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Quantum corrections for an (anti)evaporating black hole
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In this paper we analyze the quantum correction for a Schwarzschild black hole in the Unruh state in the
framework of the spherically symmetric gravitgSG model. SSG is a two-dimensional dilaton model that is
obtained by spherically symmetric reduction from four-dimensional theory. We find the one-loop geometry of
the (antevaporating black hole and corrections for mass, entropy, and apparent horizon.

DOI: 10.1103/PhysRevD.63.044020 PACS nuni®er04.70.Dy, 04.62tv

[. INTRODUCTION culations (e.g., for equations of motion or the energy-
momentum tens@r On the other hand, the fact that auxiliary
The two-dimensional spherically symmetric gravity fields describe nonlocal effects implies that they are dynami-
(SSG model is interesting for many reasons. This model iscal, and it is unclear priori how to fix the arbitrary con-
obtained from a four-dimension#&4D) Einstein-Hilbert ac- stants(or functions in the solutions. It is also not known
tion coupled minimally to scalar fields by spherically sym- Whether all solutions have physical meaning. In the case of
metric reduction of metric and scalar fields. The reduction igh® SSG model the properties of auxiliary fields are rather
done in the spirit of string theory, via the introduction of a Well established for the HartIe—Hawklng vacuum state. In the
dilaton field®, assuming that the line element is of the form Present paper we extend the analysis to the Unruh vacuum.
We think that it is of importance to understand the ways of
describing nonlocal effects by auxiliary fields. SSG is impor-
tant as it provides us with an example of effective action that
. _ o is tractable, but, as we shall see, in some respects more com-
whereu,»=0,1. The action for this model is given by EQ. pjicated than thdusually discussedPolyakov-Liouville ac-
(3) below, and it has a Schwarzschild black hole as a statiggn.
vacuum solution. A complementary way of discussing different vacuum
One reason that makes this model interesting is that thetates was developed in the very instructive pd@drby
quantum effective action for scalar fields can be calculated t®albinot and Fabbri. Their analysis is based on the confor-
one-loop order. This gives the possibility of obtaining themal properties of fields under change of the conformal
back reaction effects of quantized matter to gravity analytivacuum state. In this method, the initial step is to identify the
cally (in the case of a black hole solution this is the backenergy-momentum tens¢EMT) of one vacuum statée.g.,
reaction of the Hawking radiationThese analytic 2D calcu- Boulwarg. Then one can find the expectation values of the
lations can then be compared with the numerical 4D estiEMT in other states from the conformal transformation prop-
mates, as the effective action cannot be obtained analyticali§rties of fields. .
in 4D. This analysis was done in great detail for the Hartle- The organization of the paper is as follows. In Sec. Il we
Hawking vacuum state of matt¢l—3]. Summarizing, one Solve the equations of motion for the auxiliary fields in the
can say that the main drawback of the SSG model is that {¥n"uh vacuum and obtain the value of the energy-
gives negative luminosity of the black hole. It is argued inMomentum tensor. In order to fix the arbitrary functions in
the literature[4] that this result is a consequence of the fact!® solution we use the conditions of regularity of the EMT
that only the radial modes of the scalar field are counted jpn the future ho_rlzon. For comparison, the energy-
the expectation value of the energy density while the angulaf’omentum tensor is found by the Balbinot-Fabbri proce-

modes are omitted. Formally, the negative luminosity is not agu(rje.hThe diﬁerepces bet\I/veedn the Pocljyakov-LiouviIIe ?Cgoﬂ
surprising result as the scalar field and the dilaton aré"d the SSG action are also discussed. In Sec. lll we find the

strongly coupled at spatial infinity, as can be seen from th nfluence of the Hawking radiation on the geometry in one-

action (3). There are also some attempts to improve the La_oop_order._ In order to fix t_h_e integration constants in the
grangian of the modd5—g] metric, we impose the condition that the emitted flux of ra-

2D dilaton gravity is also interesting by itself from the diation is constant. We calculate the Arnowitt-Deser-Misner
heuristic point of view. Dilaton couplings are present in all APM) mass of the black hole. In Sec. IV we obtain the

theories that are obtained by dimensional reduction fronP0Sition of the apparent horizon and entropy. Furthermore,

string theories. Furthermore, the one-loop effective action&’® analyze the behavior of the entropy along the line of the

are nonlocal. One possibility to deal with such actions isapparent hori_zo_n and find that the second law of thermody-
namics is satisfied.

their conversion to the local form by introduction of auxil-
iary fields. The local form of action is rather handy for cal-

ds{yy=0,, dx* dx"+e 2*(sif0 dp?+d6?), (1)

IIl. ENERGY-MOMENTUM TENSOR
AND AUXILIARY FIELDS

*Email address: majab@rudjer.ff.bg.ac.yu The Einstein-Hilbert action with minimally coupleil
"Email address: rvoja@rudier.ff.bg.ac.yu scalar fieldsf; (i=1,... N) in 4D is given by
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ference does not influence the equations of motion. The
o 167-rGf d*x/— ( R4 analysis of the boundary terms can be postponed until the
calculation of ADM mass and it was done carefully[ii6].
- 8_ > f d*x\—g@(V§,)2. ) The form of the action we will use is
T
After spherically symmetric reductiofil), from the action F:F0+T1:LJ d2x /—g[r2R+2(Vr)2+ 2]
(2) we get the two-dimensional classical actibg: 4G
K
1'*0 4GJ d2x+/— ( —ZLI)[R_I_Z(V(D)z_l_ZeZ(b] —E dZX\/—g[(V¢)2+2R(ﬁ— 12(V¢)(V)()
20 2 (Vr)?
Ge 2% (Vf)?2}, 3 —12)— 7~ —12Rx—12Rlogr |, 9
|

whereg andR denote the two-dimensional metric and cur-\here = NG#/24x. Instead of the dilator we introduced
vature. The Schwarzschild black hole is the classical vacuunfha new variablg =e~ 2. Varying the action(9) we obtain

s:olution of .the eqL_Jatiqns pf motion that follow from the ac- the equations of motiofd]:
tion (3). This solution is given by

Oy=R, (10)
ds’=—f(x})(dx®)2+ e )(dxl)z
(Vr)?
—logx*, Ox=—=" (12)
[ I l:
f;=0 ( except at the point-=0), (4) - el Or Z(Vllf)(Vf) , (Vr)2 R
where f(xY)=1-a/x!. The constant is the radius of the r=rR=—06x| 247+ z Tt

event horizona=2MG, andM is the mass of the Schwar- (12
zschild black hole.

When we add the one-loop quantum correction for theg JOr2—(vr)2—1]-2rv WV
matter fieldsf; to the classical actio(B), we get the nonlocal

a vry2 1

effective action. Its one-loop part is given f§—15] 2GT,,=x|g,, 2R+6¢,//( ) E(Vl//)z
— N 1 1
Flz—wf dzx\/—g(RER—lzRE(V(I))2+12R<I> , Or

& +6(V)(Vx)—12—|+V YV ¢

5 r "

which describes the quantum effects of the scalar matter —12V 4V x=2V , V y+12V ,V x
fields. Calculations can be simplified if the nonlocal correc-
tion partI’; is rewritten in the local form using two auxil- +12w (13)
liary fields  and y [1]: r

First, let us note that=x* (®=—logx') remains the

ry=- d2x\— g[2R(y—6x)+ (V)2

967 solution of the quantum-corrected equations of motit®)—
5 (13), so we see that the fieldhas the meaning of a radius.
—12V§)(Vx)—124(VP)“+12RP]. ®  we will use the following notation for the coordinates*
The additional fields/ and y satisfy the equations of motion rw)é W;nt to find the quantum correction of the geometry
Oy=R, (7) of a 2D black hole for the case when the black hole evapo-
rates. This means that the black hole is in the Unruh state.
Ox=(Vd)2. (8) Our calculation is perturbative in the ordersmfwhich is a

small parameter. All quantities will be calculated to the first
r, andpl are equivalent in the following sense. If we intro- Order in«, as the effective action is also calculated to this
duce Eqs(7),(8) into the local form of the actiofi;, we will ~ Precision only. The ansatz for the one-loop metric is

get the nonlocal actiofif; up to boundary termsThis dif- g ~ ~
ds?=—F(r,v)e®® dv?+2e*¢dv dr, (14)

we would like to thank D. Vassilevich for discussion about this and we solve the equations in Eddington-Finkelstein co-
point. ordinates:
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~ r
v=t+r,=t+r+alog 5—1). (15
The functionF is taken in the form
- xkm(r,v) a «m(r,v)
F(roo)=1(r)+ 7:1_7 ; (16)

Introducing the ansat#l4) into Egs.(12),(13), we get that
the equations for unknown functioma and ¢ in the first
order in k take the simple forms

T”
K(;F(P:GTi (17)
kdm=2Ge “°T, (18
kdym=—2G(FT;+e “*T37), (19

whereT,,, T,;, andT;; are the corresponding component
of the energy-momentum tensor defined by ELp). The
EMT is a quantity of the first order i, so in order to

determine it with the necessary precision we need the zeroth

order solution for metric and auxiliary fields.

PHYSICAL REVIEW B3 044020

In order to find the general solution of E(5) one has to
find two independent integralsa(v,r,¢)=const and
B(v,r,)=const of the system

__d9
f a(;)_&rf,

the general solution of Ed25) is then an arbitrary function
of @ and B. In our case, the independent integrals are

dv dr

5= (26)

v

— l C(h o
5 ﬁ—¢+logf—§f Gg(v)dv. (27

a=r,—

Therefore, the general solution fgr can be written in the
form

o) +C v), 28)

I'*—E

l//:—|0g(l—?

where r, =r+alog(r/a—1), while G(v)=3/G(v)dv and
SC(r*—?}/Z) are arbitrary functions. Similarly, the equation
for x,

Let us briefly review how the solutions were found previ-

ously, in[1]. In the Hartle-Hawking statés and y are time

independent, as they describe the black hole in thermal equi-
librium with the Hawking radiation. Therefore, the solutions

of Egs.(10),(11) are

r—a r—a
z/;zCr+CangT—logT, (20
, 2Dr’—2r+a o1
X = "rr—a 2Y)

The assumption of regularity of EMT on the classical hor

zonr=a in the free-falling frame gives the values of the

integration constant€€=1/a, D=1/2a.
We will now solve Egqs(10),(11) in the general case. As
mentioned, we need the zeroth order metric:

ds’=g,, dx* dx’= —fdv?+2dv dr. (22)
The other quantities entering Eq4.0),(11) are
B d?f (Vr)z_ f 03
T 7 @3
Introducing these values, the equation fipbecomes
2
Uy=0,2a ¢+t )=— 73 (24)

dr?’

and it reduces to the linear partial differential equation
df - -
23;4//+farz//=—a+g(v). (25

0440

f
Ox=d(2ax+ 1000 = 7, (29
reduces to the system
dv dr d
Sl . (30)
2t Ho)+(a—2r)2r?
The general solution foy is
1 r(r—a) ~ v
X:—Elog—ar'f"}'[(l))'i'p r*—i , (31)

where H(v) and D(r, —v/2) are arbitrary functions. The

. functions G(v), C(r, —v/2), H(v), and D(r, —v/2) de-
"scribe various guantum states of matter. To recover the static
Hartle-Hawking vacuum solution we have to put all func-
tions linear in their arguments in order to canctdrms. This
combined with the condition of regularity gives(r,
—v12)=(1/a)(r, —v/2), G(v)=(1/2a)v, H(v)=(1/4a)v,
andD(r, —v/2)=(1/2a)(r, —v/2).

We now pass to the case of the Unruh vacuum. It is most
naturally discussed in the null coordinaie® :

v=v,u=v—2r,=v—2|r+alog

.
5—1”. (32

The Unruh vacuum state is defined as the state that has
the EMT regular on the future event horizan—o, v
=const. The conditions of regularity in the free-falling frame
read[17]

(33

Components of the energy-momentum tensor intthe co-
ordinates can be found from the relations

20-3
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2 cause we took into account the contribution of $heodes of
Tuu, (34)  the radiation only.
To conclude our reasoning, let us observe that one arbi-
; trariness remains, and that is the dependence of the EMT on
To= _ZE(TW“L Tw), (35)  the constang. This arbitrariness can be naturally fixed by
choosing theg=0 solution of the conditior{42). Note also
that the value of the constahtdoes not enter the EMT, and
T5o=Tuut 2Ty, + Ty (36)  therefore we can fix it freely, e.gh=1/4. Finally we have
the solution fory, x in the zeroth order,

T4

Along with the condition of regularity of the EMT, we will

impose that at spatial infinity— oo the outgoing fluxT,, has r ro o
a constant nonvanishing value, while the ingoing fllix, y=5tlog; — o5 (44)
tends to 0. When we introduce the soluti@@8),(31) for the
components of the EMT we get r 1 r
X= E - Eloga (45)
a r—a
TUUZE A 37 we just mention briefly that it can be shown that fpr0
the value ofh does not influence the ADM mass.
(a —r)2 r—a We can now perform the Balbinot-Fabbri proced(izé

T,0= ST s Og—+ —— 9’2 12G"H'—2G"+12H") and compare the values of the EMT. If the vacuum state of
matter is defined in such a way that the ingoing and outgoing
modes have positive frequency with respect to the coordi-

~ 1977 Too7l—3a 2+4ar+12(a—r)%C+12(a—r)%G natesu,v, the EMT corresponds to the Boulware state:
A 1
+(12ar?—24r3)G'], (39 (up|Ty,luv)y=— o7 Podup+ 33,0 3@ =39, 3 P),
(a-r)?> r-a (46)

—_ 7 12 __ ’ " /"
Tw= g 100+ 75— (c —120'D' —2C"+12D") ) . 2
<U,U|TUU|U,U>:_E(O"Upo')vp_o'?vp)
——[—3a%+4ar+12a—r)%C+12a—r)G

1927t (9.0)2 1 av( ® cp))
—| p(3,P)%+ = —(d,P9
+(6ar>—12r3)C’] (39) 2 24, u
(primes denote derivatives of the functions with respect to — %[_g(avp)(ﬁuq)H,ggq)], (47)

their arguments
There is no information about the unknown functions con-
tained inT, . Further, it can be seen tha}, is regular on (u,o|Tyuv)=—

1
5 (dupdup—ap)
the horizon. The condition that,,—0 asr—co means that, 127 W Y

in this limit, 1 19
+ 0| p(3, @)%+ 5 —(0 c1>a_c1>))
g/2_12g/H/_2g//+127_{//:OI (40) 20 ploy 2 au +
The solution of the last equation, which is in accordance with 1 2
' -——[- +
the radiation law, is given by linear functiotsH: 477[ 2(0up) (04 @)+ 3, ®], (48
~ ~ ~ ~ 1 H
=90, H({©)=ho, 41 wherep=3log(1l—a/r) is a conformal factor.
Glv)=gv (w)=hv “1 The conformal transformation to the other conformal state
with [u, v) defined by the other set of null coordinates u(u),
g(g—12n)=0, 42) v=0(v), gives
i.e., eitherg=0 org=12h. (U Tulu0)=Cu|Tu|u0), (49)
Similarly, the condition thafl,,— const asr—o gives 1 [Gg" 1G'2
that the function€ andD are linear in their arguments, 0| T,,[u,0)=(u,p|T,,|uv)+ =— |l 5= )
G

C(x)=cx, D(x)=dx. (43

Nonsingularity ofT,,/f? on the horizon gives us the values
of the constantsc=1/a, d=1/2a. Introducingc andd in Eq.
(39) we see that the luminosity has the Hartle-Hawking value
—5/1927a2. The 2D black hole antievaporates. This is be-

1 ( 5
+E (9,P)° log(FG)

G/
+Ef du 9,® aucb), (50)
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. . E" 1 E'2 time dependence in the Unruh vacuum state. The fact that
(U,u|Tylu,w)y=(u,v|Tyu,v)y+ | F 2z this dependence is linear is in accordance with the expected
™ F property that the black hole in the Unruh vacuum radiates at

a constant rated M(t)/dt=const. The meaning of the mass

+—1 (3,)? log(FG) M (t) will be discussed in more detail after we solve the back
4m reaction equations for the metric and identify the ADM mass
E’ of the solution.
+FJ dv(autb)(aud))), (51
I1l. BACK REACTION AND CORRECTED GEOMETRY
whereF (u) =du/du, G(v)=dv/dv. The equations that determine the one-loop correction of

The Unruh vacuum state is the staté,v), U being the  the metric can now easily be integrated. The solution is
Kruskal coordinatd) = —2ae“/?3, Using Eqs.(50) and (51)

after simple calculation, we get the value of the EMT in the 5 a—2v 3 r 5 r
Unruh state (1/24= «/G): ¢= 7 T3 gz T 72109 7~ 552109 7 +Ca, (56)
K a\ a
Tuv_é st (52 =l . a+6v N 1la—6v b5v 32r—a r
M=2a2" 2ar a? a2 >z 993
_k[3a*-4ar 5 3(a 1 5 "
wog|l  er? 8aZ 2al2r? r +551097+C. (57)
3 a\?(v r r _ _
T i E a—loga , (53)  We see that the functions(v,r) and ¢(v,r) depend lin-
early onv, i.e., on time. There are two independent integra-
3a2—dar 3 a\2 ; , tion constantC; andC,. The expression for the ADM en-
Twzﬁ . S| 1= L———Iog— ergy was found in[16]. We would like to mention the
G[ @r 2r r/\2a a a interesting papeirl9] where the authors calculated the ADM

(59 mass for a static black hole. The value of the energy is given
. bx the value of the boundary term that has to be added to the
&Hnonical Hamiltonian in order to have a well defined theory.

[Egs. (38)—(39)] with fixed integration functions. It is given by

Let us give one final comment on the values of the EMT
(52),(53). The values obtained havedependence, i.et,de- A
pendence. This dependence does not show up in the
asymptotic behavior of the EMT and it was considered inWhere
[18] as an unwished property of the energy-momentum ten-
sor. In fact, in[18] the auxiliary fields were constrained in

such a way that the time dependencea/of would not pro-  4GA = /_—g(4Br’5r—2K1,0’5¢+ 12xip’ Ox+12xx' )
duce any time dependence in the EMT. We think that a con- 911

:_5Hb1 (58)

dition like this is too stringent and unnecessary. It holds,

though, in the “minimal coupling” case, i.e., in the case +i§(_—g)(Arr’—K¢"+6KX’)
when the effective action is given by the Polyakov-Liouville v—g 911
term only, as can easily be seen. That is, it is kn¢@jrthat
in this case the change of the conformal frame produces in 2 [—g)’
the EMT only the additional term proportional to the + NErs 91 (Ardr =k dy+6xdx)
Schwarzian derivative of the transformation of coordinates:
(= 1 F12 +4G’7Tll( 25901_ ?5911)
T T T TN — T JE 11
(U,0|Tyluv)y=(u,v|T,,|luv)+ 24\ F 22/

(55 +4G 3—01( T O+ S+ 7, Sx). (59
11

For exponential mappings, which are typical for the transfor-

mation to Kruskal coordinates, the Schwarzian derivative is5 denotes the variation in the chosen class of field configu-
constant. This means that, if we start with the time-rations, described in more detail j6]. A andB are A=1
independent EMT for, e.g., the Hartle-Hawking vacuum, we+ 6«/r2 andB=1+ 6« /r?. Of course, in order to identify
will get the time-independent EMT for all other conformal the real value of the energy, we have to find it in a coordinate
vacuums. But this is a special property of the Polyakov-system that is asymptotically Minkowskian. As we have
Liouville effective action. In the SSG case the structure ofsolved the equations fam and ¢, we can now write the
the additional terms is more complicated and this causes theorrected values of the components of the metric:

044020-5
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a a The coordinate transformation induces the following change

Goo= —|1— -+ —+2«| 1~ —) ®|, in the boundary term:
~ Jda g g da

m AGA=4GA - 2kr|—6| ——|+2| ——]| 8| =/ |.

Y=~k te| Jt O11 gy \ dt
(69)
r mr . . .
Ju=——— K — ’ (60) Introduc[]g the solutions obtained fgr, y, g we get for the
r-a (r-a value of A

so we see that, unlike the static case, the metric is not diag-
onal in the first order inx. A4GA=—-26%a+«k

In order to find a coordinate systemr in which the
asymptotic values of the metric are

21 11L  Cu(a)

432 2a® L-a

I L2 S 70
. ? 0og |_+¥t a. (70
Joo— —1+0[ |, gu—0 61
Joo L Jor (61 The corresponding value of energy is
(it is not really necessary to assume— 1 also, as we are ~ ~ k (21 11L
interested only in the value of the eneygwe introduce the Ho==12G 4GA=M+ 4G\ 4a  4a?
transformation of coordinates
5 L 5 C,
f=t+ka(t,r), T=r. (62) _E'OQTJFEHJL—ada ' ()
Under this transformation, the metric transforms as The first term in Eq(71) is the classical mass of the black
p hole, while the second one is the quantum correction of the
Joo= goo( 1_2,(_“), mass. We can take th&,=0. One immediately notes the
ot time dependence of the ADM mass, which is in agreement
with the radiation law of the black hole, namely,
~ Ja
Y01= 901~ K&—rgoo’ df, . - 5 )
B dt wlr 1= 1927a?" (72
911= 911~ (63

_ . _ _ The increase of the mass corresponds to the fact that the
In accordance with the asymptotic relatid6d) the function  outgoing flux is negative at large distances, i.e., that the

a should be chosen in the form black hole antievaporates. It is important to mention that the
5 mass increases only if we consider large but finite volumes
a(t,r)=Fr+Fot+Fart+F,te, (64) L. If we take the limitL—, thet term in the expression for

energy(71) can be neglected in comparison with the larger

where terms proportional to log andL, so we have the conserva-
tion of the energy of the whole systerd,=0. Notice that
5 9 5 L 5 ) -
F.=—s+——=——>log———1log|——1 the “mass function”M(r,v)=M —xkm(r,v)/2 satisfies the
17422 aL 222 %97 2aL Y\a :
conditionM (r,v) = —5/192ra?.
LC, LC,
et T (65
L-a (L-a) IV. APPARENT HORIZON AND ENTROPY
15 45 5 L 5 L The apparent horizon is the boundary of the trapped sur-
= 4+ " _lod—— — log — faces. In 2D dilaton gravity it is defined §20]
=822t gal 222'°97 gaL Y2
C, g"” d,r d,r=0. (73
+Ci+ ——, (66) _ _
2(L-a) If we define the one-loop corrected null coordinates by
5 — _Qa2p A
Fa=— 43_2I’ (67) ds? e’ du do, (74

the condition(73) is reduced taj;r =0 andd,r =0. We will

F = S _ S (69) takev=v=t+r, . The other null coordinate can be found
4732a%L—a) 16a°L° easily. The first step is to rewrite the met(itd) in the form

044020-6
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2k — 2 —K - ™ 2
ds?=—Fe?<¢ dv—=e " dr|dv S=glr*—x(2y—12¢-12 logr)]|an
P o e e dr| o, S (4r 8 log—+12 log-+ =5
i pdo——e r|dv, (75 =Gl 4 097 097+ v N
h is the i ion factor. Theref h f | ™ 15 a v
Wi ergM is the _mt_egratlon actor erefore, the conforma A PR L 81)
coordinateu satisfies G 2 | 2a

5 Now we will show that the entropy increases along the line
du= “ dov— ?'U‘ef < dr. (76) of apparent horizon. To this end we will find the equation for

the u coordinate. The integration factor, which we intro-

_ duced in Eq(76), is of the form
We will not solve the previous equation far but just use it

to find the position of the apparent horizon. From Ef) u=1+ KR(r)+KV(v_), (82
we get _
whereR(r) andV(v) are unknown functions. If we intro-

1 1 ) duce the ansat82) in the condition of integrability of Eq.
dr= —e"“’F( dv— —du). (77 (76),
2 M
o N I J(m _
The last equation, if we usé;r=0 and d,r=0, implies ol ="2=ge ]| (83
e“?F =0 on the horizon. This means that the equation of the v v r
apparent horizon is we obtain the following expressions:
a «km Ne oy
(1+ k)| 1= =+ =] =0, (78) V(v)=av, (84
(1= 2 1 4aa+5 | o5
The position of the apparent horizon is found perturbatively (r)=—2ar- 2a(r—a) - 2a? og(r—a), (89
by takingrp,y=a+ «r,, wherer is the first-order correc- , ) . .
tion. From Eq.(78) we get wherea is the integration constant. On the other hand, if we
start from
B 23 5 a 1 ou o
fan=a= K| ggt o 00T T gt )- (19 — =L R(N)+ RV(D), (86)
1%
r
The intersection point between the line of singularity and _—
the apparent horizon is the end point of the Hawking radia- 5_“ _ 2_'“ ke
: S e ", (87)
tion. It is given by ar |~ F
_ _ 23 5 a| 4a° we get
= U= A g 5a 9T T e U=+ kRN + — kan?+G (88)
(80) u=v+kvR(r) 5 Kav (r).

_ ) . Therefore the functioi3(r) is determined by the equation
As we can take the coordinate as the time, we see that the

(antjevaporation of the black hole is very long but finite. dG _2r 1
In order to calculate the entropy of the quantum-corrected dr  r—a 1+ x| —2ar- 2a(r—a)
solution, we use the Wald technig[&L]. Note that the coni-
cal singularity method is defined for static configurations 5+40133|
only and therefore cannot be used here. In Rg8-24 it T a2 log(r-a)

was shown that for Lagrangians of the fornh
=L(fm. V1.9, Rupe) (fn are the matter fieldshe en-
tropy is given by

5 3 3

r 5 r
— k| =+ -5+ 5 log=— =5 log = +C
ar " ar2 2093725210937

L k [ br N 1+11a 32r—aI r
S=-2me,pen——| r—a\2a?  2r ' arZ ° 12 %93
d aBxdly
> | r 89
evaluated on the horizon. In our case we find + 2a 9 [k (89)
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which can easily be integrated. The derivative of the entropyesponding EMT coincides with the EMT calculated by other
along the apparent horizon is determined by methods. The position of the apparent horizon was found and
the evaporation of the black hole discussed. The obtained
duration of the evaporation is larg@roportional to 1k).
Unfortunately, at the intersecting point of the line of singu-
larity and apparent horizon the singularity becomes naked,
wheret? is the tangent vector of the apparent horizon. Thewhich prevents us from predicting the future evolution of the
expression(79) for the apparent horizon and Eq84)—(89) black hole. The discussion of the static remnant of the black

9 dusy 9
— AT s, (90)
) dv du

t2 g,S=

give hole is an interesting question and will be the subject of
further investigation. The entropy of the black hole—

{8 9,5= ﬂ>0_ (91) radiation system was obtained and shown to increase during

2aG the evolution. The quantum corrections of the energy of the

h . | he Ii f th h system were calculated using the ADM procedure. We found
So the entropy increases along the line of the apparent horjgq; the flux of radiation through the large spherical surface

zor?.f'_l'rgs_ Shr?WfS that theksic?]nd law of tgelrmodynamics I3 radiusL is in accordance with the radiation law. In the

satisfied in the framework of the SSG model. limit L—oo though, the energy of the whole system is con-
rv ne would ex .

V. CONCLUSIONS served, as one would expect
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