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It has been recently suggested that gravitons moving in, A0S spacetimes along the" ®low up into
spherical 6—2)-branes whose radius increases with increasing angular momentum. This leads to an upper
bound on the angular momentum, thus “explaining” the stringy exclusion principle. We show that this bound
is present only for states which saturate a BPS-like condition involving the eleagyl angular momentum
J,E=J/R, whereR is the radius of & Restriction of motion to such states lead to a noncommutativity of the
coordinates on'S As an example of motions which do not obey the exclusion principle bound, we show that
there are finite action instanton configurations interpolating between two possible BPS states. We suggest that
this is consistent with the proposal that there is an effective description in terms of supergravity defined on
noncommutative spaces and noncommutativity arises here because of imposing supersymmetry.
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[. INTRODUCTION AND SUMMARY angular momenta, while the latter is the correct description
for large angular momenta.

One of the striking consequences of the holographic cor- A natural question arises immediately: What about non-
respondence in Adax S" spacetimegl] is the stringy ex- BPS states? There are of course a large number of non-BPS
clusion principle[2]. It has been also argued that the stringystates in the gauge theory which are still represented by
exclusion principle means that dual supergravity should resingle-trace operators and should therefore correspond to
side on a noncommutative spacetime, e.g., quantum defosingle-particle or single-brane states in the dual description.
mations of AdSXS [3]. The principle states that the maxi- In this paper we show that the Hamiltonian for brane mo-
mum angular momentum of single particle Bogomol'nyi- tions on spheres leads to a BPS-type bound; viz., there is a
Prasad-SommerfielBPS states(in spacetimgis bounded lower bound on the energy for a given angular momentum.
by N, where N is the flux of then-form magnetic field The restricted type of motion considered[#] which satu-
strength on the sphere. Recently, McGreevy, Susskind, arf@€ this bound. If we are working in a supersymmetric
Toumbag4] have provided a novel explanation of this phe- theory, it is natural to expect that these are also configura-

nomenon. According to their proposal, a single trace operali®nS Which preserve some of the supersymmetries. Thus

tor of the holographic theory is well described as Single_non-BPS states correspond to other motions, e.g., oscillations

particle supergravity modegve call generically call them and changes of the radiu_s. From this bour_1d it is straig_htfor-
gravitons for low values of the angular momenta. However ward to see that the radius of the brane increases with the

for large angular momenta, these blow up into spherioal ( angular momentum fon>3. For such motions the potential
P bg gutar th ,”SI P thi P bl has two minima—one at zero radius and the other at a radius
)-branes moving on the"SIn some cases this blowup \ hieh scales ag¥("=3). We show that there are finite action

follows qualitatively from the Myers effedi5]." It is then  jgianion configurations interpolating between the two
demonstrated that the radius of these spherical branes groWgnina The implication of this is, however, less clear since

W;:h anrg]]ular d_momfer;]turg for 3 restncteﬁ class .Or': motiony,q description of the system as a brane with some Dirac-
where the radius of the brane does not change with time angorn-lnfeld (DBI) action fails when the size of the brane is

in addition there are no waves along the brane. Since th
radius of the brane cannot exceed the radius of the sphere on Since the dynamics of D-branes is defined on a commu-

which it moves, there is a bound on the angular momentummy, /e configuration space, one might wonder whether non-

As we will see, it is important to emphasize that for con- commutativity is visible in the “giant graviton” scenario.

sistency there should be only one BPS state for a given aYWe show that this is in fact true. More precisely, we show

gular momgntum even though I 'm|ght appear that there 'Fhat the restriction of the motion of the branes to those which
both a graviton and a “giant graviton” or a wrapped brane. o, rate the BPS bound and which can be implemented in
The point is that the former is a valid description for smallterms of supersymmetry generators implies a set of second-
class constraints in the phase space. This implies that the
Dirac brackets of two coordinates on thgt8ansverse to the
This connection has been explored[&]. (n—2)-brane are nonzero, which should imply that in the
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guantum problem these operators do not commute. We show The dynamical coordinates are na\t, 8,) and ¢(t, 6;).
that the Dirac brackets in fact become singularnat3, We will look at motions of the brane where there are no
which is consistent with the fact that in this case all suchoscillations; i.e.y, ¢ are independent of the anglés. Then
states have the sam@naxima) angular momentum. One the brane Lagrangian is given by

could arrive at the same conclusion by considering directly ] )

the quantum commutators of the coordinate operators pro-  L=—N[rP(1—g,(r)i?—g,4¢3)*2—rP e/,

jected on to the subspace of states implied by the restriction (2.6)

on brane motion. Thus in reduced phase space, it appear

that two space directions do not commute. This is quite simi¥Vhere

lar to the problem of a charge particle moving on a two-plane N

in the presence of a constant magnetic field. In that case, = S5
restriction to the lowest Landau level implies that the two R
spacelike coordinates do not commute. Connections of the R2

bound on the angular momenta of giant gravitons with non- -
.. .. N . . grr(r) R2
commutativity have been heuristically discussed earlier in

[7]. However, the precise origin of noncommutativity is _
rather unclear in this treatment. 9gg(r)=R°—T". 2.7)

.The results of this paper were reported in REl. While The first term is the DBI term. The coefficient is a rewriting
this paper was under preparation, R¢84.and[10] appeared . : ;
. . . of the tension of the brane in terms fandR. This follows

on the internet which have some overlap with Secs. Il and Il| . . . ) .
from the corresponding classical supergravity solution. It is

of our work. In Sec. IV we use some results[6] and[10] o

to describe the origin of noncommutative space in the theoryc.n.JCIaI n iWhavfollowsSihat weshave exact_ly the same coef-
ficient in the second term—the Chern-SimofsS term.

This is the coupling of the brane with theform field

strength and the precise coefficient follows from standard

We consider spacetimes of the form of AgS€S” where  flux quantization.

II. BRANE MOTION ON SPHERES

m+n=10 in string theory anan+n=11 in M theory. The In the following we will setR=1 so that all dimensional
radius of 8 is R, which is also the scale of the AdS Space_quantities are_in units dR. We will restoreR at the very end.
time and there is a constantform flux on $' with N quanta The canonical momenta farand ¢ arep, andpy, re-

of flux. Let us consider the spher8 &mbedded iR"* > with ~ SPectively, and are given by

coordinatesx®- - - X" 1, _
ArPge ()i

(1= gy (N)F2—gypd) V2

(X1)2+"'+(Xn+1)2=R2, (21) prEAPZ

and we choose coordinates on the sphere as follows:

ATPg (1) g
Xt=\R%=r2cos¢, Py=\j= 9¢¢( d’. / +ArPTL
(1=0r(NF?=gye9?)Y?
X?=\R?*-r?sing, (2.2 (2.9
where O<r<R. The remaining<3 --X"** are chosen to sat- 1he momentump, is an angular momentum and is con-
isfy served.p, is not conserved. From Eg&.8) one gets
(X324 (XM 2=r2, (23 (1=gr(NF?=gygd?) M

2 H 1\21—-1/2
(j—rP™

These may be written in terms pf=(n—2) anglest, -6, .
grr(r) g¢¢(r)

andr in the form of standard spherical polar coordinates in
p+1 dimensions. Then the metric ol Becomes

=rP r2p+

(2.9

The canonical Hamiltonian can be now derived in a stan-

2 dard fashion and becomes

R
d8’= o dr?+ (RP-r?)d¢?+r2d07, (2.4

) 2 (j_rp+l)2 1/2

wherede) is the volume element on a urmtsphere. H=A r*+ 9y, (1) + Uga(r) (2.10

We considerp-branes, withp=n—2, wrapped on the™S
embedded in '§ moving entirely in the Sand sitting at the
center of global coordinates in AgSspacetime. The time A BPS bounds
coordinate in AdS is denoted hyin the (p+ 1)-dimensional Motion can be labeled by the quantum numpét is easy
world volume of the brane with coordinatesry ,...,o,, we to show that for some givepthere is a lower bound on the
choose a static gauge energy—a BPS bound. This is not immediately obvious from

the form of the Hamiltoniar{2.10. However, a straightfor-
=t, o;=6; (i=1,...p). (2.5  ward algebra allows us to rewrité in the following form:
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P2 (jr_rp)Z 1/2
+
gy (1) Jgge(r)

Since g, (r)=(1-r%)"* and g4,(r)=1-r? (in R=1
units) are positive, it is clear that

H=\|j?+ (2.11)

H=)\j. (2.12

This is the BPS bound.

In deriving the form of the Hamiltonian given in Eq.

PHYSICAL REVIEW D 63 044001

(2.18

For a BPS statell=\j=p,/R. This is thesamedisper-
sion relation as that of a massless graviton which is moving
purely on the sphere. What is surprising is that states of
branes, which are by themselves heavy objects, can lead to a
light state. The reason behind this is of course the coupling
to the n-form field strength. The effect of this canceled the
effect of brane tension.

In the above discussion, we have used the phrase “BPS

(2.1D), it is absolutely crucial that the relative coefficient configuration” in its original sense. In a supersymmetric
between the DBI term and the Chern-Simons term is what itheory one would expect that these configurations also pre-

is. This happens because thdorm flux is quantized in the

serve some of the supersymmetres.

standard way. Furthermore, the exact form of the metric on
the sphere is also crucial. All the details of working in a
consistent supergravity background has entered in the calcu-

IIl. TUNNELING BETWEEN VACUA

lation.

B. BPS saturated states and angular momentum bounds

The bound is saturated when

p,=0 (2.13
and
jr=rP, (2.19
The latter has two solutions fqr+0:
r=r;=0, r=r,=jP-D, (2.19

Thus BPS motions have constantwhich is the size of the
brane.
The potential energy, for such motion,

_(jr—rpp?

For p=0 the potential does not vanishrat 0. There is a
minimum for j <1 in the physical range af. However, the

potential is nonvanishing at the minimum and this does not

correspond to a BPS state. When 1 there is one minimum

We saw that forp=2 there are two minima. Strictly
speaking, the minimum at=0 is in a regime where we
cannot trust our picture. The description of brane physics in
terms of a DBI-CS Lagrangian is valid when the size of the
brane is much larger than the basic length scale of the theory
and clearly a zero-size brane cannot be described in this fash-
ion. On the other hand, for sufficiently largéhe other mini-
mum lies in the domain of validity of our calculation. This is
consistent with the overall picture implied [d]. For low
values of the angular momentum, the perturbative graviton is
a good description of the state. For large values of angular
momentum, this description fails and one should consider the
states as wrapped branes.

It is nevertheless of some interest to ask whether there are
finite action tuneling configurations between the two vacua.
We now want to consider motion in thedirection, for a
given value of] in Euclidean signature. The Hamiltonian for
such motion is given by

H=A\

p2 1/2
U00+X§Eﬁﬂ : (3.1

where

U(r)=j2+V(r). (3.2

whereV(r)=0 and the location of the minimum moves to The corresponding Lagrangian is then

smaller values of asj increases. Thus, fgg=0, BPS states
must havej >1.

For p=1 andj#1, there is no nontrivial minimum for
r<1. For j=1 the potential is zero everywhere. Thus all

BPS states havi=1.

For p=2 the potential has two minima with a maximum

in between. These minima are preciselyandr, given in

L==NUMI"1-g, (N, (3.3

so that the Euclidean action is

SE=f dfu(n 1" 1+g, (]2 (3.4

Egs.(2.19. Thus there are two kinds of BPS states: the ongypile the Euclidean Hamiltonian is
which corresponds to zero-size branes and the other with

branes with sizes scaling 4§~ *. Since the range af is

between 0 and 1, this immediately implies that there is an

upper bound foj:

jSRerl'

(2.17)

where we have restord® The physical angular momentum

IS

pé 1/2
U”)_A%HUJ ’

where

2This has in fact been shown [9,10].
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9y (NF[U(r)]H2 for low angular momentum this is a pointlike state repre-
Pe= —ﬁ7[1+9rr(r)'r 172 (3.6 sented by a graviton and for large angular momentum this is

an extended brane. For intermediate angular momenta the

To construct instanton solutions interpolating between thélescription is probably complicated.
two minima of U(r), we need solutions of the Euclidean
equations of motion with Euclidean energh=\2j2. It is V. MULTIPLE-BRANE STATES
easily seen that such motion obeys
The N=4 super Yang-Mills theory that arises from D-3-
P — +Er(j _rpy 37 branes has chiral operators of the foritt- --®'n], where

T ' ' we symmetrize in the indicag. But it has also been argued

that there exist multitrace operators that are also chiral pri-

the two signs corresponding to instantons and antimaries[11]. These operators are of the foifior two trace$
instantons. Using Eq$3.7) and(3.4), it is easy to check that

the Euclidean action for this solution is ) . . _
tr[®'1- - D't P'm+1. .- D'n], (4.1

g —EJ dt U(r) (3.9
Sns_j ' .

with the indicesi, again symmetrized. In a similar manner
we can make operators with more traces. These operators are
xpected to be dual to multiparticle states in the dual string
eory. In the case of AGXS*xM4, it was found in[12]
that multiparticle states in supergravity were needed to ac-
count for the elliptic genus computed from the dual confor-
mal field theory(CFT).
So=)\jf dt. (3.9 The existence of multiparticle chiral primaries raises the
following issue for the stringy exclusion principle. To be
Thus the true instanton action is able to get these states, we must be able to construct multi-
particle states where the interactions between the particles
Sins= Sins— Sos (3.10  exactly “cancel out,” giving energy equal to the sum Rf
charges. At the same time we should not be able to increase
and this is in fact finite. the number of such quanta without bound, since when the
For example, fop=2 the solution to Eq(3.7) is total charge exceeds the limit set by the exclusion principle
then the state should not be BPS.
L et (3.11) Let us examine the consequence of this fact for the giant
J—r gravitons. Then-trace operators in the gauge theory would
o presumably be dual to-branes placed in the dual spacetime.
and the actior§; is If this state is to be BPS, then the interactions between these
2 . branes must “cancel out.” This-particle state is different
! rg=r from the single-particle state with the same charges, so we
r(j—r)  1-r? (312 ’

do not require that these configurations mix to produce one
) ) ) ) ) ) effective state(Note, however, that operator refinitions mix
The first term' in 'th.e integral is clea}rly divergent, whlle the single-particle and multiparticle states in some cd4&})
second term s finite. However, using E@.7), again one On the other hand, when the total charge on the branes
sees that this term is in fact exceeds the limit set by the exclusion principle, we should no
longer be able to make a BPS state. Thus consider the giant
Nj j dt,

This action may be easily seen to be infinite. However, on
must remember that the energy of the states between WhiC[
tuneling is occurring is nonzero and equalX¢. This has
itself an action

+

i
Spa= [
0

(3.13 graviton that expands in the AdS direction rather than along
the sphere, and let the angular momentuexceed the limit
which is exactlyS,. Thus the subtracted quanti§y is fi- set by the exclusion principle. Then there can be a.ltunnelin.g
nite: from this state to one where there are say two giant gravi-
tons, with angular momenta, ,L — L, . Pictorially, we imag-
1 _ 1 . _ ine a large sphere pinching in the middle and separating into
j+5(1=log(1=j)— 5 (1+])log(1+])|. two spheres.
While we have not computed the action for such an in-
(3.14 stanton, there appears to be no reason why it should diverge.
We have shown that there are finite action instanton conk the case of tunneling from a finite brane to a point, the
figurations which interpolate between the two minima of thelatter configuration was singular and one could worry about
potential. However, as emphasized above, the meaning @orresponding divergences in the amplitude. But the tunnel-
this is not very clear since the configuration with zero-sizedng on hand is between two regular configurations, and we
branes clearly lies outside the validity of our description. Incan make interpolating configurations that have finite contri-
fact for a given angular momentum there is only one statebution from the Born-Infeld and Wess-Zumino terms.

Sns= A
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Thus the picture of tunneling may be more complex tharmetries. On the world volume action of the brane with fer-
that noted in9] and[10]. Apart from the pointlike graviton mionic coordinates®*, we need to choose asymmetry
and the two giant gravitons, we have a host of multibranegauge condition (+1')® =0, wherel" is the pullback:
states that have the same quantum numbers. The exclusion
principle requires some of these to exist, while the others _

(with L larger than the exclusion boundchay disappear by C(p+1)!
tunnelings that involve all the configurations mentioned (5.3
above.

e ipr1g. XKL . Xtp+i]
'1 Ip+1 Ky Mpsr

whereX* denote the bosonic coordinates on the brane world
volume, I', are the Dirac gamma matrices in target space,
andFMl...#nzFﬁl- T, . We need to look at supersymmetry
We have seen that for BPS motions wrapped branes hawgansformations which preserve this gauge choice. These are
a bound on the angular momentum, thus providing a newhe transformations
perspective on the stringy exclusion principle.
Bounds on angular momentum appear naturally for par-
ticle motions on noncommutative spaces, e.g., fuzzy spheres
or quantum spheres. One might wonder whether the dynam-
ics discussed above, which is entirely based on a commutder an infinitesimal spinor parametees To preserve the su-
tive space, implies ateffective dynamics in a noncommu- persymmetries of the background, we require in addition that
tative space. € be in fact a Killing spinor of the background. The corre-
The important point here is that it is only for BPS statessponding supercharge is given by
that there is a bound on the angular momentum, not for other
motions such as changes of the size of the brane or oscilla- Q= 36(1—1“) (5.5
tions of the brane. Likewise from the point of view of ho- 2 ' '
lography, there are non-BPS states which can have any value
of the angular momentum. Consider, for example AdS® SO thato® ={Q- ¢,0}.

V. SUPERSYMMETRY AND NONCOMMUTATIVITY

a®=%(1—r)e, (5.4)

spacetime where the holographic theory ist(B)- dimen- In the static gauge we are using_, the expressiol foray

sionalN=4 Yang-Mills theory. In terms of the Higgs fields be seen to beusing expressions given [10])

@', i=1,...,6 of this theory chiral primary operators are of H

the form =g XFO+P(\/Wsin¢>Fp+2
Trg[d's---din], (5.1

+y1-r?cos¢l 1)+ (j—rP*h
where the subscripf means that we have to symmetrize
with respect to the indicek,... i, and subtract the trace. Ccos¢ sing
Supergravity modes lie in the chiral primary multiplet ob- X ﬁrpﬂ_ ﬁrpﬂ
tained from Eq(5.1) by acting with supersymmetry charges.
Clearly Eq.(5.1) has a S@) angular momentum equal to  where we have now used a coordinate system on the sphere
The rankN of the gauge group SB() is in fact the quan-  gP*2 which has angle®,...,0,.,. The anglesd;,...,0,
tized ﬂUX Of the ﬁVe'form f|e|d Strength OI’]SSSUCh Opera— are on the B on which thep_brane is Wrapped’ while the

tors and their supersymmetry partners can have a maximupg|ationships betweetl, 1, 6,., With r,¢ are given by
angular momentunN. There are, however, operators which

Tp.1, (5.6

involve derivatives ofb which do not create BPS states: e.g., V1—r?cos¢p= C0Sbp4 2,
Trd @190 293 P'n]. (5.2 J=r2sing=sin6,,,cosb,. ;.

(5.7
Clearly, there is no bound for the angular momenta of these _ S . o
operators since we can have higher and higher derivatives Using an analysis similar to that if9] and [10], it is

and 9"® is a different matrix tharb. straightforward to see from Eqg&.6) and(5.5) that the con-
Knowing that BPS states respect half of the supersymmedition that half of the supercharges vanish impligs p, /A
tries, we are now led impose the conditi@=0 on the =0.

phase space. This can be done si@ceepresents symmetry What does this condition imply in phase space? The co-
generators of the theory. The imposition of this symmetryordinates (,¢) and the momentap( ,p,) satisfy standard
strongly on the phase space will lead, as we will now argudoisson brackets. In particular,
to a noncommutative space.

We therefore need to know what kind of motion of the [r.¢lps=0. (5.9

brane respects half the supersymmetries of the backgroungh,\vever we have shown that BPS motions hapye=0.

The question we ask is the converse of the question answereq, ;s we should regard this as a constraint in phase space,
in [9] and[10], where it was shown that the giant graviton

with no motion in ther direction respects half the supersym- 1=p,=0. (5.9
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as a weak condition. Taking Poisson brackets with thdocities to zero as weak conditions. The Dirac brackets for

Hamiltonian yields a secondary constraint the coordinates are then nontrivial. One justification of this
procedure for restricting the analysis to the lowest Landau
zzd_V:O_ (5.10 level is given by taking the zero-mass limit. In the present

dr case we have a much more elegant reason for such a reduc-

tion, namely, supersymmetry.

Interestingly, the above commutation relation turns out to
be identical to the one obtained by the following heuristic
argument in[7] where it is also shown that fqu=2 these

A2p, d2V are the same as the commutators which define a fuZzy S
[H, ¢, ]pg=— Ha. (1) drZ” (5.1)  We have seen that for motions witA=0 the size of the
" brane is related to the angular momentpioy the relation
which vanishes on the constraint surface because of E4=r""'. We can then considef * as the canonical conju-
(5.9). Finally, the two constraintg, and ¢, form a second 9ate to¢. This leads to a commutation relation between
class system with the Poisson brack@s's) and ¢, which is the same obtained by replacing the Dirac
brackets(5.15 by a commutator. However, this heuristic ar-
gument does not throw light on the origin of noncommuta-
tivity, which lies in the fact that we are working on a sub-
space of states. Most importantly, as we have argued, the
so that the matrix of PB’s of the constraints is reduction to a noncommutative space can be understood as a
42V Hamiltonian reduction based on supersymmetry.

C=—igz02, (5.13

Actually, this can also be seen as following from the sym-
metry reduction conditio@=0. There are no further con-
straints. This is because a direct computation yields

d3v

[lfflylﬁz]PB:_F- (5.12

r

whereo, is the Pauli matrix VI. CONCLUSIONS

To analyze the dynamics of these restricted set of mo- OQur analysis has provided an important consistency check
tions, we need to look at the brackets of unconstrained varion the giant graviton picture; viz, BPS states have bounded
ables on the reduced phase space. Alternatively, we shoulghgular momenta, while there are non-BPS states which can
look at Dirac brackets. These may be computed in a straightjaye arbitrary angular momenta. This is consistent with the

forward manner, and the result is stringy exclusion principle. We have shown that at the clas-

_ 11 sical level such states have the same dispersion relation as
[r ¢Jos=Lr. ¢leaLr ¥alpe(C™) 1 ¥z, H1re that of a graviton; the brane tension is canceled by the Lor-
1 9?VIar dj entz force due to the field strength to which the brane
NV (514 couples. Furthermore, the very existence of the BPS bound
required precise coefficients in front the DBI and Chern Si-
On the constraint surface this is evaluated as mons terms—these incorporate flux quantization as well as

the details of the geometry.

In [9] and[10] it has been shown that these BPS states are
in fact those which preserve half of the supersymmetries of
the background. We showed that one can impose these su-
which is nonzero. In a quantum theory we should replacgersymmetry conditions only whgn =0 or equivalently the
these Dirac brackets by a commutator and one would havsize of the brane is fixed during its motion. We can then
noncommuting coordinates on the sphere. The noncommutampose the condition that half of the supercharges vanish as
tivity is proportional to 1N as expected. Furthermore, this is a strong condition, which would then imply this restriction of
divergent forp=1 and reverses sign fqp=0. However, the motion of the branes which which lead to bounded an-
these are the two cases where is no true bound for the anggular momenta fop=2. The same restriction also led us to
lar momentum. the fact that for such motions the two transverse coordinates

Alternatively, one can consider the quantum theory di-on the sphere can be regarded as noncommuting. It is impor-
rectly. Now the conditiorp,=0 should be imposed on the tant to realize that there is nothing noncommuting at the
space of states. P denotes the projection operator on thesefundamental level. This arises purely because we are consid-
states, the relevant dynamical quantities in this subspace @fring motion on a constrained surface on phase space. This
states arePrP and P¢$P. These will not commute even constrained surface can be understood as given by the con-
thoughr and ¢ do. dition that on it half of the supercharges vanish. In other

The origin of noncommutativity in our problem is similar words, space can be regarded as noncommutative if and only
to the way noncommutativity arises in the quantum Hall ef-if we restrict ourselves to the subspace of BPS states. We
fect when one restricts to the lowest Landau level. Herebelieve that this fact can have implications for the suggestion
again the restriction to the lowest Landau level may bethat noncommutativity could be the origin of the stringy ex-
viewed at the classical level as constraints which set the veelusion principle.

Rpfl r27p
[r.¢los= N p_1' (5.15
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