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Calculation of the one-point Green’s function for a—ge¢* quantum field theory
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It has recently been shown that, when properly defined gx* potential in quantum mechanics possesses
a positive definite spectrum. The positivity of the spectrum is apparently due t®Zneymmetry of the
Hamiltonian. Furthermore, for such a theory the expectation vetyiés not zero. This paper extends these
results to a— g¢* quantum field theory ifD-dimensional Euclidean space. The value of the one-point Green’s
function G;=(¢) in this field theory is calculated in the weak-coupling and strong-coupling regimes. Non-
perturbative techniques must be used in both of these regimes. Forgsitiedlvalue ofG; is dominated by a
classical soliton. Strong-coupling graphical methods are used to cal&ydier largeg.
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[. INTRODUCTION ground-state energ¥y(g) becomes compleX2,3]. Evi-
In 1952 Dyson argued heuristically that Rayleigh-dently, Ey(g) is real and positive wheg>0 and complex
Schralinger perturbation theory for quantum electrodynam-wheng<0.% One can also obtain E¢l.2) as a limit of the
ics is divergen{1]. This argument is quite general and ap- Hamiltonian
plies to the quantum anharmonic oscillator, whose

Hamiltonian is
H= Ep2+ EmzxznL
2 2 2+«

1 xX2(ix)* (g>0) (1.3

1 1
T h2L T m2y2 4
H—2p +2m X +4gx (g>0). (1.2

The argument goes as follows: If the coupling constaig s @:0—2. Recently, Hamiltonians like that in Eq1.3)
replaced by—g, then the potential is no longer bounded have been studied in great detpdi-15]. It has been shown
below, so the resulting theory has no ground state. Thughat fora=0 the spectra of such Hamiltonians are real, posi-
there is an abrupt transition in the ground-state engigyg) UV, and discrete. The spectrum of the limiting Hamiltonian
atg=0. If we represenEy(g) as a series in powers af (1.2_) ob_tamed in th_ls_manr_ler is similar t(_)_that of the_ Hamil-
this series must have a zero radius of convergence becau@ian in Eq.(1.1); it is entirely real, positive, and discrete.
Eo(g) has a singularity at the origig=0 in the complex- [The positive energy elgenvalu_es of the two Hamiltonians
coupling-constant plane. Hence, perturbation theory must ditt-1) and(1.2) are numerically different.

verge for allg#0. While the conclusion that the perturba- ~ HOW can one Hamiltoniaril.2) possess two such aston-
tion series diverges is corref2], this heuristic argument is ishingly different spectra? The answer lies in the boundary

flawed because the spectrum of the Hamiltonian conditions satisfied by the wave functiogg(x). In the first
case, in whichd=argg is rotated in the compleg- plane

1 1 1 from 0 to 7, ¢,(X) vanishes in the complex-plane agx|
H= §p2+ Emzxz— ng4 (9>0) (1.2 o inside the wedges—m/3<argx<0 and —4/3
<argx<— [16]. In the second case, in which the exponent
is ambiguous. This ambiguity is due to the absence of well# ranges from 0 t0 24,(x) vanishes in the complex-
specified boundary conditions that the wave functions musplane as|x|— inside the wedges- m/3<argx<0 and
satisfy. As we will see, the spectrum depends crucially on~ 7<argx<—2m/3[4,5]. In this second case the boundary
how this Hamiltonian with a negative coupling constant isconditions hold in wedges that are symmetric with respect to
obtained: the imaginary axis. The boundary conditions enforce7ie
There are many ways to obtain the Hamilton{ar?). For ~ Symmetry of the Hamiltonian, and evidently are responsible

example, one can substituge=|g|e'? into the Hamiltonian ~ for the reality of the energy spectrufs].
(1.1) and rotate fromd=0 to #= 7. Under this rotation, the There is another striking difference between the two theo-

ries corresponding to the Hamiltonidh.2). We define the
one-point Green’s functios,(g) [the expectation value of
the operatox with respect to the ground-state wave function
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¥o(X)] by the ratio of integrals
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'One question that may occur to the reader is whether the eigen-
functions of Eq.(1.2) are analytic continuations of the eigenfunc- 2f we rotate from #=0 to 6= — m, then we obtain the same
tions of the usual anharmonic oscillat@r.1). The answer to this  Hamiltonian as in Eq(1.2) but the spectrum is the complex conju-
question is definitely not because the eigenfunctions satisfy totallgate of the spectrum obtained when we rotate frém0 to 6
different boundary conditions. =.
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5 proved, there is strong analytical and numerical evidence
(0x/0) JCdX XiJp(X) sup_porting the conjecture that the energy levels of the Hamil-
Gi(g)= = , (1.4)  tonians constructed from such Lagrangians are all real and
(0[0) f dx y2(x) positive. The reality and positivity of the spectrum is appar-
c 0 ently a consequence of tHe7 symmetry ofL.

This paper is organized as follows. In Sec. Il we show
where the contou€ is a path in the complex-plane that lies  how to calculate the one-point Green’s function in the weak-
in the asymptotic wedges described above. The value dfoupling limit. We begin with the simplest case of a zero-
G,(g) for the HamiltonianH in Eg. (1.2) depends on the dimensional field theory and show that Feynman diagrams
limiting process by which we obtaiH. If we use a rotation cannot be used to calcula@ . Next, we perform a detailed
in which we substituteg=goe'? into the Hamiltonian(1.1)  calculation ofG; in one dimensionquantum mechanigs
and rotate fromd=0 to =, we find by an elementary We then extend this calculation to quantum field theory in
symmetry argument thaB,(g)=0 for all g on the semi- D-dimensional Euclidean space. In Sec. Il we show how to
circle in the complexg plane. Evidently, this rotation in the calculateG, using strong-coupling lattice techniques and de-
complexg plane preserves parity symmetrgreflection termine G, as a series in inverse powers of the coupling
through the originx— —x). There is no parity symmetry constantg.
breaking for the Hamiltonian defined in this manner. How-
ever, if we defineH in Eq. (1.2) by using the Hamiltonian in
Eq. (1.3) and by taking the limit a& ranges from 0 to 2, we Il. WEAK-COUPLING CALCULATION OF G,
find that G,(g)#0. Indeed,G4(g) is nonvanishing forall
values ofa>0. Thus, in this theory, while?7 symmetry
(reflection about the imaginary axis;,—~ —x*) is preserved,
parity symmetry is permanently broken.

These two different results fdB,(g) emphasize the am-
biguity in Dyson’s argument and show that the boundary
conditions in the integrals in Eq1.4) are crucial for deter- f D $(0)e 14
C

In this section we perform a weak-coupligmall-g) cal-
culation of the one-point Green'’s functi@h,, which is de-
fined as acomplexfunctional integral in Euclidean space:

mining the one-point Green'’s function. We are concerned in

this paper with the theory that preservE§ symmetry. In 1=

this theory the energy spectrum is real &y{g) is nonzero. f D¢ et
The purpose of this paper is to extend these quantum- ¢

mechanical arguments to the quantum field theory whose

D-dimensional Euclidean space Lagrangian density is Here, L[ ¢]= [dPx £ with £ given in Eq.(1.5 andC is a

1 1 9 contour in the complexp plane. We define the conto@ as
£=§(V¢)2+ §m2¢2—z¢4. (1.5  follows: The functional integrals in Eq2.1) must be re-

garded as an infinite product of ordinary integrals, one inte-

gral for each lattice point in Euclidean space. For each of

these ordinary integrals the contour of integration must lie

energy spectrum is real and positive, and the one—poin‘fvnhin 45° wedges that lie in the lower-half plane and are

y centered about the-45° and —135° lines. These two

Green's function is nonzerfd7-20. Furthermore, the field wedges are symmetrically placed about the imaginary axis
theory is renormalizable, and in four dimensions is asymp- 9 y yp ginary '

totically free(and thus nontrivial Based on these features of
the theory, we believe that the theory may provide a useful
setting to describe the Higgs partidi21].

While the Lagrangiari1.5) is not Hermitian, it is invari- We begin by pointing out that if we attempt to calculate
ant under PCT reflections. Conventional field-theoretic the integrals in Eq(2.1) using Feynman rules, we obtain the
Lagrangians possess two crucial symmetries, the continuodgcorrect result thats; vanishes. To derive the Feynman
symmetry of the proper Lorentz group and the discrete symtules for evaluating the integral in E(R.1) we introduce a
metry of Hermiticity. While Lorentz invariance is a physical source termJ(x) and consider the functional-integral repre-
requirement, Hermiticity is a useful but rather mathematicalsentation for the vacuum persistence amplitdfié]:
constraint. However, from the assumptions of Lorentz invari-
ance and positivity of the spectrum of the Lagrangians one Z[J]:f D exp( _J' dPx (E[ng(x)]q Emzqsz(x)
can prove thePC7 theorem and thereby establish the very c 2 2
physical symmetry ofPC7 invariance. The constraint GC7 1
invariance is weaker than Hermiticity, so Lagrangians hav- T
ing this property need not be Hermitian. In quantum mechan- 497 (x) J(X)¢(X)] ) ' 22
ics and in a scalar quantum field theory like that defined in
the Lagrangiari1.5), theC operator is unity, s°C7 symme-
try reduces toP7 symmetry. While it has not yet been This expression foZ[J] may be rewritten as

(2.1

What is remarkable about this “wrong-sign” field theory is
that, when it is obtained using tHeZ-symmetric limit, the

A. Feynman rules
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Z[J]=exp[%gj dDX—5ij()4 fcd”e_ux)
. . Gy="r—, @7

—L(X

JE exp( - dDX[zW‘f’(X”Z* > M%) Joxerre

whereL (x) = $m?x?— 2gx*. Here,C is a contour whose end
—J(X)¢(X)] ) (2.3 points lie inside 45° wedges in the complexplane as de-
scribed above.
To evaluate the Gaussian functional integral we deform We transform to dimensionless variables by setting
the contourC so that it lies on the real axis in function =mt/\g:
space’ We then evaluate the standard Gaussian integral,

Z[J]=N ! de o
[]— exZg XW

1
xex;{z j d°x f dPy J(x)A(x—yu(y)},
(2.4)

f dt te  AW/e
m C

Gi=—F—7—""", (2.9
Vg J dte A0/
C

wheree=gm™* and A (t) = 3t?— 3t4.

For small positivee we use the saddle-point methfi2P]
to approximate the integrals. To find the saddle points we
differentiateA (t) and getA’(t)=t—t>. The algebraic equa-
tion A’(t)=0 gives three saddle points &0 andt=

where V' is an infinite constant and (x) is the Euclidean
coordinate-space propagator:

m) (P—-2)/2 +1. The second derivative of(t) determines the local di-
A(x)=(2m) P~ m) Kp-2)2(mlx]) rections of the steepest curves emanating from the saddle
points. SinceA”(t)=1—3t?, we see that the steepest-
b Pp ip-x descent paths d@t=0 lie on the positive- and negative-real
=(2m) f p2+mze . (25 axes, while the steepest-descent pathis=at- 1 point in the
positive- and negative-imaginary directions. We must de-
From Eq.(2.4) we can read off the Feynman rules: form the original contourC into a steepest contour. This
steepest contour runs along a curve fromoce 374 and
6g for a vertex, enters the saddle point &&= —1 vertically. It leaves this
saddle point and goes along the real axis, through the saddle
A(x—y) for a line connectingx to y. point att=0, and continues on to the saddle pointatl. It

(2.6) emerges from this saddle point going vertically downward
famd curves off tot=oce” ™" The maximum value of the
integrand on this curve is && 0. Note that the endpoints of
the steepest-descent contour lie in the centers of the wedges
of convergence.

If we naively employ these rules to calculate the one-poin
Green'’s functionG,, we obtain the result thad,;=0 to all
orders in powers of). This conclusion follows from the fact

that the vertex is dour-point vertex, and thus no Feynman The integral in the denominator of E.8) is dominated

diagrams contribute t&,. However, it is not correct to con- . : . :
clude that the one-point Green’s function for this theory van-by the perturbativesaddle point at=0; that is, when we

ishes. Indeed3; does not vanish, but ratheréxponentially \?V)F%isgd tgrbrggtct;‘:‘s S:'?é’ \rléie%tt)g:jmaz Zegjrilrc])fpg%?/resnggnal
small asg—0. To calculateG; in this limit we must use P

nonperturbative techniquedVe illustrate these techniques Feynman diagrams. The leading term in the expansion of this

first for the case of a zero-dimensional quantum field theory'.megral ISy2re. I—_Iowever_, the saddle point &+ 0 does not
contribute to the integral in the numerator. Indeed, the inte-

gral along the steepest path joinibg —1 tot=1 vanishes
because the integrand is odd. The contributions to the inte-
In zero space-time dimensions H@.1) becomes a ratio gral in the numerator come from the portions of the steepest-
of ordinary integrals: descent paths lying infinitesimally below the saddle points at
t=*x1. To leading order, these two contributions are
—iJmee V(49 Substituting these results into EQ@.8), we

3This deformation is valid because the Gaussian integral conpbtaln the final answer

verges forC lying in wedges of angular opening 90° centered about .

the positive and negative _regl axes in th_e compjleplane. We Gy~ — '_2—1/26—1/2e— 1/(4e€) (e—0"). 2.9
choose the contol so that it lies in the region common to the 45° m

wedge in which the original functional integral f@fJ] converges

and the 90° wedge in which the Gaussian functional integral con- We will extend this saddle-point calculation to the general
verges. D-dimensional functional integrdP.1), but this calculation

B. Zero-dimensional case
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is nontrivial. Thus, as a guide, we consider the special The integral in this last expression vanishes to all orders
guantum-mechanical case correspondinddte 1 first. For  in e because to each order in powersepfthe ground-state
this case we can obtain the smgllasymptotic behavior of wave functiony(t) is an even function. Thus, conventional

G, directly from the Schrdinger equation. perturbation theory gives 0 foB,;. Yet as we saw in the
previous subsection, it is not O; rather, it is exponentially
C. One-dimensional case suppressed. This suppression occurs because the correction

. . L . . to y(t) at zeroth order is exponentially small.

In this subsection we Ca'C_“'a@b Wh'ih IS deflr;ed n To find the correction ty(t) we partition the reat-axis
Eq. (1'24) as the ratio of integralsG,=/cdxx¢5(X)/  into three regions, which are defined in terms of the turning
Jedxip(x), wherey(x) is the ground-state wave function points at+t, and at=t,, wheret, andt, are the zeros of

satisfying the Schidinger equation #(t)=t>—3et*—1. To first order ine we have
1 " 1 24,2 1 X4 = €
~ 5 ¥o(X) F| 5 MXT= 79X | io(X) = Edhio(X) tl=1+Z+O(ez), (2.17)
(2.10

andE is the ground-state energy. The contour of integrationVhich is a distance of order 1 from the origdir-0. Also,

C lies inside 60° wedges lying in the lower-half plane and

adjacent to the p_ositive and negative real axes. This is the t,= J2le 1— f+0(62) , (2.18
guantum-mechanical analogue of Eg.1). 4
We convert the Schrdinger equation to dimensionless
form by letting which is far from the origin.
Region | includes alt that are of order Yincluding the
t pointt;). All values oft in this region must be small com-
X= N g=em®, E=\m, (2.1)  pared withe” ¥ Uniformly in this region we can neglect the
m term et* compared witht?>—1. The solution to the Schro

. . - . o o 2
so thatt, €, and\ are all dimensionless quantities. In terms dinger equation in this region is jug{t)=e " ', where we

of these new variables, have chosen the normalizatigni0)=1.
Region Il includes those values btthat are large com-

5 pared with 1 but are small compared with (far enough

1 Ldtty (t) from t, so that the WKB solution is still valid In region Il
Gi=————, (2.12 we can solve the Schdinger equation using the WKB solu-
\/ﬁ f dty(t) tion becausep(t)> 1. (This asymptotic inequality is equiva-

C lent to the condition thati be small) The leading-order

) WKB solution that falls off exponentially has the explicit
wherey(t) satisfies the dimensionless Satlirmyer equation  form

. (219

1 1, 1, i .
—SY' O+ S et y(O=y(D). (213 ywrs(H)=C[(1)] 1’4exp[—ft dsVe(s)

The Feynman rules for this theory are valid as long s he oyerlap of regions | and I consists of those values of
they do not predict that a quantity vanishes. Therefore, th? that satisfyt>1 andt<e Y4 In this overlap region the

is qi _1
ground-state energy is given byh=;+0O(e). Here, the  ,qymnrotic approximation to the leading-order WKB solu-
ordere term is obtained by evaluating the lowest-order graphy,r, is

(a figure-8 graph with one vertgxTo zeroth order ire the
ground-state wave function is yWKB(t)~C\/§e’t2’2 (51, t<e ), (2.20

_ o t?2
y()=e "1+ 0(e)]. (2.14 An asymptotic match withy(t) in region | implies thatC

. - =1/2.
Thus, to zeroth order ia the norm of the ground state is Region Ill is defined as those values ofhat are in the
» » i vicinity of t,. Specifically, we let=t,(1—€?%/2), where
f dt yz(t)zf dte t[1+0(e)]= Va[1+0O(e)]. r<e 22 Interms of the variable the dimensionless Schro
’°° ’°° dinger equation becomes the Airy equatigf(r)=ry(r),
(2.19 whose general solution is

This yields, to leading order im, . .
y 9 Y ()= C1Ai(r) + C,Bi(r). (2.21)

1 dt ty2(t). (2.16 For large positiver, Ai(r) decays exponentially asin-
maJcC creases

G]_:
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The constantC; is determined by the condition that the

1
Ai(r)~—=r Vg2 (151, (2.22  wave functiony(t) decay exponentially asemerges from
2\m the turning point at, at an angle of-60°. In this direction
hile BI(r) d iy asi _ r=pe®™3 wherep is real and positive. From the exact
while Bi(r) decays exponentially asincreases: functional identity[23]
Bi(r)w\/i_r—1/482r3/2/3 (r>1), (2.23 Bi(pe?™/%) —i Ai(pe?™/3) = —2ie™3Ai(p) (2.30
n

we obtain the value o€;. Thus,
Thus, in the overlap of regions Il and Ill, which consists of
thoser satisfying the asymptotic inequalities>1 andr v (r)=v2mel4e Yo~ 2/CIBi(r)—i Ai(r)].
<e 2B (2.3)

1 For any other value of,, asp gets large and positive there
—1/4,2r%23 . . e . . .
Y (r)~—=Cor =" ", (2.24  is an admixture of Bif) which grows exponentially like
T 2 3/2/3 . . . "
e’ * and violates the normalization condition.
By oddness, the integral fd&,; vanishes in the region

between—t, andt,. It remains to evaluate this integral from
t, to « along a path of positive. Define

Notice that this asymptotic behavior does not depen&€gn
but only onC,. The C, contribution is subdominant.

Now we must approximate the WKB solution in the over-
lap of regions Il and III. First, we have(t) ~ 24~ Y151/ e
(1<r<e ??). Second, we approximatg; ds\é(s) by | igh= J*e dtty2(t). (2.32
writing it as the difference of two integrals: t2

Next, we make the change of variable=\2/e(1

t ty ty
Jt dsv«5(3)=ft dsv¢>(s)—Jt dsVé(s). (225  —¢%5%/2). This yields

we2iTl3
[que first of these integrals is evaluated in E4124) of Ref. lyight=— € 13 f ¢ dr[2mel/4e Vo= 2/(39))2
0

o X[Bi(r)—i Ai(r)]?, (2.33
? +1

. (2.2

ty 2 1
f ds ¢(S)~§_Z log _
ty where we have rotated the contour so that it follows the

anti-Stokes lingthe path of steepest desceahd we have
We evaluate the second of these integrals by making thfaeplacedt in thgintegrand by,. P ®

ch;anz%es of variablet = y2/e (1~ 3¢%r) and s=2/e (1 Next, we make the change of varialile e>™/3p, where
—2€70). This gives p:0—o. This converts Eq(2.33 to a real integral:

t, r 2 B
ft dso(s)~ fodg \/E: §r3’2. (2.2 | ight= _277672/3e1/2e74/(3e)627'ri/3j dp[—2iei™3Ai(p) T3
0

Combining these results we obtain the asymptotic behavior (2.34
of ywke(r) in the overlap of regions Il and IlI: where we have used the functional identi/30. The Airy
5 5 function integral is evaluated by using the identity
i ~23/4€1/12rl/4ex+r3/2_ 2 Ai2(p) =[pAi2(p)—Ai"%(p)]". Finally, using Al(0)=
Ywea(r) 3 3e —3- 131 (1/3), we obtain
1 1 .
+l0ogl 2|+ 2| (1<r<e ). (2.28 light= — 4 \Jee 2%~ 4393251 +/3)/T2(1/3).

4 € 4 (2.35

Matching the asymptotic approximatio2.28 of the  agding together the right and left integrals that contribute to
WKB solution in the overlap of regions Il and Il to the G e note that the real parts cancel while the imaginary
asymptotic approximatio(®.24) of yy(r) gives the value of 515 add. This gives megative imaginarwalue forGy:

C,: C,=2m el Y8239 e thus conclude that

yin(r)=C1Ai(r) +y2mete Vo 239Bi(r). G~ — ——8\mee 2% ¥BIZUGT2(1/3) (e—0"),
(2.29 Jm
(2.36
We emphasize again tha®; is not determined by this
asymptotic match. where we have used E(R.16). Numerically, we have
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i
— —=(2.71248€ *Pe~ 49

N

Gy~ (e—0").
(2.37

This result for the asymptotic behavior Gf; for smallg is
similar in form to that in Eq(2.9) for the caseD =0.

D. D-dimensional case

In this subsection we generalize the steepest-descent cal-

culation done in Sec. Il B to the case bfdimensions. We

will use functional-integral techniques to find the controlling

factor (the exponential contributionof the asymptotic be-
havior of G, for arbitrary dimensioD. (The full asymptotic
behavior is much more difficult to obtajnVe begin with the
one-point Green’s function defined in E@.1).

We introduce dimensionless variablese, andf as fol-
lows:

x=t/\/ﬁ,

4—D

g=m*"Pe p(x)=mP~22e V2 y),

(2.38

In terms of these new variables the expressiondetin Eq.
(2.1) becomes

f Df f(0)e Alfle
C

m(D—2)/2
Gi= , (2.39
Ve fpf e Alfle
C
where the dimensionless Lagrangiapf] is
1 1 1
— Dy ] 2, "~ ¢f2 _ ¢4
A[f]—fd t(Z[Vf(t)] +2f (1) 4f (t) ;.
(2.40

PHYSICAL REVIEW D63 045001

where limg_...f(s)=0. We can obtain this soliton analyti-
cally only in the cas®=1:

fo_1(s)=/2 seclis+C), (2.42

whereC is an arbitrary constant of integration. Substituting
this solution into the integral for\[f] in Eq. (2.40, we
obtain
Alfp-1]=4/3, (2.43
which reproduces the controlling facter #(¢) of the small-
€ asymptotic behavior in Eq$2.36) and(2.37).

In dimensions other thaB =1 the controlling factor of
the asymptotic behavior d&, for small e has the form

(2.44

To find the value ofA[f] we seek a spherically symmetric
solutior? f(r) to Eq.(2.41), wherer =|s|. The functionf(r)
then satisfies

G,~e AMTe (e-0).

D-1
—f"(r)— Tf’(r)+f(r)—f3(r)=0 (0<r<o),
(2.45

where f(«)=0. This boundary-value problem cannot be
solved analytically, but numerical analysis gives foff]
the graph shown in Fig. 1. Note that the functionglf]
passes through the calculated poigtat D=0 and3 at D
=1. The curve rises to a maximum value betwées 3.5
andD =4 and then starts to decrease. Some numerical values
of A[f] for various values of the Euclidean space-time di-
mensionD are given in Table I.

The asymptotic formula in Eqg2.44) is a geometrical-
optics approximation. To obtain the complete leading-order
asymptotic approximation t&; for small € (the physical-

Next, we identify the saddle points contributing to the gptics approximationwe must expand about the soliton so-

asymptotic behavior of the integrals in ER.39 as €

lution defined by Eq(2.45. This is a nontrivial calculation

—0". To do so we calculate the variational derivative of for arbitrary D and we only discuss this calculation for the

A[f]: [8/8F(s)JA[f]=—V2f(s)+f(s)—f3(s). Based on

caseD=1. To expand about the soliton solution o1 in

our experience with the zero-dimensional calculation in Secgq. (2.42) we substitute

Il B and the one-dimensional calculation in Sec. Il C, we

expect that the solution to the equatipd/ 5f(s)]A[f]=0

will depend on whether we are interested in the integral in

the numerator or in the denominator of £g.39. We expect
that theperturbativesaddle pointf(s)=0 dominates the in-

f(t)=fp_q(t)+ e 2n(t) = 2 seclit+ C) + e2p(t)
(2.46

into the dimensionless actiok[ f] in Eq. (2.40, where#(t)

tegral in the denominator. However, because of oddness, thigpresents fluctuations about the classical solitgn,(t).
saddle point does not contribute to the asymptotic expansiofio zeroth order in powers af(t) the result is3, as we saw

of the numeratof.

in Eq. (2.43. Also, terms linearly proportional tg(t) van-

The asymptotic expansion of the integral in the numeratoish upon integration by parts because of the stationarity con-
is dominated by asoliton defined by the boundary-value dition (2.41). Thus, we have

problem

—V2f(s)+f(s)—f3(s)=0, (2.4

“The constant solution§(s)==*1 do not contribute to the inte-
grals in the numerator or the denominator(2f39 because their
action is infinite.

SWe assumehat the spherically symmetric solution minimizes the
functional A[f] in Eq. (2.40; this is equivalent to assuming that
non-spherically symmetric solutions make subdominant contribu-
tions to the asymptotic behavior 6;. In the massless case one can
use Sobolev inequalities to justify using spherically symmetric so-
lutions. In the massive case here we can only argue by analogy.
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FIG. 1. Controlling factor (2.44 of the
asymptotic behavior of the one-point Green's
function G; for small dimensionless coupling
constante. The controlling factor has the form
e AMfVe which is nonperturbative in character.
Plotted is the functional\[ f] versus the Euclid-
ean space-time dimensidh. At D=0 we have
A[f]=% and atD=1 we haveA[f]=3%, as cal-
culated analytically. For other values Bfwe can
only obtain A[f] numerically. Some of the nu-
merical values ofA[ f] plotted here are given in
i Table 1.

4
Alfo-itepl=3+ gf dt ()M (t) 7(t)
- es/zj dt fo_1(t) 3(1)

62
- Zf dt 74(1), (2.47
where the matrixM(t) is the differential operatoM (t)
= —d?/dt?+1— 6 sechit.

The physical-optics correction to the geometrical-optic
approximation in Eq.(2.44) requires that we evaluate the
Gaussian functional integral

. (2.48

[ D] [ acmom
7exXp — 5 t ()M (1) n(t)

[Note that the small parameter has dropped out of this
calculation because the term in E@.47 containing the
operatorM is proportional toe and there is a factor of &/in
the exponent in Eq(2.39.] We know that the value of a
Gaussian functional integral of the forf2.48) is the inverse
of the square root of the product of the eigenvalue®of

S

To find the spectrum dfl we must solve the Schdinger
equation

2

d
—ggt1-6 secht |y(t)=Ey(t),

(2.49
whereE is the energy eigenvalue aydt) is the correspond-
ing eigenfunction. The potential-16 secht has a minimum
value of—5 and it levels off at 1 alt| — . Therefore, there
is a continuum spectrum beginning &t 1. There are also
two normalizable bound statesit — 3 with corresponding
eigenfunctiony(t) =secl(t) and atE=0 with correspond-
ing eigenfunctiony(t) =sechf) tanht). The lowest-energy
(E=1) continuum eigenfunction isy(t)=secH(t)— %,
which is not normalizable.

The corresponding Gaussian functional integral to be
evaluated in the denominator of E@®.39 has the differen-
tial operatorM (t) = — d?/dt?>+ 1. The corresponding Schro
dinger equation has a continuus spectrum beginning at
=1 andno bound statesThus, the product of the eigenval-
ues of the continuum eigenstates cancels in the numerator
and denominator and all that remains are the eigenvalues of
the bound states. Because the lowest bound-state energy at
E= — 3 isnegativeand because we must take the square root
of this eigenvalue, it is now clear why the one-point Green’s

TABLE I. Numerical values of the dimensionless Lagrangian funcuon |S |mag|nary, as we saw |n E(236)

A[f] in Eq. (2.40 for various values of the Euclidean space-time

dimensionD. Note thatA[f] rises to a maximum value between
D=3.5 andD =4 and then starts to decrease. The functidfi] is
plotted as a function ob in Fig. 1.

Observe that the energy of the other bound stateeis
This implies that we cannot truncate the expansion in Eg.
(2.47 at the Gaussian level. For this particular contribution
we must retain the cubic term of ordef>. Thus, for this
mode we must consider a cubic exponential integral of the

D A[f] D A[f]

0 1/4 3.0 18.9023
0.5 0.5853 3.5 27.6012
1.0 413 3.8 30.0387
1.5 2.8755 3.9 29.3452
2.0 5.8505 3.95 28.3897
2.5 11.0599 4.0 26.3209

form [d#exp(—+/e »°). This integral is ofAiry form and
accounts for the contributiol’(1/3) in Eg. (2.36. More
importantly, when this integral is performed, the small pa-
rametere scales out and contributes a factoref®. This
factor combines with the factor ef ¥2in Eq. (2.39 to give

a factor ofe~ 23, which is precisely the asymptotic result in
Eq. (2.36. The vanishing eigenvalue corresponds in the lan-
guage of catastrophe theory to a coalescence of saddle
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TABLE Il. To verify the accuracy of the strong-coupling perturbation series, numerical values of the
one-point and two-point Green'’s functio® andG, atg=1 are obtained from the first four orders of the
strong-coupling expansion for the cd3e- 1. (The blank spaces in the table correspond to the appearance of
complex numbers in the Pagstrapolantd. The numerical values B, in the table must be multiplied by
i. The exact values of the Green’s functions were obtained by direct numerical integration of thelir®ydro
equation. Three theories are considered here3 gives ani ¢° theory, a=4 gives a— ¢* theory, anda
=5 gives a—i¢° theory.

a=3 Order 1 Order 2 Order 3 Order 4 Exact Er(&t)
G, —0.66835 —0.65587 —0.65016 —0.64718 —0.64058 1.02

G, —0.44669 —0.43017 —0.42271 —0.40944 3.14

a=4

G, —1.03865 —-1.01113 —0.99836 —0.99150 —0.97347 1.82

G, —0.32956 —0.31603 —0.30887 —0.29473 4.58

a=5

Gy —1.24289 —1.20721 —1.19067 —1.18167 —1.15497 2.26

G, —0.23702 —0.22935 —0.22351 —0.21043 5.85

points. This coalescence is associated with the matching athere we recover the massless version of @) when «

the distant turning point, in the WKB calculation in Sec. =4.

IIC. We obtain the graphical rules for the lattice strong-
coupling expansion by observing that in the limit of lamge
the kinetic term in the Lagrangian densifyin Eq. (3.1) can

be viewed as a small perturbation. Therefore, the vacuum
persistence amplitudg[J] [see Eq.(2.2)] for the quantum
field theory associated with can be factored as

Ill. STRONG-COUPLING CALCULATION OF G,

In this section we perform a strong-couplif@rgeq)
calculation of the one-point Green’'s functioB,. The

graphical methods for lattice strong-coupling techniques that 1 o o, O . )
we use here are explained in detail in a series of papersZ[J]=ex EJ d”xd YMA (X—Y)m Zo[J],
[24-27. In the strong-coupling regime we can neglect the (3.2

mass term in the Lagrangidd.5). Because strong-coupling ' '
graphical methods are extremely general, we consider thwhereA‘l(x—y):VZ{SD(x—y)_ is the inverse of the free
one-parameter family of Lagrangian densities massless propagator in coordinate space and

1
Zo[J]=LD¢eXD{fdDX(;g[i¢>(X)]“+J(X)¢(X))]-

1
2_ TN/l a
(V)= g(i9)" a3

N| =

L= (3.2

TABLE Ill. Numerical values of the one-point and two-point Green’s functi@sand G, at g=1
obtained from the first four orders of the strong-coupling expansion foD&2. The numerical values of
G, in the table must be multiplied by Three theories are considered hete: 3 gives ani ¢° theory, «
=4 gives a— ¢* theory, anda=5 gives a—i¢° theory.

a=3 a=4 a=5

D Gy G, G, G, G, G,

0 —0.72901 —0.53146 —-0.97774 —0.28000 —1.07865 —0.16434
0.2 —0.70266 —0.50241 —0.97353 —0.28195 —1.08776 —0.17088
0.4 —0.67827 —0.47837 —0.97081 —0.28437 —1.10190 —0.17928
0.6 —0.65732 —0.46447 —0.97294 —0.28951 —1.12157 —0.19014
0.8 —0.64920 —0.43739 —0.98097 —0.29739 —1.14702 —0.20440
1.0 —0.64718 —0.42271 —0.99150 —0.30887 —1.18167 —0.22351
1.2 —0.63956 —0.41225 —1.00904 —0.32523 —1.22953 —0.24982
1.4 —0.63745 —0.40670 —1.03683 —0.34841 —1.29727 —0.28743
1.6 —0.64404 —0.40704 —1.08005 —0.38148 —1.39669 —0.34400
1.8 —0.66707 —0.41481 —1.15123 —0.42960 —1.55066 —0.43532
2.0 —0.65751 —0.43231 —1.27438 —0.50188 —1.80942 —0.59834
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The factorization in Eq(3.2) of the vacuum persistence vo=n?*{4 cod(mla) T?(2la)
function leads to the strong-coupling lattice expansion. By 5
introducing aD-dimensional hypercubic lattice with lattice —[1+2cog2m/a)]I'(Le) I'(3/a) T (Ua),

spacinga we rewrite Eq.(3.3) as a product of ordinary inte-

grals over lattice sitek: v3=2i a¥* cog 7/ a){8 cog(mla) I'*(2/a)

—3[1+2 cog2m/a)] T (1la) T'(2/a) T (3/a)

1 .
ZO[J]:]__k_[ J'CdteX[{ZaDg(lt) +aDJkt . (3.9 +2 cog2mla) 1‘*2(1/a) F(4/a)}/1-3(1/a)_ a5
To obtain the vertices we expand the one-dimensional inte- The propagator on the lattice can be written in vector
grals as series in powers af notation asA " '=a P ?[(1)—2D(0)]. This notation was

introduced in Ref.[25], where this discrete form of the
propagator was used to evaluate lattice integrals, which be-
. come sums over Kronecker delta functions on the hypercubic
lattice. The lattice strong-coupling expansion is organized
according to the number of free propagatArs! (in contrast
Yo weak-coupling expansions where the number@tfices

1 1
Zo[J]= l'k[ > —(aDJk)”Ldt t“exp[;aDg(it)a

n=o N!

Next, we evaluate each of the one-dimensional integral
by deforming the contou€ so that it enters the origin along ;4 1ot the number of lines determines the order
a ray in the left-halft plane at the angle- w/2—a/a and After calculating to a given order in perturbation theory

leaves the origin along aR7-reflected ray in the right-half \ye yse Padenethods to extrapolate to the continuum limit
t plane at the angle- 7/2+ w/a. Each integral can now be (3,0). The results aD=1 for the one- and two-point

expressed in terms of a Gamma function. To identify theGreen’s functions to fourth order in the strong-coupling ex-

vertices we writeZo[ J] in the form pansion are shown in Table 1. These results are in superb
- agreement with the exact values of the Green’s functions
1 obtained by numerical solution of the ScHilnger equation.
— D 1N . g g <
ZO[J]_NeXp{ a Z nzl rJiva ] ' These numerical calculations are explained in R&fwhere

they were performed to check the accuracy of variational
where\Vis a multiplicative numerical constant. The vertices calculations. For other Euclidean dimensionsD<2 the

V, have the form numerical values of these Green’s functions are given for the
casesa=3,4,5 in Table Ill. These are new field theoretical
V,=aP Y (aPg) Moy, (n=1), results.
wherev,, are numerical constants. The first three of the ACKNOWLEDGMENTS
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