PHYSICAL REVIEW D, VOLUME 63, 044004

Notion of potential in quantum gravity
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The problem of a consistent definition of the quantum corrected gravitational field is considered in the
framework of theS-matrix method. The gauge dependence of the one-particle-reducible part of the two-scalar-
particle scattering amplitude, with the help of which the potential is usually defined, is investigated at the
one-loop approximation. Ther/ terms in the potential, which are of zero order in the Planck conétaate
shown to be independent of the gauge parameter weighting the gauge condition in the action. However, the
1/r3 terms, proportional td, describing the first proper quantum correction, are proved to be gauge dependent.
With the help of the Slavnov identities, their dependence on the weighting parameter is calculated explicitly.
The reason for the gauge dependence is briefly discussed.
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[. INTRODUCTION There is, however, an obstacle in direct application of the
equivalence theorem to the potential. The point is that the
Quantization of the general theory of relativity is conven-latter cannot be defined directly through the two-particle
tionally performed along the formal lines of quantization of Scattering amplitude, since the set of Feynman graphs de-
ordinary Yang-Mills theories. Apart from complications in- Scribing the given scattering process contains diagrams irre-
troduced by gauge invariance, both are carried out on théucible with respect to the gauge field as well as reducible
basis of Bohr's correspondence principle that gives certai®nes. Only after the reducible part is separated out of the
prescriptions as to construction of the operators for physicalvhole set of diagrams can the notion of the potential be
field quantities. It implies, in particular, that the noncommu-introduced by a straightforward generalization of the usual
tativity of these operators becomes negligible when the ocdefinition used in electrodynamics. This is exactly the way
cupation numbers of physical states get large, and so tH@llowed in Ref.[3] in investigation of the post-Newtonian
quantum equations of motion of free fields become effecclassical and quantum corrections to the gravitational poten-
tively classical. Switching on the interaction results in bothtial.
the classical nonlinear and quantum radiative corrections to The purpose of this paper is to investigate consistency of
these equations. The property of being classical, howevefhe above mentioned separation in the case of quantum grav-
should be retained by the largely occupied states even in tH&/. As will be explained in Sec. Il, actually there is no in-
presence of the interaction, at least in the case of small codtinsic reason underlying the division of diagrams according
pling constantsior small time intervals the states are ob-t0 the property of reducibility in this case, threatening
served in. The radiative corrections to these states are thu&hereby the validity of the equivalence theorem as applied to
supposed to be measurable in the classical sense, since itthe reducible subset of diagrams. That the potential defined
the filling of states, rather than the relative value of the corWith the help of this subset does depend on the gauge, losing

rections, that determines the system property of being claghereby any significance as a means for description of par-
sical. ticle interactions, is shown in Sec. IV by an explicit calcula-

As is well known, the above immediate interpretation oftion. Section Ill contains an account of the method used in
the effective fields runs into the problem of their gauge de-valuation of the gauge-dependence of the one-loop logarith-
pendence. One is prompted therefore to seek an indirect ifnic radiative corrections. The results of the work are dis-
terpretation based on the use of explicitly gauge-independegussed in Sec. V. Some formulas needed in calculation of the
means. Feynman integrals are obtained in the Appendix.

In many cases, a gauge-independent definition of the po- The highly condensed notations of DeWfit] are em-
tential can be given with the help of th® matrix whose Ployed throughout this paper. Also left derivatives with re-
gauge independence is insured by the well-known equivasPect to anticommuting variables are used. The dimensional
lence theorenil,2]. In the case of spinor electrodynamics, regularization of all divergent quantities is supposed.
for instance, the potential can be defined with the help of the
two-particle scattering amplitude Fourier transformed with
respect to the momentum transfer between the particles. In-
cidentally, with the help of the potential so defined one usu-
ally formulates the physical renormalization conditions It was mentioned in the Introduction that the notion of
which are nothing but the classical definitions of the chargepotential makes sense only if one is justified to disregard the
and masses of the patrticles. set of Feynman graphs irreducible with respect to the gauge

field. Before we proceed to actual calculations, let us con-
sider this point in more detalil.
*Email address: kirill@theor.phys.msu.su Note, first of all, that the potential must be defined in

II. DEFINITION OF THE POTENTIAL IN QUANTUM
GRAVITY
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FIG. 1. Feynman graphs repre-
senting general structure of vari-
ous contributions to the two-
particle scattering amplitudega)
The one-particle-reducible part.
(b) Contributions occurring when
the gauge-field—matter interaction
is nonlinear in the gauge fieldc)
The irreducible contribution to the
gravitational scattering amplitude,
remaining finite in the limitm
—o, Wavy lines represent gravi-
tons, solid lines matter fields.
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terms characterizing motion of interacting particles, simplyquirement of oneparticle reducibility, underlying this
because only in this case would the definition be relevant talefinition, seems to be adequate only lioear interactions.
an experiment. For this purpose, the scattering matrix ap- Definition of the potential through the scattering ampli-
proach can be used, in which case the potential is convenudes is not the only possible way to introduce an indepen-
tionally defined as the Fourier transforwith respect to the  dent notion of the gauge field. i, however, if one is inter-
momentum transfer from one particle to the othef the  ested in giving agyauge-independentefinition, i.e., the one
suitably normalizetl two-particle scattering amplitude. By that would give values for the gauge field, which are inde-
itself this definition is not of great value unless one is able t%endent Of the Choice Of gauge Conditions needed to fix
separate the whole scattering process as follows: interactigfauge invariance of the theotyActually, it was recently
of the first particle with the gauge fiele propagation of the  proposed that, in the case of quantum gravity, such a defini-
gauge field— interaction of the gauge field with the second tion can be given beyond ti@matrix approach through the
particle. Only if such a separation is possible can one introintroduction of classical point particle moving in the given
duce a self-contained notion of the potential. In terms of theyravitational field and playing the role of a measuring device
Feynman diagrams, one would say in this case that the dig4]. In particular, it was shown that the one-loop effective
grams describing the scattering process are one-particle reguations of motion of the point particléhe effective geo-
ducible with respect to the gauge field. desic equation calculated in the weak field approximation

In general, the complete set of Feynman graphs corren the nonrelativistic limit, turn out to be independent of the
sponding to a given scattering process includes irreduciblgauge conditions fixing the general covariafdk Although
diagrams as well as reducibilét is important, however, that  this result, undoubtedly, is of considerable importance on its
in many cases a subset of diagrams, consisting of only repwn, it lies out of the main line of our concern here, since it
ducible ones, can be extracted from the complete set, whiciy pased on the introduction of the classical point particle
contains contributions remaining finite in the limit—c, m  into the functional integral “by hands,” which certainly can-
denoting the masses of the scattering particles. In electrodyrot be justified using consistent limiting procedure of transi-
namics and Yang-Mills theories, for instance, this is the casgon from the underlying quantum field theory to the classical
for the spins particles, the subset containing all diagramstheory. On the other hand, as was shown in R&F. intro-
without internal lines of the scattering particlesee Fig. duction of the classicdield matter (scalar field instead of
1(a)], but not for the spin-0 particles, in which case one alsathe pointlike still leads to the gauge-dependent values for the
has diagrams of the type shown in FigblL In the case of gravitational field®
quantum gravity, furthermore, things are even more compli-  Turning back to the problem of definition of the gravita-
cated. In addition to the diagrams of Figbl one has also tjonal potential through the scattering amplitudes, we see that
diagrams pictured in Fig.(&), which do not disappear in the since irreducible diagrams to be dropped out do not disap-
limit m— co, sincem multiplies the vertices of gravitational pear even in the limim— o, validity of the most attractive
interactions of the particles, i.e., turns out to be not only inproperty of the potential defined through the scattering am-
the der?ominators, but also in the numerators of the Feynmaglitudes is jeopardized by the fact that the equivalence theo-
integrals.

We see that the definition of potential via scattering am-
plitudes is hardly justified in cases when the gauge-field—

matter interaction is nonlinear in the gauge field. The re-. On€ also has to require independence of the choice of a set of
dynamical variables in terms of which the theory is quantized. This

last condition is particularly important in the case of gravity, where
one is free to take any tensor density as a dynamical parametriza-
The normalization is fixed by the requirement that the potentialtion of the metric field.

takes the Newtonian form at the tree level. “4It seems that in the case of ordinary Yang-Mills theories, inclu-
Here and below in this section, the term “reducible” is used with sion of the classical field matter does solve the gauge-dependence
respect to the gauge field only. problem, at least in the low-energy limit, see Ré].

044004-2



NOTION OF POTENTIAL IN QUANTUM GRAVITY

rem asserting the gauge independence ofShatrix is ap-

plicable only to the whole set of diagrams, containing
irreducible as well as reducible Feynman graphs describing

given scattering proceg4,2]. As will be shown below, the
gravitational potential constructed in RE3] (i.e., using only

reducible Feynman diagrapgndoes depend on the gauge, los-
ing thereby any significance as a means for description of

particle interactions.

Ill. GENERATING FUNCTIONALS AND SLAVNOV
IDENTITIES
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1 B
ng=2—§77 F.Fs,

1
Fa:a#h,u«a_iaah’ hEnﬂyhﬂv'

Next, introducing the Faddeev-Popov ghost fimga
we write the Faddeev-Popov quantum acti@h

Sep=S+S,, + Sy, + Syt CPFADE,C,

As in Ref.[3], we consider the gravitational scattering of Sgpis still invariant under the following Becchi-Rouet-Stora-

two scalar particles with masses; ,m,. Dynamics of their
qguantum fields denoted by, , ¢,, respectively, is described
by the action

1
Sp=> f d*xV=0(9""9, 49,6~ m?¢?),

b= 1,

while the action for the gravitational field

m=m1’2,

S=

1
o

k being the gravitational constaht.
The actionS+ S¢1+ S¢2 is invariant under the following

(infinitesima) gauge transformatiofs

5h,uV: gaaahﬂv—’_ ( 7],ua+ hua)&vga+ ( 7]VCY+ hva) ap,ga
=D ,(h)&,,

8p=£9,=DUP)&,,

whereé® are the(infinitesima) gauge functions. The genera-
torsD,D span the closed algebra

DZ’S}\DgA_ Dﬁ’v(ﬂ\Dg-)\: faByDZw
BebA-BED=1 6B,
the “structure constants’t y“ﬁ being defined by
f'yaﬁga Np= ga&an'y_ ﬂaaa‘f'y .

Let the gauge invariance be fixed by the term

°Our notation is R,,=R,,,=d,[%,~ -, R=R,,g"", g
=detg,,, 9,,=sgn(+,—,—,—). Dynamical variables of the
gravitational fieldh,,,=g,,— 7,,,7,,=diag +1,-1,—1,— 1}.

%We choose units in which=#=k=1 from now on.

“Indices of the function§ , ¢, as well as of the ghost fields below,

Tyutin (BRST) transformationg8]

8h,,=D%,(h)C,A,

8p=D($)C,\,

1
5C,==51,""C.Cp\,

5Ci= 1,
=F N,

\ being a constant anticommuting parameter.
The generating functional of Green functifns

()

Z[T,J,E,ﬁ,K,R,L]=f dhdgdCdCexpli(S + B°C,
+CYB,+THh ,,+ )},

whereJ={J, 5}, dp=dp,d¢,, Jp=I1¢1+J2¢,, and
prpya KD« 71 ap
3 =Sppt+K*'Dy,C,+KD*C,+L §f7 C.Cp,

K~*(x), K(x) (anticommuting, L%(x) (commuting being
the BRST transformation sourcgs.

To determine the dependence of field-theoretical quanti-
ties on the gauge parametgrwe modify the quantum action
adding the term

YF,C¢,

Y being a constant anticommuting parametEd]. Thus we
write the generating functional of Green functions as

Z[T,3,8,8,K,K,L,Y]= f dhdgdCdCexpi(S +YF,C®

+BC o+ CB+TH N, +Ih)}.
2

are raised and lowered, if convenient, with the help of Minkowski 8For brevity, the product symbol, as well as tensor indices of the

metric 7,,,, .

fieldsh,,,C,,C%, is omitted in the path integral measure.

uvo
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Finally, we introduce the generating functional of con-where we used the proper?=0, and omitted the expres-

nected Green functions sion 68,/6B,~ 6(0). Putting this all together, we rewrite
_ _ Eq. (4)
W[T,J,8,8,K,K,L,Y]==iInZ[T,J,8,8,K,K,L,Y],
5§ — 6 1
and then define the effective actibnin the usual way as the THY S = B — B -
Legendre transform ofV with respect to the mean fields oK# oK sLe ¢ oTH
SW SW SW SW vg. -2 —ovellso
h,U«V: ’ (rb:_v Ca:T! Ca:__a 375187 5(9 e
STH 6J 5B¢ OB

This is the Slavnov identity for the generating functional of
(denoted by the same symbols as the corresponding fief@reen functions we are looking for. In terms of the generat-

operators ing functional of connected Green functions, it takes the
form

I'[h,¢,C,C,K,K,L,Y]=W[T,J,88.K,K,L,Y]

B o v Haw Eaaw 13 Eaur

— Qo _Co _ TMV _ _—— — =B, f
B Ca C ﬁa T h/.w ‘]¢ SKHY SK SL« g STHY
Evaluation of derivatives of diagrams with respect to the SW IW
gauge parameters is an easier task than their direct calcula- _Y'Byﬁ_ZYga_g:O' (5)
Y

tion in arbitrary gaug@&.This is because these derivatives can
be expressed through another set of diagrams with more

simple structure. The rules for such a transformation of dialt can be transformed further into an identity for the gener-

grams are conveniently summarized in the Slavnov identitie@ting functional of proper vertices: with the help of equations
corresponding to the generating functiortd). Since these
identities are widely used in what follows, their derivation Thv— _ or J=_ E
will be briefly described beloW10]. oh,,’ o’
First of all, we perform a BRST shiftl) of integration

variables in the path integréR). Equating the variation to

zero we obtain the following identity: Eazﬂ Bo=— 5{ (6)
oC, " sce’
o uvp[ B : Y 2 wv 4
dhd¢dCdQ iY C*F "Dy, Cpti EFaJFT K which are the inverse of Eq$3), and the relations
3 1) Ea 1) ig F* oi(S+YF oo oW or dW I’ ‘
—— —iB,—|expi o = , —=—, etc,
oK oL 3 L G (LA S
+ B Cot C* Byt THN,,, +3$)} =0, @ e rewrite Eq.(5)
Next, the first term in the square brackets in E4).can be w
transformed with the help of the quantum ghost equation of or or I E £+ i ﬂ_ F i
motion, obtained by performing a shi@t— C+ SC of inte- oh,, sk#v 8¢ sk 6C, 5L & sC

gration variables in the functional integrd):

ST T
B HY—— Cer2YEZ 0.
f dhdgdCdQF#'D%,C,~ YF,+B,lexp- - -}=0, oC

o Written down via the reduced functional
from which it follows that

1 _
Io=T— —~FF*—YF,C",

_ )
Yf dhddCdQiCF} "D}, Cot B, 55~ (expl =0, 2¢
Y

the latter equation takes particularly simple form

%In actual quantum gravity calculations, this fact was first used in
Ref.[11] to evaluate divergences of the Einstein gravity in arbitrary o ol 4 & £~° 4 o & Y (7_F0 =0. (7)
gauge off the mass shell. oh,, sk#v ¢ sK  OC, sLC Z3
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FIG. 2. Diagrams with two
scalar and one graviton external
lines, responsible for the nonvan-
ishing of the £&-dependent contri-
bution to the one-particle-
reducible gravitational potential.
Solid lines represent scalar par-
ticles, dashed lines ghosts.

IV. GAUGE DEPENDENCE OF THE At the one-loop level, Eq(8) is jUSllO
ONE-PARTICLE-REDUCIBLE
GRAVITATIONAL POTENTIAL (?F(ll) 5F(10) 5I'(21)
Let us now turn to the explicit evaluation of tiedepen- aE - oh,, skuv’ ©

dence of the one-loop contribution to the potential. Its gen-

eral structure is shown in Fig(d. In view of the assumed since the external scalar lines are on the mass shell

reducibility, corrections to the vertices and graviton propa-

gator, which are the building blocks for the potential, can be §: ]

considered separately. Let us note first of all that (thee o¢

graviton propagators, with respect to which the potential is,G

) X . aphs representing thé derivatives of the form factors
reducible, can be considered gauge independent. Indeed, fécgrding t% the righ% hgﬁd side of E), are shown in Figs.

the one-loop level, each of these propagators has one of its 3

ends attached to the trgg-h-¢ vertex with theg lines on Diagrams of Fig. 3 need not be calculated explicitly. It is
the mass shell. Thl_s comblna_tlon is gauge independent on tfpdsy to see that they just cancel thdependent contribution
same grounds as is tf®matrix at the tree level. Thus, we tg the graviton self-energy when the potential is being con-
have to consider only the propgrh-¢ vertex and the gravi-  structed. Indeed, according to E¢), this contribution is

ton self-energy. To evaluate thiederivative of these quan- given by the diagrams of Fig. 4. In the course of construction
tities, we use the Slavnov identity). Extracting terms pro- of the potential, the twd lines of the graviton self-energy
portional to the sourc¥, we get are connected to theé-h-¢ vertices by the graviton propa-
gators. When these propagators are attached to the left most
vertices in Figs. &), 4(b), we get exactly the diagrams of

gr, T, oT, o, T,

-l 7e 17l (8) Figs. 3a), 3(b), respectively, but with the opposite sign, be-
9§ Shy,, skmr S¢ SK cause it follows from Eqs(3),(6) that
2 2\7/(0)
wherel’; , are defined by o°S W =5,
oh,,0h.g sTBSTY? Y
I=Toly—0, T ax Thus, explicit calculation of diagrams of Fig. 2 is needed

2 only. Their analytic expressions

FIG. 3. Diagrams representing
the part of the¢-dependent contri-
bution to the gravitational form
factors of scalar particles, that
cancels the corresponding contri-
bution coming from the graviton
self-energy (see Fig. 4 in the
course of construction of the po-
tential.

Enclosed in the parentheses is the number of loops in a diagram representing given term.
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M)

FIG. 4. Diagrams representing
the &-dependent contribution to
the graviton self energy.

E()

. 2

—iE**(p) d4—fk[1 0°S ,
| q)= € —WeBY3q_(ks+qs) < G =~ Ix,
2(2)(P, Q) > sqsq_pﬂ (2m)* |2 q,(kstds oh,,oh,, *

2”aﬁ 1 )
—M" =Gy} WA~ Po) (Ky+a))

77 oy
—m27] ¢DY)7GS (k+p)

X GHp+Kk){k, 55— 5%k, +p,)

- 52(1?(kp,+ p,u,)}G)(Haﬁ(k)a

L2y (P: ) =123)(P.P— 1),

(b= P) d“‘fk” L sy
2(c) p.q Zmﬂ (277_)4 2 &7

+ 88y ™) + (87,870 + 51 670)

+ %W""’”}qf(qg— po)

2

a~uy a

— X0k, +p,)}G5(p+ k) EDCA(k+p),

where the following notation is introduced:

WeBYO= pabpyd_ paypBo_ pad, By,

1
SHr=C_

hh=5 (S + 815%),

G .o\ is the graviton propagator defined by

m TPON 6 6
- TW Grp)(ﬁ(k){k o _5”, (kv+ pv)

1
G,LLVO')\: - W;LVO')\ i + (g_ 1)( 7],4;0"91/‘9)\
1
+ nuhavaa+ 7]1/0"9;/,&)\—’— nvkaﬂao—)ﬁl

G¢ is the ghost propagator
1 7

satisfying
wrpy(0)BE Y= — Oa=pe h=
Fi'D,,"Gi=—-¢y, D,,*=Dj (h=0),

G, is the scalar particle propagator

1

Gy=——,
S O m?

E*” stands for the linearized Einstein tensor

MV MV __ MV aﬁ
E _R 2 77 RaBn y

1
R“V:E(ﬁ“ﬁﬂhw-i- a*d,h,,—0Oh,,—d,d,h),

p is the arbitrary mass scale;qz\/qurmz, and e=4

—d, d being the dimensionality of space time. To simplify
the tensor structure of diagrams Fig. 2, the use has been
made of the identity

1
SFOrG

; wvon(X)=—DQFGE(x),

which is nothing but the well-knowfirst Slavnov identity at
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the tree level; it is easily obtained differentiating B&)  This takes most of the effort.
twice with respect tg3, andT#?, and setting all the sources  The tensor multiplication in Eq10) is conveniently per-
equal to zero. formed with the help of the new tensor package for the

Let us begin with evaluation of the diagram of Figa2 = REDUCE system[12]

Iz(a)(Pﬂ)Z_iEW(p)'“Ef d4_€k£ -

2\eqeqp  J (2m)* K* (ktp)* m*=(k+q)?
+k, kK E(p?—2m?) + 2k kK2 (ka) (26— 1) (p?—2m?) + 4k, (K, +p,) (kg)*(— 1) (p*~2m?)
+k,p k(= 2£m? + £p®—2m?) + 2k ,p k*(kq) (— 4ém*+ 2£p®— p?) + 2k ,q, k*(p*—m?)
+4k,q,k*(kq)(p?—m?) —2p,p k’m*{k*+2(ka)} +2p,q,k*&{(kp) — (ka) }{k*+ 4(ka)}
+4p,q,k2(kg){p?—m?+ (ka) — (kp)} +8p,,a,(ka)*(£— 1){(kp) — (ka)}

& 7, k*m?{(kp) — (ko) HK?+ 2(ka)}

+2p,q,k*(p?—m?)+2q,q,k*{(kq) — (kp)} +4q,q,k*(ka){(ka) — (kp)}]. (12
|
Evaluation of the loop integrals can be automatized to a con- tH(1+t+u)p? u(l+t+u)p?
siderable extent if the Schwinger parametrization of denomi- = Y=,
nators in Eq(12) is used m“(1+ atu) m*(1+ atu)
1 ( 1+t+u)v? 2
—4=J dy yexp{yk?}, Z:ﬁl az_p_,
Kk 0 m?(1+ atu) m?
o integratingv out, subtracting the ultraviolet divergerite
=f dx xexp{x(k+p)?},
(k+p)* Jo
~ JAN
IdIV: (_ E~V ) 2 2_2m2 ,
: | dzexpiaie+ 2k ) SR
—_—=— zexp(z .
Kr2kq)  Jo .

settinge=0, and retaining only the terms giving rise to the
It is convenient to apply these formulas as they stand, i.ef00ts and logarithms of*/m?, leading atp?’—0, we obtain
eluding cancellation of th&? factors in Eq.(12). Thek in-

tegrals are then evaluated using ~ i EX"(p)¢ (= (~
(|2_|2|V)EH0:—J f dudt
32772\/sqsq_p oJo
d9k exp{k?(x+y+2z)+ 2k“(xp,+z
f Pk (x+y+2) (Xp,+20,)} 8m(£—1) m2
persva LI M LR

. T ) d/i2 F{ pZXy_ mZZZ
=j -

X+y+z X+y+z |’ 9 4 77,wm2 5 4
X|6—=+—|+ -——=+—
6 D p2 DN 1 D p?2
d% k, exp{k?(x+y+z) + 2k*(xp,+20,)}
j B 4y, ,mié 2\ 8&m?
oz |0 D) pnz
- dr2 p[ p2xy—m?2z2 XPy+20, DN°p DN
=] — ,
_ o X"z |\ o btoe) 2
etc., up to sixk factors in the integrand. p D p
From now on, all formulas will be written out for the sum
TZEIZ(a)(p,q)+ l2m)(P,0)- Hsince we are interested only in the nonanalytipt0 terms
responsible for the long-range quantum corrections, particularities
Changing the integration variables,{,z) to (t,u,v) via of the subtraction scheme are immaterial.
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X| —3&+1+ g — %— 4—i + %) violet divergences, one setst k—Kk in the propagators and
D D the vertex factorgsince the degree of divergence is 2ero
averages over anglém k space, and retains only k* terms
D=1+aut, N=1+u+t. (13 in the integrand, changing them tar2i/e afterwards. The
tensor multiplication as well as integration over angles in the
EqUﬂtiOﬂ(lS) is written out in such a form that the Ieading momentum space is again performed with the he|p of the
roots come only from the first three terms in the curly brack-tensor package of Ref12]. Subtracting the ¥ divergence
ets. The remainingy(t) integrals are evaluated in the Ap- and settinge=0, one obtains the following result:
pendix. Using Egs(A3) one readily sees that the terms pro-

] Now, the calculation is straightforward. To find the ultra-

portional to \—p? in Eq. (13) cancel. As explained éna
elsewhere(see Ref.[13]), this fact allows one to give a 20 (P D 10g= > E“"(p){7n,,m*(—5&+2)
physical interpretation to the root contributions to the form 967 Veqeq-p

factors directly in the framework of the effective action
method, as describing quantum deviations of the space-time
metric from classical solutions of the Einstein equations.

It is easy to see also that the diagrams of Fig. 2 are th
only that give rise to the root singularities in the potential ren__ : ren ~ren
defined according to Ref(3], so the found cancellation 2 =l20(P.a)F12
proves the gauge independence of the térms in this po-

—0,9,(4£+8)}.

él’he total logarithmic contribution of diagrams of Fig. 2 is

tential as well ¢ being the distance from the source particle S LE#V(D)
Let us, therefore, push our calculations further and turn to 48772\/8q8q7p
the 143 terms, i.e., to the leading logarithms. With the help 2
of Eqgs.(A4) of the Appendix, we get from Eq13) X{7,,MA(46—1)+0,0,(28+4)} (16)
EF¥(p) 5, mPE2 Finally, multiplying Eq.(16) with m=m, by the graviton
(T,=Tgvylog =Tien=—| M (14)  Ppropagator and the tree vertex factor corresponding to the

327r2\/sqsq_p second particle withm=m,, and adding the result of this
calculation with m;,m, interchanged(and p— —p), we
It remains only to calculate the diagram of FigcR This  have for the¢ derivative of the one-loop contribution to the
is @ much easier task than the above calculation, since thene-particle-reducible part of the two-particle scattering am-

loop does not contain scalar lines. On dimensional groundsslitude, in the caseq;|<my, |gp|<my,
l5¢)(p,d) has the following structure:
; AT mymy(2¢+1)
o= B PP (4 ” L Ge ~ P = —— (17
2\P,A)= — < m
’ €q€q-p —p? €
, This completes exposition of the main result of the work.
_E (p)P‘“’(p'q)F—Eln —p?
VeqEq-p € 20 u V. CONCLUSION

The 143 terms in the one-particle-reducible gravitational
potential are thus shown to Gedependent, the form of this
dependence being given by the Fourier transform of(EQ.

The formal reason for the occurrence of gauge dependence
should be clear from the considerations of Sec. IV. The
gauge invariance of the classical action is crucial for the
proof of the gauge independence of ®imatrix[1,2]. Being
inhomogeneous in the fiell,, , the generators of the gauge

+c+0(e) |, (15

where ¢ is some number, and,,(p,q) polynomials in
P.d,. It follows from Eg. (15 that one can obtain the
logarithmic contribution from divergent one substituting

— 'U,I/!
E__Em -V transformations mix vertices with different number bf
€ 2 w? lines. The gauge invariance of the scattering amplitude is

therefore preserved only if every combination of vertices,

I is ultraviolet divergent. It is important, on the other contributing at a given loop order, is taken into account.

hand, that it is free of infrared divergences. Indeed, the inte©Omission of the irreducible part of the two-particle scattering

grand in Eq.(11) is the sum of products of powerp ¢ k)" amplitude inevitably violates the latter condition, the result

andk', times a polynomial irp, ,q,,. Since the diagram is being only the partial cancellation of the gauge-dependent
logarithmically divergent, we have+1=—4. On the other contributions, found in Sec. IV. Thus, the one-particle-

hand, infrared divergences appear onlyni&—4, or |I< reducible gravitational potential is irrelevant to the issue of
—4, and, therefore, we have=0, orn=0. In either case the interpretation of the quantum corrections to the classical
dimensionally regularized loop integrals turn into zero. metric.
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® identically. On the other hand,
c ~ [~ InB=In{aw(A+w)}
JAB)= f_w W WAt W)
JO INB—In{—aw(A+w)}+im
I\ I\ /T I\ + dW
z -A 0 Z. A B— aw(A+w)

+J+°°d INB—In{aw(A+w)}+2im

w
FIG. 5. Contour of integration in EqAL). 0 B—aw(A+w)
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7T2 a’AZ —-1/2
JAB)=—=B Y1+ ——
2\Ja

APPENDIX 4B
The integrals 1A InB=Infat(A-t
2, B+o;{t(A(—t) 4 A2
;o j J dudt °
"™ o Jo (L+t+u)"(1+ atu)™ The roots are contained entirely in the first term on the

right of Eq. (A2), while the logarithms in the second. The
encountered in Sec. IV, can be evaluated as follows. ConintegralsJ,,,, are found by repeated differentiation of Eq.

sider the auxiliary quantity (A2) with respect toA,B. Expanding the square root (1
+ aA?/4B)Y? in powers of a, we find the leading roots
(AB)— J”J“ dudt needed in Sec. IV
' o (A+t+u)(B+atu)’ X 5 5
root__ Jroot_ root__ (A3)
whereA,B>0 are some numbers eventually set equal to 1. Y11 ' ' 13~ '
. ; . 2\a 4\a 16\
Performing an elementary integration owernwe get
2 2 2
377 1577
< In B—|n{at(A+t)} Jroot 7T a, Jroot \/E, Jroot \/E
J(A,B)—f d —al(ATD) 16 32 128
) ) Next, expanding the integrand in the second term of Eq.
Now consider the integral (A2), we get the leading logarithms
~ 1
J(A,B)=f dz f(z,A,B), J09=gl09=glo9= — glo9— — jlog— J'°9— Ina,
C
In B_ln{aZ(A+Z)} 1o a 1o a I 3a
- Jap=——=Ina, J38=-=Ina, Jog———lna,
f(zAB) B—az(A+z) '’ 4 2 4
(A1)
- Iog__ Iog_ Iog__
taken over the contou€ shown in Fig. 5.J(A,B) is zero Jai 12Ina Jaz In @ Jag Ina. (A4)
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