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Exact solution for (2+1)-dimensional critical collapse
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We find an exact solution in closed form for the critical collapse of a scalar field with a cosmological
constant in 21 dimensions. This solution agrees with the numerical simulations done by Pretorius and
Choputik of this system.
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[. INTRODUCTION Here, G,y is the Einstein tensoiT . is the stress energy of
the scalar fieldp
Critical gravitational collapse at the threshold of black L
hole formation, as first found by Choptdik], has been stud- _ c
ied in many system§2]. With the exception of a study of Tab=VadVpd— EV $VcdPan 2
vacuum, axisymmetric collapg8], the systems studied are
spherically symmetric. Because of this symmetry, the equaandx is a constant. Following the conventions of R&fl we
tions describing the collapse are partial differential equationshose units such that=41r.
(PDES9 for functions of two variables. The critical solutionis ~ We now consider an appropriate choice of coordinate sys-
often discretely self-similalDSS or continuously self- tem for the metric. Since we want to study the CSS critical
similar (CSS. In the CSS case one can study the criticalsolution, we want a coordinate system in which the solution
solution itself by assuming the CSS symmetry and thus reappears manifestly CSS. This is not the case for the coordi-
ducing the collapse equations to a set of ordinary differentiahates of Ref[8]. Instead we use the method of Christodou-
equationg ODES. In general, the equatior{both the PDEs lou [9] to choose a coordinate system where the coordinates

describing collapse and the ODEs describing a CSS criticadre geometric quantities. We choose as a radial coordinate
solution are sufficiently complicated that a numerical treat- ¢, that 2t is the length of the circles of symmetry. This

me%t] IS E_ee(tje_d. i ino1 di . imol is the analog of the usual area coordinate used in spherical
€ EInstein equatons in Imensions aré SIMPIer oy mmetry. We choose as our “time” coordinate, the null

t2ha£1 C'F 3+1_d|men3|ons. Thgggh to forrln a bllack hole 'nh_coordinateu defined as followsu is constant on outgoing
+1 dimensions, one must add a cosmological constant, t fght rays, and on the world line of the central observeis

added feature still allows analytic treatment of some collaps%qual to the proper time of that observer. Finally, we choose

situations[4]. One might then hope that critical collapse in a coordinated so thatd/ 96 is the Killing vector. The metric
2+1 dimensions would be more tractable. Indeed, for the[hen takes the form

collapse of thin dust ringg5] or the collision of point par-
ticles [6,7] the collapse can be treated analyticallyhis is d<2= —e2"du— 2e" " M dudr+r2d 6 3)
essentially because the spacetime has constant curvature out-

side of the zero thickness sourges. where v and \ are functions ofu andr. In Ref. [10] the

Recently, Pretorius and ChoptuiB] performed numeri- ; . . ;
. . - Einstein-scalar equations were found for spherical symmetry
cal simulations of the collapse of a massless, minimally.

) . . . in any number of dimensions. For our purposes, we special-
coupled scalar field with a cosmological constant 12 y purp b

dimensions. They find that the critical solution is CSS. ize the results of Re’[“.’] to 2+1 dimensions, generalize
. : . . : them to add a cosmological constant and change the conven-
In this paper, we find the critical solution of R¢B] in

closed form. In Sec. Il we write the Einstein-scalar equationd!2" {0 = 4. We begin by introducing nul vectols and

a@ e
in an appropriately chosen coordinate system. In Sec. llI wé defined by

make a CSS ansatz and find the solution. This solution is 52
compared in Sec. IV to the numerical results of R8f.and |a:e—k(—_) (4)
perturbations of the solution are considered in Sec. V. ar
a a
IIl. FIELD EQUATIONS nd=e* i) - Eex(i_) (5)
Ju 2 ar '
The Einstein-scalar equations with cosmological constant
are Then the Einstein-scalar equations with cosmological con-
stant are satisfied provided that the scalar field satisfies the
Gapt AGap=kTap- (1) wave equation and that the following components of Ein-

stein’s equation are satisfied:
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Gapl?nP=A. (7

Equations(6) and (7) become

1 d g\ ?
:6_2)‘—_()\+v)=47re_2)‘(—i) (8)
r ar ar

-1 0

—e A —(v—\)=A. (9)

2r or

The solution of Eqs(8) and(9) is most easily expressed by

defining the quantiteg=e”"* andg=e*~*. Then we have

— dp\?
g=ex 47rf rl —=| dr (10
0 \ ar
_ —
g=1—2Af rgdr. (11
0
The wave equation fop becomes
Pp lop 19 [—d
2 (b_—l—:—d)—::(rg —f)=0 (12)
gugr r Ut gr ar

Ill. CRITICAL SOLUTION
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2
Ve

R
g=ex 477J R
0 JR

(1+V1-2R)?

4y1-2R

8mc?

(19

The metric of the CSS critical solution must be singular at
u=0. However, our critical solutioEgs. (18) and (19)]
appears to have an additional singularityRat 1/2 which is
the past light cone of the=0 singularity. We now consider
whether the apparent singularityRt= 1/2 is a real singular-
ity or a coordinate singularity. Note that from EL9) it
follows that R=1/2 (for any value ofT) is a marginally
outer trapped surface and that the Christodoulou coordinates
go bad at just such surfaces. Now define a new coordinate

by v=—(u+2r). Then the metric is

u v )4
14\ —
—u

5| 1o

4mc2

16

1
X v 4" dudu+ F(utv)2de? (20)

Now define the numbeqg and the coordinatev by 1/(2q)
=1—4mc? andw?d=yp. Then the metric is

We now make the ansatz that the scalar field is CSS and

use this to solve the field equations. Choose the origintof
be at the singularity, and define two new coordindtesdR

by

u=—e ' (13
r=e 'R (14)

Then demand thap take the form
¢=cT+¢(R) (15)

wherec is a constant. This ansatz requires that we neglect the

cosmological constant, which in turn means tgat1 and

thus reduces Ed12) to the flat space wave equation. Putting

the ansatz in Eq(15) into Eq. (12) we obtain
R(1-2R)y"+(1-3R)y'—c=0 (16)

where a prime denotes derivative with respecRtd'he so-
lution of this equation that is regular at the origin is

1
=—2cln §(1+\/1—2R)} a7
which leads to a scalar field given by
1
¢>=C(T—2In §(1+ V1-2R) ) (19

Then using Eq(10) we find that the metric functiog is

1-(2q) !

ds’=

4
—u
— e
16(1+ __uw )

1
x 2qdudw+ Z(u+wzq)2d02.

(21)

This metric is smooth av=0 provided thagj=n wheren is
a positive integer. That is, the metric is smooth for values of

c given by
1 . 1
= + —_— _ —
““=Naz*"2n)

For n=1 the spacetime is thet2l dimensional Robertson-
Walker metric.

We now consider the question of whether it is physically
necessary to impose the condition that the metric be smooth
atw=0. If g=n, then one can show using E@1) that the
spheres of symmetry are trapped surfaceswer0. How-
ever, the critical solution cannot have trapped surfaces, since
it forms the boundary between those evolutions that result in
trapped surfaces and those that do not. Therefore, one should
expect the numerical critical solution to approach our CSS
solution only inside the past light cone of the singularity
(that is forw>0). It is therefore not physically necessary
that the CSS solution be smoothly extendible past0
since such an extension cannot correspond to the behavior of
the numerical critical solution.

(22
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FIG. 1. Numerical values 0f¢/dT|g—o (dot9 with constant 0 01 02 ] 03 04 05
(line) approximation to intermediate time behavior.
FIG. 2. Comparison of analytiécurve and numerical(doty
IV. COMPARISON WITH NUMERICAL RESULTS values of the scalar field at an intermediate time.

In a near-critical collapse, the evolution at first ap-
proaches the critical solution, and then diverges from it a
the single unstable mode grows. Therefore, in comparing
numerical simulation of near-critical collapse to a propose
critical solution, one should make the comparison at an in~. . i ;
termediate time: late enough for the critical solution to beSISts for a large range of intermediate times.

approached, but early enough so that the unstable mode doesDue to Fhe symmetry of the spactime, the metric 1s deter-
not have appreciable amplitude. mined entirely by the matter. This is made explicit in Egs.

s(tlo) and (11). Therefore, since the scalar fields of the nu-
fperical and analytic solutions agree, the metrics must agree
also. Nonetheless, for illustrative purposes we present a com-
parison of the metrics of the numerical and analytic solu-
e2A s oo B tions. Figure 3 shows a comparison of the quantily
dszzm(dr —dt?)+1%tarf(r/1)e’®de? (23 =(r 2113 —(g/g) with the numerical solution given by the dots
and the analytic solution given by the curve. Note the excel-
wherel = —1/A andA andB are functions of andt. The lent agreement between the two solutions. Here the compari-
coordinates of Ref.[8] are related to ours byr  SOnis made al=9, but the agreement persists for a large
=Itan(r/I)e® andu is that function oft—r that atr=0 is  fange of intermediate times. The metric is determinedvby
equal to the proper time of the central observer. Therefore, it
is fairly straightforward to take scalars and tensors in the
coordinates of Ref{8] and express them in our coordinate
system. 02 |
Our solution has an unknown parametemwhich should
be chosen for best fit with the numerical results. To make I
this choice, we note that the analytical solutidfg. (18)] -0.4
satisfiesc=d¢/dT|g—o. Thus the values 0d¢/IT|g—q for M I
the numerical solution should allow us to determine the
value ofc. Figure 1 shows a plot ofp/dT|g-( vs T for the
numerical solution. Note that there is a range of intermediate [
times for which this quantity is approximately constant. The -os
line in the solution corresponds to the valuecafiven by Eq. [
(22) with n=4. While it is not necessary thatbe given by
Eq. (22), we find that this particular value @fgives excel-
lent agreement with the numerical data. From now on, we
will assume that has this value. R I T E N S SR
Figure 2 shows a comparison between the numerical anc 0 0.1 02 A 03 04 05
analytic results for the scalar field. Here the dots are the
numerical results and the curve is the analytic one. The com- FIG. 3. Comparison of analyti¢curve and numerical(dots
parison is made at=9. The freedom to add a constant to values of the mass aspect at an intermediate time.

dhe scalar field is used to set the value of the scalar field to
ero at the origin. Note that there is excellent agreement
etween analytic and numerical results. Though this figure
shows the comparison at only one time, the agreement per-

express both in the same coordinate system. In the coord
nates of Ref[8] the metric takes the form

0 ———
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andg which is 1 for the analytic solution and very close to 1
for the numerical solution in the intermediate range of times.
Thus, in the intermediate range of times, the scalar field anc
metric of the numerical and analytic solutions agree.

In Figs. 2 and 3, we have performed the comparison of
analytic and numerical solutions only up to the past light
cone of the singularity. However, the numerical solution cer-
tainly continues beyond this light cone, and singe4, the
analytic solution also extends. Do the two solutions still
agree in this region? | argued at the end of the previous
section that they cannot agree, since the analytic solutior
contains a closed trapped surface beyond the light cone
Nonetheless, it would be useful to compare the two solutions
in this larger region to see the extent and nature of their
disagreement.

To make this comparison, a different coordinate friris
needed, since the solution is not smoothRiacross the light
cone. Here we use as our new coordinate the affine param-
eter A along an outgoing radial null geodesic. The affine FIG. 4. Comparison of analytiécurve and numerical(dots
parameter is made scale invariant by choosing the null geosalues of the scalar field with respect to affine parameter at an
desic to have inner productwith the central observer. The intermediate time.
analytic solution can be expressed parametrically in terms of

04 L o V00w . s
0.2 0.4 0.6 0.8
A

\ as follows: (here we specialize to the cage=4). Intro-
duce the variablex=(—u) 8. Thenx=1 at the origin
andx=0 at the past light cone of the singularity. We have

1 ! A\T12
)\—mjx(l-l-X) dx (24

1+x4

and (2) the value of the exponent in scaling relations for

near-critical collapse. Unfortunately, as we will see below, it

is unclear what boundary conditions to impose on the pertur-
bations.

The critical solution, when perturbed, has one unstable
mode that grows ag*" for some constank. Therefore the
correct value oft is the one for which there is exactly one
unstable mode. The quantikyis related to scaling laws for

near-critical collapse. In the collapse of a one parameter fam-
ily of initial data, a quantityQ with dimension (length)
obeys a scaling relatio®«|p— p*|¥* wherep is the param-
eter andp* is its critical value. Pretorius and Choptig]
examine scaling in maximum scalar curvature for subcritical
collapse, a quantity that has dimension (length)They find
k~0.83.

|7
b= 8_77 In
»

From Eq.(24) it follows that the past light cone is at
~0.838. Using Eq(23), the affine parametex can be found
numerically from the numerical data. Note, however that the
numerical simulations have only a certain range isince a
critical numerical solution must stop before the timef
singularity formation. In our case, the maximum valuexof
for the numerical data is approximately 1.

Figures 4 and 5 show a comparison between the numeri
cal and analytic solutions for the ranges@ <1. Here the
values of¢ are compared in Fig. 4, while the mass aspéct
is compared in Fig. 5. As in Figs. 2 and 3, the comparison is
made afT=9. From the figures it is not clear whether there
is a disagreement between the two solutions in the range
>0.838 that is beyond the past light cone. To see the dis-
agreement clearly, one would need a larger range. afhis
could perhaps be provided by a numerical simulation that
used double null coordinates.

5 (29

2 712

1+x4

M

(26)

02 ———T—T—T—T——T—"——"—"T—"——

-0.2

-04
M

-0.6

0.2 04 0.6 08

V. PERTURBATIONS A

We now turn to a treatment of perturbations of the critical FIG. 5. Comparison of analyticcurve and numerical(dots
solution. This treatment should in principle allow us to de-values of the mass aspect with respect to affine parameter at an
termine analytically(1) the correct value of the paramet@r intermediate time.
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In the approximation thag=1, the scalar field satisfies  In principle, one should now impose boundary conditions
the flat space wave equation. Therefore, the perturbed scal@p the behavior of the perturbation &=1/2 and these

field 8¢ also satisfies this equation. Then making the ansatPoundary conditions would then determine the allowed val-
8¢=e“TS(R) and using Eq(12) we obtain ues ofk. Unfortunately, it is not clear what boundary condi-

tions are physically reasonable, since the critical numerical

solution should match the analytical solution only fr
R(1-2R)S"+(1-[3+2k]R)S' —kS=0. (27) <1/2. Therefore, though we have the solution of the pertur-

bation equation, we cannot use this solution to determine the

The solution is critical exponent.
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