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Inflationary perturbations near horizon crossing

Samuel M. Leach and Andrew R. Liddle
Astronomy Centre, University of Sussex, Brighton BN1 9QJ, United Kingdom

~Received 10 October 2000; published 29 January 2001!

We study the behavior of inflationary density perturbations in the vicinity of horizon crossing, using nu-
merical evolution of the relevant mode equations. We explore two specific scenarios. In one, inflation is
temporarily ended because a portion of the potential is too steep to support inflation. We find that perturbations
on super-horizon scales can be modified, usually leading to a large amplification, because of entropy pertur-
bations in the scalar field. This leads to a broad feature in the power spectrum, and the slow-roll and Stewart-
Lyth approximations, which assume the perturbations reach an asymptotic regime well outside the horizon, can
fail by many orders of magnitude in this regime. In the second scenario we consider perturbations generated
right at the end of inflation, which re-enter shortly after inflation ends—such perturbations can be relevant for
primordial black hole formation.
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at

u
ro

pi
m
e
n

ia
it

bl
n
e
t
s
d
fr
tio
t

rb

a

a

li-
also

of
ss-
ct
at-

en
t the
re

if-

ir-
tion
he
nds
our
a-

he
his
lts,
zon
per-
on-
ere

of

ari-
er

or-le
I. INTRODUCTION

The inflationary cosmology remains the leading candid
theory for the origin of structure~see Refs.@1,2# for re-
views!. Considerable attention has been focused on prod
ing highly accurate calculations of the perturbations p
duced during inflation @3#, which ultimately may be
measured at the percent level via the microwave anisotro
they induce@4#. Special interest has been given to the si
plest case, where there is only a single scalar field degre
freedom during inflation, and we will focus exclusively o
that case in this paper.

In considering how a perturbation might evolve, a cruc
quantity is the comparison of the inverse wave number w
the Hubble length, given by the ratioaH/k. By definition
inflation corresponds to a decreasing comoving Hub
length,d(aH)/dt.0; consequently, when modes of a give
wave number are considered, they begin their evolution w
inside the horizon1 and cross outside during inflation. A
early times, flat space-time quantum field theory can be u
to fix the initial normalization of the perturbations. Aroun
the epoch of horizon crossing, the perturbation becomes
zen in, corresponding to a constant curvature perturba
once the mode is well outside the horizon. This leads
standard expressions for the spectrum of density pertu
tions such as

PR
1/2~k!5

1

2p

H2

uḟu
U

k5aH

, ~1!

wherePR is the power spectrum of the curvature perturb
tion R, using the notation of Refs.@1,2#. This expression
gives the amplitude of the perturbations in terms of the v
ues of the Hubble parameterH and scalar field velocityḟ at
the time the mode crossed the horizon, i.e., whenk5aH. A

1We use ‘‘horizon’’ as shorthand for the more precise ‘‘Hubb
length;’’ it does not refer to the particle horizon.
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similar expression holds for the gravitational wave amp
tude, and more sophisticated higher-order versions have
been derived.

Equation~1! gives the impression that the amplitude
perturbations is being quoted at the instant of horizon cro
ing. However, it is important to realize that that is not in fa
the case. The value quoted is the perturbation amplitude
tained in the asymptotic limitk/aH→0 when the perturba-
tion is well outside the horizon; it just happens to be writt
in terms of the values the background parameters had a
instant of horizon crossing. In fact the value of the curvatu
perturbation at the instant of horizon crossing typically d
fers by a significant factor from the asymptotic value.

Bearing that in mind, in this paper we consider two c
cumstances where the standard formula for the perturba
amplitude may not be valid, due to a failure to reach t
asymptotic limit. In each case, this is because inflation e
before the true asymptotic regime has been reached. In
first scenario, we consider a temporary interruption to infl
tion, where the field driving inflation has a region where t
potential is too steep to sustain inflation. We will see that t
can lead to significant modifications to the standard resu
and indeed that even modes significantly outside the hori
can receive a large change in amplitude due to entropy
turbations in the scalar field. In the second scenario, we c
sider perturbations produced at the end of inflation, wh
their amplitude on re-entry has relevance to the production
primordial black holes.

II. FORMALISM

The scalar perturbations are best followed using the v
ableu5adf @5,6#, and the equation satisfied by its Fouri
modesuk is

uk91S k22
z9

z Duk50, ~2!

where primes denote differentiation with respect to conf
mal time,z[aḟ/H, and
©2001 The American Physical Society08-1
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z9

z
52a2H2F11e2

3

2
h1e222eh1

1

2
h21

1

2
j2G , ~3!

where we define the Hubble slow-roll parameters@7# as

e[
mPl

2

4p S H ,f

H D 2

53
ḟ2/2

V1ḟ2/2
, ~4!

h[
mPl

2

4p

H ,ff

H
523

f̈

3Hḟ
, ~5!

j2[
mPl

4

16p2

H ,fH ,fff

H2

53~e1h!2h22
V,ff

H2
, ~6!

where the subscript, ‘‘f ’’ denotes differentiation with re-
spect tof. Mode equation~2! has two asymptotic regime
characterized by the relative sizes ofk2 andz9/z. Only in the
slow-roll limit, where e, uhu, uj2u!1, will this necessarily
be the same as comparingk andaH. Bearing this in mind,
well within the horizon in the limit ofaH/k→0 each mode
behaves like a free field

uk→
1

A2k
e2 ikt, ~7!

while in the limit k2!z9/z we have a growing mode solutio

uk}z, ~8!

which means that the curvature perturbation,uRku5uuk /zu,
remains constant on superhorizon scales. The quantityz is
sometimes described as the pump field for scalar pertu
tions.

To calculate the constant of proportionality of Eq.~8! it is
generally assumed thate andh are slowly varying at around
horizon crossing, which will be a valid approximation
long as these parameters are small, since

e8

aH
52e~e2h!,

h8

aH
5eh2j2. ~9!

The expression for conformal timet then takes on a simple
form

t[E dt

a
.2

1

aH

1

12e
, ~10!

and Eq. ~2! reduces to a Bessel equation leading to
Stewart-Lyth result for the power spectrum@8#

PR
1/2.@12~2C11!e2Ch#

1

2p

H2

uḟu
U

k5aH

, ~11!

whereC.20.73 is a numerical constant.
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In fact, the constancy ofRk depends one and h doing
nothing dramatic evenafter horizon crossing, which can b
seen if we rewrite Eq.~2! in terms ofRk itself:

Rk912
z8

z
Rk81k2Rk50, ~12!

where

z8

z
5aH@11e2h#. ~13!

Initially Rk , like uk , will be oscillating, although we are
only interested in the envelope of this oscillation,uRku, be-
cause only the envelope contributes to the value of the
space curvature perturbation,R. Mode equation~12! is of
the form of a damped harmonic oscillator. In the slow-r
limit, at around horizon crossing the system becomes do
nated by the exponentially growing friction term propo
tional toRk8 , and the solution to Eq.~12! soon becomes wel
approximated by the form

Rk~t!5const,
Rk8~t!

aH
.const3 exp~22N!, ~14!

whereN is the number ofe-folds after horizon crossing. The
rapid freezing in of the curvature perturbation is appar
from Eq. ~14!, which measures the rate of change ofR per
Hubble time. We will examine the properties of the late-tim
solution in more detail later in the paper.

In this paper we are interested in a more dramatic sit
tion, arising through a failure of slow-roll. If at any time afte
horizon crossing the friction term in Eq.~12! changes sign
and becomes a negative driving term, then we can exp
dramatic effects on modes which have recently left the h
zon. This change of sign will occur wheneverz reaches a
local maximum, or equivalently whenever

11e2h50. ~15!

As e is always positive,h must be at least one for this t
happen, which implies that a turn around inz can occur only
during a transition to fast-roll inflation or to a non
inflationary period.

Before progressing to specific applications of the abo
we note that no such interesting effects can occur for gra
tational waves. Their mode equation is given by

vk91S k22
a9

a D vk50, ~16!

where

a9

a
52a2H2F12

1

2
eG . ~17!

In analogy with the above, Eq.~16! can be written as

Vk912aHVk81k2Vk50, ~18!
8-2
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INFLATIONARY PERTURBATIONS NEAR HORIZON CROSSING PHYSICAL REVIEW D63 043508
where

Vk5
vk

a
. ~19!

The pump fielda increases for all time, and so the constan
of the gravitational wave amplitude after horizon exit is a
sured, until horizon re-entry.

III. TEMPORARY INTERRUPTION OF INFLATION

To illustrate the points made in the previous section,
study the specific example of a false vacuum inflation mo
with a quartic potential@9#

V~f!5
l

4
M4F11B

64p2

mPl
4

f4G , ~20!

whereB is a constant. For suitableB, this model is charac-
terized by two separate epochs of inflation. For largef val-
ues the false vacuum term is negligible and the model
comes af4 potential, while for smallf values the mode
becomes false vacuum dominated. Depending on the v
of the parameterB, these two epochs can be punctuated b
brief suspension of inflation, while the potential becom
temporarily too steep to support inflation. Upon reaching
lower part of the potential the field fast-rolls until slowe
down by friction from the expansion.

The evolution of the quantity 11e2h and the comoving
Hubble wave number,aH, is illustrated in Fig. 1 for the
choiceB50.55. In this example inflation is suspended f
about 1e-fold, but z8/z remains negative for about 5e-folds
indicating that the field continues to fast-roll for some tim
after inflation restarts. It is during this latter period that sca
modes which have recently left the horizon feel the effec
the driving term in Eq.~12!.

We set the correspondence of scales such thatk51 cor-
responds to the scale which equals the horizon at the
when inflation stops. This correspondence is arbitrary,

FIG. 1. The comoving Hubble wave number,aH, increases
with the number ofe-folds of expansion,N, during inflation. We set
N50 when inflation first ends, and inflation is suspended
around 1e-fold. The quantity 11e2h remains negative for aroun
5 e-folds. We tookB50.55.
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pending on the mechanism for ending inflation and in p
ticular the value off at which inflation ends.

The evolution of perturbations on a particular scalek,
again forB50.55, is shown in Fig. 2, obtained numerical
using the approach of Ref.@10#. Even though this particula
mode left the horizon around 7e-folds beforez8/z turns
negative, the residualRk8 given by Eq.~14! is quickly blown
up by the exponentially growing driving term. After som
time the exponential growth becomes important and it dri
uRku through zero and on to a much larger amplitude. A
though the mode is well outside the horizon at this time,
amplitude is enhanced by a factor of around 100; we w
discuss the physical interpretation of this further later. On
z8/z becomes positive again normal friction domination r
sumes, freezing outuRku at the enhanced amplitude. Th
standard approximations therefore fail by a factor of arou
a hundred in this case, which as we will see is by no me
the worst. The tensor amplitude is unchanged, so the ten
to-scalar ratio is suppressed.

In Fig. 3 we consider two other modes, this time tracki
the evolution ofuuku. One mode crosses the horizon durin
the epoch whenz8/z,0. Clearly Eq.~2! does not depend
explicitly on z8/z, and so the transition from the oscillatin
regime still occurs whenk25z9/z. Scalar modes that leav
the horizon afterz8/z turns positive again, as is the case
the second mode shown in Fig. 3, asymptote to a value
is independent of the influence ofz8/z turning negative. This
is to be expected, since sub-horizon modes do not feel
influence of any background quantities.

The overall result is that an extremely broad feature ari
in the scalar power spectrum. This is shown in Fig. 4, wh
the spectrum for two different choices ofB has been com-
puted mode by mode, interpolating between the two differ
epochs of inflation. For comparison we plot the amplitu
predicted by the slow-roll and Stewart-Lyth formulas, whe
we use the background values and slow-roll parameters
rived from the numerical evolution. For a small range
scales neark5aHuendthere is some ambiguity as to when th

r

FIG. 2. The evolution of scalar and tensor perturbations,uRku
and uVku, for a single modek51022 which is outside the horizon
by a factor of 100 when inflation is suspended. The solid line is
quantityaH/k, andz8/z,0 between the two vertical dotted lines
The arrow indicates whenk5aH, the instant of horizon crossing
The absolute normalization of the perturbations is arbitrary, tho
the relative one is correct.
8-3
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SAMUEL M. LEACH AND ANDREW R. LIDDLE PHYSICAL REVIEW D 63 043508
formulas should be applied, since these modes leave the
rizon twice. We plot both possible values. The slow-roll a
Stewart-Lyth predictions fail by orders of magnitude f
many e-folds ~potentially enough to encompass all sca
accessible to large-scale structure observations in thB
50.55 case!, resuming their usual good agreement with t
numerical results soon afterz8/z turns positive again.

An intriguing feature of the spectrum forB50.55 is the
very flat portion on the right, which arises even though
disagreement with the slow-roll prediction indicates that
are nowhere near the slow-roll limit. In fact, this is a realiz
tion of the more general circumstance for a scale-invar
spectrum uncovered by Wands@11# using duality arguments
During this epoch, the field is fast-rolling along a relative
flat section of the potential, obeying

f̈13Hḟ1V,f.f̈13Hḟ50. ~21!

The solution is ḟ}a23, giving z}t2 rather than thez
}t21 typical of slow-roll inflation. Nevertheless, this rela
tion betweenz and t leads to a scale-invariant spectrum
scalar perturbations@11#, just as in the slow-roll limit. This
decaying solution ofḟ is always present but usually ne
glected. Setoet al. @12# have shown that in extreme case
when ḟ becomes equal to zero, the slow-roll amplitude
the density perturbation as written in Eq.~1! will completely
fail unlessḟ is replaced by the corresponding slow-roll v
locity ḟs5V,f(f)/3H.

As the field slows down, one might have expected a f
ture to be produced. However, as long ase is small, a nec-
essary and sufficient condition for a scale-invariant spect
is that the entire square-bracketed term in Eq.~3! remains
constant in time, which takinge!1 reduces to

j21h223h5const. ~22!

This encompasses both slow-roll (uhu!1) and fast-roll (h
*1) inflation, as well as any transition between the tw
This condition will be automatically satisfied as long as t
inflaton is effectively massless, allowing us to neglect

FIG. 3. The evolution of two scalar modes,uuku, as in Fig. 2.
The arrows again indicate horizon crossing for each mode. For
first mode,k1, horizon crossing occurs whilez8/z,0, while for the
second it occurs afterz8/z becomes positive again. Both mode
asymptote to approximately the same amplitude.
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last term of Eq.~6!. However, obtaining the flat portion re
quired significant fine-tuning ofB; notice that withB50.3
the potential is much less flat in the corresponding regi
though still flatter than the slow-roll formulas predict.

In the limit of an instantaneous transition from slow-ro
to fast-roll behavior, inflation is no longer suspended and
arrive at Starobinsky’s model@13#. In this case the inflation
potential is characterized by a sudden gradient discontin
and the power spectrum takes on a similar step-like form,
with superimposed oscillations on the upper plateau.

We now return to the physical interpretation of the chan
in the curvature perturbation on super-horizon scales.
though ordinarily a single scalar field is associated w
purely adiabatic perturbations, it can in fact support entro
perturbations if its velocity perturbation does not obey a g
eralized adiabatic condition with respect to the field pert
bation @14#. Under quite general circumstances, howev
single field inflation only generates adiabatic perturbatio
@15#, with the entropy perturbationS associated with a gen
eral scalar field perturbation being non-zero but becom
highly suppressed,S;e22N, once the mode becomes froze
in upon leaving the horizon@14#. The constancy of the cur
vature perturbation on super-horizon scales in the absenc
entropy perturbations holds under extremely general circu
stances@15#.

e

FIG. 4. The scalar power spectrum as determined from mo
by-mode integration. The upper panel showsB50.55, while the
lower is forB50.3 ~note that for inflation to be interrupted require
B.0.19@9#!. The scales between the two dotted lines correspon
the epoch whenz8/z,0. The first discontinuity in the analytic ex
pressions occurs in the region where modes make multiple hor
crossings, while the second sharp feature in the Stewart-Lyth
occurs due to an accidental cancellation of the entire Stewart-L
coefficient and has no physical significance.
8-4
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INFLATIONARY PERTURBATIONS NEAR HORIZON CROSSING PHYSICAL REVIEW D63 043508
Our situation is an exception to this. An entropy pertu
bation is the only source of super-Hubble growth@15,14#,
and during the phase wherez decreases the entropy pertu
bation grows until it becomes significant enough to sou
the curvature perturbation. The further above the Hub
length a scale is, the more the entropy has been suppre
and hence more time is needed for the entropy to bec
significant, so the effect does not extend up to arbitra
large scales. After slow-roll resumes the entropy dies aw
and the perturbations become purely adiabatic, remainin
thereafter but retaining the shift in amplitude. The influen
of the scalar field entropy can be studied using the definiti
of Ref. @14#, where the entropy is given by

S5
2V,f

3ḟ2~3Hḟ1V,f!
@ḟ~d ḟ2ḟA!2f̈df#, ~23!

where A is the perturbation to the metric lapse functio
which is related to the curvature perturbation via the c
straint equationA54pḟ2R/mPl

2 H2 @14#. The entropy mea-
sures the failure of the perturbed velocity to match the g
eralized adiabatic condition with respect to the fie
perturbation itself. It allows Eq.~12! to be rewritten as two
first-order equations

R8

aH
5

3

2

322h

32h
S ~24!

S8

aH
5F 3~eh2j2!

~322h!~32h!
232e12hGS

2
2

3

32h

322h

k2

a2H2
R. ~25!

Even in the slow-roll case, care is required in deriving t
late-time evolution of the entropy, because its suppressio
strong enough that the effect of theR term does not becom
negligible despite itsk2/a2H2 prefactor. If we were able to
neglect that term, and taking the slow-roll limit, one wou
find S8/aH.23S, implying S;e23N, but we see that this
does fall off faster than the last term. The self-consist
solution therefore has late-time behaviorS;e22N, and in-
deed is what we see in our numerical simulations.

During fast-roll the situation is very different, becauseS
is able to grow and so the influence of the final term in E
~25! becomes negligible. Making the false vacuum (e!1)
and massless (V,ff!H2) assumptions, Eq.~25! can then be
written as

S8

aH
.F2h231

3h

2h23GS. ~26!

During fast-roll h.3, and the entropy can swiftly grow
;e6N until it becomes large enough to have a significa
impact onR. Once fast-roll ends thek2R term in Eq.~25! is
initially small giving theS;e23N behavior, but soon afte
the curvature terms re-asserts itself restoring theS;e22N

late-time behavior. However, this transition is not of a
04350
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particular physical significance since the curvature pertur
tion itself has long since approached its asymptotic value

One might wonder whether the entropy perturbations
the scalar field could survive as such after inflation, but t
does not seem to be possible. Either fast-roll is followed
slow-roll as just discussed, or it is followed by inflation en
ing through decay of the inflaton. That decay will lead to
purely radiation-dominated universe, which is unable to s
port non-adiabatic perturbations. The process of decay of
inflaton would therefore remove the entropy source te
Note also that considerable fine-tuning is required to stay
the fast-roll regime for a prolonged period; in order to ha
inflation the initial kinetic energy can at most be of order
the potential energy, but then the kinetic energy falls off ve
quickly, and yet for fast-roll to be sustained its contributio
to the scalar wave equation must remain larger than
from the slope of the potential.

IV. PERTURBATIONS AT THE END OF INFLATION

A second scenario where the standard equations cann
directly applied is at the true end of inflation. This is a
important regime because such short-scale perturbations
lead to the formation of primordial black holes, which giv
the most important constraint on the late stages of inflati
There are two standard mechanisms for ending inflation,
being the hybrid method of an instability in another directi
in field space and the second being the breakdown of sl
roll ~see Ref.@2# for a review!. A particularly relevant case is
in hybrid inflation models such as the running-mass mo
@16#, where the slow-roll approximation is only well re
spected over a limited range of scales. In the running-m
model slow-roll inflation comes to an end due toh growing,
but inflation may continue in the fast-roll regime until a
instability is reached.

Typically the standard formulas for the perturbations w
break down near the end of inflation, because of a failure
reach the asymptotic limit~see, e.g., Ref.@17#! and often
because the slow-roll approximation is not accurate. For
ample, in the running-mass model Eq.~15! becomes

12h.0, ~27!

and soh51 is the last point at which constraints based
the shape and size of a blue inflationary power spectrum
be reliably applied without resorting to mode-by-mode in
gration of the power spectrum@18#.

We are not able to study the hybrid case due to the co
plexity of the multi-field dynamics~though see Ref.@14# for
a general formalism for doing so!, so we restrict our attention
to single-field models ending by violation of slow-roll. Th
is not in fact the most interesting case as typically such m
els have a red spectrum where small-scale perturbations
not very significant, but illustrates the main physics. For si
plicity we study the quadratic chaotic inflation modelV(f)
}f2.

In Fig. 5 we plot the scalar power spectrum for the la
few e-folds of modes to leave the horizon before inflatio
ends. Because the asymptotic regime is not adequa
reached at any stage, there is no preferred choice as to w
8-5
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to plot the amplitude, and we evaluate it at three stag
horizon crossing during inflation, at the end of inflation, a
at horizon re-entry after inflation once the background fi
begins oscillating. Notice that the amplitude at horizon e
is typically much greater than the value at the end of in
tion, and that the slow-roll and Stewart-Lyth approximatio
indeed resemble the latter rather than the former.

We see that the slow-roll and Stewart-Lyth formulas u
derpredict the asymptotic and re-entry amplitudes of per
bations which exited the horizon close to the end of inflati
One therefore expects an enhancement of primordial b
hole production, though a detailed calculation would need
track the derivative of the curvature perturbation at re-en
as well as its amplitude. This result suggests that norm
quoted constraints are on the conservative side, though
cally the correction would not be large. We mention ad
tionally that for perturbations which do not reach t
asymptotic regime there are questions as to how
quantum-to-classical transition might take place~see, e.g.,
Ref. @19#!; we will not however attempt to address this he

FIG. 5. The scalar power spectrum plotted at various stage
its evolution. The numerical spectra are evaluated~from top to bot-
tom! at horizon exit, at the end of inflation, and at horizon re-en
for each mode. The right-hand edge of the plot corresponds to
wave number equaling the Hubble radius at the end of inflation.
Stewart-Lyth and slow-roll spectra are evaluated, as usual, at h
zon exit.
-

.

,

.
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V. DISCUSSION

The accuracy of the usual analytic expressions for
inflationary power spectrum depends on scales evolv
smoothly through horizon crossing and into the asympto
regime k2!z9/z. In this paper, we have investigated tw
situations where this is not achieved, one being a tempo
end to inflation and the other the true end. In the former c
we have seen that the modes can have a very complic
evolution, including the possibility of amplification on supe
horizon scales via an exponential driving term correspond
to an entropy perturbation in the scalar field. Such behav
can be traced to the complicated evolution of the sca
pump fieldz, which no longer grows monotonically. The n
effect is the insertion of a broad feature into the power sp
trum that can only be computed by mode-by-mode integ
tion and which can differ wildly from the slow-roll and
Stewart-Lyth approximations. Typically the features are s
ficiently non scale invariant to be excluded already on as
physical scales, but we have also seen that a very flat s
trum can be obtained while far from slow-roll, confirming a
analytic analysis by Wands@11#.

The second scenario we studied was the true end of in
tion, where the failure to reach an asymptotic regime me
that perturbations re-enter the horizon with a higher am
tude. The most interesting physical consequence of s
modes is in primordial black hole formation, and this res
indicates that earlier treatments assuming the slow-roll
mulas are somewhat conservative, as the mode equation
lutions indicate that these formulas underestimate the pe
bation amplitude at horizon re-entry.
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