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Giant gravitons, Bogomol’nyi-Prasad-Sommerfield bounds, and noncommutativity
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It has been recently suggested that gravitons moving in AdSm3Sn spacetimes along the Sn blow up into
spherical (n22)-branes whose radius increases with increasing angular momentum. This leads to an upper
bound on the angular momentum, thus ‘‘explaining’’ the stringy exclusion principle. We show that this bound
is present only for states which saturate a BPS-like condition involving the energyE and angular momentum
J,E>J/R, whereR is the radius of Sn. Restriction of motion to such states lead to a noncommutativity of the
coordinates on Sn. As an example of motions which do not obey the exclusion principle bound, we show that
there are finite action instanton configurations interpolating between two possible BPS states. We suggest that
this is consistent with the proposal that there is an effective description in terms of supergravity defined on
noncommutative spaces and noncommutativity arises here because of imposing supersymmetry.
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I. INTRODUCTION AND SUMMARY

One of the striking consequences of the holographic c
respondence in AdSm3Sn spacetimes@1# is the stringy ex-
clusion principle@2#. It has been also argued that the strin
exclusion principle means that dual supergravity should
side on a noncommutative spacetime, e.g., quantum de
mations of AdS3S @3#. The principle states that the max
mum angular momentum of single particle Bogomol’ny
Prasad-Sommerfield~BPS! states~in spacetime! is bounded
by N, where N is the flux of the n-form magnetic field
strength on the sphere. Recently, McGreevy, Susskind,
Toumbas@4# have provided a novel explanation of this ph
nomenon. According to their proposal, a single trace ope
tor of the holographic theory is well described as sing
particle supergravity modes~we call generically call them
gravitons! for low values of the angular momenta. Howeve
for large angular momenta, these blow up into sphericaln
22)-branes moving on the Sn. In some cases this blowu
follows qualitatively from the Myers effect@5#.1 It is then
demonstrated that the radius of these spherical branes g
with angular momentum for a restricted class of moti
where the radius of the brane does not change with time
in addition there are no waves along the brane. Since
radius of the brane cannot exceed the radius of the spher
which it moves, there is a bound on the angular moment

As we will see, it is important to emphasize that for co
sistency there should be only one BPS state for a given
gular momentum even though it might appear that ther
both a graviton and a ‘‘giant graviton’’ or a wrapped bran
The point is that the former is a valid description for sm

1This connection has been explored in@6#.
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angular momenta, while the latter is the correct descript
for large angular momenta.

A natural question arises immediately: What about no
BPS states? There are of course a large number of non-
states in the gauge theory which are still represented
single-trace operators and should therefore correspon
single-particle or single-brane states in the dual descript
In this paper we show that the Hamiltonian for brane m
tions on spheres leads to a BPS-type bound; viz., there
lower bound on the energy for a given angular momentu
The restricted type of motion considered in@4# which satu-
rate this bound. If we are working in a supersymmet
theory, it is natural to expect that these are also configu
tions which preserve some of the supersymmetries. T
non-BPS states correspond to other motions, e.g., oscillat
and changes of the radius. From this bound it is straight
ward to see that the radius of the brane increases with
angular momentum forn.3. For such motions the potentia
has two minima—one at zero radius and the other at a ra
which scales asJ1/(n23). We show that there are finite actio
instanton configurations interpolating between the t
minima. The implication of this is, however, less clear sin
the description of the system as a brane with some Dir
Born-Infeld ~DBI! action fails when the size of the brane
small.

Since the dynamics of D-branes is defined on a comm
tative configuration space, one might wonder whether n
commutativity is visible in the ‘‘giant graviton’’ scenario
We show that this is in fact true. More precisely, we sho
that the restriction of the motion of the branes to those wh
saturate the BPS bound and which can be implemente
terms of supersymmetry generators implies a set of seco
class constraints in the phase space. This implies that
Dirac brackets of two coordinates on the Sn transverse to the
(n22)-brane are nonzero, which should imply that in t
©2001 The American Physical Society01-1
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quantum problem these operators do not commute. We s
that the Dirac brackets in fact become singular atn53,
which is consistent with the fact that in this case all su
states have the same~maximal! angular momentum. One
could arrive at the same conclusion by considering dire
the quantum commutators of the coordinate operators
jected on to the subspace of states implied by the restric
on brane motion. Thus in reduced phase space, it app
that two space directions do not commute. This is quite si
lar to the problem of a charge particle moving on a two-pla
in the presence of a constant magnetic field. In that c
restriction to the lowest Landau level implies that the tw
spacelike coordinates do not commute. Connections of
bound on the angular momenta of giant gravitons with n
commutativity have been heuristically discussed earlier
@7#. However, the precise origin of noncommutativity
rather unclear in this treatment.

The results of this paper were reported in Ref.@8#. While
this paper was under preparation, Refs.@9# and@10# appeared
on the internet which have some overlap with Secs. II and
of our work. In Sec. IV we use some results of@9# and @10#
to describe the origin of noncommutative space in the the

II. BRANE MOTION ON SPHERES

We consider spacetimes of the form of AdSm3Sn where
m1n510 in string theory andm1n511 in M theory. The
radius of Sn is R, which is also the scale of the AdS spac
time and there is a constantn-form flux on Sn with N quanta
of flux. Let us consider the sphere Sn embedded inRn11 with
coordinatesX1

¯Xn11,

~X1!21¯1~Xn11!25R2, ~2.1!

and we choose coordinates on the sphere as follows:

X15AR22r 2 cosf,

X25AR22r 2 sinf, ~2.2!

where 0<r<R. The remainingX3
¯Xn11 are chosen to sat

isfy

~X3!21¯1~Xn11!25r 2. ~2.3!

These may be written in terms ofp5(n22) anglesu1¯up
and r in the form of standard spherical polar coordinates
p11 dimensions. Then the metric on Sn becomes

ds25
R2

R22r 2 dr21~R22r 2!df21r 2dVp
2, ~2.4!

wheredVp
2 is the volume element on a unitp-sphere.

We considerp-branes, withp5n22, wrapped on the Sp

embedded in Sn, moving entirely in the Sn and sitting at the
center of global coordinates in AdSm spacetime. The time
coordinate in AdS is denoted byt. In the (p11)-dimensional
world volume of the brane with coordinatest,s1 ,...,sp , we
choose a static gauge

t5t, s i5u i ~ i 51, . . . ,p!. ~2.5!
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The dynamical coordinates are nowr (t,u i) andf(t,u i).
We will look at motions of the brane where there are

oscillations; i.e.,r ,f are independent of the anglesu i . Then
the brane Lagrangian is given by

L52l@r p~12grr ~r ! ṙ 22gffḟ2!1/22r p11ḟ1/2#,
~2.6!

where

l5
N

Rp11 ,

grr ~r !5
R2

R22r 2 ,

gff~r !5R22r 2. ~2.7!

The first term is the DBI term. The coefficient is a rewritin
of the tension of the brane in terms ofN andR. This follows
from the corresponding classical supergravity solution. I
crucial in what follows that we have exactly the same co
ficient in the second term—the Chern-Simons~CS! term.
This is the coupling of the brane with then-form field
strength and the precise coefficient follows from stand
flux quantization.

In the following we will setR51 so that all dimensiona
quantities are in units ofR. We will restoreR at the very end.

The canonical momenta forr and f are pr and pf , re-
spectively, and are given by

pr[lP5
lr pgrr ~r ! ṙ

~12grr ~r ! ṙ 22gffḟ2!1/2
,

pf[l j 5
lr pgff~r !ḟ

~12grr ~r ! ṙ 22gffḟ2!1/2
1lr p11.

~2.8!

The momentumpf is an angular momentum and is co
served.pr is not conserved. From Eqs.~2.8! one gets

~12grr ~r ! ṙ 22gffḟ2!1/2

5r pF r 2p1
P2

grr ~r !
1

~ j 2r p11!2

gff~r ! G21/2

. ~2.9!

The canonical Hamiltonian can be now derived in a st
dard fashion and becomes

H5lF r 2p1
P2

grr ~r !
1

~ j 2r p11!2

gff~r ! G1/2

. ~2.10!

A. BPS bounds

Motion can be labeled by the quantum numberj. It is easy
to show that for some givenj there is a lower bound on th
energy—a BPS bound. This is not immediately obvious fro
the form of the Hamiltonian~2.10!. However, a straightfor-
ward algebra allows us to rewriteH in the following form:
1-2
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H5lF j 21
P2

grr ~r !
1

~ j r 2r p!2

gff~r ! G1/2

. ~2.11!

Since grr (r )5(12r 2)21 and gff(r )512r 2 ~in R51
units! are positive, it is clear that

H>l j . ~2.12!

This is the BPS bound.
In deriving the form of the Hamiltonian given in Eq

~2.11!, it is absolutely crucial that the relative coefficie
between the DBI term and the Chern-Simons term is wha
is. This happens because then-form flux is quantized in the
standard way. Furthermore, the exact form of the metric
the sphere is also crucial. All the details of working in
consistent supergravity background has entered in the ca
lation.

B. BPS saturated states and angular momentum bounds

The bound is saturated when

pr50 ~2.13!

and

j r 5r p. ~2.14!

The latter has two solutions forpÞ0:

r 5r 150, r 5r 25 j ~1/p21!. ~2.15!

Thus BPS motions have constantr, which is the size of the
brane.

The potential energy, for such motion,

V~r !5
~ j r 2r p!2

12r 2 . ~2.16!

For p50 the potential does not vanish atr 50. There is a
minimum for j ,1 in the physical range ofr. However, the
potential is nonvanishing at the minimum and this does
correspond to a BPS state. Whenj .1 there is one minimum
whereV(r )50 and the location of the minimum moves
smaller values ofr asj increases. Thus, forp50, BPS states
must havej .1.

For p51 and j Þ1, there is no nontrivial minimum for
r ,1. For j 51 the potential is zero everywhere. Thus
BPS states havej 51.

For p>2 the potential has two minima with a maximu
in between. These minima are preciselyr 1 and r 2 given in
Eqs.~2.15!. Thus there are two kinds of BPS states: the o
which corresponds to zero-size branes and the other
branes with sizes scaling asj 1/(p21. Since the range ofr is
between 0 and 1, this immediately implies that there is
upper bound forj:

j <Rp11, ~2.17!

where we have restoredR. The physical angular momentum
is
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pf5N. ~2.18!

For a BPS state,H5l j 5pf /R. This is thesamedisper-
sion relation as that of a massless graviton which is mov
purely on the sphere. What is surprising is that states
branes, which are by themselves heavy objects, can lead
light state. The reason behind this is of course the coup
to the n-form field strength. The effect of this canceled th
effect of brane tension.

In the above discussion, we have used the phrase ‘‘B
configuration’’ in its original sense. In a supersymmet
theory one would expect that these configurations also
serve some of the supersymmetries.2

III. TUNNELING BETWEEN VACUA

We saw that forp>2 there are two minima. Strictly
speaking, the minimum atr 50 is in a regime where we
cannot trust our picture. The description of brane physics
terms of a DBI-CS Lagrangian is valid when the size of t
brane is much larger than the basic length scale of the the
and clearly a zero-size brane cannot be described in this f
ion. On the other hand, for sufficiently largej the other mini-
mum lies in the domain of validity of our calculation. This
consistent with the overall picture implied in@4#. For low
values of the angular momentum, the perturbative gravito
a good description of the state. For large values of ang
momentum, this description fails and one should consider
states as wrapped branes.

It is nevertheless of some interest to ask whether there
finite action tuneling configurations between the two vac
We now want to consider motion in ther direction, for a
given value ofj in Euclidean signature. The Hamiltonian fo
such motion is given by

H5lFU~r !1
pr

2

l2grr ~r !
G1/2

, ~3.1!

where

U~r !5 j 21V~r !. ~3.2!

The corresponding Lagrangian is then

L52l@U~r !#1/2@12grr ~r ! ṙ 2#1/2, ~3.3!

so that the Euclidean action is

SE5E dt@U~r !#1/2@11grr ~r ! ṙ 2#1/2, ~3.4!

while the Euclidean Hamiltonian is

HE52lFU~r !2
pE

2

l2grr ~r !
G1/2

, ~3.5!

where

2This has in fact been shown in@9,10#.
1-3
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pE5l
grr ~r ! ṙ @U~r !#1/2

@11grr ~r ! ṙ 2#1/2 . ~3.6!

To construct instanton solutions interpolating between
two minima of U(r ), we need solutions of the Euclidea
equations of motion with Euclidean energyHE

25l2 j 2. It is
easily seen that such motion obeys

ṙ 56
1

j
r ~ j 2r p21!, ~3.7!

the two signs corresponding to instantons and a
instantons. Using Eqs.~3.7! and~3.4!, it is easy to check tha
the Euclidean action for this solution is

Sins8 5
l

j E dt U~r !. ~3.8!

This action may be easily seen to be infinite. However, o
must remember that the energy of the states between w
tuneling is occurring is nonzero and equal tol j . This has
itself an action

S05l j E dt. ~3.9!

Thus the true instanton action is

Sins5Sins8 2S0 , ~3.10!

and this is in fact finite.
For example, forp52 the solution to Eq.~3.7! is

r

j 2r
5et ~3.11!

and the actionSins8 is

Sins8 5lE
0

j

drF j 2

r ~ j 2r !
1

r ~ j 2r !

12r 2 G . ~3.12!

The first term in the integral is clearly divergent, while th
second term is finite. However, using Eq.~3.7!, again one
sees that this term is in fact

l j E dt, ~3.13!

which is exactlyS0 . Thus the subtracted quantitySins is fi-
nite:

Sins5lF j 1
1

2
~12 j !log~12 j !2

1

2
~11 j !log~11 j !G .

~3.14!

We have shown that there are finite action instanton c
figurations which interpolate between the two minima of t
potential. However, as emphasized above, the meanin
this is not very clear since the configuration with zero-siz
branes clearly lies outside the validity of our description.
fact for a given angular momentum there is only one sta
04400
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for low angular momentum this is a pointlike state rep
sented by a graviton and for large angular momentum thi
an extended brane. For intermediate angular momenta
description is probably complicated.

IV. MULTIPLE-BRANE STATES

The N54 super Yang-Mills theory that arises from D-3
branes has chiral operators of the form tr@F i 1

¯F i n#, where
we symmetrize in the indicesi k . But it has also been argue
that there exist multitrace operators that are also chiral
maries@11#. These operators are of the form~for two traces!

tr@F i 1
¯F i m#tr@F i m11

¯F i n#, ~4.1!

with the indicesi k again symmetrized. In a similar manne
we can make operators with more traces. These operator
expected to be dual to multiparticle states in the dual str
theory. In the case of AdS33S33M4, it was found in@12#
that multiparticle states in supergravity were needed to
count for the elliptic genus computed from the dual conf
mal field theory~CFT!.

The existence of multiparticle chiral primaries raises t
following issue for the stringy exclusion principle. To b
able to get these states, we must be able to construct m
particle states where the interactions between the parti
exactly ‘‘cancel out,’’ giving energy equal to the sum ofR
charges. At the same time we should not be able to incre
the number of such quanta without bound, since when
total charge exceeds the limit set by the exclusion princi
then the state should not be BPS.

Let us examine the consequence of this fact for the g
gravitons. Then-trace operators in the gauge theory wou
presumably be dual ton-branes placed in the dual spacetim
If this state is to be BPS, then the interactions between th
branes must ‘‘cancel out.’’ Thisn-particle state is different
from the single-particle state with the same charges, so
do not require that these configurations mix to produce
effective state.~Note, however, that operator refinitions m
single-particle and multiparticle states in some cases@13#.!

On the other hand, when the total charge on the bra
exceeds the limit set by the exclusion principle, we should
longer be able to make a BPS state. Thus consider the g
graviton that expands in the AdS direction rather than alo
the sphere, and let the angular momentumL exceed the limit
set by the exclusion principle. Then there can be a tunne
from this state to one where there are say two giant gra
tons, with angular momentaL1 ,L2L1 . Pictorially, we imag-
ine a large sphere pinching in the middle and separating
two spheres.

While we have not computed the action for such an
stanton, there appears to be no reason why it should dive
In the case of tunneling from a finite brane to a point, t
latter configuration was singular and one could worry ab
corresponding divergences in the amplitude. But the tunn
ing on hand is between two regular configurations, and
can make interpolating configurations that have finite con
bution from the Born-Infeld and Wess-Zumino terms.
1-4
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Thus the picture of tunneling may be more complex th
that noted in@9# and @10#. Apart from the pointlike graviton
and the two giant gravitons, we have a host of multibra
states that have the same quantum numbers. The exclu
principle requires some of these to exist, while the oth
~with L larger than the exclusion bound! may disappear by
tunnelings that involve all the configurations mention
above.

V. SUPERSYMMETRY AND NONCOMMUTATIVITY

We have seen that for BPS motions wrapped branes h
a bound on the angular momentum, thus providing a n
perspective on the stringy exclusion principle.

Bounds on angular momentum appear naturally for p
ticle motions on noncommutative spaces, e.g., fuzzy sph
or quantum spheres. One might wonder whether the dyn
ics discussed above, which is entirely based on a comm
tive space, implies an~effective! dynamics in a noncommu
tative space.

The important point here is that it is only for BPS stat
that there is a bound on the angular momentum, not for o
motions such as changes of the size of the brane or osc
tions of the brane. Likewise from the point of view of ho
lography, there are non-BPS states which can have any v
of the angular momentum. Consider, for example AdS53S5

spacetime where the holographic theory is (311)- dimen-
sionalN54 Yang-Mills theory. In terms of the Higgs field
F i , i 51,...,6 of this theory chiral primary operators are
the form

TrS@F i 1
¯F i n#, ~5.1!

where the subscriptS means that we have to symmetriz
with respect to the indicesi 1 ,...,i n and subtract the trace
Supergravity modes lie in the chiral primary multiplet o
tained from Eq.~5.1! by acting with supersymmetry charge
Clearly Eq.~5.1! has a SO~6! angular momentum equal ton.
The rankN of the gauge group SU(N) is in fact the quan-
tized flux of the five-form field strength on S5. Such opera-
tors and their supersymmetry partners can have a maxim
angular momentumN. There are, however, operators whic
involve derivatives ofF which do not create BPS states: e.

TrS@F i 1]F i 2]F i 3
¯F i n#. ~5.2!

Clearly, there is no bound for the angular momenta of th
operators since we can have higher and higher derivat
and]nF is a different matrix thanF.

Knowing that BPS states respect half of the supersym
tries, we are now led impose the conditionQ50 on the
phase space. This can be done sinceQ represents symmetr
generators of the theory. The imposition of this symme
strongly on the phase space will lead, as we will now arg
to a noncommutative space.

We therefore need to know what kind of motion of th
brane respects half the supersymmetries of the backgro
The question we ask is the converse of the question answ
in @9# and @10#, where it was shown that the giant gravito
with no motion in ther direction respects half the supersym
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metries. On the world volume action of the brane with fe
mionic coordinatesQa, we need to choose ak-symmetry
gauge condition (11G)Q50, whereG is the pullback:

G5
1

~p11!!
e i 1¯ i p11] i 1

Xm1
¯] i p11

Xmp11Gm1¯mp11
,

~5.3!

whereXm denote the bosonic coordinates on the brane wo
volume, Gm are the Dirac gamma matrices in target spa
andGm1¯mn

5Gm1
¯Gmn

. We need to look at supersymmetr
transformations which preserve this gauge choice. These
the transformations

dQ5
1

2
~12G!e, ~5.4!

for an infinitesimal spinor parameterse. To preserve the su
persymmetries of the background, we require in addition t
e be in fact a Killing spinor of the background. The corr
sponding supercharge is given by

Q5
1

2
Q̄~12G!. ~5.5!

so thatdQ5$Q•e,Q%.
In the static gauge we are using, the expression forG may

be seen to be~using expressions given in@10#!

G5
1

r p11 FH

l
G01P~A12r 2 sinfGp12

1A12r 2 cosfGp11!1~ j 2r p11!

3S cosf

A12r 2
Gp122

sinf

A12r 2
Gp11D GGp¯1 , ~5.6!

where we have now used a coordinate system on the sp
Sp12 which has anglesu1 ,...,up12 . The anglesu1 ,...,up
are on the Sp on which thep-brane is wrapped, while the
relationships betweenup11 , up12 with r ,f are given by

A12r 2 cosf5cosup12 ,

A2r 2 sinf5sinup12 cosup11 .
~5.7!

Using an analysis similar to that in@9# and @10#, it is
straightforward to see from Eqs.~5.6! and~5.5! that the con-
dition that half of the supercharges vanish impliesP5pr /l
50.

What does this condition imply in phase space? The
ordinates (r ,f) and the momenta (pr ,pf) satisfy standard
Poisson brackets. In particular,

@r ,f#PB50. ~5.8!

However, we have shown that BPS motions havepr50.
Thus we should regard this as a constraint in phase spa

c15pr50. ~5.9!
1-5
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SUMIT R. DAS, ANTAL JEVICKI, AND SAMIR D. MATHUR PHYSICAL REVIEW D 63 044001
as a weak condition. Taking Poisson brackets with
Hamiltonian yields a secondary constraint

c25
dV

dr
50. ~5.10!

Actually, this can also be seen as following from the sy
metry reduction conditionQ50. There are no further con
straints. This is because a direct computation yields

@H,c2#PB52
l2pr

Hgrr ~r !

d2V

dr2 . ~5.11!

which vanishes on the constraint surface because of
~5.9!. Finally, the two constraintsc1 andc2 form a second
class system with the Poisson brackets~PB’s!

@c1 ,c2#PB52
d2V

dr2 . ~5.12!

so that the matrix of PB’s of the constraints is

C52 i
d2V

dr2 s2 , ~5.13!

wheres2 is the Pauli matrix
To analyze the dynamics of these restricted set of m

tions, we need to look at the brackets of unconstrained v
ables on the reduced phase space. Alternatively, we sh
look at Dirac brackets. These may be computed in a strai
forward manner, and the result is

@r ,f#DB5@r ,f#PB2@r ,c1#PB~C21!12@c2 ,f#PB

52
1

l

]2V/]r ] j

]2V/]r 2 . ~5.14!

On the constraint surface this is evaluated as

@r ,f#DB5
Rp21

N

r 22p

p21
, ~5.15!

which is nonzero. In a quantum theory we should repla
these Dirac brackets by a commutator and one would h
noncommuting coordinates on the sphere. The noncomm
tivity is proportional to 1/N as expected. Furthermore, this
divergent for p51 and reverses sign forp50. However,
these are the two cases where is no true bound for the a
lar momentum.

Alternatively, one can consider the quantum theory
rectly. Now the conditionpr50 should be imposed on th
space of states. IfP denotes the projection operator on the
states, the relevant dynamical quantities in this subspac
states arePrP and PfP. These will not commute even
thoughr andf do.

The origin of noncommutativity in our problem is simila
to the way noncommutativity arises in the quantum Hall
fect when one restricts to the lowest Landau level. H
again the restriction to the lowest Landau level may
viewed at the classical level as constraints which set the
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locities to zero as weak conditions. The Dirac brackets
the coordinates are then nontrivial. One justification of t
procedure for restricting the analysis to the lowest Land
level is given by taking the zero-mass limit. In the prese
case we have a much more elegant reason for such a re
tion, namely, supersymmetry.

Interestingly, the above commutation relation turns out
be identical to the one obtained by the following heuris
argument in@7# where it is also shown that forp52 these
are the same as the commutators which define a fuzzy4.
We have seen that for motions withP50 the size of the
brane is related to the angular momentumj by the relation
j 5r p21. We can then considerr p21 as the canonical conju
gate tof. This leads to a commutation relation betweenr
and f, which is the same obtained by replacing the Dir
brackets~5.15! by a commutator. However, this heuristic a
gument does not throw light on the origin of noncommu
tivity, which lies in the fact that we are working on a su
space of states. Most importantly, as we have argued,
reduction to a noncommutative space can be understood
Hamiltonian reduction based on supersymmetry.

VI. CONCLUSIONS

Our analysis has provided an important consistency ch
on the giant graviton picture; viz, BPS states have boun
angular momenta, while there are non-BPS states which
have arbitrary angular momenta. This is consistent with
stringy exclusion principle. We have shown that at the cl
sical level such states have the same dispersion relatio
that of a graviton; the brane tension is canceled by the L
entz force due to the field strength to which the bra
couples. Furthermore, the very existence of the BPS bo
required precise coefficients in front the DBI and Chern
mons terms—these incorporate flux quantization as wel
the details of the geometry.

In @9# and@10# it has been shown that these BPS states
in fact those which preserve half of the supersymmetries
the background. We showed that one can impose these
persymmetry conditions only whenpr50 or equivalently the
size of the brane is fixed during its motion. We can th
impose the condition that half of the supercharges vanish
a strong condition, which would then imply this restriction
the motion of the branes which which lead to bounded
gular momenta forp>2. The same restriction also led us
the fact that for such motions the two transverse coordina
on the sphere can be regarded as noncommuting. It is im
tant to realize that there is nothing noncommuting at
fundamental level. This arises purely because we are con
ering motion on a constrained surface on phase space.
constrained surface can be understood as given by the
dition that on it half of the supercharges vanish. In oth
words, space can be regarded as noncommutative if and
if we restrict ourselves to the subspace of BPS states.
believe that this fact can have implications for the sugges
that noncommutativity could be the origin of the stringy e
clusion principle.
1-6
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