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Back reaction problem in the inflationary universe
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We investigate the back reaction of cosmological perturbations on an inflationary universe using the
renormalization-group method. The second-order zero mode solution which appears by the nonlinearity of the
Einstein equation is regarded as a secular term of a perturbative expansion; we redefine the constants of
integration contained in the background solution, and the secular terms are absorbed in these constants in a
gauge-invariant manner. The resulting renormalization-group equation describes the back reaction effect of
inhomogeneity on the background universe. For a scalar-type classical perturbation, by solving the
renormalization-group equation, we find that the back reaction of the long wavelength fluctuation works as a
positive spatial curvature, and the short wavelength fluctuation works as a radiation fluid. For the long wave-
length quantum fluctuation, the effect of back reaction is equivalent to a negative spatial curvature.
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I. INTRODUCTION co-workers. Then, by assuming that the second-order metric
is secular, it is absorbed in a constant of integration con-
In the context of the standard cosmological perturbatiorfained in the background scale factor by using the
approach[1,2], our Universe is treated as a homogeneougenormalization-group method. The renormalized scale fac-
isotropic Friedmann-Robertson-WalkéFRW) model with ~ tor represents the effective dynamics of the FRW universe
small fluctuations in it. But due to the nonlinearity of Ein- With the back reaction due to inhomogeneity. By solving the
stein’s equation, the fluctuation has an effect on the evolutenormalization-group equation, it was found that perturba-
tion of the background spacetime, so we must solve the evdions of the scalar mode and the long wavelength tensor
lution of the fluctuation and the background in a self-mode work as a positive spatial curvature, while the short
consistent manner. This is the cosmological back reactiofavelength tensor mode works as a radiation fluid.
problem which has been studied by several auth®rsL1]. In this paper, we aim to investigate the back reaction
The conventional approach to the problem is to construct aRroblem —in  the inflationary universe using the
effective energy momentum tensor of the fluctuation. Byrenormalization-group method. The advantage of this
adding this tensor to the right-hand side of the backgroundnethod is that we can obtain a solution of the back reaction
Einstein equation, we can evaluate the effect of inhomogeequation directly by solving the renormalization-group equa-
neity on the evolution of the background FRW universe. Foition. We do not need to solve the FRW equation with the
a large scale fluctuation in which the wavelength is large€ffective energy momentum tensor, which is done in a con-
than the Hubble horizon, the gauge dependence of the peyentional approach to the back reaction problem.
turbation becomes conspicuous, and it is necessary to con- The plan of this paper is as follows. In Sec. I, we intro-
struct a gauge-invariant formalism of the back reaction probduce the renormalization-group method by using a FRW
lem. Towards this direction, Abramo and co-workf8s-11] model with a cosmological constant and perfect fluid. In Sec.
derived the gauge-invariant effective energy momentum tenlll, the formulation of the back reaction problem based on
sor of cosmological perturbations, which is invariant underthe renormalization group-method is presented. In Sec. IV,
the first-order gauge transformation. They applied their forWe apply our formalism to the inflationary universe. Section
malism to an inflationary universe and obtained the resulV is devoted to a summary and discussion. We use the units
that the back reaction effect of the long wavelength scalatn Whichc=87G=1 throughout the paper.
type fluctuation is equivalent to a negative cosmological con-
stant, and greatly reduces the inflationary expansion of the Il. RENORMALIZATION-GROUP METHOD
universe. But they did not derive solutions of an effective
scale factor for the FRW universe with the back reaction.
Recently, the renormalization-group metHd@—15 was
applied to the cosmological back reaction probléh®].
Starting from a naive perturbative expansion of the solution

To introduce the renormalization-group method, we con-
sider a spatially flat FRW universe with a cosmological con-
stantA and perfect fluid. The Einstein equations are

of the original differential equation, this method gives an &2:5 P1 (13
improved solution by renormalizing a secular term which 3 37

appears by the nonlinearity of the equation. For a dust domi-

nated universe, the second-order gauge-invariant zero mode - 3., P1

metric is constructed by using the method of Abramo and atsat==7, (1b)

wherea is a logarithm of a scale factor of the universe, and
*Email address: nambu@allegro.phys.nagoya-u.ac.jp py andp; are the energy density and the pressure of perfect

0556-2821/2001/63)/0440139)/$15.00 63 044013-1 ©2001 The American Physical Society



YASUSADA NAMBU

PHYSICAL REVIEW D 63 044013

fluid, respectively. The equation of state is assumed to be R : ag(to)ﬁag(ﬂ)

p;=(I'=1)p; whereI' is a constant. The conservation

equation for fluid is

p1+3a(p;+p1)=0, (2)

and the solution is

C1

(10

and this transformation forms the Lie group up to the first
order of the perturbation. We can obtaig(w) for any arbi-

P1= Zra (3)  trary large value of ¢ 3'Hox—e~3Halo) by assuming the

e

where ¢, is a constant of integration. By substituting this

solution in Eq.(1a), we obtain

A

property of the Lie group, and this makes it possible to pro-
duce a globally uniform approximated solution of the origi-
nal differential equation(4). The renormalization group
equation is obtained by differentiating E§) with respect to

M, and setting = u:

a’=—+ (4)

3 e3Fa ’

1% c Jd
Y RN 7Y R1-3T_7 -3THgu
7 20 = = orr @) e oMo )

We solve this equation perturbatively by assuming the sec-

ond term of the right-hand side is small:

The renormalized solution is obtained by equatpgt in
Eq. (8):

a=agta+---. (5

1/(31)

; - R Hot 3¢, —3IHot
The solution of the scale factor up to the first order of per- a™(t)=e"o| const- ﬁe 0 . (12

turbation is given by

=3

IIl. RENORMALIZATION-GROUP APPROACH TO THE

c,a
_ H —3I'H —3I'H
a(t)y=age 01— —rA (@ ot —g~3lMalo) |, (6) COSMOLOGICAL BACK REACTION PROBLEM

whereH,=+A/3, ag andt, are constants of integration of

the zeroth order and the first order, respectively. We

We treat the cosmological back reaction problem using a
perturbation approach. Let us assume that the metric is ex-
regarflanded as follows:

the first-order solution as secular and apply the

renormalization-group methdd2—15. ®© @O @
We redefine the zeroth-order integration constanas 9ab= Jabt Jabt Gabt - - (13
(0)
ag=ag(m)+ dag(to;u), (7) Oap IS the background FRW metric and represents a homo-

geneous and isotropic spacg1),;, is the metric of the first-

whereu is a renormalization point anéa, is a counterterm order linear perturbation. We assume that the spatial average
which absorbs the secular terme 3ot that diverges as  of the first-order perturbation vanishes:

—0. The naive solution, Ed6), can be written as

R\1-3T
ci(ag)t?

a(t)=e"o!| afi(u) + dag(to; 1) ~ ——spi—

X (e~ 3Hot — g=3'Hou 4 g=3THou _ g =3I Hoto)

R\1-3T
ci(ag)t?

—gHot ag(#)_ STA (e—SFHOt_e—IiFHO,u)

®)

where we have chosen the countertefay so as to absorb

the (e 3o — e~ 3Molo)-dependent term:

Sag(to; u)=ag(to) —af(u)
cy(ag)t

~ 2TA

This defines the renormalization transformation

(e73FHO;L_ef3FH0t0). (9)

(1)
< gan) =0, (14

where(- - -) means the(§patial average with respect to the
background FRW metriay 55, is the second-order metric and

contains nonlinear effects caused by the first-order linear per-
turbation. This nonlinearity produces homogeneous and iso-
tropic zero modes as part of the second-order metric. That is,

(2)
(9an#0. (15)

Since we want to interpret the zero mode part of the metric
as the background FRW metric, we must redefine the back-
ground metric as follows:

(0) (0) (2)
Jab— 0 ab+< g ab>- (16)

This is the back reaction caused by the nonlinearities of the
fluctuation, and it changes the background metric. But in
general, the second-order perturbation term will dominate
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the background metric over the course of time, and this

simple prescription does not work to observe the long time(ds?)=—

behavior of the system. Furthermore, the meaning of the

gauge invariance is not obvious in the second-order quantity,

and we cannot adopt E¢L6) as the definition of the back- +az(t)(1—2¢/z+2

ground metric because the gauge transformation changes the .

definition of the background metric. By using the renormal- (22

ization group method with the second-order gauge invariant

guantities, we resolve these problems and can obtain the ey the second-order coordinate transformation of time

fective scale factor of the FRW universe with the back reac- a2

tion in a gauge-invariant manngt6]. T _2 2
We consider a spatially flat FRW universe with scalar =T de( P27 5 Ek KEEi

type first-order perturbation. As a matter field, we consider a

minimally coupled scalar fielg. The metric and scalar fields we obtain the metric of the FRW universe in a synchronous

1+2¢,—a2y, kZEkE’k‘)dtz
k

2k2 * ! * 2
TlpkEk - ?EKEK dxe.

: (22

are form as
ds?=—(1+2¢+2¢,)dt>+a%(t) (ds?)=—dT?+(a?+ sa?)dx?, (23
X[(1=2¢—2¢,) 8+ 2E j;]dx'dx, L K2 K
sa%=a?(T) Ek — Ek — 3 EER
X=Xo(D)+x1t+ X2, a7 i
a ..
where a(t) is a scale factor of the background FRW uni- _21//2_2Hf dT( b2 % Ek kZEkEE))-

verse,xo(t) is the background scalar fiele, ¢, E, andy;
are the first-order variables, anfl,, ¢, and x, are the  The second-order termia? represents the back reaction of
second-order zero mode variables. To obtain the back réagihomogeneity on the FRW universe. In the context of per-
tion on the FRW universe, it is sufficient to consider only theyrpative expansion, the effective scale factor of the FRW
zero mode part of the second-order perturbation. We use gniverse with the back reaction can be written as
co-moving gauge in which the fluctuation of the scalar field

vanishes: y;= x,=0. The second-order gauge invariant

quantity which is invariant under the first-order gauge trans- Ag=a
formation is given by 16]

1+ —).

- (24)

5a2)
2a

(2) ) (1) 1 (0 However, in general, the second-order correcti@af may

(Qan)=(gap) T{Lx G ap + §<£§<9 ab)s dominate the background scale fact as time goes on,
and the prescription of perturbation will break down. We can
go beyond the perturbation by using the renormalization-

X#=(0,-d"E ). (18) group method. We absomr? to a constant of integration of
the background scale factor, and this procedure yields the
Its components are renormalization-group equation. By solving the renormaliza-
@ tion group equation, we obtain a renormalized scale factor
= 2¢,+a2> KEE", 19 which gives more accurgte late tlme behavior of the system
{(Qoo 2 Ek k (193 han the naive perturbative expression, Exf).
(2) 2 2k? . k* N IV. THE BACK REACTION IN THE INFLATIONARY
(Qij)=a _2¢2+2k =3 B~ FEEC] |9 UNIVERSE
(19 In this section, we investigate the back reaction problem
. in the inflationary universe using the renormalization-group
where ¢, andE, are Fourier components @f(t,x),E(t,x): method. We work in the comoving gauge = y,=0. The

background equations are

w(t,x)=; e X Ylt), Y=oy,

2 1'2
3H"=5x0+ V(Xo), (259
E(t)=2 e Eqt), Ef=E. (20 . 1.,
k 2H+3H2=—§X0+V(X0), (250
The line element of the FRW universe obtained from the )
second-order gauge invariant variables is Xo+3Hxo+V'(x0)=0. (250
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The first-order equations are 2V’ (x0) bk— xol b+ 3+ K?E) =0. (260

2 S 2
3H (Y +Hepy) + k_¢k+ k2H Ek:)ﬂd,k, (263 Equations(263, (26b), (260, and (26d) are the first-order
a? 2 Einstein equations, and EQ6e is the first-order equation
of motion of the scalar field. The spatial curvature perturba-

U+Hp =0, (26b  tion ¢ obeys the following single equation:
Xo -

Tt H( ot 30+ (3H2+ 2H) o= — 0 . 2H 2xo|. K2
It H(d+ 3 ) + (3H+2H) > b, et 3H_W+ﬁ et — =0, 27)

(260 Xo a

E,+3HE, + i(d’k_ ) =0 (260) The second order equations for the zero mode variables
a’® &2, are
|
2k* 5k?

6H ¢2+2<3H2+H>¢2=2k - ?Ektp: - ?wsz + 2K2E ik + 3y — 12H (bt — i)

+4(3H2+H) gk — 4H(K'ELEf — k2 Bk + K2 EF +k2Ek¢:>l, (289

k

) 2 ) . y 2k? 2 * * * * 5 *
2(H+3H?) o+ 2H (g + 3¢p) + 244, = >, T 3a KB — i) + dudic = 3bidic + 5 i

2k?. . o o .
—TEk(sz;+¢;_¢§)+2¢k¢§_¢k¢§+4(2H2+H)¢k¢E

4k2" 2 * * * y k2 * * * * %
— 3Bk Ek+¢k—¢k)—4¢k(—Ek +¢k—¢k)—4H(—H¢k¢k — 2y

3
—3iic + 3hlit) — ACH(KELES — ER + X + B |, (28b)
Ny j N N ' . 8k4 —% 2(9F * e 2/ * Yk
= Xo( @2+ 3¢2) —2(xo+ 3Hx0) h2= —Xo; - TEkEk + K (3Expi + Exdpi ) — 4K (Eyiby + Exthi)
+Addi + 3D + 9bi — L2 bi + 4| SH+ — | i |- (289
X0
|
Equations (289 and (28b) are the second-order Einstein A. Long wavelength mode
equations, and Eq280) is the second-order equation of mo- £ the |ong wavelength mode, of which wavelength is
tion of the scalar field. y larger than the horizon scaleH/the growing mode solution
We solve these equations under the condition of slow- P
L - of Eq. (27) is given by
rolling inflation,
2
X = (k)| 1+ +0(Kk4 1
Pl [ X 29 = ()| 14 5 +O(KY), (3D
H HXO
Under this condition, where (k) is an arbitrary function ofk and satisfies
Wo(k)=0 ask—0 to ensure()=0. If we take only the
M2~ SVive)  vom— V'(xo) 30 O(k%) term ¢,(Kk), the right-hand sides of the second-order
3V(xo): xo 3H equations become zero. We must account forQkk?) term
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to get the back reaction effect. By using this as the
solution, other first-order quantities are given by

k2 vo 1

ERCTO S o

k2 k2 1

l'ﬂ%—lﬂoﬁ, ¢~—2¢0E, E~—io—.

a’H

Then, the second-order equations become

Yot Hep~ z SR

6a’H

. . . 11
Vot Heo+3H(Yt He)~ — Ek k2| ]2,

. . 10
6H ot o+ Bihp~—— 2 K¥4ol?,
a‘H «k

and the second-order zero mode solution is

o=~ Zk Kol o~ ; S

3a’H? 2a’H?

The metric of the FRW universe, E3), is given by

7

(ds?)=—dT?+a%T)| 1+
3a

At this stage, we apply the renormalization-group method . .
to obtain the effective scale factor which includes the back P2+ 3+ 6H o~
reaction effect. The background scale factor can be written as

a(T)=apa(T),

wherea, is a constant of integration which reflects

dom of rescaling of the scale factor. We redefine the constal
ag SO as to absorb the second-order correction of the sca

W Ek k2| o) ? | dx?.

. PHYSICAL REVIEW D63 044013

first order B 7 12
aR(T)=a(T)| const+ > Kgol2] . (39
k

3a’H?

Comparing this with the analysis of Sec. Il, the renormalized
scale factor is the same as that of the FRW universe with
I'=%,c,<0. We conclude that the back reaction of the long
wavelength scalar perturbation on the FRW universe is
equivalent to a positive spatial curvature. But because of the

(32) inflationary expansion of the universe, the back reaction ef-
fect decays ag ?"' and becomes negligible.

B. Short wavelength mode

(339 For the short wavelength mode, of which the wavelength
is smaller than the horizon scaleHl/the first-order solution
of ¢ is given by the WKB form

(33b P~ %eos{ k7n), (40

(330 where z/;OEH/j(OC(k), C(k) is an arbitrary function ok,
and »= [(dt/a). In the inflationary universey, becomes
approximately constant in time. Other first-order quantities
are

2 . ~ 1 2 l,b
. E~—@ , k E~3y+ ﬁ (41)
(34)

Using these solutions, the second-order equation becomes
Yot Hepp~0, (429

(35 ot Hepo+ BH (Yot Hepy) =0, (42b)

k2 2,
3a*H Ek [l
(429
(36 where we have omitted oscillatory terms in the right-hand
the free_sides because they do not contribute to the secular behavior

an the zero mode solution. The second-order zero mode met-
fic is given by

factor. The renormalization-group equation is given by

gaj 7
d(1/d%) 3HZ X

SR

and the solution is

7 1/2
ag(T)=| constt ——— >, k?|yy|?
o(T) 3a2H22k | ol

The renormalized metric is

(ds?)=—d T2+ (aR(T))%dx?,

- _ 2| 12 - 2112
¢~ 3H2a4;k|%|' o~ 3H2a4zkk|l//o|-

(37) (43)

Therefore, the metric of the FRW universe, E83), be-
comes

%9 ds?)= —dT2+a2(T)| 1- —— 3 k2|yol2| ax?
(ds7) = +a%(T) PN | ol | dx”.

(44)

The renormalization group equation becomes

044013-5
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9a2 NE
a(1f04> =~ Sz 3 Kol @5 Sx)= 5 H7r¥ e (HP (k) +ca(kHP k)],
a X
° (50)
L 1 3 V'(xo)
and the solution is ~_ ~ - _ 1\ 2_ 2_
7~ V3 PTRE lea(k)[“— ey (k)[*=1,

1/4
ao(T)=(const—~L D k2|¢0|2) . (46) where H{" is a Hankel function. We choose a Bunch-
24a%H? Davies vacuum wittc,=1,c;,=0. The power spectrum for
Sx in the long wavelength is given by

The renormalized metric is

k3 H 2 3—2v
—=F 2| | [ 2o
(d) = —dT2+ @R(T))?de, Pake)=h 51oxd0)] ﬁ(z an| - ©Y
- 1/4 and
aR(T)za(T)(consF > k2|z/;0|2) .
24a*H? & 2\ _ 2
H

Comparing this with the results of Sec. Il, the renormalized = fa dink Ps,(K,t)
scale factor is the same as that of the FRW universe with H

I'=%,c,>0. The effect of the back reaction of the short

4
wavelength scalar perturbation is the same as radiation fluid. ~ 3hH

8772V”(XO) 2

2V"(x0)?
- exp( T
C. Long wavelength quantum fluctuation

We consider the back reaction due to the quantum fluc- {(Vx)?)= ﬁE k2| Sxi(1)]?
tuation in the inflationary universe. By quantizing the first

order perturbation, the normalization of the mode function is aH 5 H\2
determined. For the quantum fluctuation, the operation of the = f dink kzP(gX(k,t)mg(z—) H%(a%?—1),
spatial averagé- - -) must be replaced with an expectation H &

value of a suitable vacuum state. Introducing a variatje (52)

=yo/H, Eq. (27) becomed17
XolHy, Eq.(27) $17] where we cut off the infrared and ultraviolet contributions,

. _ k2 H 2Xo which is a conventionally used regularization. Therefore,
Sxk+3Hox+|—=+V'+ —| 3H— —+ —] |5x=0.
a2 H H Xo 2
“8) (V)= ﬁ( ) > Kl oxd?
We quantize the variabléy as il H\2 H\2
~-|—| | 5=| H¥a*-1), (53)
3 2 Xo 2
Sy(x.t :f— adx(e* *+al sy (t)e k¥,
x(xt) (277)3’2[ <xdt) <OXic( ] and the metric of the FRW universe, H85), becomes
(493
7
.. S < . ds?)=—dT?+a%T)| 1+ Vi)?) | dx?
[ak1ak']:[allal’]:01 [ak,al,]:h 53(k_k’)1 < > ( ) 3a2H2<( w) >
(49b 5
il H\°[H\2 1
=—dT?+a%(T)| 1+ —|—| | 5= [ 1— =] |dx®
Xk OXK — OXK X= 5 (490 (54)
The renormalization-group equation is
Under the slow-rolling condition, Eq48) is approximately
the same as the mode equation of the scalar field on a fixed 9a2 74 H\2
de Sitter background, and the solution of the mode function —32: - ( —) , (55
is given by J1@>) 6 Xo \27
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and the renormalized metric is 12
aR(t)=T%Y const-¢ T2, k¥ yo(k)|2| , (58
(ds?)= —d T2+ (aR(T))%dx?, “
(56) wherec is a numerical factor. The back reaction of the long
H\ 2 H 2|2 wavelength scalar perturbation is the same as the effect of a
(E) positive spatial curvature, and this is the same as in the case
of a dust dominated univer$&6]. In the preheating stage of

) o ~ the universe, the back reaction slows down the expansion of

scale factor is the same as that of the FRW universe with The renormalization-group method can be viewed as a
I'=$,c,<0. The effect of the back reaction of the quantumtoo| of system reduction. The renormalzation-group equation
fluctuation is equivalent to a negative spatial curvature.  corresponds to the amplitude equation, which describes slow
motion dynamics in the original system. We can describe
V. SUMMARY AND DISCUSSION complicated dynamics contained in the original equation
. ] ] . by extracting a simpler representation using the
~ We have investigated the back reaction problem in thgenormalization-group equation. For the cosmological back
inflationary ~ universe using the renormalization-groupreaction problem, we can reduce the Einstein equation to the
method. By renormalizing the second-order gauge-invariantR\ equation, and this is nothing but a back reaction equa-
zero mode metric, which appears by the nonlinear effect ofion, In this paper, we perturbatively solved the Einstein
Einstein’s equation, we obtained the effective scale faCtOéquation and obtained the solution for the FRW equation
which includes the back reaction of the scalar-type fluctuawith the back reaction effect, though we do not derive the
tion. For the long wavelength classical perturbation, the efhack reaction equation. It is possible to derive the back re-
fect of the back reaction is equivalent to a positive spatiahction equation by applying the renormalization-group
curvature. For the short wavelength perturbation, the backyethod to the equation of motion directly. We will report
reaction is equivalent to radiation fluid. For the long wave-this subject in a separate publication.
length quantum fluctuation, the effect of the back reaction is
same as a negative spatial curvature. In any case, the effect ACKNOWLEDGMENTS
of the back reaction quickly decays and becomes negligible,
and does not alter the expansion of the inflationary universe. The author would like to thank L. R. Abramo for his
Our result on the back reaction of the long wavelengthcomments on our previous pafdé6], as well as suggestions
perturbation is different from the analysis of Abramo andon the back reaction problem in the inflationary universe.
co-workers[8—11]. They used the longitudinal gauge and This work was supported in part by a Grant-In-Aid for Sci-
obtained the result which stated that the back reaction due tentific Research of the Ministry of Education, Science,
the long wavelength perturbation works as a negative cosmdports, and Culture of Japdh1640270.
logical constant. To understand why this discrepancy occurs,
we have performed the calculation of the back reaction using APPENDIX: BACK REACTION IN LONGITUDINAL
the longitudinal gaugésee Appendix The crucial point is GAUGE
the form of the first-order solution, which is used to evaluate
the back reaction effect. In the long wavelength limit, the
growing mode solution ofy in the longitudinal gauge is
given by

~ Th
aR(m)= a(T)(conSt— —
6a

Xo

In this appendix, we present the calculation of the back
reaction using the longitudinal gaugke= ,E=0 to check
the gauge independence of the back reaction effect. The met-
ric is
H H dS2= — (1+ 24+ 2 b)) A2+ a2(1— 24h— 24, dX2.

—_—t ..
a2t (57)
=l

The first-order equations are

They usedH/H? as the first order solution. But the obtained 2 L
second order solution is canceled to zero by choosing a : _ C o , o
appropriate homogeneous solution of the second-order equgH((/’k+ Hih) + ;"bk_i(_x‘)x”_v (xo)Xwict X0,
tion. Hence, we should také/a as the first order solution to (A2a)
observe the back reaction effect. Our calculation in the lon-
gitudinal gauge shows that we have the same back reaction . .
effect as the comoving gauge case. Yt He=Sx0X 1k (A2b)

The back reaction becomes important in the preheating
stage of the universe. For a massive scalar field, the scalar
field oscillates around the minimum of the potential and the
scale factor grows aa~1%3, We calculated the back reac- _ 1., .- ,
tion of the long wavelength perturbation at this stage, and the =~ 2 ot Xoxait V' (xo) X1,
renormalized scale factor is given by (A20c)

b+ AH P+ (2H +3H?) oy,

044013-7
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. . k2 ..
X1kt 3Hx1k+ V" (xo) X1kt ;X1 kT 2V (X0) Y= 4 X0t
=0. (A2d)

The evolution equation ofy becomes

k2
2H-2HX0 4
X0

2y .
H—ﬁ> et )wk 0. (A3)
Xo

Yt
The second-order equations are
6H o+ 2(3H?+H) o+ xox2+V' (xo)x2

~%

5k2 . L.
- ?‘/’k‘/f: +4(3H2+H) ¢t + 3y

1. . k? o
~ SX1IX kT 55 X1IX1 kT 2XoPiXT &
2a

V”

X KXT K| (Ada)

24ry+ 6H Yy + 2H o+ 2(H+3H?) y+ V' (X0) X2— XoX2

-3 <

- _i/fk'//k +4(3H2+H) g + 8H gk

1 k? S
K T SXLXT KT 2 XLIXT kT 2XoiXT «
6a
V” .
5 X1kX1 k| (A4b)

. . . : - 2x0 :
X2+ 3Hx,+V (Xo)Xz_Xo( 6H ¢+ o+ )—(_¢2+ 3‘/’2)
0

\Vi ( XO) . 2k2

=2 |-

X1 k™ 5 it ket BH i «
+Ax 1k + 20X «
. Uk XO *
—Axo| kpie +| — +3H | il | |- (A4dc)
Xo

In this gaugep, and ¢, are invariant under the first-order
gauge transformation. The metric of the FRW universe is

given by

(ds?)=— (14 2¢,)dt?+a%(t)(1—2¢,)dx?

:—dT2+a2(T)<1—Zt//2—2HJ’ dt ¢, |dx?
(A5)

where
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t=T—JdT¢2. (AB)

1. Long wavelength case

The growing mode solution of EGA3) in the long wave-
length limit is given by

h=D(k)

H rt
—1+—f dta
a to

N H H
~D(K) 5+ C(k) 5
(A7)

where C(k) and D(k) are arbitrary functions ok which
satisfy C(k)=0 andD(k)=0 ask—0 to ensure(#)=0.
Using this solution, the second-order solution is given by

1 H
b~ E(6—35)62 ID|2+ == (e+78)>, (CD*+C*D)
K 2a K

5H?
- 2 C[?, (A8a)
1 H
~ — — 2 —( —
v~ 5 (e 35)62k IDI*+ 5 (~3e+79)
5H? )
XY, (CD*+C*D)— — >, [C|%, (A8b)
K 2a% «
1 Xo , XoH )
X2~§(e+95)ﬁ2k ID| +§Ek |C|?, (A8c)
wheree and § are slow roll parameters
H .
e=—, 5=, (A9)
H?2 Hxo

and they can be treated as small constants under the consid-
ering orders of the approximation.

It is important to notice that the second-order equation has
the following homogeneous solution:

H H
veomO= ¢y =Dy 5+ Co (A10)

whereC,, andD, are arbitrary constants. By using the free-
dom of the homogeneous solution and the second-order
gauge transformation—t+B,(H/a) where B, is a con-
stant, it is always possible to reduce the second-order solu-
tion to the following form:

¢2—¢2”__2 ICl%, X2~__2 IC|

(A11)

The metric of the FRW universe is given by
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5H? : o 4
(ds?)=—dT?+aXT)| 1+ Pyl > ICl?|dx2. 6H 2+ BH2 o+ xoxa+ V' X2~ —8—; 2 [CI2,
as k a” k
(A12) (A159)
This expression is the same as in E8f), and the effect of ) . o 8 Kk
the back reaction is equivalent to a positive spatial curvature. 2y, +6H ¢+ 2H do— xox2+ V' xo=~ 33 2 |C|?,
This result is consistent with the calculation using the co- a’ k
moving gauge. (A15b)
We can read the component of the gauge invariant effec- . . , . : .
tive energy momentum tensor frofA4a) and (A4b). (A4a) x2+3Hx2+ V7 x2— xo(6H ¢ha+ o+ 34r,) =~ 0.
is the time-time component an@\4b) is the space-space (A150)
component of the second-order Einstein equation. Hence, fofe second-order solutions are
the first-order solutionp, = ;~C(H/a),
2 1544 2 5H* o~ — D KYCIZ, o~ > K4Cl?,
p=——-2IC p=—53[c]% (A13 T A < A
a k a k
@) @ @ ~0. Al6
and this gives the equation of staf)e=—%;),;).<0. This X2 (A1)
corresponds to a positive spatial curvature, and is consisterf!® Metric of the FRW universe is
with the analysis using the renormalization-group method.
(d?)=—-dT2+a?(T)| 1- —— > k4|C|2> dx2.
2. Short wavelength case 15H2a* “k
(A17)

The first-order solutions are
This result is the same as in E@4), and the effect of the
back reaction is equivalent to radiation. The component of

o 4k
y==2Cxosinkn),  xa~=Ccodky), the effective energy momentum tensor is

dt . 82k4c2 PO > kYCl?, (A18
(”‘fa' (A14) pa4k||,p3a4k||,()
The second-order equations are and the equation of state is that of radiati(pz))ﬁr %(;;),(;;)>O.
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