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Inflationary perturbations near horizon crossing
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We study the behavior of inflationary density perturbations in the vicinity of horizon crossing, using nu-
merical evolution of the relevant mode equations. We explore two specific scenarios. In one, inflation is
temporarily ended because a portion of the potential is too steep to support inflation. We find that perturbations
on super-horizon scales can be modified, usually leading to a large amplification, because of entropy pertur-
bations in the scalar field. This leads to a broad feature in the power spectrum, and the slow-roll and Stewart-
Lyth approximations, which assume the perturbations reach an asymptotic regime well outside the horizon, can
fail by many orders of magnitude in this regime. In the second scenario we consider perturbations generated
right at the end of inflation, which re-enter shortly after inflation ends—such perturbations can be relevant for
primordial black hole formation.
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[. INTRODUCTION similar expression holds for the gravitational wave ampli-
tude, and more sophisticated higher-order versions have also
The inflationary cosmology remains the leading candidatdeen derived.
theory for the origin of structurdsee Refs[1,2] for re- Equation(1) gives the impression that the amplitude of
views). Considerable attention has been focused on produgerturbations is being quoted at the instant of horizon cross-
ing highly accurate calculations of the perturbations pro-ing. However, it is important to realize that that is not in fact
duced during inflation[3], which ultimately may be the case. The value quoted is the perturbation amplitude at-
measured at the percent level via the microwave anisotropidained in the asymptotic limik/aH—0 when the perturba-
they induce[4]. Special interest has been given to the sim-tion is well outside the horizon; it just happens to be written
plest case, where there is only a single scalar field degree @f terms of the values the background parameters had at the
freedom during inflation, and we will focus exclusively on instant of horizon crossing. In fact the value of the curvature
that case in this paper. perturbation at the instant of horizon crossing typically dif-
In considering how a perturbation might evolve, a crucialfers by a significant factor from the asymptotic value.
guantity is the comparison of the inverse wave number with Bearing that in mind, in this paper we consider two cir-
the Hubble length, given by the ratimH/k. By definition = cumstances where the standard formula for the perturbation
inflation corresponds to a decreasing comoving Hubbleamplitude may not be valid, due to a failure to reach the
length,d(aH)/dt>0; consequently, when modes of a given asymptotic limit. In each case, this is because inflation ends
wave number are considered, they begin their evolution welbefore the true asymptotic regime has been reached. In our
inside the horizoh and cross outside during inflation. At first scenario, we consider a temporary interruption to infla-
early times, flat space-time quantum field theory can be usetion, where the field driving inflation has a region where the
to fix the initial normalization of the perturbations. Around potential is too steep to sustain inflation. We will see that this
the epoch of horizon crossing, the perturbation becomes frasan lead to significant modifications to the standard results,
zen in, corresponding to a constant curvature perturbatioand indeed that even modes significantly outside the horizon
once the mode is well outside the horizon. This leads tecan receive a large change in amplitude due to entropy per-
standard expressions for the spectrum of density perturbdurbations in the scalar field. In the second scenario, we con-
tions such as sider perturbations produced at the end of inflation, where
their amplitude on re-entry has relevance to the production of

2 primordial black holes.
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The scalar perturbations are best followed using the vari-
ableu=ad¢ [5,6], and the equation satisfied by its Fourier
‘modesuy is

where Py is the power spectrum of the curvature perturba-
tion R, using the notation of Refdl1,2]. This expression
gives the amplitude of the perturbations in terms of the val

ues of the Hubble parameterrand scalar field velocitys at
the time the mode crossed the horizon, i.e., wkeraH. A up+

"

k?— Z;)uk:o, )

We use “horizon” as shorthand for the more precise “Hubble Where primes denote differentiation with respect to confor-
length;” it does not refer to the particle horizon. mal time,z=a¢/H, and
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where we define the Hubble slow-roll parametgfsas
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where the subscript, ¢” denotes differentiation with re-

spect top. Mode equation2) has two asymptotic regimes

characterized by the relative sizeskdfandz”/z. Only in the
slow-roll limit, where e, | 7|, |€2|<1, will this necessarily
be the same as comparitkgandaH. Bearing this in mind,
well within the horizon in the limit ofaH/k—0 each mode
behaves like a free field

1 .
Uk—> —— e_ , (7)

2k

while in the limitk?<z"/z we have a growing mode solution

Uz, (8

which means that the curvature perturbatitR,|=|u,/z,
remains constant on superhorizon scales. The quantigy
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In fact, the constancy oR, depends ore and » doing
nothing dramatic eveafter horizon crossing, which can be
seen if we rewrite Eq(2) in terms of Ry itself:

!

Z
Re+2- R+ k?R, =0, (12

where

!

Z?zaH[lJre— 7]. (13)

Initially Ry, like u,, will be oscillating, although we are
only interested in the envelope of this oscillatio®R,|, be-
cause only the envelope contributes to the value of the real
space curvature perturbatioR,. Mode equation12) is of

the form of a damped harmonic oscillator. In the slow-roll
limit, at around horizon crossing the system becomes domi-
nated by the exponentially growing friction term propor-
tional to Ry, and the solution to Eq12) soon becomes well
approximated by the form

!

Ry(7)
———=consiX exp(—2N),

Ry(7)=const, an

(14)

whereN is the number o&-folds after horizon crossing. The
rapid freezing in of the curvature perturbation is apparent
from Eq. (14), which measures the rate of changeTofper
Hubble time. We will examine the properties of the late-time
solution in more detail later in the paper.

In this paper we are interested in a more dramatic situa-
tion, arising through a failure of slow-roll. If at any time after
horizon crossing the friction term in E§12) changes sign
and becomes a negative driving term, then we can expect
dramatic effects on modes which have recently left the hori-
zon. This change of sign will occur whenevereaches a

sometimes described as the pump field for scalar perturbapcal maximum, or equivalently whenever

tions.
To calculate the constant of proportionality of E§) it is

generally assumed thatand » are slowly varying at around

1+ e—7=0. (15)

horizon crossing, which will be a valid approximation as As € is always positive, must be at least one for this to

long as these parameters are small, since

! !

—=2elem ), am—en—& )

happen, which implies that a turn aroundzinan occur only
during a transition to fast-roll inflation or to a non-
inflationary period.

Before progressing to specific applications of the above,
we note that no such interesting effects can occur for gravi-

The expression for conformal timethen takes on a simple tational waves. Their mode equation is given by

form

(10

and Eq.(2) reduces to a Bessel equation leading to the

Stewart-Lyth result for the power spectry)

1/2 1 H2
PY2~[1—(2C+1)e~Crl— —

- 11
27 |9 ()

1
k=aH

whereC=—0.73 is a numerical constant.

a//

vp+| k2= ;)vk=0, (16)
where

a” 1

Z —92a2H21-=

a 2a*H4| 1 S€l: (17)
In analogy with the above, Eq16) can be written as

v+2aHV+k?V, =0, (19
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FIG. 1. The comoving Hubble wave numberH, increases FIG. 2. The evolution of scalar and tensor perturbatidfs,

with the number o&-folds of expansion, during inflation. We set  and|V,/, for a single modé=10"2 which is outside the horizon
N=0 when inflation first ends, and inflation is suspended forby a factor of 100 when inflation is suspended. The solid line is the
around le-fold. The quantity X e— » remains negative for around quantityaH/k, andz’/z<0 between the two vertical dotted lines.

5 e-folds. We tookB=0.55. The arrow indicates whek=aH, the instant of horizon crossing.
The absolute normalization of the perturbations is arbitrary, though
where the relative one is correct.

pending on the mechanism for ending inflation and in par-
szg. (190  ticular the value of¢ at which inflation ends.

The evolution of perturbations on a particular schle
again forB=0.55, is shown in Fig. 2, obtained numerically
using the approach of Ref10]. Even though this particular
mode left the horizon around @folds beforez’/z turns
negative, the residud®, given by Eq.(14) is quickly blown
up by the exponentially growing driving term. After some
Iil. TEMPORARY INTERRUPTION OF INFLATION time the exponential growth becomes important and it drives

To illustrate the points made in the previous section, wd R«l through zero and on to a much larger amplitude. Al-

study the specific example of a false vacuum inflation modefhough the mode is well outside the horizon at this time, its
with a quartic potential9] amplitude is enhanced by a factor of around 100; we will

discuss the physical interpretation of this further later. Once
z'/z becomes positive again normal friction domination re-

The pump fielda increases for all time, and so the constancy
of the gravitational wave amplitude after horizon exit is as-
sured, until horizon re-entry.

2
V(¢):§M4 1+BG4:T 4|, (200  sumes, freezing outR,| at the enhanced amplitude. The
4 Mp standard approximations therefore fail by a factor of around

a hundred in this case, which as we will see is by no means
whereB is a constant. For suitab®, this model is charac- the worst. The tensor amplitude is unchanged, so the tensor-
terized by two separate epochs of inflation. For laggeal-  to-scalar ratio is suppressed.
ues the false vacuum term is negligible and the model be- In Fig. 3 we consider two other modes, this time tracking
comes a¢” potential, while for small¢ values the model the evolution of/u,|. One mode crosses the horizon during
becomes false vacuum dominated. Depending on the valu®e epoch wherz’'/z<0. Clearly Eq.(2) does not depend
of the parameteB, these two epochs can be punctuated by axplicitly on z'/z, and so the transition from the oscillating
brief suspension of inflation, while the potential becomesregime still occurs whek?=z"/z. Scalar modes that leave
temporarily too steep to support inflation. Upon reaching thehe horizon aftez’/z turns positive again, as is the case in
lower part of the potential the field fast-rolls until slowed the second mode shown in Fig. 3, asymptote to a value that
down by friction from the expansion. is independent of the influence pf/z turning negative. This

The evolution of the quantity + e— » and the comoving is to be expected, since sub-horizon modes do not feel the
Hubble wave numberaH, is illustrated in Fig. 1 for the influence of any background quantities.
choice B=0.55. In this example inflation is suspended for  The overall result is that an extremely broad feature arises
about le-fold, butz'/z remains negative for aboutesfolds  in the scalar power spectrum. This is shown in Fig. 4, where
indicating that the field continues to fast-roll for some timethe spectrum for two different choices Bfhas been com-
after inflation restarts. It is during this latter period that scalarputed mode by mode, interpolating between the two different
modes which have recently left the horizon feel the effect ofepochs of inflation. For comparison we plot the amplitude
the driving term in Eq(12). predicted by the slow-roll and Stewart-Lyth formulas, where

We set the correspondence of scales suchkhat cor-  we use the background values and slow-roll parameters de-
responds to the scale which equals the horizon at the timgved from the numerical evolution. For a small range of
when inflation stops. This correspondence is arbitrary, descales neak=aH|.,qthere is some ambiguity as to when the
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FIG. 3. The evolution of two scalar modgsy|, as in Fig. 2. 07— Nomericol —— -
The arrows again indicate horizon crossing for each mode. For the 10°8L - Stewart—Lyth i i

first mode k,, horizon crossing occurs whilg/z<0, while for the I Slow=Roll ’

second it occurs after’/z becomes positive again. Both modes
asymptote to approximately the same amplitude.

Pa(k)

formulas should be applied, since these modes leave the ho-
rizon twice. We plot both possible values. The slow-roll and
Stewart-Lyth predictions fail by orders of magnitude for
many e-folds (potentially enough to encompass all scales ;
accessible to large-scale structure observations inBhe : . ;

. . _ = =2 o 2
=0.55 casp resuming their usual good agreement with the 10 10 y 10 10
numerical results soon aftef/z turns positive again.
An intriguing feature of the spectrum f@=0.55 is the FIG. 4. The scalar power spectrum as determined from mode-

very flat portion on the right, which arises even though theby-mode integration. The upper panel shoBs 0.55, while the
disagreement with the slow-roll prediction indicates that welower is forB= 0.3 (note that for inflation to be interrupted requires
are nowhere near the slow-roll limit. In fact, this is a realiza-B>0.19[9]). The scales between the two dotted lines correspond to
tion of the more general circumstance for a scale-invarianthe epoch whez’'/z<0. The first discontinuity in the analytic ex-
spectrum uncovered by Wanfkl] using duality arguments. pressions occurs in the region where modes make multiple horizon
During this epoch, the field is fast-rolling along a relatively crossings, while the second sharp feature in the Stewart-Lyth case
flat section of the potential, obeying occurs due to an accidental cancellation of the entire Stewart-Lyth
coefficient and has no physical significance.

¢+3HFV y=¢+3H$=0. @Y Jast term of Eq.(6). However, obtaining the flat portion re-

. . _ . quired significant fine-tuning oB; notice that withB=0.3
Th(ilsolu_tmn iSpoca”, giving ze«7” rather than thez  he potential is much less flat in the corresponding region,
7~ typical of slow-roll inflation. Nevertheless, this rela- tnhough still flatter than the slow-roll formulas predict.

tion betweenz and 7 leads to a scale-invariant spectrum of | the limit of an instantaneous transition from slow-roll
scalar perturbationgl1], just as in the slow-roll limit. This  to fast-roll behavior, inflation is no longer suspended and we
decaying solution ofgp is always present but usually ne- arrive at Starobinsky’s mod¢lL3]. In this case the inflation
glected. Setceet al. [12] have shown that in extreme cases, potential is characterized by a sudden gradient discontinuity
when ¢ becomes equal to zero, the slow-roll amplitude of2nd the power spectrum takes on a similar step-like form, but
the density perturbation as written in Ed) will completely with superimposed oscillations on the upper plateau.

) - _ We now return to the physical interpretation of the change
fail unless¢ is replaced by the corresponding slow-roll ve- iy the curvature perturbation on super-horizon scales. Al-

locity ¢s=V 4(¢)/3H. though ordinarily a single scalar field is associated with

As the field slows down, one might have expected a feapurely adiabatic perturbations, it can in fact support entropy
ture to be produced. However, as longeass small, a nec- perturbations if its velocity perturbation does not obey a gen-
essary and sufficient condition for a scale-invariant spectruneralized adiabatic condition with respect to the field pertur-
is that the entire square-bracketed term in B).remains  bation [14]. Under quite general circumstances, however,

3 2

constant in time, which taking<1 reduces to single field inflation only generates adiabatic perturbations
[15], with the entropy perturbatio§ associated with a gen-
&2+ 92— 3p=const. (22 eral scalar field perturbation being non-zero but becoming

highly suppresseds~e ™2V, once the mode becomes frozen
This encompasses both slow-ro|li{<1) and fast-roll ¢  in upon leaving the horizofil4]. The constancy of the cur-
=1) inflation, as well as any transition between the two.vature perturbation on super-horizon scales in the absence of
This condition will be automatically satisfied as long as theentropy perturbations holds under extremely general circum-
inflaton is effectively massless, allowing us to neglect thestanceg15].
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Our situation is an exception to this. An entropy pertur-particular physical significance since the curvature perturba-
bation is the only source of super-Hubble grovjilbs,14, tion itself has long since approached its asymptotic value.
and during the phase wheredecreases the entropy pertur-  One might wonder whether the entropy perturbations in
bation grows until it becomes significant enough to sourcehe scalar field could survive as such after inflation, but that
the curvature perturbation. The further above the Hubbleloes not seem to be possible. Either fast-roll is followed by
length a scale is, the more the entropy has been suppresssidw-roll as just discussed, or it is followed by inflation end-
and hence more time is needed for the entropy to becomieg through decay of the inflaton. That decay will lead to a
significant, so the effect does not extend up to arbitrarilypurely radiation-dominated universe, which is unable to sup-
large scales. After slow-roll resumes the entropy dies awaport non-adiabatic perturbations. The process of decay of the
and the perturbations become purely adiabatic, remaining soflaton would therefore remove the entropy source term.
thereafter but retaining the shift in amplitude. The influenceNote also that considerable fine-tuning is required to stay in
of the scalar field entropy can be studied using the definitionghe fast-roll regime for a prolonged period; in order to have
of Ref.[14], where the entropy is given by inflation the initial kinetic energy can at most be of order of

the potential energy, but then the kinetic energy falls off very

b S . quickly, and yet for fast-roll to be sustained its contribution
SZW[¢(5¢—¢A)_¢5¢L (23) o the scalar wave equation must remain larger than that
34 from the slope of the potential.

where A is the perturbation to the metric lapse function
which is related to the curvature perturbation via the con- V. PERTURBATIONS AT THE END OF INFLATION

straint equatiorA=4m¢?R/mZH? [14]. The entropy mea- A second scenario where the standard equations cannot be
sures the failure of the perturbed velocity to match the gendirectly applied is at the true end of inflation. This is an
eralized adiabatic condition with respect to the fieldimportant regime because such short-scale perturbations can
perturbation itself. It allows Eq12) to be rewritten as two |ead to the formation of primordial black holes, which gives

first-order equations the most important constraint on the late stages of inflation.
, There are two standard mechanisms for ending inflation, one
R_ZE 3-27 (24) being the hybrid method of an instability in another direction
aH 2 3—7 in field space and the second being the breakdown of slow-
roll (see Ref[2] for a review. A particularly relevant case is
S’ 3(67]-52) in hybrid inflation models such as the running-mass model
aH m_?’_ﬁz’? S [16], where the slow-roll approximation is only well re-
spected over a limited range of scales. In the running-mass
2 3-9 K model slow-roll inflation comes to an end duesa@rowing,
T332, 22 (25 put inflation may continue in the fast-roll regime until an
7 a‘H

instability is reached.

Typically the standard formulas for the perturbations will
greak down near the end of inflation, because of a failure to
reach the asymptotic limitsee, e.g., Ref{17]) and often
because the slow-roll approximation is not accurate. For ex-
d ample, in the running-mass model Ed5) becomes

Even in the slow-roll case, care is required in deriving the
late-time evolution of the entropy, because its suppression i
strong enough that the effect of tiieterm does not become
negligible despite it«?/a’H? prefactor. If we were able to
neglect that term, and taking the slow-roll limit, one woul
find §’/aH=—38, implying S~e 3N, but we see that this 1- »=0 27)
does fall off faster than the last term. The self-consistent '
solution therefore has late-time behavisr-e™?V, and in-  and soy=1 is the last point at which constraints based on
deed is what we see in our numerical simulations. the shape and size of a blue inflationary power spectrum can
During fast-roll the situation is very different, becauSe be reliably applied without resorting to mode-by-mode inte-
is able to grow and so the influence of the final term in Eq.gration of the power spectrufii8].

(25 becomes negligible. Making the false vacuue<(l) We are not able to study the hybrid case due to the com-
and massless M,«HZ) assumptions, Eq25) can then be  plexity of the multi-field dynamicsthough see Ref.14] for
written as a general formalism for doing §050 we restrict our attention
to single-field models ending by violation of slow-roll. This
_':[27]_3+ UJ S (26) is not in fact the most interesting case as typically such mod-
aH 27—-3]7 els have a red spectrum where small-scale perturbations are

not very significant, but illustrates the main physics. For sim-
During fast-roll »=3, and the entropy can swiftly grow plicity we study the quadratic chaotic inflation modé&| )
~e®N until it becomes large enough to have a significante 2.
impact onR. Once fast-roll ends the’R term in Eq.(25) is In Fig. 5 we plot the scalar power spectrum for the last
initially small giving the S~e 3N behavior, but soon after few e-folds of modes to leave the horizon before inflation
the curvature terms re-asserts itself restoring Shee 2N ends. Because the asymptotic regime is not adequately
late-time behavior. However, this transition is not of anyreached at any stage, there is no preferred choice as to when
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10~ 9 Numerical 4 V. DISCUSSION
--------------- Stewart—Lyth i i
----- Slow—-Roll* The accuracy of the usual analytic expressions for the

inflationary power spectrum depends on scales evolving
smoothly through horizon crossing and into the asymptotic
regime k?<z"/z. In this paper, we have investigated two
situations where this is not achieved, one being a temporary
end to inflation and the other the true end. In the former case
we have seen that the modes can have a very complicated
evolution, including the possibility of amplification on super-

107 12¢ 3 horizon scales via an exponential driving term corresponding

1074 10'° to an entropy perturbation in the scalar field. Such behavior

k can be traced to the complicated evolution of the scalar

FIG. 5. The scalar power spectrum plotted at various stages dfump _fleldz, _Wh'ch ho longer grows mon_otonlcally. The net
its evolution. The numerical spectra are evaluafeaim top to bot- effect is the insertion of a broad feature into the power spec-
tom) at horizon exit, at the end of inflation, and at horizon re-entryrum that can only be computed by mode-by-mode integra-
for each mode. The right-hand edge of the plot corresponds to thOn and which can differ wildly from the slow-roll and
wave number equaling the Hubble radius at the end of inflation. The>tewart-Lyth approximations. Typically the features are suf-
Stewart-Lyth and slow-roll spectra are evaluated, as usual, at horfiCiently non scale invariant to be excluded already on astro-
zon exit. physical scales, but we have also seen that a very flat spec-

trum can be obtained while far from slow-roll, confirming an

to plot the amplitude, and we evaluate it at three stagesanalytic analysis by Wand41].
horizon crossing during inflation, at the end of inflation, and The second scenario we studied was the true end of infla-
at horizon re-entry after inflation once the background fieldtion, where the failure to reach an asymptotic regime means
begins oscillating. Notice that the amplitude at horizon exitthat perturbations re-enter the horizon with a higher ampli-
is typically much greater than the value at the end of inflatude. The most interesting physical consequence of such
tion, and that the slow-roll and Stewart-Lyth approximationsmodes is in primordial black hole formation, and this result
indeed resemble the latter rather than the former. indicates that earlier treatments assuming the slow-roll for-

We see that the slow-roll and Stewart-Lyth formulas un-mulas are somewhat conservative, as the mode equation so-
derpredict the asymptotic and re-entry amplitudes of perturtutions indicate that these formulas underestimate the pertur-
bations which exited the horizon close to the end of inflation bation amplitude at horizon re-entry.
One therefore expects an enhancement of primordial black
hole production, though a detailed calculation would need to
track the derivative of the curvature perturbation at re-entry
as well as its amplitude. This result suggests that normally S.M.L. is supported by PPARC. We thank lan Grivell for
quoted constraints are on the conservative side, though typimaking his mode function code available to us, and Cyril
cally the correction would not be large. We mention addi-Cartier, Misao Sasaki, Alexei Starobinsky, and David Wands
tionally that for perturbations which do not reach thefor useful conversations. We acknowledge the use of the
asymptotic regime there are questions as to how thé&tarlink computer system at the University of Sussex, and
quantum-to-classical transition might take plasee, e.g., thank the Observatoire Midi-Pymees for hospitality while
Ref.[19]); we will not however attempt to address this here.part of this work was carried out.
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