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Back reaction problem in the inflationary universe

Yasusada Nambu*
Department of Physics, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan

~Received 3 September 2000; published 23 January 2001!

We investigate the back reaction of cosmological perturbations on an inflationary universe using the
renormalization-group method. The second-order zero mode solution which appears by the nonlinearity of the
Einstein equation is regarded as a secular term of a perturbative expansion; we redefine the constants of
integration contained in the background solution, and the secular terms are absorbed in these constants in a
gauge-invariant manner. The resulting renormalization-group equation describes the back reaction effect of
inhomogeneity on the background universe. For a scalar-type classical perturbation, by solving the
renormalization-group equation, we find that the back reaction of the long wavelength fluctuation works as a
positive spatial curvature, and the short wavelength fluctuation works as a radiation fluid. For the long wave-
length quantum fluctuation, the effect of back reaction is equivalent to a negative spatial curvature.
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I. INTRODUCTION

In the context of the standard cosmological perturbat
approach@1,2#, our Universe is treated as a homogeneo
isotropic Friedmann-Robertson-Walker~FRW! model with
small fluctuations in it. But due to the nonlinearity of Ein
stein’s equation, the fluctuation has an effect on the evo
tion of the background spacetime, so we must solve the e
lution of the fluctuation and the background in a se
consistent manner. This is the cosmological back reac
problem which has been studied by several authors@3–11#.
The conventional approach to the problem is to construc
effective energy momentum tensor of the fluctuation.
adding this tensor to the right-hand side of the backgro
Einstein equation, we can evaluate the effect of inhomo
neity on the evolution of the background FRW universe. F
a large scale fluctuation in which the wavelength is lar
than the Hubble horizon, the gauge dependence of the
turbation becomes conspicuous, and it is necessary to
struct a gauge-invariant formalism of the back reaction pr
lem. Towards this direction, Abramo and co-workers@8–11#
derived the gauge-invariant effective energy momentum
sor of cosmological perturbations, which is invariant und
the first-order gauge transformation. They applied their f
malism to an inflationary universe and obtained the re
that the back reaction effect of the long wavelength sca
type fluctuation is equivalent to a negative cosmological c
stant, and greatly reduces the inflationary expansion of
universe. But they did not derive solutions of an effecti
scale factor for the FRW universe with the back reaction

Recently, the renormalization-group method@12–15# was
applied to the cosmological back reaction problem@16#.
Starting from a naive perturbative expansion of the solut
of the original differential equation, this method gives
improved solution by renormalizing a secular term whi
appears by the nonlinearity of the equation. For a dust do
nated universe, the second-order gauge-invariant zero m
metric is constructed by using the method of Abramo a

*Email address: nambu@allegro.phys.nagoya-u.ac.jp
0556-2821/2001/63~4!/044013~9!/$15.00 63 0440
n
s

-
o-

n

n
y
d

e-
r
r

er-
n-
-

n-
r
-
lt
r
-
e

n

i-
de
d

co-workers. Then, by assuming that the second-order me
is secular, it is absorbed in a constant of integration c
tained in the background scale factor by using t
renormalization-group method. The renormalized scale f
tor represents the effective dynamics of the FRW unive
with the back reaction due to inhomogeneity. By solving t
renormalization-group equation, it was found that pertur
tions of the scalar mode and the long wavelength ten
mode work as a positive spatial curvature, while the sh
wavelength tensor mode works as a radiation fluid.

In this paper, we aim to investigate the back react
problem in the inflationary universe using th
renormalization-group method. The advantage of t
method is that we can obtain a solution of the back reac
equation directly by solving the renormalization-group equ
tion. We do not need to solve the FRW equation with t
effective energy momentum tensor, which is done in a c
ventional approach to the back reaction problem.

The plan of this paper is as follows. In Sec. II, we intr
duce the renormalization-group method by using a FR
model with a cosmological constant and perfect fluid. In S
III, the formulation of the back reaction problem based
the renormalization group-method is presented. In Sec.
we apply our formalism to the inflationary universe. Secti
V is devoted to a summary and discussion. We use the u
in which c58pG51 throughout the paper.

II. RENORMALIZATION-GROUP METHOD

To introduce the renormalization-group method, we co
sider a spatially flat FRW universe with a cosmological co
stantL and perfect fluid. The Einstein equations are

ȧ25
L

3
1

r1

3
, ~1a!

ä1
3

2
ȧ252

p1

2
, ~1b!

wherea is a logarithm of a scale factor of the universe, a
r1 andp1 are the energy density and the pressure of per
©2001 The American Physical Society13-1
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fluid, respectively. The equation of state is assumed to
p15(G21)r1 where G is a constant. The conservatio
equation for fluid is

ṙ113ȧ~r11p1!50, ~2!

and the solution is

r15
c1

e3Ga
, ~3!

where c1 is a constant of integration. By substituting th
solution in Eq.~1a!, we obtain

ȧ25
L

3
1

c1

e3Ga
. ~4!

We solve this equation perturbatively by assuming the s
ond term of the right-hand side is small:

a5a01a11•••. ~5!

The solution of the scale factor up to the first order of p
turbation is given by

a~ t !5a0 eH0 tF12
c1 a0

23G

2GL
~e23GH0t2e23GH0t0!G , ~6!

whereH05AL/3, a0 and t0 are constants of integration o
the zeroth order and the first order, respectively. We reg
the first-order solution as secular and apply t
renormalization-group method@12–15#.

We redefine the zeroth-order integration constanta0 as

a05a0
R~m!1da0~ t0 ;m!, ~7!

wherem is a renormalization point andda0 is a counterterm
which absorbs the secular term}e23GH0t that diverges ast
→0. The naive solution, Eq.~6!, can be written as

a~ t !5eH0 tFa0
R~m!1da0~ t0 ;m!2

c1 ~a0
R!123G

2GL

3~e23GH0t2e23GH0m1e23GH0m2e23GH0t0!G
5eH0 tFa0

R~m!2
c1 ~a0

R!123G

2GL
~e23GH0t2e23GH0m!G ,

~8!

where we have chosen the countertermda0 so as to absorb
the (e23GH0m2e23GH0t0)-dependent term:

da0~ t0 ;m!5a0
R~ t0!2a0

R~m!

5
c1 ~a0

R!123G

2GL
~e23GH0m2e23GH0t0!. ~9!

This defines the renormalization transformation
04401
e

c-

-

rd

Rm,t0
: a0

R~ t0!°a0
R~m!

5a0
R~ t0!2

c1 ~a0
R!123G

2GL
~e23GH0m2e23GH0t0!,

~10!

and this transformation forms the Lie group up to the fi
order of the perturbation. We can obtaina0(m) for any arbi-
trary large value of (e23GH0m2e23GH0t0) by assuming the
property of the Lie group, and this makes it possible to p
duce a globally uniform approximated solution of the orig
nal differential equation~4!. The renormalization group
equation is obtained by differentiating Eq.~9! with respect to
m, and settingt05m:

]

]m
a0

R~m!52
c1

2GL
~a0

R!123G
]

]m
e23GH0m. ~11!

The renormalized solution is obtained by equatingm5t in
Eq. ~8!:

aR~ t !5eH0tS const2
3c1

2L
e23GH0tD 1/(3G)

. ~12!

III. RENORMALIZATION-GROUP APPROACH TO THE
COSMOLOGICAL BACK REACTION PROBLEM

We treat the cosmological back reaction problem usin
perturbation approach. Let us assume that the metric is
panded as follows:

gab5 g
~0!

ab1 g
~1!

ab1 g
~2!

ab1•••. ~13!
(0)

gab is the background FRW metric and represents a hom
geneous and isotropic space.g(1)ab is the metric of the first-
order linear perturbation. We assume that the spatial ave
of the first-order perturbation vanishes:

^ g
~1!

ab&50, ~14!

where ^•••& means the spatial average with respect to
background FRW metric.

(2)

gab is the second-order metric an
contains nonlinear effects caused by the first-order linear
turbation. This nonlinearity produces homogeneous and
tropic zero modes as part of the second-order metric. Tha

^ g
~2!

ab&Þ0. ~15!

Since we want to interpret the zero mode part of the me
as the background FRW metric, we must redefine the ba
ground metric as follows:

g
~0!

ab→ g
~0!

ab1^ g
~2!

ab&. ~16!

This is the back reaction caused by the nonlinearities of
fluctuation, and it changes the background metric. But
general, the second-order perturbation term will domin
3-2
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BACK REACTION PROBLEM IN THE INFLATIONARY . . . PHYSICAL REVIEW D63 044013
the background metric over the course of time, and t
simple prescription does not work to observe the long ti
behavior of the system. Furthermore, the meaning of
gauge invariance is not obvious in the second-order quan
and we cannot adopt Eq.~16! as the definition of the back
ground metric because the gauge transformation change
definition of the background metric. By using the renorm
ization group method with the second-order gauge invar
quantities, we resolve these problems and can obtain the
fective scale factor of the FRW universe with the back re
tion in a gauge-invariant manner@16#.

We consider a spatially flat FRW universe with sca
type first-order perturbation. As a matter field, we conside
minimally coupled scalar fieldx. The metric and scalar field
are

ds252~112f12f2!dt21a2~ t !

3@~122c22c2!d i j 12E,i j #dxidxj ,

x5x0~ t !1x11x2 , ~17!

where a(t) is a scale factor of the background FRW un
verse,x0(t) is the background scalar field,f, c, E, andx1
are the first-order variables, andf2 , c2, and x2 are the
second-order zero mode variables. To obtain the back r
tion on the FRW universe, it is sufficient to consider only t
zero mode part of the second-order perturbation. We us
co-moving gauge in which the fluctuation of the scalar fie
vanishes: x15x250. The second-order gauge invaria
quantity which is invariant under the first-order gauge tra
formation is given by@16#

^ Q
~2!

ab&5^ g
~2!

ab&1^LX g
~1!

ab&1
1

2
^LX

2 g
~0!

ab&,

Xm5~0,2d i j E, j !. ~18!

Its components are

^ Q
~2!

00&522f21a2(
k

k2ĖkĖk* , ~19a!

^ Q
~2!

i j &5a2S 22c21(
k

S 2k2

3
ckEk* 2

k4

3
EkEk* D D d i j ,

~19b!

whereck andEk are Fourier components ofc(t,x),E(t,x):

c~ t,x!5(
k

ei k•x ck~ t !, ck* 5c2k ,

E~ t,x!5(
k

ei k•x Ek~ t !, Ek* 5E2k . ~20!

The line element of the FRW universe obtained from
second-order gauge invariant variables is
04401
is
e
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y,
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^ds2&52S 112f22a2(
k

k2ĖkĖk* Ddt2

1a2~ t !X122c21(
k

S 2k2

3
ckEk* 2

k4

3
EkEk* D Cdx2.

~21!

By the second-order coordinate transformation of time

t5T2E dTS f22
a2

2 (
k

k2ĖkĖk* D , ~22!

we obtain the metric of the FRW universe in a synchrono
form as

^ds2&52dT21~a21da2!dx2, ~23!

da25a2~T!X(
k

S 2k2

3
ckEk* 2

k4

3
EkEk* D

22c222HE dTS f22
a2

2 (
k

k2ĖkĖk* D C.
The second-order termda2 represents the back reaction
inhomogeneity on the FRW universe. In the context of p
turbative expansion, the effective scale factor of the FR
universe with the back reaction can be written as

aeff5aS 11
da2

2a2D . ~24!

However, in general, the second-order correctionda2 may
dominate the background scale factora2 as time goes on,
and the prescription of perturbation will break down. We c
go beyond the perturbation by using the renormalizati
group method. We absorbda2 to a constant of integration o
the background scale factor, and this procedure yields
renormalization-group equation. By solving the renormaliz
tion group equation, we obtain a renormalized scale fac
which gives more accurate late time behavior of the sys
than the naive perturbative expression, Eq.~24!.

IV. THE BACK REACTION IN THE INFLATIONARY
UNIVERSE

In this section, we investigate the back reaction probl
in the inflationary universe using the renormalization-gro
method. We work in the comoving gaugex15x250. The
background equations are

3H25
1

2
ẋ0

21V~x0!, ~25a!

2Ḣ13H252
1

2
ẋ0

21V~x0!, ~25b!

ẍ013Hẋ01V8~x0!50. ~25c!
3-3
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The first-order equations are

3H~ ċk1Hfk!1
k2

a2
ck1k2HĖk5

ẋ0
2

2
fk , ~26a!

ċk1Hfk50, ~26b!

c̈k1H~ḟk13ċk!1~3H212Ḣ !fk52
ẋ0

2

2
fk ,

~26c!

Ëk13HĖk1
1

a2
~ck2fk!50, ~26d!
in
o-

w

04401
2V8~x0!fk2ẋ0~ḟk13ċk1k2Ėk!50. ~26e!

Equations~26a!, ~26b!, ~26c!, and ~26d! are the first-order
Einstein equations, and Eq.~26e! is the first-order equation
of motion of the scalar field. The spatial curvature perturb
tion c obeys the following single equation:

c̈k1S 3H2
2Ḣ

H
1

2ẍ0

ẋ0
D ċk1

k2

a2
ck50. ~27!

The second order equations for the zero mode varia
f2 ,c2 are
6Hċ212~3H21Ḣ !f25(
k

F2
2k4

a2
Ekck* 2

5k2

a2
ckck* 12k2Ėkċk* 13ċkċk* 212H~ckċk* 2fkċk* !

14~3H21Ḣ !fkfk* 24H~k4EkĖk* 2k2fkĖk* 1k2ckĖk* 1k2Ekċk* !G , ~28a!

2~Ḣ13H2!f212H~ḟ213ċ2!12c̈25(
k

F2
2k2

3a2 S k2Ek~ck* 2fk* !1fkfk* 23fkck* 1
5

2
ckck* D

2
2k2

3
Ėk~k2Ėk* 1ċk* 2ḟk* !12ċkḟk* 2ċkċk* 14~2H21Ḣ !fkfk*

2
4k2

3
Ëk~k2Ek* 1ck* 2fk* !24c̈kS k2

3
Ek* 1ck* 2fk* D24H~2Hfkfk* 22fkḟk*

23fkċk* 13ckċk* !24k2H~k2EkĖk* 2fkĖk* 1ckĖk* 1Ekċk* !G , ~28b!

2ẋ0~ḟ213ċ2!22~ ẍ013Hẋ0!f252ẋ0(
k

F2
8k4

3
EkĖk* 1k2~3Ėkfk* 1Ekḟk* !24k2~Ėkck* 1Ekċk* !

14fkḟk* 13ḟkck* 19fkċk* 212ckċk* 14S 3H1
ẍ0

ẋ0
D fkfk* G . ~28c!
is

er
Equations ~28a! and ~28b! are the second-order Einste
equations, and Eq.~28c! is the second-order equation of m
tion of the scalar field.

We solve these equations under the condition of slo
rolling inflation,

U Ḣ

H2U!1, U ẍ0

Hẋ0
U!1. ~29!

Under this condition,

H2'
1

3
V~x0!, ẋ0'2

V8~x0!

3H
. ~30!
-

A. Long wavelength mode

For the long wavelength mode, of which wavelength
larger than the horizon scale 1/H, the growing mode solution
of Eq. ~27! is given by

ck5c0~k!F11
k2

2a2H2G1O~k4!, ~31!

where c0(k) is an arbitrary function ofk and satisfies
c0(k)50 as k→0 to ensurê c&50. If we take only the
O(k0) term c0(k), the right-hand sides of the second-ord
equations become zero. We must account for theO(k2) term
3-4
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to get the back reaction effect. By using this as the first or
solution, other first-order quantities are given by

f'c0

k2

a2H2
, E'

c0

2

1

a2H2
,

ċ'2c0

k2

a2H
, ḟ'22c0

k2

a2H
, Ė'2c0

1

a2H
.

~32!

Then, the second-order equations become

ċ21Hf2'
11

6a2H
(

k
k2uc0u2, ~33a!

c̈21Hḟ213H~ ċ21Hf2!'
11

6a2 (
k

k2uc0u2, ~33b!

6Hf21ḟ213ċ2'
10

a2H
(

k
k2uc0u2, ~33c!

and the second-order zero mode solution is

c2'
4

3a2H2 (
k

k2uc0u2, f2'
9

2a2H2 (
k

k2uc0u2.

~34!

The metric of the FRW universe, Eq.~23!, is given by

^ds2&52dT21a2~T!S 11
7

3a2H2 (
k

k2uc0u2D dx2.

~35!

At this stage, we apply the renormalization-group meth
to obtain the effective scale factor which includes the ba
reaction effect. The background scale factor can be writte

a~T!5a0 ã~T!, ~36!

wherea0 is a constant of integration which reflects the fre
dom of rescaling of the scale factor. We redefine the cons
a0 so as to absorb the second-order correction of the s
factor. The renormalization-group equation is given by

]a0
2

]~1/ã2!
5

7

3H2 (
k

k2uc0u2, ~37!

and the solution is

a0~T!5S const1
7

3ã2H2 (
k

k2uc0u2D 1/2

. ~38!

The renormalized metric is

^ds2&52dT21„aR~T!…2dx2,
04401
r

d
k
as

-
nt
le

aR~T!5ã~T!S const1
7

3ã2H2 (
k

k2uc0u2D 1/2

. ~39!

Comparing this with the analysis of Sec. II, the renormaliz
scale factor is the same as that of the FRW universe w
G5 2

3 ,c1,0. We conclude that the back reaction of the lo
wavelength scalar perturbation on the FRW universe
equivalent to a positive spatial curvature. But because of
inflationary expansion of the universe, the back reaction
fect decays ase22Ht and becomes negligible.

B. Short wavelength mode

For the short wavelength mode, of which the wavelen
is smaller than the horizon scale 1/H, the first-order solution
of c is given by the WKB form

c'
c0

a
cos~kh!, ~40!

where c0[H/ẋ0C(k), C(k) is an arbitrary function ofk,
and h5*(dt/a). In the inflationary universe,c0 becomes
approximately constant in time. Other first-order quantit
are

Ė'2
1

Ha2
c, k2E'3c1

ċ

H
. ~41!

Using these solutions, the second-order equation becom

ċ21Hf2'0, ~42a!

c̈21Hḟ213H~ ċ21Hf2!'0, ~42b!

ḟ213ċ216Hf2'
8

3a4H
(

k
k2uc0u2,

~42c!

where we have omitted oscillatory terms in the right-ha
sides because they do not contribute to the secular beha
of the zero mode solution. The second-order zero mode m
ric is given by

f2'2
8

3H2a4 (
k

k2uc0u2, c2'2
2

3H2a4 (
k

k2uc0u2.

~43!

Therefore, the metric of the FRW universe, Eq.~23!, be-
comes

^ds2&52dT21a2~T!S 12
7

24a4H2 (
k

k2uc0u2D dx2.

~44!

The renormalization group equation becomes
3-5
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]a0
2

]~1/ã4!
52

7

24a0
2H2 (

k
k2uc0u2, ~45!

and the solution is

a0~T!5S const2
7

24ã4H2 (
k

k2uc0u2D 1/4

. ~46!

The renormalized metric is

^ds2&52dT21„aR~T!…2dx2,

aR~T!5ã~T!S const2
7

24ã4H2 (
k

k2uc0u2D 1/4

.

~47!

Comparing this with the results of Sec. II, the renormaliz
scale factor is the same as that of the FRW universe w
G5 4

3 ,c1.0. The effect of the back reaction of the sho
wavelength scalar perturbation is the same as radiation fl

C. Long wavelength quantum fluctuation

We consider the back reaction due to the quantum fl
tuation in the inflationary universe. By quantizing the fir
order perturbation, the normalization of the mode function
determined. For the quantum fluctuation, the operation of
spatial averagê•••& must be replaced with an expectatio
value of a suitable vacuum state. Introducing a variabledx

[ẋ0 /Hc, Eq. ~27! becomes@17#

dẍk13Hdẋk1Xk2

a2
1V91

2Ḣ

H S 3H2
Ḣ

H
1

2ẍ0

ẋ0
D Cdxk50.

~48!

We quantize the variabledx as

dx̂~x,t !5E d3k

~2p!3/2
@ âkdxk~ t !eik•x1âk

†dxk* ~ t !e2 ik•x#,

~49a!

@ âk ,âk8#5@ âk
† ,âk8

†
#50, @ âk ,âk8

†
#5\ d3~k2k8!,

~49b!

dxk dẋk* 2dxk* dẋk5
i

a3
. ~49c!

Under the slow-rolling condition, Eq.~48! is approximately
the same as the mode equation of the scalar field on a fi
de Sitter background, and the solution of the mode funct
is given by
04401
d
th

id.

-
t
s
e

ed
n

dxk~ t !'
Ap

2
Hh3/2@c1~k!Hn

(1)~kh!1c2~k!Hn
(2)~kh!#,

~50!

h'2
1

aH
, n'

3

2
2

V9~x0!

3H2
, uc2~k!u22uc1~k!u251,

where Hn
(1,2) is a Hankel function. We choose a Bunc

Davies vacuum withc251,c150. The power spectrum fo
dx in the long wavelength is given by

Pdx~k,t ![\
k3

2p2
udxk~ t !u2'\S H

2p D 2S k

aHD 322n

, ~51!

and

^dx2&5\(
k

udxku2

5E
H

aH

d ln k Pdx~k,t !

'
3\H4

8p2V9~x0!2 F12expS 2
2V9~x0!2

3H
t D G ,

^~¹dx!2&5\(
k

k2udxk~ t !u2

5E
H

aH

d ln k k2Pdx~k,t !'
\

2 S H

2p D 2

H2~a221!,

~52!

where we cut off the infrared and ultraviolet contribution
which is a conventionally used regularization. Therefore,

^~¹c!2&5\S H

ẋ0
D 2

(
k

k2udxku2

'
\

2 S H

ẋ0
D 2S H

2p D 2

H2~a221!, ~53!

and the metric of the FRW universe, Eq.~35!, becomes

^ds2&52dT21a2~T!S 11
7

3a2H2
^~¹c!2& D dx2

52dT21a2~T!F11
7\

6 S H

ẋ0
D 2S H

2p D 2S 12
1

a2D Gdx2.

~54!

The renormalization-group equation is

]a0
2

]~1/ã2!
52

7\

6 S H

ẋ0
D 2S H

2p D 2

, ~55!
3-6
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and the renormalized metric is

^ds2&52dT21„aR~T!…2dx2,
~56!

aR~T!5ã~T!Xconst2
7\

6ã2 S H

ẋ0
D 2S H

2p D 2C1/2

.

Comparing this with the results of Sec. II, the renormaliz
scale factor is the same as that of the FRW universe w
G5 2

3 ,c1,0. The effect of the back reaction of the quantu
fluctuation is equivalent to a negative spatial curvature.

V. SUMMARY AND DISCUSSION

We have investigated the back reaction problem in
inflationary universe using the renormalization-gro
method. By renormalizing the second-order gauge-invar
zero mode metric, which appears by the nonlinear effec
Einstein’s equation, we obtained the effective scale fac
which includes the back reaction of the scalar-type fluct
tion. For the long wavelength classical perturbation, the
fect of the back reaction is equivalent to a positive spa
curvature. For the short wavelength perturbation, the b
reaction is equivalent to radiation fluid. For the long wav
length quantum fluctuation, the effect of the back reaction
same as a negative spatial curvature. In any case, the e
of the back reaction quickly decays and becomes negligi
and does not alter the expansion of the inflationary unive

Our result on the back reaction of the long wavelen
perturbation is different from the analysis of Abramo a
co-workers@8–11#. They used the longitudinal gauge an
obtained the result which stated that the back reaction du
the long wavelength perturbation works as a negative cos
logical constant. To understand why this discrepancy occ
we have performed the calculation of the back reaction us
the longitudinal gauge~see Appendix!. The crucial point is
the form of the first-order solution, which is used to evalu
the back reaction effect. In the long wavelength limit, t
growing mode solution ofc in the longitudinal gauge is
given by

c5
H

a Et0

t

dt a
Ḣ

H2
'2S a

H D
t5t0

H

a
1

Ḣ

H2
1•••. ~57!

They usedḢ/H2 as the first order solution. But the obtaine
second order solution is canceled to zero by choosing
appropriate homogeneous solution of the second-order e
tion. Hence, we should takeH/a as the first order solution to
observe the back reaction effect. Our calculation in the l
gitudinal gauge shows that we have the same back reac
effect as the comoving gauge case.

The back reaction becomes important in the prehea
stage of the universe. For a massive scalar field, the sc
field oscillates around the minimum of the potential and
scale factor grows asa;t2/3. We calculated the back reac
tion of the long wavelength perturbation at this stage, and
renormalized scale factor is given by
04401
d
th

e

nt
f
r
-

f-
l
k

-
is
ect
e,
e.
h

to
o-
s,
g

e

n
a-

-
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lar
e

e

aR~ t !5T2/3S const2c T2/3(
k

k2uc0~k!u2D 1/2

, ~58!

wherec is a numerical factor. The back reaction of the lo
wavelength scalar perturbation is the same as the effect
positive spatial curvature, and this is the same as in the c
of a dust dominated universe@16#. In the preheating stage o
the universe, the back reaction slows down the expansio
the universe, so its effect cannot be negligible.

The renormalization-group method can be viewed a
tool of system reduction. The renormalzation-group equat
corresponds to the amplitude equation, which describes s
motion dynamics in the original system. We can descr
complicated dynamics contained in the original equat
by extracting a simpler representation using t
renormalization-group equation. For the cosmological ba
reaction problem, we can reduce the Einstein equation to
FRW equation, and this is nothing but a back reaction eq
tion. In this paper, we perturbatively solved the Einste
equation and obtained the solution for the FRW equat
with the back reaction effect, though we do not derive t
back reaction equation. It is possible to derive the back
action equation by applying the renormalization-gro
method to the equation of motion directly. We will repo
this subject in a separate publication.
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APPENDIX: BACK REACTION IN LONGITUDINAL
GAUGE

In this appendix, we present the calculation of the ba
reaction using the longitudinal gaugef5c,E50 to check
the gauge independence of the back reaction effect. The
ric is

ds252~112c12f2!dt21a2~122c22c2!dx2.
~A1!

The first-order equations are

3H~ ċk1Hck!1
k2

a2
ck5

1

2
„2ẋ0ẋ1 k2V8~x0!x1 k1ẋ0

2ck…,

~A2a!

ċk1Hck5
1

2
ẋ0x1 k , ~A2b!

c̈k14Hċk1~2Ḣ13H2!ck

52
1

2
„ẋ0

2ck2ẋ0ẋ1 k1V8~x0!x1 k…,

~A2c!
3-7



r
i

nsid-

has

e-
rder

olu-

YASUSADA NAMBU PHYSICAL REVIEW D 63 044013
ẍ1 k13Hẋ1 k1V9~x0!x1 k1
k2

a2
x1 k12V8~x0!ck24ẋ0ċk

50. ~A2d!

The evolution equation ofc becomes

c̈k1S H2
2ẍ0

ẋ0
D ċk1S 2Ḣ22H

ẍ0

ẋ0

1
k2

a2D ck50. ~A3!

The second-order equations are

6Hċ212~3H21Ḣ !f21ẋ0ẋ21V8~x0!x2

5(
k

F2
5k2

a2
ckck* 14~3H21Ḣ !ckck* 13ċkċk*

2
1

2
ẋ1 kẋ1* k2

k2

2a2
x1 kx1* k12ẋ0ckẋ1* k

2
V9

2
x1 kx1* kG , ~A4a!

2c̈216Hċ212Hḟ212~Ḣ13H2!f21V8~x0!x22ẋ0ẋ2

5(
k

F2
k2

3a2
ckck* 14~3H21Ḣ !ckck* 18Hckċk*

1ċkċk* 1
1

2
ẋ1 kẋ1* k2

k2

6a2
x1 kx1* k22ẋ0ckẋ1* k

2
V9

2
x1 kx1* kG , ~A4b!

ẍ213Hẋ21V9~x0!x22ẋ0S 6Hf21ḟ21
2ẍ0

ẋ0

f213ċ2D
5(

k
F2

V-~x0!

2
x1 kx1* k2

2k2

a2
ckx1* k16Hckẋ1* k

14ẋ1 kċk* 12ckẍ1* k

24ẋ0Fckċk* 1S ẍ0

ẋ0

13H D ckck* G G . ~A4c!

In this gauge,f2 and c2 are invariant under the first-orde
gauge transformation. The metric of the FRW universe
given by

^ds2&52~112f2!dt21a2~ t !~122c2!dx2

52dT21a2~T!S 122c222HE dt f2Ddx2,

~A5!

where
04401
s

t5T2E dT f2 . ~A6!

1. Long wavelength case

The growing mode solution of Eq.~A3! in the long wave-
length limit is given by

ck5D~k!F211
H

a Et0

t

dt aG'D~k!
Ḣ

H2
1C~k!

H

a
,

~A7!

where C(k) and D(k) are arbitrary functions ofk which
satisfy C(k)50 and D(k)50 as k→0 to ensurê c&50.
Using this solution, the second-order solution is given by

f2'
1

2
~e23d!e(

k
uDu21

H

2a
~e17d!(

k
~CD* 1C* D !

2
5H2

2a2 (
k

uCu2, ~A8a!

c2'
1

2
~e23d!e(

k
uDu21

H

2a
~23e17d!

3(
k

~CD* 1C* D !2
5H2

2a2 (
k

uCu2, ~A8b!

x2'
1

2
~e19d!

ẋ0

H (
k

uDu21
ẋ0H

2a2 (
k

uCu2, ~A8c!

wheree andd are slow roll parameters

e5
Ḣ

H2
, d5

ẍ0

Hẋ0

, ~A9!

and they can be treated as small constants under the co
ering orders of the approximation.

It is important to notice that the second-order equation
the following homogeneous solution:

c2
(homo)5f2

(homo)'D2

Ḣ

H2
1C2

H

a
, ~A10!

whereC2, andD2 are arbitrary constants. By using the fre
dom of the homogeneous solution and the second-o
gauge transformationt→t1B2(H/a) where B2 is a con-
stant, it is always possible to reduce the second-order s
tion to the following form:

c25f2'2
5H2

2a2 (
k

uCu2, x2'
ẋ0

2

H

a2 (
k

uCu2.

~A11!

The metric of the FRW universe is given by
3-8
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^ds2&52dT21a2~T!S 11
5H2

2a2 (
k

uCu2D dx2.

~A12!

This expression is the same as in Eq.~35!, and the effect of
the back reaction is equivalent to a positive spatial curvat
This result is consistent with the calculation using the
moving gauge.

We can read the component of the gauge invariant ef
tive energy momentum tensor from~A4a! and ~A4b!. ~A4a!
is the time-time component and~A4b! is the space-spac
component of the second-order Einstein equation. Hence
the first-order solutionf15c1'C(H/a),

r
~2!

52
15H4

a2 (
k

uCu2, p
~2!

5
5H4

a2 (
k

uCu2, ~A13!

and this gives the equation of state
(2)

p52 1
3

(2)

r ,
(2)

r .,0. This

corresponds to a positive spatial curvature, and is consis
with the analysis using the renormalization-group method

2. Short wavelength case

The first-order solutions are

c'22Cẋ0sin~kh!, x1'2C
4k

a
cos~kh!,

S h[E dt

a D . ~A14!

The second-order equations are
er

r,

7,

04401
e.
-

c-

or

nt

6Hċ216H2f21ẋ0ẋ21V8x2'28
k4

a4 (
k

uCu2,

~A15a!

2c̈216Hċ212Hḟ22ẋ0ẋ21V8x2'
8

3

k4

a4 (
k

uCu2,

~A15b!

ẍ213Hẋ21V9x22ẋ0~6Hf21ḟ213ċ2!'0.
~A15c!

The second-order solutions are

c2'2
2

3H2a4 (
k

k4uCu2, f2'2
4

H2a4 (
k

k4uCu2,

x2'0. ~A16!

The metric of the FRW universe is

^ds2&52dT21a2~T!S 12
4

15H2a4 (
k

k4uCu2D dx2.

~A17!

This result is the same as in Eq.~44!, and the effect of the
back reaction is equivalent to radiation. The component
the effective energy momentum tensor is

r
~2!

5
8

a4 (
k

k4uCu2, p
~2!

5
8

3a4 (
k

k4uCu2, ~A18!

and the equation of state is that of radiation
(2)

p5 1
3

(2)

r ,
(2)

r .0.
v,

@1# H. Kodama and M. Sasaki, Prog. Theor. Phys. Suppl.78, 1

~1984!.
@2# V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberg

Phys. Rep.215, 203 ~1992!.
@3# R. A. Issacson, Phys. Rev.166, 1263~1968!.
@4# T. Futamase, Mon. Not. R. Astron. Soc.237, 187 ~1989!.
@5# T. Futamase, Phys. Rev. D53, 681 ~1996!.
@6# H. Russ, M. H. Soffel, M. Kasai, and G. Bo¨rner, Phys. Rev. D

56, 2044~1997!.
@7# J. P. Boersma, Phys. Rev. D57, 798 ~1998!.
@8# V. M. Mukhanov, L. R. Abramo, and R. H. Brandenberge

Phys. Rev. Lett.78, 1624~1997!.
@9# L. R. Abramo, Ph.D. thesis, Brown University, 199
,

BROWN-HET-1096, gr-qc/9709049.
@10# L. R. Abramo, R. H. Brandenberger, and V. M. Mukhano

Phys. Rev. D56, 3248~1997!.
@11# L. R. Abramo, Phys. Rev. D60, 064004~1999!.
@12# L.-Y. Chen, N. Goldenfeld, and Y. Oono, Phys. Rev. E54, 376

~1996!.
@13# T. Kunihiro, Prog. Theor. Phys.94, 503 ~1995!.
@14# S. Goto, Y. Masutomi, and K. Nozaki, Prog. Theor. Phys.102,

471 ~1999!.
@15# Y. Nambu and Y. Yamaguchi, Phys. Rev. D60, 104011

~1999!.
@16# Y. Nambu, Phys. Rev. D62, 104010~2000!.
@17# J. Hwang, Phys. Rev. D48, 3544~1993!.
3-9


