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We investigate some properties of a recent supergravity solution of Pilch and Warner, which is dual to the
N=4 gauge theory softly broken t§= 2. We verify that a D3-brane probe has the expected moduli space and
its effective action can be brought fg=2 form. The kinetic term for the probe vanishes on an enbanc
locus, as in earlier work on large-N=2 theories, though for the Pilch-Warner solution this locus is a line
rather than a ring. On the gauge theory side we find that the probe metric can be obtained from a perturbative
one-loop calculation; this principle may be useful in obtaining the supergravity dual at more general points in
the N=2 gauge theory moduli space. We then turn oB-feld, following earlier work on theV=4 theory,
to obtain the supergravity dual to the noncommutatie 2 theory.
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I. INTRODUCTION less useful for phases with many 5-branes.
For N=4 broken toAN/=2 by mass termgthe N'=2*
It is an important direction to extend the AdS conformal theory) there is a moduli space. Pilch and Warigew) [9]
field theory(CFT) duality of Maldacendl] to nonconformal have recently found the ten-dimensional supergravity solu-
systems with less supersymmetry. One way to do this is byion on a one-parameter subspace of the moduli space. It is
perturbing the Hamiltonian, which is equivalent to perturb-the purpose of this paper to analyze some of the physics of
ing the boundary conditions on the AdS sp#2€3]. the PW solution. The PW theory has the sam&sslesgon-
The understanding of the resulting solutions is still lim- tent, pureA/=2 gauge theory, as for D7-branes wrapped on
ited. One approach, beginning with Reff4,5], is to reduce K3; the latter was studied in R€fL0]. In that case the naive
to five-dimensional gauged supergravity. This has been vergupergravity solution had a naked singularity, which was re-
useful, but it has limitations. For one, only rather specialsolved by an interesting stringy phenomenon. The constitu-
states can be obtained in this way. The solutions have only ent D7 branes were forced to lie on a ring of finite radius, the
finite number of integration constants, whereas a gaugenhanon. This mechanism involved states becoming mass-
theory moduli space has of orddparameters. For a second, less when the K3 on which the branes were wrapped became
the full ten-dimensional geometry is in general quite compli-small, and as such it may be a much more general phenom-
cated in the reduced directions. This is encoded in the fiveenon. The PW solution has a feature resembling the enhan-
dimensional geometry through the algebraic magic of consisgon, and we would like to make the connection more precise.
tent truncation, but it is necessary to lift the solution to ten In Sec. Il we study the PW supergravity background. We
dimensions to see its full structure. A related issue is thafirst discuss its symmetries, and also remark on a regént
most solutions are singular. While there have been attempts 1 ten-dimensional solutiofiL1]. We then study a probe in
to identify allowed singularities in a purely five-dimensional the PW geometry. The basic constituents of the PW solution
picture[6], the ten-dimensional structure is crucial for a full are the D3-branes, and so these are the natural probes to
understanding. consider. We find that the probe potential vanishes on a two-
For N=4 broken ta\V=1 or V=0 by mass terms the full dimensional plane in the transverse space, which is the cor-
ten-dimensional geometries have recently been foufld rect moduli space, and that the low energy action for the
Here there is the simplifying feature that the 3-brane charg@robe can be put in the expectdf=2 form by an appropri-
dominates the dynamics, so the solution can be treated asate choice of coordinates; these are checks on the PW solu-
perturbation of the Coulomb brandhlack 3-brang8]) so-  tion. In addition, we will determine the precise configuration
lution. However, this approximation was found to breakof branes that the solution of PW represents. We find that it
down in some interesting regimes. In particular, it becomess a different part of moduli space than that studied in Ref.
[10]—the branes lie on a line segment rather than in a ring.
In Sec. Il we discuss the gauge theory side of the corre-
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metric of a D3 probe. TheV’=2* supersymmetric gauge |~:(5):].‘+*_7.‘,

theory was solved by Donagi and Witteh2]. As we argue

below, matching the supergravity probe computation is es-

sentially perturbative in the gauge theory, so we will not F=4dx°Ndx*Adx2AdxEAdw(r, 6); (2.2
really use the nonperturbative tools of Seiberg-Witten

theory. The gravity and the gauge theory computations of théthe factor of 4 results from conventions, to be explained in
moduli space metric agree up toNLtorrections. This pro- Sec. IVA) and the dilaton-axion is

vides another check on the proposed correspondence.

Because the gauge theory calculation is perturbative, it 7.0_?03 ) \/c_Xl— \/X—z

can be extended to any point on the moduli space. Thus the =18 B=e?¢———= (2.3

gauge side gives some information about the general super- \/C_X1+ \/X_Z

gravity solution. There is a further S|mpI|fy|ng feature that wherer,= 6427+ i/g. is the asymptotic value. PW's abbre-

the gauge theory is close to ttié=4 theory, in the sense viations aré

that the masses from gauge symmetry breaking are large

compared to the masses from explidgit=4 breaking; this 6 6

may allow more of the supergravity solution to be extracted. Xy=cogb+cp®sintd, X;=ccosb+p®sir’y,

By using information from the gauge theory side it may be

possible to find the supergravity solution at all points on k48X

moduli space. w(r,f)= ————, (2.9
In Sec. IV we find the noncommutative generalization of 4g4c?—1)?

the Pilch-Warner solution, extending to PW solution the con-

struction of Refs[13,14]. Although the PW solution is much and

more complicated than Ad% S°, the same strategy can be

used to generate the solution. That is, take Thdual on a 6 ) 1 (c-1

T2, turn on a constarB-field on theT2, andT-dualize back. pr=cr(c=1) y+3in c+1/| 2.9

The resulting solution should be dual to the noncommutative

N=2* gauge theory. As a check, we find that the D3-probeThe o; are the differentialsr, = 3 (cosady+sina sin¢dp),

moduli space is unaffected by the noncommutativity, a resultr,= 3 (—sinady+cosasingdB),  o3=73(da+ cosydp).

which is expected from the gauge theory side. That is, the angles, 3, parametrize a 3-sphere, which we
can also describe by &U(2) matrix g where

Il. THE SUPERGRAVITY SIDE oi=tr(g"'7dg). (2.6)

In this section will examine the physics of the PW baCk_The above set of coordinates may be unfamiliar, so for ori-
ground by using a D3-brane probe in order to elucidate its y y

properties. The PW background is complicated: all the tyloeentation purposes we note the behavior of various coordi-

[IB supergravity fields are nontrivial. An essentially new fea- hates and functions of interest in the gauge the.ory UV where
ture of their solution is that the ten-dimensional dilaton-" 98t back ﬂ;e,\/:4 s~ymrl1etry.~The A<21§metr|c goes as
axion field depends on the radial coordinate, and it also de=dr’+e”“dxf=—(L/r)’dr®+(r/L)?dx;, ~where L
pends (perhaps surprisingly on two angular transverse =(4mgN)Y“a’'?is the radius of curvature of AgSandr
coordinates as well. =Le"! is the usual isotropic radial coordinate appearing in
the 3-brane harmonic function. The asymptotic region
—ow, T—oo matches the metric(2.1) as c—1" (so
p8 X;,X,—1), witht =Le""=kL/arccosh¢).
We begin by recalling the necessary pieces of the PW The solution contains two parameters. The paranieier
solution[9]. The ten-dimensional Einstein frame metric is proportional to the symmetry-breaking mass perturbation
(CXXo) Y4 [ k2p® L2 One way to see this is to note thiatand x| appear in the
ds2= | > xﬁ— s———dc? background only in the combinatidkx;, while the gauge
p° c-1 p(c®=1) theory physics depends only on the combinatiog . More
1 Sirto precisely, Eq.(63) of~ Ref. [7] shows that deviations fr~om
— L2[6d02+ d¢p? AdS become large at~mL? (wherer in that reference is
here, while the deviation here becomes large whenl

A. The PW solution and its symmetries

Xz

. 1,1, =0(1) ort~KkL. Thusk=mL times a constant of order 1.
+p®cogo — o5t (o1+o5) | (2.0
cX, X4
INote that this equation fow corrects a typo in PW equation
the five-form field strength is (4.9), and also extends it to geneigl.
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The parametety defines a family of distinct solutions. In for large enoughm, n(cos¢,sing) can be approximated by
PW, the interpretation is given that<0 corresponds to be- integers, and such 5-branes can be distributed aroune the
ing on theAN'=4 Coulomb branch while/>0 is unphysical. direction.
The solutiony=0 appears to have an enhan¢and so we
are most interested in this value but we keggeneral for
now.

The N=4—N=2 gauge theory has aB8U(2)xU(1) We have in general for apbrane probe
R-symmetry. The symmetry breaking gives equal masses t _
two of the four Weyl fermions\;. The SU(2) acts on the “Sprone=Soe1 + Swz
two massless fermions, and tb€1)=SQ(2) mixes the two
massive fermions. This symmetry is evident in the metric
(2.1) asg—e'¢"sgh with he SU(2). The sixscalars trans-
form as the c_omb_ination)s[ixj] [6= (4% 4) antisyml» and two +Mpf Plexp2ma’F+Bp)A@Cyl- (2.7
of these are invariant und&U(2)x U (1). Thus the super-
gravity solution has a fixed plane where the radius of the
transversgsquashedtwo-sphere goes to zero. At long dis-
tance this is the equatd= 7/2, but there is a second coor-
dinate patch wherp=0. This fixed plane will play an im-
portant role.

B. Probing the solution

= —p,pf dPlye ®\/—de(P[G+B],p+2ma’Fap)

where u, *=(27)Pa’ (" 12 and P denotes pullback to the
world volume of the bulk fields.

We take the directions parallel to the probe toxpe the
. transverse coordinates' in the conventions of PW are
Note that theSU(2)x U(1) does not act on the coordi- (r,8,) plus the three coordinates on ttegjuashedsphere

nate¢.. Thus it is not surprising that the (_jilat((ﬁ.s).has. &  generated by the S@ R-symmetry of theA'=2 gauge
complicateds-dependence. Rather, what is surprising is thattheory. In the PW background, the components of the

the ¢-dependence dB is so simple, and even more surpris- Neyeu-Schwarz—Neveu-SchwarfNS-NS or Ramond-
ing is that ¢-translation is a Killing vector of the metric Ramond(R-R) two-form potentials parallel to the D3-brane
(2.1). This can be understood as follows. TB&(2,Z) mul-  probe and the world-volume field strength all vanish. It fol-
tiplies the fermion bilinears by a complex number; if we |ows that the only remaining terms in the probe action come
extend this t&5L(2,R), then there is & (1) subgroup which  from the R-R four-form potential and from a combination of
multiplies the bilinear by a phase. A combination of thisthe metric and dilaton. The supergravity metric [i@] is
U(1) and aU(1)CSQ(6) leaves the mass perturbation in- given in Einstein frame. Conveniently, for the case of the
variant; call this combinatiotJ(1)’. Supergravity without D3-brane this is precisely the combinatiay, ,=e~*?G ,,
branes is invariant und&L(2,R). The boundary conditions that appears in the probe action. The Chern-Simons terms in
are invariant undetJ(1)’, and so in fact is the full PW Fs) do not contribute to the longitudinal components, and so
solution. Since the metric does not transform urBe¢2,R) ~ We can read the longitudinal components @f;) directly
it is invariant undexp-translation; the field® transforms by a  from Eq. (2.2 with F=dCy .
phase underU(1)CSL(2,R) and so by a phase under The probe action in static gauge becomes
¢-translation.

The N=2 PW solution implicitly contains D3-branes, as

we will see, but these are invariant un@(2,R) and so do Sprobe= Msj d*y[—gg " —detP[gap] + P[C(4)]]
not affect the forgoing argument. Thus, tb€1)’ is an ac-

cidental symmetry of the gauge theory as long as we restrict M3 4 i U2
attention to states and observables that only involve the su- 0 d*y[— V—detgap(1—v'v'gij /god)

pergravity fields and D3-branes on the supergravity side.
It is interesting to compare the more recafi 1 solution +w(r,0)]. 28
of Pilch and Warner(PW2) [11]. Here one does expect
5-branes on the supergravity sidg. Again there is aJ (1)’ ) _ : .
symmetry in the supergravity and in the boundary COndi_lr_1sert|ng the PW solution, we find the potential energy den-
tions, and some puzzling features of the=1 solution can Sty to be
be understood if this is a symmetry of the full solution.
Namely, if there is a D5-brane as in RET), then theU (1)’ 74k pS
will carry this into a (cosp,sin¢g)-brane at anglep: the so- V= %(\/cxlxz—xl), (2.9
lution appears to contain a continuous distribution of such (c"™=1)
branes on ar$?x St. Now, (coseg,sin¢)-branes may sound
unfamiliar, but supergravity does not know that .
(p,q)5-brane charges are quantized, and so it admits sch'th 73= p3ls.
sources. Thus it might seem that the PW2 solution is illegiti-
mate in string theory. However, it can be obtained as a limit
of the multi-5-brane phases described in R&l. Namely, %G is the string metric.

Similarly, the kinetic energy density is
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K2L2  [cX X 1 TYM= Tsuara: (2.19
T=7'3 21 2{ — z(vc)z YM sugrar
2 V(c*-1)\|p%c-1)

In the natural coordinates on th€=2 moduli space, the

1 Sirfg kinetic term for the transverse scalars is the imaginary part of
+ =)+ ——(?%? ot
c X,
1 _
: ! T(Y)=5use oo’ 2.1
+p8cof| — (v3) %+ —[(vH2+ (D4} |, (Y)=5uze "v'v (2.1
CX; Xy

(2.10  Where Y is a complex coordinate encoding the two-
dimensional moduli space.
wherev©?#1233re the velocities of the probe in each of the ~ We focus now on locus I. From E¢2.3), the dilaton is
six transverse directions.
For comparison to the enhamt physics off10], we are e P= C_ : _ (2.17
interested in the moduli space, where the potential vanishes. gdcosg+ic sing|?
There are two solutions to the conditidf+=0,

In order to find the coordinate we first identify the obvious
(I) cX,=X;=cos#=0, (Il) pb=0. (2.1) isotropic coordinate’ in the metric(2.12 via dc/(c®—1)
. _ S . =—dr'/r’". Then in terms of
Let us determine the dimensionality of these pieces of

moduli space by inspecting the kinetic terms on loci | and 1. z=r'e”'Y=e"'?J(c+1)/(c—1) (2.19
On locus |, the kinetic term is independent af .
the locus | metric becomes
Tt 2t o] 212 L
=T v v . Cc =
32 (c?-1)|(c?-1)? viZ. (2.19

E 2
(c+1)
and we see that the locus | is the, §) plane. Note that the

potential term(2.9) in the D3 probe Lagrangian has a par- Equating the metric&.16 and(2.19), Y is analytic inz with

ticularly simple expansion about locus I, 2 2

aY cos¢+icsing|? k2L? 1
Kip® ( 77)2 7 K ¢c+1 8- e
Vi=0+m37——|0—%| +---. 2.1 z
: 32(¢?-1) 2 213 (2.20
Locus Il does not exist fory>0: the functionp is positive  Thus
on the entire range dc<«. For y<0 there is a unique KL
valuecy(y) such thaip(cg)=0 in Eqg.(2.5), and this defines Y=—(z+2"Y) 2.21)
locus Il. Locus Il is then parameterized by, ¢), and the 2
moduli space metric there is
and
KL 1 ) 5 _
T(y<0)=73—— —5—~[cog0(v?)?+sirfo(v?)?]. 70— 79 | y2 1 g
(2.14 722—1 Os\ Yo—kL 2
As noted in PW, the dilaton-axion bulk field is trivial on This is holomorphic, as expected from supersymmetry; note
locus II. that B is simply z~2.
For v>0, there is only locus |, where—1" is the AdS Notice that this function has a branch cut emanating from

boundary andc— is a singularity. Fory<0, locus | is Y==KL. The real line segment kKL<Y=<KkL maps to the
defined by XKc=cy, 6=/2; locus Il is defined byc circle z=1 and thence tac=«. Thus the branch cut is
=cg, 0<60=<m. These fit together to form a plane if we present only fory=0, and runs along the real axis where

identify = — 6 in locus Il. In the limity=0, co—~ and  =o0. This form for 7 is the main result that we will need in
locus 1l becomes singular: the moduli space metric vanishethe next section. Note thail.=/mL? for some constan
while the dilaton field blows up. which we determine explicitly in the next section.

The moduli space is two-dimensional in accordance with  We would now like to know what kind of brane distribu-
expectation from\/=2 gauge theory. This is the same as thetion would give rise to the functiom which we found above.
fixed plane of theSU(2)xU(1) R-symmetry, consistent We expect that the source D3-branes are distributed on the
with the fact that this symmetry is unbroken on the moduliCoulomb branch, and we can infer their distribution in a
space. number of ways. For example, the metric componegts

To identify theA/=2 structure in the moduli space metric vanish as one approaches a D3-brane distribution, provided
we need also the gauge field action. Expanding the probthat the branes are not spread in too many dimensions. In
action in powers of the field strength, the coefficient of theterms of an appropriate radial coordinatethe metric be-
kinetic term ise”® and that ofFAF is C(g, so that haves agy“~¥/2dxf +y~(“~W'2dy?. In the metric(2.1), g
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vanishes only near locus I|h=0. Sincep vanishes linearly allel to the D3-branes; for a static configuration we need to
at c,, the metric behaves asd—c) 1’2dxﬁ+ (co—c) ¥2dc?.  hang a D-string in from infinity, and so the gauge theory dual
For y=(co—c) this is of the expected form witk=2, is the magnetic Wilson line.

consistent with the two-dimensionality of locus Il. Thus, e wish to concentrate on that part of the D-string world-
wheny<0 the branes are spread over locus Il. PW make théheet parallel to the D3-brane. Starting with the act@s)
identification thaty<0 corresponds to the Coulomb branch for & general [p-brane probe, we need to extract the terms
of the \/'=4 theory. This will be true for very negativg for which are turned on in the PW background. Since we are

smaller values the effect of the soft breaking parametrized by terested only in th? Kinetic piece of the action we can ig-
mwill be less negligible. ore all ;he Chern-Smons—type termsSy,; . Therefore, let

In the limit y=0 this locus collapses to the line segmentus consider the DBI piece
found above. Curiously, the metriz*(dxf+dc?) is of k
=0 form with y=1/c, which is more singular than expected
for a one-dimensional distribution. Evidently the effect of the . )
perturbation on the D3-brane metric cannot be ignored in thid! Static gauge where we allow only time dependence of the
case. Notice that we are at a different point in moduli spacdransverse coordinates, the pullback of the NS#ifield is
than the setup dfL0], where the branes of the enhanday Zero, and so we need only_the me';r_lc. In.the Einstein frame,
on a circle in the “natural” coordinates. If we start from expanding to lowest order in velocities gives

=0 and turn on a slightly negative, the source brane dis- T — e *24uivl|g;; 190 /—de(gab)=e*‘b’zlv‘vigij ,

2 2

SDl: ’TlJ dzye7®\/_detP(Gab+ Bab)' (223

tribution will turn from a line segment into a very squashed (2.24
disk.

Finally, for y>0 bothgf and the string metriGf diverge ~ where in the last equality we used the fact that=—goo in
at c=o, which appears to be unphysid#l,9]. the PW coordinates. The effective mass, the coefficient of

The linear D3-brane distribution at=0 is reminiscent of ~the invariant velocity, goes to zero when the dilaton blows
the N'=2* limit of the A’=1* theory, where the 5-brane UP: This is the fact we were after to make the connection to

collapses into a line as one mass is taken to f&toHow- ~ €nhanon physics. _ _
ever, the length of the distribution here i®(KL) .L_et us make a few remarks about the resolution of singu-
—0(mygNe') in the isotropic coordinate, where the limit larities by brane expansion. When all D3-branes are at the
faD5 g has lenat®(mNa’ d tr; t of NS5 origin it appears that the supergravity solutions are singular
graie h;srai(r;igtl%s(n?g?\l ,()m Tﬁe) IZtr;er a?e %O;]n Iarge; there. When they are sufficiently spread out then the origin is
S a . [l

. X 8 like an ordinary point and it is possible to connect the non-
reflecting the fact that the 5-branes in the=1* theory are  5ymajizable perturbation from infinity with the normaliz-

large compared with the radius at which the perturbationypje solution at the origin. An enhaore distribution is one
becomes large. Possibly the PW solution could be obtaineghat is as compact as possible. For tNe=1* theory the

as a limit of a configuration with a large number of 5-branes same principle holds but there is no moduli space; the branes
Let us make more precise the relation of the branch cut oRye expanded by the dielectric mechanisr].

the real axis to the enhamie of Ref.[10]. The enhapen is a
distribution of D-branes on a curve where the gauge kinetic
terme™® vanishes. Any further contraction of the distribu-
tion would lead to a negative kinetic term. From E.17), Via the AdS-CFT correspondence, the supergravity solu-
the limit c—, which again is a line segment in the natural tion of [9] corresponds to softly brokew=4, large N
coordinates, has vanishing kinetic term, and this is where th8U(N) Yang-Mills theory at a specific point on the Coulomb
D3-branes are located wher=0. The shape of the distribu- branch of theN'=2 supersymmetric Yang-Mills theory with
tion is dependent on where one is on moduli space. a massive adjoint hypermultiplet. In this section we discuss
Let us also remark on magnetic Wilson lines. This is rel-the gauge theory part of the correspondence. We identify the
evant to the enhawoa physics in the following way. In the A/=2 gauge theory vacuum corresponding to linear en-
d=2+1 case off10], the N=2 gauge theory setup comes hanon of the PW geometry ay=0 and compute from the
from D6-branes wrapped on a K3. A DO-brane probe of thisfield theory perspective the moduli space metric of a D3
system feels a force, but the more interesting aspect of itprobe. The supergravity calculation matches to a one loop
behavior is that the coefficient of its kinetic term goes to zeragauge theory calculation, a result that is likely to be useful in
at the enhayun, and by duality one can see that it becomesunderstanding the supergravity solution at more general
the gauge boson of the enhanced (3Usymmetry. We  points in moduli space.
would like to investigate the analog of this for the PW sys-  In the language of four-dimensionAl=1 supersymme-
tem. The most direct analogy is to consider a D-string pariry, the mass deformeti'=4 SU(N) Yang-Mills theory con-
sists of a vector multiple¥, an adjoint chiral superfield
related byN=2 supersymmetry to the gauge field, and two
3In Ref. [10], the gauge potential term was proportional \fo additional adjoint chiral multlpletQ andQ which form the

-V, , whereV was the volume of K3 an¥l,, the self-dual volume, N=2 hypermultiplet. In addition to the usual gauge-
so thatV=V, defined the enhaoa. invariant kinetic terms for these fields, the theory has addi-

Ill. GAUGE THEORY

044009-5



ALEX BUCHEL, AMANDA W. PEET, AND JOSEPH POLCHINSKI PHYSICAL REVIEW 3 044009

tional interactions and hypermultiplet mass term summarized’he perturbative contribution is one-loop exat6] and is

in the superpotentiél determined by the standard quantum field theory computa-
tion
2 Vo m 2 2
W=2+/—7—tr([Q,Q]®)+ —(rQ°+trQ“). (3.1 i o (a—ay)?
9vym Iy m Foet=g— ;] (aj—a;) |HT

The theory has a moduli space of Coulomb vacua param- a2
etrized by expectation values of the adjoint scalar -> (a—aj+ m)zlnm . (398
3 M

d=di - = 2
diagay @z, .. .a), Z =0, 32 From the Wilsonian effective action viewpoint it is generated

by integrating out electrically charged gauge bosons and the
in the Cartan subalgebra of the gauge group. For generigharged components of the adjoint hypermultiplet. Finally,
values of the modula; the gauge symmetry is broken to that the nonperturbative prepotential is generated by instantons.
of the Cartan subalgebra U()*, up to the permutation of The nonperturbative part of the prepotential can, in principle,
individual U(1) factors. At the semi-classical level, non- pe extracted from the exact solution of the theftg]. In
generic values of the moduli may yield a larger symmetrypractice the computation is very difficult to carry out explic-
group. One of the fundamental results of the Seiberg-Wittenxly other than for gauge groups of small rank. Nonperturba-
theory[17]° is that in the full quantum theory, such larger tive corrections become important in regions of moduli space
residual gauge symmetry groups do not survive quantizatiorwith light BPS states. Semi-classically, monopoles are ex-
so that the theory is always in the Coulomb phase. The entirgected to have massesréd/g?,,, wherev is a characteristic
low energy effective actioff of the N—1 Abelian U(1)N  scale of the Higgs field ~|a;—a;|. In the N—c limit we
=2 vector multiplets is completely determined in terms of gcgle the gauge Coup"rgimﬂo while keeping the 't Hooft
the single prepotentiat=7(7,m;{a;;) which depends ho- oy pjing fixedNigZ,,—O(1). Sounless the spacing between
Io_morphlcally on the m;croscoplc parametélhg gauge cou- eigenvalues ofb is O(1/N) or smaller, instanton corrections
pling 7= 62w +i(4m/gy),) and the hypermultiplet mass] do not survive in this limit.

and the Coulomb branch modyk; } The moduli space of a D3-brane probing the PW super-
_ iNEa] L i gravity background is dual to the projection of the Coulomb
8mL=—gj(D,aD al iy D,y branch vacua of S+ 1)—U(1)Xx U(1)N"? to that of the
i - e j probe U1). If uis the modulus of the U(1) representing the
PP S L F T =200 D A probe, the perturbative parametrization of the full moduli
space(3.2) is given by
(3.3

®=diagu,a;—u/N,a,—u/N, ..., ay—Uu/N),

+Re

Tij

with

PF 2 a=0. (3.9
gij_=|m[7'ij]. (34) !

If Ju—a;|>1/N, the instanton corrections to the metric on
In Eq. (3.3 ¢'s and\’s are fermionic superpartners of the the probe moduli space are exponentially suppressed and the
scalars and gauge bosons respectively. The covariant deriveomplete answefin the largeN limit) is determined by the
tive D, is taken with respect to the Levi-Civita connection Perturbative prepotential. From Eq8.6) and(3.8) we find

T” = i ] ’
dada

v " .
I}y of the scalar metrig;j- w i N 95+ i s (u—a,—u/N)?
. S U)=—+—+— n .
D,a'=d,a +T}ald,a". (3.5 T Os 27 279 (u—a—u/N)*-m? 310
Classically, the prepotential is given by -
We would like to match Eq(3.10 and the metric on the
F ZETE a2 (3.6) moduli space of the D3 prob@.22) in the largeN limit for
class™ T4 G a specific Coulomb vacuum{a,,a,, ...,a,} of the

. _ . “U(1) V! background.”
The full quantum prepo_tentlal receives both perturbative and Recall that the D3 probe computation in the previous sec-
nonperturbative corrections tion suggests that/=2 supergravity flow withy=0 corre-
Fe T Foodk Fo 3 sponds to the Coulomb branch vacuum in which the back-
classT 7 pert” <" non-pert 39 ground branes form aZ, symmetric linear enhaon
singularity around the origin of the probe moduli space. The
- size of the enhamum in the variablea=Y/27a' is
“The classical Khler potential is normalized (giM)tr[CIDCD 5
— = kL mL myggN
+QQ+QQ]. = =( =ay. (3.11
5See[18] for an introduction and extensive list of references. 27a’ 2ma’ \/;
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In particular, the characteristic scale of moduli space is larggymmetry breaking. This should restrict the renormalization

compared tan and so we can approximate of the perturbative effective action even off the plane where
. . 5 supersymmetry is unbroken.
m(u)= '_+ §+'_ 2 — . (3.12 One physical interest in studying exactly solvalie=2
Os 27 2@ T (u—a) gauge theories is that upon deformation\te-1 one hopes

_ _ _ to get a new handle in the mystery of confinement. We have
Away from the enhajan singularity nonperturbative correc- noted in Sec. Il that the PW solution is not thé=2 limit of
tions are suppressed and the probe metric is given by thge confining vacuum of Ref7]. It would be very interest-

continuous limit of this ing to find the exact supergravity flows corresponding to the
. . 2 linearized solutions of that paper. Constructing first the rel-
LU m evantN=2 solution of the mass deformeéd=4 Yang-Mills
7(u) + + dap(a) (3.13 - ? )
Os 2m 2m]_4, (u—a)? theory[12] might be a way of approaching this problem.

wherep(a) is a linear density of the background branes ei-
genvalues normalized as IV. TURNING ON A CONSTANT B-FIELD

ap Recently there has been a revival of interest in quantum
f dap(a)=N. (3.14  field theories formulated on noncommutative spaces, in par-
~% ticular those that emerge as various limits of M-theory com-
pactifications. Gauge theories are especially interesting: the
limit of large noncommutativity is similar to the lardélimit
vz g of ordinary gauge theories. In the previous section we recon-
o (3.19 structed the low-energy effective action on the one complex
dimensional submanifold of the moduli space of the mass
deformedN=4 gauge theory from its supergravity dual. In
this section we construct the deformation of the PW flow by
turning on aB-field on the world-volume of the D3 branes.
We propose that this deformation is the dual gravity descrip-
p(*ag)=0. (3.16 tion of the noncommutativé/=2 gauge theory with massive
adjoint hypermultiplet.
After constructing the solution we consider the same ob-
servable as in the commutative case, namely the moduli
2 space metric for a probe D3-brane. In fact this metric should
p(u)=— as—u?, (3.17  be the same as in the commutative case. The classical super-
m=gs gravity description is dual to the lardé-limit of the gauge
o - ] theory, and planar graphs in the noncommutative theory dif-
and the normalization condition fixesg=m?gN/m of {  fer from those of the commutative theory only by a phase
=1. factor, which is trivial for the two-derivative terms which
The one loop metri¢3.12 should apply everywhere on define the moduli space metric.
moduli space—except of course when it goes negative in The section is organized as follows. After fixing conven-
some region. Seiberg and Witt¢h7] showed that instanton  tions, we review the gravity flow dual to the noncommuta-
corrections make the metric positive everywhere. The lessoiye A'=4 gauge theory constructed id3,14. In the third
of Ref. [10] is that at largeN these corrections turn on part we present the deformation of the PW flow and study

sharply on the boundary where the metric changes sign, th@he dynamics of a D3 probe in the deformed PW geometry.
is, the enhaymn. Outside the enhaan the metric is pertur-

bative. The effect of nonperturbative corrections is that the

This is to be equal to the supergravity res@i22),

[ u?
T(u)=—(—

2 2
gs\u"—ag

Equating the discontinuities across the enloanbranch cut
gives

m2 /( ) 2
u = - —|
P s Jag—u?

This integrates to

constituent D3-branes are expanded from their perturbative A. Type IIB equations and conventions
positions and dissolved in the enhanc . S We use mostly negative conventions for the signature
Thus the gauge theory one loop calculation gives infor _... _) andel"1°=+ 1. The type IIB equations con-

mation about the supergravity solution anywhere on thesist of the following[19].

SU(N) moduli space. Essentially, it determines the dilaton The Einstein equations

and metric on a two-dimensional plane. Finding the solution (1) 1 ~(3) 1 ~(5)

on the full six-dimensional transverse space may then be Run=Tunt Tunt Tun 4.9
possible, with some ingenuity. It may also be possible to

extract information a_bout the full solution from the_ 9auge\ here the energy momentum tensors of the dilaton or axion
theory. Off the moduli space plane supersymmetry is brOke[ﬁeld, B, the three index antisymmetric tensor fiefidg, , and

and so the gauge theory less constrained. However, there istl‘?e self-dual five-index tensor fiel& are given by
simplification in the problem, which we have used in deriv- (5)

ing Eq. (3.12. That is, the splitting ofN'=4 multiplets by ) . .
the mass term is small compared to the masses from gauge Tun=PmPN" +PyPy™, (4.2

044009-7
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) 1 5 . o 1 POR~x The duality constraint is then implemented as
Tun=g| G WGpont G* QMGPQN_ggMNG RGor

8 *F(npyy= ()" (4.13
4.3 _ o . ,
1 Comparing the Einstein equatiof.1) with those of{ 7] we
T(N5|)N:€FPQRSMFPQRSN' (4.4) identify
4 . 1+B
In the unitary gaug® is a complex scalar field and Ctie "=i 1-B
Py=f%dyB, Qu=f2Im(BdyB*) (4.5 .
| mM=T"0m M M A2)=CtiB(y
with 1 1
1 Awm=7|Cat 5B/ \Cpy|. (419
fz—l—BB* 7 (4.6)
( ) Now we wish to recall theT-duality transformations of
while the antisymmetric tensor field s is given by these supergravity fieldsT-duality acts on the Neveu-
. Schwarz fields af20]
G(g):f(F(3)_BF(3)) (47) 1 _ e2¢
e Guo= —  g2b——__
The Maxwell equations: WGy vy
2 _
(VP_iQP)GMNP:PPGKANP_§iFMNPQRGPQR' G,=G,,— G“yny BMBW G )F%
nv nv G G
(48) yy yy (415)
The dilaton equation: 5 _p ByGuy—G.Buy = :%
M al 1 P - * ny " ny
(VM=2iQ"Py =~ =GP RGpqr. (4.9
24 . . .
where we defined the string metric by G{g)suing
The self-dual equation: =e®2(g,5)enstein- I E. (4.15), y denotes the Killing coor-
dinate with respect to which th&-dualization is applied,
Fs=*F(s)- (4.10 while u, v denote any coordinate directions other tlyaif y

In addition, F 3, andF 5, satisfy Bianchi identities which S 'dentified on a circle of radiu, i.e., y~y=+2R, then
follow from the definition of those field strengths in terms of &fter T-duality the radius become®=a'/R=I1/R. The
their potentials: string coupling is also shifted ag=gl/R.

T-duality transforms the type 1B theory into the type 1A
F3=dAp) theory and vice versa, through its action on the world-sheet
1 spinors[21,22. This aspect off-duality is then apparent in
_ = * the transformations of the RR fields. The odd-form potentials
F6)=dAu = gIM(AR)/\FG)- @10 fthe type IIA theory are traded for even-form potentials in
the type IIB theory and vice versa. Using the conventions

The above supergravity potentials do not transform simplyadopted above, the transformation rules for the RR potentials
underT-dualities. Let® be a dilatonB;) NSNS two-form  gre[23,15

and C,) RR forms, as conventionally defined in D-brane

physics. For the type IIB theory one would ha€eg,, with ¢ e _(n_l)c(nfl)ﬂ-“V\yG\a]y

n=0,2,4,6,8. This range af is consistent with the implicit (Mp--vay == (=1 --va G

summation over RR potentials in the D-brane world-volume

action. Recall however, that these are not all independent, Cyu-..vap=Cnt1)u---vapy T NCn—1)[u-- vaBpaly

but rather apper in dual pairs. Following], we define the

“modified” field strengths n(n—1) Zoble -évlyBlalyGlﬂlv_ (4.16
vy

yy

F@)=dC
B. Pure N'=4 flow

F(3y=dC +C(o,dB
@) (2) 7 =(0%=) The type 1IB supergravity background dual to noncom-

?(5)=dc(4)+ C(2y/\dB(z mutative =4 supersymmetric Yang-Mills theory was con-
structed in[13,14]. We briefly review this analysis here.
|~:(7)=dC(e)+ C(4)/\d B2) Generalization of quantum commutative field theories to
5 theories on noncommutative spaces involves adding infi-
F(9)=dCg)+ C(s)/\dByy. (4.12 nitely many higher derivative terms, which renders the
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theory nonlocal. It is thus very hard to provide a proof of thewhile keepingB,)a' fixed. The constanB,)-field does not
quantum consistency of such theory using the familiar renoract as a source for other supergravity fieldsgd&g,)=0, so
malization tools of local field theorief24]. String theory Eq. (4.18 with the background NSNS two form
provides a way to obtain noncommutative gauge theories by
considering the decoupling limit of P 2)-branes in type
Il string theories onT? with a background NSNS 2-form
field B,,, polarized along tha@? [25,26. The fact that non-
commutative supersymmetric gauge theory is obtained in thy il 4 solution. T-duality on theT? produces finally the
deco.uplmg limit of string theory suggests tha'lt. it should be upergravity background dual to the noncommutativie 4
consistent at the quantum level. In the specific example O?(ang-Mills theory[ 13,14
[25,26 the noncommutative gauge theory has 16 super- —
charges. In general, we would expect the quantum consis- r2 r2
tency of any gauge theorgven with less supersymmetry as ~ dSo= p[d(xo)z— d(xh)?]- m[d(xz)hr d(x%)?]
in the example beloyy provided it can be realized in the
limit of string theory where one decouples gravity. L2 5
Following [13], consider a large number of D3-branes in - r_zdr _di
weakly coupled type IIB theory, oriented along the
x% xt,x2,x3 directions. Decoupling the stringy excitations by e®=g,/h12
sendinga’— 0 results in\'=4 supersymmetric Yang-Mills
theory on the world-volume of the D3 branes. This theory 2,4
has an Ad$X S° supergravity dual, describing the near ho-  6B(2)=
rizon geometry of the D3-brangg]. In the string frame the
metric and the dilaton is given By
r2 L?
dsS= 7, dxdx" — —zdr?—ds] Adrd
h=1+ W (4.22

AZ
8B(z)=— —dx*/\dx® (4.20
o

’L4th2/\dX3 (4.21)
o

where

e®=gs (4.1

The solution(4.22 reduces to the AdSKS® solution for
small r, which corresponds to the IR regime of the gauge
theory. This is consistent with the field-theoretical expecta-
tions [28]: the commutativeN'=4 gauge theory does not
branes oriented alonxf,x* directions. The near horizon ge- have UV divergences, so |ts_ _noncommutatlve defo_rr_nanon
ometry of the string frame solution in the presence of D1-does not change the IR physiGa any case UV-IR mixing

branes and their images coming from fifecompactification would show up only in nonplanar effegts
is given by theT-dual of Eq.(4.17) [8]

whereL*=4mgNa'?. Consider compactifying the?,x® di-
rections on the square tord&. The system of D3-branes
extending along®,x* and wrapping thd@? is T-dual to D1-

C. Deformed PW flow

In constructing the gravity dual of the noncommutative
N=2 gauge theory we follow the strategy [df3], reviewed
5 above. The starting point is the PW supergravity solution
L dri—dg compactified on a square tord€ along x?,x° directions.
12 The bosonic background can be written schematically as

2 2
ds2= 5[~ d(x)2]— SH{d0?) 2+ d0C)?]

2 ds2=g?7,,dx*dx"—g3[d(x?)?+d(x®)?]—ds;
(R
e _gSrZ‘ (418) A(2)2C2+ib2

i . Fisy=dyx,s+*dy,,
Let us turn on a constar,-field polarized alongr?. Ac- (5)~ GXa™ *HX4

cording to[25,_2(i we end up in the decoupling limit with _the Ya=WARAdXNAD A (4.23
noncommutative N=4 Yang-Mills theory. More specifi-
cally, it was argued 26,27 that in order to get a finite

i wheredsé is the transverse metric arg,) has nonvanishing
noncommutative scale one should take

components only alon§®. The various functions and forms
) depend on the six transverse coordinates and are independent
By—®, a'—=0 (419 ofx0, ... x3. In this initial solution the functiong; andg,
are equal. Note that the metric is given in Einstein frame.
T-duality transformations are most conveniently ex-
5We discuss RR potentials in detail in a more general setting ifpressed in fields conventional in D-brane physics. Using Eq.
the next section. (4.14) we find
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s (1-B)(1-B) . B-B

e’=—) C(O)EC:|—_
1-BB (1-B)(1-B)

B)=b2, C=¢;

Fs)=4F ). (4.24

We also define the string frame metric according to
dsl=G%n,, dx“dx"—G3[d(x?)?+d(x%)?] - d
(4.295
dS=e®?ds:.

_ A0/4 _ d/a
Gi=e""g1, Gy=e""gy,

(4.2

Since 1-, 3-, and 5-form field strengths are nonzero, ther
will be nonvanishing 8-, 6-, and 4-form potentials as well

Cay=4wd XN dX'NdXPAdXC+ ay
Ce)= F2ADXCAdX A dXA\d X
Cg)= Pa/\AX°NdX /A dx2Ad X3 (4.27

where the 2-fornf, and 4-formsa, andp, have only trans-
verse components, are independentbf. . . x3, and satisfy

xdc=(dps+ f,/\db,)/A\dx°
Adx*Adx2A\dx3

x(dc,+cdby) = — (df,+ 4wdb,) Adx°
AdxEAdx2/A\dx3

1
*(dw/\dxo/\dxl/\dxz/\dx3)=Z(da4+ c,/\dby).
(4.29

Equations(4.28 reflect the duality constrainig.13.

Using the transformations rules4.15 and (4.16),
T-duality first alongx® and then along? produces the fol-
lowing configuration, denoted by tildes:

e’*=e??/G;

Czy=cdx/Adx?+ 4wdxAdx!

Cay= o ADCAX2+ f o AdX N\ d X
C)= as\NAXCAAXP+ py/NdXCAdXE
Cg)=0. (4.29

It is straightforward to verify that given E@4.28, the field
strengths constructed from the R-R potentials of &q29
satisfy the duality constrainig.13).

PHYSICAL REVIEW 3 044009

As in the case of the supergravity flow corresponding to
the =4 Yang-Mills theory, to generate a background dual
to the noncommutativd/=2 gauge theory we now turn on a
constant NS-NS 2 form potential on thel?:

2

. A
6B(2)=— — dx*/A\dx. (4.30
o

Again, since the corresponding field strength vanisﬁE@)
is a modulus.

After turning onE(z), T-duality alongx? and then along
x3 directions, followed by the decompactification Bt pro-
duces the gravitational dual on the noncommutaiie 2
gauge theory with massive adjoint hypermultiplet. We de-
note this final configuration with primes:

, A*GY
e =e*"/h, h=1+—+ (4.3
o
G,=G;, G,=G,/h'? dsf'=ds
(4.32
204
B(z),:bz‘f' 1dX2/\dX3
a'h
C(O),:C
A2w 2Glc
C(a)' =Cot4——dX®Ndx' - ,1 dx2A\dx®
a o

AW o 1 2 3 A®
Cuy' = de Adx=/Adxe/A\dx +a4+;f2

24
1

A
AdxPAdxt— ;

a

c,/Ndx2Adx®

2

1 A
Clo = 1 T2 \DAD DX+ — py/\dx”

2~4
Adxt— —2

a,/NdxeAdXE

!

C - AdXPNAdXIAd XA DX (4.33
(8) hp4 .

where we used the fact that in the original met@g¢= G..
We have checked that the field strengths produced by the RR
potentials of Eq(4.33 satisfy the duality constrainig.13).

In the remainder of this section we show that a D3 probe
in the background4.33 has the same moduli space as that
in the PW geometry. Furthermore, the metric on this moduli
space is the same, as expected.

For convenience, we reproduce the action of a D3 probe
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where

S= —MJ d*ye ®\J—de(P[G+B],p+27a’Fyp)

+Mgf P[quZ’ﬂa’,F(z)‘i‘ B(z))/\@nC(n)], (434) gab: P[G/+B/]ab. (437}

wherea,b denote directions parallel to the world volume of
the probe. For a probe oriented alory . . .x3 directions, Using the properties
the potential energy density in the backgrodd3 is

V=pae = detPIG B ) v (G, G = e de(Gey) G gf =g
—u3P[Cuy’ +C2)' \B2y Jo123 (4.39
= u3(gs 'G1—4w), (4.3

of the solution(4.33), it follows that the metric on moduli
esspace is the same as in the commutative case. We have ex-
plained earlier why this should be true from the gauge theory
point of view. Note that in the supergravity description this
result is obvious in thd-dual tilted picture, where a probe
é)l—brane does not couple to the transvesgg,).

where to get the second line we used the transformation rul
(4.33. This is identical to the potential for the original PW
solution in Sec. II. Thus, the moduli space of a D3 probe in
the gravity background dual to the noncommutatiVe= 2
gauge theory coincides with its commutative counterpart.

Further, the metric of this space is the same. Letting th
probe coordinateg' have a slow dependence gh, the rel-
evant part of the probe action is

ACKNOWLEDGMENTS

5=~ s | d'ye ' V= aeNGapt 70 0)
We wish to thank Justin David, Aki Hashimoto, Gary
Horowitz, Sunny ltzhaki, Matt Strassler, and Nick Warner

0o(#?) ; i ; ;
B ,u_ 4 b [ abs o uio i for helpful discussions. This work was supported in part by
- dye ™ V—detGa)G7gijdax'dpx’  (4.30  NSE grants PHY94-07194 and PHY97-22022.

[1] J. Maldacena, Adv. Theor. Math. Phy%.231(1998. loshin, and V. |. Zakharov, Nucl. PhyB229 394 (1983; V.
[2] E. witten, Adv. Theor. Math. Phy, 253(1998. A. Novikov, M. A. Shifman, A. |. Vainshtein, and V. |. Za-
[3] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. kharov,ibid. B229, 381 (1983; B229, 407 (1983; Phys. Lett.
B 428 105(1998. 166B, 329(1986.
[4] J. Distler and F. Zamora, Adv. Theor. Math. Phgs.1405 [17] N. Seiberg and E. Witten, Nucl. PhyB426, 19 (1994).
(1999. [18] E. D'Hoker and D. H. Phong, hep-th/9912271.
[5] L. Girardello, M. Petrini, M. Porrati, and A. Zaffaroni, J. High [19] J. H. Schwarz, Nucl. Phy8226, 269 (1983.
Energy Phys12, 022 (1998. [20] T. Buscher, Phys. Letll598, 127 (1985; Phys. Lett. B194,
[6] S. S. Gubser, hep-th/0002160. 59 (1987); 201, 466 (1988.

[7] J. Polchinski and M. Strassler, hep-th/0003136.

21] M. Dine, P. Huet, and N. Seiberg, Nucl. PhyB322 301
[8] G. T. Horowitz and A. Strominger, Nucl. Phy8360 197 [21] g V8322

(1989.
(1991). . . L
; . [22] J. Dai, R. G. Leigh, and J. Polchinski, Mod. Phys. Lett4A
[9] K. Pilch and Nicholas P. Warner, hep-th/0004063. 2073(1989.

10] C. V. Johnson, A. W. Peet, and J. Polchinski, Phys. Re§1D .
[10] s, Fhy [23] P. Meessen and T. Ortin, Nucl. Phyg541, 195(1999.

086001(2000. _ .
[11] K. Pilch and N. P. Warner, hep-th/0006066. [24] S. Minwalla, M. Van Raamsdonk, and N. Seiberg,
[12] R. Donagi and E. Witten, Nucl. PhyB460, 299 (1996. hep-th/9912072. _
[13] A. Hashimoto and N. Itzhaki, Phys. Lett. 465 142(1999.  [25] A. Connes, M. R. Douglas, and A. Schwarz, J. High Energy
[14] J. M. Maldacena and J. G. Russo, J. High Energy P@gs. Phys.02, 003 (1998.

025 (1999. [26] M. R. Douglas and C. Hull, J. High Energy Ph¥2, 8 (1998.
[15] R. Myers, J. High Energy Phy42, 022 (1999. [27] M. Li, hep-th/9802052.

[16] V. A. Novikov, M. A. Shifman, A. I. Vainshtein, M. B. Vo-  [28] A. Matusis, L. Susskind, and N. Toumbas, hep-th/0002075.

044009-11



