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Regular magnetic black holes and monopoles from nonlinear electrodynamics
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It is shown that general relativity coupled to nonlinear electrodynagiN&D) with the Lagrangiar (F),
F=F,,F*” having a correct weak field limit, leads to nontrivial spherically symmetric solutions with a
globally regular metric if and only if the electric charge is zero aiff) tends to a finite limit a§ —«. The
properties and examples of such solutions, which include magnetic black holes and solitonlike (aljects
poleg, are discussed. Magnetic solutions are compared with their electric counterparts. A duality between
solutions of different theories specified in two alternative formulations of N&lled theF P duality) is used
as a tool for this comparison.
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[. INTRODUCTION C?), while the forces applied to test particles are finite ev-
erywhere and vanish at the center. The main aim of this
General relativity, despite its nonlinearity, is apparentlypaper is to present and discuss these solutions. We will also
lacking an effective self-restriction mechanism, and the excompare them with their electric analogs, in particular, with
istence of singularities seems to be its inevitable, though urthe solutions found by Ayo-Beato and Garei[8-10. For
desired, feature. Reasonable, regular solutions for macrdhis comparison we use a duality between spherically sym-
scopic bodies such as stars are obtained with matter whodagetric solutions of different NED specified in two alternative
pressure opposes gravity, whereas microobjects, extren{& andP) frameworks: the original, Lagrangian framework,
states of matter and/or strong gravitational fields, probabhand another one, obtained from the original by a Legendre

need a purely field description. tran?]formar\]tior[lr}]. I rel funct g
The choice of a field source able to do the job is a sepa- Throughout the paper all relevant functions are assume

rate task, and, in particular, for spherically symmetric con-© be sufficiently smooth, unless otherwise indicated.

figurations there are quite a number of nonexistence theo-

rems[1]. Non-Abelian gauge fields yield regular black hole

solutions[2], but they are known only numerically. The  Let us begin with a proof of two simple nonexistence

regular black hole solution of Ref3] with a de Sitter core is  theorems extending the results[6f7].

expressed in terms of pressure and density rather than fields. Consider NED in general relativity, with the action

An especially attractive class of field theories for seeking

regular models is nonlinear electrodynami@$ED) with 1 def ,

gauge-invariant Lagrangianis(F), F=F, F**, since its S= @f d“x\/—_g [R=L(F)], F=F.F* (1

energy-momentum tens¢EMT) T, has the symmetrylg

=T} and is thus insensitive to boosts in the radial directionwhereR is the scalar curvatures,,=d,A,—d,A, is the

which is a property of vacuurf8,4]. Such theories, in par- €lectromagnetic field, and is an arbitrary function leading

ticular, the Born-Infeld NED, recently gained much attentiont0 the Maxwell theory at smakF: L(F)~F asF—0. The

as limiting cases of certain models of string the¢sge[5]  tensorF,, obeys the dynamic equations and the Bianchi

for reviews. It has been shown, howeVvgs,7], that in NED  identities

with any L(F) such thatL~F at small F (the Maxwell

weak-field limiy, static, spherically symmetric general-

relativistic configurations with a nonzero electric charge CaNiyhere an asterisk denotes the Hodge dual lapd dL/dF.

not have a regulfar center. AS. will be shown below, th? Same A static, spherically symmetric metric can be written in

is true for dyonic configurations, where both electric and,[he general form

magnetic charges are present; regular solutions with worm-

hole topology also cannot exist for this system. ds2=e2"W g2 — 2 du2—r2(u)dQ?, 3)

The prohibition does not concern purely magnetic solu-

tions, and, quite surprisingly, there is a whole class of regulawheredQ?=d#?+ sir? #d¢? andu is a radial coordinate. A

solutions with a nonzero magnetic charge. Regularity is hereegular center, by definition, takes place whereO if all

understood in a physical sense: althodgis infinite at the  algebraic curvature invariants are finite there and, in addi-

center, the EMT is finite and the metric is regulat least tion, there is a correct limiting value of the circumference to
radius ratio(local flatness at the center, the absence of a
conical singularity. If one chooses the curvature coordi-

*Email address: kb@rgs.mccme.ru nates,u=r, the local flatness condition read¥®=1.

II. NONEXISTENCE THEOREMS

V. (LgF#")=0, V, *Fr'=0, (2
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The tensorF,, compatible with spherical symmetry can to some valueu*, both r(u)+const andg,=e*"“ have
involve only a radial electric fieldq,= —F 10 and a radial finjte limits while the integrall = fe*du diverges. In other
magnetic fieldF 3= —F3,. Eq. (2) gives words, a horn is an infinitely lon¢three-dimensionaltube
of finite radius, with the clock rate remaining finite every-
where. It has an infinite spatial volume, and geodesics are
infinitely continued along it as if in a wormhole throat of
unlimited length. The condition# const discards purely cy-
lindrical space-times, sometimes called flux tubes, which

def have no asymptotics. The definition of a horn follows the
fo= 2FF 10=2¢2 L£ 2r ~4=0, (5)  Papers by Banket al. [12], where horned particles were
discussed as possible remnants of black hole evaporation.

The following theorem shows that these opportunities can

r2ea+7LF|:01: Je» F23= quin 0, (4)

whereq, and g, are the electric and magnetic charges, re-
spectively. As follows from Eq(4),

def

frn= 2F yoF =202 1 ~4=0, (6)  hever be realized if the EMT has the vacuum propdiy
=T}, particularly, for our systenl).
and the Einstein equations may be written in the form Theorem 2Let the metria3) obey the Einstein equations
with an EMT satisfying the conditiorT8=Ti. Then(i) the
—G, =T, =—2L¢F,F"+36,L (7)  function r(u) cannot have a regular minimum afid) the
- space-time cannot contain a horn.
=3 diagL+2flg, L+2fcl¢, L Proof. Let us choose the coordinate by fixing the con-

dition a=Inr—vy. The (3)—(1) Einstein equation takes the
form d2(Inr)/du?=0. Therefore,

Theorem 1The field system, Eq1), with L(F) having a (U) = eAutb
Maxwell asymptotic (—0, Lg,—1 asF—0), does not ad- ’
mit a static, spherically symmetric solution with a regular o thatr is either a constaritf a=0) or a strictly monotonic
center and a nonzero electric charge. function. This proves itenti).

Proof. Since the Ricci tensor for the metric, E@), is Suppose now that there is a horn. Then, by the above
diagonal, the invarianR , , R“"=R, R} is a sum of squares, definition, a#0, and a finite limit ofr in Eq. (10) asu
hence each componeR{; (no summingis finite at a regular —u* means that* is also finite. On the other hand, since
space-time point. Then each component of the EMTis  [e“du diverges asi—u*, it follows thata— <, which, by

_2meF1L_2meF)- (8)

a, b=const, (10

finite as well. Hence, as follows from E¢7), our coordinate condition, can only occur 4~ —o, con-
trary to what was assumed. This completes the proof.
(fet fm)|Lg|<o. ) Some remarks are now in order. First, the absence of

] wormhole solutions can also be proved from the known fact
Suppose first thaty=0, ge#0, and thusf,=0 andF  that a static wormhole throat always implies a violation of
= —fe. Therefore, by Eqgs(5) and (9) at a regular center, the null energy conditioi13]. This condition in our case
FLg is finite wheread- |_|2:—>°°. Combined, these conditions reads Tg—Tizo and is (margina"w observed WhenTg

lead toF —0 andLg—c; that is, a strongly non-Maxwell =Tl our proof is, however, more direct and explicit.
behavior at smalF. Thus, for purely electric fields the theo-  gecond, the opportunity— —«, mentioned in the proof
rem is valid. of item (ii) of Theorem 2, generically corresponds to an

Suppose nowge#0 and qn#0. Then, EQ.(9) should  eyent horizon[It can happen in principle that'e-0 at finite
hold fqrfeandfmtaken sepa_rately. As stated previously, this; goes not imply a horizon. Our systefd) with smooth
condition applied tof, combined with Eq.(5) leads toLr | (F) does not admit such cases, while horizons do exist, as
—. But f, also tends to infinity as— 0, So even stronger can be seen from the solution beldw.
fmLg—c° is violating Eq.(9). The theorem is proved. Third, the above theorems do not contain an asymptotic

A regular center is, however, not a necessary feature of fiatness requirement, the proofs being of local nature. There-
regular static, spherically symmetric space-time; there mighfore  hoth theorems are readily extended to general relativity
be no center at all. Let us find out whether or not our systemyith a cosmological constafits inclusion leaves the condi-

Eq. (1), can behave like this. . " tion T9=T7 unaffected, where the spatial asymptotic can be
If a center is lacking, the metric functian=(—g,2)"“is  ye Sitter or anti-de Sitter.

restricted below by some minimum valu&>0. There are
then two opportunltl_es(l) r(u) has_one or sevgral minima IIl. REGULAR MAGNETIC SOLUTIONS
(as it happens, e.g., in a wormhgleitself then fails to be an
admissible coordinate since it takes equal values at different Both theorems were proved without entirely solving the
spheresfii) r(u) monotonically approaches,;, asu tends Einstein equations. For our systeth), however, an exact
to a certain limiting valueu*; then the space-time can be solution can be obtained by quadratures in the general
nonsingular if it ends with a horn. spherically symmetric casgs]. Indeed, the Maxwell-like

By definition, ahorn in a static, spherically symmetric equations are already integrated. Let us choose the curvature
space-time with the metri(3) is a region where, as tends  coordinatesu=r, which is now safe since we know that
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has no extrema. Due fﬁng}, the corresponding Einstein zme§/2—>O asr—0. To judge whether or not the center is
equation givesd(a+ y)/dr=0=a+y=0 for a proper regular from a physical viewpoint, one should estimate the
choice of the time unit. It remains to write the well-known force applied to a charged test particle moving in the field
relation for a(r) in terms of the energy densiffy, which  under consideration. This test charge may be electric or mag-

follows from the §) Einstein equation, netic since both are admitted by our assumptions. In a con-
sistent approach, the equations of motion for a test particle
s 2M(r) (as well as those for an extended bpdy nonlinear field
Y= 20=A(r)=1- T theory should follow from the field equations and may be

deduced along the lines of Refd4,15. Namely, the four-
1 force vector is found as the total momentum fl§w,, ,n*dS
M(r)=§j TO(r) r2dr. (11  through a closed surface surrounding the particle, whére
is the unit normal to such a surface angl, is the total EMT
Possible horizons occur at zerosAfr) of thg summed electromagnetic.field_ of the background ;tatic
The only nontrivial case not coveréd by the theorems iconﬁgurauon and the test particle itself. An estimate in a
B o . Sproper approximation, taking into account the weakness of
de=0, qlmir?.’ when tﬁere IS .St":]a h(?]pefto Obt?m a r?ﬁu'arthe particle’s field, shows that this force is finite everywhere
(I:Eemiri n th is case the metric has the form of E3).wit and vanishes at=0. Therefore, despite the divergdhtour
9.(12), where magnetic solutions may be called globally regular.

1
M(r)= ZJ L(F)radr (12 IV. FP DUALITY AND ELECTRIC SOLUTIONS

2ia . ] ] Let us consider for comparison the electric analogs of our

and F=2q;/r". It is easily seen that a space-time with a magnetic solutions. This is of particular interest since Ayon-
regular center is indeed obtained for anffF) such thatlL  Beato and Garei[8—10] recently suggested some examples
— L. < asF—c when one integrates in E(L2) from 0to  of such solutions, describing configurations witg# 0, g,
r. Integration from O to~ then gives a unique mass =0, and a regular center. The properties of these solutions
=M(e0) providing a regular center for given,; hence, the  evidently contradict Theorem 1, but they only seem to cir-
entire mass is of electromagnetic origin. A finite value of cumvent it since, as we shall see, any model like those of
M(«) is guaranteed by our assumption of a Maxwell[8—1(] needs different Lagrangians in different ranges of the
asymptotic of_(F) at smallF; asr —o, L~2q2/r* andthe radial coordinate, and therefore fails to be a solution for a
integral (12) converges. particular Lagrangiam.(F).

The EMT in Eg. (7) nearr=0 takes the formT; The solutions of8-10Q] were found using an alternative
=%5;Lw(1+o(1)), and the metric is approximately de Sit- form of NED (to be called thé> framework), obtained from
ter (A(r)=1—Ar?/3+0(r?)), with the cosmological con- the original one(the F framework by a Legendre transfor-
stantA=L./2. The Riemann tensor at=0 coincides with mation. One introduces the tens@y,,=L¢gF ,, with its in-
that of de Sitter space, so one need not explicitly calculatyariant P=P,,P#” and considers the Hamiltonian-like
the curvature invariants to prove that the space-time is reguguantity’#=2FLg—L as a function of; the theory is then
lar. The metric is at least? smooth arr =0 but, depending reformulated in terms oP and is specified by<{(P) [11].
on L(F), may be everC” smooth, as will be seen in the One then has
example, Eq(29).

Suppose that.(F) and the mass have been chosen as L=2PHp—H, LgHp=1, F=PH3, (13
described. The space-time is then globally regular and can
include horizons corresponding to zeros Afr), whose with Hp=dH/dP. Eq.(2) and the EMT, Eq(7), are rewrit-
number and character determine the global strucfoote  ten in the form
that A(0)=A(«)=1]. In the absence of zeros, there is a

regular Dirac-type magnetic monopole solution. The oc- V,.P#"=0, V,(Hp*F*")=0, (14
curence of two simple zeros leads to the conventional
Reissner-Nordstra black hole structure, with the singularity T;= — 1 diag H—2pHp, H—2PpwHp,
replaced by a regular center. The intermediate case of one
double zero gives the extremal Reissner-Norastrstruc- H+2peHp, H+2peHp) (15
ture. Models with more numerous horizons can be con-
structed as well. where, by Eq(14), in the spherically symmetric case,
Due to the above theorems, our magnetic black holes and 10 24
monopoles are the only types of static, spherically symmetric Pe=2Po1P=20¢/r7, (16)
solutions to Eq(1) with a globally regular metric.
The only trouble is an infinite magnetic inducti@(B? Pm=2PP?3=2q2H 2/r*. (17

=f/2=F/2) atr=0, whereas the magnetic field intensity
H, obtained as a generalized momentum from the Lagrang- Comparing Eqs(2) and(5)—(8) with (14)—(17), one sees
ian, is well-behaved everywhere, including the centéf:  that they coincide up to the substitutions
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{gMV’ F;LV! F, L(F)} (_){g;uz! * P;LV! -P, _H( P)}

(18
H(P)
In other words, there is a duality between spherically sym- B
metric solutions written in thd= and P frameworks: any
solution for a given Lagrangiah(F), characterized by a
certain metric functionA(r) and the field components,;
andF,3, has a counterpart with the samé¢r), but with F
substituted by—P, L by —H, Fq; by Po3, andF 3 by Pgq,
and conversely. The functional dependercHE(— P) in the
dual solution is the same &¢F) in the original solution, but
the choice of the functioh (F) itself is not restricted.

(It should be stressed that this duality, to be calfed
duality, connects solutions of different theories: gilg(i),
the functional dependencH(P)=2FLg—L is in general
quite different fromL(F), an evident exception being the
Maxwell theory, wherd.=F ="H=P and the present duality /
turns into the conventional electric-magnetic duality.F5®
duality has nothing to do with the electric-magnetic one stud-
ied in Refs.[11,16), where the field equations of a specific
theory were required to be duality invariant, and this condi-
tion selected a narrow class of Lagrangians.

In particular, any regular magnetic solution obtained for o
given L(F) has a purely electric counterpart with a similar tably has at least one minimum at soRe P* <0. It can be

(up to the sigh dependencé{(P). The metric has the form Shown directly that at an extremum B{P), whereF=F*
(1), with <0, the derivativeL has the same finite limit aB— P*

+0 andP— P* —0, while L tends to infinities of opposite
signs. Therefore the functidn(F) suffers branching, and its
graph forms a cusp &=F*; different functionsL(F) cor-
respond toP>P* and P<P*.

Another kind of branching occurs at extrema’efP), if
any. There,F(P) behaves generically aP( P*)? while
Lg—, and a graph of (F) smoothly touches the vertical
axis F=0. The number of Lagrangians on the way from
infinity to the center equals the number of monotonicity

P,

P,

Py

Pl Pz P3 -P L(F)
FIG. 1. An example of qualitative behavior &f(P), F(P), and

L(F) in an electric solution.

M(r)z—%j H(P)rdr. (19

GivenH(P), one should substitute= —2q§/r4. A regular
center exists if and only if{ has a finite limit ag?— — o,
and a mass that provides regularity for giwenis found by
integration in Eq(19) from O toe. This is how the regular
solutions of{8—10] were obtained with the following choices

of H(P): ranges ofF(P).
All this is readily seen for specific examples. A qualitative
1-3I1 6 m \52 picture for the choice of Eq21) is shown in Fig. 1.
[8]: H(P)= PWJF —\Tem) (20) In the simplest case wheH(P) is monotonic(e.g., like
(1+ID* g% tanhP), L(F) has only two branche®P,; and P,P,, and
] P, already corresponds t0=0.
[9]: H(P)=Picostf(s\I), (21) Thus, any regular electric solution, being well-behaved
with respect to the field equations in tReframework, cor-
(10, H(P)=P exp(—S\/ﬁ) ( 1+ §\/ﬁ+1'[) (22) responds to different Lagrangians in different parts of space.
’ (1+11)52 S ' This problem is absent for magnetic solutions since they are

obtained directly in terms df (F).
whereIl=\/—q?P/2 ands=|q|/(2m), q=q. and m being
free parameters identified with the charge and mass of the

configuration, respectively. The functions, Eq20)—(22), V. COMPARISON OF EFFECTIVE METRICS

behave likeP at smallP, tend to finite limits a¥®— —, and
thus, lead to regular metrics.

Yet the P framework is secondary: the Lagrangian dy-

namics is specified in theé framework, and, since the—P

The troubles with the electric solutions concern only the
properties of NED, while the metric is quite well-behaved.
The same is true for the electric fiek,;. However, termi-
nation of a theory with giverL(F) implies some violent

transition is a mere substitution in the field equations, thEHectromagnetiC phenomena. For their understanding let us
two frameworks are only equivalent where the functionconsider the effective metric introduced by Novelbal.
P(F) is monotonic. Recalling the proof of Theorem 1 for [17 19,

0.7 0, g,=0, one sees, however, that for any regular solu-

tion with a Reissner-Nordstne asymptotic, the function

F(P)=—f,<0 vanishes at both=0 andr—, so it inevi- h*"=ggt=0""Lr—4LgeF" F". (23
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As shown in[17,18, NED photons propagate along null singularity there, but the latter is actually unnoticed by NED
geodesics of this metric. For the space-time métriy, with photons, as is evident from E@28). Generically,Lg#0

a purely electric field, the effective metric reads where® =0. Therefore, the photon frequency also remains
. dr? ) finite. The meaning of the very fact of a curvature singularity
r r . _
_ by — 2 a2 of the effective metric is yet to be understood.
dsﬁ“ ., dxdx ) A(rjdt A(r) L,:dQ ' If Le=0 at someF >0, this also causes a singularity of

Eqg. (26) which acts as a potential walmirror) for NED
®=Lg+2FLgr=Hp/Fp. (24 photons as is seen from E@8). Accordingly, Eq.(27)
shows that they are infinitely redshifted, vanishes if

Atan extremunP=P* of F(P), whereF #0 (in particular, | _(5)—0. No photons from outside can thus approach the

at the inevitable first minimui one has®—0 sinceFp center.
— while Hp is finite. This leads to a curvature singularity A this is in striking contrast to the picture obtained for

of the effective metric, at least iP* is not located on a 4 electric source—we now have potential walls instead of
horizon, A#0. Another kind of singularity of Eq(24) ac-  \yells and redshifts instead of blueshifts.

companies possible extrema®{P). All this is verified by

calculating the Kretschmann scaldr Even more impor-
tantly, according td18], if a NED photon comes from an

emitter at rest at point 1. to an observer at rest at point 2, the T have a specific example of a regular magnetic solution,
corresponding frequencids andf, are related by let us employ the abovEP duality and consider, with slight
modifications, the dependen¢2l), substituting—H with L
f_2: hu(1) hu(2) :q>(2)/ VA(2) (25) and — P with F. An advantage of Eq21) [as well as Egs.
fq Vou(1) Vou(2) <I>(1)/«/A(1)’ (20) and(22)] is that it leads to a closed form & (r) and
A(r). Let us, however, slightly modify it, excluding an ex-
where the second equality corresponds to the metric. Iplicit dependence df on mandq: they should be integration
®(2)=o [as it happens at a termination point bfF)], constants, whilee may only contain fundamental constants
then photons coming there are infinitely blueshifted and oner those originating from a deeper underlying theory. More-
may expect that they eventually lead to a real space-timever, to be able to describe systems with both electric and

VI. EXAMPLE

singularity. magnetic fields, wherE (andP) can have both signs, let us
For a magnetic solution, instead of EQ4), we get replace— P with |F| rather thanF. So we put
1 r2] r? 1y o
_ T 2 a2 L(F)=F/coslt (a|F/2|¥%, a=const. (29)
dsZy . A(r)dt AT §40% (26)

The use ofF| violates analyticity ol atF=0. As required,

where againb =L+ 2FLg . Instead of Eq(25), we get Lr(0)=1, but Lgs contains the discontinuous term

v —a?|2F| Y2sgnF. Though, in the range of interegt>0,
f_2 :w_ (270 thisL(F) is well-behaved. Integration in E¢L2) gives for a
f1 Le()/VAQD) regular solution
At the center (=0, A=1) bothLg and® vanish, i.e., the Iq|%2 a\/m
coefficienth,,—0o0, behaves as if in a wormhole, whereas M(r)= (1—tanh—), (30)
hoo—0, Which means that photons arriving there, if any, 2a r

would be infinitely redshiftedsee Eq.(27)]. Actually, pho- o _
tons cannot reach a place whére=0, as can be seen from S0 thatm=M(*)=[q|*¥2a (q=qy), and some relations

an integral of their geodesic equation, from [9] are formally restored. In particular, the minimum
value of A(r)=1—-2M(r)/r [recall thatA(0)=1] depends
Lz 2r 24 [A(r)®/r2]I12= €2, (28)  on the ratiof=m/|q|, so thatA,;, is negative foré>¢g,

~0.96 (we deal with a black hole with two horizonszero

where the overdot is a derivative in the affine parameter an¢or ¢= &, (an extremal black hole with one double horixon
€ and| are the photon’s constants of motion characterizingand positive forE< &, (a regular particle-like systemit is of
its initial energy and angular momentum. All curvature in-interest that, given any specific value of the constaint Eq.
variants of the metri26) vanish atr=0. It is indeed a (29), we can obtain all three types of solutions depending on
perfectly quiet place despite an infinife the charge value; we have a nonextremal or extremal black

Some peculiarities, however, occur on the way from in-hole if |q|<4a?/ £, or we have a particle-like solutiota
finity to the center. There is always a spherer* on which  monopolé otherwise. Despite the restriction imposed by the
®=0. It can be seen as follows may be represented as regularity condition, one finds all three types of regular so-
®=2\F(JFLg)e. The quantity\FL vanishes at botli |utions. This feature seems to be quite generic for proper
=0 andr =% and is nonzero between them; hence, it has ahonlinear Lagrangians. One can also verify that the proper-
least one extremum & # 0—this is whereb=0. The met- ties of the effective metri¢26) confirm the above general
ric (26), due to blowing up of the coordinate spheres, has abservations.
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One can also notice that, due to an exponential decay afiden the diversity of regular black hole and monopole so-
M(r) in Eqg. (30), the metric is in this cas€” smooth afr lutions. Related subjects are tid duality between solu-
=0. tions of different theories involving both invariants and a

possible extension of this duality to nonspherically symmet-

VIl. CONCLUDING REMARKS ric configurations.

A more complete description of the properties of the
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into the Lagrangian in addition t&. This invariant is in- Rybakov, Vitaly Melnikov, Vladimir Dzhunushaliev, Gernot
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