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Exact solution for „2¿1…-dimensional critical collapse
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We find an exact solution in closed form for the critical collapse of a scalar field with a cosmological
constant in 211 dimensions. This solution agrees with the numerical simulations done by Pretorius and
Choputik of this system.
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I. INTRODUCTION

Critical gravitational collapse at the threshold of bla
hole formation, as first found by Choptuik@1#, has been stud
ied in many systems@2#. With the exception of a study o
vacuum, axisymmetric collapse@3#, the systems studied ar
spherically symmetric. Because of this symmetry, the eq
tions describing the collapse are partial differential equati
~PDEs! for functions of two variables. The critical solution
often discretely self-similar~DSS! or continuously self-
similar ~CSS!. In the CSS case one can study the critic
solution itself by assuming the CSS symmetry and thus
ducing the collapse equations to a set of ordinary differen
equations~ODEs!. In general, the equations~both the PDEs
describing collapse and the ODEs describing a CSS crit
solution! are sufficiently complicated that a numerical tre
ment is needed.

The Einstein equations in 211 dimensions are simple
than in 311 dimensions. Though to form a black hole
211 dimensions, one must add a cosmological constant,
added feature still allows analytic treatment of some colla
situations@4#. One might then hope that critical collapse
211 dimensions would be more tractable. Indeed, for
collapse of thin dust rings@5# or the collision of point par-
ticles @6,7# the collapse can be treated analytically.~This is
essentially because the spacetime has constant curvature
side of the zero thickness sources.!

Recently, Pretorius and Choptuik@8# performed numeri-
cal simulations of the collapse of a massless, minima
coupled scalar field with a cosmological constant in 211
dimensions. They find that the critical solution is CSS.

In this paper, we find the critical solution of Ref.@8# in
closed form. In Sec. II we write the Einstein-scalar equatio
in an appropriately chosen coordinate system. In Sec. III
make a CSS ansatz and find the solution. This solution
compared in Sec. IV to the numerical results of Ref.@8# and
perturbations of the solution are considered in Sec. V.

II. FIELD EQUATIONS

The Einstein-scalar equations with cosmological cons
are

Gab1Lgab5kTab . ~1!

*Email address: garfinkl@oakland.edu
0556-2821/2001/63~4!/044007~5!/$15.00 63 0440
a-
s

l
-
l

al
-

is
e

e

ut-

y

s
e
is

nt

Here,Gab is the Einstein tensor,Tab is the stress energy o
the scalar fieldf

Tab5¹af¹bf2
1

2
¹cf¹cfgab ~2!

andk is a constant. Following the conventions of Ref.@8# we
chose units such thatk54p.

We now consider an appropriate choice of coordinate s
tem for the metric. Since we want to study the CSS criti
solution, we want a coordinate system in which the solut
appears manifestly CSS. This is not the case for the coo
nates of Ref.@8#. Instead we use the method of Christodo
lou @9# to choose a coordinate system where the coordin
are geometric quantities. We choose as a radial coordinar̄

such that 2p r̄ is the length of the circles of symmetry. Th
is the analog of the usual area coordinate used in sphe
symmetry. We choose as our ‘‘time’’ coordinate, the n
coordinateu defined as follows:u is constant on outgoing
light rays, and on the world line of the central observer,u is
equal to the proper time of that observer. Finally, we cho
a coordinateu so that]/]u is the Killing vector. The metric
then takes the form

ds252e2ndu222en1ldudr̄1 r̄ 2du2 ~3!

where n and l are functions ofu and r̄ . In Ref. @10# the
Einstein-scalar equations were found for spherical symm
in any number of dimensions. For our purposes, we spec
ize the results of Ref.@10# to 211 dimensions, generalize
them to add a cosmological constant and change the con
tion to k54p. We begin by introducing null vectorsl a and
na defined by

l a5e2lS ]

] r̄
D a

~4!

na5e2nS ]

]uD a

2
1

2
e2lS ]

] r̄
D a

. ~5!

Then the Einstein-scalar equations with cosmological c
stant are satisfied provided that the scalar field satisfies
wave equation and that the following components of E
stein’s equation are satisfied:

Gabl
al b54p~ l a¹af!2 ~6!
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Gabl
anb5L. ~7!

Equations~6! and ~7! become

1

r̄
e22l

]

] r̄
~l1n!54pe22lS ]f

] r̄
D 2

~8!

21

2r̄
e22l

]

] r̄
~n2l!5L. ~9!

The solution of Eqs.~8! and ~9! is most easily expressed b
defining the quantitiesg[en1l andḡ[en2l. Then we have

g5expF4pE
0

r̄
r̄ S ]f

] r̄
D 2

dr̄G ~10!

ḡ5122LE
0

r̄
r̄ gdr̄. ~11!

The wave equation forf becomes

2
]2f

]u] r̄
1

1

r̄

]f

]u
2

1

r̄

]

] r̄
S r̄ ḡ

]f

] r̄
D 50. ~12!

III. CRITICAL SOLUTION

We now make the ansatz that the scalar field is CSS
use this to solve the field equations. Choose the origin ofu to
be at the singularity, and define two new coordinatesT andR
by

u[2e2T ~13!

r̄[e2TR. ~14!

Then demand thatf take the form

f5cT1c~R! ~15!

wherec is a constant. This ansatz requires that we neglect
cosmological constant, which in turn means thatḡ51 and
thus reduces Eq.~12! to the flat space wave equation. Puttin
the ansatz in Eq.~15! into Eq. ~12! we obtain

R~122R!c91~123R!c82c50 ~16!

where a prime denotes derivative with respect toR. The so-
lution of this equation that is regular at the origin is

c522clnF1

2
~11A122R!G ~17!

which leads to a scalar field given by

f5cS T22lnF1

2
~11A122R!G D . ~18!

Then using Eq.~10! we find that the metric functiong is
04400
d

e

g5expF4pE
0

R

RS ]f

]R
D 2

dRG
5F ~11A122R!2

4A122R
G 8pc2

. ~19!

The metric of the CSS critical solution must be singular
u50. However, our critical solution@Eqs. ~18! and ~19!#
appears to have an additional singularity atR51/2 which is
the past light cone of theu50 singularity. We now conside
whether the apparent singularity atR51/2 is a real singular-
ity or a coordinate singularity. Note that from Eq.~19! it
follows that R51/2 ~for any value ofT) is a marginally
outer trapped surface and that the Christodoulou coordin
go bad at just such surfaces. Now define a new coordinav
by v52(u12r̄ ). Then the metric is

ds25F2u

16 S 11A v
2uD 4G4pc2

3v24pc2
dvdu1

1

4
~u1v !2du2. ~20!

Now define the numberq and the coordinatew by 1/(2q)
5124pc2 andw2q5v. Then the metric is

ds25F2u

16 S 11
1

A2u
wqD 4G 12(2q)21

32qdudw1
1

4
~u1w2q!2du2. ~21!

This metric is smooth atw50 provided thatq5n wheren is
a positive integer. That is, the metric is smooth for values
c given by

c56A 1

4p S 12
1

2nD . ~22!

For n51 the spacetime is the 211 dimensional Robertson
Walker metric.

We now consider the question of whether it is physica
necessary to impose the condition that the metric be smo
at w50. If q5n, then one can show using Eq.~21! that the
spheres of symmetry are trapped surfaces forw,0. How-
ever, the critical solution cannot have trapped surfaces, s
it forms the boundary between those evolutions that resu
trapped surfaces and those that do not. Therefore, one sh
expect the numerical critical solution to approach our C
solution only inside the past light cone of the singular
~that is for w.0). It is therefore not physically necessa
that the CSS solution be smoothly extendible pastw50
since such an extension cannot correspond to the behavi
the numerical critical solution.
7-2
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IV. COMPARISON WITH NUMERICAL RESULTS

In a near-critical collapse, the evolution at first a
proaches the critical solution, and then diverges from it
the single unstable mode grows. Therefore, in comparin
numerical simulation of near-critical collapse to a propos
critical solution, one should make the comparison at an
termediate time: late enough for the critical solution to
approached, but early enough so that the unstable mode
not have appreciable amplitude.

To compare the analytic and numerical results, one m
express both in the same coordinate system. In the coo
nates of Ref.@8# the metric takes the form

ds25
e2A

cos2~r / l !
~dr22dt2!1 l 2tan2~r / l !e2Bdu2 ~23!

wherel 5A21/L andA andB are functions ofr and t. The
coordinates of Ref. @8# are related to ours byr̄
5 l tan(r / l )eB and u is that function oft2r that at r 50 is
equal to the proper time of the central observer. Therefor
is fairly straightforward to take scalars and tensors in
coordinates of Ref.@8# and express them in our coordina
system.

Our solution has an unknown parameterc, which should
be chosen for best fit with the numerical results. To ma
this choice, we note that the analytical solution@Eq. ~18!#
satisfiesc5]f/]TuR50. Thus the values of]f/]TuR50 for
the numerical solution should allow us to determine
value ofc. Figure 1 shows a plot of]f/]TuR50 vs T for the
numerical solution. Note that there is a range of intermed
times for which this quantity is approximately constant. T
line in the solution corresponds to the value ofc given by Eq.
~22! with n54. While it is not necessary thatc be given by
Eq. ~22!, we find that this particular value ofc gives excel-
lent agreement with the numerical data. From now on,
will assume thatc has this value.

Figure 2 shows a comparison between the numerical
analytic results for the scalar fieldf. Here the dots are the
numerical results and the curve is the analytic one. The c
parison is made atT59. The freedom to add a constant

FIG. 1. Numerical values of]f/]TuR50 ~dots! with constant
~line! approximation to intermediate time behavior.
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the scalar field is used to set the value of the scalar field
zero at the origin. Note that there is excellent agreem
between analytic and numerical results. Though this fig
shows the comparison at only one time, the agreement
sists for a large range of intermediate times.

Due to the symmetry of the spactime, the metric is det
mined entirely by the matter. This is made explicit in Eq
~10! and ~11!. Therefore, since the scalar fields of the n
merical and analytic solutions agree, the metrics must ag
also. Nonetheless, for illustrative purposes we present a c
parison of the metrics of the numerical and analytic so
tions. Figure 3 shows a comparison of the quantityM

5(r̄ 2/l2)2(ḡ/g) with the numerical solution given by the do
and the analytic solution given by the curve. Note the exc
lent agreement between the two solutions. Here the comp
son is made atT59, but the agreement persists for a lar
range of intermediate times. The metric is determined byM

FIG. 2. Comparison of analytic~curve! and numerical~dots!
values of the scalar field at an intermediate time.

FIG. 3. Comparison of analytic~curve! and numerical~dots!
values of the mass aspect at an intermediate time.
7-3
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DAVID GARFINKLE PHYSICAL REVIEW D 63 044007
andḡ which is 1 for the analytic solution and very close to
for the numerical solution in the intermediate range of tim
Thus, in the intermediate range of times, the scalar field
metric of the numerical and analytic solutions agree.

In Figs. 2 and 3, we have performed the comparison
analytic and numerical solutions only up to the past lig
cone of the singularity. However, the numerical solution c
tainly continues beyond this light cone, and sinceq54, the
analytic solution also extends. Do the two solutions s
agree in this region? I argued at the end of the previ
section that they cannot agree, since the analytic solu
contains a closed trapped surface beyond the light co
Nonetheless, it would be useful to compare the two soluti
in this larger region to see the extent and nature of th
disagreement.

To make this comparison, a different coordinate fromR is
needed, since the solution is not smooth inR across the light
cone. Here we use as our new coordinate the affine par
eter l along an outgoing radial null geodesic. The affi
parameter is made scale invariant by choosing the null g
desic to have inner productu with the central observer. Th
analytic solution can be expressed parametrically in term
l as follows: ~here we specialize to the caseq54). Intro-
duce the variablex[(2u)21/8w. Then x51 at the origin
andx50 at the past light cone of the singularity. We hav

l5
1

2A2
E

x

1

~11x4!7/2dx ~24!

f5A 7

8p
lnS 11x4

2 D ~25!

M52x7S 2

11x4D 7/2

. ~26!

From Eq. ~24! it follows that the past light cone is atl
'0.838. Using Eq.~23!, the affine parameterl can be found
numerically from the numerical data. Note, however that
numerical simulations have only a certain range inl since a
critical numerical solution must stop before the timet of
singularity formation. In our case, the maximum value ofl
for the numerical data is approximately 1.

Figures 4 and 5 show a comparison between the num
cal and analytic solutions for the range 0<l<1. Here the
values off are compared in Fig. 4, while the mass aspecM
is compared in Fig. 5. As in Figs. 2 and 3, the compariso
made atT59. From the figures it is not clear whether the
is a disagreement between the two solutions in the rangl
.0.838 that is beyond the past light cone. To see the
agreement clearly, one would need a larger range ofl. This
could perhaps be provided by a numerical simulation t
used double null coordinates.

V. PERTURBATIONS

We now turn to a treatment of perturbations of the critic
solution. This treatment should in principle allow us to d
termine analytically~1! the correct value of the parameterc
04400
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and ~2! the value of the exponent in scaling relations f
near-critical collapse. Unfortunately, as we will see below
is unclear what boundary conditions to impose on the per
bations.

The critical solution, when perturbed, has one unsta
mode that grows asekT for some constantk. Therefore the
correct value ofc is the one for which there is exactly on
unstable mode. The quantityk is related to scaling laws fo
near-critical collapse. In the collapse of a one parameter f
ily of initial data, a quantityQ with dimension (length)s

obeys a scaling relationQ}up2p* us/k wherep is the param-
eter andp* is its critical value. Pretorius and Choptuik@8#
examine scaling in maximum scalar curvature for subcriti
collapse, a quantity that has dimension (length)22. They find
k'0.83.

FIG. 4. Comparison of analytic~curve! and numerical~dots!
values of the scalar field with respect to affine parameter at
intermediate time.

FIG. 5. Comparison of analytic~curve! and numerical~dots!
values of the mass aspect with respect to affine parameter a
intermediate time.
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EXACT SOLUTION FOR~211!-DIMENSIONAL . . . PHYSICAL REVIEW D 63 044007
In the approximation thatḡ51, the scalar field satisfie
the flat space wave equation. Therefore, the perturbed s
field df also satisfies this equation. Then making the ans
df5ekTS(R) and using Eq.~12! we obtain

R~122R!S91~12@312k#R!S82kS50. ~27!

The solution is

S5F~k,1/2,1,2R! ~28!

whereF is a hypergeometric function. Writing the hyperge
metric function in integral form, we have

S5
2

pE0

p/2

~122Rsin2x!2kdx. ~29!
04400
lar
tz

In principle, one should now impose boundary conditio
on the behavior of the perturbation atR51/2 and these
boundary conditions would then determine the allowed v
ues ofk. Unfortunately, it is not clear what boundary cond
tions are physically reasonable, since the critical numer
solution should match the analytical solution only forR
,1/2. Therefore, though we have the solution of the pert
bation equation, we cannot use this solution to determine
critical exponent.

ACKNOWLEDGMENTS

I would like to thank Matt Choptuik and Frans Pretoriu
for many helpful discussions and for providing the compa
son between their numerical work and the exact solution
this paper. This work was partially supported by NSF gra
PHY-9722039 to Oakland University.
@1# M. Choptuik, Phys. Rev. Lett.70, 9 ~1993!.
@2# For a review see C. Gundlach, Adv. Theor. Math. Phys.2, 1

~1998! and references therein.
@3# A. Abrahams and C. Evans, Phys. Rev. Lett.70, 2980~1993!.
@4# R. B. Mann and S. F. Ross, Phys. Rev. D47, 3319~1993!.
@5# Y. Peleg and A. Steif, Phys. Rev. D51, 3992~1995!.
@6# H. Matschull, Class. Quantum Grav.16, 1069~1999!.
@7# D. Birmingham and S. Sen, Phys. Rev. Lett.84, 1074~2000!.
@8# F. Pretorius and M. Choptuik, Phys. Rev. D62, 124012

~2000!.
@9# D. Christodoulou, Commun. Math. Phys.105, 337 ~1986!.

@10# D. Garfinkle, C. Cutler, and G. C. Duncan, Phys. Rev. D60,
104007~1999!.
7-5


