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The third post-Newtonian approximation to the general relativistic dynamics of two point-mass systems has
been recently derived by two independent groups, using different approaches and different coordinate systems.
By explicitly exhibiting the map between the variables used in the two approaches we prove their physical
equivalence. Our map allows one to transfer all the known results of the Arnowitt-Deser-Misner approach to
the harmonic-coordinates one: in particular, it gives the value of the harmonic-coordinates Lagrangian and the
expression of the ten conserved quantities associated with global Poincare´ invariance.
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I. MOTIVATION

Binary systems made of compact objects~neutron stars or
black holes! are the most promising sources for the upco
ing ground-based network of interferometric gravitation
wave detectors such as the Laser Interferometric Grav
tional Wave Observatory~LIGO!, VIRGO, or GEO. Because
of their higher signal-to-noise ratio, the first detections
likely to involve massive binary black-hole systems, w
total massm11m2*30M ( . Such systems emit most o
their useful signal at the end of their inspiral phase, near
last stable~circular! orbit. This makes it very important to
have the best possible analytical control of the general r
tivistic dynamics of two-body systems.

For many years the equations of motion of binary syste
have been known only up to the 5/2 post-Newtonian~2.5PN!
approximation@1–7#. Recently, Jaranowski and Scha¨fer @8,9#
and Damour, Jaranowski, and Scha¨fer @10,11# succeeded in
deriving the third post-Newtonian~3PN! dynamics of binary
point-mass systems within the canonical formalism of A
nowitt, Deser, and Misner~ADM !. More recently, Blanche
and Faye@12,13# succeeded in deriving the 3PN equations
motion of binary point-mass systems in harmonic coor
nates relying on an independent framework. The purpos
this paper is to compare and relate these two sets of res

For the present investigation it is sufficient to consider
conservative part of the dynamics; i.e., we shall drop
dissipative 2.5PN part which is the leading order radiatio
damping level. This has the advantage that for the remain
part there exists an autonomous Hamiltonian~depending
only on particle variables! and a conserved energy. The no
autonomous parts of the ADM Hamiltonian, up to the 3.5P
level ~which is the next order radiation-damping level aft
2.5PN!, are given in Ref.@14#.

II. REGULARIZATION AMBIGUITIES

Before tackling the comparison between the two sets
3PN results several remarks are in order. First, let us em
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size that both approaches to the 3PN dynamics have fo
that the use of Dirac-delta-function sources to model
two-body system causes the appearance of both badly d
gent integrals and badly defined ‘‘contact terms,’’ whic
~contrary to what happened at the 2.5PN@2,4# and 3.5PN
@14# levels! cannot be unambiguously regularized. More p
cisely, when Refs.@8,9# derived the relative-motion 3PN
ADM Hamiltonian H(x,p), in the center-of-mass frame o
the binary, they introduced two arbitrarydimensionlesspa-
rameters,vk([vkinetic) and vs([vstatic), to formalize the
presence of irreducible ambiguities in the regularization
the Hamiltonian. The regularization ambiguity parametervk
concerned a momentum-dependent contribut
}G3c26(p223(n•p)2)r 23, while vs concerned a
momentum-independent contribution}G4c26r 24. Refer-
ence@11#, on the one hand, generalized the work of@8# by
deriving the 3PN ADM HamiltonianH(x1 ,x2 ,p1 ,p2) in an
arbitrary reference frame and, on the other hand, proved
vk was uniquely determined to have the valuevk541/24 by
requiring global Poincare´ invariance of the 3PN dynamic
~see Ref.@15# for details of whyvk is not fixable in the
center-of-mass frame!. Therefore, finally, the 3PN ADM
Hamiltonian1 contains only one regularization ambiguity
~parametrized by thedimensionlessparametervs):

H~xa,pa ;vs!

5(
a

mac21HN~xa,pa!

1Note that we are considering here the ordinary 3PN Hamilton
obtained ~following a result of @10#! by a well-defined shift of
phase-space coordinates, designed toreduce the higher-order

Hamiltonian H̃3PN(xa ,pa ,ẋa ,ṗa) defined by eliminating the field

variables hi j
TT , ḣi j

TT in the ‘‘Routh functional’’

R3PN(xa ,pa ,hi j
TT ,ḣi j

TT) of @8#.
©2001 The American Physical Society21-1
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1
1

c2
H1PN~xa,pa!1

1

c4
H2PN~xa,pa!

1
1

c6 FH3PN
vs50

~xa ,pa!1vs

G4m1
2m2

2~m11m2!

r 12
4 G .

~2.1!

See Ref.@11# for the explicit expressions ofH3PN
vs50 and of the

well-known lower-order~Newtonian, 1PN, and 2PN! contri-
butions.

On the other hand, Ref.@13#, in deriving the 3PN equa
tions of motion in harmonic coordinates, introduced four
bitrary dimensionfullparameterss1 , s2 , r 18 , and r 28 ~with
dimensions of length;s1 , s2 correspond to the intermediat
ADM regularization length scalesl 1 , l 2 discussed below
which disappear in the finalH3PN). In addition, though these
authors developed some formal generalization of the the
of distributions to deal with the badly divergent integra
appearing at 3PN@16#, they could not prove the uniquene
of their prescriptions, and, in fact, they used two differe
prescriptions, the most recent of them@13# introducing a new
dimensionlessarbitrary parameterK. ~However, they did
prove that both versions of their regularization prescriptio
finally lead to gauge-equivalent equations of motion.! In @17#
these authors also introduced a modification of their regu
ization procedures, aimed at yielding~‘‘in principle’’ !
Lorentz-invariant equations of motion. The net result of u
ing the set of regularization recipes developed in@16,17,13#
is the derivation of 3PN two-body equations of motion,
harmonic coordinates, which depend on thefive parameters
s1 , s2 , r 18 , r 28 , and K and which are, generically, neithe
Lorentz-invariant2 nor deducible from an action~because
they do not lead to a conserved energy as any autonom
action-based equations of motion would!. Then, the authors
of @13# impose the triple requirement of~i! Lorentz invari-
ance,~ii ! the existence of a conserved energy, and~iii ! poly-
nomiality in m1 andm2. They show that~i! uniquely deter-
minesK to have the valueK541/160 and~ii ! imposes one
constraint relating the four length scaless1 , s2 , r 18 , andr 28 ,
namely

m2F lnS r 28

s2
D 1

783

3080G5m1F lnS r 18

s1
D 1

783

3080G . ~2.2!

Note that, when they use their older version of their regu
ization prescriptions, the rational number appearing in
~2.2! becomes2159/308. By further imposing the require
ment~iii !, they conclude that the two length scaless1 ,s2 can
be expressed in terms of the two other scalesr 18 , r 28 , and of
a newdimensionlessparameterl, through

lnS r 18

s1
D 52

783

3080
1l

m11m2

m1
, ~2.3a!

2At least if one follows@13# in using the new ‘‘correct’’ derivative
involving the parameterK.
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lnS r 28

s2
D 52

783

3080
1l

m11m2

m2
. ~2.3b!

Finally, the 3PN equations of motion for the harmon
coordinatesya(t) of the two point masses containthreeregu-
larization ambiguities~parametrized by the two scalesr 18 , r 28

and the dimensionless parameterl) and have the formÿa

5Aa(yb ,vb), whereva[ ẏa , with

Aa~yb ,vb!5AaN~yb ,vb!1
1

c2
Aa1PN~yb ,vb!

1
1

c4
Aa2PN~yb ,vb!1

1

c5
Aa2.5PN~yb ,vb!

1
1

c6 FAa3PN
(0) ~yb ,vb!1 lnS r 12

h

r 18
D Aa3PN

(1) ~r12
h ,v12!

1 lnS r 12
h

r 28
D Aa3PN

(2) ~r12
h ,v12!1lAa3PN

(3) ~r12
h !G ,

~2.4!

where r12
h [y12y2 and v12[ ṙ12

h [v12v2 denote the~har-
monic! relative position and velocity, respectively. It wa
however, shown in@13# that the ambiguities linked tor 18 , r 28
can be gauged away, so that the physical ambiguity of
harmonic equations of motions is described by thesole ~di-
mensionless! parameterl. For simplicity, we shall work
here with the equations of motion explicitly displayed in@13#
which, in fact, corresponds to their older regularization p
scription@with 783/3080 being replaced by2159/308 in Eq.
~2.2!#. See Eq.~7.16! of @13# for the explicit expression of
the 3PN contributions to the harmonic equations of mot
~as well as of the well-known lower-order contribution
@1,2#!. We shall only note here the fact thatAa3PN

(1) andAa3PN
(2)

depend only on the relative positions and velocities, and
the l term reads~for a51; n12

h [r12
h /r 12

h )

lA1 3PN
(3) ~r12

h !52
44

3
l

G4m1m2
2~m11m2!

~r 12
h !5

n12
h . ~2.5!

Even before any detailed calculation, it is clear that thisl
contribution derives from a potential energy

lV(3)[2
11

3
l

G4m1
2m2

2~m11m2!

c6~r 12
h !4

,

so that, if the two different 3PN dynamics can be shown
be somehow equivalent, the ‘‘harmonic’’ regularization am
biguity l must be related to the ‘‘ADM’’ onevs by 2 11

3 l
5vs 1 const.
1-2
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III. ORIGIN OF THE REGULARIZATION AMBIGUITIES

As the presence of the regularization ambiguities at
3PN level is very striking3 and physically momentous, let u
discuss in more detail the origin of the ambiguities presen
the two approaches, and the differences between them.

In the ADM approach, one computes a~spatially! global
scalar quantity, the HamiltonianH(xa ,pa) of the system.
Essentially4 the global scalarH(xa ,pa) can be explicitly ex-
pressed as an integral over space of an integrand of the
neric form

H~x;xa ,pa!5H c
(D)~x;xa ,pa!1H f

(D)~x;xa ,pa!

1] iD
i~x;xa ,pa!. ~3.1!

Here,H c
(D) is made only of ‘‘contact terms,’’ i.e. of term

proportional to the delta functions modeling the sources,
H c

(D)5(aSa(x,xb)d(x2xa), whereSa is constructed from
field quantities,H f

(D) is a ‘‘field-like’’ term, i.e. an ‘‘energy
density’’ constructed from field quantities and distributed
over space, and the last term is a pure divergence, w
formally gives a vanishing contribution5 to the integrated
Hamiltonian. As indicated by the superscript notation,
explicit values of the ‘‘contact’’ and ‘‘field’’ terms depend
on the choice of the divergence term] iD

i . In other words,
we can, by ‘‘operating by parts,’’ shuffle terms betwe
H c

(D) and H f
(D) , at the price of changingDi . Note that,

when so shuffling terms, one freely uses Einstein’s fi
equations~with delta-function sources! and one assumes th
validity of the usual rules of functional calculus,6 such as
Leibniz’ rule @] i(AB)5(] iA)B1A(] iB)#, and the commu-
tativity of repeated derivatives (] i] jA5] j] iA).

The ambiguities in the determination of the value ofH
[*d3xH come from two separate~but related! facts. First,
the ‘‘contact’’ contribution

3Though it was anticipated in@2#; see pp. 107 and 116 there.
4After applying the double ‘‘reduction’’ process of eliminating th

field variables and reducing the order of the Hamiltonian@8,10#.
5It has been checked in the ADM approach that the ‘‘surface te

at infinity’’ associated with] iD
i is not causing any ambiguity. In

deed, most pieces inrdSiD
i decay like some inverse power ofr at

infinity, while the ones which might be problematic@like the one
associated with theO(r ) part of h(6)i j

TT # have been explicitly shown
to give a vanishing contribution tordSiD

i . The ambiguities come
only from the singular behavior of the integrand near each part
i.e. as the field pointx tends to eitherx1 or x2.

6In the explicit computations of the Hamiltonian done in Refs.@8#,
@10#, and@11# one has always chosenDi ’s such that all the terms in
H f

(D) contain only one derivative~or its equivalent! acting on the
elementary fields (f (2) , p (3)

i , f (4) , . . . !, so that there is no nee
to worry about using an improved distributional derivative. T
distributional rule of differentiation of homogeneous functions d
scribed in Appendix B of@8# is, in fact, used only when gauging th
ambiguities by computing the regularized value of*d3x(] iD

i), as
explained in the Appendix A of@10#.
04402
e

n

e-

y

l
ch

e

d

Hc
(D)[E d3xH c

(D)

5E d3x(
a

Sa~x,xb!d~x2xa!

is formally infinite because the~field-constructed! quantity
Sa(x,xb) is generically singular asx→xa . To give a mean-
ing to Hc

(D) one must choose a specific regularization p
scription to define the limit limx→xa

Sa(x,xb). Second, the

‘‘field’’ contribution H f
(D)[*d3xH f

(D) is also formally infi-
nite because the integrandH f

(D) is generically too singular as
x→xa to be locally integrable. To give a meaning toH f

(D)

one must choose a specific regularization prescription
such singular integrals. Finally for each choice ofDi , one
definesthe regularized value of the Hamiltonian asH (D)reg

[Hc
(D)reg1H f

(D)reg.
In Refs. @8,9# the following specific regularization pre

scriptions were adopted: ~i! for contact terms
@ limx→xa

Sa(x,xb)# reg is defined as Hadamard’s ‘‘parti

finie’’ of Sa(x,xb), PfaSa(x,xb), defined in Appendix B of
@8# as the angle-averaged finite term in the Laurent exp
sion of Sa(xa1ra ,xb) in powers of r a[urau[ux2xau ~as
ra→0), and~ii ! for field terms the regularized valueI reg of a
singular integralI 5*d3xF(x,x1 ,x2) is defined as follows.
First, one regularizes separately the divergences near
particle, i.e. the integralsI a[*Va

d3xF(x,x1 ,x2) whereVa is

a volume which containsxa but not xb , with bÞa. ~Evi-
dently, one can always decomposeI 5I 11I 21I compl with
two local volumesV1 , V2 and a regular complement.! Sec-
ond, each local integral, sayI 1 near particle 1, is regularized
in the manner of Riesz, i.e. by analytic continuation~AC! in
e1 of

I 1~e1![E
V1

d3xS r 1

l 1
D e1

F~x,x1 ,x2!,

where r 15ux2x1u and wherel 1 is a certain length scale.7

Most integrandsF lead to functions ofe1 , I 1(e1), which are
analytically continuable into the complexe1 plane down to
e150. In such a case this continuation ACe1→0I 1(e1)

uniquely defines the regularized value ofI 1. However, a lim-
ited subclass of ‘‘dangerous’’ integrals gives rise to
~simple! pole as e1→0: I 1(e1)5Z1„e1

211 ln(R1 /l1)…1A1,
whereR1 is an ‘‘infrared’’ length scale associated with th
choice of local volumeV1. For such integrals, one is natu
rally led ~following the usual ‘‘minimal subtraction’’ pre-
scription of quantum field theory! to defining the regularized
value of I 1(e1) as the limit ofI 1(e1)2Z1 /e1 ase1→0, i.e.
as I 1

reg[Z1ln(R1 /l1)1A1. Note that this regularization pre

e,

-

7The ‘‘Riesz’’ prescription explained in the Appendix of B of@8#
looks different from what we explain here~because it does no
separate the integration volume inV1 , V2 and the rest!, but, as
emphasized in@10#, it is equivalent to the logically simpler pre
scription that we summarize here.
1-3
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scription has introduced one arbitrary length scale: the re
larization lengthl 1. ~The V1-related infrared lengthR1 is
easily seen to cancel out inI 5I 11I 21I compl.) However, as
emphasized in Sec. IV of@8#, a remarkable thing occurs i
explicit calculations of the 3PN ADM Hamiltonian: the com
bination of dangerous integrals appearing inH3PN is such
that all pole termsexactly cancel: (Z150. In fact, one of
the characteristics of the calculation ofH3PN in the ADM
formalism is that one finds it much safer~and simpler! to
regularize, at once, the full integral, rather than to try~as in
the harmonic-coordinate calculation@13#! to give a separate
regularized value for each individual contribution to t
equations of motion. Global cancellation of the poles sho
that the combination of dangerous integrals appearing
H3PN is of a less dangerous type. A nice aspect of this c
cellation is that, in the ADM approach, the two regularizi
length scalesl 1 , l 2 completely cancel and do not appear
the regularized finalH3PN. This does not mean, howeve
that the final result is unambiguous. Indeed, it was emp
sized in@8,10# that the regularized value ofH3PN depends on
the reshuffling of terms used to separateH in H c

(D)1H f
(D)

1] iD
i . In other words, when operating by parts~which

changesDi , and H c
(D) and H f

(D)) the regularized value o
H (D)[Hc

(D)1H f
(D) is found to change.8 In addition to this

Di-dependent ambiguity, there is also the problem of
sensitivity of the contact contributionHc

(D) to the choice of
prescription for defining the ‘‘partie finie’’ ofSa(x,xb). It
was emphasized in@9,10# that the definition of the ‘‘Had-
amard partie finie’’ Pfa becomes ambiguous at 3PN becau
it cannot be ‘‘threaded’’ through a product of field function
i.e. that, in general, Pfa( f 1f 2•••)Þ(Pfaf 1)(Pfaf 2)••• . „The
prime, irreducible example of this ambiguity at 3PN com
from the fact that Pfa(f (2)

4 )Þ@Pfa(f (2)
2 )#25@Pfa(f (2))#4,

wheref (2) is the Newtonian potential.…
The attitude of Refs.@8–10# in relation to these regular

ization ambiguities has been the following:~i! one must ac-
knowledge their existence, because there exists, as ye
convincingly unique extension of distribution theory allow
ing one to select a preferred regularized value, and~ii ! how-
ever, one can analyze in detail the structure of these am
guities and show that they can be parametrized by only
~dimensionless! parameters:vk and vs . Indeed, after the
pioneering work@8,9# which introduced these regularizatio
ambiguity parameters, a systematic study of the ambigu
has been conducted in the Appendix A of@10# @by exploring
all the possible operations by parts, as well as the effec
having Pf(f 1f 2)ÞPf( f 1)Pf( f 2)#. This study confirmed the
existence of only two regularization ambiguities.9 As the

8In actual calculations~see especially Appendix A of@10#! one
monitors the changes inH (D)[Hc

(D)1H f
(D) by computing the term-

by-term regularizedvalue of the full algebraic expansion of th
divergence term*d3x(] iD

i).
9Reference@10# made an attempt at lessening the sources of

biguity by choosing aDi such that the contact termsH c
(D) are

absent. However, even in this ‘‘preferred’’ presentation,H f
(D) gave

rise to the two usual ADM ambiguities.
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most recent work in the ADM formalism@11# has shown that
the ‘‘kinetic’’ ambiguity vk was uniquely fixed by imposing
global Poincare´ invariance, the final conclusion is, as ind
cated in Eq.~2.1! above, that the ADM formalism introduce
only one regularization ambiguity parameter: the ‘‘static
ambiguityvs .

It would take us too long to explain in detail why th
harmonic-coordinates approach introduces more ambig
parameters@four (s1 ,s2 ,r 18 ,r 28) or five (s1 ,s2 ,r 18 ,r 28 ,K), de-
pending on the regularization prescription, instead of t
(vk ,vs)# than the ADM one~see@16,17,13#!. Let us only
make a short list of the most significant differences betwe
the two approaches:~i! Blanchet and Faye regularize sep
rately many independent singular contributions to the spa
derivative of the gravitational field instead of working wit
the full scalar Hamiltonian as a block,~ii ! when computing
their ‘‘elementary integrals’’ by analytic continuation the
can ~after contracting free indices! use theordinary Riesz
formula @instead of thegeneralizedRiesz formula of@8#,
necessary to deal with the denominators}(r 11r 21r 12)

g

that appear in the ADM Hamiltonian#, ~iii ! they directly
work with the full hierarchy of PN fields up tog005211
•••12U8 /c8, while the ADM approach needs to work onl
with the contributionf (6) /c6 to the ‘‘scalar’’ potential,~iv!
they get two~gauge-related! ambiguities of ‘‘logarithmic’’
type ~involving two arbitrary length scales!, and~v! they use
a different coordinate system. It would be interesting
study whether a reworking of the harmonic-coordinates w
along the more ‘‘global,’’ and more ‘‘PN order reduced
lines of the ADM approach would not simplify their resul
and get rid of several of their ambiguities.

IV. MATCHING THE TWO 3PN DYNAMICS

We shall now show in detail that the two 3PN dynami
are equivalent modulo a suitable shift of particle variabl
Some time ago, Damour and Scha¨fer @3# studied the link, at
the 2PN level, between the ADM dynamics and t
harmonic-coordinates~or DeDonder-coordinates! one. They
explicitly constructed the map between these two desc
tions of the dynamics. Let us emphasize that this map act
the ‘‘motions,’’ i.e. on the particle positions~and momenta
or velocities! as functions of time. In other words, it give
either the transformation~with va[ ẏa)

ya~ t !5Ya„xb~ t !,pa~ t !…, ~4.1a!

va~ t !5Va„xb~ t !,pb~ t !…, ~4.1b!

from the ADM variables (xb ,pb) to the harmonic ones
(ya ,va), or the inverse transformation

xa~ t !5Xa„yb~ t !,vb~ t !…, ~4.2a!

pa~ t !5Pa„yb~ t !,vb~ t !…. ~4.2b!

All variables in Eqs.~4.1!, ~4.2! are taken at the same valu
for their ~respective! time argument. As explained in@3# it is
always possible to express the looked for map in this fo
One has to beware that the transformations~4.1! or ~4.2! are

-

1-4
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not the direct restriction of a coordinate transformation,x8m

5xm1jm(xl,@x1#,@x2#) ~where the brackets indicatefunc-
tional dependence!, to a field pointxm on a particle world
line, but that one must take into account the time shiftj0 to
transform the coordinate shiftj i into the ‘‘motion’’ shift
x8(t)2x(t) @see Eqs.~3! of @3##.

Among the two forms~4.1! or ~4.2! we found that it is
simplest to work with Eqs.~4.1!. Indeed, the necessary an
sufficient conditions for Eqs.~4.1! to map the ADM dynam-
ics onto the harmonic one is easily seen to be, simply,

$Ya ,H%5Va , ~4.3a!

$Va ,H%5$$Ya ,H%,H%

5Aa~Yb ,Vb!. ~4.3b!

All functions entering Eqs.~4.3a! and~4.3b! (Ya ,H,Va) are
functions of the ADM phase space coordinates (xb ,pb). The
notation$•,•% denotes the usual Poisson brackets:

$A~xa ,pa!,B~xa ,pa!%[(
a

(
i

S ]A

]xa
i

]B

]pai
2

]A

]pai

]B

]xa
i D .

Finally H denotes the full 3PN Hamiltonian~2.1! while
Aa(yb ,vb) denotes the harmonic equations of motion, E
~2.4!. Note that Eq.~4.3a! explicitly determinesVa(xb ,pb) in
terms ofYa(xb ,pb). Therefore, the problem of the mappin
betweenH and Aa is reduced to solving Eq.~4.3b! as an
equation for the two unknown phase-space vectorial fu
tionsY1(xb ,pb) andY2(xb ,pb). We tackled this problem by
the method of undetermined coefficients, i.e. by writing t
most general expression for the PN expansion ofYa(xb ,pb).
We know thatYa differs from xa only at 2PN order, i.e.

Ya~xb ,pb!5xa1
1

c4
Ya

2PN~xb ,pb!1
1

c6
Ya

3PN~xb ,pb!.

~4.4!

The explicit expression ofYa
2PN was given in Ref.@3# ~we

write it here for a51, the expression fora52 being ob-
tained by a simple relabeling 1↔2):

Y1
2PN~xa ,pa!5Gm2H F5

8

p2
2

m2
2

2
1

8

~n12•p2!2

m2
2

1
Gm1

r 12
S 7

4
1

1

4

m2

m1
D Gn12

1
1

2

~n12•p2!

m2

p1

m1
2

7

4

~n12•p2!

m2

p2

m2
J .

~4.5!

Actually, as a check on the algebraic manipulation progra
~done withMATHEMATICA ! that we wrote to solve Eq.~4.3b!
we have explicitly checked that Eq.~4.5! is the unique
~translation-and-rotation-invariant! solution of the 2PN
matching.
04402
.

-

e

s

At 3PN, we write ~by using translation and rotation in
variance! Ya

3PN in terms of some scalar functions~herenab

[(xa2xb)/r ab ; r ab[uxa2xbu)

Ya
3PN~xb ,pb!5Manab1(

b
Nabpb . ~4.6!

By imposing that the map reduces to the identity in the fr
motion limit (G→0), it is enough to look forMa andNab of
the symbolic form:

M}p41
p2

r 12
1

1

r 12
2

1
lnr 12

r 12
2

,

N}p31
p

r 12
,

where ‘‘pn’’ denotes all the scalars made withp1 , p2 andn12
with homogeneitypn, i.e.

pn}( cn1n2n3n4n5
~p1

2!n1~p2
2!n2

3~p1•p2!n3~n12•p1!n4~n12•p2!n5

with 2n112n212n31n41n55n. We find thatY1
3PN a pri-

ori contains 52 unknown coefficientscn ~28 in M1, 12 in
N11, and 12 inN12). We did not impose anya priori con-
straints on the mass dependence of the coefficie
cn(m1 ,m2) entering Ya

3PN. ~As a consequence we cann
make use of the 1↔2 relabeling symmetry.! Writing in full
Eq. ~4.3b! gives alinear system of 512 equations for the
3525104 unknown coefficientscn . In spite of this very
high redundancy, we found that this system is compatibl
and only if the arbitrary parametersvs andl are related by

l52
3

11
vs1

1987

3080
. ~4.7!

Then the solution isuniqueand reads~for a51, the solution
for a52 being obtained by relabeling 1↔2)

Y1
3PN~xa ,pa!5Gm2H FY1

01
Gm1

r 12
Y1

11S Gm1

r 12
D 2

Y1
2Gn12

1S Y11
0 1

Gm1

r 12
Y11

1 D p1

m1

1S Y12
0 1

Gm1

r 12
Y12

1 D p2

m2
J , ~4.8!

where
1-5
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DAMOUR, JARANOWSKI, AND SCHÄFER PHYSICAL REVIEW D63 044021
Y1
052

1

8

~p1•p2!p2
2

m1m2
3

2
1

8

~p2
2!2

m2
4

2
3

8

~n12•p1!~n12•p2!p2
2

m1m2
3

1
3

8

~n12•p2!2~p1•p2!

m1m2
3

2
3

16

~n12•p2!2p2
2

m2
4

1
1

8

~n12•p1!~n12•p2!3

m1m2
3

1
1

16

~n12•p2!4

m2
4

, ~4.9a!

Y1
15

167

48

p1
2

m1
2

2
105

16

~p1•p2!

m1m2
1S 13

6
2

65

48

m2

m1
D p2

2

m2
2

2
25

48

~n12•p1!2

m1
2

1
9

8

~n12•p1!~n12•p2!

m1m2

2S 25

12
2

25

48

m2

m1
D ~n12•p2!2

m2
2

, ~4.9b!

Y1
252

28387

2520
1S 49

36
2

21

32
p2D m2

m1
1

22

3
ln

r 12

r 18
, ~4.9c!

Y11
0 52

1

4

~n12•p2!p1
2

m1
2m2

1
~n12•p2!p2

2

m2
3

2
5

12

~n12•p2!3

m2
3

,

~4.9d!

Y11
1 52

73

24

~n12•p1!

m1
1S 9

8
2

3

2

m2

m1
D ~n12•p2!

m2
, ~4.9e!

Y12
0 52

1

8

~n12•p1!p2
2

m1m2
2

1
1

4

~n12•p2!~p1•p2!

m1m2
2

2
1

8

~n12•p2!p2
2

m2
3

1
3

8

~n12•p1!~n12•p2!2

m1m2
2

1
5

12

~n12•p2!3

m2
3

, ~4.9f!

Y12
1 5

55

16

~n12•p1!

m1
1S 17

24
1

221

48

m2

m1
D ~n12•p2!

m2
. ~4.9g!

The results~4.8!–~4.9! give the explicit expression of th
transformation (xb ,pb)→ya5Ya(xb ,pb). To complete the
knowledge of the transformation between the phase-sp
variables of the two descriptions one also needs the exp
expression of the transformation (xb ,pb)→va5Va(xb ,pb).
This is straightforwardly obtained by inserting in Eq.~4.3a!
the Hamiltonian of @11# and the results~4.4!–~4.9! for
Ya(xb ,pb). As the explicit result is very lengthy we do no
display it here.~Because of the availability of algebraic m
nipulation programs, it is safer for the interested reade
rederive it directly.!

Let us mention that, as a further check, we have also t
to map the HamiltonianH3PN(vs ,vk) containingboth vs

andvk to Aa
harmonicand that we found again that the mappi

is possible only ifvk541/24, in complete agreement wit
@11#.

It should be noted that the further ambiguity paramet
r 18 andr 28 present in the harmonic equations of motion en
our result only through some logarithmic terms inM1 @for
ln(r12/r 18)# andM2 @for ln(r12/r 28)#. This decoupling between
04402
ce
it

o

d

s
r

the two particle labels (r 18 entering onlyY1
3PN, and r 28 only

Y2
3PN) suggests~in confirmation of the discussion we gav

above! that it is not a necessity, in the harmonic approach
introduce the ambiguitiesr 18 andr 28 . Indeed, we see that the
are locally ~i.e. separately for each particle! introduced by
the transformation of variables between our~more
ambiguity-free ADM result! and the variables defined by th
set of prescriptions of Refs.@16,17,13#. We note also that our
result confirms the finding of@13# that r 18 and r 28 can be
gauged away~by a harmonicity-preserving coordinate tran
formation!.

Anyway, the most important result is that we have sho
the physical equivalence~for invariant consequences of th
dynamics! between the 3PN results of@8–11# of those of
@12,16,17,13#. The invariants of the 3PN dynamics depe
only on one ambiguity parameter, denotedvs in the ADM
work, andl in the harmonic-coordinates one. The change
notation betweenvs andl is given in Eq.~4.7! which agrees
with the conclusion of@12# which was restricted to the cir
cular motion case.

Could have it been different? In view of the high redu
dancy of the linear system we had to solve, it may se
quasi-miraculous that the two independent results can
made to match. The compatibility we found is clearly a ve
useful check on the algebraic computations done by b
groups. However, we want to point out that, as both grou
had already checked the global Poincare´ invariance of their
results~see@11# for the ADM case and@17,13# for the har-
monic one!, the possible remaining discrepancies betwe
the two dynamics were not very numerous. In fact we c
count precisely the number ofirreducible new coefficients
entering all 3PN invariants of a Poincare´ invariant dynamics.
The simplest way to do that is to use the results of@18# on
the 3PN ‘‘effective one body’’ dynamics@19#. Using Poin-
caré invariance we can reduce the dynamics to that of
relative motion. Following the results of@18# the number of
irreducible new coefficients entering the relative dynamics
the nPN level is obtained by quotienting the arbitrariness
the ~relative! Hamiltonian by that in a generic~relative! ca-
nonical transformation. This leaves only@computing the dif-
ference between Eq.~3.6! and Eq.~3.8! of @18##

F ~n11!~n12!

2
11G2Fn~n11!

2
11G5n11 ~4.10!

irreducible coefficients atnPN. Moreover, one of the coeffi
cients is trivial as it is given by thenPN-level expansion of
the free-motion HamiltonianH05Am1

21p1
21Am2

21p2
2. Fi-

nally, this leaves onlyn non-trivial irreducible coefficients a
the nPN level, i.e. in particular only three coefficients
3PN.

For instance, in the effective one body approach, th
three coefficients area4 @the coefficient of (GM/R)4 in
2g00

eff#, d3 @the coefficient of (GM/R)3 in 2g00
effgRR

eff #, andz3

@the coefficient of PR
4(GM/R)2 in the squared effective

Hamiltonian#. These coefficients have been determined
@18#, from H3PN

ADM , and it was found thatd3 and z3 are un-
ambiguously determined~independently of thevs ambigu-
ity! to be
1-6
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d352~3n226!n, z352~423n!n, ~4.11!

where n[m1m2 /(m11m2)2 is the symmetric mass ratio
while a4 turns out to depend onvs :

a45S 94

3
2

41

32
p212vsD n. ~4.12!

In view of the sensitivity ofa4 to vs , a real difference be-
tween the ADM and the harmonic dynamics could then o
have arisen as possible discrepancies in the values of
only two unambiguous 3PN irreducible coefficientsd3 and
z3, Eq. ~4.11!. As a further check, we have in fact allowe
for such differences ind3 andz3 by looking for the matching
of the harmonic equations of motion to a modifiedH3PN

ADM ,
containing two extra terms corresponding to variations
both d3 andz3. The result of this generalized matching w
that the variations ind3 and z3 had both to vanish for the
matching to be possible.

V. CONSERVED QUANTITIES AND GENERALIZED
LAGRANGIAN IN HARMONIC COORDINATES

Having explicitly obtained the transformation from ADM
variables to harmonic ones which maps the two dynam
we can use this map to transfer all the useful known res
of the ADM approach to the harmonic one. For instan
Ref. @11# has explicitly computed the ten conserved quan
ties of the binary system associated to global Poincare´ invari-
ance: total energyH(xa ,pa), total momentumPi(xa ,pa),
total angular momentumJi(xa ,pa), and the center-of-mas
constant ~boost vector! Ji0[Ki(xa ,pa)[Gi(xa ,pa)
2tPi(xa ,pa). Actually, to be able to express these co
served quantities within the harmonic framework one ne
the inverseof the transformation (x,p)→(y,v); i.e., we need
to know explicitly the functions

xa5Xa~yb ,vb!, ~5.1a!

pa5Pa~yb ,vb!. ~5.1b!

It is just a matter of~somewhat involved! algebraic manipu-
lations to invert the PN-expanded map (x,p)→(y,v) to get
Eqs.~5.1!. By straightforward insertion of the formulas~5.1!,
we can then~if they are needed! explicitly compute the fol-
lowing quantities in harmonic coordinates:

E~yb ,vb!5HADM
„Xa~yb ,vb!,Pa~yb ,vb!…, ~5.2a!

Pi~yb ,vb!5(
a

Pai~yb ,vb!, ~5.2b!

Ji~yb ,vb!5(
a

« iklXa
k~yb ,vb!Pal~yb ,vb!, ~5.2c!

Gi~yb ,vb!5Gi
ADM

„Xa~yb ,vb!,Pa~yb ,vb!…, ~5.2d!

where the explicit expression ofGi
ADM(xa ,pa) is given in

Ref. @11#. ~Note that Gi is not conserved but satisfie
dGi /dt5Pi . It is a useful, and conserved, quantity in th
center-of-mass frame wherePi50.! We shall not give here
the explicit expressions of Eqs.~5.2! as modern computer
make it safer for interested readers to do the manipulat
04402
y
he

n

s,
ts
,
-

-
s

s

themselves starting from the formulas we give. We ha
checked that Eq.~5.2a! agrees with the 3PN conserved e
ergy obtained in@13#.

Our results allow us also toprove ~without guesswork!
that the harmonic equations of motion derive from agener-

alized LagrangianLharmonic(ya ,ẏa ,ÿa), depending on posi-
tions, velocities,and accelerations. Moreover, we can rathe
simply compute the LagrangianLharmonicby starting from the
phase-spaceLagrangian of our ADM Hamiltonian frame
work, namely

LADM~xa ,ẋa ,pa![(
a

pa• ẋa2HADM~xb ,pb!.

Indeed, it suffices~as one easily checks! to insert the trans-
formation (xa ,pa)→(ya ,ẏa) in LADM(xa ,ẋa ,pa). This gives

Lharmonic~ya ,ẏa ,ÿa!5(
a

Pa~yb ,ẏb!•Ẋa~yb ,ẏb ,ÿb!

2HADM
„Xa~yb ,ẏb!,Pa~yb ,ẏb!…. ~5.3!

Note that the meaning of the time derivativeẊa
i in Eq. ~5.3!

is

Ẋa
i [

dXa
i ~yb ,ẏb!

dt
[(

b
(

j
S ]Xa

i

]yb
j

ẏb
j 1

]Xa
i

] ẏb
j

ÿb
j D .

Therefore ourconstructiveprocedure for computing the har
monic Lagrangian automatically yields a Lagrangian wh
is linear in the accelerationsÿa . ~It was shown in@3# that it
was always possible, for perturbatively expanded general
Lagrangians, to reduce their acceleration dependence t
linear.!

It should also be noted that such a linear-in-accelera
generalized Lagrangian is not unique, but is defined o
modulo the addition ofdF(ya ,ẏa)/dt, whereF(ya ,ẏa) is an
arbitrary10 scalar function of positions and velocities~only!.

When the 2PN-level generalized harmonic Lagrang
was first computed@20,2#, use was made of the addition o
someF2PN(ya ,ẏa) to simplify ~in a somewhat arbitrary way!

the expression ofL2PN(ya ,ẏa ,ÿa). As we are not here play
ing with the addition ofḞ we should not expect our construc
tive procedure~5.3! to yield a result which coincides with
that of @20,2#. We have, however, checked that our 2P
level result is indeed equivalent to the old one, modulo so
dF(ya ,ẏa)/dt. Our explicit result for the 3PN-accurate ge
eralized harmonic Lagrangian reads~here va[ ẏa and aa

[ ÿa)

10It is, however, convenient to restrict the arbitrariness inF so as
to respect the symmetries of the problem: translations, rotati
space parity and time reversal.
1-7
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Lharmonic~ya ,va ,aa!5LN~ya ,va!1
1

c2
L1PN~ya ,va!

1
1

c4
L2PN~ya ,va ,aa!

1
1

c6
L3PN~ya ,va ,aa!. ~5.4!

The Newtonian and 1PN contributions to the Lagrang
~5.4! do not depend on accelerations. They equal

LN~ya ,va!5(
a

1

2
mava

21
Gm1m2

r 12
h

, ~5.5!
04402
n

L1PN~ya ,va!5
1

8
m1~v1

2!21
Gm1m2

r 12
h F3

2
v1

22
7

4
~v1•v2!

2
1

4
~n12

h
•v1!~n12

h
•v2!2

1

2

Gm1

r 12
h G1~1↔2!.

~5.6!

The 2PN acceleration-dependent LagrangianL2PN reads

L2PN~ya ,va ,aa!5L2PN
0 ~ya ,va!1L2PN

1 ~ya ,va ,aa!1~1↔2!,
~5.7!

where
L2PN
0 5

1

16
m1~v1

2!31
Gm1m2

r 12
h FL2PN

01 1
Gm1

r 12
h

L2PN
02 1S Gm1

r 12
h D 2

L2PN
03 G , ~5.8a!

L2PN
01 5

7

8
~v1

2!22
27

8
v1

2~v1•v2!1
9

16
v1

2v2
21

15

8
~v1•v2!21

13

8
~n12

h
•v1!2~v1•v2!2

5

8
~n12

h
•v1!~n12

h
•v2!v1

2

2
3

4
~n12

h
•v1!~n12

h
•v2!~v1•v2!2

3

8
~n12

h
•v2!2v1

21
3

8
~n12

h
•v1!3~n12

h
•v2!2

3

16
~n12

h
•v1!2~n12

h
•v2!2, ~5.8b!

L2PN
02 5

1

4
v1

22
7

4
~v1•v2!1

7

4
v2

21
7

2
~n12

h
•v1!22

7

2
~n12

h
•v1!~n12

h
•v2!1

1

2
~n12

h
•v2!2, ~5.8c!

L2PN
03 5

1

2
1

19

8

m2

m1
, ~5.8d!

L2PN
1 5Gm1m2F3

4
~n12

h
•v2!~v1•a1!2

7

4
~n12

h
•v1!~v2•a1!2

7

4
~v1•v2!~n12

h
•a1!1

1

2
v2

2~n12
h
•a1!2

1

4
~n12

h
•v1!~n12

h
•v2!~n12

h
•a1!G .

~5.8e!

Finally, the 3PN contribution to the Lagrangian~5.4! reads

L3PN~ya ,va ,aa!5L3PN
0 ~ya ,va!1L3PN

1 ~ya ,va ,aa!1~1↔2!, ~5.9!

where

L3PN
0 5

5

128
m1~v1

2!41
Gm1m2

r 12
h FL3PN

01 1
Gm1

r 12
h

L3PN
02 1S Gm1

r 12
h D 2

L3PN
03 1S Gm1

r 12
h D 3

L3PN
04 G , ~5.10a!

L3PN
1 5Gm1m2S L3PN

11 1
Gm1

r 12
h

L3PN
12 D , ~5.10b!
1-8
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L3PN
01 5

11

16
~v1

2!32
47

16
~v1

2!2~v1•v2!1
25

16
~v1

2!2v2
21

23

8
v1

2~v1•v2!22
65

32
v1

2~v1•v2!v2
22

3

16
~v1•v2!32

17

16
~n12

h
•v1!~n12

h
•v2!~v1

2!2

2
3

8
~n12

h
•v2!2~v1

2!21
45

16
~n12

h
•v1!2v1

2~v1•v2!2
1

4
~n12

h
•v1!~n12

h
•v2!v1

2~v1•v2!1
11

8
~n12

h
•v2!2v1

2~v1•v2!

2
35

16
~n12

h
•v1!2v1

2v2
21

41

32
~n12

h
•v1!~n12

h
•v2!v1

2v2
22

3

4
~n12

h
•v1!2~v1•v2!22

15

16
~n12

h
•v1!~n12

h
•v2!~v1•v2!2

1
19

16
~n12

h
•v1!3~n12

h
•v2!v1

21
9

16
~n12

h
•v1!2~n12

h
•v2!2v1

22
15

8
~n12

h
•v1!~n12

h
•v2!3v1

21
19

16
~n12

h
•v2!4v1

2

2
19

16
~n12

h
•v1!4~v1•v2!2~n12

h
•v1!3~n12

h
•v2!~v1•v2!1

45

32
~n12

h
•v1!2~n12

h
•v2!2~v1•v2!2

5

16
~n12

h
•v1!5~n12

h
•v2!

2
5

16
~n12

h
•v1!4~n12

h
•v2!21

15

32
~n12

h
•v1!3~n12

h
•v2!3, ~5.10c!

L3PN
02 5

59

8
~v1

2!22
199

8
v1

2~v1•v2!1
25

3
v1

2v2
21

493

24
~v1•v2!22

113

8
~v1•v2!v2

21
45

16
~v2

2!22
45

8
~n12

h
•v1!2v1

2

119~n12
h
•v1!~n12

h
•v2!v1

22
44

3
~n12

h
•v2!2v1

22
1

4
~n12

h
•v1!2~v1•v2!2

61

6
~n12

h
•v1!~n12

h
•v2!~v1•v2!

1
67

4
~n12

h
•v2!2~v1•v2!1

275

24
~n12

h
•v1!2v2

22
33

2
~n12

h
•v1!~n12

h
•v2!v2

21
1

4
~n12

h
•v2!2v2

22
13

3
~n12

h
•v1!4

1
46

3
~n12

h
•v1!3~n12

h
•v2!2

137

6
~n12

h
•v1!2~n12

h
•v2!21

34

3
~n12

h
•v1!~n12

h
•v2!3, ~5.10d!

L3PN
03 5F15611

1260
1S 41

128
p22

305

144D m2

m1
Gv1

22F17501

1260
1S 41

64
p22

439

144D m2

m1
G~v1•v2!1F5

4
1S 41

128
p22

305

144D m2

m1
Gv2

2

2F8243

210
1S 123

128
p22

383

48 D m2

m1
G~n12

h
•v1!21F15541

420
1S 123

64
p22

889

48 D m2

m1
G~n12

h
•v1!~n12

h
•v2!

1F3

2
1S 383

48
2

123

128
p2D m2

m1
G~n12

h
•v2!21F2

22

3
v1

21
22

3
~v1•v2!122~n12

h
•v1!2222~n12

h
•v1!~n12

h
•v2!G lnr 12

h

r 18
, ~5.10e!

L3PN
04 52

3

8
2S 9707

420
1vsD m2

m1
1

22

3

m2

m1
ln

r 12
h

r 18
, ~5.10f!

L3PN
11 52

15

4
~n12

h
•v1!~v1•v2!~v1•a1!1

5

2
~n12

h
•v1!v2

2~v1•a1!1
7

4
~n12

h
•v2!v1

2~v1•a1!2
1

2
~n12

h
•v2!~v1•v2!~v1•a1!

2
5

8
~n12

h
•v2!v2

2~v1•a1!2
5

8
~n12

h
•v1!2~n12

h
•v2!~v1•a1!2

3

4
~n12

h
•v1!~n12

h
•v2!2~v1•a1!1

5

12
~n12
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VI. CONCLUSIONS

To conclude, let us emphasize that the equivalence, es
lished in this paper, between the existing independent
proaches to 3PN dynamics is important because it confi
the basic soundness ofboth approaches. It shows that th
quite different regularization procedures devised by the
groups are physically equivalent. None can claim to be ma
ematically ‘‘better’’ or ‘‘more correct’’ than the other one
We have, however, pointed out that the ADM regularizat
~i! is significantly simpler to define and apply in practice a
~ii ! leads to the introduction of a minimal set of regulariz
tion ambiguities~without extra gauge-related ambiguities!.

So much for the good news. The bad news is that h
ing proved the physical equivalence between the t
approaches sheds no light on the problem of the ‘‘static a
biguity’’ vs . In fact, it is sobering to note that the enormo
work which went into both 3PN investigation
@8–10,15,11,18,12,16,17,13# and which led to the explicit
evaluation ofO(100) 3PN coefficients@not to mention the
O(105) intermediate expressions which had to be compu
and manipulated# succeeded in getting only two out of th
threeirreducible 3PN coefficients mentioned above (d3 and
z3, with a4 staying ambiguous!. This is all the more a pity
that it was shown in@18# that the 3PN-level predictions fo
the physically most important quantities~dynamical behavior
@18# and gravitational wave emission@21# near the transition
between inspiral and plunge of a binary black hole! vary
quite significantly whenvs is allowed to vary within the
04402
b-
p-
s

o
h-

-

v-
o
-

d

plausible range of210&vs&10. This makes it urgent to
further clarify the origin of the ‘‘static ambiguity.’’

Roughly speaking, it seems that this ambiguity is due
the breakdown, at 3PN, of the possibility of modeling e
tended~compact! objects~neutron stars or black holes! by
delta-function sources. This is somewhat surprising beca
it was shown long ago that the extended nature of the obj
~violation of the ‘‘effacing principle’’! should show up only
at 5PN ~see Ref.@2#, p. 86!. One must probably use new
techniques~or extend to 3PN-level old techniques, such
the matching technique used in@2#! to solve this problem.11

We note that it would be nice if the ‘‘effective one body
approach@19#, which is so efficient in condensing the invar
ant content of the dynamics to a few coefficients, could
developed into a calculational technique, giving explicit
gorithmic recipes for directly computing the three 3PN irr
ducible coefficients.
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