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Notion of potential in quantum gravity
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The problem of a consistent definition of the quantum corrected gravitational field is considered in the
framework of theS-matrix method. The gauge dependence of the one-particle-reducible part of the two-scalar-
particle scattering amplitude, with the help of which the potential is usually defined, is investigated at the
one-loop approximation. The 1/r 2 terms in the potential, which are of zero order in the Planck constant\, are
shown to be independent of the gauge parameter weighting the gauge condition in the action. However, the
1/r 3 terms, proportional to\, describing the first proper quantum correction, are proved to be gauge dependent.
With the help of the Slavnov identities, their dependence on the weighting parameter is calculated explicitly.
The reason for the gauge dependence is briefly discussed.
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I. INTRODUCTION

Quantization of the general theory of relativity is conve
tionally performed along the formal lines of quantization
ordinary Yang-Mills theories. Apart from complications in
troduced by gauge invariance, both are carried out on
basis of Bohr’s correspondence principle that gives cer
prescriptions as to construction of the operators for phys
field quantities. It implies, in particular, that the noncomm
tativity of these operators becomes negligible when the
cupation numbers of physical states get large, and so
quantum equations of motion of free fields become eff
tively classical. Switching on the interaction results in bo
the classical nonlinear and quantum radiative correction
these equations. The property of being classical, howe
should be retained by the largely occupied states even in
presence of the interaction, at least in the case of small c
pling constants~or small time intervals the states are o
served in!. The radiative corrections to these states are t
supposed to be measurable in the classical sense, since
the filling of states, rather than the relative value of the c
rections, that determines the system property of being c
sical.

As is well known, the above immediate interpretation
the effective fields runs into the problem of their gauge
pendence. One is prompted therefore to seek an indirec
terpretation based on the use of explicitly gauge-indepen
means.

In many cases, a gauge-independent definition of the
tential can be given with the help of theS matrix whose
gauge independence is insured by the well-known equ
lence theorem@1,2#. In the case of spinor electrodynamic
for instance, the potential can be defined with the help of
two-particle scattering amplitude Fourier transformed w
respect to the momentum transfer between the particles
cidentally, with the help of the potential so defined one u
ally formulates the physical renormalization conditio
which are nothing but the classical definitions of the char
and masses of the particles.
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There is, however, an obstacle in direct application of
equivalence theorem to the potential. The point is that
latter cannot be defined directly through the two-parti
scattering amplitude, since the set of Feynman graphs
scribing the given scattering process contains diagrams
ducible with respect to the gauge field as well as reduc
ones. Only after the reducible part is separated out of
whole set of diagrams can the notion of the potential
introduced by a straightforward generalization of the us
definition used in electrodynamics. This is exactly the w
followed in Ref. @3# in investigation of the post-Newtonia
classical and quantum corrections to the gravitational po
tial.

The purpose of this paper is to investigate consistency
the above mentioned separation in the case of quantum g
ity. As will be explained in Sec. II, actually there is no in
trinsic reason underlying the division of diagrams accord
to the property of reducibility in this case, threatenin
thereby the validity of the equivalence theorem as applied
the reducible subset of diagrams. That the potential defi
with the help of this subset does depend on the gauge, lo
thereby any significance as a means for description of p
ticle interactions, is shown in Sec. IV by an explicit calcul
tion. Section III contains an account of the method used
evaluation of the gauge-dependence of the one-loop loga
mic radiative corrections. The results of the work are d
cussed in Sec. V. Some formulas needed in calculation of
Feynman integrals are obtained in the Appendix.

The highly condensed notations of DeWitt@1# are em-
ployed throughout this paper. Also left derivatives with r
spect to anticommuting variables are used. The dimensio
regularization of all divergent quantities is supposed.

II. DEFINITION OF THE POTENTIAL IN QUANTUM
GRAVITY

It was mentioned in the Introduction that the notion
potential makes sense only if one is justified to disregard
set of Feynman graphs irreducible with respect to the ga
field. Before we proceed to actual calculations, let us c
sider this point in more detail.

Note, first of all, that the potential must be defined
©2001 The American Physical Society04-1
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FIG. 1. Feynman graphs repre
senting general structure of var
ous contributions to the two-
particle scattering amplitude.~a!
The one-particle-reducible part
~b! Contributions occurring when
the gauge-field–matter interactio
is nonlinear in the gauge field.~c!
The irreducible contribution to the
gravitational scattering amplitude
remaining finite in the limit m
→`. Wavy lines represent gravi
tons, solid lines matter fields.
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terms characterizing motion of interacting particles, sim
because only in this case would the definition be relevan
an experiment. For this purpose, the scattering matrix
proach can be used, in which case the potential is conv
tionally defined as the Fourier transform~with respect to the
momentum transfer from one particle to the other! of the
suitably normalized1 two-particle scattering amplitude. B
itself this definition is not of great value unless one is able
separate the whole scattering process as follows: interac
of the first particle with the gauge field→ propagation of the
gauge field→ interaction of the gauge field with the secon
particle. Only if such a separation is possible can one in
duce a self-contained notion of the potential. In terms of
Feynman diagrams, one would say in this case that the
grams describing the scattering process are one-particle
ducible with respect to the gauge field.

In general, the complete set of Feynman graphs co
sponding to a given scattering process includes irreduc
diagrams as well as reducible.2 It is important, however, tha
in many cases a subset of diagrams, consisting of only
ducible ones, can be extracted from the complete set, w
contains contributions remaining finite in the limitm→`, m
denoting the masses of the scattering particles. In electro
namics and Yang-Mills theories, for instance, this is the c
for the spin-12 particles, the subset containing all diagram
without internal lines of the scattering particles@see Fig.
1~a!#, but not for the spin-0 particles, in which case one a
has diagrams of the type shown in Fig. 1~b!. In the case of
quantum gravity, furthermore, things are even more com
cated. In addition to the diagrams of Fig. 1~b!, one has also
diagrams pictured in Fig. 1~c!, which do not disappear in th
limit m→`, sincem multiplies the vertices of gravitationa
interactions of the particles, i.e., turns out to be not only
the denominators, but also in the numerators of the Feyn
integrals.

We see that the definition of potential via scattering a
plitudes is hardly justified in cases when the gauge-fie
matter interaction is nonlinear in the gauge field. The

1The normalization is fixed by the requirement that the poten
takes the Newtonian form at the tree level.

2Here and below in this section, the term ‘‘reducible’’ is used w
respect to the gauge field only.
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quirement of one-particle reducibility, underlying this
definition, seems to be adequate only forlinear interactions.

Definition of the potential through the scattering amp
tudes is not the only possible way to introduce an indep
dent notion of the gauge field. Itis, however, if one is inter-
ested in giving agauge-independentdefinition, i.e., the one
that would give values for the gauge field, which are ind
pendent of the choice of gauge conditions needed to
gauge invariance of the theory.3 Actually, it was recently
proposed that, in the case of quantum gravity, such a de
tion can be given beyond theS-matrix approach through the
introduction of classical point particle moving in the give
gravitational field and playing the role of a measuring dev
@4#. In particular, it was shown that the one-loop effecti
equations of motion of the point particle~the effective geo-
desic equation!, calculated in the weak field approximatio
in the nonrelativistic limit, turn out to be independent of th
gauge conditions fixing the general covariance@4#. Although
this result, undoubtedly, is of considerable importance on
own, it lies out of the main line of our concern here, since
is based on the introduction of the classical point parti
into the functional integral ‘‘by hands,’’ which certainly can
not be justified using consistent limiting procedure of tran
tion from the underlying quantum field theory to the classi
theory. On the other hand, as was shown in Ref.@5#, intro-
duction of the classicalfield matter ~scalar field! instead of
the pointlike still leads to the gauge-dependent values for
gravitational field.4

Turning back to the problem of definition of the gravit
tional potential through the scattering amplitudes, we see
since irreducible diagrams to be dropped out do not dis
pear even in the limitm→`, validity of the most attractive
property of the potential defined through the scattering a
plitudes is jeopardized by the fact that the equivalence th

l

3One also has to require independence of the choice of a se
dynamical variables in terms of which the theory is quantized. T
last condition is particularly important in the case of gravity, whe
one is free to take any tensor density as a dynamical paramet
tion of the metric field.

4It seems that in the case of ordinary Yang-Mills theories, inc
sion of the classical field matter does solve the gauge-depend
problem, at least in the low-energy limit, see Ref.@6#.
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NOTION OF POTENTIAL IN QUANTUM GRAVITY PHYSICAL REVIEW D 63 044004
rem asserting the gauge independence of theS matrix is ap-
plicable only to the whole set of diagrams, containi
irreducible as well as reducible Feynman graphs describ
given scattering process@1,2#. As will be shown below, the
gravitational potential constructed in Ref.@3# ~i.e., using only
reducible Feynman diagrams! does depend on the gauge, lo
ing thereby any significance as a means for description
particle interactions.

III. GENERATING FUNCTIONALS AND SLAVNOV
IDENTITIES

As in Ref. @3#, we consider the gravitational scattering
two scalar particles with massesm1 ,m2. Dynamics of their
quantum fields denoted byf1 ,f2, respectively, is describe
by the action

Sf5
1

2E d4xA2g~gmn]mf]nf2m2f2!,

f5f1,2, m5m1,2,

while the action for the gravitational field5

S52
1

k2E d4xA2gR,

k being the gravitational constant.6

The actionS1Sf1
1Sf2

is invariant under the following
~infinitesimal! gauge transformations7

dhmn5ja]ahmn1~hma1hma!]nja1~hna1hna!]mja

[Dmn
a ~h!ja ,

df5ja]af[D̃a~f!ja ,

whereja are the~infinitesimal! gauge functions. The genera
tors D,D̃ span the closed algebra

Dmn
a,slDsl

b 2Dmn
b,slDsl

a 5 f ab
gDmn

g ,

D̃1
aD̃b2D̃1

bD̃a5 f g
abD̃g,

the ‘‘structure constants’’f g
ab being defined by

f g
abjahb5ja]ahg2ha]ajg .

Let the gauge invariance be fixed by the term

5Our notation is Rmn[Ra
man5]aGmn

a 2•••, R[Rmngmn, g
[detgmn , gmn5sgn(1,2,2,2). Dynamical variables of the
gravitational fieldhmn5gmn2hmn ,hmn5diag$11,21,21,21%.

6We choose units in whichc5\5k51 from now on.
7Indices of the functionsF,j, as well as of the ghost fields below

are raised and lowered, if convenient, with the help of Minkow
metric hmn .
04400
g
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Sg f5
1

2j
habFaFb ,

Fa5]mhma2
1

2
]ah, h[hmnhmn .

Next, introducing the Faddeev-Popov ghost fieldsCa ,C̄a

we write the Faddeev-Popov quantum action@7#

SFP5S1Sf1
1Sf2

1Sg f1C̄bFb
,mnDmn

a Ca .

SFP is still invariant under the following Becchi-Rouet-Stor
Tyutin ~BRST! transformations@8#

dhmn5Dmn
a ~h!Cal,

df5D̃a~f!Cal,

dCg52
1

2
f g

abCaCbl,

dC̄a5
1

j
Fal, ~1!

l being a constant anticommuting parameter.
The generating functional of Green functions8

Z@T,J,b̄,b,K,K̃,L#5E dhdfdCdC̄exp$ i ~S1b̄aCa

1C̄aba1Tmnhmn1Jf!%,

whereJ5$J1,2%, df[df1df2 , Jf[J1f11J2f2, and

S5SFP1KmnDmn
a Ca1K̃D̃aCa1Lg

1

2
f g

abCaCb ,

Kmn(x), K̃(x) ~anticommuting!, La(x) ~commuting! being
the BRST transformation sources@9#.

To determine the dependence of field-theoretical qua
ties on the gauge parameterj, we modify the quantum action
adding the term

YFaC̄a,

Y being a constant anticommuting parameter@10#. Thus we
write the generating functional of Green functions as

Z@T,J,b̄,b,K,K̃,L,Y#5E dhdfdCdC̄exp$ i ~S1YFaC̄a

1b̄aCa1C̄aba1Tmnhmn1Jf!%.

~2!

i
8For brevity, the product symbol, as well as tensor indices of

fields hmn ,Ca ,C̄a, is omitted in the path integral measure.
4-3
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Finally, we introduce the generating functional of co
nected Green functions

W@T,J,b̄,b,K,K̃,L,Y#52 i ln Z@T,J,b̄,b,K,K̃,L,Y#,

and then define the effective actionG in the usual way as the
Legendre transform ofW with respect to the mean fields

hmn5
dW

dTmn
, f5

dW

dJ
, Ca5

dW

db̄a
, C̄a52

dW

dba
,

~3!

~denoted by the same symbols as the corresponding
operators!:

G@h,f,C,C̄,K,K̃,L,Y#5W@T,J,b̄,b,K,K̃,L,Y#

2b̄aCa2C̄aba2Tmnhmn2Jf.

Evaluation of derivatives of diagrams with respect to t
gauge parameters is an easier task than their direct cal
tion in arbitrary gauge.9 This is because these derivatives c
be expressed through another set of diagrams with m
simple structure. The rules for such a transformation of d
grams are conveniently summarized in the Slavnov identi
corresponding to the generating functional~2!. Since these
identities are widely used in what follows, their derivatio
will be briefly described below@10#.

First of all, we perform a BRST shift~1! of integration
variables in the path integral~2!. Equating the variation to
zero we obtain the following identity:

E dhdfdCdC̄F iY C̄aFa
,mnDmn

b Cb1 i
Y

j
Fa

21Tmn
d

dKmn

1J
d

dK̃
2b̄a

d

dLa
2 iba

Fa

j Gexp$ i ~S1YFaC̄a

1b̄aCa1C̄aba1Tmnhmn1Jf!%50. ~4!

Next, the first term in the square brackets in Eq.~4! can be
transformed with the help of the quantum ghost equation
motion, obtained by performing a shiftC̄→C̄1dC̄ of inte-
gration variables in the functional integral~2!:

E dhdfdCdC̄@Fg
,mnDmn

a Ca2YFg1bg#exp$•••%50,

from which it follows that

YE dhdfdCdC̄F iC̄gFg
,mnDmn

a Ca1bg

d

dbg
Gexp$•••%50,

9In actual quantum gravity calculations, this fact was first used
Ref. @11# to evaluate divergences of the Einstein gravity in arbitra
gauge off the mass shell.
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where we used the propertyY250, and omitted the expres
sion dbg /dbg;d(0). Putting this all together, we rewrite
Eq. ~4!

S Tmn
d

dKmn
1J

d

dK̃
2b̄a

d

dLa
2

1

j
baFa,mn

d

dTmn

2Ybg

d

dbg
22Yj

]

]j D Z50.

This is the Slavnov identity for the generating functional
Green functions we are looking for. In terms of the gener
ing functional of connected Green functions, it takes t
form

Tmn
dW

dKmn
1J

dW

dK̃
2b̄a

dW

dLa
2

1

j
baFa,mn

dW

dTmn

2Ybg

dW

dbg
22Yj

]W

]j
50. ~5!

It can be transformed further into an identity for the gen
ating functional of proper vertices: with the help of equatio

Tmn52
dG

dhmn
, J52

dG

df
,

b̄a5
dG

dCa
, ba52

dG

dC̄a
, ~6!

which are the inverse of Eqs.~3!, and the relations

dW

dKmn
5

dG

dKmn
,

]W

]j
5

]G

]j
, etc.,

we rewrite Eq.~5!

dG

dhmn

dG

dKmn
1

dG

df

dG

dK̃
1

dG

dCa

dG

dLa
2

Fa

j

dG

dC̄a

1Y
dG

dC̄a
C̄a12Yj

]G

]j
50.

Written down via the reduced functional

G05G2
1

2j
FaFa2YFsC̄s,

the latter equation takes particularly simple form

dG0

dhmn

dG0

dKmn
1

dG0

df

dG0

dK̃
1

dG0

dCs

dG0

dLs
12Yj

]G0

]j
50. ~7!

n

4-4
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FIG. 2. Diagrams with two
scalar and one graviton externa
lines, responsible for the nonvan
ishing of thej-dependent contri-
bution to the one-particle-
reducible gravitational potential
Solid lines represent scalar pa
ticles, dashed lines ghosts.
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IV. GAUGE DEPENDENCE OF THE
ONE-PARTICLE-REDUCIBLE

GRAVITATIONAL POTENTIAL

Let us now turn to the explicit evaluation of thej depen-
dence of the one-loop contribution to the potential. Its g
eral structure is shown in Fig. 1~a!. In view of the assumed
reducibility, corrections to the vertices and graviton prop
gator, which are the building blocks for the potential, can
considered separately. Let us note first of all that the~tree!
graviton propagators, with respect to which the potentia
reducible, can be considered gauge independent. Indee
the one-loop level, each of these propagators has one o
ends attached to the treef-h-f vertex with thef lines on
the mass shell. This combination is gauge independent on
same grounds as is theS matrix at the tree level. Thus, w
have to consider only the properf-h-f vertex and the gravi-
ton self-energy. To evaluate thej derivative of these quan
tities, we use the Slavnov identity~7!. Extracting terms pro-
portional to the sourceY, we get

2j
]G1

]j
5

dG1

dhmn

dG2

dKmn
1

dG1

df

dG2

dK̃
, ~8!

whereG1,2 are defined by

G15G0uY50 , G25
]G0

]Y
.
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At the one-loop level, Eq.~8! is just10

2j
]G1

(1)

]j
5

dG1
(0)

dhmn

dG2
(1)

dKmn
, ~9!

since the external scalar lines are on the mass shell

dSf

df
50.

Graphs representing thej derivatives of the form factors
according to the right hand side of Eq.~9!, are shown in Figs.
2,3.

Diagrams of Fig. 3 need not be calculated explicitly. It
easy to see that they just cancel thej-dependent contribution
to the graviton self-energy when the potential is being c
structed. Indeed, according to Eq.~9!, this contribution is
given by the diagrams of Fig. 4. In the course of construct
of the potential, the twoh lines of the graviton self-energy
are connected to thef-h-f vertices by the graviton propa
gators. When these propagators are attached to the left
vertices in Figs. 4~a!, 4~b!, we get exactly the diagrams o
Figs. 3~a!, 3~b!, respectively, but with the opposite sign, b
cause it follows from Eqs.~3!,~6! that

d2S

dhmndhab

d2W(0)

dTabdTgd
52dgd

mn .

Thus, explicit calculation of diagrams of Fig. 2 is need
only. Their analytic expressions
g

t
i-

-

FIG. 3. Diagrams representin
the part of thej-dependent contri-
bution to the gravitational form
factors of scalar particles, tha
cancels the corresponding contr
bution coming from the graviton
self-energy ~see Fig. 4! in the
course of construction of the po
tential.

10Enclosed in the parentheses is the number of loops in a diagram representing given term.
4-5
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FIG. 4. Diagrams representin
the j-dependent contribution to
the graviton self energy.
fy
een
I 2(a)~p,q!5
2 iEmn~p!

2A«q«q2p

meE d42ek

~2p!4 H 1

2
Wabgdqg~kd1qd!

2m2
hab

2 J GfH 1

2
Wrtsl~qs2ps!~kl1ql!

2m2
hrt

2 J jDrt
(0)hG̃h

j ~k1p!

3G̃j
z~p1k!$kzdmn

xu 2dzm
xu~kn1pn!

2dzn
xu~km1pm!%Gxuab~k!, ~10!

I 2(b)~p,q!5I 2(a)~p,p2q!,

I 2(c)~p,q!5
2 iEmn~p!

2A«q«q2p

meE d42ek

~2p!4 H F2
1

2
~dzj

slhtr

1dzj
trhsl!1~dzv

tr djv
sl1djv

tr dzv
sl!

1
hzj

4
WtrslGqj~qz2pz!

2
m2

4
WtrslJ Gtrxu~k!$kadmn

xu 2dma
xu ~kn1pn!

2dna
xu~km1pm!%G̃b

a~p1k!jDsl
(0)gG̃g

b~k1p!,

~11!

where the following notation is introduced:

Wabgd5habhgd2haghbd2hadhbg,

dab
mn5

1

2
~da

mdb
n 1da

n db
m!,

Gmnsl is the graviton propagator defined by
04400
d2S

dhrtdhmn
Gmnsl52dsl

rt ,

Gmnsl52Wmnsl

1

h
1~j21!~hms]n]l

1hml]n]s1hns]m]l1hnl]m]s!
1

h2
,

G̃b
a is the ghost propagator

G̃b
a52

db
a

h
,

satisfying

Fa
,mnDmn

(0)bG̃b
g52da

g , Dmn
(0)a[Dmn

a ~h50!,

Gf is the scalar particle propagator

Gf5
1

h1m2
,

Emn stands for the linearized Einstein tensor

Emn5Rmn2
1

2
hmnRabhab,

Rmn5
1

2
~]a]mhan1]a]nham2hhmn2]m]nh!,

m is the arbitrary mass scale,«q5Aq21m2, and e54
2d, d being the dimensionality of space time. To simpli
the tensor structure of diagrams Fig. 2, the use has b
made of the identity

1

j
Fa,mnGmnsl~x!52Dsl

(0)bG̃b
a~x!,

which is nothing but the well-knownfirst Slavnov identity at
4-6
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the tree level; it is easily obtained differentiating Eq.~5!
twice with respect toba andTmn, and setting all the source
equal to zero.

Let us begin with evaluation of the diagram of Fig. 2~a!.
o
m

i.e

04400
This takes most of the effort.
The tensor multiplication in Eq.~10! is conveniently per-

formed with the help of the new tensor package for t
REDUCE system@12#
I 2(a)~p,q!5
2 iEmn~p!

2A«q«q2p

meE d42ek

~2p!4

1

k4

1

~k1p!4

1

m22~k1q!2
j@hmnk2m2$~kp!2~kq!%$k212~kq!%

1kmknk4j~p222m2!12kmknk2~kq!~2j21!~p222m2!14km~kn1pn!~kq!2~j21!~p222m2!

1kmpnk4~22jm21jp222m2!12kmpnk2~kq!~24jm212jp22p2!12kmqnk4~p22m2!

14kmqnk2~kq!~p22m2!22pmpnk2m2$k212~kq!%12pmqnk2j$~kp!2~kq!%$k214~kq!%

14pmqnk2~kq!$p22m21~kq!2~kp!%18pmqn~kq!2~j21!$~kp!2~kq!%

12pmqnk4~p22m2!12qmqnk4$~kq!2~kp!%14qmqnk2~kq!$~kq!2~kp!%#. ~12!
e

ities
Evaluation of the loop integrals can be automatized to a c
siderable extent if the Schwinger parametrization of deno
nators in Eq.~12! is used

1

k4
5E

0

`

dy yexp$yk2%,

1

~k1p!4
5E

0

`

dx xexp$x~k1p!2%,

1

k212~kq!
52E

0

`

dzexp$z@k212~kq!#%.

It is convenient to apply these formulas as they stand,
eluding cancellation of thek2 factors in Eq.~12!. The k in-
tegrals are then evaluated using

E ddk exp$k2~x1y1z!12km~xpm1zqm!%

5 i S p

x1y1zD
d/2

expH p2xy2m2z2

x1y1z J ,

E ddk ka exp$k2~x1y1z!12km~xpm1zqm!%

5 i S p

x1y1zD
d/2

expH p2xy2m2z2

x1y1z J F2
xpa1zqa

x1y1z G ,
etc., up to sixk factors in the integrand.

From now on, all formulas will be written out for the sum

Ĩ 2[I 2(a)~p,q!1I 2(b)~p,q!.

Changing the integration variables (x,y,z) to (t,u,v) via
n-
i-

.,

x5
t~11t1u!v2

m2~11atu!
, y5

u~11t1u!v2

m2~11atu!
,

z5
~11t1u!v2

m2~11atu!
, a[2

p2

m2
,

integratingv out, subtracting the ultraviolet divergence11

Ĩ 2
div5

1

32p2e
S m

mD e

Emn~p!hmnj2~p222m2!,

settinge50, and retaining only the terms giving rise to th
roots and logarithms ofp2/m2, leading atp2→0, we obtain

~ Ĩ 22 Ĩ 2
div!e→05

Emn~p!j

32p2A«q«q2p
E

0

`E
0

`

dudt

3H 8m2~j21!

p2DN3 S qmqn2
m2

p2
pmpnD

3S 62
9

D
1

4

D2D 1
hmnm2

DN S 12
5

D
1

4

D2D
1

4hmnm4j

DN3p2 S 32
2

D D1
8jm2

DN2

3F pmpn

p2 S j2
j

D
2

1

D
1

1

D2D 1
pmqn

p2

11Since we are interested only in the nonanalytic atp250 terms
responsible for the long-range quantum corrections, particular
of the subtraction scheme are immaterial.
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3S 23j111
7j

D
2

3

D
2

4j

D2
1

2

D2D G J ,

D[11aut, N[11u1t. ~13!

Equation~13! is written out in such a form that the leadin
roots come only from the first three terms in the curly bra
ets. The remaining (u,t) integrals are evaluated in the Ap
pendix. Using Eqs.~A3! one readily sees that the terms pr
portional to A2p2 in Eq. ~13! cancel. As explained
elsewhere~see Ref.@13#!, this fact allows one to give a
physical interpretation to the root contributions to the fo
factors directly in the framework of the effective actio
method, as describing quantum deviations of the space-
metric from classical solutions of the Einstein equations.

It is easy to see also that the diagrams of Fig. 2 are
only that give rise to the root singularities in the potent
defined according to Ref.@3#, so the found cancellation
proves the gauge independence of the 1/r 2 terms in this po-
tential as well (r being the distance from the source particl!.
Let us, therefore, push our calculations further and turn
the 1/r 3 terms, i.e., to the leading logarithms. With the he
of Eqs.~A4! of the Appendix, we get from Eq.~13!

~ Ĩ 22 Ĩ 2
div!e→0

log [ Ĩ 2
ren52 ln a

Emn~p!hmnm2j2

32p2A«q«q2p

. ~14!

It remains only to calculate the diagram of Fig. 2~c!. This
is a much easier task than the above calculation, since
loop does not contain scalar lines. On dimensional groun
I 2(c)(p,q) has the following structure:

I 2(c)~p,q!5
Emn~p!Pmn~p,q!

A«q«q2p
S m2

2p2D e/2F1

e
1cG

5
Emn~p!Pmn~p,q!

A«q«q2p
F1

e
2

1

2
lnS 2p2

m2 D
1c1O~e!G , ~15!

where c is some number, andPmn(p,q) polynomials in
pm ,qm . It follows from Eq. ~15! that one can obtain the
logarithmic contribution from divergent one substituting

1

e
→2

1

2
lnS 2p2

m2 D .

I 2(c) is ultraviolet divergent. It is important, on the oth
hand, that it is free of infrared divergences. Indeed, the in
grand in Eq.~11! is the sum of products of powers (p1k)n

andkl , times a polynomial inpm ,qm . Since the diagram is
logarithmically divergent, we haven1 l 524. On the other
hand, infrared divergences appear only ifn<24, or l<
24, and, therefore, we havel>0, orn>0. In either case the
dimensionally regularized loop integrals turn into zero.
04400
-

e

e
l

o

he
s,

-

Now, the calculation is straightforward. To find the ultr
violet divergences, one setsp1k→k in the propagators and
the vertex factors~since the degree of divergence is zero!,
averages over angles~in k space!, and retains only 1/k4 terms
in the integrand, changing them to 2p2i /e afterwards. The
tensor multiplication as well as integration over angles in
momentum space is again performed with the help of
tensor package of Ref.@12#. Subtracting the 1/e divergence
and settinge50, one obtains the following result:

I 2(c)
ren ~p,q!u log5

j ln a

96p2A«q«q2p

Emn~p!$hmnm2~25j12!

2qmqn~4j18!%.

The total logarithmic contribution of diagrams of Fig. 2 is

I 2
ren[I 2(c)

ren ~p,q!1 Ĩ 2
ren

52
j ln a

48p2A«q«q2p

Emn~p!

3$hmnm2~4j21!1qmqn~2j14!%. ~16!

Finally, multiplying Eq.~16! with m5m1 by the graviton
propagator and the tree vertex factor corresponding to
second particle withm5m2, and adding the result of this
calculation with m1 ,m2 interchanged~and p→2p), we
have for thej derivative of the one-loop contribution to th
one-particle-reducible part of the two-particle scattering a
plitude, in the caseuq1u!m1 , uq2u!m2,

]A1PR
(1)

]j
52 ln~2p2!

m1m2~2j11!

64p2
. ~17!

This completes exposition of the main result of the work.

V. CONCLUSION

The 1/r 3 terms in the one-particle-reducible gravitation
potential are thus shown to bej dependent, the form of this
dependence being given by the Fourier transform of Eq.~17!.
The formal reason for the occurrence of gauge depende
should be clear from the considerations of Sec. IV. T
gauge invariance of the classical action is crucial for
proof of the gauge independence of theSmatrix @1,2#. Being
inhomogeneous in the fieldhmn , the generators of the gaug
transformations mix vertices with different number ofh
lines. The gauge invariance of the scattering amplitude
therefore preserved only if every combination of vertice
contributing at a given loop order, is taken into accou
Omission of the irreducible part of the two-particle scatteri
amplitude inevitably violates the latter condition, the res
being only the partial cancellation of the gauge-depend
contributions, found in Sec. IV. Thus, the one-partic
reducible gravitational potential is irrelevant to the issue
interpretation of the quantum corrections to the class
metric.
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APPENDIX

The integrals

Jnm[E
0

`E
0

` dudt

~11t1u!n~11atu!m
,

encountered in Sec. IV, can be evaluated as follows. C
sider the auxiliary quantity

J~A,B!5E
0

`E
0

` dudt

~A1t1u!~B1atu!
,

whereA,B.0 are some numbers eventually set equal to
Performing an elementary integration overu, we get

J~A,B!5E
0

`

dt
ln B2 ln$at~A1t !%

B2at~A1t !
.

Now consider the integral

J̃~A,B!5E
C
dz f~z,A,B!,

f ~z,A,B!5
ln B2 ln$az~A1z!%

B2az~A1z!
,

~A1!

taken over the contourC shown in Fig. 5.J̃(A,B) is zero

FIG. 5. Contour of integration in Eq.~A1!.
n-

04400
e

n-

.

identically. On the other hand,

J̃~A,B!5E
2`

2A

dw
ln B2 ln$aw~A1w!%

B2aw~A1w!

1E
2A

0

dw
ln B2 ln$2aw~A1w!%1 ip

B2aw~A1w!

1E
0

1`

dw
ln B2 ln$aw~A1w!%12ip

B2aw~A1w!

2 ip( Resf ~z,A,B!.

Thus, changingw→2A2w in the first integral andw→
2w in the second, we have

J~A,B!5
p2

2Aa
B21/2S 11

aA2

4B D 21/2

2
1

2E0

A

dt
ln B2 ln$at~A2t !%

B1at~A2t !
. ~A2!

The roots are contained entirely in the first term on t
right of Eq. ~A2!, while the logarithms in the second. Th
integrals Jnm are found by repeated differentiation of E
~A2! with respect toA,B. Expanding the square root (
1aA2/4B)1/2 in powers of a, we find the leading roots
needed in Sec. IV

J11
root5

p2

2Aa
, J12

root5
p2

4Aa
, J13

root5
3p2

16Aa
, ~A3!

J31
root52

p2

16
Aa, J32

root52
3p2

32
Aa, J33

root52
15p2

128
Aa.

Next, expanding the integrand in the second term of
~A2!, we get the leading logarithms

J11
log5J12

log5J13
log52J21

log52J22
log52J23

log5
1

2
ln a,

J31
log52

a

4
ln a, J32

log52
a

2
ln a, J33

log52
3a

4
ln a,

J41
log5

a

12
ln a, J42

log5
a

6
ln a, J43

log5
a

4
ln a. ~A4!
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