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Gauge dual and noncommutative extension of anNÄ2 supergravity solution
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We investigate some properties of a recent supergravity solution of Pilch and Warner, which is dual to the
N54 gauge theory softly broken toN52. We verify that a D3-brane probe has the expected moduli space and
its effective action can be brought toN52 form. The kinetic term for the probe vanishes on an enhanc¸on
locus, as in earlier work on large-N N52 theories, though for the Pilch-Warner solution this locus is a line
rather than a ring. On the gauge theory side we find that the probe metric can be obtained from a perturbative
one-loop calculation; this principle may be useful in obtaining the supergravity dual at more general points in
the N52 gauge theory moduli space. We then turn on aB-field, following earlier work on theN54 theory,
to obtain the supergravity dual to the noncommutativeN52 theory.
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I. INTRODUCTION

It is an important direction to extend the AdS conform
field theory~CFT! duality of Maldacena@1# to nonconformal
systems with less supersymmetry. One way to do this is
perturbing the Hamiltonian, which is equivalent to pertur
ing the boundary conditions on the AdS space@2,3#.

The understanding of the resulting solutions is still lim
ited. One approach, beginning with Refs.@4,5#, is to reduce
to five-dimensional gauged supergravity. This has been v
useful, but it has limitations. For one, only rather spec
states can be obtained in this way. The solutions have on
finite number of integration constants, whereas a ga
theory moduli space has of orderN parameters. For a secon
the full ten-dimensional geometry is in general quite comp
cated in the reduced directions. This is encoded in the fi
dimensional geometry through the algebraic magic of con
tent truncation, but it is necessary to lift the solution to t
dimensions to see its full structure. A related issue is t
most solutions are singular. While there have been attem
to identify allowed singularities in a purely five-dimension
picture@6#, the ten-dimensional structure is crucial for a fu
understanding.

ForN54 broken toN51 orN50 by mass terms the ful
ten-dimensional geometries have recently been found@7#.
Here there is the simplifying feature that the 3-brane cha
dominates the dynamics, so the solution can be treated
perturbation of the Coulomb branch~black 3-brane@8#! so-
lution. However, this approximation was found to bre
down in some interesting regimes. In particular, it becom
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less useful for phases with many 5-branes.
For N54 broken toN52 by mass terms~the N52*

theory! there is a moduli space. Pilch and Warner~PW! @9#
have recently found the ten-dimensional supergravity so
tion on a one-parameter subspace of the moduli space.
the purpose of this paper to analyze some of the physic
the PW solution. The PW theory has the samemasslesscon-
tent, pureN52 gauge theory, as for D7-branes wrapped
K3; the latter was studied in Ref.@10#. In that case the naive
supergravity solution had a naked singularity, which was
solved by an interesting stringy phenomenon. The const
ent D7 branes were forced to lie on a ring of finite radius,
enhanc¸on. This mechanism involved states becoming ma
less when the K3 on which the branes were wrapped bec
small, and as such it may be a much more general phen
enon. The PW solution has a feature resembling the enh
çon, and we would like to make the connection more prec

In Sec. II we study the PW supergravity background. W
first discuss its symmetries, and also remark on a recenN
51 ten-dimensional solution@11#. We then study a probe in
the PW geometry. The basic constituents of the PW solu
are the D3-branes, and so these are the natural probe
consider. We find that the probe potential vanishes on a t
dimensional plane in the transverse space, which is the
rect moduli space, and that the low energy action for
probe can be put in the expectedN52 form by an appropri-
ate choice of coordinates; these are checks on the PW s
tion. In addition, we will determine the precise configurati
of branes that the solution of PW represents. We find tha
is a different part of moduli space than that studied in R
@10#—the branes lie on a line segment rather than in a ri

In Sec. III we discuss the gauge theory side of the cor
spondence. We identify theN52* gauge theory vacuum
corresponding to linear enhanc¸on of the PW geometry and
compute from the field theory perspective the moduli sp
©2001 The American Physical Society09-1
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metric of a D3 probe. TheN52* supersymmetric gaug
theory was solved by Donagi and Witten@12#. As we argue
below, matching the supergravity probe computation is
sentially perturbative in the gauge theory, so we will n
really use the nonperturbative tools of Seiberg-Witt
theory. The gravity and the gauge theory computations of
moduli space metric agree up to 1/N corrections. This pro-
vides another check on the proposed correspondence.

Because the gauge theory calculation is perturbative
can be extended to any point on the moduli space. Thus
gauge side gives some information about the general su
gravity solution. There is a further simplifying feature th
the gauge theory is close to theN54 theory, in the sense
that the masses from gauge symmetry breaking are l
compared to the masses from explicitN54 breaking; this
may allow more of the supergravity solution to be extract
By using information from the gauge theory side it may
possible to find the supergravity solution at all points
moduli space.

In Sec. IV we find the noncommutative generalization
the Pilch-Warner solution, extending to PW solution the co
struction of Refs.@13,14#. Although the PW solution is much
more complicated than AdS53S5, the same strategy can b
used to generate the solution. That is, take theT-dual on a
T2, turn on a constantB-field on theT2, andT-dualize back.
The resulting solution should be dual to the noncommuta
N52* gauge theory. As a check, we find that the D3-pro
moduli space is unaffected by the noncommutativity, a re
which is expected from the gauge theory side.

II. THE SUPERGRAVITY SIDE

In this section will examine the physics of the PW bac
ground by using a D3-brane probe in order to elucidate
properties. The PW background is complicated: all the ty
IIB supergravity fields are nontrivial. An essentially new fe
ture of their solution is that the ten-dimensional dilato
axion field depends on the radial coordinate, and it also
pends ~perhaps surprisingly! on two angular transvers
coordinates as well.

A. The PW solution and its symmetries

We begin by recalling the necessary pieces of the
solution @9#. The ten-dimensional Einstein frame metric is

dsE
25

~cX1X2!1/4

r3 H k2r6

c221
dxi

22
L2

r6~c221!2 dc2

2L2F1

c
du21

sin2u

X2
df2

1r6 cos2uS 1

cX2
s3

21
1

X1
~s1

21s2
2! D G J ; ~2.1!

the five-form field strength is
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F̃ (5)5F1!F,

F54dx0`dx1`dx2`dx3`dw~r ,u!; ~2.2!

~the factor of 4 results from conventions, to be explained
Sec. IV A! and the dilaton-axion is

t5
t02 t̄0B

12B
,B5e2if

AcX12AX2

AcX11AX2

~2.3!

wheret05us/2p1 i /gs is the asymptotic value. PW’s abbre
viations are1

X15cos2u1cr6 sin2u, X25c cos2u1r6 sin2u,

w~r ,u!5
k4r6X1

4gs~c221!2
, ~2.4!

and

r65c1~c221!Fg1
1

2
lnS c21

c11D G . ~2.5!

The s i are the differentialss15 1
2 (cosadc1sina sincdb),

s25 1
2 (2sinadc1cosa sincdb), s35 1

2 (da1coscdb).
That is, the anglesa,b,c parametrize a 3-sphere, which w
can also describe by anSU(2) matrix g where

s i5tr~g21t idg!. ~2.6!

The above set of coordinates may be unfamiliar, so for o
entation purposes we note the behavior of various coo
nates and functions of interest in the gauge theory UV wh
we get back theN54 symmetry. The AdS5 metric goes as
2dr21e2r /Ldxi

252(L/ r̃ )2dr̃21( r̃ /L)2dxi
2 , where L

5(4pgsN)1/4a81/2 is the radius of curvature of AdS5 and r̃
5Ler /L is the usual isotropic radial coordinate appearing
the 3-brane harmonic function. The asymptotic regionr

→`, r̃→` matches the metric~2.1! as c→11 ~so
r6,X1 ,X2→1), with r̃ 5Ler /L5kL/arccosh(c).

The solution contains two parameters. The parameterk is
proportional to the symmetry-breaking mass perturbationm.
One way to see this is to note thatk and xi appear in the
background only in the combinationkxi , while the gauge
theory physics depends only on the combinationmxi . More
precisely, Eq.~63! of Ref. @7# shows that deviations from
AdS become large atr̃;mL2 ~wherer in that reference isr̃
here!, while the deviation here becomes large whenc21
5O(1) or r̃;kL. Thusk5mL times a constant of order 1

1Note that this equation forw corrects a typo in PW equation
~4.9!, and also extends it to generalgs.
9-2
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The parameterg defines a family of distinct solutions. In
PW, the interpretation is given thatg!0 corresponds to be
ing on theN54 Coulomb branch whileg.0 is unphysical.
The solutiong50 appears to have an enhanc¸on, and so we
are most interested in this value but we keepg general for
now.

The N54→N52 gauge theory has anSU(2)3U(1)
R-symmetry. The symmetry breaking gives equal masse
two of the four Weyl fermionsl i . The SU(2) acts on the
two massless fermions, and theU(1)5SO(2) mixes the two
massive fermions. This symmetry is evident in the me
~2.1! as g→ei zt3gh with hPSU(2). The sixscalars trans-
form as the combinationsl [ il j ] @65(434)antisym#, and two
of these are invariant underSU(2)3U(1). Thus the super-
gravity solution has a fixed plane where the radius of
transverse~squashed! two-sphere goes to zero. At long dis
tance this is the equatoru5p/2, but there is a second coo
dinate patch wherer50. This fixed plane will play an im-
portant role.

Note that theSU(2)3U(1) does not act on the coord
natef. Thus it is not surprising that the dilaton~2.3! has a
complicatedf-dependence. Rather, what is surprising is t
the f-dependence ofB is so simple, and even more surpri
ing is that f-translation is a Killing vector of the metric
~2.1!. This can be understood as follows. TheSL(2,Z) mul-
tiplies the fermion bilinears by a complex number; if w
extend this toSL(2,R), then there is aU(1) subgroup which
multiplies the bilinear by a phase. A combination of th
U(1) and aU(1),SO(6) leaves the mass perturbation i
variant; call this combinationU(1)8. Supergravity without
branes is invariant underSL(2,R). The boundary conditions
are invariant underU(1)8, and so in fact is the full PW
solution. Since the metric does not transform underSL(2,R)
it is invariant underf-translation; the fieldB transforms by a
phase underU(1),SL(2,R) and so by a phase unde
f-translation.

The N52 PW solution implicitly contains D3-branes, a
we will see, but these are invariant underSL(2,R) and so do
not affect the forgoing argument. Thus, theU(1)8 is an ac-
cidental symmetry of the gauge theory as long as we res
attention to states and observables that only involve the
pergravity fields and D3-branes on the supergravity side

It is interesting to compare the more recentN51 solution
of Pilch and Warner~PW2! @11#. Here one does expec
5-branes on the supergravity side@7#. Again there is aU(1)8
symmetry in the supergravity and in the boundary con
tions, and some puzzling features of theN51 solution can
be understood if this is a symmetry of the full solutio
Namely, if there is a D5-brane as in Ref.@7#, then theU(1)8
will carry this into a (cosf,sinf)-brane at anglef: the so-
lution appears to contain a continuous distribution of su
branes on anS23S1. Now, (cosf,sinf)-branes may sound
unfamiliar, but supergravity does not know th
(p,q)5-brane charges are quantized, and so it admits s
sources. Thus it might seem that the PW2 solution is illeg
mate in string theory. However, it can be obtained as a li
of the multi-5-brane phases described in Ref.@7#. Namely,
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for large enoughn, n(cosf,sinf) can be approximated by
integers, and such 5-branes can be distributed around thf
direction.

B. Probing the solution

We have in general for a Dp-brane probe

Sprobe5SDBI1SWZ

52mpE dp11ye2FA2det~P@G1B#ab12pa8Fab!

1mpE P@exp~2pa8F (2)1B(2)!` % nC(n)#. ~2.7!

wheremp
215(2p)pa8(p11)/2 and P denotes pullback to the

world volume of the bulk fields.
We take the directions parallel to the probe to bexi ; the

transverse coordinatesxi in the conventions of PW are
(r ,u,f) plus the three coordinates on the~squashed! sphere
generated by the SU~2! R-symmetry of theN52 gauge
theory. In the PW background, the components of
Neveu-Schwarz–Neveu-Schwarz~NS-NS! or Ramond-
Ramond~R-R! two-form potentials parallel to the D3-bran
probe and the world-volume field strength all vanish. It fo
lows that the only remaining terms in the probe action co
from the R-R four-form potential and from a combination
the metric and dilaton. The supergravity metric in@9# is
given in Einstein frame. Conveniently, for the case of t
D3-brane this is precisely the combination2 gmn5e2F/2Gmn

that appears in the probe action. The Chern-Simons term
F (5) do not contribute to the longitudinal components, and
we can read the longitudinal components ofC(4) directly
from Eq. ~2.2! with F5dC(4)i .

The probe action in static gauge becomes

Sprobe5m3E d4y†2gs
21A2detP@gab#1P@C(4)#‡

5
m3

gs
E d4y@2A2detgab~12v iv j ugi j /g00u!1/2

1w~r ,u!#. ~2.8!

Inserting the PW solution, we find the potential energy de
sity to be

V5
t3k4r6

~c221!2 ~AcX1X22X1!, ~2.9!

with t35m3 /gs. Similarly, the kinetic energy density is

2G is the string metric.
9-3
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T5t3

k2L2

2
A cX1X2

~c221!S 1

r6~c221!2 ~vc!2

1
1

c
~vu!21

sin2u

X2
~vf!2

1r6 cos2uH 1

cX2
~v3!21

1

X1
@~v1!21~v2!2#J D ,

~2.10!

wherevc,u,f,1,2,3are the velocities of the probe in each of t
six transverse directions.

For comparison to the enhanc¸on physics of@10#, we are
interested in the moduli space, where the potential vanis
There are two solutions to the conditionV50,

~ I! cX25X1⇒cosu50, ~ II ! r650. ~2.11!

Let us determine the dimensionality of these pieces
moduli space by inspecting the kinetic terms on loci I and

On locus I, the kinetic term is independent ofg,

TI5t3

k2L2

2

c

~c221! F 1

~c221!2 ~vc!21~vf!2G ~2.12!

and we see that the locus I is the (c,f) plane. Note that the
potential term~2.9! in the D3 probe Lagrangian has a pa
ticularly simple expansion about locus I,

VI501t3

k4r6

2~c221! S u2
p

2 D 2

1•••. ~2.13!

Locus II does not exist forg.0: the functionr is positive
on the entire range 1,c,`. For g,0 there is a unique
valuec0(g) such thatr(c0)50 in Eq.~2.5!, and this defines
locus II. Locus II is then parameterized by (u,f), and the
moduli space metric there is

TII~g,0!5t3

k2L2

2

1

~c0
221!

@cos2u~vu!21sin2u~vf!2#.

~2.14!

As noted in PW, the dilaton-axion bulk field is trivial o
locus II.

For g.0, there is only locus I, wherec→11 is the AdS
boundary andc→` is a singularity. Forg,0, locus I is
defined by 1,c<c0 , u5p/2; locus II is defined byc
5c0 , 0<u<p. These fit together to form a plane if w
identify u>p2u in locus II. In the limitg50, c0→` and
locus II becomes singular: the moduli space metric vanis
while the dilaton field blows up.

The moduli space is two-dimensional in accordance w
expectation fromN52 gauge theory. This is the same as t
fixed plane of theSU(2)3U(1) R-symmetry, consisten
with the fact that this symmetry is unbroken on the mod
space.

To identify theN52 structure in the moduli space metr
we need also the gauge field action. Expanding the pr
action in powers of the field strength, the coefficient of t
kinetic term ise2F and that ofF`F is C(0) , so that
04400
s.
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s
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tYM5tsugra. ~2.15!

In the natural coordinates on theN52 moduli space, the
kinetic term for the transverse scalars is the imaginary par
tYM :

T~Y!5
1

2
m3e2FvYv Ȳ ~2.16!

where Y is a complex coordinate encoding the tw
dimensional moduli space.

We focus now on locus I. From Eq.~2.3!, the dilaton is

e2F5
c

gsucosf1 ic sinfu2 . ~2.17!

In order to find the coordinateY we first identify the obvious
isotropic coordinater 8 in the metric~2.12! via dc/(c221)
52dr8/r 8. Then in terms of

z5r 8e2 if5e2 ifA~c11!/~c21! ~2.18!

the locus I metric becomes

t3

k2L2

2

c

~c11!2
vzv z̄. ~2.19!

Equating the metrics~2.16! and~2.19!, Y is analytic inz with

U]Y

]zU
2

5k2L2Ucosf1 ic sinf

c11 U2

5
k2L2

4 U12
1

z2U2

.

~2.20!

Thus

Y5
kL

2
~z1z21! ~2.21!

and

t5
t0z22 t̄0

z221
5

i

gs
S Y2

Y22k2L2D 1/2

1
us

2p
. ~2.22!

This is holomorphic, as expected from supersymmetry; n
that B is simply z22.

Notice that this function has a branch cut emanating fr
Y56kL. The real line segment2kL<Y<kL maps to the
circle z51 and thence toc5`. Thus the branch cut is
present only forg>0, and runs along the real axis wherec
5`. This form fort is the main result that we will need in
the next section. Note thatkL5zmL2 for some constantz
which we determine explicitly in the next section.

We would now like to know what kind of brane distribu
tion would give rise to the functiont which we found above.
We expect that the source D3-branes are distributed on
Coulomb branch, and we can infer their distribution in
number of ways. For example, the metric componentsgi
vanish as one approaches a D3-brane distribution, prov
that the branes are not spread in too many dimensions
terms of an appropriate radial coordinatey, the metric be-
haves asy(42k)/2dxi

21y2(42k)/2dy2. In the metric~2.1!, gi
9-4
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vanishes only near locus II,r50. Sincer vanishes linearly
at c0, the metric behaves as (c02c)1/2dxi

21(c02c)23/2dc2.
For y5(c02c)1/2 this is of the expected form withk52,
consistent with the two-dimensionality of locus II. Thu
wheng,0 the branes are spread over locus II. PW make
identification thatg,0 corresponds to the Coulomb bran
of theN54 theory. This will be true for very negativeg; for
smaller values the effect of the soft breaking parametrized
m will be less negligible.

In the limit g50 this locus collapses to the line segme
found above. Curiously, the metricc22(dxi

21dc2) is of k
50 form with y51/c, which is more singular than expecte
for a one-dimensional distribution. Evidently the effect of t
perturbation on the D3-brane metric cannot be ignored in
case. Notice that we are at a different point in moduli sp
than the setup of@10#, where the branes of the enhanc¸on lay
on a circle in the ‘‘natural’’ coordinates. If we start fromg
50 and turn on a slightly negativeg, the source brane dis
tribution will turn from a line segment into a very squash
disk.

Finally, for g.0 bothgi
2 and the string metricGi

2 diverge
at c5`, which appears to be unphysical@6,9#.

The linear D3-brane distribution atg50 is reminiscent of
the N52* limit of the N51* theory, where the 5-bran
collapses into a line as one mass is taken to zero@7#. How-
ever, the length of the distribution here isO(kL)
5O(mAgsNa8) in the isotropic coordinate, where the lim
of a D5-brane has lengthO(mNa8) and that of an NS5-
brane has lengthO(mgsNa8). The latter are both larger
reflecting the fact that the 5-branes in theN51* theory are
large compared with the radius at which the perturbat
becomes large. Possibly the PW solution could be obtai
as a limit of a configuration with a large number of 5-bran

Let us make more precise the relation of the branch cu
the real axis to the enhanc¸on of Ref.@10#. The enhanc¸on is a
distribution of D-branes on a curve where the gauge kin
term e2F vanishes.3 Any further contraction of the distribu
tion would lead to a negative kinetic term. From Eq.~2.17!,
the limit c→`, which again is a line segment in the natur
coordinates, has vanishing kinetic term, and this is where
D3-branes are located wheng50. The shape of the distribu
tion is dependent on where one is on moduli space.

Let us also remark on magnetic Wilson lines. This is r
evant to the enhanc¸on physics in the following way. In the
d5211 case of@10#, the N52 gauge theory setup come
from D6-branes wrapped on a K3. A D0-brane probe of t
system feels a force, but the more interesting aspect o
behavior is that the coefficient of its kinetic term goes to z
at the enhanc¸on, and by duality one can see that it becom
the gauge boson of the enhanced SU~2! symmetry. We
would like to investigate the analog of this for the PW sy
tem. The most direct analogy is to consider a D-string p

3In Ref. @10#, the gauge potential term was proportional toV
2V* , whereV was the volume of K3 andV* the self-dual volume,
so thatV5V* defined the enhanc¸on.
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allel to the D3-branes; for a static configuration we need
hang a D-string in from infinity, and so the gauge theory d
is the magnetic Wilson line.

We wish to concentrate on that part of the D-string wor
sheet parallel to the D3-brane. Starting with the action~2.2!
for a general Dp-brane probe, we need to extract the term
which are turned on in the PW background. Since we
interested only in the kinetic piece of the action we can
nore all the Chern-Simons-type terms inSWZ . Therefore, let
us consider the DBI piece

SD15t1E d2ye2FA2detP~Gab1Bab!. ~2.23!

In static gauge where we allow only time dependence of
transverse coordinates, the pullback of the NS-NSB-field is
zero, and so we need only the metric. In the Einstein fram
expanding to lowest order in velocities gives

TD15e2F/21
2 v iv j ugi j /g00uA2det~gab!5e2F/21

2 v iv jgi j ,
~2.24!

where in the last equality we used the fact thatg1152g00 in
the PW coordinates. The effective mass, the coefficien
the invariant velocity, goes to zero when the dilaton blo
up. This is the fact we were after to make the connection
enhanc¸on physics.

Let us make a few remarks about the resolution of sin
larities by brane expansion. When all D3-branes are at
origin it appears that the supergravity solutions are singu
there. When they are sufficiently spread out then the origi
like an ordinary point and it is possible to connect the no
normalizable perturbation from infinity with the normaliz
able solution at the origin. An enhanc¸on distribution is one
that is as compact as possible. For theN51* theory the
same principle holds but there is no moduli space; the bra
are expanded by the dielectric mechanism@15#.

III. GAUGE THEORY

Via the AdS-CFT correspondence, the supergravity so
tion of @9# corresponds to softly brokenN54, large N
SU(N) Yang-Mills theory at a specific point on the Coulom
branch of theN52 supersymmetric Yang-Mills theory with
a massive adjoint hypermultiplet. In this section we discu
the gauge theory part of the correspondence. We identify
N52 gauge theory vacuum corresponding to linear
hançon of the PW geometry atg50 and compute from the
field theory perspective the moduli space metric of a
probe. The supergravity calculation matches to a one l
gauge theory calculation, a result that is likely to be usefu
understanding the supergravity solution at more gen
points in moduli space.

In the language of four-dimensionalN51 supersymme-
try, the mass deformedN54 SU(N) Yang-Mills theory con-
sists of a vector multipletV, an adjoint chiral superfieldF
related byN52 supersymmetry to the gauge field, and tw
additional adjoint chiral multipletsQ andQ̃ which form the
N52 hypermultiplet. In addition to the usual gaug
invariant kinetic terms for these fields, the theory has ad
9-5
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tional interactions and hypermultiplet mass term summari
in the superpotential4

W52A 2

gY M
2 tr~@Q,Q̃#F!1

m

gY M
2 ~ trQ21tr Q̃2!. ~3.1!

The theory has a moduli space of Coulomb vacua par
etrized by expectation values of the adjoint scalar

F5diag~a1 ,a2 , . . . ,aN!, (
i

ai50, ~3.2!

in the Cartan subalgebra of the gauge group. For gen
values of the moduliai the gauge symmetry is broken to th
of the Cartan subalgebra U(1)N21, up to the permutation o
individual U(1) factors. At the semi-classical level, no
generic values of the moduli may yield a larger symme
group. One of the fundamental results of the Seiberg-Wit
theory @17#5 is that in the full quantum theory, such larg
residual gauge symmetry groups do not survive quantizat
so that the theory is always in the Coulomb phase. The en
low energy effective actionL of the N21 Abelian U(1)N
52 vector multiplets is completely determined in terms
the single prepotentialF[F(t,m;$ai%) which depends ho-
lomorphically on the microscopic parameters@the gauge cou-
pling t5u/2p1 i (4p/gY M

2 ) and the hypermultiplet massm#
and the Coulomb branch moduli$ai%

8pL52gi j̄ ~DmaiDmā j̄ 1 i c̄s̄mDmc i !

1Re H t i j S i

2
Fmn

i F j mn1
1

2
Fmn

i F̃ j mn22l̄ i s̄mDml j D J
~3.3!

with

t i j 5
]2F

]ai]aj
, gi j̄ 5Im @t i j #. ~3.4!

In Eq. ~3.3! c ’s and l ’s are fermionic superpartners of th
scalars and gauge bosons respectively. The covariant de
tive Dm is taken with respect to the Levi-Civita connectio
G jk

i of the scalar metricgi j̄

Dmai5]mai1G jk
i aj]mak. ~3.5!

Classically, the prepotential is given by

Fclass5
1

2
t(

i
ai

2 . ~3.6!

The full quantum prepotential receives both perturbative
nonperturbative corrections

F5Fclass1Fpert1Fnon-pert. ~3.7!

4The classical Ka¨hler potential is normalized (2/gY M
2 )tr@F̄F

1Q̄Q1 Q̃̄Q̃#.
5See@18# for an introduction and extensive list of references.
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The perturbative contribution is one-loop exact@16# and is
determined by the standard quantum field theory comp
tion

Fpert5
i

8p F(
iÞ j

~ai2aj !
2ln

~ai2aj !
2

m2

2(
iÞ j

~ai2aj1m!2ln
~ai2aj1m!2

m2 G . ~3.8!

From the Wilsonian effective action viewpoint it is generat
by integrating out electrically charged gauge bosons and
charged components of the adjoint hypermultiplet. Fina
the nonperturbative prepotential is generated by instant
The nonperturbative part of the prepotential can, in princip
be extracted from the exact solution of the theory@12#. In
practice the computation is very difficult to carry out expli
itly other than for gauge groups of small rank. Nonperturb
tive corrections become important in regions of moduli spa
with light BPS states. Semi-classically, monopoles are
pected to have masses 4pv/gY M

2 , wherev is a characteristic
scale of the Higgs fieldv;uai2aj u. In the N→` limit we
scale the gauge couplinggY M

2 →0 while keeping the ’t Hooft
coupling fixedNgY M

2 →O(1). Sounless the spacing betwee
eigenvalues ofF is O(1/N) or smaller, instanton correction
do not survive in this limit.

The moduli space of a D3-brane probing the PW sup
gravity background is dual to the projection of the Coulom
branch vacua of SU(N11)→U(1)3U(1)N21 to that of the
probe U(1). If u is the modulus of the U(1) representing th
probe, the perturbative parametrization of the full mod
space~3.2! is given by

F5diag~u,a12u/N,a22u/N, . . . ,aN2u/N!,

(
i

ai50. ~3.9!

If uu2ai u@1/N, the instanton corrections to the metric o
the probe moduli space are exponentially suppressed an
complete answer~in the largeN limit ! is determined by the
perturbative prepotential. From Eqs.~3.6! and ~3.8! we find

t~u!5
i

gs
1

us

2p
1

i

2p (
i

ln
~u2ai2u/N!2

~u2ai2u/N!22m2 .

~3.10!

We would like to match Eq.~3.10! and the metric on the
moduli space of the D3 probe~2.22! in the largeN limit for
a specific Coulomb vacuum$a1 ,a2 , . . . ,an% of the
‘‘U(1) N21 background.’’

Recall that the D3 probe computation in the previous s
tion suggests thatN52 supergravity flow withg50 corre-
sponds to the Coulomb branch vacuum in which the ba
ground branes form aZ2 symmetric linear enhanc¸on
singularity around the origin of the probe moduli space. T
size of the enhanc¸on in the variablea5Y/2pa8 is

kL

2pa8
5z

mL2

2pa8
5z

mAgsN

Ap
[a0 . ~3.11!
9-6
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In particular, the characteristic scale of moduli space is la
compared tom and so we can approximate

t~u!5
i

gs
1

us

2p
1

i

2p (
i

m2

~u2ai !
2 . ~3.12!

Away from the enhanc¸on singularity nonperturbative correc
tions are suppressed and the probe metric is given by
continuous limit of this

t~u!5
i

gs
1

us

2p
1

i

2pE2a0

a0
dar~a!

m2

~u2a!2
~3.13!

wherer(a) is a linear density of the background branes
genvalues normalized as

E
2a0

a0
dar~a!5N. ~3.14!

This is to be equal to the supergravity result~2.22!,

t~u!5
i

gs
S u2

u22a0
2D 1/2

1
us

2p
. ~3.15!

Equating the discontinuities across the enhanc¸on branch cut
gives

m2r8~u!52
2

gs

u

Aa0
22u2

, r~6a0!50. ~3.16!

This integrates to

r~u!5
2

m2gs

Aa0
22u2, ~3.17!

and the normalization condition fixesa0
25m2gsN/p or z

51.
The one loop metric~3.12! should apply everywhere o

moduli space—except of course when it goes negative
some region. Seiberg and Witten@17# showed that instanton
corrections make the metric positive everywhere. The les
of Ref. @10# is that at largeN these corrections turn o
sharply on the boundary where the metric changes sign,
is, the enhanc¸on. Outside the enhanc¸on the metric is pertur-
bative. The effect of nonperturbative corrections is that
constituent D3-branes are expanded from their perturba
positions and dissolved in the enhanc¸on.

Thus the gauge theory one loop calculation gives inf
mation about the supergravity solution anywhere on
SU(N) moduli space. Essentially, it determines the dilat
and metric on a two-dimensional plane. Finding the solut
on the full six-dimensional transverse space may then
possible, with some ingenuity. It may also be possible
extract information about the full solution from the gau
theory. Off the moduli space plane supersymmetry is bro
and so the gauge theory less constrained. However, there
simplification in the problem, which we have used in der
ing Eq. ~3.12!. That is, the splitting ofN54 multiplets by
the mass term is small compared to the masses from g
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symmetry breaking. This should restrict the renormalizat
of the perturbative effective action even off the plane wh
supersymmetry is unbroken.

One physical interest in studying exactly solvableN52
gauge theories is that upon deformation toN51 one hopes
to get a new handle in the mystery of confinement. We h
noted in Sec. II that the PW solution is not theN52 limit of
the confining vacuum of Ref.@7#. It would be very interest-
ing to find the exact supergravity flows corresponding to
linearized solutions of that paper. Constructing first the r
evantN52 solution of the mass deformedN54 Yang-Mills
theory @12# might be a way of approaching this problem.

IV. TURNING ON A CONSTANT B-FIELD

Recently there has been a revival of interest in quant
field theories formulated on noncommutative spaces, in p
ticular those that emerge as various limits of M-theory co
pactifications. Gauge theories are especially interesting:
limit of large noncommutativity is similar to the largeN limit
of ordinary gauge theories. In the previous section we rec
structed the low-energy effective action on the one comp
dimensional submanifold of the moduli space of the m
deformedN54 gauge theory from its supergravity dual.
this section we construct the deformation of the PW flow
turning on aB-field on the world-volume of the D3 branes
We propose that this deformation is the dual gravity desc
tion of the noncommutativeN52 gauge theory with massiv
adjoint hypermultiplet.

After constructing the solution we consider the same
servable as in the commutative case, namely the mo
space metric for a probe D3-brane. In fact this metric sho
be the same as in the commutative case. The classical su
gravity description is dual to the large-N limit of the gauge
theory, and planar graphs in the noncommutative theory
fer from those of the commutative theory only by a pha
factor, which is trivial for the two-derivative terms whic
define the moduli space metric.

The section is organized as follows. After fixing conve
tions, we review the gravity flow dual to the noncommut
tive N54 gauge theory constructed in@13,14#. In the third
part we present the deformation of the PW flow and stu
the dynamics of a D3 probe in the deformed PW geome

A. Type IIB equations and conventions

We use mostly negative conventions for the signat
(12•••2) and e1•••10511. The type IIB equations con
sist of the following@19#.

The Einstein equations

RMN5TMN
(1) 1TMN

(3) 1TMN
(5) , ~4.1!

where the energy momentum tensors of the dilaton or ax
field, B, the three index antisymmetric tensor field,F (3) , and
the self-dual five-index tensor field,F (5) , are given by

TMN
(1) 5PMPN* 1PNPM* , ~4.2!
9-7
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TMN
(3) 5

1

8 S GPQ
MGPQN* 1G* PQ

MGPQN2
1

6
gMNGPQRGPQR* D

~4.3!

TMN
(5) 5

1

6
FPQRS

MFPQRSN. ~4.4!

In the unitary gaugeB is a complex scalar field and

PM5 f 2]MB, QM5 f 2 Im ~B]MB* ! ~4.5!

with

f 5
1

~12BB* !1/2
~4.6!

while the antisymmetric tensor fieldG(3) is given by

G(3)5 f ~F (3)2BF~3!
* !. ~4.7!

The Maxwell equations:

~¹P2 iQP!GMNP5PPGMNP* 2
2

3
iF MNPQRG

PQR.

~4.8!

The dilaton equation:

~¹M22iQM !PM52
1

24
GPQRGPQR. ~4.9!

The self-dual equation:

F (5)5!F (5) . ~4.10!

In addition,F (3) andF (5) satisfy Bianchi identities which
follow from the definition of those field strengths in terms
their potentials:

F (3)5dA(2)

F (5)5dA(4)2
1

8
Im~A(2)`F ~3!

* !. ~4.11!

The above supergravity potentials do not transform sim
underT-dualities. LetF be a dilaton,B(2) NSNS two-form
and C(n) RR forms, as conventionally defined in D-bran
physics. For the type IIB theory one would haveC(n) with
n50,2,4,6,8. This range ofn is consistent with the implicit
summation over RR potentials in the D-brane world-volu
action. Recall however, that these are not all independ
but rather apper in dual pairs. Following@7#, we define the
‘‘modified’’ field strengths

F̃ (1)5dC(0)

F̃ (3)5dC(2)1C(0)dB(2)

F̃ (5)5dC(4)1C(2)`dB(2)

F̃ (7)5dC(6)1C(4)`dB(2)

F̃ (9)5dC(8)1C(6)`dB(2) . ~4.12!
04400
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The duality constraint is then implemented as

!F̃ (n11)5~2 !n(n21)/2F̃ (92n) . ~4.13!

Comparing the Einstein equations~4.1! with those of@7# we
identify

C(0)1 ie2F5 i
11B

12B

A(2)5C(2)1 iB (2)

A(4)5
1

4 S C(4)1
1

2
B(2)`C(2)D . ~4.14!

Now we wish to recall theT-duality transformations of
these supergravity fields.T-duality acts on the Neveu
Schwarz fields as@20#

G̃yy5
1

Gyy
e2f̃5

e2f

Gyy

G̃mn5Gmn2
GmyGny2BmyBny

Gyy
G̃my5

Bmy

Gyy
~4.15!

B̃mn5Bmn2
BmyGny2GmyBny

Gyy
B̃my5

Gmy

Gyy

where we defined the string metric by (Gab)string
5eF/2(gab)Einstein. In Eq. ~4.15!, y denotes the Killing coor-
dinate with respect to which theT-dualization is applied,
while m,n denote any coordinate directions other thany. If y
is identified on a circle of radiusR, i.e., y;y12pR, then
after T-duality the radius becomesR̃5a8/R5 l 2/R. The
string coupling is also shifted asg̃5gl/R.

T-duality transforms the type IIB theory into the type II
theory and vice versa, through its action on the world-sh
spinors@21,22#. This aspect ofT-duality is then apparent in
the transformations of the RR fields. The odd-form potenti
of the type IIA theory are traded for even-form potentials
the type IIB theory and vice versa. Using the conventio
adopted above, the transformation rules for the RR poten
are @23,15#

C̃(n)m•••nay5C(n21)m•••na2~n21!
C(n21)m•••nuyGua] y

Gyy

C̃(n)m•••nab5C(n11)m•••naby1nC(n21)[m•••naBb] y

1n~n21!
C(n21)[m•••nuyBuauyGub] y

Gyy
. ~4.16!

B. PureNÄ4 flow

The type IIB supergravity background dual to nonco
mutativeN54 supersymmetric Yang-Mills theory was con
structed in@13,14#. We briefly review this analysis here.

Generalization of quantum commutative field theories
theories on noncommutative spaces involves adding i
nitely many higher derivative terms, which renders t
9-8
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theory nonlocal. It is thus very hard to provide a proof of t
quantum consistency of such theory using the familiar ren
malization tools of local field theories@24#. String theory
provides a way to obtain noncommutative gauge theories
considering the decoupling limit of D(p22)-branes in type
II string theories onT2 with a background NSNS 2-form
field Bmn polarized along theT2 @25,26#. The fact that non-
commutative supersymmetric gauge theory is obtained in
decoupling limit of string theory suggests that it should
consistent at the quantum level. In the specific example
@25,26# the noncommutative gauge theory has 16 sup
charges. In general, we would expect the quantum con
tency of any gauge theory~even with less supersymmetry a
in the example below!, provided it can be realized in th
limit of string theory where one decouples gravity.

Following @13#, consider a large number of D3-branes
weakly coupled type IIB theory, oriented along th
x0,x1,x2,x3 directions. Decoupling the stringy excitations b
sendinga8→0 results inN54 supersymmetric Yang-Mills
theory on the world-volume of the D3 branes. This theo
has an AdS53S5 supergravity dual, describing the near h
rizon geometry of the D3-branes@1#. In the string frame the
metric and the dilaton is given by6

dss
25

r 2

L2hmndxmdxn2
L2

r 2dr22ds5
2

eF5gs ~4.17!

whereL454pgsNa82. Consider compactifying thex2,x3 di-
rections on the square torusT2. The system of D3-brane
extending alongx0,x1 and wrapping theT2 is T-dual to D1-
branes oriented alongx0,x1 directions. The near horizon ge
ometry of the string frame solution in the presence of D
branes and their images coming from theT2 compactification
is given by theT-dual of Eq.~4.17! @8#

dss
25

r 2

L2 @d~x0!22d~x1!2#2
L2

r 2@d~x2!21d~x3!2#

2
L2

r 2 dr22ds5
2

eF5gs

L2

r 2 . ~4.18!

Let us turn on a constantB(2)-field polarized alongT2. Ac-
cording to@25,26# we end up in the decoupling limit with th
noncommutativeN54 Yang-Mills theory. More specifi-
cally, it was argued in@26,27# that in order to get a finite
noncommutative scale one should take

B(2)→`, a8→0 ~4.19!

6We discuss RR potentials in detail in a more general setting
the next section.
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while keepingB(2)a8 fixed. The constantB(2)-field does not
act as a source for other supergravity fields, asdB(2)50, so
Eq. ~4.18! with the background NSNS two form

dB(2)52
D2

a8
dx2`dx3 ~4.20!

is still a solution.T-duality on theT2 produces finally the
supergravity background dual to the noncommutativeN54
Yang-Mills theory@13,14#:

dss
25

r 2

L2 @d~x0!22d~x1!2#2
r 2

L2h
@d~x2!21d~x3!2#

2
L2

r 2 dr22ds5
2

eF5gs/h1/2

dB(2)5
D2r 4

a8L4h
dx2`dx3 ~4.21!

where

h511
D4r 4

a82L4
. ~4.22!

The solution~4.22! reduces to the AdS53S5 solution for
small r, which corresponds to the IR regime of the gau
theory. This is consistent with the field-theoretical expec
tions @28#: the commutativeN54 gauge theory does no
have UV divergences, so its noncommutative deformat
does not change the IR physics~in any case UV-IR mixing
would show up only in nonplanar effects!.

C. Deformed PW flow

In constructing the gravity dual of the noncommutati
N52 gauge theory we follow the strategy of@13#, reviewed
above. The starting point is the PW supergravity solut
compactified on a square torusT2 along x2,x3 directions.
The bosonic background can be written schematically as

dsE
25g1

2hmndxmdxn2g2
2@d~x2!21d~x3!2#2ds6

2

A(2)5c21 ib2

F (5)5dx41!dx4 ,

x45wdx0`dx1`dx2`dx3 ~4.23!

whereds6
2 is the transverse metric andA(2) has nonvanishing

components only alongS5. The various functions and form
depend on the six transverse coordinates and are indepen
of x0, . . . ,x3. In this initial solution the functionsg1 andg2
are equal. Note that the metric is given in Einstein frame

T-duality transformations are most conveniently e
pressed in fields conventional in D-brane physics. Using
~4.14! we find

in
9-9
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eF5
~12B!~12B̄!

12BB̄
, C(0)[c5 i

B2B̄

~12B!~12B̄!

B(2)5b2 , C(2)5c2

F̃ (5)54F (5) . ~4.24!

We also define the string frame metric according to

dss
25G1

2hmndxmdxn2G2
2@d~x2!21d~x3!2#2dS6

2

~4.25!

G15eF/4g1 , G25eF/4g2 , dS6
25eF/2ds6

2 .
~4.26!

Since 1-, 3-, and 5-form field strengths are nonzero, th
will be nonvanishing 8-, 6-, and 4-form potentials as wel

C(4)54wdx0`dx1`dx2`dx31a4

C(6)5 f 2`dx0`dx1`dx2`dx3

C(8)5p4`dx0`dx1`dx2`dx3 ~4.27!

where the 2-formf 2 and 4-formsa4 andp4 have only trans-
verse components, are independent ofx0, . . . ,x3, and satisfy

!dc5~dp41 f 2`db2!`dx0

`dx1`dx2`dx3

!~dc21cdb2!52~d f214wdb2!`dx0

`dx1`dx2`dx3

!~dw`dx0`dx1`dx2`dx3!5
1

4
~da41c2`db2!.

~4.28!

Equations~4.28! reflect the duality constraints~4.13!.
Using the transformations rules~4.15! and ~4.16!,

T-duality first alongx3 and then alongx2 produces the fol-
lowing configuration, denoted by tildes:

e2F̃5e2F/G2
4

G̃15G1 ,G̃251/G2 ,dS̃6
25dS6

2

B̃(2)5B(2)

C̃(0)50

C̃(2)5cdx3`dx214wdx0`dx1

C̃(4)5c2`dx3`dx21 f 2`dx0`dx1

C̃(6)5a4`dx3`dx21p4`dx0`dx1

C̃(8)50. ~4.29!

It is straightforward to verify that given Eq.~4.28!, the field
strengths constructed from the R-R potentials of Eq.~4.29!
satisfy the duality constraints~4.13!.
04400
re

As in the case of the supergravity flow corresponding
the N54 Yang-Mills theory, to generate a background du
to the noncommutativeN52 gauge theory we now turn on
constant NS-NS 22form potential on theT2:

dB̃(2)52
D2

a8
dx2`dx3. ~4.30!

Again, since the corresponding field strength vanishes,dB̃(2)
is a modulus.

After turning onB̃(2) , T-duality alongx2 and then along
x3 directions, followed by the decompactification ofT2 pro-
duces the gravitational dual on the noncommutativeN52
gauge theory with massive adjoint hypermultiplet. We d
note this final configuration with primes:

e2F85e2F/h, h511
D4G1

4

a82
~4.31!

G185G1 , G285G1 /h1/2, ds6
285ds6

2

~4.32!

B(2)85b21
D2G1

4

a8h
dx2`dx3

C(0)85c

C(2)85c214
D2w

a8
dx0`dx12

D2G1
4c

a8h
dx2`dx3

C(4)85
4w

h
dx0`dx1`dx2`dx31a41

D2

a8
f 2

`dx0`dx12
D2G1

4

a8h
c2`dx2`dx3

C(6)85
1

h
f 2`dx0`dx1`dx2`dx31

D2

a8
p4`dx0

`dx12
D2G1

4

a8h
a4`dx2`dx3

C(8)85
1

h
p4`dx0`dx1`dx2`dx3 ~4.33!

where we used the fact that in the original metricG15G2.
We have checked that the field strengths produced by the
potentials of Eq.~4.33! satisfy the duality constraints~4.13!.

In the remainder of this section we show that a D3 pro
in the background~4.33! has the same moduli space as th
in the PW geometry. Furthermore, the metric on this mod
space is the same, as expected.

For convenience, we reproduce the action of a D3 pro
9-10



of

ul

i

.
th

ex-
ory
is

e

ry
er
by

GAUGE DUAL AND NONCOMMUTATIVE EXTENSION OF . . . PHYSICAL REVIEW D 63 044009
S52m3E d4ye2FA2det~P@G1B#ab12pa8Fab!

1m3E P@exp~2pa8F (2)1B(2)!` % nC(n)#, ~4.34!

wherea,b denote directions parallel to the world volume
the probe. For a probe oriented alongx0, . . .x3 directions,
the potential energy density in the background~4.33! is

V5m3e2F8A2det~P@G81B8#ab!

2m3P@C(4)81C(2)8`B(2)8#0123

5m3~gs
21G1

424w!, ~4.35!

where to get the second line we used the transformation r
~4.33!. This is identical to the potential for the original PW
solution in Sec. II. Thus, the moduli space of a D3 probe
the gravity background dual to the noncommutativeN52
gauge theory coincides with its commutative counterpart

Further, the metric of this space is the same. Letting
probe coordinatesxi have a slow dependence onya, the rel-
evant part of the probe action is

S52m3E d4ye2F8A2det~Gab1gi j8 ]axi]bxj !

→
O~]2!

2
m3

2 E d4ye2F8A2det~Gab!G abgi j8 ]axi]bxj ~4.36!
tt

h

04400
es

n

e

where

Gab5P@G81B8#ab . ~4.37!

Using the properties

e2F8A2det~Gab!G (ab)5e2FA2det~Gab!G
ab, gi j8 5gi j

~4.38!

of the solution~4.33!, it follows that the metric on moduli
space is the same as in the commutative case. We have
plained earlier why this should be true from the gauge the
point of view. Note that in the supergravity description th
result is obvious in theT-dual tilted picture, where a prob
D1-brane does not couple to the transversedB(2) .
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