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Equivalence between the ADM-Hamiltonian and the harmonic-coordinates approaches
to the third post-Newtonian dynamics of compact binaries
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The third post-Newtonian approximation to the general relativistic dynamics of two point-mass systems has
been recently derived by two independent groups, using different approaches and different coordinate systems.
By explicitly exhibiting the map between the variables used in the two approaches we prove their physical
equivalence. Our map allows one to transfer all the known results of the Arnowitt-Deser-Misner approach to
the harmonic-coordinates one: in particular, it gives the value of the harmonic-coordinates Lagrangian and the
expression of the ten conserved quantities associated with global Poincariance.
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I. MOTIVATION size that both approaches to the 3PN dynamics have found
that the use of Dirac-delta-function sources to model the
Binary systems made of compact objegtsutron stars or two-body system causes the appearance of both badly diver-
black hole$ are the most promising sources for the upcom-gent integrals and badly defined “contact terms,” which
ing ground-based network of interferometric gravitational(contrary to what happened at the 2.5PN4] and 3.5PN
wave detectors such as the Laser Interferometric Gravitg14] levels cannot be unambiguously regularized. More pre-
tional Wave Observator§t IGO), VIRGO, or GEO. Because cisely, when Refs[8,9] derived the relative-motion 3PN
of their higher signal-to-noise ratio, the first detections arexApp Hamiltonian H(x,p), in the center-of-mass frame of
likely to involve massive binary black-hole systems, with{ne pinary, they introduced two arbitragimensionlespa-
total massm;+m,=30M. Such systems emit most of rameters,w, (= wyineid and o= wgad, to formalize the
ﬁresence of irreducible ambiguities in the regularization of

last stable(circulan orbit. This makes it very important to the Hamiltonian. The regularization ambiguity parameigr

have the best possible analytical control of the general relaéoncerned a momentum-dependent contribution
tivistic dynamics of two-body systems. «G3¢ S(p2—3(n-p))r % while w, concemed a
For many years the equations of motion of binary SyStem?’nomentupm-inde gndent ’contributiomé4c*6r*4 Refer-
have been known only up to the 5/2 post-Newtor(2sPN 11 h P hand lized th : 87 b
approximatior{ 1-7]. Recently, Jaranowski and Sdea[8,9] ence[11], on the one hand, generalized the work{8f by

and Damour, Jaranowski, and Sfd1g10,11] succeeded in der!ving the 3PN ADM HamiltoniarH (x;,X,,P1,P,) in an
deriving the third post-Newtoniaf8PN) dynamics of binary arbitrary reference frame and, on the other hand, proved that

point-mass systems within the canonical formalism of Ar-@k Was uniquely determined to have the valug=41/24 by

nowitt, Deser, and MisnetADM ). More recently, Blanchet requiring global Poincarénvariance of the 3PN dynamics

and Fayd 12,13 succeeded in deriving the 3PN equations of S€€ Re;.[lS] fo; detailsh of \howa_ is”not gixable in the
motion of binary point-mass systems in harmonic coordi-CeNnter-of-mass frame Therefore, finally, the 3PN ADM

nates relying on an independent framework. The purpose d#amiltoniz_;\nl contain§ only_one regularization ambiguity
this paper is to compare and relate these two sets of resulf@rametrized by theimensionlesparametews):
For the present investigation it is sufficient to consider the

conservative part of the dynamics; i.e., we shall drop the H(Xa,Pa; @s)

dissipative 2.5PN part which is the leading order radiation-

damping level. This has the advantage that for the remaining = E M,C2+ Hy(Xa: Pa)
a

part there exists an autonomous Hamiltoni@epending

only on particle variablesand a conserved energy. The non-

autonomous parts of the ADM Hamiltonian, up to the 3.5PN

level (which is the next order radiation-damping level after inote that we are considering here the ordinary 3PN Hamiltonian,

2.5PN, are given in Ref[14]. obtained (following a result of[10]) by a well-defined shift of

phase-space coordinates, designed réduce the higher-order

Hamiltonian Hzpn(Xa ,Pa . Xa . Pa) defined by eliminating the field
Before tackling the comparison between the two sets ofariables h{",  hf" in the “Routh functional”

3PN results several remarks are in order. First, let us emph&spn(Xa.pa i 0" of [8].

Il. REGULARIZATION AMBIGUITIES
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1 1 I r| 783  my+m, 0 3
+ ?HlPN(Xarpa)"' EHZPN(Xaapa) n 5_2 - 3080+)\ m, (2.3b
1] w0 G*mZma(m;+m,) Finally, the 3PN equations of motion for the harmonic
+ ; Hapn (Xa:Pa) + s 4 . coordinatey,(t) of the two point masses contdimreeregu-
12 2.1) larization ambiguitiegparametrized by the two scale§, r)
- and the dimensionless parameir and have the forny,
See Ref[11] for the explicit expressions M;;;O andofthe  =A_(y,,v,), wherev,=y,, with
well-known lower-ordei(Newtonian, 1PN, and 2PNcontri-

butions.

On the other hand, Ref13], in deriving the 3PN equa-
tions of motion in harmonic coordinates, introduced four ar-
bitrary dimensionfullparameterss,, s,, r;, andr; (with
dimensions of lengths;, s, correspond to the intermediate 1 1
ADM regularization length scalek,, |, discussed below, +gAaZPN(y'J’VbHEA32-5P'\(yb’Vb)
which disappear in the findd 3py). In addition, though these
authors developed some formal generalization of the theory 1
of distributions to deal with the badly divergent integrals =
appearing at 3PN16], they could not prove the uniqueness ¢
of their prescriptions, and, in fact, they used two different
prescriptions, the most recent of th¢h8] introducing a new +In
dimensionlessarbitrary parameteK. (However, they did
prove that both versions of their regularization prescriptions
finally lead to gauge-equivalent equations of motidn.[17]
these authors also introduced a modification of their regular-
ization procedures, aimed at yielding‘in principle” ) where rgzzyl—yz and Vlzzﬂl‘zzvl_vz denote the(har-
Lorentz-invariant equations of motion. The net result of us-monijg) relative position and velocity, respectively. It was,
ing the set of regularization recipes developedl6,17,13  however, shown ifi13] that the ambiguities linked to} , r}
is the derivation of 3PN two-body equations of motion, in can pe gauged away, so that the physical ambiguity of the
harmonic coordinates, which depend on five parameters  harmonic equations of motions is described by soke (di-

S1, Sz, 1, 'z, andK and which are, generically, neither mensionless parameterx. For simplicity, we shall work
Lorentz-invariart nor deducible from an actiofibecause here with the equations of motion explicitly displayed 113]
they do not lead to a conserved energy as any autonomoygich, in fact, corresponds to their older regularization pre-
action-based equations of motion would@hen, the authors  scription[with 783/3080 being replaced by159/308 in Eq.

of [13]_.impose 'the triple requirement @f) Lorentz invari- - (2.2)]. See Eq.7.16 of [13] for the explicit expression of
ance,(ii) the existence of a conserved energy, éiidpoly-  the 3PN contributions to the harmonic equations of motion
nomiality in m; andm,. They show thati) uniquely deter- (a5 well as of the well-known lower-order contributions

1
Aa(Yp V) =Aan(Yb ,Vp) + ?AalPN(yb V)

h
o
ALY V) +1n — AGen(112.V12)

rs

h
Mo
!

2) /.h 3) ,.h
; AGen(r5 V1) FNAG (1 12)] '
2

(2.9

constraint relating the four length scales s,, ry, andr;,  depend only on the relative positions and velocities, and that
namely the \ term readgfor a=1; nl,=rl/rf,)
[rs), 783]_ [ (ri| 783 s
My Il 5 )+ 3080 =™ "5, T 30800 32 44 G'mimi(my+my)

3 h h
NGl =~ 3 (rhy5 np,. (2.5
Note that, when they use their older version of their regular- 12
ization prescriptions, the rational number appearing in Eg.
(2.2 becomes—159/308. By further imposing the require- Even before any detailed calculation, it is clear that this
ment(iii ), they conclude that the two length scatgss, can  contribution derives from a potential energy
be expressed in terms of the two other scalgsr;, and of
a newdimensionlesparameten, through

P 9 NVCE 11)\ G*mZma(m,+m,)
783 my+m, 3 Cs(r22)4

|
In(s—l)—— 30804-)\ my (2.3a

so that, if the two different 3PN dynamics can be shown to
be somehow equivalent, the “harmonic” regularization am-

2t least if one follows 13] in using the new “correct” derivative ~ biguity A must be related to the “ADM” onewg by — 5\
involving the parameteK. =wg *+ const.
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I1l. ORIGIN OF THE REGULARIZATION AMBIGUITIES
HP)= f d3xH P
As the presence of the regularization ambiguities at the
3PN level is very strikingand physically momentous, let us
discuss in more detail the origin of the ambiguities present in = f A3, Sa(X,Xp) S(X—Xy)
the two approaches, and the differences between them. a

In the ADM approach, one computegspatially global o . .
scalar quantity, the HamiltoniarH (x,,p,) of the system. IS formal_ly |nf|n|t_e becayse th(a‘leld—construct_e)j guantity
Essentiallj the global scalaH (x, ,p,) can be explicitly ex-  Sa(X:Xo) o generically singular as—Xx,. To give a mean-
pressed as an integral over space of an integrand of the gild t0 He™’ one must choose a specific regularization pre-
neric form scription to define the limit lim_, Sa(x,xp). Second, the

“field” contribution H{?)=[d3xH (" is also formally infi-
5 5 nite because the integrarthD) is generically too singular as
H(X;Xa,Pa) = H (X Xa ,Pa) + H P (X Xq ,Pa) X—X, to be locally integrable. To give a meaning k"
Nify- one must choose a specific regularization prescription for
DX Xa,Pa)- (3.) such singular integrals. Finally for each choice®f, one
definesthe regularized value of the Hamiltonian Bi$™)™9
— H(D)reg, y(D)reg
c f '

In Refs.[8,9] the following specific regularization pre-
gcriptions were adopted: (i) for contact terms
[limy . Sa(x,xp)]™¢ is defined as Hadamard's “partie
finie” of S,(x,xp), PfaSa(x,x,), defined in Appendix B of
E18] as the angle-averaged finite term in the Laurent expan-
sion of Sy(Xa+ra,Xp) in powers ofr,=|r |=|x—x,| (as
oa—0), and(ii) for field terms the regularized valu&? of a

singular integrall = [d3xF(x,X;,X,) is defined as follows.

Here, (") is made only of “contact terms,” i.e. of terms
proportional to the delta functions modeling the sources, sa
HP)=3,S.(x,x,) 8(x—X,), whereS, is constructed from
field quantities,?—dD) is a “field-like” term, i.e. an “energy
density” constructed from field quantities and distributed all
over space, and the last term is a pure divergence, whic
formally gives a vanishing contributidrio the integrated
Hamiltonian. As indicated by the superscript notation, th

explicit values of the “contact” and “field” terms depend First lari telv the di h
on the choice of the divergence teyD'. In other words, IrSt, one reguiarizes separat€ly the divergences near eac

we can, by “operating by parts,” shuffle terms between particle, i.e. the integrallsazfvad3xF(x,x1,x2) whereV, is

when so shuffling terms, one freely uses Einstein’s fielgdently, one can always decompobe I;+1;+ | comp With
equationgwith delta-function sourcesand one assumes the two local volumesVy, V, and a regular complemehtSec-
validity of the usual rules of functional calculfissuch as ©nd, each local integral, sdy near particle 1, is regularized
Leibniz’ rule [ 4;(AB)=(4,A)B+A(4;B)], and the commu- in the manner of Riesz, i.e. by analytic continuati&c) in
tativity of repeated derivativesi(d;A=d;d;A). € of

The ambiguities in the determination of the valuetbf e
=[d®H come fror_n tvyo separat@ut related facts. First, ll(el)Ef d3x<—l) F(X,Xq %),
the “contact” contribution vy Iy

wherer,=|x—x,;| and wherel, is a certain length scale.
Most integrand$- lead to functions ok, 1,(e;), which are

“4After applying the double “reduction” process of eliminating the analytically continuable into the complex plane down to

field variables and reducing the order of the Hamiltor{iayi0]. €,=0. In such a case this continuation ’e‘lgol 1(€1)

51t has been checked in the ADM approach that the “surface terntniquely defines the regularized valuel of However, a lim-
at infinity” associated withy,D' is not causing any ambiguity. In- ited subclass of “dangerous” integrals gives rise to a
deed, most pieces iidSD' decay like some inverse power ot (simple pole ase;—0: 1(€;)=2Z;(e; *+In(Ry /1)) + A,
infinity, while the ones which might be problemafitke the one  whereR, is an “infrared” length scale associated with the
associated with thé)(r) part of h(gy; ] have been explicitly shown  choice of local volumeV,. For such integrals, one is natu-
to give a vanishing contribution t9dSD'. The ambiguities come rajly |ed (following the usual “minimal subtraction” pre-
pnly from the singglar behavior pf the integrand near each pa”idescription of quantum field theoyyo defining the regularized
.. as the field poink tends 1o eithex; or x,. value ofl;(e,) as the limit of () —Z, /€, ase;—0, ie.

8In the explicit computations of the Hamiltonian done in RE® re : o
i ' as 1%=2Z,In(R,/I;)+A,. Note that this regularization pre-
[10], and[11] one has always chos@i’s such that all the terms in 1 1N(Ry/1)+Ay 9 P

H%D) contain only one derivativéor its equivalent acting on the

elementary fields ¢, , 77'(3), by, - .), so that there is no need

to worry about using an improved distributional derivative. The “The “Riesz” prescription explained in the Appendix of B [#]
distributional rule of differentiation of homogeneous functions de-looks different from what we explain herdecause it does not
scribed in Appendix B of8] is, in fact, used only when gauging the separate the integration volume \fy, V, and the rest but, as
ambiguities by computing the regularized valuefofx(4,D'), as  emphasized if10], it is equivalent to the logically simpler pre-
explained in the Appendix A of10]. scription that we summarize here.

3Though it was anticipated if2]; see pp. 107 and 116 there.
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scription has introduced one arbitrary length scale: the regumost recent work in the ADM formalisfril1] has shown that

larization lengthl,. (The V;-related infrared lengthr; is
easily seen to cancel out In= 11+ 15+ 1 :4mp.) However, as
emphasized in Sec. IV dB], a remarkable thing occurs in
explicit calculations of the 3PN ADM Hamiltonian: the com-
bination of dangerous integrals appearingHgpy is such
that all pole termsxactly cancel~Z,=0. In fact, one of
the characteristics of the calculation Hf;py in the ADM
formalism is that one finds it much safénd simpley to
regularize, at once, the full integral, rather than to (&g in
the harmonic-coordinate calculatiph3]) to give a separate
regularized value for each individual contribution to the
equations of motion. Global cancellation of the poles show
that the combination of dangerous integrals appearing i

H;py is Of a less dangerous type. A nice aspect of this can

cellation is that, in the ADM approach, the two regularizing
length scales;, |, completely cancel and do not appear in
the regularized finaHzpy. This does not mean, however,
that the final result is unambiguous. Indeed, it was emph
sized in[8,10] that the regularized value &f5p\ depends on
the reshuffling of terms used to separatein H (°)+7 (D)
+49,D'. In other words, when operating by partehich
changesD', and #?) and #{P)) the regularized value of
H®=HP) +H(P) is found to chang&.In addition to this

a-

the “kinetic” ambiguity w, was uniquely fixed by imposing

global Poincarenvariance, the final conclusion is, as indi-
cated in Eq(2.1) above, that the ADM formalism introduces
only one regularization ambiguity parameter: the ‘“static”
ambiguity wg.

It would take us too long to explain in detail why the
harmonic-coordinates approach introduces more ambiguity
parameter§four (s;,S,,r;,r,) or five (s,s,,r;,r;,K), de-
pending on the regularization prescription, instead of two
(wi,wg)] than the ADM one(see[16,17,13). Let us only
make a short list of the most significant differences between

ghe two approachesi) Blanchet and Faye regularize sepa-
IJiately many independent singular contributions to the spatial

derivative of the gravitational field instead of working with
the full scalar Hamiltonian as a blockij) when computing
their “elementary integrals” by analytic continuation they
can (after contracting free indicgause theordinary Riesz
formula [instead of thegeneralizedRiesz formula of{8],
necessary to deal with the denominatorér,+r,+r,,)”
that appear in the ADM Hamiltonign (iii) they directly
work with the full hierarchy of PN fields up tggo=—1+
... +2Ug/c8, while the ADM approach needs to work only
with the contributionqs(e)/c6 to the “scalar” potential,(iv)
they get two(gauge-relatedambiguities of “logarithmic”

sensitivity of the contact contributioH(® to the choice of
prescription for defining the “partie finie” ofS;(x,xp). It
was emphasized if9,10] that the definition of the “Had-

a different coordinate system. It would be interesting to
study whether a reworking of the harmonic-coordinates work
along the more “global,” and more “PN order reduced”

amard partie finie” Pf becomes ambiguous at 3PN becauselines of the ADM approach would not simplify their results

it cannot be “threaded” through a product of field functions,
i.e. that, in general, Bff,f,- - -)# (Pfyf1) (Pf,f,)- - - . (The

prime, irreducible example of this ambiguity at 3PN comes

from the fact that P{(¢(;) #[Pla(¢(;)1*=[Ph(d(2)]"
where ¢, is the Newtonian potentigl.

The attitude of Refs[8—10] in relation to these regular-
ization ambiguities has been the followin@ one must ac-

and get rid of several of their ambiguities.

IV. MATCHING THE TWO 3PN DYNAMICS

We shall now show in detail that the two 3PN dynamics
are equivalent modulo a suitable shift of particle variables.
Some time ago, Damour and Séa[3] studied the link, at

knowledge their existence, because there exists, as yet, fee 2PN level, between the ADM dynamics and the

convincingly unique extension of distribution theory allow-
ing one to select a preferred regularized value, @ncow-

harmonic-coordinatetor DeDonder-coordinat¢®ne. They
explicitly constructed the map between these two descrip-

ever, one can analyze in detail the structure of these ambflons of the dynamics. Let us emphasize that this map acts on
guities and show that they can be parametrized by only twghe “motions,” i.e. on the particle position@nd momenta

(dimensionless parametersiw, and ws. Indeed, after the
pioneering work 8,9] which introduced these regularization

or velocitieg as functions of time. In other words, it gives
either the transformatiotwith v ,=vy,)

ambiguity parameters, a systematic study of the ambiguities

has been conducted in the Appendix A{@0] [by exploring

Ya(t) = Ya(Xs(t),pa(t)), (4.1a

all the possible operations by parts, as well as the effect of

having Pf(f,f,)# Pf(f,)Pf(f,)]. This study confirmed the
existence of only two regularization ambiguities\s the

8In actual calculationgsee especially Appendix A dfL0]) one
monitors the changes i ®=H{® +H{® by computing the term-
by-term regularizedvalue of the full algebraic expansion of the
divergence ternf d3x(g;D').

Va(t) =Va(Xp(t),pp(t)), (4.1b

from the ADM variables X, ,p,) to the harmonic ones
(Ya,Va), or the inverse transformation

Xa(t) =Xa(yp(t),Vp(1)),

Pa(t) = Pa(yn(t), vp(1)).

(4.29
(4.2b

Referencd 10] made an attempt at lessening the sources of amAll variables in Eqs(4.1), (4.2) are taken at the same value

biguity by choosing aD' such that the contact ternig (?) are
absent. However, even in this “preferred” presentat'rbﬁ,D) gave
rise to the two usual ADM ambiguities.

for their (respective time argument. As explained 1] it is
always possible to express the looked for map in this form.
One has to beware that the transformatiohg) or (4.2) are

044021-4



EQUIVALENCE BETWEEN THE ADM-HAMILTONIAN AND . ..

not the direct restriction of a coordinate transformatigh’
=X+ EH(x*,[%,],[%2]) (where the brackets indicafeinc-
tional dependencde to a field pointx* on a particle world
line, but that one must take into account the time sfifto
transform the coordinate shiff' into the “motion” shift
x'(t) —x(t) [see Eqgs(3) of [3]].

Among the two formg4.1) or (4.2) we found that it is

simplest to work with Eqs(4.1). Indeed, the necessary and

sufficient conditions for Eqg4.1) to map the ADM dynam-
ics onto the harmonic one is easily seen to be, simply,

{Ya,H}=V,, (4.3a
{Va,H}={{Ya,H},H}
=Aa(Yp, V). (4.3b

All functions entering Eqs(4.39 and(4.3b (Y,,H,V,) are
functions of the ADM phase space coordinates, ). The
notation{-,-} denotes the usual Poisson brackets:

>

A 9B 9A aB)

{A(Xa,pa),B(Xaypa)}Eg 5Xia IPai !

IPai ox!

a

Finally H denotes the full 3PN Hamiltoniaf2.1) while

A.(yp,Vp) denotes the harmonic equations of motion, Eq.

(2.4). Note that Eq(4.33 explicitly determines/ (X, ,pp) in

terms ofY ,(X, ,pp). Therefore, the problem of the mapping

betweenH and A, is reduced to solving Eq4.3b as an

PHYSICAL REVIEW D 63 044021

At 3PN, we write (by using translation and rotation in-
variance Y32PN in terms of some scalar functiorieeren,,

= (Xa_xb)/rab; lap= |Xa_xb|)

YSP“<xb,pb>=Manab+§ NapPy - (4.6

By imposing that the map reduces to the identity in the free-
motion limit (G—0), it is enough to look foM, andN,,, of
the symbolic form:

2 1

p Inr,
Mocp4—|———|——2+—2,
ro ri, rp
p
Necp3+ —,
2

where “p"” denotes all the scalars made wiph, p, andn;,
with homogeneityp", i.e.

P D Cnnyngngng(PD)"H(P3)"™

X (P1-P2)™3(Ngp P1) "Ny o)™

equation for the two unknown phase-space vectorial func-
tions Y 1(Xp ,Pp) andY(xp,pp). We tackled this problem by  with 2n,+2n,+ 2n;+n,+ns=n. We find thatY3" a pri-
the method of undetermined coefficients, i.e. by writing theori contains 52 unknown coefficients, (28 in M, 12 in

most general expression for the PN expansiolf i, ,py) -
We know thatY, differs fromx, only at 2PN order, i.e.

1 1
Y a(Xo ,Po) = Xa+ ;Yip“ub Pp)+ gvzp“ub Pp)-
(4.9

The explicit expression o‘YgPN was given in Ref[3] (we
write it here fora=1, the expression foa=2 being ob-
tained by a simple relabeling<:2):

1 (ngp p2)2

8ms 8 m3

YipN(Xa Pa)=G mz{

Gm1(7 1m2)

2t am,) ™

M2

n E (N12-P2) P Z (N12:P2) &]

(4.9

Actually, as a check on the algebraic manipulation programs

(done withMATHEMATICA ) that we wrote to solve Eq4.3b
we have explicitly checked that Ed4.5 is the unique
(translation-and-rotation-invarignt solution of the 2PN
matching.

N;1, and 12 inNy,). We did not impose ang priori con-
straints on the mass dependence of the coefficients
ca(my,m,) enteringY:"N. (As a consequence we cannot
make use of the & 2 relabeling symmetry Writing in full

Eq. (4.3b gives alinear system of 512 equations for the 2

X 52=104 unknown coefficientg,. In spite of this very
high redundancy, we found that this system is compatible if
and only if the arbitrary parametets; and\ are related by

3 1987

=— — gt .
A== 1195 3080

(4.7)

Then the solution isiniqueand readgfor a=1, the solution
for a=2 being obtained by relabeling-12)

Gm, Gmy 2
YiPN(Xa:pa):GmZ Y(1)_'— Yi—i_(_) Yi Ny
EP) EP)
[ vor 1v11)r‘;—11
0 1,1 | P2
+| Yo+ Y12 my|” (4.8

where
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1(p1-pa)P2 1 (pH2 3 (Mo p1)(Niy Po)p3 the two particle labelsr(, entering onlyY3™N, andr} only
3 ) Y3PY suggestd(in confirmation of the discussion we gave
above that it is not a necessity, in the harmonic approach, to
3 (N P2)2(p1-P2) 3 (N1 P2)2P2 introduce the ambiguities; andr . Indeed, we see that they
3 3 16 7 are locally (i.e. s_eparately for_ each partiglentroduced by
m;m; m; the transformation of variables between oumore
ambiguity-free ADM resultand the variables defined by the
, (4.99  setof prescriptions of Ref16,17,13. We note also that our

0_
Yi=

8 mm 8 mj 8 m,ms

1 (Nyp N> P)° 1 (Nyopo)?
Jr_( 12-P1)(N12- P2) +_( 12 P2)

8 m;m3 16 m; result confirms the finding of13] thatr; andr, can be
auged awayby a harmonicity-preserving coordinate trans-
L N L formation rpresening
Y48 2 16 mm, 6 48my/m3 Anyway, the most important result is that we have shown
) the physical equivalencéor invariant consequences of the
~25(N12:p1)” | 9 (N12P1)(Nyz-P2) dynamics between the 3PN results $8—11] of those of
48 mi 8 m;m, [12,16,17,13 The invariants of the 3PN dynamics depend
) only on one ambiguity parameter, denoted; in the ADM
_[25 25m;| (N2 p2) (4.9b work, and\ in the harmonic-coordinates one. The change of
12 48m; m§ ' ' notation betweeig andX\ is given in Eq.(4.7) which agrees
with the conclusion of12] which was restricted to the cir-
) 28387 (49 21 ,\mp 22 1y cular motion case.
Yi=~ 2501|367 327 m, ?'”Ev (4.99 Could have it been different? In view of the high redun-

dancy of the linear system we had to solve, it may seem

o E(nlz'pz)pi (Nyp pz)pg_i(nlzpz)?’ quasi-miraculous that the two independent results can be

u=" g 3 3 12 3 made to match. The compatibility we found is clearly a very
mim; ma m; useful check on the algebraic computations done by both
(4.99 groups. However, we want to point out that, as both groups
Vi 73 (N p1) [9 3 my) (N py) 49 had already checked the global Poincareariance of their
U= 24 m, 8 2my m, (4.99  results(see[11] for the ADM case and17,13 for the har-

monic ong, the possible remaining discrepancies between

0 1 (N2 P1)P5 1 (N p)(P1-p2) 1 (N12-P2)P3 the two dynamics were not very numerous. In fact we can

1277 g mm2 4 - 8 e count precisely the number dfreducible new coefficients
2 172 2 entering all 3PN invariants of a Poincdrwariant dynamics.
3 (N P1) (N1 P2)? 5 (NypPo)3 The simplest way to do that is to use the resul_t$](8‘_| on
+ 3 12t ;2 o I 12 32 , (4.9  the 3PN “effective one body” dynamickl9]. Using Poin-
m;m; m; careinvariance we can reduce the dynamics to that of the
1 SO(mapy) (17, 220y (mrpa) g0 G eifcients entering the relaive dynamics a
12776 m, 24" 48 my m, ' 9 y

thenPN level is obtained by quotienting the arbitrariness in
The results(4.8—(4.9) give the explicit expression of the the (relative Hamiltonian by that in a generigelative) ca-
transformation %, ,pp)— Ya=Ya(Xy,Ps). TO complete the nonical transformation. This leaves orilyomputing the dif-
knowledge of the transformation between the phase-spad§r€nce between E¢3.6) and Eq.(3.8) of [18]]

variables of the two descriptions one also needs the explicit (n+1)(n+2) n(n+1)
expression of the transformatioxy(, pp) — Va=Va(Xp ,Pp) - - 2
This is straightforwardly obtained by inserting in E4.33
the Hamiltonian of[11] and the results(4.4—(4.9) for irreducible coefficients atPN. Moreover, one of the coeffi-
Ya(Xp,Pp)- As the explicit result is very lengthy we do not cients is trivial as it is given by thePN-level expansion of
display it here(Because of the availability of algebraic ma- the free-motion Hamiltoniamd o= \/m+ p%+ \m3+ p3. Fi-
nipulation programs, it is safer for the interested reader tanally, this leaves only non-trivial irreducible coefficients at

+1|=n+1 (4.10

rederive it directly) the nPN level, i.e. in particular only three coefficients at
Let us mention that, as a further check, we have also trie@PN.
to map the HamiltoniarH ;p\( ws,w,) containingboth wg For instance, in the effective one body approach, these

andwy to AlM"and that we found again that the mapping three coefficients are, [the coefficient of GM/R)* in

is possible only ifw,=41/24, in complete agreement with —ggg], d; [the coefficient of GM/R)? in —gggggf; , andz;

[11]. [the coefficient ofP‘é(G M/R)2 in the squared effective
It should be noted that the further ambiguity parametersHamiltonian. These coefficients have been determined in

r1 andr, present in the harmonic equations of motion enter{18], from H55\ , and it was found thatl; and z; are un-

our result only through some logarithmic termsNhy [for  ambiguously determine@independently of thess ambigu-

In(r1o/r1)]andM,, [for In(r1,/r5)]. This decoupling between ity) to be
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d3=2(3v—26)v, z3=2(4—3v)v, (4.11) themselves starting from the formulas we give. We have
checked that Eq(5.2a agrees with the 3PN conserved en-
ergy obtained irff13].

Our results allow us also tprove (without guesswork
that the harmonic equations of motion derive frorgener-
alized LagrangianL"™"qy_ v .y.), depending on posi-
In view of the sensitivity ofa, to w, a real difference be- tions, velocitiesand accelerationsMoreover, we can rather

; ; armonic P
tween the ADM and the harmonic dynamics could then onIySlmply compute the Lagrangidf by starting from the

have arisen as possible discrepancies in the values of tkp&ase-spacé_agrangmn of our ADM Hamiltonian frame-

only two unambiguous 3PN irreducible coefficiemnts and work, namely

Z3, EQ. (4.11). As a further check, we have in fact allowed

for such differences id; andz; by looking for the matching LAPM (5 X Pa)= 2 Pa- Xa— HAPM (X, . py)-

of the harmonic equations of motion to a modifiegoy , a

containing two extra terms corresponding to variations in

bothd; andz;. The result of this generalized matching was Indeed, it sufficegas one easily checkso insert the trans-
that the variations ird; and z; had both to vanish for the formation (><a,Pa)—>(Ya,i/a) in LADM(Xa,Xa,Pa)- This gives
matching to be possible.

where v=m;m,/(m;+m,)? is the symmetric mass ratio,
while a, turns out to depend ong:

94 41
— — a2+ 20,

3 3 V. (4.12

a4:

V. CONSERVED QUANTITIES AND GENERALIZED L"MOMYa Ya Ya) = Ea: Pa(Yb,¥b) - Xa(¥s Yo Yb)
LAGRANGIAN IN HARMONIC COORDINATES Y . .
—H™(Xa(Yb 1 Yb),Pa(Yb,¥p))- (5.3
Having explicitly obtained the transformation from ADM
variables to harmonic ones which maps the two dynamicSyote that the meaning of the time derivati¥g in Eq. (5.3
we can use this map to transfer all the useful known resultg;
of the ADM approach to the harmonic one. For instance,
Ref.[11] has explicitly computed the ten conserved quanti- i .
ties of the binary system associated to global Poinievari- i — dXa(¥b,Yb) Ez 2
ance: total energH(x,,p,), total momentumP;(x,,p.), a dt 5 5
total angular momentund;(x,,p,), and the center-of-mass
constant (boost vector JO=K'(x,,pa)=G'(Xa,Pa) ) )
—tP(x,,ps). Actually, to be able to express these con-1herefore ourconstructiveprocedure for computing the har-

served quantities within the harmonic framework one need§onic Lagrangian automat_i_cally yields a Lagrangian which
theinverseof the transformationx,p)—(y,v); i.e., we need is linear in the accelerationg, . (It was shown in 3] that it

axt . oaxt
SVht Vb
IYp A%

to know explicitly the functions was always possible, for perturbatively expanded generalized
Lagrangians, to reduce their acceleration dependence to be
Xa:Xa(yb vvb)1 (513 |Inegal’) g p
Pa=Pa(Yp,Vp). (5.1b It should also be noted that such a linear-in-acceleration

It is just a matter ofsomewhat involvedalgebraic manipu- generalized Lagrangian is n_ot unique, but is (;lefined only
lations to invert the PN-expanded mag, ) — (y,v) to get ~ Modulo the addition olF(y,,ya)/dt, whereF(ya.ya) is an
Egs.(5.1). By straightforward insertion of the formul4s.1), arbitrary® scalar function of positions and velocitiesnly).
we can ther(if they are neededexplicitly compute the fol- When the 2PN-level generalized harmonic Lagrangian
lowing quantities in harmonic coordinates: was first computed20,2], use was made of the addition of
E(yp Vi) = HAPM (X (Yo Vo), Pa(Yo V1)), (5.23 someF,p\(Ya,Ya) 10 simpl.ify _(_in a somewhat arbitrary way
2 2 the expression of ,pn(Ya,Ya Ya)- AS we are not here play-
P.(yp V)= P.(Vp Vi), 5.2b ing with the addition o we should not expect our construc-
(Yo Vo) Ea: ai(Yo Vo) (520 tive procedure(5.3) to yield a result which coincides with
that of [20,2]. We have, however, checked that our 2PN-
Ji(Yb Vo) = Ea: Sik|X'§(yb Vo) Pa(Vp.Vp),  (5.20 level result is indeed equivalent to the old one, modulo some

dF(ya ,ya)/dt. Our explicit result for the 3PN-accurate gen-
Gi(Yb V) = G M (Xa(Yp Vo) Pa(Yp Vb)), (5.20) erc_';_llized harmonic Lagrangian readsere v,=y, and a,

=Ya)

where the explicit expression @/°(x,,p,) is given in

Ref. [11]. (Note that G; is not conserved but satisfies

dG;/dt=P;. It is a useful, and conserved, quantity in the

center-of-mass frame whefg=0.) We shall not give here 19t is, however, convenient to restrict the arbitrarines& iso as

the explicit expressions of Eqé5.2) as modern computers to respect the symmetries of the problem: translations, rotations,

make it safer for interested readers to do the manipulationspace parity and time reversal.
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harmoni 1 1 212 Gmm, 3 , 7
L ((yaavayaa) LN(yavVa)+ LlPN(yayva) LlPN(yaaVa)zgml(Vl) + (h Evl_Z(Vl'VZ)
12
1 1 h h 1
+§L2PN(ya!Vavaa) _Z(an'Vl)(nlz'VZ)_E . +(1-2).
12
(5.6

1
+EL3PN(Ya-Va1aa)- (5-4)
The 2PN acceleration-dependent Lagrandiapy reads
The Newtonian and 1PN contributions to the Lagrangian

(5.4) do not depend on accelerations. They equal Lopn(YaVar3a) = LIon(Ya:Va) + Lip(Va Va @) + (152),
(5.7)
Gmym,
Ln(Ya V) = E SMavat , (55
i where

Gm
h
ro

+ 3,
L2PN 16m1(V1)

2
{L Gm Y L9 1 (5.8a
2PN 2PN 2PN| .

r12 r12

7 ’ 27 9 15 13 5 h h )
I-2PN 8(V1) 5 V1(V1 Vo) + = 16 V1V2 (V1 Vo)2 4 — (nlz V1) 2(Vy - Vp) — (nlz'Vl)(nlz‘Vz)Vl

3 3 3 3
= 7 (M) (N5 Vo) (Vy-V2) = g (N Vo) Vi g (Nl va) ¥ (N Vo) — 75 (N1 Vi) Ay V)%, (5.80)
1 7 7 h h 1 h )
Lopn= i (V1 Vo) + 4V2+ (n12 vi)?— (n12~v1)(n12- Vo) + E(nl2' Va)©, (5.80
1 19m
03 _— 72
2PN- 5T g m;’ (5.80

1 3 4 [ ’ h 1, 1 4 h h
Lopy=Gmim, Z(nlz' Vo) (Vyi-ag)— Z(n12'vl)(v2' ay)— Z(Vl'Vz)(nlz' ap)+ EVz(nlz' a)— Z(nlz'Vl)(nlz' Vo) (Npp ay) |

(5.8¢
Finally, the 3PN contribution to the Lagrangi@h4) reads
Lspn(Ya:Va,8a) =L3pN(Ya Va) + LipN(Ya Va 8a) + (12), (5.9
where
5 Gmym, Gm Gm 2 Gm 3
1 1 1 1
o g+ S L5k s S| S Lt (O L3t 5108
Mo M2 o l2
L3pn= Gmlmz( L3pnt o LspN)v (5.10b
12
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11 a7 25 23 65 3 17
L3bn= 15V 15 (VD2(Va- Vo) T (VD AVE+ 5 Vi(Va Vo) 2= 2o VAV Vo)V — (Ve Vo) P (Nl V) (Nl Vo) (V)
3 45 1 11
— 5 (N v2) 2(v]) 24 7o (Miy V) AVE(Va V) = 2 (N1 Vi) (N Vo) VE(Va - Vo) + - (0] Vo) VE(Vs Vo)

35 41 15
- 1—6(n22' Vl)ZViV?‘ (n12 Vl)(n12 V2)V1V2 (ngz‘Vl)z(Vl'Vz)z_ E(”Ez' Vl)(nQZ'VZ)(Vl'VZ)Z

19 15 19
+ 1—6(n22' v1)3(nf, Vo) Vi + E(ngz' v1)2(Nnfpvp)AvE - g(ngz' V1) (ny vo)3vi+ 1_6(n22. Vo) 4vi

19 45 5
= 26N V2)* (V1 V2) = (N1 V1) (Nl Vo) (V- V) + 55 (Ml Vi) 2]y V) 2V V) = (M va)*(n]y: Vo)

5 15
- E(ngz‘ V1), vp) 2+ 3—2(n'1‘2-v1)3(n*1‘2- Vvy)3, (5.100

59 199 25 493 13 5 45
LSon=g (VD)= g VE(Va-Va) + ViVE+ 1 (V1 Vo) 2= == (Vo V) V3 + T4 (V5) P = (Nl va) V]

44 1 61
+19 n22~ Vl)(ngz' Vz)Vi_ g(ngz' VZ)ZVi_ Z(ngz' V1) 2(Vy V) — E(”?z' Vl)(ngz' Vo)(Vy-Va)

67 275 33 1 13
+ Z(ngz'Vz)z(Vl'Vz)+ ﬁ(”?z‘ Vi) 2V5— E(”Tz‘ V1) (N]y Vo) V3 + Z(”?z'Vz)ZVE_ g(n?z'Vl)4

46 137 34
+ 5 (N v1)*(Niy Vo) = —o= (N Vi) 2Ny Vo) 2+ = (0 V) (N V), (5.10d
15611 [ 41 305, m 17501 (41 , 439 m 5,(4 305| m
03 i St i ANV S Bkttt B S 2 m2— | 221\ 2
L= 1260+(1287T 144) mJVl { 1260+(64 144) (Vi-Vo)+| 7+ 1287 144) m }

8243 (123 2 383 mz
—| ==+
210

15541 ( 123 889) m,

p— h T2 h
128 48 (n12 Vl) + 420 + 64 ™ 48 (n12 Vl)(nlz VZ)

rl112
I, (5.108
r

2, 2 22 h 2 h h
(n12 Vo)o+| — §v1+ g(v1~v2)+22(n12-v1) —22(Nn7,- V1) (N7yVy)

3,(383 123 , m2
2"\ a8 1287

9707 m, 22m, r!
)—2 ZIn-2, (5.10f

L9% __3 —artw + 5 —In—
3PNT 8 | 420 3m oy

15 S 2 7o 2 1 4
L3bn= Z(nlz' V1) (V1-Vo)(Vy-ag)+ E(n12' Vi)Va(Vi-ag)+ Z(n12' Vo)Vi(Vi-ay) — 5(”12‘V2)(V1‘V2)(V1' a)
—(nh~v)v2(v~a) 5(n v)(n Vo) (Vy-aq)— 3(n v)(n Vo)2(v a)+5(n Vo)3(vy-ay)
g (N2 V2)Va(V1- &y 12 V1 12:V2)(V1 3 12V (N1 V2)"(Ve- @)+ 75(N3p Vo)™ (Ve &y
5 1 1 1,
s — (v VE(vy ay)+ = (n12 V) (V1-Vo) (Vo ag) — (n12 Vo)V3(Vy- ) — (nlz'Vz)(Vl'Vz)(Vz'a1)
5 3 3
- Z(ngz'vl)VaVz' a;)+ 1_2(n?2‘V1)3(V2' ap)+ Z(ngz‘Vl)z(ngz‘ Vo) (Vo aq) — g(ngz'vl)(ngz' Vo) 2(vy-ay)

15 5 1 3 1
= g Vi(Va Vo) (Niy ag) + ZViVE(niy ag) + 7(Va- Vo)Al @0) = 7 (Vi Vo) V3(ny @) + 7 (v3)2(ny @)
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5 h h 2/.~h 3 h 2.,2/~h 5 h 2 h 3 h h
- g(nlz'vl)(nlz‘ V2)Vi(Nypay) — g(nlz'Vz) vi(nyp ag)+ Z(nlz'Vl) (V1-Vo)(Nyp ay) + 5(”12‘ V1) (Nppr Vo) (Vy-Vs)
h 3 h 2 h S h 2.,2/~h 1 h h 2/.-h
X(Njyay)— g(nlz'vz) (Vi-Vo)(Niy-ay) — Z(n12’ V) v5(ng, ap) + Z(nlz'vl)(nu‘ V2)V5(Ny,-ay)

1 3 1
+ Z(ngz'vl)s(ngz' Vo) (nf, ag) + §(n22'V1)2(”i112' Vo)2(nlyay) — g(nEZ'Vl)(nTZ' Vo)3(nly-ay), (5.109

L 19, 185 205 67 , . 175 )
L3pn=— ﬁ(nlz'vl)(Vl' aj)— ﬁ(nlz Vo)(Vy-ay)+ ﬂ(nlz'Vl)(VZ' a1)+ Evl(nlz' a;)— ﬁ(Vl'Vz)(nlz' ay)

3 2/.-h 91 h 2/.~h 17 h h h 5 h 235 h
+ Evz(nlz‘ ap)+ Zl(nlz' V) “(Nip ay) — E(nlz' V1) (Ngo Vo) (Nyp 8y) — Z(nlz‘ Vy)(Vy-ag)+ ﬂ(nlz' Vo)(V1-ap)

31 h 352 h 235 h 21 h 5 h 17 h h h
- 3(”12' Vi)(Vo-ap) — ZVl(nlz' ay)+ ﬂ(Vl'Vz)(nlz' &) — g(nlz' V1)“(Ngy @) + 3(”12' V1) (N1pV2)(Ngp 8p).

(5.10H

VI. CONCLUSIONS plausible range of- 10w =10. This makes it urgent to

. . urther clarify the origin of the “static ambiguity.”
To conclude, let us emphasize that the equivalence, estag- Roughly speaking, it seems that this ambiguity is due to

lished in this paper, between the existing independent appe preakdown, at 3PN, of the possibility of modeling ex-
proache_s to 3PN dynamics is important because it Conf'rmt%nded(compacl objects (neutron stars or black holesy

the basic soundness abth approaches. It shows that the geta-function sources. This is somewhat surprising because
quite different regularization procedures devised by the tWqt was shown long ago that the extended nature of the objects
groups are physically equivalent. None can claim to be math(violation of the “effacing principle’) should show up only
ematically “better” or “more correct” than the other one. 4; 5PN (see Ref[2], p. 86. One must probably use new
We have, however, pointed out that the ADM regularizationiechnigues(or extend to 3PN-level old techniques, such as
(i) is significantly simpler to define and apply in practice andipe matching technique used [i]) to solve this problem?

(i) leads to the introduction of a minimal set of regulariza-\ye note that it would be nice if the “effective one body”
tion ambiguities(without extra gauge-related ambiguifies  approact{19], which is so efficient in condensing the invari-
_So much for the good news. The bad news is that havant content of the dynamics to a few coefficients, could be
ing proved the physical equivalence between the tWQyeveloped into a calculational technique, giving explicit al-

approaches sheds no light on the problem of the “static amgyorithmic recipes for directly computing the three 3PN irre-
biguity” ws. In fact, it is sobering to note that the enormous q4;cible coefficients.

work which  went into both 3PN investigations

[8-10,15,11,18,12,16,17,12nd which led to the explicit ACKNOWLEDGMENTS
evaluation ofO(100) 3PN coefficient§not to mention the
O(10°) intermediate expressions which had to be compute
and manipulatedsucceeded in getting only two out of the
threeirreducible 3PN coefficients mentioned above;(and
z3, with a, staying ambiguoys This is all the more a pity
that it was shown if18] that the 3PN-level predictions for
the physically most important quantitieynamical behavior
[18] and gravitational wave emissig@1] near the transition
between inspiral and plunge of a binary black holary 1Y et us recall that Ref18] found several independent arguments

quite significantly whenw, is allowed to vary within the suggesting thai;=—9 and maybeavs=— % + &5 2.
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