getting ‘‘rough and ready’’ nuc
ation information.

B. Perturbative estimate

The traditional method for determining the bubble nuc
ation rate in the context of a perturbative treatment of
strength of the phase transition~see for instance@50–52#! is
to approximate the free energy~effective action! to be the
tree kinetic term for the~gauge fixed! Higgs condensatef,
plus an effective potential term computed at some orde
the loop expansion:

E5E d3xS 1

2
~¹f!21V~f! D . ~5.7!
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It is also possible to consider radiative corrections to
Higgs field kinetic energy, as we discuss in the ne
subsection.11

We begin with the simplest possible estimate. We take
one loop effective potential, Eq.~3.8!, reproduced here fo
convenience:

V1 loop5
mHT

2

2
f22

g3

16p
f3T1

l

4
f4. ~5.8!

Here we have neglected scalar loops, which give a contr
tion down relative to thef3 term by (l/g2)3/2. We can see
from Eq. ~5.8! that at

mHT
2 5mTeq

2 ~1 loop!5
g6T2

128p2l
~5.9!

there are two degenerate minima with

f50 and f5f0~1 loop!5
g3T

8pl
. ~5.10!

At best perturbation theory is an expansion in;(g2T/mW)
;gT/f; hence inl/g2. Two loop corrections will give a
correction tof0 of order (l/g2)f0, which is larger than the
scalar loop contribution we neglected above. This justifi
neglect of the scalar loop.12

11We note that a full-fledged analytical computation of the nuc
ation rate in the spirit of the Langer method is very difficult
radiatively induced first order transitions. The problem is how
distinguish the fluctuations which give the effective potential fro
the fluctuations of the bubble in this potential. The results from
cubic anisotropy model~a simple spin model! calculation by Stru-
mia and Tetradis@53# display a dramatic dependence on how t
separation of the fluctuations is done; since the physics canno
pend on the separation of fluctuations, this effect must be an art
of the approximations done in the calculation. On the other han
there is a sufficiently strong first order transition already at the
level, the Langer method is relatively straightforward to apply re
ably @54–56#.

12As an aside we mention that the expressions usually written
scalar loops~Refs.@57,58#, though not Ref.@59#! must be inconsis-
tent because they depend onmHT

2 in a way which does not satisfy
Eq. ~2.5!. The problem is that they were derived using a Hig
boson mass in loops which does not correspond to the curvatu
the potential; the value ofmH

2 used in loops includes the secon
derivative of thelf4 potential term but not of the negative cub
term, which is of the same size in the interesting region and can
be neglected in any consistent approximation scheme. If we inc
terms in the effective potential in the spirit of an expansion inl/g2,
then no reference to the scalar self-coupling ormHT

2 appears in any
loop induced term untilO„(l/g2)3/2

…, when an infinite class of dia
grams must be resummed, corresponding to a single Higgs loop
including iterated one loop mass corrections from gauge bo
loops within the 3D theory~not just the nonzero Matsubara fre
quency loops!.
04500
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One then assumes, reasonably, that the critical bubble
saddle point of Eq.~5.7!, will have spherical symmetry, an
looks for the saddle point of

E54pE
0

`

r 2S 1

2
„] rf~r !…21V„r ~f!…D ~5.11!

over all f(r ), with the boundary condition thatf(r ) go to
zero at larger, so we have a bubble in the symmetric pha
One finds the saddle point free energy as a function ofmHT

2

and looks for where it takes on the desired value, sayE/T
5S590. The difference from the equilibriummHT

2 is the
degree of supercooling we are after.~As in the previous sec-
tion we will simply assume that the bubble zero modes e
give a dimensionful prefactor of;aw

5 T4. Since even a
change in the numerical value of this prefactor by a factor
1000 would represent only a change of 7 in the logarithm
the nucleation rate, our results depend only weakly on
treatment.!

We are not aware of a purely analytic way to find t
saddle point of Eq.~5.11!, but the well-known overshoot
undershoot algorithm is both efficient and accurate. We fi
for l/g250.036, that

dm2520.0058g4T2,

sequilibrium5E
0

f0A2Vdf5
g9T3

3072A2p3l5/2

50.0302g4T3. ~5.12!

In comparison to the nonperturbative values these are b
fairly far off. The degree of supercooling is 2/3 of the rig
value and the surface tension is 40% of the nonperturba
value. One loop perturbation theory isnot accurate even a
l/g250.036, though it is not completely wrong.

We therefore go on to the two loop effective potenti
Neglecting powers ofl and settingmHT!mW to zero within
loops, the new term in the effective potential is@60#

V2 loop5V1 loop2
51

512p2
g4f2T2 log~f/gT!, ~5.13!

where the choice ofgT inside the logarithm is a convenien
choice of renormalization point; a different choice can
absorbed into a shift inmHT

2 . The justification for neglecting
scalar effects is the same as before; for more discussion
footnote 12.

Including this term in the effective potential, we find tha
while f0

252.19 is still smaller than the nonperturbativ
Dfav

2 , we now get too large a surface tension and too mu
supercooling, by a substantial margin:

s2 loops50.088g4T3, dm2~2 loops!520.0168g4T2.
~5.14!

The amount of supercooling is too large by a factor of 2.
the value ofdm2 found nonperturbatively,S2 loop.260 is
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almost 3 times too large. All the results for various effecti
potentials are summarized in Table V.

It is also possible to define a nonperturbative ‘‘effecti
potential forf,’’ as follows. We first find the largest volum
for which the configurations withfav

2 intermediate between
the pure phase values do not show phase segregation.
turns out to be a surprisingly large volume. To see this, re
why, in a larger box, a configuration withfav

2 intermediate
between homogeneous phase values is a mixed phase
figuration, rather than an extensive region with the interm
diate field value. The effective potential we will eventua
derive is shown in Fig. 13. The state halfway betwe
minima has negative curvature. Infrared Higgs field fluctu
tions are therefore spinodally unstable. If we forcefav

2 to
maintain its value, this prevents the zero mode from gro
ing; i.e., it keepsf from shifting value homogeneousl
through the box, but smallk modes will be unstable. Any
mode with k,v2 , with v25A2V9 evaluated at the un
stable point in question, will be unstable to grow. Howev
in a finite volume, there is a discrete spectrum ofk modes.
The lowest nontrivial mode hask52p/L; so in any volume
smaller thanL52p/v2 , configurations with intermediate
fav

2 will be homogeneous. In larger boxes they will be inh
mogeneous, containing a region closer to one phase a
region closer to the other.

Now, we determineF(fav
2 ), meaning2 log@Prob(fav

2 )#,
in such a ‘‘large but not very large’’ volume. In practice w
use a 403 lattice atb59, meaning a volume 17.8/g2T on a
side. This is pretty big, though the volumes we used to st
critical bubbles were typically 3 times longer on a side. W
then write V5F/V and f5Afav

2 2fav
2 (s phase), with

fav
2 (s phase) the lower local minimum ofF(fav

2 ) at Teq.
That is, we throw away the part of the picture on the left
Fig. 13 which lies at smallerfav

2 than the first minimum, and
rescale thex axis for the rest. We take the result to be
‘‘nonperturbative measuredV(f),’’ shown at the right in the
figure.

The advantages of getting an effective potential in t
way are that it should automatically get the right latent he

TABLE V. Supercooling and surface tension, using several a
lytical or semi-analytical approaches, compared with the full n
perturbative answer~last line!. The meanings ofZPadeandZexp are
explained in the next subsection. The one loop result gives
small results; all other results give too large an answer.

Potential used Wave functionZ 2dm2/g4T2 s/g4T3

1 loop Tree 0.0058 0.0302

Tree 0.0168 0.088
2 loop Zexp 0.0109 0.072

ZPade 0.0115 0.074

Tree 0.0151 0.097
‘‘Nonperturbative’’ Zexp 0.0110 0.083

ZPade 0.0114 0.084

Nonpert. Result 0.0084 0.075
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and will show the disappearance of the phase transition
largel/g2. The disadvantages are that it is numerically e
pensive~though less so than a direct determination of t
nucleation rate!, is somewhat arbitrary~how exactly do we
choose a volume, for instance?!, and is still only approxima-
tive. In particular, it is not at all clear that it is reasonable
assume thatf as defined above will have canonically no
malized gradient energies.

-
-

o

FIG. 13. Left: free energy@2 ln(probability)# distribution as a
function of fav

2 in a 403 box ata54/9g2T (b59). The numerical
errors are,0.2 and not shown on the plot. Right: plot at left inte
preted as an effective potential forf, as described in the text
The dotted line is the 2 loop perturbative result, included
comparison.
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The ‘‘nonperturbative effective potential’’ has a larg
separation between minima, but the height of the barrier r
relative to the two loop potential more weakly than asf0

4. As
a result it gives a slightly lower degree of supercoolin
dm2520.0151, as summarized in Table V. Note howev
that the surface tension is further off than in two loop p
turbation theory. What this exercise teaches us is that
difference between the perturbative and the nonperturba
values ofs anddm2 are not primarily because of the lim
tations of the 2 loop effective potential.

C. Perturbative estimates including wave function corrections

We have just found that estimates of the degree of su
cooling and of the surface tension were not substantially
proved by passing from the one loop to the two loop eff
tive potential, using the tree level Higgs field kinetic term
each case. In fact this result is not surprising. While the t
loop effective potential can tell us the latent heatl}fav

2 at
next to leading order inl/g2, the procedure we used is sti
correct only at leading order inl/g2 for determining the
quantities we want, because it does not incorporate ther
corrections to the Higgs field wave function. In this subs
tion we see what happens when we incorporate Higgs w
function corrections which make the calculation complete
next to leading order inl/g2.

Using the one loop effective potential, we can get t
parametric estimatef0;g3T/l, so mW(f);g4T/l in the
broken phase and inside the wall. The wall thickness, on
other hand, is set by the Higgs boson mass in either ph
Lwall;1/mHT;g3T/Al. Therefore, up to a correction sup
pressed by a half power ofl/g2, we may take theW bosons
to be heavy compared with the reciprocal wall width, a
treat the Higgs condensate as a homogeneous backgroun
them. For this reason it is possible to incorporate the lead
non-potential correction as a wave function correction for
Higgs field,

1

2
~¹f!2⇒Z~f!

2
~¹f!2. ~5.15!

Expanding the diagrams shown in Fig. 14 to second orde
external momenta~treated as much less thanmW), we find a
correction to the Higgs gradient term which is, in Land
gauge,

Z~f!511dZ~f!512
11

32p

g2T

mW
512

11

16p

gT

f
,

~5.16!

FIG. 14. Diagrams which lead toO(l/g2) important Higgs
wave function corrections. The vertices in the diagram at right o
exist because there is a condensate.
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in agreement with the expression found by Bo¨deker et al.
@61# ~see also@62#, where these wave function correction
have been considered at length!.

Both corrections from Higgs fields, and from higher ord
in the p!mW expansion, will give at mostO(l3/2/g3) cor-
rections tos anddmHT

2 , whereas we see from the estima
for f0 that the above term contributes atO(l/g2). It will
drive down boths and dm2, since it lowers the gradien
energy contribution to the energy, and so makes it cheape
have bubbles or interfaces. We should mention that to co
pute the (l/g2)3/2 corrections, we would have to perform
fluctuation determinant, since the Higgs field mass and
width of the interface are parametrically the same.13

UnfortunatelyZ(f) goes to zero at a finite value off. At
the value off where this happens, the condensate is so w
that perturbation theory is also breaking down; the failu
signals that neglected higher order effects become esse
To deal with this, we will make an ansatz for those effec
chosen to maintain the correct largef behavior ofZ(f) but
to preventZ(f) from going to zero. We have considered tw
choices to approximate:

Zexp5exp~2dZ! and ZPade5
1

12dZ
. ~5.17!

Since we do not know the higher order behavior ofZ, we do
not know which of these is more sensible. If the answers
get depend strongly on which one we take, that is an ind
tion that the perturbative expansion is failing and we can
trust either.

When we re-computedm2 and s, including these wave
function corrections, we get a result which is much closer
the nonperturbative value; see Table V. Further, the cho
of how to resum higher terms inZ(f) appears not to matte
much. However, the supercooling is still over-estimated
about 25%. Atdm2 where the nonperturbative calculatio
shows the phase transition takes place, whereSnonpert590,
the 2 loop potential with Pade´ resummed self-energy correc
tions givesS5143, more than 50% high.

In summary, using a perturbatively computed effecti
potential but tree Higgs kinetic terms appears to work bad
Higgs wave function corrections are important and impro
the performance of the perturbative treatment; they should
included in any subsequent work which tries to study el
troweak bubble nucleation by perturbative means. Howe
even with wave function corrections, perturbation theory
still not a very accurate way to treat bubble nucleation.

13Such a fluctuation determinant calculation has been perform
by Baacke@63#, and has also recently been considered by P
nachev and Yaffe@64#, but since neither reference uses the two lo
effective potential, their results cannot be considered cor
through toO(l/g2). It is not clear to us how to simultaneousl
perform the fluctuation determinant and to incorporate the two lo
gauge contributions to the effective potential. Without resolvi
this question, the calculation of the fluctuation determinant is
justified in the sense of an expansion inl/g2.

y
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VI. CONCLUSIONS

In this paper we have presented a technique for determ
ing bubble nucleation rates in theories with classical infra
thermodynamics and dynamics, in a fully nonperturbat
way—even where the rate is exponentially small. The te
nique can be considered a generalization of Langer’s form
ism @28#, which replaces the approximate saddle point
pansion of that method with a nonperturbative Monte Ca
calculation and takes care to treat correctly the microsco
dynamics of the nucleation process. The procedure use
interesting mixture of multicanonical Monte Carlo and re
time techniques. Within the context of the dimensional
duction approximation for the thermodynamics and Bo¨dek-
er’s effective theory for the dynamics@15#, our treatment is
exact up to small and controllable numerical errors. It
useful when the microscopic physics is known well enou
and suitably amenable to a lattice treatment to permit
accurate first principles Monte Carlo calculation. In partic
lar, it can be applied at the electroweak phase transition

We have applied the technique to the electroweak ph
transition in the standard model, at a value of the coupl
which is just enough to preserve any baryon number after
transition; the ratio of~3D effective theory couplings! was
taken asl/g250.036. The degree of supercooling is su
that the thermal Higgs boson mass squared falls bydm2

520.00840g4T2 from its equilibrium value.
The main value of this measurement is that we can co

pare it to the results of more traditional and fewer first pr
ciples calculations. We find that the most common metho
the recent literature, using the two loop effective poten
but tree level Higgs kinetic term, is very unreliable. For t
parameters considered it overestimates the amount of su
cooling by a factor of 2, even though it getsf0, the length of
the Higgs field in the broken phase, to within 10% error.
one considers theaction of the critical bubble, it is even
further off. Including Higgs field wave function correction
substantially improves the accuracy; the amount of sup
cooling is then only overestimated by about 25%. The
maining discrepancy cannot be attributed to the inaccur
of the effective potential; a nonperturbative ‘‘effective pote
tial for f ’’ is off by the same amount. On the other hand
thin wall estimate, with nonperturbative inputs, does qu
well—it is off by 20%, in the opposite direction.

It should be straightforward to apply our technique to t
more phenomenologically interesting MSSM or NMSSM
which can support viable baryogenesis.
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APPENDIX: DISCUSSION OF THE INDEPENDENCE
OF THE CHOICE OF MEASURABLE

In this appendix we justify why the procedure presen
in Sec. II of the main text ‘‘works,’’ and in particular why
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the determined rate should be independent of the choic
measurable.

Fix attention on a particular volume and a particular va
of T,Teq at which the nucleation rate is small. We mu
begin by clarifying thedefinitionof the nucleation rate. First
we must be able to say whether or not a configuration is
the metastable phase. This requires that we possesssome
measurable in terms of which the free energy shows a ‘‘t
well’’ structure, like Fig. 3, with the probability at~C! expo-
nentially smaller than at (A). For simplicity of notation let us
assume thatfav

2 serves this purpose.
We can now draw two lines, roughly at~B! and ~D! in

Fig. 3; all we require is that they be well between~C! and the
local minima, such that the likelihood to be at~B! is expo-
nentially greater than the likelihood to be at (C), but expo-
nentially less likely than to be at~A! @and similarly ~D! is
exponentially more likely than~C! but less likely than the
broken phase#. We say that a configuration is ‘‘definitely in
the metastable phase’’ if it has a value offav

2 to the left of
~B! and is ‘‘definitely in the broken phase’’ if it has a valu
to the right of (D).

The intuitive meaning of the nucleation rate is the follow
ing. Take the canonical ensemble, and throw out all the c
figurations to the right of (B), leaving only the ones which
are clearly in the metastable minimum. Now carry out t
time evolution for a ‘‘medium’’ amount of time,tmedium,
exponentially longer than any microscopic time scale,
exponentially shorter than the time it takes for most of t
metastable configurations to escape to the broken phase
the end of the time evolution, look to see how much of t
ensemble is definitely in the broken phase, i.e. to the righ
(D). Define that fraction, divided byVtmedium, to be the
spacetime rate of nucleations.

This intuitive meaning of the nucleation rate will be o
definition. Note that it is equivalent to the following. Con
sider the set of all trajectories of lengthtmedium, starting from
any configuration~symmetric, broken, or in between! with
appropriate Boltzmann weight. The nucleation rate per u
volume is

rate5
P~symm→broken!

VtmediumP~symm→symm!
, ~A1!

where (P) means the fraction of the trajectories satisfying
given condition. In other words, find what fraction of traje
tories start in the symmetric phase and end in the broken
and divide by the number which start and end in the sy
metric phase, the volume, and the time.@The denominator
should read P„symm→ left of (D)…, but since configurations
between~B! and ~D! are exponentially rare the difference
exponentially small.# This definition of a rate depends on ou
exact choices for (B), (D), and tmedium, but the sensitivity
should be exponentially weak—unless there is some a
tional long time scale in the problem, besides the nuclea
rate, in which case our technique probably fails. We c
think of the nucleation problem in terms of sampling ov
the space of real time trajectories, and the sampling may
taken using the equilibrium ensemble. The goal is now
show that our technique correctly determines the numbe
2-23
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GUY D. MOORE AND KARI RUMMUKAINEN PHYSICAL REVIEW D 63 045002
crossing trajectories, relative to all trajectories which rem
near the symmetric phase, and that this does not depend
sitively on our choice of measurable.

From here on we will consider our technique applied
two classes of dynamics. The first is Hamiltonian dynam
for a system where the phase space is the tangent bu
over the space of configurations. We further assume tha
Hamiltonian is a function of space plus~a constant times! the
inner product function on the tangent space. In other wo
the momenta appear quadratically in the Hamiltonian, an
any orthonormal basis for the momenta the quadratic form
a multiple of the identity. Probably these conditions are
strong, and we could work with any Hamiltonian syste
which could be written as a fiber bundle over a configurat
space, but the treatment would be more complicated.
other class of dynamics we consider is Langevin dynam
where the noise term is Gaussian, white, and additive. W
means there are no unequal time correlators in the nois
which case it is described by a weight function on the t
gent space; we take that weight function to be of the sa
form as the momentum distribution just described for
Hamiltonian case. Probably one could extend our techni
to the case where the noise is stronger in some coordi
directions or has an amplitude which varies in space. Ho
ever, such Langevin systems are notoriously subtle; see
@65,66#.

Consider two measurables; call themO1 and O2. ~They
could for instance befav

2 and some other volume average
a local observable, orO2 could for instance be the maximum
over all centerpoints for spheres of radiusr, of *sphere2F†F.!
For each observable we can make a free energy plot
identify some least likely value ofO, Ocrit . The measurable
O is a map from the space of configurations to the real nu
bers; the subspace which gives a particular value ofO is a
codimension 1 surface in the space of configurations. He
defining a measurable also defines a foliation of the confi
ration space. We will call the special surface, consisting
all configurations withO5Ocrit , theseparatrixfor the mea-
surableO. This notation is in keeping with@67#, where many
of the root ideas of our algorithm can be found. One wo
like the separatrix to separate the configurations more lik
under time evolution, to go to the symmetric phase, fr
those more likely to go to the broken phase.

Note that~B! and~D! also give codimension 1 surfaces
the configuration space, namely the surfaces wherefav

2 takes
on the values~B! and (D); we will call these surfacesB and
D. To one side of the surfaceB is the metastable phase,
the far side of surfaceD is the broken phase, and in betwe
are intermediate configurations. For the measurableO to be
useful, we require that theO separatrix carry all but an ex
ponentially small part of its weight between the surfacesB
andD. We give a cartoon of how these surfaces in config
ration space look, in Fig. 15.

It is possible to define an ideal operator,Oideal, which will
provide an ideal separatrix for distinguishing configuratio
which are in the domain of attraction of one or the oth
phase. Namely, we define
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Oideal~config!

5E
traj through config

Q~fav
2
„config~ tmedium!…,~B!!.

~A2!

Oideal of a configuration is the fraction of trajectories, startin
at that configuration, which are in the metastable phase a
time tmedium. For Hamiltonian dynamics, the measure on t
space of trajectories through a configuration is just the
nonical measure of the tangent space; a point in the tan
space uniquely defines a trajectory. For Langevin dynam
the measure for the space of trajectories through a poin
given by the measure of realizations of the noise, with e
trajectory corresponding to the noise realization which g
erates it. We do not useOideal in our work because its mea
surement is impractical.

The method presented in the main text for the determi
tion of the nucleation rate, applied to an observableO, can
be phrased as follows: first, we find the probability distrib
tion as a function of the value ofO; that is, we find the
integral along each surface of constantO of the weight of the
canonical ensemble. This gives

P~ uO2Ocritu,e/2!

e P~O,Ocrit!
}E

surf
d~surf area!exp~2H/T!

3@dO/d~normal!#21, ~A3!

the integral over the surface of the Boltzmann weight,di-
vided by the surface normal derivative ofO. The surface
normal derivative appears because the larger the deriva
is, the narrower is the region over whichO differs by less
thane/2 from Ocrit .

Multiplying by ^uDO/Dtu& precisely compensates for th
normal derivative factor. This is because the mean value
uDO/Dtu, at any point in configuration space, is proportion
to the gradient ofO at that point. To see this, note first th

FIG. 15. A cartoon of how configuration space is foliated by
measurable—here the lines of constant measurable do not coin
with the ones which determine the surfacesB andD.
2-24
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ELECTROWEAK BUBBLE NUCLEATION, NONPERTURBATIVELY PHYSICAL REVIEW D63 045002
only motion normal to the surface of constantO matters.
Next note that, by our requirements on the dynamics, the
metric distance traveled in one direction, on averaging o
possible momenta~or Langevin noise realizations!, is inde-
pendent of the position in configuration space or direct
considered. Therefore

K U DO
Dt U L

}

E
surf

d~surf area!exp~2H/T!

E
surf

d~surf area!exp~2H/T!@dO/d~normal!#21

.

~A4!

The product is proportional to the Boltzmann weighted a
of the separatrix, and hence the flux through the separa
as claimed in the body of the paper.

The flux through the separatrix will clearly differ for dif
ferent choices ofO, as illustrated in Fig. 16. It remains t
show thatdO , as defined in Eq.~2.9!, precisely turns the
correctly normalized flux of trajectories through the sepa
trix into a count of trajectories which mediate nucleation
Figure 16 illustrates why this is true. First consider a traj
tory which crosses the separatrix an even number of tim

FIG. 16. Cartoon of separatrices for two measurables and s
trajectories. Trajectory 1 crosses separatrix 2 but not separatr
but it ~therefore! crosses an even number of times, and leads to
entry in determiningdO2. Similarly trajectory 2 crosses separatrix
but not separatrix 2, but also does not contribute todO1. Trajectory
3 does lead to a nucleation. It is sampled 3 times in computingdO2,
each time contributing~1/3!, and sampled once in computingdO1,
contributing 1. Hence it gives the same contribution to the total r
computation for each measurable.
ni-
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and returns to the phase it came from, like trajectory 1 in
figure. If the trajectory crossesn times, it gets countedn
times in the sampling procedure, once at each crossing o
separatrix. Each count is with the same weight. For Ham
tonian dynamics this is because the evolution conserves
ergy ~hence the Boltzmann factors are all the same! and
phase space measure. For Langevin dynamics it is bec
the Langevin dynamics correctly generates the thermal
semble. In either case, the number of times the trajectory
sampled is in proportion to its contribution to the flux, an
each time it contributes zero tod; henced correctly accounts
for the number of nucleations~zero! the trajectory causes.

Next consider a trajectory which does get from the me
stable phase to the stable one. It is guaranteed to cross
separatrices an odd number of times, because each is t
right of B where the trajectory starts and to the left ofD
where it ends. If the trajectory crosses a separatrixn times, it
will appear in the average, used to determined, n times, each
with the same weight, and each appearance contributesn
to the determination ofd, so the number of nucleations i
correctly counted as 1. Again, the Boltzmann weight
amount of flux the trajectory crossing represents is the sa
at each of its crossings—of either separatrix. Hence if th
is a larger total flux through, say, the separatrix forO1, then
this individual trajectory represents a smaller fraction of th
flux, and gets an appropriately smaller weight in the sa
pling for determiningdO1. Its positive contribution to the
value of dO1 is correspondingly smaller. Since the set
trajectories which mediate nucleations are the same, wh
ever separatrix we use to sample them, the smaller sized
exactly compensates for the larger flux through the sep
trix. This is why the total rate computed is the same for ea
choice ofO.

While different observables give the same answer for
nucleation rate, they are not equally convenient as numer
tools. A good measurable must satisfy two conditions. Fi
it must be easy to measure it, so it can be used practicall
reweighting configurations in the Monte Carlo calculati
~see Sec. IV B!. Second, when determiningd, statistics must
accumulate with a reasonable sample of configuratio
which means that a reasonable fraction of trajector
through the separatrix must actually lead to bubble nuc
ation. Otherwise it may take an exponentially large sam
of trajectories to determined with good statistical accuracy
Roughly, this will require that the separatrix of the obse
able be close to degenerate with the separatrix ofOideal.
Note that, by construction, under Langevin dynamics half
the trajectories through theOideal separatrix lead to
nucleations, and that this is the upper bound among
observables.
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@33# D. Bödeker, P. John, M. Laine, and M. G. Schmidt, Nu

Phys.B497, 387 ~1997!.
@34# M. Laine and K. Rummukainen, Nucl. Phys.B535, 423

~1998!; Phys. Rev. Lett.80, 5259~1998!.
@35# D. Y. Grigoriev and V. A. Rubakov, Nucl. Phys.B299, 67

~1988!.
04500
l.

.

D

t
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