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Calculation of the one-point Green’s function for aÀgf4 quantum field theory
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It has recently been shown that, when properly defined, a2gx4 potential in quantum mechanics possesses
a positive definite spectrum. The positivity of the spectrum is apparently due to thePT symmetry of the
Hamiltonian. Furthermore, for such a theory the expectation value^x& is not zero. This paper extends these
results to a2gf4 quantum field theory inD-dimensional Euclidean space. The value of the one-point Green’s
function G15^f& in this field theory is calculated in the weak-coupling and strong-coupling regimes. Non-
perturbative techniques must be used in both of these regimes. For smallg, the value ofG1 is dominated by a
classical soliton. Strong-coupling graphical methods are used to calculateG1 for largeg.
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I. INTRODUCTION
In 1952 Dyson argued heuristically that Rayleig

Schrödinger perturbation theory for quantum electrodyna
ics is divergent@1#. This argument is quite general and a
plies to the quantum anharmonic oscillator, who
Hamiltonian is

H5
1

2
p21

1

2
m2x21

1

4
gx4 ~g.0!. ~1.1!

The argument goes as follows: If the coupling constantg is
replaced by2g, then the potential is no longer bounde
below, so the resulting theory has no ground state. Th
there is an abrupt transition in the ground-state energyE0(g)
at g50. If we representE0(g) as a series in powers ofg,
this series must have a zero radius of convergence bec
E0(g) has a singularity at the origing50 in the complex-
coupling-constant plane. Hence, perturbation theory mus
verge for allgÞ0. While the conclusion that the perturb
tion series diverges is correct@2#, this heuristic argument is
flawed because the spectrum of the Hamiltonian

H5
1

2
p21

1

2
m2x22

1

4
gx4 ~g.0! ~1.2!

is ambiguous. This ambiguity is due to the absence of w
specified boundary conditions that the wave functions m
satisfy. As we will see, the spectrum depends crucially
how this Hamiltonian with a negative coupling constant
obtained.1

There are many ways to obtain the Hamiltonian~1.2!. For
example, one can substituteg5ugueiu into the Hamiltonian
~1.1! and rotate fromu50 to u5p. Under this rotation, the

*Email address: cmb@howdy.wustl.edu
†Email address: pnm@howdy.wustl.edu
‡Email address: hyangb@artsci.wustl.edu
1One question that may occur to the reader is whether the ei

functions of Eq.~1.2! are analytic continuations of the eigenfun
tions of the usual anharmonic oscillator~1.1!. The answer to this
question is definitely not because the eigenfunctions satisfy to
different boundary conditions.
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ground-state energyE0(g) becomes complex@2,3#. Evi-
dently, E0(g) is real and positive wheng.0 and complex
wheng,0.2 One can also obtain Eq.~1.2! as a limit of the
Hamiltonian

H5
1

2
p21

1

2
m2x21

g

21a
x2~ ix !a ~g.0! ~1.3!

as a:0→2. Recently, Hamiltonians like that in Eq.~1.3!
have been studied in great detail@4–15#. It has been shown
that fora>0 the spectra of such Hamiltonians are real, po
tive, and discrete. The spectrum of the limiting Hamiltoni
~1.2! obtained in this manner is similar to that of the Ham
tonian in Eq.~1.1!; it is entirely real, positive, and discrete
@The positive energy eigenvalues of the two Hamiltonia
~1.1! and ~1.2! are numerically different.#

How can one Hamiltonian~1.2! possess two such aston
ishingly different spectra? The answer lies in the bound
conditions satisfied by the wave functionscn(x). In the first
case, in whichu5argg is rotated in the complex-g plane
from 0 to p, cn(x) vanishes in the complex-x plane asuxu
→` inside the wedges2p/3,argx,0 and 24p/3
,argx,2p @16#. In the second case, in which the expone
a ranges from 0 to 2,cn(x) vanishes in the complex-x
plane asuxu→` inside the wedges2p/3,argx,0 and
2p,argx,22p/3 @4,5#. In this second case the bounda
conditions hold in wedges that are symmetric with respec
the imaginary axis. The boundary conditions enforce thePT
symmetry of the Hamiltonian, and evidently are responsi
for the reality of the energy spectrum@5#.

There is another striking difference between the two th
ries corresponding to the Hamiltonian~1.2!. We define the
one-point Green’s functionG1(g) @the expectation value o
the operatorx with respect to the ground-state wave functi
c0(x)] by the ratio of integrals

n-

ly

2If we rotate from u50 to u52p, then we obtain the same
Hamiltonian as in Eq.~1.2! but the spectrum is the complex conju
gate of the spectrum obtained when we rotate fromu50 to u
5p.
©2001 The American Physical Society01-1
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G1~g!5
^0uxu0&

^0u0&
[

E
C
dx xc0

2~x!

E
C
dx c0

2~x!

, ~1.4!

where the contourC is a path in the complex-x plane that lies
in the asymptotic wedges described above. The value
G1(g) for the HamiltonianH in Eq. ~1.2! depends on the
limiting process by which we obtainH. If we use a rotation
in which we substituteg5g0eiu into the Hamiltonian~1.1!
and rotate fromu50 to u5p, we find by an elementary
symmetry argument thatG1(g)50 for all g on the semi-
circle in the complex-g plane. Evidently, this rotation in the
complex-g plane preserves parity symmetry~reflection
through the origin,x→2x). There is no parity symmetry
breaking for the Hamiltonian defined in this manner. Ho
ever, if we defineH in Eq. ~1.2! by using the Hamiltonian in
Eq. ~1.3! and by taking the limit asa ranges from 0 to 2, we
find that G1(g)Þ0. Indeed,G1(g) is nonvanishing forall
values ofa.0. Thus, in this theory, whilePT symmetry
~reflection about the imaginary axis,x→2x* ) is preserved,
parity symmetry is permanently broken.

These two different results forG1(g) emphasize the am
biguity in Dyson’s argument and show that the bound
conditions in the integrals in Eq.~1.4! are crucial for deter-
mining the one-point Green’s function. We are concerned
this paper with the theory that preservesPT symmetry. In
this theory the energy spectrum is real andG1(g) is nonzero.

The purpose of this paper is to extend these quant
mechanical arguments to the quantum field theory wh
D-dimensional Euclidean space Lagrangian density is

L5
1

2
~¹f!21

1

2
m2f22

g

4
f4. ~1.5!

What is remarkable about this ‘‘wrong-sign’’ field theory
that, when it is obtained using thePT-symmetric limit, the
energy spectrum is real and positive, and the one-p
Green’s function is nonzero@17–20#. Furthermore, the field
theory is renormalizable, and in four dimensions is asym
totically free~and thus nontrivial!. Based on these features
the theory, we believe that the theory may provide a use
setting to describe the Higgs particle@21#.

While the Lagrangian~1.5! is not Hermitian, it is invari-
ant under PCT reflections. Conventional field-theoret
Lagrangians possess two crucial symmetries, the continu
symmetry of the proper Lorentz group and the discrete s
metry of Hermiticity. While Lorentz invariance is a physic
requirement, Hermiticity is a useful but rather mathemati
constraint. However, from the assumptions of Lorentz inva
ance and positivity of the spectrum of the Lagrangians
can prove thePCT theorem and thereby establish the ve
physical symmetry ofPCT invariance. The constraint ofPCT
invariance is weaker than Hermiticity, so Lagrangians h
ing this property need not be Hermitian. In quantum mech
ics and in a scalar quantum field theory like that defined
the Lagrangian~1.5!, theC operator is unity, soPCT symme-
try reduces toPT symmetry. While it has not yet bee
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proved, there is strong analytical and numerical evide
supporting the conjecture that the energy levels of the Ham
tonians constructed from such Lagrangians are all real
positive. The reality and positivity of the spectrum is app
ently a consequence of thePT symmetry ofL.

This paper is organized as follows. In Sec. II we sho
how to calculate the one-point Green’s function in the we
coupling limit. We begin with the simplest case of a zer
dimensional field theory and show that Feynman diagra
cannot be used to calculateG1. Next, we perform a detailed
calculation ofG1 in one dimension~quantum mechanics!.
We then extend this calculation to quantum field theory
D-dimensional Euclidean space. In Sec. III we show how
calculateG1 using strong-coupling lattice techniques and d
termine G1 as a series in inverse powers of the coupli
constantg.

II. WEAK-COUPLING CALCULATION OF G1

In this section we perform a weak-coupling~small-g) cal-
culation of the one-point Green’s functionG1, which is de-
fined as acomplexfunctional integral in Euclidean space:

G15

E
C
Df f~0!e2L[f]

E
C
Df e2L[f]

. ~2.1!

Here,L@f#5*dDx L with L given in Eq.~1.5! and C is a
contour in the complex-f plane. We define the contourC as
follows: The functional integrals in Eq.~2.1! must be re-
garded as an infinite product of ordinary integrals, one in
gral for each lattice point in Euclidean space. For each
these ordinary integrals the contour of integration must
within 45° wedges that lie in the lower-half plane and a
centered about the245° and 2135° lines. These two
wedges are symmetrically placed about the imaginary ax

A. Feynman rules

We begin by pointing out that if we attempt to calcula
the integrals in Eq.~2.1! using Feynman rules, we obtain th
incorrect result thatG1 vanishes. To derive the Feynma
rules for evaluating the integral in Eq.~2.1! we introduce a
source termJ(x) and consider the functional-integral repr
sentation for the vacuum persistence amplitudeZ@J#:

Z@J#5E
C
Df expS 2E dDx H 1

2
@¹f~x!#21

1

2
m2f2~x!

2
1

4
gf4~x!2J~x!f~x!J D . ~2.2!

This expression forZ@J# may be rewritten as
1-2
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Z@J#5expF1

4
gE dDx

d4

dJ~x!4G
3E

C
Df expS 2E dDx H 1

2
@¹f~x!#21

1

2
m2f2~x!

2J~x!f~x!J D . ~2.3!

To evaluate the Gaussian functional integral we defo
the contourC so that it lies on the real axis in functio
space.3 We then evaluate the standard Gaussian integral

Z@J#5N expF1

4
gE dDx

d4

dJ~x!4G
3expF1

2E dDx E dDy J~x!D~x2y!J~y!G ,
~2.4!

whereN is an infinite constant andD(x) is the Euclidean
coordinate-space propagator:

D~x!5~2p!2D/2S m

uxu D
(D22)/2

K (D22)/2~muxu!

5~2p!2DE dDp

p21m2 eip•x. ~2.5!

From Eq.~2.4! we can read off the Feynman rules:

6g for a vertex,

D~x2y! for a line connectingx to y.
~2.6!

If we naively employ these rules to calculate the one-po
Green’s functionG1, we obtain the result thatG150 to all
orders in powers ofg. This conclusion follows from the fac
that the vertex is afour-point vertex, and thus no Feynma
diagrams contribute toG1. However, it is not correct to con
clude that the one-point Green’s function for this theory va
ishes. Indeed,G1 does not vanish, but rather isexponentially
small as g→0. To calculateG1 in this limit we must use
nonperturbative techniques.We illustrate these technique
first for the case of a zero-dimensional quantum field theo

B. Zero-dimensional case

In zero space-time dimensions Eq.~2.1! becomes a ratio
of ordinary integrals:

3This deformation is valid because the Gaussian integral c
verges forC lying in wedges of angular opening 90° centered ab
the positive and negative real axes in the complex-f plane. We
choose the contourC so that it lies in the region common to the 45
wedge in which the original functional integral forZ@J# converges
and the 90° wedge in which the Gaussian functional integral c
verges.
04500
t

-

y.

G15

E
C
dx xe2L(x)

E
C
dx e2L(x)

, ~2.7!

whereL(x)5 1
2 m2x22 1

4 gx4. Here,C is a contour whose end
points lie inside 45° wedges in the complex-x plane as de-
scribed above.

We transform to dimensionless variables by settingx
5mt/Ag:

G15
m

Ag

E
C
dt te2L(t)/e

E
C
dt e2L(t)/e

, ~2.8!

wheree5gm24 andL(t)5 1
2 t22 1

4 t4.
For small positivee we use the saddle-point method@22#

to approximate the integrals. To find the saddle points
differentiateL(t) and getL8(t)5t2t3. The algebraic equa
tion L8(t)50 gives three saddle points att50 and t5
61. The second derivative ofL(t) determines the local di-
rections of the steepest curves emanating from the sa
points. SinceL9(t)5123t2, we see that the steepes
descent paths att50 lie on the positive- and negative-re
axes, while the steepest-descent paths att561 point in the
positive- and negative-imaginary directions. We must d
form the original contourC into a steepest contour. Thi
steepest contour runs along a curve fromt5`e23p i /4 and
enters the saddle point att521 vertically. It leaves this
saddle point and goes along the real axis, through the sa
point att50, and continues on to the saddle point att51. It
emerges from this saddle point going vertically downwa
and curves off tot5`e2p i /4. The maximum value of the
integrand on this curve is att50. Note that the endpoints o
the steepest-descent contour lie in the centers of the we
of convergence.

The integral in the denominator of Eq.~2.8! is dominated
by the perturbativesaddle point att50; that is, when we
expand about this point, we obtain a series in powers oe
whose terms can be represented as a sum of convent
Feynman diagrams. The leading term in the expansion of
integral isA2pe. However, the saddle point att50 does not
contribute to the integral in the numerator. Indeed, the in
gral along the steepest path joiningt521 to t51 vanishes
because the integrand is odd. The contributions to the i
gral in the numerator come from the portions of the steep
descent paths lying infinitesimally below the saddle points
t561. To leading order, these two contributions a
2 iApee21/(4e). Substituting these results into Eq.~2.8!, we
obtain the final answer

G1;2
i

m
221/2e21/2e21/(4e) ~e→01!. ~2.9!

We will extend this saddle-point calculation to the gene
D-dimensional functional integral~2.1!, but this calculation

n-
t

-

1-3
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is nontrivial. Thus, as a guide, we consider the spe
quantum-mechanical case corresponding toD51 first. For
this case we can obtain the small-g asymptotic behavior of
G1 directly from the Schro¨dinger equation.

C. One-dimensional case

In this subsection we calculateG1, which is defined in
Eq. ~1.4! as the ratio of integralsG15*Cdx xc0

2(x)/
*Cdx c0

2(x), wherec0(x) is the ground-state wave functio
satisfying the Schro¨dinger equation

2
1

2
c09~x!1S 1

2
m2x22

1

4
gx4Dc0~x!5Ec0~x!

~2.10!

andE is the ground-state energy. The contour of integrat
C lies inside 60° wedges lying in the lower-half plane a
adjacent to the positive and negative real axes. This is
quantum-mechanical analogue of Eq.~2.1!.

We convert the Schro¨dinger equation to dimensionles
form by letting

x5
t

Am
, g5em3, E5lm, ~2.11!

so thatt, e, andl are all dimensionless quantities. In term
of these new variables,

G15
1

Am

E
C
dt ty2~ t !

E
C
dt y2~ t !

, ~2.12!

wherey(t) satisfies the dimensionless Schro¨dinger equation

2
1

2
y9~ t !1S 1

2
t22

1

4
et4D y~ t !5ly~ t !. ~2.13!

The Feynman rules for this theory are valid as long
they do not predict that a quantity vanishes. Therefore,
ground-state energyl is given by l5 1

2 1O(e). Here, the
ordere term is obtained by evaluating the lowest-order gra
~a figure-8 graph with one vertex!. To zeroth order ine the
ground-state wave function is

y~ t !5e2t2/2@11O~e!#. ~2.14!

Thus, to zeroth order ine the norm of the ground state is

E
2`

`

dt y2~ t !5E
2`

`

dt e2t2@11O~e!#5Ap@11O~e!#.

~2.15!

This yields, to leading order ine,

G15
1

Amp
E

C
dt ty2~ t !. ~2.16!
04500
l

n

e

s
e

h

The integral in this last expression vanishes to all ord
in e because to each order in powers ofe, the ground-state
wave functiony(t) is an even function. Thus, convention
perturbation theory gives 0 forG1. Yet as we saw in the
previous subsection, it is not 0; rather, it is exponentia
suppressed. This suppression occurs because the corre
to y(t) at zeroth order is exponentially small.

To find the correction toy(t) we partition the real-t axis
into three regions, which are defined in terms of the turn
points at6t1 and at6t2, wheret1 and t2 are the zeros of
f(t)5t22 1

2 et421. To first order ine we have

t1511
e

4
1O~e2!, ~2.17!

which is a distance of order 1 from the origint50. Also,

t25A2/eF12
e

4
1O~e2!G , ~2.18!

which is far from the origin.
Region I includes allt that are of order 1~including the

point t1). All values of t in this region must be small com
pared withe21/4. Uniformly in this region we can neglect th
term et4 compared witht221. The solution to the Schro¨-
dinger equation in this region is justy(t)5e2t2/2, where we
have chosen the normalizationy(0)51.

Region II includes those values oft that are large com-
pared with 1 but are small compared witht2 ~far enough
from t2 so that the WKB solution is still valid!. In region II
we can solve the Schro¨dinger equation using the WKB solu
tion becausef(t)@1. ~This asymptotic inequality is equiva
lent to the condition that\ be small.! The leading-order
WKB solution that falls off exponentially has the explic
form

yWKB~ t !5C@f~ t !#21/4expF2E
t1

t

dsAf~s!G . ~2.19!

The overlap of regions I and II consists of those values
t that satisfyt@1 and t!e21/4. In this overlap region the
asymptotic approximation to the leading-order WKB so
tion is

yWKB~ t !;CA2e2t2/2 ~ t@1, t!e21/4!. ~2.20!

An asymptotic match withy(t) in region I implies thatC
51/A2.

Region III is defined as those values oft that are in the
vicinity of t2. Specifically, we lett5t2(12e2/3r /2), where
r !e22/3. In terms of the variabler the dimensionless Schro¨-
dinger equation becomes the Airy equationy9(r )5ry(r ),
whose general solution is

yIII ~r !5C1Ai ~r !1C2Bi~r !. ~2.21!

For large positiver, Ai( r ) decays exponentially asr in-
creases
1-4
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Ai ~r !;
1

2Ap
r 21/4e22r 3/2/3 ~r @1!, ~2.22!

while Bi(r ) decays exponentially asr increases:

Bi~r !;
1

Ap
r 21/4e2r 3/2/3 ~r @1!. ~2.23!

Thus, in the overlap of regions II and III, which consists
those r satisfying the asymptotic inequalitiesr @1 and r
!e22/3,

yIII ~r !;
1

Ap
C2r 21/4e2r 3/2/3. ~2.24!

Notice that this asymptotic behavior does not depend onC1,
but only onC2. TheC1 contribution is subdominant.

Now we must approximate the WKB solution in the ove
lap of regions II and III. First, we havef(t);21/4e21/12r 1/4

(1!r !e22/3). Second, we approximate* t1
t dsAf(s) by

writing it as the difference of two integrals:

E
t1

t

dsAf~s!5E
t1

t2
dsAf~s!2E

t

t2
dsAf~s!. ~2.25!

The first of these integrals is evaluated in Eq.~4.24! of Ref.
@3#

E
t1

t2
dsAf~s!;

2

3e
2

1

4 F logS 32

e D11G . ~2.26!

We evaluate the second of these integrals by making
changes of variablet5A2/e (12 1

2 e2/3r ) and s5A2/e (1
2 1

2 e2/3s). This gives

E
t

t2
dsAf~s!;E

0

r

ds As5
2

3
r 3/2. ~2.27!

Combining these results we obtain the asymptotic beha
of yWKB(r ) in the overlap of regions II and III:

yWKB~r !;223/4e1/12r 21/4expF2

3
r 3/22

2

3e

1
1

4
logS 32

e D1
1

4G ~1!r !e22/3!. ~2.28!

Matching the asymptotic approximation~2.28! of the
WKB solution in the overlap of regions II and III to th
asymptotic approximation~2.24! of yIII (r ) gives the value of
C2 : C25A2p e1/4e21/6e22/(3e). We thus conclude that

yIII ~r !5C1Ai ~r !1A2pe1/4e21/6e22/(3e)Bi~r !.
~2.29!

We emphasize again thatC1 is not determined by this
asymptotic match.
04500
e

or

The constantC1 is determined by the condition that th
wave functiony(t) decay exponentially ast emerges from
the turning point att2 at an angle of260°. In this direction
r 5re2p i /3, where r is real and positive. From the exac
functional identity@23#

Bi~re2p i /3!2 i Ai ~re2p i /3!522iep i /3Ai ~r! ~2.30!

we obtain the value ofC1. Thus,

yIII ~r !5A2pe1/4e21/6e22/(3e)@Bi~r !2 i Ai ~r !#.
~2.31!

For any other value ofC1, asr gets large and positive ther
is an admixture of Bi(r) which grows exponentially like
e2r3/2/3 and violates the normalization condition.

By oddness, the integral forG1 vanishes in the region
between2t2 andt2. It remains to evaluate this integral from
t2 to ` along a path of positiver. Define

I right5E
t2

`e2 ip/6

dt t y2~ t !. ~2.32!

Next, we make the change of variablet5A2/e (1
2e2/3r /2). This yields

I right52e21/3E
0

`e2ip/3

dr @A2pe1/4e21/6e22/(3e)#2

3@Bi~r !2 i Ai ~r !#2, ~2.33!

where we have rotated the contour so that it follows
anti-Stokes line~the path of steepest descent! and we have
replacedt in the integrand byt2.

Next, we make the change of variabler 5e2p i /3r, where
r:0→`. This converts Eq.~2.33! to a real integral:

I right522pe22/3e1/2e24/(3e)e2p i /3E
0

`

dr @22ieip/3Ai ~r!#2,

~2.34!

where we have used the functional identity~2.30!. The Airy
function integral is evaluated by using the identi
Ai2(r)5@rAi2(r)2Ai 82(r)#8. Finally, using Ai8(0)5
2321/3/G(1/3), we obtain

I right524pAee22/3e24/(3e)322/3~11 iA3!/G2~1/3!.
~2.35!

Adding together the right and left integrals that contribute
G1, we note that the real parts cancel while the imagin
parts add. This gives anegative imaginaryvalue forG1:

G1;2
i

Am
8Apee22/3e24/(3e)321/6/G2~1/3! ~e→01!,

~2.36!

where we have used Eq.~2.16!. Numerically, we have
1-5
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G1;2
i

Am
~2.71248!e22/3e24/(3e) ~e→01!.

~2.37!

This result for the asymptotic behavior ofG1 for small g is
similar in form to that in Eq.~2.9! for the caseD50.

D. D-dimensional case

In this subsection we generalize the steepest-descent
culation done in Sec. II B to the case ofD dimensions. We
will use functional-integral techniques to find the controllin
factor ~the exponential contribution! of the asymptotic be-
havior ofG1 for arbitrary dimensionD. ~The full asymptotic
behavior is much more difficult to obtain.! We begin with the
one-point Green’s function defined in Eq.~2.1!.

We introduce dimensionless variablest, e, and f as fol-
lows:

x5t/Am, g5m42De f~x!5m(D22)/2e21/2f ~ t !.
~2.38!

In terms of these new variables the expression forG1 in Eq.
~2.1! becomes

G15
m(D22)/2

Ae

E
C
Df f ~0!e2L[ f ]/ e

E
C
Df e2L[ f ]/ e

, ~2.39!

where the dimensionless LagrangianL@ f # is

L@ f #5E dDt H 1

2
@¹ f ~ t !#21

1

2
f 2~ t !2

1

4
f 4~ t !J .

~2.40!

Next, we identify the saddle points contributing to th
asymptotic behavior of the integrals in Eq.~2.39! as e
→01. To do so we calculate the variational derivative
L@ f #: @d/d f (s)#L@ f #52¹2f (s)1 f (s)2 f 3(s). Based on
our experience with the zero-dimensional calculation in S
II B and the one-dimensional calculation in Sec. II C, w
expect that the solution to the equation@d/d f (s)#L@ f #50
will depend on whether we are interested in the integra
the numerator or in the denominator of Eq.~2.39!. We expect
that theperturbativesaddle pointf (s)[0 dominates the in-
tegral in the denominator. However, because of oddness,
saddle point does not contribute to the asymptotic expan
of the numerator.4

The asymptotic expansion of the integral in the numera
is dominated by asoliton defined by the boundary-valu
problem

2¹2f ~s!1 f ~s!2 f 3~s!50, ~2.41!

4The constant solutionsf (s)[61 do not contribute to the inte
grals in the numerator or the denominator of~2.39! because their
action is infinite.
04500
al-

f

c.

n

is
n

r

where limusu→` f (s)50. We can obtain this soliton analyti
cally only in the caseD51:

f D51~s!5A2 sech~s1C!, ~2.42!

whereC is an arbitrary constant of integration. Substitutin
this solution into the integral forL@ f # in Eq. ~2.40!, we
obtain

L@ f D51#54/3, ~2.43!

which reproduces the controlling factore24/(3e) of the small-
e asymptotic behavior in Eqs.~2.36! and ~2.37!.

In dimensions other thanD51 the controlling factor of
the asymptotic behavior ofG1 for small e has the form

G1;e2L[ f ]/ e ~e→0!. ~2.44!

To find the value ofL@ f # we seek a spherically symmetri
solution5 f (r ) to Eq.~2.41!, wherer 5usu. The functionf (r )
then satisfies

2 f 9~r !2
D21

r
f 8~r !1 f ~r !2 f 3~r !50 ~0<r ,`!,

~2.45!

where f (`)50. This boundary-value problem cannot b
solved analytically, but numerical analysis gives forL@ f #
the graph shown in Fig. 1. Note that the functionalL@ f #
passes through the calculated points1

4 at D50 and 4
3 at D

51. The curve rises to a maximum value betweenD53.5
andD54 and then starts to decrease. Some numerical va
of L@ f # for various values of the Euclidean space-time
mensionD are given in Table I.

The asymptotic formula in Eq.~2.44! is a geometrical-
optics approximation. To obtain the complete leading-or
asymptotic approximation toG1 for small e ~the physical-
optics approximation! we must expand about the soliton s
lution defined by Eq.~2.45!. This is a nontrivial calculation
for arbitrary D and we only discuss this calculation for th
caseD51. To expand about the soliton solution forD51 in
Eq. ~2.42! we substitute

f ~ t !5 f D51~ t !1e1/2h~ t !5A2 sech~ t1C!1e1/2h~ t !
~2.46!

into the dimensionless actionL@ f # in Eq. ~2.40!, whereh(t)
represents fluctuations about the classical solitonf D51(t).
To zeroth order in powers ofh(t) the result is4

3 , as we saw
in Eq. ~2.43!. Also, terms linearly proportional toh(t) van-
ish upon integration by parts because of the stationarity c
dition ~2.41!. Thus, we have

5We assumethat the spherically symmetric solution minimizes th
functional L@ f # in Eq. ~2.40!; this is equivalent to assuming tha
non-spherically symmetric solutions make subdominant contri
tions to the asymptotic behavior ofG1. In the massless case one ca
use Sobolev inequalities to justify using spherically symmetric
lutions. In the massive case here we can only argue by analog
1-6
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FIG. 1. Controlling factor ~2.44! of the
asymptotic behavior of the one-point Green
function G1 for small dimensionless coupling
constante. The controlling factor has the form
e2L[ f ]/ e, which is nonperturbative in characte
Plotted is the functionalL@ f # versus the Euclid-
ean space-time dimensionD. At D50 we have
L@ f #5

1
4 and atD51 we haveL@ f #5

4
3 , as cal-

culated analytically. For other values ofD we can
only obtainL@ f # numerically. Some of the nu-
merical values ofL@ f # plotted here are given in
Table I.
ic
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be
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L@ f D511e1/2h#5
4

3
1

e

2E dt h~ t !M ~ t !h~ t !

2e3/2E dt fD51~ t !h3~ t !

2
e2

4 E dt h4~ t !, ~2.47!

where the matrixM (t) is the differential operatorM (t)
52d2/dt21126 sech2t.

The physical-optics correction to the geometrical-opt
approximation in Eq.~2.44! requires that we evaluate th
Gaussian functional integral

E DhexpF2
1

2E dt h~ t !M ~ t !h~ t !G . ~2.48!

@Note that the small parametere has dropped out of this
calculation because the term in Eq.~2.47! containing the
operatorM is proportional toe and there is a factor of 1/e in
the exponent in Eq.~2.39!.# We know that the value of a
Gaussian functional integral of the form~2.48! is the inverse
of the square root of the product of the eigenvalues ofM.

TABLE I. Numerical values of the dimensionless Lagrangi
L@ f # in Eq. ~2.40! for various values of the Euclidean space-tim
dimensionD. Note thatL@ f # rises to a maximum value betwee
D53.5 andD54 and then starts to decrease. The functionL@ f # is
plotted as a function ofD in Fig. 1.

D L@ f # D L@ f #

0 1/4 3.0 18.9023
0.5 0.5853 3.5 27.6012
1.0 4/3 3.8 30.0387
1.5 2.8755 3.9 29.3452
2.0 5.8505 3.95 28.3897
2.5 11.0599 4.0 26.3209
04500
s

To find the spectrum ofM we must solve the Schro¨dinger
equation

S 2
d2

dt2
1126 sech2t D y~ t !5Ey~ t !, ~2.49!

whereE is the energy eigenvalue andy(t) is the correspond-
ing eigenfunction. The potential 126 sech2t has a minimum
value of25 and it levels off at 1 asutu→`. Therefore, there
is a continuum spectrum beginning atE51. There are also
two normalizable bound states atE523 with corresponding
eigenfunctiony(t)5sech2(t) and atE50 with correspond-
ing eigenfunctiony(t)5sech(t) tanh(t). The lowest-energy
(E51) continuum eigenfunction isy(t)5sech2(t)2 2

3 ,
which is not normalizable.

The corresponding Gaussian functional integral to
evaluated in the denominator of Eq.~2.39! has the differen-
tial operatorM (t)52d2/dt211. The corresponding Schro¨-
dinger equation has a continuus spectrum beginning aE
51 andno bound states. Thus, the product of the eigenva
ues of the continuum eigenstates cancels in the numer
and denominator and all that remains are the eigenvalue
the bound states. Because the lowest bound-state ener
E523 is negativeand because we must take the square r
of this eigenvalue, it is now clear why the one-point Gree
function is imaginary, as we saw in Eq.~2.36!.

Observe that the energy of the other bound state iszero.
This implies that we cannot truncate the expansion in
~2.47! at the Gaussian level. For this particular contributi
we must retain the cubic term of ordere3/2. Thus, for this
mode we must consider a cubic exponential integral of
form *dh exp(2Ae h3). This integral is ofAiry form and
accounts for the contributionG(1/3) in Eq. ~2.36!. More
importantly, when this integral is performed, the small p
rametere scales out and contributes a factor ofe21/6. This
factor combines with the factor ofe21/2 in Eq. ~2.39! to give
a factor ofe22/3, which is precisely the asymptotic result i
Eq. ~2.36!. The vanishing eigenvalue corresponds in the la
guage of catastrophe theory to a coalescence of sa
1-7
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TABLE II. To verify the accuracy of the strong-coupling perturbation series, numerical values o
one-point and two-point Green’s functionsG1 andG2 at g51 are obtained from the first four orders of th
strong-coupling expansion for the caseD51. ~The blank spaces in the table correspond to the appearan
complex numbers in the Pade´ extrapolants.! The numerical values ofG1 in the table must be multiplied by
i. The exact values of the Green’s functions were obtained by direct numerical integration of the Schro¨dinger
equation. Three theories are considered here:a53 gives anif3 theory,a54 gives a2f4 theory, anda
55 gives a2 if5 theory.

a53 Order 1 Order 2 Order 3 Order 4 Exact Error~%!

G1 20.66835 20.65587 20.65016 20.64718 20.64058 1.02
G2 20.44669 20.43017 20.42271 20.40944 3.14
a54
G1 21.03865 21.01113 20.99836 20.99150 20.97347 1.82
G2 20.32956 20.31603 20.30887 20.29473 4.58
a55
G1 21.24289 21.20721 21.19067 21.18167 21.15497 2.26
G2 20.23702 20.22935 20.22351 20.21043 5.85
g

th
e

he
g
t

g-

um
points. This coalescence is associated with the matchin
the distant turning pointt2 in the WKB calculation in Sec.
II C.

III. STRONG-COUPLING CALCULATION OF G1

In this section we perform a strong-coupling~large-g)
calculation of the one-point Green’s functionG1. The
graphical methods for lattice strong-coupling techniques
we use here are explained in detail in a series of pap
@24–27#. In the strong-coupling regime we can neglect t
mass term in the Lagrangian~1.5!. Because strong-couplin
graphical methods are extremely general, we consider
one-parameter family of Lagrangian densities

L5
1

2
~¹f!22

1

a
g~ if!a, ~3.1!
04500
at

at
rs

he

where we recover the massless version of Eq.~1.5! whena
54.

We obtain the graphical rules for the lattice stron
coupling expansion by observing that in the limit of largeg
the kinetic term in the Lagrangian densityL in Eq. ~3.1! can
be viewed as a small perturbation. Therefore, the vacu
persistence amplitudeZ@J# @see Eq.~2.2!# for the quantum
field theory associated withL can be factored as

Z@J#5expF1

2E dDx dDy
d

dJ~x!
D21~x2y!

d

dJ~y!G Z0@J#,

~3.2!

where D21(x2y)5¹2dD(x2y) is the inverse of the free
massless propagator in coordinate space and

Z0@J#5E
C
Df expH E dDx S 1

a
g@ if~x!#a1J~x!f~x! D J .

~3.3!
f

TABLE III. Numerical values of the one-point and two-point Green’s functionsG1 and G2 at g51

obtained from the first four orders of the strong-coupling expansion for 0<D<2. The numerical values o
G1 in the table must be multiplied byi. Three theories are considered here:a53 gives anif3 theory,a
54 gives a2f4 theory, anda55 gives a2 if5 theory.

a53 a54 a55

D G1 G2 G1 G2 G1 G2

0 20.72901 20.53146 20.97774 20.28000 21.07865 20.16434
0.2 20.70266 20.50241 20.97353 20.28195 21.08776 20.17088
0.4 20.67827 20.47837 20.97081 20.28437 21.10190 20.17928
0.6 20.65732 20.46447 20.97294 20.28951 21.12157 20.19014
0.8 20.64920 20.43739 20.98097 20.29739 21.14702 20.20440
1.0 20.64718 20.42271 20.99150 20.30887 21.18167 20.22351
1.2 20.63956 20.41225 21.00904 20.32523 21.22953 20.24982
1.4 20.63745 20.40670 21.03683 20.34841 21.29727 20.28743
1.6 20.64404 20.40704 21.08005 20.38148 21.39669 20.34400
1.8 20.66707 20.41481 21.15123 20.42960 21.55066 20.43532
2.0 20.65751 20.43231 21.27438 20.50188 21.80942 20.59834
1-8
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The factorization in Eq.~3.2! of the vacuum persistenc
function leads to the strong-coupling lattice expansion.
introducing aD-dimensional hypercubic lattice with lattic
spacinga we rewrite Eq.~3.3! as a product of ordinary inte
grals over lattice sitesk:

Z0@J#5)
k
E

C
dt expF 1

a
aDg~ i t !a1aDJkt G . ~3.4!

To obtain the vertices we expand the one-dimensional i
grals as series in powers ofJ:

Z0@J#5)
k

(
n50

`
1

n!
~aDJk!

nE
C
dt tnexpF 1

a
aDg~ i t !aG .

Next, we evaluate each of the one-dimensional integ
by deforming the contourC so that it enters the origin alon
a ray in the left-halft plane at the angle2p/22p/a and
leaves the origin along a (PT-reflected! ray in the right-half
t plane at the angle2p/21p/a. Each integral can now be
expressed in terms of a Gamma function. To identify
vertices we writeZ0@J# in the form

Z0@J#5NexpH aD(
i

F (
n51

`
1

n!
Ji

nVnG J ,

whereN is a multiplicative numerical constant. The vertic
Vn have the form

Vn5aD(n21) ~aDg!2n/a vn ~n>1!,

wherevn are numerical constants. The first three of thevn
are

v1522 i a1/a cos~p/a! G~2/a!/G~1/a!,
th

ge

,

tt

er

m-

04500
y

e-

ls

e

v25n2/a $4 cos2~p/a! G2~2/a!

2@112 cos~2p/a!# G~1/a! G~3/a!%/G2~1/a!,

v352 i a3/a cos~p/a!$8 cos2~p/a! G3~2/a!

23@112 cos~2p/a!# G~1/a! G~2/a! G~3/a!

12 cos~2p/a! G2~1/a! G~4/a!%/G3~1/a!.
~3.5!

The propagator on the lattice can be written in vec
notation asD215a2D22@(1)22D(0)#. This notation was
introduced in Ref.@25#, where this discrete form of the
propagator was used to evaluate lattice integrals, which
come sums over Kronecker delta functions on the hypercu
lattice. The lattice strong-coupling expansion is organiz
according to the number of free propagatorsD21 ~in contrast
to weak-coupling expansions where the number ofvertices
and not the number of lines determines the order!.

After calculating to a given order in perturbation theo
we use Pade´ methods to extrapolate to the continuum lim
(a→0). The results atD51 for the one- and two-poin
Green’s functions to fourth order in the strong-coupling e
pansion are shown in Table II. These results are in sup
agreement with the exact values of the Green’s functi
obtained by numerical solution of the Schro¨dinger equation.
These numerical calculations are explained in Ref.@7# where
they were performed to check the accuracy of variatio
calculations. For other Euclidean dimensions 0<D<2 the
numerical values of these Green’s functions are given for
casesa53,4,5 in Table III. These are new field theoretic
results.
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