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Regular magnetic black holes and monopoles from nonlinear electrodynamics
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It is shown that general relativity coupled to nonlinear electrodynamics~NED! with the LagrangianL(F),
F5FmnFmn having a correct weak field limit, leads to nontrivial spherically symmetric solutions with a
globally regular metric if and only if the electric charge is zero andL(F) tends to a finite limit asF→`. The
properties and examples of such solutions, which include magnetic black holes and solitonlike objects~mono-
poles!, are discussed. Magnetic solutions are compared with their electric counterparts. A duality between
solutions of different theories specified in two alternative formulations of NED~called theFP duality! is used
as a tool for this comparison.
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I. INTRODUCTION

General relativity, despite its nonlinearity, is apparen
lacking an effective self-restriction mechanism, and the
istence of singularities seems to be its inevitable, though
desired, feature. Reasonable, regular solutions for ma
scopic bodies such as stars are obtained with matter w
pressure opposes gravity, whereas microobjects, extr
states of matter and/or strong gravitational fields, proba
need a purely field description.

The choice of a field source able to do the job is a se
rate task, and, in particular, for spherically symmetric co
figurations there are quite a number of nonexistence th
rems@1#. Non-Abelian gauge fields yield regular black ho
solutions @2#, but they are known only numerically. Th
regular black hole solution of Ref.@3# with a de Sitter core is
expressed in terms of pressure and density rather than fi
An especially attractive class of field theories for seek
regular models is nonlinear electrodynamics~NED! with
gauge-invariant LagrangiansL(F), F5FmnFmn, since its
energy-momentum tensor~EMT! Tm

n has the symmetryT0
0

5T1
1 and is thus insensitive to boosts in the radial directi

which is a property of vacuum@3,4#. Such theories, in par
ticular, the Born-Infeld NED, recently gained much attenti
as limiting cases of certain models of string theory~see@5#
for reviews!. It has been shown, however@6,7#, that in NED
with any L(F) such thatL;F at small F ~the Maxwell
weak-field limit!, static, spherically symmetric genera
relativistic configurations with a nonzero electric charge c
not have a regular center. As will be shown below, the sa
is true for dyonic configurations, where both electric a
magnetic charges are present; regular solutions with wo
hole topology also cannot exist for this system.

The prohibition does not concern purely magnetic so
tions, and, quite surprisingly, there is a whole class of regu
solutions with a nonzero magnetic charge. Regularity is h
understood in a physical sense: althoughF is infinite at the
center, the EMT is finite and the metric is regular~at least
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C2), while the forces applied to test particles are finite e
erywhere and vanish at the center. The main aim of t
paper is to present and discuss these solutions. We will
compare them with their electric analogs, in particular, w
the solutions found by Ayo´n-Beato and Garcı´a @8–10#. For
this comparison we use a duality between spherically sy
metric solutions of different NED specified in two alternativ
(F andP) frameworks: the original, Lagrangian framewor
and another one, obtained from the original by a Legen
transformation@11#.

Throughout the paper all relevant functions are assum
to be sufficiently smooth, unless otherwise indicated.

II. NONEXISTENCE THEOREMS

Let us begin with a proof of two simple nonexisten
theorems extending the results of@6,7#.

Consider NED in general relativity, with the action

S5
1

16pE d4xA2g @R2L~F !#, F5
def

FmnFmn, ~1!

where R is the scalar curvature,Fmn5]mAn2]nAm is the
electromagnetic field, andL is an arbitrary function leading
to the Maxwell theory at smallF: L(F)'F as F→0. The
tensor Fmn obeys the dynamic equations and the Bian
identities

¹m~LFFmn!50, ¹m * Fmn50, ~2!

where an asterisk denotes the Hodge dual andLF5dL/dF.
A static, spherically symmetric metric can be written

the general form

ds25e2g(u)dt22e2a(u)du22r 2~u!dV2, ~3!

wheredV25du21sin2 u df2 andu is a radial coordinate. A
regular center, by definition, takes place wherer 50 if all
algebraic curvature invariants are finite there and, in ad
tion, there is a correct limiting value of the circumference
radius ratio~local flatness at the center, the absence o
conical singularity!. If one chooses the curvature coord
nates,u5r , the local flatness condition reads ea(0)51.
©2001 The American Physical Society05-1
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The tensorFmn compatible with spherical symmetry ca
involve only a radial electric fieldF0152F10 and a radial
magnetic fieldF2352F32. Eq. ~2! gives

r 2ea1gLFF015qe, F235qmsinu, ~4!

whereqe and qm are the electric and magnetic charges,
spectively. As follows from Eq.~4!,

f e5
def

2F01F
1052qe

2 LF
22r 24>0, ~5!

f m5
def

2F23F
2352qm

2 r 24>0, ~6!

and the Einstein equations may be written in the form

2Gm
n 5Tm

n 522LFFmaFna1 1
2 dm

n L ~7!

5 1
2 diag~L12 f eLF , L12 f eL f , L

22 f mLF , L22 f mLF!. ~8!

Theorem 1. The field system, Eq.~1!, with L(F) having a
Maxwell asymptotic (L→0, LF→1 asF→0), does not ad-
mit a static, spherically symmetric solution with a regu
center and a nonzero electric charge.

Proof. Since the Ricci tensor for the metric, Eq.~3!, is
diagonal, the invariantRmnRmn[Rm

n Rn
m is a sum of squares

hence each componentRm
m ~no summing! is finite at a regular

space-time point. Then each component of the EMTTm
n is

finite as well. Hence, as follows from Eq.~7!,

~ f e1 f m!uLFu,`. ~9!

Suppose first thatqm50, qeÞ0, and thus,f m50 andF
52 f e. Therefore, by Eqs.~5! and ~9! at a regular center
FLF is finite whereasFLF

2→`. Combined, these condition
lead toF→0 andLF→`; that is, a strongly non-Maxwel
behavior at smallF. Thus, for purely electric fields the theo
rem is valid.

Suppose nowqeÞ0 and qmÞ0. Then, Eq.~9! should
hold for f e and f m taken separately. As stated previously, th
condition applied tof e combined with Eq.~5! leads toLF
→`. But f m also tends to infinity asr→0, so even stronge
f mLF→` is violating Eq.~9!. The theorem is proved.

A regular center is, however, not a necessary feature
regular static, spherically symmetric space-time; there m
be no center at all. Let us find out whether or not our syst
Eq. ~1!, can behave like this.

If a center is lacking, the metric functionr 5(2g22)
1/2 is

restricted below by some minimum valuer * .0. There are
then two opportunities:~i! r (u) has one or several minim
~as it happens, e.g., in a wormhole!; r itself then fails to be an
admissible coordinate since it takes equal values at diffe
spheres;~ii ! r (u) monotonically approachesr min as u tends
to a certain limiting valueu* ; then the space-time can b
nonsingular if it ends with a horn.

By definition, ahorn in a static, spherically symmetri
space-time with the metric~3! is a region where, asu tends
04400
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to some valueu* , both r (u)Þconst andgtt5e2g(u) have
finite limits while the integrall 5*eadu diverges. In other
words, a horn is an infinitely long~three-dimensional! tube
of finite radius, with the clock rate remaining finite ever
where. It has an infinite spatial volume, and geodesics
infinitely continued along it as if in a wormhole throat o
unlimited length. The conditionrÞconst discards purely cy
lindrical space-times, sometimes called flux tubes, wh
have no asymptotics. The definition of a horn follows t
papers by Bankset al. @12#, where horned particles wer
discussed as possible remnants of black hole evaporatio

The following theorem shows that these opportunities c
never be realized if the EMT has the vacuum propertyT0

0

5T1
1, particularly, for our system~1!.

Theorem 2. Let the metric~3! obey the Einstein equation
with an EMT satisfying the conditionT0

05T1
1. Then ~i! the

function r (u) cannot have a regular minimum and~ii ! the
space-time cannot contain a horn.

Proof. Let us choose theu coordinate by fixing the con-
dition a5 lnr2g. The (0

0)2(1
1) Einstein equation takes th

form d2(lnr)/du250. Therefore,

r ~u!5eau1b, a, b5const, ~10!

so thatr is either a constant~if a50) or a strictly monotonic
function. This proves item~i!.

Suppose now that there is a horn. Then, by the ab
definition, aÞ0, and a finite limit of r in Eq. ~10! as u
→u* means thatu* is also finite. On the other hand, sinc
*eadu diverges asu→u* , it follows thata→`, which, by
our coordinate condition, can only occur ifg→2`, con-
trary to what was assumed. This completes the proof.

Some remarks are now in order. First, the absence
wormhole solutions can also be proved from the known f
that a static wormhole throat always implies a violation
the null energy condition@13#. This condition in our case
reads T0

02T1
1>0 and is ~marginally! observed whenT0

0

5T1
1. Our proof is, however, more direct and explicit.

Second, the opportunityg→2`, mentioned in the proof
of item ~ii ! of Theorem 2, generically corresponds to
event horizon.@It can happen in principle that eg→0 at finite
r does not imply a horizon. Our system~1! with smooth
L(F) does not admit such cases, while horizons do exist
can be seen from the solution below.#

Third, the above theorems do not contain an asympt
flatness requirement, the proofs being of local nature. Th
fore, both theorems are readily extended to general relati
with a cosmological constant~its inclusion leaves the condi
tion T0

05T1
1 unaffected!, where the spatial asymptotic can b

de Sitter or anti-de Sitter.

III. REGULAR MAGNETIC SOLUTIONS

Both theorems were proved without entirely solving t
Einstein equations. For our system~1!, however, an exac
solution can be obtained by quadratures in the gen
spherically symmetric case@6#. Indeed, the Maxwell-like
equations are already integrated. Let us choose the curva
coordinatesu5r , which is now safe since we know thatr
5-2
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has no extrema. Due toT0
05T1

1, the corresponding Einstei
equation givesd(a1g)/dr50⇒a1g50 for a proper
choice of the time unit. It remains to write the well-know
relation for a(r ) in terms of the energy densityT0

0, which
follows from the (0

0) Einstein equation,

e2g5e22a5A~r !512
2M ~r !

r
,

M ~r !5
1

2E T0
0~r ! r 2 dr. ~11!

Possible horizons occur at zeros ofA(r ).
The only nontrivial case not covered by the theorems

qe50, qmÞ0, when there is still a hope to obtain a regu
center. In this case the metric has the form of Eq.~3! with
Eq. ~11!, where

M ~r !5
1

4E L~F !r 2dr ~12!

and F52qm
2 /r 4. It is easily seen that a space-time with

regular center is indeed obtained for anyL(F) such thatL
→L`,` asF→` when one integrates in Eq.~12! from 0 to
r. Integration from 0 to` then gives a unique massm
5M (`) providing a regular center for givenqm; hence, the
entire mass is of electromagnetic origin. A finite value
M (`) is guaranteed by our assumption of a Maxw
asymptotic ofL(F) at smallF; asr→`, L'2qm

2 /r 4, and the
integral ~12! converges.

The EMT in Eq. ~7! near r 50 takes the formTm
n

5 1
2 dm

n L`„11o(1)…, and the metric is approximately de Si
ter „A(r )512Lr 2/31o(r 2)…, with the cosmological con-
stantL5L`/2. The Riemann tensor atr 50 coincides with
that of de Sitter space, so one need not explicitly calcu
the curvature invariants to prove that the space-time is re
lar. The metric is at leastC2 smooth atr 50 but, depending
on L(F), may be evenC` smooth, as will be seen in th
example, Eq.~29!.

Suppose thatL(F) and the mass have been chosen
described. The space-time is then globally regular and
include horizons corresponding to zeros ofA(r ), whose
number and character determine the global structure@note
that A(0)5A(`)51]. In the absence of zeros, there is
regular Dirac-type magnetic monopole solution. The o
curence of two simple zeros leads to the conventio
Reissner-Nordstro¨m black hole structure, with the singularit
replaced by a regular center. The intermediate case of
double zero gives the extremal Reissner-Nordstro¨m struc-
ture. Models with more numerous horizons can be c
structed as well.

Due to the above theorems, our magnetic black holes
monopoles are the only types of static, spherically symm
solutions to Eq.~1! with a globally regular metric.

The only trouble is an infinite magnetic inductionB (B2

5 f m/25F/2) at r 50, whereas the magnetic field intensi
H, obtained as a generalized momentum from the Lagra
ian, is well-behaved everywhere, including the center:H2
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5fmLF
2/2→0 asr→0. To judge whether or not the center

regular from a physical viewpoint, one should estimate
force applied to a charged test particle moving in the fi
under consideration. This test charge may be electric or m
netic since both are admitted by our assumptions. In a c
sistent approach, the equations of motion for a test part
~as well as those for an extended body! in nonlinear field
theory should follow from the field equations and may
deduced along the lines of Refs.@14,15#. Namely, the four-
force vector is found as the total momentum flow*TmnnmdS
through a closed surface surrounding the particle, wherenm

is the unit normal to such a surface andTmn is the total EMT
of the summed electromagnetic field of the background st
configuration and the test particle itself. An estimate in
proper approximation, taking into account the weakness
the particle’s field, shows that this force is finite everywhe
and vanishes atr 50. Therefore, despite the divergentB, our
magnetic solutions may be called globally regular.

IV. FP DUALITY AND ELECTRIC SOLUTIONS

Let us consider for comparison the electric analogs of
magnetic solutions. This is of particular interest since Ayo
Beato and Garcı´a @8–10# recently suggested some exampl
of such solutions, describing configurations withqeÞ0, qm
50, and a regular center. The properties of these solut
evidently contradict Theorem 1, but they only seem to c
cumvent it since, as we shall see, any model like those
@8–10# needs different Lagrangians in different ranges of
radial coordinate, and therefore fails to be a solution fo
particular LagrangianL(F).

The solutions of@8–10# were found using an alternativ
form of NED ~to be called theP framework!, obtained from
the original one~the F framework! by a Legendre transfor
mation. One introduces the tensorPmn5LFFmn with its in-
variant P5PmnPmn and considers the Hamiltonian-lik
quantityH52FLF2L as a function ofP; the theory is then
reformulated in terms ofP and is specified byH(P) @11#.
One then has

L52PHP2H, LFHP51, F5PH P
2 , ~13!

with HP5dH/dP. Eq. ~2! and the EMT, Eq.~7!, are rewrit-
ten in the form

¹mPmn50, ¹m~HP * Fmn!50, ~14!

Tm
n 52 1

2 diag~H22pmHP , H22pmHP ,

H12peHP , H12peHP! ~15!

where, by Eq.~14!, in the spherically symmetric case,

pe52P01P
1052qe

2/r 4, ~16!

pm52P23P
2352qm

2 H P
2 /r 4. ~17!

Comparing Eqs.~2! and~5!–~8! with ~14!–~17!, one sees
that they coincide up to the substitutions
5-3
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$gmn , Fmn , F, L~F !% ↔$gmn , * Pmn , 2P, 2H~P!%.
~18!

In other words, there is a duality between spherically sy
metric solutions written in theF and P frameworks: any
solution for a given LagrangianL(F), characterized by a
certain metric functionA(r ) and the field componentsF01
andF23, has a counterpart with the sameA(r ), but with F
substituted by2P, L by 2H, F01 by P23, andF23 by P01,
and conversely. The functional dependence2H(2P) in the
dual solution is the same asL(F) in the original solution, but
the choice of the functionL(F) itself is not restricted.

„It should be stressed that this duality, to be calledFP
duality, connects solutions of different theories: givenL(F),
the functional dependenceH(P)52FLF2L is in general
quite different fromL(F), an evident exception being th
Maxwell theory, whereL5F5H5P and the present duality
turns into the conventional electric-magnetic duality. SoFP
duality has nothing to do with the electric-magnetic one st
ied in Refs.@11,16#, where the field equations of a specifi
theory were required to be duality invariant, and this con
tion selected a narrow class of Lagrangians.…

In particular, any regular magnetic solution obtained
given L(F) has a purely electric counterpart with a simil
~up to the sign! dependenceH(P). The metric has the form
~11!, with

M ~r !52
1

4E H~P!r 2dr. ~19!

Given H(P), one should substituteP522qe
2/r 4. A regular

center exists if and only ifH has a finite limit asP→2`,
and a mass that provides regularity for givenqe is found by
integration in Eq.~19! from 0 to `. This is how the regular
solutions of@8–10# were obtained with the following choice
of H(P):

@8#: H~P!5P
123P

~11P!3
1

6

q2s
S P

11P D 5/2

, ~20!

@9#: H~P!5P/cosh2~sAP!, ~21!

@10#: H~P!5P
exp~2sAP!

~11P!5/2 S 11
3

s
AP1P D , ~22!

whereP5A2q2P/2 ands5uqu/(2m), q5qe and m being
free parameters identified with the charge and mass of
configuration, respectively. The functions, Eqs.~20!–~22!,
behave likeP at smallP, tend to finite limits asP→2`, and
thus, lead to regular metrics.

Yet the P framework is secondary: the Lagrangian d
namics is specified in theF framework, and, since theF°P
transition is a mere substitution in the field equations,
two frameworks are only equivalent where the functi
P(F) is monotonic. Recalling the proof of Theorem 1 f
qeÞ0, qm50, one sees, however, that for any regular so
tion with a Reissner-Nordstro¨m asymptotic, the function
F(P)52 f e<0 vanishes at bothr 50 andr→`, so it inevi-
04400
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tably has at least one minimum at someP5P* ,0. It can be
shown directly that at an extremum ofF(P), whereF5F*
,0, the derivativeLF has the same finite limit asP→P*
10 andP→P* 20, whileLFF tends to infinities of opposite
signs. Therefore the functionL(F) suffers branching, and its
graph forms a cusp atF5F* ; different functionsL(F) cor-
respond toP.P* andP,P* .

Another kind of branching occurs at extrema ofH(P), if
any. There,F(P) behaves generically as (P2P* )2 while
LF→`, and a graph ofL(F) smoothly touches the vertica
axis F50. The number of Lagrangians on the way fro
infinity to the center equals the number of monotonic
ranges ofF(P).

All this is readily seen for specific examples. A qualitativ
picture for the choice of Eq.~21! is shown in Fig. 1.

In the simplest case whenH(P) is monotonic~e.g., like
tanhP), L(F) has only two branches:OP1 and P1P2, and
P2 already corresponds tor 50.

Thus, any regular electric solution, being well-behav
with respect to the field equations in theP framework, cor-
responds to different Lagrangians in different parts of spa
This problem is absent for magnetic solutions since they
obtained directly in terms ofL(F).

V. COMPARISON OF EFFECTIVE METRICS

The troubles with the electric solutions concern only t
properties of NED, while the metric is quite well-behave
The same is true for the electric fieldF01. However, termi-
nation of a theory with givenL(F) implies some violent
electromagnetic phenomena. For their understanding le
consider the effective metric introduced by Novelloet al.
@17,18#,

hmn5geff
mn5gmnLF24LFFFm

aFan. ~23!

FIG. 1. An example of qualitative behavior ofH(P), F(P), and
L(F) in an electric solution.
5-4
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As shown in @17,18#, NED photons propagate along nu
geodesics of this metric. For the space-time metric~11!, with
a purely electric field, the effective metric reads

dseff
2 5hmndxmdxn5

1

F FA~r !dt22
dr2

A~r !G2
r 2

LF
dV2,

F5LF12FLFF5HP /FP . ~24!

At an extremumP5P* of F(P), whereFÞ0 ~in particular,
at the inevitable first minimum!, one hasF→0 sinceFP
→` while HP is finite. This leads to a curvature singulari
of the effective metric, at least ifP* is not located on a
horizon, AÞ0. Another kind of singularity of Eq.~24! ac-
companies possible extrema ofH(P). All this is verified by
calculating the Kretschmann scalarK. Even more impor-
tantly, according to@18#, if a NED photon comes from an
emitter at rest at point 1 to an observer at rest at point 2,
corresponding frequenciesf 1 and f 2 are related by

f 2

f 1
5

htt~1!

Agtt~1!
Y htt~2!

Agtt~2!
5

F~2!/AA~2!

F~1!/AA~1!
, ~25!

where the second equality corresponds to the metric
F(2)5` @as it happens at a termination point ofL(F)],
then photons coming there are infinitely blueshifted and
may expect that they eventually lead to a real space-t
singularity.

For a magnetic solution, instead of Eq.~24!, we get

dseff
2 5

1

LF
FA~r !dt22

dr2

A~r !G2
r 2

F
dV2, ~26!

where againF5LF12FLFF . Instead of Eq.~25!, we get

f 2

f 1
5

LF~2!/AA~2!

LF~1!/AA~1!
. ~27!

At the center (r 50, A51) bothLF andF vanish, i.e., the
coefficient h22→`, behaves as if in a wormhole, where
h00→`, which means that photons arriving there, if an
would be infinitely redshifted@see Eq.~27!#. Actually, pho-
tons cannot reach a place whereLF50, as can be seen from
an integral of their geodesic equation,

LF
22ṙ 21@A~r !F/r 2# l 25e2, ~28!

where the overdot is a derivative in the affine parameter
e and l are the photon’s constants of motion characteriz
its initial energy and angular momentum. All curvature i
variants of the metric~26! vanish atr 50. It is indeed a
perfectly quiet place despite an infiniteF.

Some peculiarities, however, occur on the way from
finity to the center. There is always a spherer 5r * on which
F50. It can be seen as follows:F may be represented a
F52AF(AFLF)F . The quantityAFLF vanishes at bothr
50 andr 5` and is nonzero between them; hence, it has
least one extremum atFÞ0—this is whereF50. The met-
ric ~26!, due to blowing up of the coordinate spheres, ha
04400
e
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singularity there, but the latter is actually unnoticed by NE
photons, as is evident from Eq.~28!. Generically,LFÞ0
whereF50. Therefore, the photon frequency also rema
finite. The meaning of the very fact of a curvature singular
of the effective metric is yet to be understood.

If LF50 at someF.0, this also causes a singularity o
Eq. ~26! which acts as a potential wall~mirror! for NED
photons as is seen from Eq.~28!. Accordingly, Eq. ~27!
shows that they are infinitely redshifted,f 2 vanishes if
LF(2)50. No photons from outside can thus approach
center.

All this is in striking contrast to the picture obtained fo
an electric source—we now have potential walls instead
wells and redshifts instead of blueshifts.

VI. EXAMPLE

To have a specific example of a regular magnetic soluti
let us employ the aboveFP duality and consider, with sligh
modifications, the dependence~21!, substituting2H with L
and 2P with F. An advantage of Eq.~21! @as well as Eqs.
~20! and ~22!# is that it leads to a closed form ofM (r ) and
A(r ). Let us, however, slightly modify it, excluding an ex
plicit dependence ofL on m andq: they should be integration
constants, whileL may only contain fundamental constan
or those originating from a deeper underlying theory. Mo
over, to be able to describe systems with both electric
magnetic fields, whereF ~andP) can have both signs, let u
replace2P with uFu rather thanF. So we put

L~F !5F/cosh2 ~auF/2u1/4!, a5const. ~29!

The use ofuFu violates analyticity ofL at F50. As required,
LF(0)51, but LFF contains the discontinuous term
2a2u2Fu21/2sgnF. Though, in the range of interest,F.0,
this L(F) is well-behaved. Integration in Eq.~12! gives for a
regular solution

M ~r !5
uqu3/2

2a S 12tanh
aAuqu

r D , ~30!

so thatm5M (`)5uqu3/2/2a (q5qm), and some relations
from @9# are formally restored. In particular, the minimu
value of A(r )5122M (r )/r @recall thatA(0)51] depends
on the ratioj5m/uqu, so thatAmin is negative forj.j0
'0.96 ~we deal with a black hole with two horizons!, zero
for j5j0 ~an extremal black hole with one double horizon!,
and positive forj,j0 ~a regular particle-like system!. It is of
interest that, given any specific value of the constanta in Eq.
~29!, we can obtain all three types of solutions depending
the charge value; we have a nonextremal or extremal b
hole if uqu<4a2/j0

2, or we have a particle-like solution~a
monopole! otherwise. Despite the restriction imposed by t
regularity condition, one finds all three types of regular s
lutions. This feature seems to be quite generic for pro
nonlinear Lagrangians. One can also verify that the prop
ties of the effective metric~26! confirm the above genera
observations.
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One can also notice that, due to an exponential deca
M (r ) in Eq. ~30!, the metric is in this caseC` smooth atr
50.

VII. CONCLUDING REMARKS

A more complete description of the properties of t
present regular NED solutions, as well as others, require
better understanding of the long-standing and nontriv
problem of motion of charged bodies in NED, probably fo
lowing the lines of Refs.@14,15,19#.

One more subject of interest for further study is the inc
sion of another electromagnetic field invariant,* FmnFmn ,
into the Lagrangian in addition toF. This invariant is in-
volved, in particular, in the Born-Infeld and Heisenber
Euler NED Lagrangians; its appearance should be abl
d
y

ys

04400
of

a
l

-

to

widen the diversity of regular black hole and monopole s
lutions. Related subjects are theFP duality between solu-
tions of different theories involving both invariants and
possible extension of this duality to nonspherically symm
ric configurations.
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