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Qualitative dynamical properties of a spatially closed FRW universe conformally coupled
to a scalar field
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In this work the dynamics of a spatially closed Friedmann-Robertson-Walker model for the universe con-
formally coupled to a scalar field is studied. It is proven that this dynamics, formulated in terms of the proper
time t (or cosmic time is very simple. For arbitrary initial conditions, we prove that the universe will
ultimately collapse in a finite time. We also show that there is no inflation at any stage of the evolution. When
represented in phase space all trajectories of the system are unbounded, owing to a divergence that appears at
the singularity, and showing that there is no chaos.
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I. INTRODUCTION cal systems. Thus, if we must choose a physical time to-

The dynamics of a spatially closkdFriedmann- study dynamical evolution of cosmological models, it must

Robertson-Walke(FRW) universe conformally coupled to a be proper twng. .
. o So it is quite necessary to restudy the conclusions of the
scalar field has been studied in many papers. Several authors

. ! SR ‘papers[2—4] where chaos was fourfdlt turns out that in
have reached the conclusion that this dynamics is chaotlusin t chaos disapoears and the dvnamics is very simple
([2-4]). On the other hand, it is well known that time is not gt PP y y pie.

well defined in general relativity, in the sense that time canfTTl'gV:’I\i'r']" pest:e rg;len t%(;rt]c\ixlljeSI(\)/\:]aﬁ{ t[]oe spiﬂer'tlge;geﬁ I?ot'gs
|g g: pp y ymp

be considered as a coordinate. So we have many pOSSihF;I)ehavior of a dynamical system, defined in terms of the natu-
times and it is also known that chaotic behavior depends o adyna Y PO ) .
ral proper timet, with a direct physical meaning. It is pos-

time [5]. This fact reflects a great difference between the ;, " . . . .

usual study of chaos in classical mechanical systems and thséble. n th:s_case o introduce a Pew tntfe_defmed by .the
one in general relativity. In the former case we have a uniqu elat|ond't =1(t)dt, wheref(t)eC S I f(t) isa nonvam;h-
classical time and no reason, whatsoever, to change it. In ﬂigg function oft, then the conclusions about the behavior of

i , e
latter case our conclusions depend on the time we choo e system would .be. the same if we user t'. But if this .
\;éondltlon is not satisfied, the new dynamical system obtained

nd therefore, if we mak hoice, the results may h L . .
and therefore, e make a bad choice, the results may ha after the change of time is not topologically equivalent to the

doubtful physical relevance. . : ) ;
Essentially, we have two candidate times: conformal timeorlglnal one. If the scale factors change sign or vanish, as in

n» and proper timet, related by the equatiody=dt/a, the case of closed cosmological systems, we cannot use con-

wherea is the radiugor scale of the universe. As the equa- Lormal tm:ﬁ ”rto Sﬁgdmﬁ az;i/f;npr)t%t;c_ll_)ﬁhra\fnorr Orntr;ﬁi mv?/d(rall
tions with conformal coupling are simpler using most of ecause the results € ditterent. 1 herelore, S Work,

the study has been made with this time. This is the case o€ tg?miy use proper time to analyze the dynamics of the
the quoted paperf2—4]. But real physical time is proper sysiem.

timet, since this is the one measured by atomic and geodes'{c As in paper{1], we do not perform the numerical integra-

clockg [6]. Moreover, in the classical limit, proper time is ion of the equations of motion, the perturbative calculations,

the one that becomes the classical time of classical dynam or the S?arPh of exac.t closed fo'rm 'solut!ons. We only study
he qualitative dynamical behavior in a rigorous way.

For the cas&=0, se€[1]. 3.e., when velocity is much smaller than light velocity. In the case
2Geodesic time is the time measured by the oscillation of a lightof conformal time we would need this condition pls:0 to obtain
pulse bouncing between two parallel curves. Therefore, it is thehe same limit, and the second condition is not fulfilled in many
simplest and more natural time that can be defined in general rela&ases of interest.
tivity. 4Some criticism is already anticipated [if].
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Il. THE MODEL This set of equations is invariant under the transformation

In this work we study a simple spatially closed FRW 1 1 1
model conformally coupled to a scalar field. The metric m— am, ¢>—>;¢>, a——a, t—>;t, (10
equation is given by
wherew is an arbitrary parameter. Therefore, without loss of

2
+r2d92> (1) generality, we can takenv=1. The only excluded case im

dszzdtz—az(t)(

1—kr? =0, but it is a trivial case where the coupling between the
geometry and the rescaled field disappears.
wheret is the proper timgor cosmic tim¢ andk=1. The This model has been analyzed by several auth®«sf,
Lagrangian density of the system is but always employing conformal timg. These authors have

found a chaotic behavior of the dynamics of the model.
L= LG+ »CM ) (2)
, o : : Ill. THE IMPOSSIBILITY OF INFLATION
where Lg=— R is the gravitational Lagrangian density,
and Equations(7) and (8) can be written as a first order sys-
1 1 ) tem in terms of phase space variabdgsa, ¢, ande. It is
[o=— 29 wold+ —Ri2+ — 2 3 easy to verlfy_ that the resulting first order system has no
M= T R Ot R S ® equilibrium points.

. ) ) ) o Let us now begin our qualitative analysis of the dynamics
is the matter Lagrangian density. HeRds the Ricci scalar,  of the system. First, we will prove that inflationary behavior

related to the scale factor through is not possible at any stage of the evolution. From Eg).
. S\ 2 and(9) we obtain
R a N a N 1 @
6 a la a2 . 1 :
6 a la "a aa=— —(a’¢>+ ¢ <0, (1)
a
We have chosen units wherer&/3=c=1 and the over-
dot symbolize the derivative. In terms of cosmic timethe We will consider only the physical region wheee>0.
field equations read Then, from the last equation we obtain

. a. R a<o. (12)
Yt 3t 5 Yt mPy=0,

a Therefore, an inflationary behavior, characterized by con-
dition a>0, is not possible at any stage of the evolution.

Loat 1,
at —+—-—m-ay°=0. 5
a a IV. EVOLUTION OF THE SCALE FACTOR
The total energy of the system is From conditionsa=0 anda<0, we have only three pos-
sible behaviors for the scale factar
2 Coa \? oy (i) a>0,a<0, a>0, lim,_, , .a(t) =+,
i 2.2 .. . : t .
H=\3 +¥— ) —zm e (6) (i) a>0, a<0, a>0, lim, . .a(t)=ay, wherea, is a

finite constant, and

This expression is the first integral of E). At this (iif) lim,_,+,a(t) =0, wheret, is a certain finite time.

point we must recall that, because we have relinquished the
gauge freedom in writing the metric equatiéf) (one of A. Case(i)

Einstein's equations the Hamiltonian constraint{=0 is We will show that casdi), which corresponds to a mo-

missing. Anyhrc])w, we fcaltln reigltro_d_u_c? thisd_qonstr:lilint af’ %hotonous expansion, is impossible. Let us define, for Gase
restriction on the set of allowable initial conditions. Namely, i 1 ionU = 3 (2 + (1-+ Lia?) ¢?). From Equ(7) we ob-

we will only consider initial conditions with zero total en- .~ "~ " P T A . ;
ergy, i.e. H=0 [8]. tain U= — (a/a) (¢°+ ¢“/a®). Since we consider thah

It is convenient to recast the field equations in terms of>0, we haveU<0. Thereforel is a non-negative decreas-

the rescaled variablg¢=ay. In this way, Eqs(5) and (6)  ing function oft. Then we have lim. . ..U= a, wherea is a
become non-negative constant. First suppose #has positive. Then,

) o from the expression off we deduce thaty and ¢ are finite
a’¢p+aag+(1+m?a?) ¢=0, (1) whent— +. Dividing Eq. (9) by a? we deduce thaa is
_ also finite whert— + . More precisely, from the discussion
aa+a’—m?¢?+1=0, (8) above we obtaira?(t)=2a—1 for t— +o, and thena(t)
=0 in this limit. From these results, and dividing E@) by
a’p?+ p?+mPal¢p?—(1+a?)a?=0. (99  a? we obtaing+ ¢=0 for t =+,
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Then we have of solutions that remain in a bounded subset of phase space.
Obviously, we consider only trajectories that originated from

¢(t)=Acost+Bsint, physical initial conditions witra>0.

é(t)=—Asint+B cost

V. BEHAVIOR OF THE HUBBLE FUNCTION IN THE

for t=-+0o, where A, B are constant parameters Wit NEIGHBORHOOD OF THE SINGULARITY

+B2=2a.
Replacing the above results in E¢8), we see that We will now analyze the limit value ofa whent—t;.
this equation cannot be satisfied fo=+o. Then, the We will show that this limit is given by a finite, nonzero
casea>0 is not possible. Let us now consider the caseconstant value. Let us consider the functidh=2(a?
a=0. o _ +a”a?). From Eq.(8) we obtainF=aa¢?. Fort=t,, we
From the definition ofU, we deduce that lim...#(t)  havea<0. HenceF is a positive, always decreasing func-

=limi_ .. ¢(t)=0. If we introduce the positive variable  tjon for t=t,. Therefore, li_; F<oo, and then lin_, aa
=a?, from Eq.(8), we obtainii=—2+ 2¢? (recall that we ! !

have takenm=1). For t~, we havell~~2 because We will now that this limit is nonzero. In fact, if this limit
¢(t)=0. Integrating this equality in the asymptotic region ' -
and conserving only the dominant behavior we obiaib) were be zero, we would deduce from Eg) that llm_’tl(ﬁ
= —12, which is in contradiction with the positive character =0. Then, as before, we have
of u(t). Therefore, we have proved that casgis impos-
sible.

u=-2, u=0, u=0, (15

B. Case(ii)

It is easy to show that cadé) is also not possible. As
lim,_,  .a(t)=a, we show that lim, . .a(t)=0,
lim,_. . .a(t)=0. From Eq.(8) we obtain lim_ ,..¢*=+1,
and then lim_ , . ¢(t)=0,lim;_ ... ¢(t)=0. If we replace
these results in E(7), we see that this equation is not sat-
isfied.

for t:tl, t<tl
We have seen above that these conditions are incompat-
ible with u>0. Therefore, we have proved that

limaa=C, (16)

C. Case(iii) =l

Let us consider now cas@i). Since we have put aside
cased(i) and(ii), the only possibility that is compatible with whereC is a nonzero, negative finite constant.

conditionsa=0 anda<0 is Case(lll) i e, a Collapse in a Since the Hubble function il = a/a us|ng Eq (16) we
certain finite timet;. We will now show that there is a sin- gptain

gularity at t;, with IlmHtla(t)— —oo. Suppose that
Iimt_,tla(t)zx, wherek is a finite constant. From Ed9)

we obtain limH= — o
t—1tq

lim ¢2(t)= lim a%(t) $?=0. (13

t—tq t—tq

VI. CONCLUSIONS
Then, fort=t,, t<t,we have

Summing up, we have obtained the following resul&:

u=-2, u=0, u=0, (14  for arbitrary initial conditions that satisfy Eq9) and the
condition a>0, the universe will ultimately collapse in a
whereu=a?, as defined above. finite time; (b) all trajectories in phase spaega, ¢, and¢

From these conditions we obtair(t)=—(t;—t)> for t  are unbounded, owing to the divergenceaddt the singular-
<t,andt=t,. This is in contradiction with the positive char- ity: (c) ||mHt H=—o: (d) 4a<O0, i.e., inflationary behavior

acter of u. Therefore, we have proved that fim a(t) g ot pOSS|bIe at any stage of the evolution of the model; and
= —. If we represent the trajectories of the system in phasee) from (a) and (b), it follows that there is no chaos in the
spacea, a, ¢, and ¢, we conclude that all trajectories are model.

unbounded so there is no chaos. We say that a dynamical Even if the dynamical evolution of the model is controlled
system has a chaotic behavior if it has a positiveby highly nonlinear equations, we have been able to obtain,
Kolmogorov-Sinai entropy, i.e., exponential separation ofin a rigorous way, the most relevant dynamical properties of
trajectories, and a bounded phase-space so that folding takéb®e model by using only qualitative arguments employed in
place. Chaos is related to the asymptotic complex behavidhe theory of dynamical systems.
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