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Qualitative dynamical properties of a spatially closed FRW universe conformally coupled
to a scalar field
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In this work the dynamics of a spatially closed Friedmann-Robertson-Walker model for the universe con-
formally coupled to a scalar field is studied. It is proven that this dynamics, formulated in terms of the proper
time t ~or cosmic time! is very simple. For arbitrary initial conditions, we prove that the universe will
ultimately collapse in a finite time. We also show that there is no inflation at any stage of the evolution. When
represented in phase space all trajectories of the system are unbounded, owing to a divergence that appears at
the singularity, and showing that there is no chaos.
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I. INTRODUCTION

The dynamics of a spatially closed1 Friedmann-
Robertson-Walker~FRW! universe conformally coupled to
scalar field has been studied in many papers. Several au
have reached the conclusion that this dynamics is cha
~@2–4#!. On the other hand, it is well known that time is n
well defined in general relativity, in the sense that time c
be considered as a coordinate. So we have many pos
times and it is also known that chaotic behavior depends
time @5#. This fact reflects a great difference between
usual study of chaos in classical mechanical systems and
one in general relativity. In the former case we have a uni
classical time and no reason, whatsoever, to change it. In
latter case our conclusions depend on the time we cho
and therefore, if we make a bad choice, the results may h
doubtful physical relevance.

Essentially, we have two candidate times: conformal ti
h and proper timet, related by the equationdh5dt/a,
wherea is the radius~or scale! of the universe. As the equa
tions with conformal coupling are simpler usingh, most of
the study has been made with this time. This is the cas
the quoted papers@2–4#. But real physical time is prope
time t, since this is the one measured by atomic and geod
clocks2 @6#. Moreover, in the classical limit, proper time
the one that becomes the classical time of classical dyna

1For the casek50, see@1#.
2Geodesic time is the time measured by the oscillation of a li

pulse bouncing between two parallel curves. Therefore, it is
simplest and more natural time that can be defined in general
tivity.
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cal systems.3 Thus, if we must choose a physical time t
study dynamical evolution of cosmological models, it mu
be proper timet.

So it is quite necessary to restudy the conclusions of
papers@2–4# where chaos was found.4 It turns out that in
using t, chaos disappears and the dynamics is very sim
This will be the main conclusion of the paper. The idea is
following: Suppose that we want to study the asympto
behavior of a dynamical system, defined in terms of the na
ral proper timet, with a direct physical meaning. It is pos
sible in this case to introduce a new timet8 defined by the
relationdt85 f (t)dt, wheref (t)eC1. If f (t) is a nonvanish-
ing function of t, then the conclusions about the behavior
the system would be the same if we uset or t8. But if this
condition is not satisfied, the new dynamical system obtai
after the change of time is not topologically equivalent to t
original one. If the scale factors change sign or vanish, a
the case of closed cosmological systems, we cannot use
formal timeh to study the asymptotic behavior of the mod
because the results will be different. Therefore, in this wo
we only use proper timet to analyze the dynamics of th
system.

As in paper@1#, we do not perform the numerical integra
tion of the equations of motion, the perturbative calculatio
or the search of exact closed form solutions. We only stu
the qualitative dynamical behavior in a rigorous way.

t
e
la-

3I.e., when velocity is much smaller than light velocity. In the ca
of conformal time we would need this condition plusȧ.0 to obtain
the same limit, and the second condition is not fulfilled in ma
cases of interest.

4Some criticism is already anticipated in@7#.
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II. THE MODEL

In this work we study a simple spatially closed FR
model conformally coupled to a scalar field. The met
equation is given by

ds25dt22a2~ t !S dr2

12kr2
1r 2dV2D , ~1!

where t is the proper time~or cosmic time! and k51. The
Lagrangian density of the system is

L5LG1LM , ~2!

where LG52 1
12 R is the gravitational Lagrangian densit

and

LM52
1

2
]mc]mc1

1

12
Rc21

m2

2
c2 ~3!

is the matter Lagrangian density. HereR is the Ricci scalar,
related to the scale factor through

R

6
5

ä

a
1S ȧ

a
D 2

1
1

a2
. ~4!

We have chosen units where 4pG/35c51 and the over-
dot symbolize thet derivative. In terms of cosmic timet the
field equations read

c̈13
ȧ

a
ċ1

R

6
c1m2c50,

ä1
ȧ2

a
1

1

a
2m2ac250. ~5!

The total energy of the system is

H5S ȧ

a
D 2

1
1

a2
2S ċ1

ȧ

a
c D 2

2
c2

a2
2m2c2. ~6!

This expression is the first integral of Eq.~5!. At this
point we must recall that, because we have relinquished
gauge freedom in writing the metric equation~1! ~one of
Einstein’s equations!, the Hamiltonian constraintH50 is
missing. Anyhow, we can reintroduce this constraint a
restriction on the set of allowable initial conditions. Name
we will only consider initial conditions with zero total en
ergy, i.e.,H50 @8#.

It is convenient to recast the field equations in terms
the rescaled variablef5ac. In this way, Eqs.~5! and ~6!
become

a2f̈1aȧḟ1~11m2a2!f50, ~7!

aä1ȧ22m2f21150, ~8!

a2ḟ21f21m2a2f22~11ȧ2!a250. ~9!
04400
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This set of equations is invariant under the transformat

m→am, f→ 1

a
f, a→ 1

a
a, t→ 1

a
t, ~10!

wherea is an arbitrary parameter. Therefore, without loss
generality, we can takem51. The only excluded case ism
50, but it is a trivial case where the coupling between t
geometry and the rescaled field disappears.

This model has been analyzed by several authors@2–4#,
but always employing conformal timeh. These authors have
found a chaotic behavior of the dynamics of the model.

III. THE IMPOSSIBILITY OF INFLATION

Equations~7! and ~8! can be written as a first order sys
tem in terms of phase space variablesa, ȧ, f, andḟ. It is
easy to verify that the resulting first order system has
equilibrium points.

Let us now begin our qualitative analysis of the dynam
of the system. First, we will prove that inflationary behavi
is not possible at any stage of the evolution. From Eqs.~8!
and ~9! we obtain

aä52
1

a2
~a2ḟ21f2!,0. ~11!

We will consider only the physical region wherea.0.
Then, from the last equation we obtain

ä,0. ~12!

Therefore, an inflationary behavior, characterized by c
dition ä.0, is not possible at any stage of the evolution.

IV. EVOLUTION OF THE SCALE FACTOR

From conditionsa>0 andä,0, we have only three pos
sible behaviors for the scale factora:

~i! a.0, ä,0, ȧ.0, limt→1`a(t)51`,
~ii ! a.0, ä,0, ȧ.0, limt→1`a(t)5a0, wherea0 is a

finite constant, and
~iii ! limt→1t1

a(t)50, wheret1 is a certain finite time.

A. Case„i…

We will show that case~i!, which corresponds to a mo
notonous expansion, is impossible. Let us define, for cas~i!
the functionU5 1

2 „ḟ
21(111/a2)f2

…. From Eq.~7! we ob-
tain U̇52 (ȧ/a) (ḟ21f2/a2). Since we consider thatȧ
.0, we haveU̇<0. Therefore,U is a non-negative decreas
ing function oft. Then we have limt→1`U5a, wherea is a
non-negative constant. First suppose thata is positive. Then,
from the expression ofU we deduce thatf andḟ are finite
when t→1`. Dividing Eq. ~9! by a2 we deduce thatȧ is
also finite whent→1`. More precisely, from the discussio
above we obtainȧ2(t).2a21 for t→1`, and thenä(t)
.0 in this limit. From these results, and dividing Eq.~7! by
a2, we obtainf̈1f.0 for t .1`.
3-2
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Then we have

f~ t !.A cos t1B sin t,

ḟ~ t !.2A sin t1B cos t

for t.1`, where A, B are constant parameters withA2

1B252a.
Replacing the above results in Eq.~8!, we see that

this equation cannot be satisfied fort.1`. Then, the
casea.0 is not possible. Let us now consider the ca
a50.

From the definition ofU, we deduce that limt→1`f(t)
5 limt→1`ḟ(t)50. If we introduce the positive variableu
5a2, from Eq. ~8!, we obtainü52212f2 ~recall that we
have takenm51). For t.`, we have ü.22 because
f(t).0. Integrating this equality in the asymptotic regio
and conserving only the dominant behavior we obtainu(t)
.2t2, which is in contradiction with the positive charact
of u(t). Therefore, we have proved that case~i! is impos-
sible.

B. Case„ii …

It is easy to show that case~ii ! is also not possible. As
limt→1`a(t)5a0, we show that limt→1`ȧ(t)50,
limt→1`ä(t)50. From Eq.~8! we obtain limt→1`f2511,
and then limt→1`ḟ(t)50, limt→1`f̈(t)50. If we replace
these results in Eq.~7!, we see that this equation is not sa
isfied.

C. Case„iii …

Let us consider now case~iii !. Since we have put asid
cases~i! and~ii !, the only possibility that is compatible with
conditionsa>0 and ä,0 is case~iii !, i.e., a collapse in a
certain finite timet1. We will now show that there is a sin
gularity at t1, with limt→t1

ȧ(t)52`. Suppose that

limt→t1
ȧ(t)5k, wherek is a finite constant. From Eq.~9!

we obtain

lim
t→t1

f2~ t !5 lim
t→t1

a2~ t !ḟ250. ~13!

Then, fort.t1 , t,t1we have

ü.22, u̇.0, u.0, ~14!

whereu5a2, as defined above.
From these conditions we obtainu(t).2(t12t)2 for t

,t1andt.t1. This is in contradiction with the positive cha
acter of u. Therefore, we have proved that limt→t1

ȧ(t)

52`. If we represent the trajectories of the system in ph
spacea, ȧ, f, and ḟ, we conclude that all trajectories ar
unbounded so there is no chaos. We say that a dynam
system has a chaotic behavior if it has a posit
Kolmogorov-Sinai entropy, i.e., exponential separation
trajectories, and a bounded phase-space so that folding t
place. Chaos is related to the asymptotic complex beha
04400
e
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of solutions that remain in a bounded subset of phase sp
Obviously, we consider only trajectories that originated fro
physical initial conditions witha.0.

V. BEHAVIOR OF THE HUBBLE FUNCTION IN THE
NEIGHBORHOOD OF THE SINGULARITY

We will now analyze the limit value ofaȧ when t→t1.
We will show that this limit is given by a finite, nonzer
constant value. Let us consider the functionF5 1

2 (a2

1a2ȧ2). From Eq.~8! we obtainḞ5aȧf2. For t.t1, we
have ȧ,0. Hence,F is a positive, always decreasing fun
tion for t.t1. Therefore, limt→t1

F,`, and then limt→t1
aȧ

,`.
We will now that this limit is nonzero. In fact, if this limit

were be zero, we would deduce from Eq.~9! that limt→t1
f

50. Then, as before, we have

ü.22, u̇.0, u.0, ~15!

for t.t1 , t,t1.
We have seen above that these conditions are incom

ible with u.0. Therefore, we have proved that

lim
t→t1

aȧ5C, ~16!

whereC is a nonzero, negative finite constant.
Since the Hubble function isH5ȧ/a , using Eq.~16! we

obtain

lim
t→t1

H52`.

VI. CONCLUSIONS

Summing up, we have obtained the following results:~a!
for arbitrary initial conditions that satisfy Eq.~9! and the
condition a.0, the universe will ultimately collapse in
finite time; ~b! all trajectories in phase spacea, ȧ, f, andḟ
are unbounded, owing to the divergence ofȧ at the singular-
ity; ~c! limt→t1

H52`; ~d! ä,0, i.e., inflationary behavior
is not possible at any stage of the evolution of the model;
~e! from ~a! and ~b!, it follows that there is no chaos in th
model.

Even if the dynamical evolution of the model is controlle
by highly nonlinear equations, we have been able to obt
in a rigorous way, the most relevant dynamical properties
the model by using only qualitative arguments employed
the theory of dynamical systems.
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