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New holographic entropy bound from quantum geometry
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A new entropy bound, tighter than the standard holographic bound due to Bekenstein, is derived for space-
times with nonrotating isolated horizons from the quantum geometry approach, in which the horizon is de-
scribed by the boundary degrees of freedom of a three dimensional Chern-Simons theory.
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The holographic principléHP) [1-8] and the holographic p p
entropy boundEB) have been the subject of a good deal of N §|a =2p( )[a(l—a)]p’z, 1)
attention lately. In its original fornpl,2], the HP asserts that p/2

the maximum possible number of degrees of freedom within . . _

a macroscopic bounded region of space is given by a quartdfn€rea is the probability of an occurrence of a spin-up at
of the area(in units of Planck areaof the boundary. This any given vertex. Clearly, this number is maximum when the
takes into account that a black hole for which this boundaryProbability of occurrenca=1/2; it is given byp!/((p/2)!)?.

is (a spatial slice ofits horizon has an entropy which obeys Thus the number of degrees of freedom is now no londer 2
the Bekenstein-Hawking area law and also the generalizelut a smaller number. This obviously leads to a lowering of
second law of black hole thermodynamip$]. Given the the entropy. For very large corresponding to a macroscopic
relation between the number of degrees of freedom and erboundary surface, this number is proportional @2 The
tropy, this translates into a holographic EB valid generallynew EB can therefore be expressed as

for space-times with boundaries.

The basic idea underlying both these concepts is a net- (eXpSBH>
work at whose vertices are variables that take only two val- Nl ———/,
ues(“binary,” “Boolean” or “pixel” ), much like a lattice
with spin one-half variables at its sites. Assuming that the
spin value at each site isdependenof that at any other site where Sz =Ay/413 is the Bekenstein-Hawking entropy.
(i.e., the spins areandomly distributed on the sit¢sthe  This is a tighter bound than that of Rg4] mentioned above.
dimensionality of the space of states of such a network ighe “tightening” of holographic EB is the subject of this
simply 2° for a network withp vertices. In the limit of arbi- paper. We shall show below that, in the quantum geometry
trarily large p, such a network can be taken to approximateframework, it is possible to have an even tighter bound than
the macroscopic surface alluded to above, a quarter of whogbat depicted in Eq(2).
area bounds the entropy contained in it. Thus any theory of There are, of course, examples of situations where the EB
guantum gravity in which space-time might acquire a dis-is violated[5,6] and must be generalized. However, gener-
crete character at length scales of the order of Planck scale @izations proposed so f&8] appear to be tied to fixed clas-
expected to conform to this counting and hence to the HP.sical background space-times, and may not hold when gravi-

Let us consider now a slightly altered situation: one intational fluctuations are taken into acco(ifi}. In this note,
which the binary variables at the vertices of the networkwe restrict ourselves to the older version of the EB appropri-
considered are no longer distributed randomly but accordingte to stationary space-times, but with allowance for the ex-
to some other distribution. Typically, for example, one couldistence of radiation in the vicinity of the boundary. In this
distribute thembinomially, assuming, without loss of gener- sense, the appropriate conceptual framework is that of the
ality, a large lattice with an even number of vertices. Con-Isolated Horizor{9]. We consider generic81 dimensional
sider now the number of cases for which the binary variabldésolated horizons without rotation, on which one assumes an
acquires one of its two values, at exaquif2 of thep verti-  appropriate class of boundary conditions. These boundary
ces. In case of a lattice of spin 1/2 variables which can eitheeonditions require that the gravitational action be augmented
point “up” or “down,” this corresponds to a situation of net by the action of arSU(2) Chern-Simons theory living on
spin zero, i.e., an equal number of spin-ups and spin-downghe isolated horizon9]. Boundary states of the Chern-
Using standard formulas of binomial distributions, this num-Simons theory contribute to the entropy. These states corre-
ber is spond to conformal blocks of the two-dimensional Wess-

Zumino model that lives on the spatial slice of the horizon,
which is a 2-sphere of arey,. The dimensionality of the
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k and number of puncturgson the 2-sphere. We shall show, fine extension. This is desirable for the purpose of deducing
from the formula for the number of conformal blocks spe-an upper bound on the number of degrees of freedom in any
cialized to macroscopic black holes characterized by large space-time.
andp [12], that the restricted situation described above en- Next, recall that the eigenvalues of the area operator for
sues, thus realizing a more stringent EB. We may mentiothe horizon, lying within one Planck area of the classical
that similar ideas relating the quantum geometry approach thorizon areaA, are given by
the HP and EB have been pursued by Smlih although,
as far as we understand, the issue of tightening the Beken- « ) P o 2
stein bound has not been addressed. An ‘PS:SW:BlPIZl (i D], ®)

We start with the formula for the number of conformal
blocks of two-dimensiones U(2), Wess-Zumino model that wherel;, is the Planck lengthj, is the spin on théth punc-

lives on the punctured 2-sphere. For a set of punctles ture on the 2-sphere, arglis the Barbero-lmmirzi parameter

with spins{j1,j2,....jp} at punctures{1,2,...,p}, this [13]. We consider a large fixed classical area of the horizon,
number is given by10] and ask what the largest value of number of punctyres
should be, so as to be consistent with B); this is clearly
P 2j+n2r+1)w obtained when the spin &achpuncture assumes its lowest
5 k2 ll;[l sin K+ 2 nontrivial value of 1/2, so that the relevant number of punc-
P= turespy is given b
N2 s T ((2r+1)77 z - O Po 15 GIVEN BY
sinl ————
k+2 Ay Bo
Po:4|—2 ? 9
Observe now that Ed3) can be rewritten as a multiple sum, P
K1 where 8,=1/m\/3. We are, of course, interested in the case
P_ E Sir? 6 of very largep.
k+2) =1 ! Now, with the spins at all punctures set to 1/2, the number

of states for this set of puncturé, is given by

i1 j P
XD EP eXp[Zi(Elmn) 0']’ (4) 12 12

m]_:_jl mp:_jp NPOZ

e 5(2% m,),0
my=-1/2 m, =—1/2 n=1
i Po

where 6,=71/(k+ 2). Expanding the sf¥, and interchang-

ing the order of the summations, this becomes 1
| | ~ 20 ma g0 my. -y (10
J1 Jp o 1_
szm Z i - Ei 5(zg:1mn),o— 55(zg:1mn),1 The summations can now be easily performed, with the re-
o P lp sult
> 5
T 0P m). 1) 5 NP0=( Po )_( Po ) 11)
Po/2 (po/2—1)

where we have used the standard resolution of the period

Kronecker deltas in terms of exponentials with periot2, L?here is a simple intuitive way to understand the result em-

bodied in Eq.(11). This formula simply counts the number

1) kel p of ways of makingSU(2) singlets fromp, spin 1/2 repre-
5 _ expl 2i m.l=mle sentations. The first term corresponds to the number of states
GpeamM) ™| k42 |=Eo p[ (n§=:1 ”) } '] with netJ; quantum numbem=0 constructed by placing

m==*=1/2 on the punctures. However, this term by itself
overcountgdhe number oS U(2) singlet states, because even
Our interest focuses on the limit of larggeandp, appro-  nonsinglet stategwith net integral spin, fop is an even

priate to macroscopic black holes of large area. Observe, firsitege) have a netm=0 sector. Besides having a sector with
of all, that ask— o, the periodic Kronecker delta’s in E(G)  total m=0, states with net integer spin have, of course, a
reduce to ordinary Kronecker deltas, sector with overallm=+1 as well. The second term basi-
cally eliminates these nonsinglet states witks 0 by count-
ing the number of states with nat=*1 constructed from
m= = 1/2 on thep, punctures. The difference then is the net
number of SU(2) singlet states that one is interested in for
In this limit, the quantityN” counts the number o&U(2) that particular set of punctures.
singlet states, rather th&WU(2), singlets states. For a given  To get to the entropy from the counting of the number of
set of punctures witlBU(2) representations on them, this conformal blocks, we need to calculdtg,==, N7, where,
number is larger than the corresponding number for the afthe sum is over all sets of punctures. Th&g,=In Ngp.

lim Omy+my+---+m .m= Om +my+ - +m_ m- (7
b 1M p
k— o0
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It may be pointed out that the first term in EQ.1) also  However, these additional terms continue to be negative, and
has another interpretation. It represents the counting dfience the entropy bour(d3) still holds?
boundary states for an effectiké(1) Chern-Simons theory. ~ The steps leading to the EB now follows the standard
It counts the number of ways unit positive and negativeroute of deriving the Bekenstein bouitsee, e.g., Ref.7]):
U(1) charges can be placed on the punctures to yield a va’/e assume, for simplicity, that the s_patial slice of the bound-
ishing total charge. This would then correspond to an en@ry of an asymptotically flat space-time has the topology of a

tropy bound given by the same formui above for bino- 2-sphe_re on vv_hich is ir_iduced a spherically symmetric
mial distribution of charges. 2-metric. Let this space-time contain an object whose en-

On the other hand, the combination of both terms in eqropy exceeds the bound. Certainly, such a space-time cannot

(11), which corresponds to counting of states in 81(2) have an isolated horizon as a boundary, since then, its en-

Chern-Simons theory, yields an even tighter bound for en:rropy would have been subject to the bound. But, in that

. case, its energy should be less than that of a black hole which
tropy_ tha_n that in Eq(2). One can show tha[il4,1€i, t_he has the 2-sphere as i{ssolated horizon. Let us now add
contribution toNy, for this set of puncture®, with all spins

. . 00 P> energy to the system, so that it does transform adiabatically
set to 1/2, is by far the dominant contribution; contributionsint, 4 black hole with the said horizon, but without affecting
from other sets of punctures are far smaller in comparisonne entropy of the exterior. But we have already seen above
Thus the entropy of an isolated horizon is given by the forthat g black hole with such a horizon must respect the bound:
mula derived in Ref[12]. We may mention that very re- it follows that the starting assumption that the object, to be-
cently Carlip[16,17 has presented compelling argumentsgin with, had an entropy violating the bound is not tenable.
that this formula may possibly be of a universal character. There is, however, an important caveat in the foregoing
Here, the formula follows readily from E@11) and Stirling  argument. Strictly speaking, there is as yet no derivation of
approximations for factorials of large integers. The numbethe second law of black hole mechanics within the frame-
of puncturesp, is rewritten in terms of areAy through Eq.  work of the isolated horizon. However, this is perhaps not a
(9) with the identification3= 3, In 2. This allows us to write  conceptual roadblock as far as deriving the EB is concerned.
the entropy of an isolated horizon in terms of a power serie§ne has to assume that if matter or radiation crosses the
in horizon areay isolated horizon adiabatically in small enough amounts, the
isolated character of the horizon will not be seriously af-
fected. This is perhaps not too drastic an assumption. Thus,
Ay Ayl 1 - for a large class of space-times, one may proposd Ejj.as
Spp=InNPo=— — —In(—2> - —In( 3) - O(A,]l). the new holographic entropy bound.
45 alp) 2 8(In2) Finally, we should mention that we prefer to think of the
(12) above holographic principle and the consequent entropy
bound as “weak” rather than “strong” in the sense of Smo-
Notice that the constant term here is negative and so is th“en 71
orderA,]l term. This then implies that the entropy is bound The work of SD was supported by NSF grant NSF-PHY-
from above by a tighter bound which can be written in terms9514240 and Eberley Research Funds of Penn State Univer-
of Bekenstein-Hawking entropySéH=AH/4lf,) as sity. P.M. thanks J. Ambjorn, A. Ashtekar, A. Ghosh, H.
Nicolai, S. Kalyana Rama, R. Loll, and L. Smolin for illu-
minating discussions and the Center for Gravitational Phys-
) ics and Geometry at Penn State University, the Niels Bohr

exXpSgH

/2
BH

(13  Institute, and the Albert Einstein Institute for their very kind

Smax=1n o . . .
hospitality during which this work was completed.

Inclusion of other than §pin 1/2 representations on the PUNC-1y5ing the Cardy formula with the prefactéa la Carlip [17])
tures does not affect this bound. For example, we may placg, oar41g] to lead to entropy corrections for certain black holes
spin 1 on one or more punctures and spin 1/2 on the rest. THeyt in accord with Eq(13) [although the bound?2) is indeed re-
number of ways singlets can be made from this set of represpected This could be an artifact of the application of the Cardy
sentations can be computed in a straightforward way. Addingormula. We refrain from further comment on these works, since
these new states to the already counted ones above jugk precise relation of the Cardy formula approach to the present
changes the constant and ordtﬂl terms in formula(12). framework is not clear.
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