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Quantum corrections for an „anti…evaporating black hole
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In this paper we analyze the quantum correction for a Schwarzschild black hole in the Unruh state in the
framework of the spherically symmetric gravity~SSG! model. SSG is a two-dimensional dilaton model that is
obtained by spherically symmetric reduction from four-dimensional theory. We find the one-loop geometry of
the ~anti!evaporating black hole and corrections for mass, entropy, and apparent horizon.
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I. INTRODUCTION

The two-dimensional spherically symmetric gravi
~SSG! model is interesting for many reasons. This mode
obtained from a four-dimensional~4D! Einstein-Hilbert ac-
tion coupled minimally to scalar fields by spherically sym
metric reduction of metric and scalar fields. The reduction
done in the spirit of string theory, via the introduction of
dilaton fieldF, assuming that the line element is of the for

ds(4)
2 5gmn dxm dxn1e22F~sin2u df21du2!, ~1!

wherem,n50,1. The action for this model is given by Eq
~3! below, and it has a Schwarzschild black hole as a st
vacuum solution.

One reason that makes this model interesting is that
quantum effective action for scalar fields can be calculate
one-loop order. This gives the possibility of obtaining t
back reaction effects of quantized matter to gravity anal
cally ~in the case of a black hole solution this is the ba
reaction of the Hawking radiation!. These analytic 2D calcu
lations can then be compared with the numerical 4D e
mates, as the effective action cannot be obtained analytic
in 4D. This analysis was done in great detail for the Hart
Hawking vacuum state of matter@1–3#. Summarizing, one
can say that the main drawback of the SSG model is th
gives negative luminosity of the black hole. It is argued
the literature@4# that this result is a consequence of the fa
that only the radial modes of the scalar field are counted
the expectation value of the energy density while the ang
modes are omitted. Formally, the negative luminosity is no
surprising result as the scalar field and the dilaton
strongly coupled at spatial infinity, as can be seen from
action ~3!. There are also some attempts to improve the
grangian of the model@5–8#.

2D dilaton gravity is also interesting by itself from th
heuristic point of view. Dilaton couplings are present in
theories that are obtained by dimensional reduction fr
string theories. Furthermore, the one-loop effective acti
are nonlocal. One possibility to deal with such actions
their conversion to the local form by introduction of aux
iary fields. The local form of action is rather handy for ca
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culations ~e.g., for equations of motion or the energ
momentum tensor!. On the other hand, the fact that auxilia
fields describe nonlocal effects implies that they are dyna
cal, and it is uncleara priori how to fix the arbitrary con-
stants~or functions! in the solutions. It is also not known
whether all solutions have physical meaning. In the case
the SSG model the properties of auxiliary fields are rat
well established for the Hartle-Hawking vacuum state. In
present paper we extend the analysis to the Unruh vacu
We think that it is of importance to understand the ways
describing nonlocal effects by auxiliary fields. SSG is impo
tant as it provides us with an example of effective action t
is tractable, but, as we shall see, in some respects more c
plicated than the~usually discussed! Polyakov-Liouville ac-
tion.

A complementary way of discussing different vacuu
states was developed in the very instructive paper@2# by
Balbinot and Fabbri. Their analysis is based on the con
mal properties of fields under change of the conform
vacuum state. In this method, the initial step is to identify t
energy-momentum tensor~EMT! of one vacuum state~e.g.,
Boulware!. Then one can find the expectation values of t
EMT in other states from the conformal transformation pro
erties of fields.

The organization of the paper is as follows. In Sec. II w
solve the equations of motion for the auxiliary fields in t
Unruh vacuum and obtain the value of the energ
momentum tensor. In order to fix the arbitrary functions
the solution we use the conditions of regularity of the EM
on the future horizon. For comparison, the energ
momentum tensor is found by the Balbinot-Fabbri proc
dure. The differences between the Polyakov-Liouville act
and the SSG action are also discussed. In Sec. III we find
influence of the Hawking radiation on the geometry in on
loop order. In order to fix the integration constants in t
metric, we impose the condition that the emitted flux of r
diation is constant. We calculate the Arnowitt-Deser-Misn
~ADM ! mass of the black hole. In Sec. IV we obtain th
position of the apparent horizon and entropy. Furthermo
we analyze the behavior of the entropy along the line of
apparent horizon and find that the second law of thermo
namics is satisfied.

II. ENERGY-MOMENTUM TENSOR
AND AUXILIARY FIELDS

The Einstein-Hilbert action with minimally coupledN
scalar fieldsf i ( i 51, . . . ,N) in 4D is given by
©2001 The American Physical Society20-1
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G0
(4)5

1

16pGE d4xA2g(4)R(4)

2
1

8p (
i
E d4xA2g(4)~¹ f i !

2. ~2!

After spherically symmetric reduction~1!, from the action
~2! we get the two-dimensional classical actionG0:

G05
1

4GE d2xA2gH e22F@R12~¹F!212e2F#

22Ge22F(
i

~¹ f i !
2J , ~3!

whereg and R denote the two-dimensional metric and cu
vature. The Schwarzschild black hole is the classical vacu
solution of the equations of motion that follow from the a
tion ~3!. This solution is given by

ds252 f ~x1!~dx0!21
1

f ~x1!
~dx1!2,

F52 logx1,

f i50 ~ except at the pointx150!, ~4!

where f (x1)512a/x1. The constanta is the radius of the
event horizon,a52MG, andM is the mass of the Schwar
zschild black hole.

When we add the one-loop quantum correction for
matter fieldsf i to the classical action~3!, we get the nonloca
effective action. Its one-loop part is given by@9–15#

Ḡ152
N

96pE d2xA2gS R
1

h
R212R

1

h
~¹F!2112RF D ,

~5!

which describes the quantum effects of the scalar ma
fields. Calculations can be simplified if the nonlocal corre
tion part Ḡ1 is rewritten in the local form using two auxil
liary fields c andx @1#:

G152
N

96pE d2xA2g@2R~c26x!1~¹c!2

212~¹c!~¹x!212c~¹F!2112RF#. ~6!

The additional fieldsc andx satisfy the equations of motio

hc5R, ~7!

hx5~¹F!2. ~8!

G1 andḠ1 are equivalent in the following sense. If we intro
duce Eqs.~7!,~8! into the local form of the actionG1, we will
get the nonlocal actionḠ1 up to boundary terms.1 This dif-

1We would like to thank D. Vassilevich for discussion about th
point.
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ference does not influence the equations of motion. T
analysis of the boundary terms can be postponed until
calculation of ADM mass and it was done carefully in@16#.

The form of the action we will use is

G5G01G15
1

4GE d2xA2g@r 2R12~¹r !212#

2
k

4GE d2xA2gF ~¹c!212Rc212~¹c!~¹x!

212c
~¹r !2

r 2 212Rx212R log r G , ~9!

wherek5NG\/24p. Instead of the dilatonF we introduced
the new variabler 5e2F. Varying the action~9! we obtain
the equations of motion@1#:

hc5R, ~10!

hx5
~¹r !2

r 2 , ~11!

2hr 2rR526kS 2c
hr

r 2 12
~¹c!~¹r !

r 2 22c
~¹r !2

r 3 1
R

r D ,

~12!

gmn@hr 22~¹r !221#22r¹m¹nr

52GTmn5kFgmnS 2R16c
~¹r !2

r 2 2
1

2
~¹c!2

16~¹c!~¹x!212
hr

r D1¹mc¹nc

212¹mc¹nx22¹m¹nc112¹m¹nx

112
¹m¹nr

r
212~11c!

¹mr¹nr

r 2 G . ~13!

First, let us note thatr 5x1 (F52 logx1) remains the
solution of the quantum-corrected equations of motion~10!–
~13!, so we see that the fieldr has the meaning of a radius
We will use the following notation for the coordinates:x1

5r , x05t.
We want to find the quantum correction of the geome

of a 2D black hole for the case when the black hole eva
rates. This means that the black hole is in the Unruh st
Our calculation is perturbative in the orders ofk, which is a
small parameter. All quantities will be calculated to the fi
order in k, as the effective action is also calculated to th
precision only. The ansatz for the one-loop metric is

ds252F~r ,ṽ !e2kw dṽ212ekwdṽ dr, ~14!

and we solve the equations in Eddington-Finkelsteinr ,ṽ co-
ordinates:
0-2
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ṽ5t1r * 5t1r 1a logS r

a
21D . ~15!

The functionF is taken in the form

F~r ,ṽ !5 f ~r !1
km~r ,ṽ !

r
512

a

r
1

km~r ,ṽ !

r
. ~16!

Introducing the ansatz~14! into Eqs.~12!,~13!, we get that
the equations for unknown functionsm and w in the first
order ink take the simple forms

k] rw5G
Trr

r
, ~17!

k] rm52Ge2kwTr ṽ , ~18!

k] ṽm522G~FTr ṽ1e2kwTṽ ṽ!, ~19!

whereTrr , Tr ṽ , andTṽ ṽ are the corresponding componen
of the energy-momentum tensor defined by Eq.~13!. The
EMT is a quantity of the first order ink, so in order to
determine it with the necessary precision we need the ze
order solution for metric and auxiliary fields.

Let us briefly review how the solutions were found pre
ously, in @1#. In the Hartle-Hawking statec andx are time
independent, as they describe the black hole in thermal e
librium with the Hawking radiation. Therefore, the solutio
of Eqs.~10!,~11! are

c5Cr1Ca log
r 2a

a
2 log

r 2a

r
, ~20!

x85
2Dr 222r 1a

2r ~r 2a!
. ~21!

The assumption of regularity of EMT on the classical ho
zon r 5a in the free-falling frame gives the values of th
integration constants:C51/a, D51/2a.

We will now solve Eqs.~10!,~11! in the general case. A
mentioned, we need the zeroth order metric:

ds25gmn dxm dxn52 f dṽ212dṽ dr. ~22!

The other quantities entering Eqs.~10!,~11! are

R52
d2f

dr2 ,
~¹r !2

r 2 5
f

r 2 . ~23!

Introducing these values, the equation forc becomes

hc5] r~2] ṽc1 f ] rc!52
d2f

dr2 , ~24!

and it reduces to the linear partial differential equation

2] ṽc1 f ] rc52
d f

dr
1G̃~ ṽ !. ~25!
04402
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In order to find the general solution of Eq.~25! one has to
find two independent integralsa( ṽ,r ,c)5const and
b( ṽ,r ,c)5const of the system

dṽ
2

5
dr

f
5

dc

G̃~ ṽ !2] r f
; ~26!

the general solution of Eq.~25! is then an arbitrary function
of a andb. In our case, the independent integrals are

a5r * 2
ṽ
2

, b5c1 log f 2
1

2E G̃~ ṽ !dṽ. ~27!

Therefore, the general solution forc can be written in the
form

c52 logS 12
a

r D1G~ ṽ !1CS r * 2
ṽ
2
D , ~28!

where r * 5r 1a log(r/a21), while G( ṽ)5 1
2 *G̃( ṽ)dṽ and

C(r * 2 ṽ/2) are arbitrary functions. Similarly, the equatio
for x,

hx5] r~2] ṽx1 f ] rx!5
f

r 2 , ~29!

reduces to the system

dṽ
2

5
dr

f
5

dx

H̃~ ṽ !1~a22r !/2r 2
. ~30!

The general solution forx is

x52
1

2
log

r ~r 2a!

a2 1H~ ṽ !1DS r * 2
ṽ
2
D , ~31!

where H( ṽ) and D(r * 2 ṽ/2) are arbitrary functions. The
functions G( ṽ), C(r * 2 ṽ/2), H( ṽ), and D(r * 2 ṽ/2) de-
scribe various quantum states of matter. To recover the s
Hartle-Hawking vacuum solution we have to put all fun
tions linear in their arguments in order to cancelt terms. This
combined with the condition of regularity givesC(r *
2 ṽ/2)5(1/a)(r * 2 ṽ/2), G( ṽ)5(1/2a) ṽ, H( ṽ)5(1/4a) ṽ,
andD(r * 2 ṽ/2)5(1/2a)(r * 2 ṽ/2).

We now pass to the case of the Unruh vacuum. It is m
naturally discussed in the null coordinatesu,v:

v5 ṽ,u5 ṽ22r * 5 ṽ22F r 1a logS r

a
21D G . ~32!

The Unruh vacuum state is defined as the state that
the EMT regular on the future event horizonu→`, v
5const. The conditions of regularity in the free-falling fram
read@17#

Tvv,`,
Tuv

f
,`,

Tuu

f 2
,`. ~33!

Components of the energy-momentum tensor in theu,v co-
ordinates can be found from the relations
0-3
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Trr 54S r

r 2aD 2

Tuu , ~34!

Tr ṽ522
r

r 2a
~Tuu1Tuv!, ~35!

Tṽ ṽ5Tuu12Tuv1Tvv . ~36!

Along with the condition of regularity of the EMT, we wil
impose that at spatial infinityr→` the outgoing fluxTuu has
a constant nonvanishing value, while the ingoing fluxTvv
tends to 0. When we introduce the solutions~28!,~31! for the
components of the EMT we get

Tuv5
a

24p

r 2a

r 4 , ~37!

Tvv5
~a2r !2

16pr 4 log
r 2a

r
1

1

48p
~G82212G8H822G9112H9!

2
1

192pr 4@23a214ar112~a2r !2C112~a2r !2G

1~12ar2224r 3!G8#, ~38!

Tuu5
~a2r !2

16pr 4 log
r 2a

r
1

1

48p
~C82212C8D822C9112D9!

2
1

192pr 4 @23a214ar112~a2r !2C112~a2r !2G

1~6ar2212r 3!C8# ~39!

~primes denote derivatives of the functions with respect
their arguments!.

There is no information about the unknown functions co
tained inTuv . Further, it can be seen thatTvv is regular on
the horizon. The condition thatTvv→0 asr→` means that,
in this limit,

G82212G8H822G9112H950. ~40!

The solution of the last equation, which is in accordance w
the radiation law, is given by linear functionsG,H:

G~ ṽ !5g ṽ, H~ ṽ !5hṽ, ~41!

with

g~g212h!50, ~42!

i.e., eitherg50 or g512h.
Similarly, the condition thatTuu→const asr→` gives

that the functionsC andD are linear in their arguments,

C~x!5cx, D~x!5dx. ~43!

Nonsingularity ofTuu / f 2 on the horizon gives us the value
of the constants:c51/a, d51/2a. Introducingc andd in Eq.
~39! we see that the luminosity has the Hartle-Hawking va
25/192pa2. The 2D black hole antievaporates. This is b
04402
o
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h
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cause we took into account the contribution of thes modes of
the radiation only.

To conclude our reasoning, let us observe that one a
trariness remains, and that is the dependence of the EMT
the constantg. This arbitrariness can be naturally fixed b
choosing theg50 solution of the condition~42!. Note also
that the value of the constanth does not enter the EMT, an
therefore we can fix it freely, e.g.,h51/4. Finally we have
the solution forc,x in the zeroth order,

c5
r

a
1 log

r

a
2

v
2a

, ~44!

x5
r

2a
2

1

2
log

r

a
. ~45!

We just mention briefly that it can be shown that forg50
the value ofh does not influence the ADM mass.

We can now perform the Balbinot-Fabbri procedure@2#
and compare the values of the EMT. If the vacuum state
matter is defined in such a way that the ingoing and outgo
modes have positive frequency with respect to the coo
natesu,v, the EMT corresponds to the Boulware state:

^u,vuT̂uvuu,v&52
1

12p
~]v]ur13]vF ]uF23]v ]uF!,

~46!

^u,vuT̂vvuu,v&52
1

12p
~]vr]vr2]v

2r!

1
1

2pS r~]vF!21
1

2

]v

]u
~]vF]uF! D

2
1

4p
@22~]vr!~]vF!1]v

2F#, ~47!

^u,vuT̂uuuu,v&52
1

12p
~]ur]ur2]u

2r!

1
1

2pS r~]uF!21
1

2

]u

]v
~]1F]2F! D

2
1

4p
@22~]ur!~]uF!1]u

2F#, ~48!

wherer5 1
2 log(12a/r) is a conformal factor.

The conformal transformation to the other conformal st
uũ,ṽ& defined by the other set of null coordinatesũ5ũ(u),

ṽ5 ṽ(v), gives

^ũ,ṽuT̂uvuũ,ṽ&5^u,vuT̂uvuu,v&, ~49!

^ũ,ṽuT̂vvuũ,ṽ&5^u,vuT̂vvuu,v&1
1

24p S G9

G
2

1

2

G82

G2 D
1

1

4p S ~]vF!2 log~FG!

1
G8

G E du ]vF ]uF D , ~50!
0-4
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^ũ,ṽuT̂uuuũ,ṽ&5^u,vuT̂uuuu,v&1
1

24p S F9

F
2

1

2

F82

F2 D
1

1

4p S ~]uF!2 log~FG!

1
F8

F E dv~]uF!~]uF! D , ~51!

whereF(u)5du/dũ, G(v)5dv/dṽ.
The Unruh vacuum state is the stateuU,v&, U being the

Kruskal coordinateU522aeu/2a. Using Eqs.~50! and~51!
after simple calculation, we get the value of the EMT in t
Unruh state (1/24p5k/G):

Tuv5
k

G S 12
a

r D a

r 3 , ~52!

Tuu5
k

G F3a224ar

8r 4 2
5

8a2 2
3

2a S a

2r 22
1

r D
1

3

2r 2S 12
a

r D 2S v
2a

2
r

a
2 log

r

aD G , ~53!

Tvv5
k

G F3a224ar

8r 4 1
3

2r 2 S 12
a

r D 2S v
2a

2
r

a
2 log

r

aD G .
~54!

These expressions are the same as those previously g
@Eqs.~38!–~39!# with fixed integration functions.

Let us give one final comment on the values of the EM
~52!,~53!. The values obtained havev dependence, i.e.,t de-
pendence. This dependence does not show up in
asymptotic behavior of the EMT and it was considered
@18# as an unwished property of the energy-momentum t
sor. In fact, in@18# the auxiliary fields were constrained i
such a way that the time dependence ofc,x would not pro-
duce any time dependence in the EMT. We think that a c
dition like this is too stringent and unnecessary. It hol
though, in the ‘‘minimal coupling’’ case, i.e., in the cas
when the effective action is given by the Polyakov-Liouvi
term only, as can easily be seen. That is, it is known@3# that
in this case the change of the conformal frame produce
the EMT only the additional term proportional to th
Schwarzian derivative of the transformation of coordinate

^ũ,ṽuT̂vvuũ,ṽ&5^u,vuT̂vvuu,v&1
1

24p S F9

F
2

1

2

F82

F2 D .

~55!

For exponential mappings, which are typical for the transf
mation to Kruskal coordinates, the Schwarzian derivative
constant. This means that, if we start with the tim
independent EMT for, e.g., the Hartle-Hawking vacuum,
will get the time-independent EMT for all other conform
vacuums. But this is a special property of the Polyako
Liouville effective action. In the SSG case the structure
the additional terms is more complicated and this causes
04402
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time dependence in the Unruh vacuum state. The fact
this dependence is linear is in accordance with the expe
property that the black hole in the Unruh vacuum radiates
a constant rate,dM(t)/dt5const. The meaning of the mas
M (t) will be discussed in more detail after we solve the ba
reaction equations for the metric and identify the ADM ma
of the solution.

III. BACK REACTION AND CORRECTED GEOMETRY

The equations that determine the one-loop correction
the metric can now easily be integrated. The solution is

w5
5

ar
13

a22v
4ar2 1

3

r 2 log
r

a
2

5

2a2 log
r

l
1C1 , ~56!

m5
5r

2a2 1
a16v
2ar

1
11a26v

4r 2 2
5v
4a223

2r 2a

r 2 log
r

a

1
5

2a
log

r

l
1C2 . ~57!

We see that the functionsm(v,r ) and w(v,r ) depend lin-
early onv, i.e., on time. There are two independent integ
tion constantsC1 andC2. The expression for the ADM en
ergy was found in@16#. We would like to mention the
interesting paper@19# where the authors calculated the ADM
mass for a static black hole. The value of the energy is gi
by the value of the boundary term that has to be added to
canonical Hamiltonian in order to have a well defined theo
It is given by

D52dHb , ~58!

where

4GD5A2g

g11
~4Br8dr 22kc8dc112kc8dx112kx8dc!

1
2

A2g
dS 2g

g11
D ~Arr 82kc816kx8!

1
2

A2g
S 2g

g11
D 8

~Ardr 2kdc16kdx!

14Gp11S 2dg012
g01

g11
dg11D

14G
g01

g11
~p rdr 1pcdc1pxdx!. ~59!

d denotes the variation in the chosen class of field confi
rations, described in more detail in@16#. A andB areA51
16k/r 2 andB5116kc/r 2. Of course, in order to identify
the real value of the energy, we have to find it in a coordin
system that is asymptotically Minkowskian. As we ha
solved the equations form and w, we can now write the
corrected values of the components of the metric:
0-5
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g0052F12
a

r
1

km

r
12kS 12

a

r Dw G ,
g0152kS m

r 2a
1w D ,

g115
r

r 2a
2k

mr

~r 2a!2 , ~60!

so we see that, unlike the static case, the metric is not d
onal in the first order ink.

In order to find a coordinate systemt̃ , r̃ in which the
asymptotic values of the metric are

g̃00→211OS 1

L D , g̃01→0 ~61!

~it is not really necessary to assumeg̃11→1 also, as we are
interested only in the value of the energy!, we introduce the
transformation of coordinates

t̃ 5t1ka~ t,r !, r̃ 5r . ~62!

Under this transformation, the metric transforms as

g̃005g00S 122k
]a

]t D ,

g̃015g012k
]a

]r
g00,

g̃115g11. ~63!

In accordance with the asymptotic relations~61! the function
a should be chosen in the form

a~ t,r !5F1r 1F2t1F3rt 1F4t2, ~64!

where

F15
5

4a2 1
9

aL
2

5

2a2 log
L

l
2

5

4aL
log S L

a
21D

1
LC1

L2a
1

LC2

~L2a!2 , ~65!

F25
15

8a2 1
45

8aL
2

5

2a2 log
L

l
2

5

8aL
log

L

a

1C11
C2

2~L2a!
, ~66!

F352
5

4a2L
, ~67!

F45
5

32a2~L2a!
2

5

16a2L
. ~68!
04402
g-

The coordinate transformation induces the following chan
in the boundary term:

4GD̃54GD22kr F]a

]t
dS 2

g

g11
D12S 2

g

g11
D dS ]a

]t D G .
~69!

Introducing the solutions obtained forc, x, g we get for the
value of D̃

4GD̃522da1kS 21

4a2 2
11L

2a3 2
C2~a!

L2a

2
5

a2 log
L

l
1

5

a3 t D da. ~70!

The corresponding value of energy is

H̃b52
1

4GE 4GD̃5M1
k

4G S 21

4a
2

11L

4a2

2
5

a
log

L

l
1

5

2a2 t1E C2

L2a
daD . ~71!

The first term in Eq.~71! is the classical mass of the blac
hole, while the second one is the quantum correction of
mass. We can take thatC250. One immediately notes th
time dependence of the ADM mass, which is in agreem
with the radiation law of the black hole, namely,

dH̃b

dt
5Tuuur→L52

5

192pa2 . ~72!

The increase of the mass corresponds to the fact that
outgoing flux is negative at large distances, i.e., that
black hole antievaporates. It is important to mention that
mass increases only if we consider large but finite volum
L. If we take the limitL→`, the t term in the expression fo
energy~71! can be neglected in comparison with the larg
terms proportional to logL andL, so we have the conserva
tion of the energy of the whole system,H8 b50. Notice that
the ‘‘mass function’’M (r ,v)5M2km(r ,v)/2 satisfies the
conditionṀ (r ,v)525/192pa2.

IV. APPARENT HORIZON AND ENTROPY

The apparent horizon is the boundary of the trapped s
faces. In 2D dilaton gravity it is defined by@20#

gmn ]mr ]nr 50. ~73!

If we define the one-loop corrected null coordinates by

ds252e2r dū dv̄, ~74!

the condition~73! is reduced to] ūr 50 and] v̄r 50. We will
takev̄5v5t1r * . The other null coordinateū can be found
easily. The first step is to rewrite the metric~14! in the form
0-6
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ds252Fe2kwS dv̄2
2

F
e2kw dr Ddv̄

52
Fe2kw

m S m dv̄2
2m

F
e2kw dr Ddv̄, ~75!

wherem is the integration factor. Therefore, the conform
coordinateū satisfies

dū5m dv̄2
2m

F
e2kw dr. ~76!

We will not solve the previous equation forū, but just use it
to find the position of the apparent horizon. From Eq.~76!
we get

dr5
1

2
ekwFS dv̄2

1

m
dūD . ~77!

The last equation, if we use] ūr 50 and ] v̄r 50, implies
ekwF50 on the horizon. This means that the equation of
apparent horizon is

~11kw!S 12
a

r
1

km

r D50. ~78!

The position of the apparent horizon is found perturbativ
by taking r AH5a1kr 1, where r 1 is the first-order correc-
tion. From Eq.~78! we get

r AH5a2kS 23

4a
1

5

2a
log

a

l
1

1

4a2v̄ D . ~79!

The intersection point between the line of singularity a
the apparent horizon is the end point of the Hawking rad
tion. It is given by

ūint5`, v̄ int54a2S a

k
2

23

4a
2

5

2a
log

a

l D'
4a3

k
.

~80!

As we can take thev̄ coordinate as the time, we see that t
~anti!evaporation of the black hole is very long but finite.

In order to calculate the entropy of the quantum-correc
solution, we use the Wald technique@21#. Note that the coni-
cal singularity method is defined for static configuratio
only and therefore cannot be used here. In Refs.@22–24# it
was shown that for Lagrangians of the formL
5L( f m ,¹ f m ,gmn ,Rmnrs) ( f m are the matter fields! the en-
tropy is given by

S522peabexd

]L

]Rabxd
U

H

,

evaluated on the horizon. In our case we find
04402
l

e

y

-

d

S5
p

G
@r 22k~2c212x212 log r !#uAH

5
p

GF r 21kS 4
r

a
28 log

r

a
112 log

r

l
1

1

a
v̄ D G

AH

5
p

G
Fa22kS 15

2
15 log

a

l
2

v̄
2a

D G . ~81!

Now we will show that the entropy increases along the l
of apparent horizon. To this end we will find the equation f
the ū coordinate. The integration factor, which we intr
duced in Eq.~76!, is of the form

m511kR~r !1kV~ v̄ !, ~82!

whereR(r ) and V( v̄) are unknown functions. If we intro-
duce the ansatz~82! in the condition of integrability of Eq.
~76!,

]m

]r U
v̄

522
]

] v̄
S m

F
e2kwDU

r

, ~83!

we obtain the following expressions:

V~ v̄ !5a v̄, ~84!

R~r !522ar 2
1

2a~r 2a!
2

4a3a15

2a2 log ~r 2a!, ~85!

wherea is the integration constant. On the other hand, if
start from

]ū

] v̄
U

r

511kR~r !1kV~ v̄ !, ~86!

]ū

]r
U

v̄

52
2m

F
e2kw, ~87!

we get

ū5 v̄1k v̄R~r !1
1

2
ka v̄21G~r !. ~88!

Therefore the functionG(r ) is determined by the equation

dG

dr
52

2r

r 2a F11kS 22ar 2
1

2a~r 2a!

2
514aa3

2a2 log ~r 2a! D
2kS 5

ar
1

3

4r 2 1
3

r 2 log
r

a
2

5

2a2 log
r

a
1C1D

2
k

r 2aS 5r

2a2 1
1

2r
1

11a

4r 223
2r 2a

r 2 log
r

a

1
5

2a
log

r

l D G , ~89!
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which can easily be integrated. The derivative of the entro
along the apparent horizon is determined by

ta ]aS5S ]

] v̄
1

dūAH

dv̄

]

]ū
D S, ~90!

where ta is the tangent vector of the apparent horizon. T
expression~79! for the apparent horizon and Eqs.~84!–~89!
give

ta ]aS5
kp

2aG
.0. ~91!

So the entropy increases along the line of the apparent h
zon. This shows that the second law of thermodynamic
satisfied in the framework of the SSG model.

V. CONCLUSIONS

In this paper we calculated the back reaction effects of
Hawking radiation in the Unruh state of the Schwarzsch
black hole. The effect was discussed in the framework of
SSG model. The calculation was simplified using the form
ism of auxiliary fields. It was shown that the definition of th
Unruh state fixes the integration functions and that the c
D

D

. D

tt.

04402
y

e

ri-
is

e

e
l-

r-

responding EMT coincides with the EMT calculated by oth
methods. The position of the apparent horizon was found
the evaporation of the black hole discussed. The obtai
duration of the evaporation is large~proportional to 1/k).
Unfortunately, at the intersecting point of the line of sing
larity and apparent horizon the singularity becomes nak
which prevents us from predicting the future evolution of t
black hole. The discussion of the static remnant of the bl
hole is an interesting question and will be the subject
further investigation. The entropy of the black hole
radiation system was obtained and shown to increase du
the evolution. The quantum corrections of the energy of
system were calculated using the ADM procedure. We fou
that the flux of radiation through the large spherical surfa
of radiusL is in accordance with the radiation law. In th
limit L→` though, the energy of the whole system is co
served, as one would expect.
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