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Bimetric gravity and “dark matter”
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We present a bimetric theory of gravity containing a length scale of galactic size. For distances less than this
scale the theory satisfies the standard tests of general relativity. For distances greater than this scale the theory
yields an effective gravitational constant much larger than the locally observed value of Newton’s constant.
The transition from one regime to the other through the galactic scale can explain the observed rotation curves
of galaxies and hence the effects normally attributed to the presence of dark matter. Phenomena on an
extragalactic scale such as galactic clusters and the expansion of the universe are controlled by the enhanced
gravitational coupling. This provides an explanation of the missing matter normally invoked to account for the
observed value of Hubble’s constant in relation to observed matter.
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[. INTRODUCTION The equations of motion are obtained from an action com-
prising three parts: a gravitational terig of the standard
The presence of dark matter in the universe has been ireurvature form, a matter teriy, of the standard form based
voked to explain a number of phenomena: the rotation curvegn the matter metric, and a linking actibn that depends on
of galaxieqd 1—-4], the apparent mass of galactic clusiés$] the variables that determine the relationship between the two
and the observed expansion of the universe. Many attemptéerbein bundles. The full actiod, is the sum of all three
to detect this conjectured matter are under way but at th&rms:
moment there has been no direct observation of it. In this
paper we present a model with a modified version of gravity

that can accommodate these points in a rel_atively straight_forEaCh term has its own gravitational coupling constant with
ward way. It does so without the necessity of postulatingy, o qimensions of Newton's constaflt, . In developing the

dark matter. The theory, which is geometrical in character, igheory we show how these different constants are related to
perfectly covariant, locally Lorentz invariant and satisfies the, o another and to Newton’s constant

equivalence principle. It also satisfies all the tests of genera
relativity on the scales at which they have been carried out.
The theory is a bi-metric theory. Such theories have a
long history[7—-9] and have recently been used as a way of The geometrical character of the theory is clearly revealed
realizing variable speed of lightwSL) theories/10-19. An by its formulation in the vierbein formalism. The local Lor-
earlier incomplete version of the theory presented here wagntz invariance in both the gravitational and matter vierbein
motivated in this way 20]. Bi-metric theories ran into diffi-  frame is explicit throughout as a gauge invariance. We intro-
culties when, as then formulated, they appeared to be incorttuce a vierbein bundle appropriate to gravi,,}, with the
sistent with the tests of general relativit91,22. However associated metric
the theory proposed here does meet all those {@4ts25.
Of course VSL is built into bi-metric theories. This will be Our=€uals’ 2
important in applying the model to early universe studies. . ) o ) i
However, in this paper we concentrate on those implication¥/n€re the raising and lowering @f indices is carried out
of our theory for the gravitational interaction of matter that With the standard L(:rentz metrigap={1,~1,—1,~1}. The
provide an explanation of the current state of the universéVerse vierbein ige®} so that
without recourse to dark matter. av_ v a _
Our proposal is to introduce into the space-time manifold €ual™ =0, E L= %. )
two vierbein bundles. Each bundle supports its own metricgq
One is associated with matter and the other Withderlying
gravity. The matter vierbein can be strained and scaled rela- grr=ete,”. (4)
tive to the gravitational vierbein. The dynamics of the theory .
includes this straining and scaling as dynamical degrees dfhe vierbein associated with matter{is,,} and the raising
freedom. The justiﬁcation for introducing these new effeCtSand |0wering ofgindices is by means Of the Lorentz metriC,
is ultimately in the results that emerge. However, if dark,,——f1 —1 —1 —1}. The associated metric is
matter is not present, some modification of dynamics, as in
the modified nonrelativistic dynamicéMOND) scenario EMVZEMQEV ) (5)
[26—-28, or gravity is essential. We choose to modify gravity
in a way that permits the introduction of a galactic scale,The two vierbein bundles are related by a local linear trans-
something that is impossible with standard general relativityformation

I=lg+I +1y. 1)

II. GENERAL STRUCTURE
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e —— apd 1

€ua=€uaM"3E", ©) C;‘W=E(FZ‘W—I‘);M). (16
where the matrixM is an element o5L(4,R) and the local

scaling is introduced through the facest. The determinants The quant|tyC is the torsion tensor in the coordinate basis.
associated with the volume elements of the bundledared |t is not in general Zero.

J where
o o I1l. GRAVITATIONAL ACTION
J=defe,”} and J=defe,’}. ) The gravitational action has the standard form
We have thereford=Je*®. We denote the inverse matrix 1
by M2, so that lg=— 16nG d*xJR (17)
MEM3= 82, M3,M3= 5% (8  where
The vierbein connections and associated coordinate con- R=e%e"Ryp,, (18)

nections are defined so that the vierbeins are covariantly con-
stant in the appropriate way: and G is a coupling with the dimensions of Newton’s con-

stant,Gy . The vierbeins and the connections are treated as

D,e,a=3,€,a+ wﬁabeyb_rzvem:o 9) independent variables. If we vary the former, then

and — 1 J 4 CUROT _E co
- - B Olg pre d*xJoe,.| e**R7, 2e R|. (19
D,ea= .80+ 0,2°8,5—1),,6,2=0. (10)

The variation of the vierbein connection yields
The requirement thay,, and 7,, be covariantly constant
implies thatw ,,3p=— ® 4pa AN ® ,5p=— ©® 4z -

Slg f d*xJee”"(D", 60,4~ D5 6w ,ap).
It is convenient to define a covariant derivativeNdfthat - 167G

includes both the right and left vierbein connections: (20
o Switching to the full covariant derivative we get
D, M%=a,M%+ 0, M5~ M% w5 (11) 9 9
However, further differentiation requires the coordinate con- Slg=— 16 Gf d“xJea“eb”(D 0w ap
nection,l“,””. The covariant derivativéd,, can be defined
and extended in a similar way. Its effect bhis the same as —D, 6w apt ZCQV&UMb). (22)

that of D, but a second differentiation must use the coordi-

nate connection’, .
Gravitational curvature tensors appropriate to each of the JD, VA= (JV;L)+2JC)\ VA (22)
bundles are defined so that

Using the result

we can integrate by parts and obtain finally

[D},.D}1Va=Rap,,V° (12)
1 4 pmabv N oo N oo o
and dlo=—g—g | dxJIe¥e™(C}, 67— CL, 8+ Cy,) bwap.
[DR,Dﬁ]v?ﬁmv? (13 @3

If there is no other interaction in the theory, we can deduce

|_
but not the coordinate connectioR} S|m|larly D, in-

vt
cludes the only the right vierbein connectio®,;,. We _ 1,
w R?,—50,R=0,
have then w27k
Rabur=9,®ab~ 9,0 yapt ©42°0 0= 0,250 yep s the standard equations for matterless gravity.
(14)

IV. LINKING ACTION
with a similar definition forR—bW It follows that ) ) )
Proposals for constructing an action for the linear trans-

[D,,D,IM%= RabWMm Maﬂ o ZCZVDxMaE, formation relating the bundles ha}ve involved parametrizing it
(15) in terms of a vector or scalar field5-19. Our proposal
treats all the degrees of freedom inherent in the transforma-
where tion. This is crucial for the structure of the theory.

043503-2



BIMETRIC GRAVITY AND “DARK MATTER” PHYSICAL REVIEW D 63043503

Because scaling commutes with the other elements of the 1 . 1 o
group of linear transformations, it can be treated separately.dl = — ﬁj d XJ5eoc(e°V9‘”‘— Ee“g’” Tr(juiy)
The Lagrangian forp can be chosen to be proportional to

g“’d,¢d,¢. The remaining degrees of freedom are repre- 1 4 oo m? ar A i3 na
sented by the matrik which lies in the non-linear manifold - ﬁf d*xJde,ce™ 5= (M7aMa ™+ M%M"— 7)
SL(4,R). A natural way of constructing a Lagrangian for

such a theory is to invoke the mechanism of the non-linear 1 1

sigma model and express it as a quadratic form in the deriva- - —,f d4XJ5€gc( ecr'g7t— Ee‘”g’”) d,¢d,¢
tives D ,M)M ~1 with the appropriate structure. The use of 8wF

the covariant derivative guarantees the local Lorentz gauge 1 m?2

invariance relative to both bundles and the presendd of — —— | d*xJée, e — ¢ (29
guarantees that the derivative is a proper element of the tan- 8mF’ 2

gent space to the manifoldL(4,R). We take as our action ] ) )
From the left vierbein connection we have

1
I = f d*x3Ig*" Tr(j i) 1 .
167F K di=g—= f d*xJI8w ) P2 (30)
1
+ T F’J d4ng”V((9M¢(9V¢), (24)  and, from the right vierbein connection,
T
1 =
where F and F’ are new gravitational constants with the ol =~ ﬁf d*x 38w, zp) “"2. (31
same physical dimensions & The matrix valued current
J .« Is given by On varying the matrixvl we obtain
j,=(D,MM ! (25) 1 _ _
N 5'L:_ﬁf d*xJ(SMM~H2% D ik, —2C) it
or, more explicitly,
_ m2 — —
=D M¥M. (26) + ﬁMJMg—M%M@}, (32
Itis also convenient to define an alternative version of the, hare the square brackefs- -] indicate the traceless ver-
current, appropriate to the barred vierbein bunglfg, as sion of the quantity contained within them. The quantity
- . _ _ SMM ™1, being an arbitrary element of tf®L(4,R) Lie al-
jf‘f’:(M *1D#M )ab= MaaDMMab. (270 gebra, is sufficiently general to identify the other factor in the

integrand. Finally, on varying, we have
We also include il “mass” terms of the form

1
1 m2 — — 8l =— —f d*xJs¢[g*"(D ,d ¢
- 16’7TFJ d4XJT(MaWaa+M§aMaa_ Y) Y gaF ”“
1 —2C,0,4) T M. (33
- , f d*xJnf ¢?. (29
167F V. MATTER ACTION
For simplicity we have chosen the mass parameteo be We assume that matter is propagated in the vierbein back-

the same in both these additional terms. For the chegice ground{e,.}. This seems a consistent approach since it im-
=8, the action vanishes whévi represents a Lorentz trans- plies that matter behaves in a conventional way in relation to
formation. Departures from this value introduce a cosmothe gravitational field it experiences. In particular the equiva-
logical constant term in the action. By construction thesdence principle is satisfied. However, the theory does change
additional terms clearly maintain local Lorentz invariance inthe relationship of this observed gravitational field to the
both vierbein bundles. The mass terms are crucial for thelistribution of matter density. We have
effectiveness of the theory because we identify the galactic
distance scale wittm™. For effects on a scale much less
than this thereforen will be viewed as a small parameter that
can be neglected in certain circumstances.

We treat the vierbein, which enters throughl’, the ma-  whereT#"=T"* is the symmetric energy momentum tensor
trix, M, and the connections ., and w 5, as independent for matter. Since
variables. The result for the linking action from the vierbein _

variation is 9u0=6,28,% (39

1 I
Slu=-5 f d*x35g,,, T+, (34)
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it follows that Equation(45) is a generalization of the standard equation of
general relativity. The new straining degrees of freedom are
Sly= f g4 XJ5e a-pw, (36) controlled by the following equation:
1 _ PR
However, 87F D,uJ 'ga_ ZCAMJ 'ga [M Mbc M aMcb]

5e,a= 06, M%e?+e,,0M%e?+ dpe,z, (37 L ethyba_p. 45

so the variation of the matter action takes the form o . .
The generalization of the “no torsion” rule in general rela-

Sl = _f d*x I Se, T+ Tr(SMM ~1U) + 5¢ﬂ, tivity is represented by the two equations

(38) - F v - oo
- jolbdl= ZeMe™(Cy, 87 - CY, 05+ Cyr).  (4D)
whereT=g,, T,
-1 = (48)
Uba: e#aM b;eVaT’uV_ Z 77abT, (39) J
Finally the local expansion is controlled by
and
= 1 _
To°=M%e, 2T, (40) ﬁ[g’”(Dya $—2C},d,¢)+mPp]+e*T=0.
To, = emTaczgt a?—yg?wz?wa . (41) (49

If we adopt the convention that barred quantities, that iEquation(45) implies that
those appropriate to the gravitational background of the mat-

ter, have spatial indices raised and lowered with the barred 1 . B 1 . T
metric, we can define 87G R%u 87-rFT (75 97" i
T°,=T""q,, . (42 1 m o
+3-F g MM+ MM —y)
Hence we get the simple seeming result m
=, 2
=77 43 LR 4( L )
t o 5 8ld=e ¢ 56T (50)
8mF’ w? 2

However, it is important to recall that

T(rTZT(r)\g)\T#?(rT. (44) Although rather complex, these equations are surprisingly
susceptible of analysis as we show below.

In fact T?" is not necessarily symmetric. This does not cause
any difficulty in the theory because, as we will show below, VII. BIANCHI IDENTITY

the matter energy momentum tengdt”, which is symmet-

fic, obeys the appropriate conservation equation. Note thact Just as in standard general relativity it is necessary to

heck that the theory satisfies the integrability conditions as-
T=T¢,=T. sociated with the Bianchi identity. In the presence of torsion
this is changed to the following:
VI. EQUATIONS OF MOTION

. . . . RyruvoT Rirvo ut Ryrouwv=—2(Ry;,.Cl + Ry ;,,C"
We obtain the equations of motion by requiring that the =~ 7o ATvois = A Tomy (RyrpuClot RarpChy

variation of the total action be zero. The result is + RMPUCZV): (51)
o __ g0 T o N where w indicates the covariant derivatiig, . In the con-
877G<R 25“R) 8nF %) 5 ALl J")) tracted version it becomes
L M e A A
~8-F 8 u(MTMaT+ MM =) R~ —§5¢;R =R*,,CP +2R* CP . (52
bz
1 . . .
((gwa b3 ,b)— 50(9”3@%@) If we take the covariant dlverg(_ence of thel left side of Eq.
8 F’ (45) and make use of the equations of motion together with
the identity
LM oot 45
W? ,u,¢ =€ p* ( ) _eaV(l“)\ _FA )e)\b_ nabo—)#d), (53)

043503-4



BIMETRIC GRAVITY AND “DARK MATTER” PHYSICAL REVIEW D 63043503

we obtain the result wherea,,, is the metric version ob ,,, and is given by

D,T%,=2C%,T—2C7,T°,. (54) . 1 .
w}L)\V:E(eV aue)\a_e)\ aﬂeva+avg)\/¢_a)\gvu)' (63)
It is easily checked that this is equivalent to the standard

conservation law We note that Eq(47) relates the torsion tens@’;y linearly

—_ to j b-
DWTv, =0, (55) -
— Co’,uu—i_ci,u,gva_civgﬂoz _XU',U.V! (64)
whereD9 is the covariant derivative formed from the met- o
ric connection arising frong,,, . where
G.
VIIl. CONNECTION STRUCTURE Xouv=F Jolu,n (65)
In standard general relativity the assumption that matter
; . -
couples to gravity only through the metric means that torsion
plays no role in the theory. In the theory presented here we J'(mﬁefeybi vab- (66)

make the same assumption about matter. However, because
of the extra complexity of the theoretical structure, torsion islt follows that
in general not zero. Nevertheless, the equations of motion do
permit the connection structure to be elucidated in a straight-
forward way.

The starting point of the analysis is E¢8) which reveals

1 X 1 A
Co’/.w:_xa,uv_ EX}\/.LgVO'+ EX)\Vg,u,U' (67)

that the antisymmetric part gf, 5, vanishes. It allows us to
expressw,zp in terms of the other dynamical variables and

hence eliminate it from the equations of motion.

We now express ., in terms of the symmetric part of

J b as follows:
wab=Ma] oM =M% uapM®%.  (56)
We can write this more explicitly in the form
; 1 ay - — — dpg — - —
JMabZEMa (M3 aMMcb+Ma W,c Mgpt+ My a,uMca

+Mpfw, M MP,, (57)

which shows thaf .y, is a linear function ofw,,p, -
The torsion tensor is also a linear function®f,,. The
covariant constancy d,,, implies that

I),=eMd,8,at w,5"e,p). (58)

Hence
N . a b b
C;vaie ((?/.Leva—i_w,u,a evb_avep,a_wva ep,b)- (59)

If we define
C}\/.va g)\(TCZV (60)
and
W= e)\aevbwp,abv (61)

then we obtainw ,,, as a linear function of the torsion:

w,u)\V:C)\MV_CV,LL)\+CM)\V+(:)M)\V! (62)

Finally we have the linear relation

==Xt X

T T ~
uANv T V/L}\_X;L}\V_XT)\gMV+XTVgM)\+w,u,)x]/’

(68)

which determines 5, in terms of the other dynamical vari-
ables.

For future reference and to show that the above equation
can take a simple form in special cases we compyig
when the matrixM takes a diagonal form, namely

Ma=A,5% and M%,=A;8. (69)

We enforce an obvious correspondence between the values

of the symbolsa anda to give meaning to theéd symbols.
We can compute,,,,, from Eg. (57) to obtain

j __t?)\ a + —1 1- —g (70
- w y
Jxab A a Mab 2 \ab g

with the simple result

BRI
AR A2

1

4 W)ab . (71)

Inab =

Used in conjunction with Eq(68) this leads to an easy
evaluation of the vierbein connection.

IX. WEAK FIELD LIMIT

In order to apply it to planetary motion, galaxies and ga-
lactic clusters it is appropriate to examine the theory in the
limit of weak gravitational fields. Since we are considering
relatively local objects in an effectively flat background, we
will choose the parametey=8 in order to set the cosmo-
logical constant to zero.
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The weak field limit has the form

€ua= eiLOa)"" Nua (72
where
e(O)p,ae(O)va: 77,u1/ ' (73)
Similarly we can set
- 0 _
eﬂa:gﬂg h.a» (74)
where
e® @ 8=y . (75)

T_he connection_&_)uab, Zﬂg and the scaling fieldp are
first order quantities. The matriM has the form
M2 =M @2+ ma_, (76)

where M (@ is a constant Lorentz transformation. We have
then
M (0) aa: M (O)aa_ (77)

We can useM (@ and its inverse and® ande© to convert

PHYSICAL REVIEW D 63 043503

j pab™ aumab-i- Wy ab™ Wyab- (86)
If we convert to the coordinate basis, we have
j,u)\'r: ap,m)\’r_’_ w;L)\T_ w,u)\’r' (87)

We can also evaluat'EM. In this lowest approximation it
coincides withj . From Eq.(47) we have

Juiv, A= 1 uir,7=0.

(88

That is

(gﬂ'm[)\,T] T OO O 0. (89)
From Eg.(47) we see that the torsion in the gravitational
vierbein bundle vanishes. Explicitly we have

A
vop

1
Ch=3(0h = o, —wr,)=0. (90

Equation(46) yields

Uﬂgaﬂ(ﬁomm“' Wonr™ 50')\7') + mzm{x,f}z —8mF Ux-,
(91)

where

superfixes and suffixes between the various bases. For ex-

ample we have

M, =mM© 3 (78)
The requirement that d&t =1 implies that
m?,=m?=m*,=0. (79
The relationship betweea andgimplies that
T — _ _ 0
Na=hat Mt dels (80)
or
h/.LV:h,tLV+ m,uv+¢7]p,v’ (81)

together with corresponding equations in other bases.
To lowest order,

Rabpuy= 9,0 ap~ 9@ pap - (82
Hence
R7,=e@aceObR, ., (83
so that
R7,=d,0,7"—d,0,"", (84)
and
R=2d,w,"". (89

Again, in the lowest order approximation,

1

U}\T:?)\T_ Z’?Mf (92)

and we have assumed tfﬁ;v and henceJ ,, are first order
guantities. Making use of E¢89) we obtain the result

_ 1 )
0"70,0,Mpy 4+ MPMy o= — 87TF( T g mTT) )
(93

Because we sey=8 in Eq. (45), we obtain

1 _
RO’)\ - E 7]0.}\R: 87G Tg.)\ . (94)

In the present approximatiom;, ,; can be removed by
gauge transformations of the form

wO’)\T—>w(T)\T+ &U¢AT and wU)\T_)wO')\T—’_ aa¢h7'

(99

We can assume therefore that in this approximatigp ,;
vanishes. Thereform,, may be assumed symmetric. It sat-
isfies

1
Tlu,,— — 17W,T .

7 (96)

(P+m?)m,,= —87-rF(

The gauge invariance referred to above means also that we
are free to choosh,,, to be symmetric with the result that

h,, is also symmetric. Under these circumstances we can
solve EQq.(90) to yield
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0 =90 —d\h,,. (97 For arbitraryF’ this gauge condition om,,, is different
_ o from that onh,, . However, the choice
Equation(45) now implies that
1
v v 2 v I —
9,0,h" o+ dyd,0" = 3*h o= 3,0,0", F i (108)

_ VT_ 92V ) — - .
Doul 930" =00",) =87C T, (%8 is of special interest. We have thém=3. As a resulth,,,

We now refine our coordinate system by choosing the harSatisfies the same harmonic conditionfgs :
monic gauge

_ 1 _
a,h* — =3 h* =0. (109
VN IR 4 viiop
g“'T),=0. (99 2
In the lowest approximation it yields The wave equation fan,,, also takes a significant form and
becomes
oy == gy 100 1
A= A (100 #h,,,= —8m(G+F) TW—EWWT). (110

The equation of motion then becomes It follows that for this choice ofF’ weak field gravity is

1 related to the matter distribution exactly as in general rela-

32( ho— > nthT) =—-87GT,, (101  tivity if we set Newton’s constarGy= G+ F. Hereafter we
will assume thaF ' has this special value and that Newton’s
constant is obtained in this way from the theory.

or . o e
For example in a static situation whetgé=—V2, Ty,
_ 1 =T=p (the density of matterwe have
9*h,,=—87G| T, > Mo |- (102 B
V2hoo=4mGyp. (112)

The equation forp is ) — o )
Of course we can interpréty, as the gravitational potential

(P+m?)p=— 87E'T. (103 experience_d by a material particle. In addition the spatial part
of the metric satisfies

To demonstrate how the theory matches up to the standard —
tests of general relativity we consider its implications for Vehij=4mGnpd; . (112
phenomena on a scale such as the solar system that is m n

smaller than the galactic scale. For such applications we CZB

setm=0. We will return to the problem with the galactic . . S
scale parameter later. time-of-flight measurements of radio signfl¥,18|.

o : - _ The remaining solar system scale test is the precession of

lesl?;gts);nbmmg the above equations we find for the maSSthe orbit of Mercgry. This requirr—_:s a higher order gorreptipn
than the Newtonian approximation of the weak field limit.

1 1 o For reasons of space we do not present this calculation here

=G+ —F—F’) Nuw - but we have checked the consistency of the theory on this

2 4 g int by examining the asymptotic behavior of the

(104) point by examining 1 ymptouc (

Schwarzschild-like solution. The result is that the refinement

of the Newtonian potential that produces the precession is

correctly given by the theory.

It is clear from the wave equation fbr,,, Eq.(110, and
the associated gauge condition, Efj09), that the gravita-
tional waves emitted by a time dependent matter distribution
will be exactly the same as predicted by general relativity
(GR). The detection of these waves by ordinary matter will
Gt lE_F also be entirely conventional. It is reasonable to conclude
2 4 H i H H
L (106) that the Qbse_rvanons of t_hg slowing of a_blnary quasar anq its
G—4F' conformity with the predictions of GR will be reproduced in
our theory[23-25.
Assuming then that the relevant fields are sourced by the There are circumstances in which the bi-metric theory
energy momentum tensor we can maintain the condition  could show differences with general relativity. These would
o o occur were there to be a form of matter that coupled directly
ad,h#,—&d,h*,=0. (107 to the metricg,,, . Such matter would act as a source for and

is is precisely the form for the spatial metric to yield Ein-
ein’s prediction for the deflection of light and to satisfy the

#h,,=—8m(G+F)T,,+87

By making use of the resuli(f‘jzo, we can show also
that

PLa,h*,—€3,h*,1=0, (105

where
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react to the unbarred metric. In the weak field limit it would _ GyM (1—ee ™"

therefore behave as@y= G and if mixed with other matter Noo= — ) ; : (120
would imply that the equivalence principle did not hold. Part

of our theory of ordinary matter and gravity is that suchp,q.e generally for a matter distribution(r) we have
anomalous matter is not present. This is the assumption we

use throughout this paper.

Gy (1—ee ™Mr=r'l

hOO(r):_J'dar,p(r,)(l_e) ir_rri

X. “DARK MATTER” AND THE GALACTIC SCALE (121)

In order to apply our theory to objects of galactic or extra-
galactic size we restore the “mass” parameter Our hy- We believe that this choice of a negative sign Fois in fact
pothesis is tham ™! is a length of the order of 30 kpc. As- the “natural” choice and stabilizes the theory against tum-
Signing such a value tm71 achieves the purpose that the bllng of one vierbein relative to the Othml] A SlmpllfIEd
theory exhibits three regions of length scale, nangglp—1  analysis supporting this view is presented in the Appendix.
kpc in which conventional Newtonian gravity holds sway Tumbling can turn a time direction in one vierbein into a
and for which the theory of the previous section is relevantspace direction in the other if it is too severe. Such a situa-
(||) 1-100 kpc’ a transition region appropriate to ga|acticti0n would create difficulties for causal structure in the
dynamics, andiii ) above 100 kpc in which Newtonian grav- theory.
ity with an enhanced coupling appears.

To analyze the gravitational effect of the galactic scale we A. Galactic clusters

set For objects much greater than galactic size such as galac-

T o=h +h (113 tic clusters, there is ample evidence that the observed matter
vy Hpr is insufficient to account for the gravitational potential in-
ferred from applications of the virial theorem to the motion
of galaxies in the clustdi5,6]. Currently the picture of such
h =m, +d7,,, (114 clusters is that_ 5-10% of the mass is galactic in origin yvith
pyo R my a further contribution from hot gas. The bulk of the gravita-

; iofi / i fi tional potential is accounted for by dark matter. It is also
while h,, satisfies Eq(102 andh,,, satisfies significant that a detailed analysis of clusters suggests that
_ _ the dark matter distribution follows that of the visible matter
Tw=3 77,WT) : (115  [6]. The clusters appear to be condensed versions of the local

background.
Therefore while a highly localized matter distribution of  1he explanation of this effect is straightforward in our
massM at the origin yields model. The appearance of dgrk matter is _S|mply _th_e conse-
quence of an enhanced gravitational coupling of visible mat-
ter. The parametet represents the dark fraction of apparent
hoo=—GM (116  matter. On the basis of the above observations we should
expecte=0.9-0.95. Note that because our extragalactic dy-
it gives rise to namics is still Newtonian, although with an enhanced cou-
pling, it is still possible to apply analyses of galactic clusters
e~ mr that rely on the virial theorem for an inverse square law of
(117 force between galaxigs].
The inverse square law is also crucial for the argument
for the remaining part of the metric_ We have then relating the motion Of the |0ca| group to Optica| f|UX due to
galaxieq 32]. The close alignment of the motion of the local
F group through the cosmic microwave backgroui@vB)
1+ze mr)- (118 with the net optical flux confirms that fluctuations in the
distribution of visible and dark matter are closely correlated.
It follows that the effective gravitationai Coupiing fonr Disparities in the visible and dark matter distributions would
<1 is Gy=G+F, while at distances beyond the galactic tend to destroy this alignment. In our theory of course, the
Scaie for Whichmr>1, the effective Coupiing |£ Our d|Str|bUt|On Of (:iark matter is ident.ical to that .Of visible mat-
hypothesis is thaGy<G so that gravity is weaker at short ter of which it is merely a reflection. There is no room for
distances than at long distances. This is the basis of oi@ny bias between visible and dark matter fluctuations.
explanation for “dark matter.” For this to be true we clearly ~ We will see later that the re-interpretation of dark matter

where

(9*+m?h) =—8xF

— GM
hoo=———

must haveE <0. We set as an enhancement of the Newtonian constant at large scales
extends also to the dynamics of the expanding universe.
F=—-¢€G, (119 This picture of strong large-scale gravity with weak short-

scale gravity has already been proposed as the FLAG sce-
with €>0, so the above gravitational potential becomes nario by Sanderg29,30. There are distinctions between this
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model and our proposal. As emphasized by Sanders the Rotation Curve for NGC3198
FLAG model is an intuitive extension of the vector meson
anti-gravity suggestion of SchefB1]. Our model is a com-
plete geometrical theory with a well-defined dynamical start-
ing point. Some of the predictions of the FLAG model are
not acceptable. In particular the gravitational deflection of
light is determined by strong gravity and so is an order of
magnitude greater than the Einstein deflection even on the
scale of the solar system. In our model, as we have shown
above, the deflection, along with all other short-scale phe-
nomena, is consistent with the predictions of general relativ-

ity.

200

150 |- 3 £3

100 - ~

Rotational velocity (km/s)
/
/
/

50 |-

B. Galactic rotation curves

0 1IO éo 30
On a galactic scale we are concerned with the rotation Radial distance (kpc)

curves of galaxies. The apparent asymptotic flathess of many o

of these curves is usually taken as the most direct evidence F!G: 1. Data for NGC3198 compared to exponential disk model

for dark mattef1—4]. Our explanation rests on the modifi- with enhanced gravitysolid line) and the Newtoniarino enhance-

cation of the gravitational interaction described above. [{M€NY curve for the same magdashed ling

turns out that by choosing a value ferin the range sug- . .
gested by large scale dynamics it is possible, using a disk Figure 1 also shows the standard Newtonian curve for the

assumed mass distribution. The difference between the two
model appropriate for certain spiral galaxies, to Compmﬁ:urves is normally attributed to dark matter. Here we achieve
the same effect by means of our modified gravity theory.
Figure 2 shows the extrapolation of the curve to larger ra-
dius. There is clearly a beginning of a falloff around 90—-100
kpc although there is still a substantial rotational velocity out
o(r)=oq4e 3, (122)  to 400 kpc. The rotation curve becomes Newtonian but with

an enhanced gravitational coupling

curves.
As an example we construct a model galaxy with a thin
disk of surface density

The mass of the disk imd=27md/a§. The gravitational oM
potential in the plane of the galaxy is . / r d (125
GNo-d 2 _ | _ rl . . A
y(r d?r'ead’ (1—ee” ™M), Of course the challenge to our theory is to fit all galactic
|r—r | rotation curves simultaneously with common values ifor

(123 and e and plausible masses and mass distributions for the
galaxies. This is no easy task since many galaxies have a
more complicated structure than NGC3198 and detailed
modeling will be required to determine the adequacy of our

and the tangential rotational velocity, is given by
v2=r-Vi(r)

G Extended Rotation Curve for NGC3198
NO 484 f

;oA
d2 adrr'r’

1—ee Mrrly,
|r—r’|( ) 20

(124

The galaxy NGC 3198 has a well-measured rotation curve
and it is accepted that a simple exponential disk model gives
a good account of its luminosity distributi¢d]. We assume
a mass distribution with the same exponential shape. In Fig.
1 we show the resulting rotation curve where we have chosen
the galaxy parameters to kg=0.38 kpc! and my=2.9
X 10'%M 4 ; these are quite close to the values of a previous
dark matter analysigt]. The theory parameters are chosen to
be €e=0.937 andm=0.035 kpc?! or m 1=28.6 kpc. We 0 , , ,
stress that these parameters are not a best fit but merely the 0 100 200 00 400

. . Radial distance (kpc)
result of eyeball exploration. However, it is not easy to re-
duce the value o€ value by much and obtain a convincing  FIG. 2. The extended rotation curve for the exponential disk
shape. It is encouraging thatdoes lie in the range we an- model with enhanced gravitgsolid line) and the Newtoniar(no
ticipated from our discussion of extragalactic structure. enhancemeitcurve for the same magdashed ling

Rotational Velocity (km/s)
3 8

3

043503-9



I. T. DRUMMOND PHYSICAL REVIEW D 63 043503

theoretical predictions. We intend to pursue this task in the We construct the expanding universe by choosing the
future. However, one prediction of the theory does not re-gravitational vierbein to have the form

quire such a detailed attack. We predict th#itgalactic ro-
tation curves will fall away in the range 100—200 kpc from €ua=AaEsa, (127)
the galactic center. Measurements in this range and beyongy . e

would be a direct test of our ideas.

Similar success in fitting the rotation curve of NGC3198 Ap=1 and A;=A(t), (128
was achieved by Sanders within his FLAG mo{29,30. . . _— . .
Indeed in parametrizing a modified Newtonian law for mat-~ Similar structure is maintained for the matter vierbein by
ter the two models are equivalent. For this reason Sandef§auiring the transformation matri to be diagonal. That is
also anticipated many of the points made above. (we equivalence the labetsanda in the obvious way,

Our proposal of a galactic scale determining the shapes of —__ 4 = — ¢
rotation curves must be reconciled with the construction of a €a=€"Aa€,a=AEa and A=A Aqe” (129

proposed universal scaling curve for galaxigs]. This ap-  \ynere Ao=A(t) and A;=Ag(t). The requirement that

proach takes the optical radius of the galaxy as the signifigain =1 implies thatA o= A ~ 13

cant length scale and uses a statistical approach to obtain Using the above information and E(3) we find that

well-defined rotation curves for classes of galaxies, thus re-

vealing systematic relationships among them. Whether this . . A

galactic phenomenology can be accommodated within our wioj= ~ Wijo= 7 Jj (130

proposal remains to be seen. There is freedom within our

model to parametrize mass distributions and this flexibilityand

gives some hope that the detailed modeling required to test 1

our theqry will provide an equally good descrlpt_lon of galac- @i=— o (Fiie+ Fij + i) (131)

tic rotation curves. More importantly, however, if a common 2A

scale for the underlying structure of all galaxies were to be . - .

established, it would hold out the prospect of better distanc@" other components vanlsh_. A similar structure is found for

measurements and hence the possibility of measuring th€abc: From Eq.(71) we obtain

Hubble constant with more certainty. A
Wioj = T @ijoT AE

1] (132

i
C. Expanding universe :

Finally we wish to show that when the matter density isWhere

small as in the present epoch, the expansion of the universe

is controlled by the standard equations of general relativity E=1— —

but with Newton’s constaniG,, replaced by the enhanced 4F

constantG. In other words the dark matter component re-

quired to relate the visible matter to the observed Hubbléind

constant is again supplied by the enhancement mechanism. -

Of course a complete reconciliation of the equations with @ijk = Dijk - (134

observation requires a contribution to the energy density From Eq.(14) we find, for the relevant components of the

from the cosmological constant. This necessity can be cacyrvature tensor,

tered for also in our theory. )
To apply our theory we take the usual starting point that 3 [A

the spatial sections of the universe are isotropic and homo- Roo=— Kat< )

geneous. In the present approach we meet these requirements

by assuming that there exist basis vierbein fiels, , such and

(133

(135

that EaEy 7?°=1 andE,E ,,7*°=0 for u#t. We choose . o
our coordinates so thé&, is constant in space-time ai,, _:{la ﬁ 42 i) }5___i(f )
depends only on coordinates on the spatial section when I ATME AE) |71 g2t b kT k]

#t. We finally fix the nature of the space-time model by

choosing structure constartg;, so that 1
X (Fri+ Frir+ Fi) + ﬁ(fmﬂr figi+ Fuip) Fia -

9,Ea=9,Ea= —focdE . °E,C. (126)
. . . . (136
Of coursef ., vanishes if any of the suffixes is(@melike).
For a spatially flat universe all structure constants have th# we evaluate this expression for the three curvature cases,
value zero. For a universe of positive spatial curvature thave find

spatial constants;,;=2¢€;, where 2 is a convenient nor- A A2 ok
malization, and for a negatively curved univefsg = &;;ny Ri=|=a|=|+2|—]| +=|8; (137)
— 8n; wheren, is an arbitrary unit three-vector. OIATE AE/  a2|™
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where conventionallk=0,*=1 according as the spatial cur-
vature is zero, positive or negative. We also have, from Eq.

(70),
L 4[AY
Jable =3 § (139
and
lian)lj =5\ AF T2 2/ Y%
2\ AE Ag A2

PHYSICAL REVIEW D 63043503

._A 3A a;
p= K_K_d)

(p+p). (149
This is easily re-expressed as
e3A3 e3?A3
(?t(PT +pd; T) (146
or
h(pA)+par(A?), (147

whereA=e?AA 13 is the cosmic radius parameter appro-

If we denote the matter energy density and pressurg by priate to matter. Equatioril4? is therefore the standard

andp respectively, then from Ed45) we obtain

3 [A} 4G[A)® 6., Gm? I
——| = —| ——¢*+ = —(A*+A"2+3A%

ANE] 3F\A] g F 8
- G m* .
+3Ag _7)"‘;7(1) =47Ge*(p+3p) (140
and
2 2
1 el AL 2K em
AME| T2 A T T E e VA TTOAS

—2_ _Em_z 2_ A, —
+3ASP ) - o 5 #P=4nGet(p—p). (14D

From Eq.(46) we find

Ay AA 3[ A\ [AZ AZ
WR)TPRRT2\AE) (a2 &
3m? 2 —2_ 72 -2 4¢
+ g (A= AT2=AZH A" =~ 6mFe*(p+p).
(142
Finally from Eq.(49) we obtain

p 3A 2 1 Q4P

P+ T(ﬁ-i-m ¢=—-8mF'e*?(p—3p). (143

Equations(140) and(141) can be combined to eliminate the

second derivative in:

- A 2+k 2G[(A\* 1G6., Gm’ e
AE/ A2 9F\A _EE‘i’_Eﬁ(
G m? 87G
+3A§+3A§2—’y)—;F¢2=%e4¢p. (144)

equation for the conservation of the energy-momentum ten-
sor in this special case, as we should have expected.

The above equations are rather complicated but can be
simplified if we ask how they might be applied to our ex-
panding universe in which the pressure vanishes and the mat-
ter density is low and getting lower. In the absence of matter
Eqg. (145 has a solution for whickp=0. For weak density
we assume that there is a solution for whigh-O(p). We
have then, as a leading approximation,

3A.
b+ K¢+m2q§=—87ﬂ:’p. (148

The form of this equation suggests that, ignoring transients,
the solution is to a good approximation

8wk’ 2m7eG

(149

We expect then thap will remain O(p). If we setA=ef
and omit all term€(&?), thenE=1 and Eq.(143 becomes

2

$+3%5§+ &= —6mFp. (150

A
2_qgl
m 8(A

Again we expect there to be a solutigs O(p). If now we
neglect all term(p?), we obtain the equations

871G

A\? K
N +E:T(p+p‘:°)’ (151

where the energy density associated with the cosmological
constantpcc, is given by

m? vy mz(l—e) 0%
Pec™ganF _5)_ 8nGue |8 1] (152
and
a(pA%)=0. (153

These are the standard equations for the expanding universe

If we multiply this equation byA? and differentiate with but with Newton’s constanG, replaced by the enhanced
respect tot, we can use the above equations of motion toconstantG. To lowest order irp the parametet is also the

deduce that

proper time of comoving matter in its own metric since the
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two metrics coincide under these circumstances. It followg ~3x 10, for NGC3198 if the conventional Newton-

that Hubble’s constart ;= A/A and the current deceleration ian constant is used for the estimate. Our theory however
parameter igj,= — AA/A? and that the critical density for a assigns Fhe_ expected mass but uses the enhanced v_alue_z for

flat universe is the gravitational constant appropriate at extra-galactic dis-

tances. This phenomenon should appear for all galaxies. It is

3HZ  3H2 therefore important for the theory to test rotation curves at

P~ 8-G 87G (1—e). (154 distances of 100—200 kpc from the galactic center. It is also

N important to test the effectiveness of the theory in a range of

S0 p, in our theory is between 1/10th and 1/20th the Valuegalaxies and to arrive at a consistent picture with a common
c oo . .
appropriate to standard general relativity. This brings itSet of gravitational parameters. This task requires a good

within range of visible mattef34]. In fact recent measure- understanding of the structure of individual galaxies and ac-

ments of distant supernov#85] lead to an estimate af curate knowledge of their distance. However, we note that
that suggests = 0.3 p, and pee=0.7X p, (assuming a f?at the establishment of a fixed scale associated with all galaxies
- c cc— MY c

universe 36]) with the further implication that in the present would be of considerable help in establishing galactic dis-

theory, visible matter may support the current expansion OFanI%e:(.:id't'on 1o the incomplete phenomenological analvses
the universe albeit with the help of a cosmological constant.,. ” ! P pr 9l yses
discussed above there are many issues yet to be explored in

our bi-metric theory. Of particular importance are the devel-
opment of density fluctuations, dynamics and formation of

In this paper we have constructed a modified theory og@laxies using the modified gravitational law, and evolution
gravity that fits all the standard tests of general relativity thaff the early universe. In this last context the ability of bi-
can be made on the scale of the solar system including thi@etric theories to support anomalous propagation of signals
bending of light by the sun, time delay measurements and the/SL phenomengwill be of great importance. The existence
precession of Mercury’'s orbit. The theory is a bi-metric Within the theory of black holes is also a topic that it would
theory of a novel kind with a very geometrical structure. |t P& Very interesting to resolve. On intuitive grounds it seems
has the flexibility to permit the introduction of a galactic feasonable to suppose that black holes will exist in our
length-scale of roughly 30 kpc. Gravitational effects of mat-theory but the nature of the horizon may be more compli-
ter at distances below the galactic scale, in the solar systeffted than in general relativity because of its double light-
for example, are of a conventional kind and of a strengtHfone structure.
determined by Newton’s constanGy. This outcome is
achieved in the theory as the result of a competition between ACKNOWLEDGMENT
two gravitational effects, a strong attraction and a repulsion o .
that ?s nearly as strong. Over thg range of the galact?c scale | thank Jonathon Evans for helpful and clarifying discus-
the theory allows the repulsion to fade out exponentiaIIyS'onS'
leaving the much stronger underlying gravity to show
through. The gravitational effects of matter on this large APPENDIX

scale are also conventional in character but of a strength Because of the indefinite character of the local Lorentz

determinei by the much stronger underlying gravitationalheic it turns out that the degrees of freedom in the linking
constantG=10—20xGy. These results are consistent with fje|q M can lie in a number of distinct sectors. We can illus-

observations of galactic clusters and also apply to the expani,ie this idea by considering a configuration for whidhs

sion of the universe as a whole. As a result the critical dens, 1 trivial only in the (0,1) plane. By confining attention to

sity for a flat universe is between 1/10th and 1/20th of they,iq plane we can tredfl as a two-dimensional matrix of the
value calculated in general relativity. This makes it moreg,

plausible that visible baryonic matter can support the expan-
sion of the universe without dark matter, though supple- a b
mented by a cosmological constant. M =(

The theory provides a natural explanation for the ten- c d
dency of dark matter to follow the distribution of visible
matter since the former is simply an amplification of the
latter. Dark matter does not have a separate dynamics of its f=a?+d2—b2—c? (A2)
own. On this basis the apparent dark matter is not in any way

biased in its fluctuation structure relative to visible matter. js jnyariant under separate left and rightvo-dimensional

We showed that at least for the galaxy NGC3198 the grentz transformations d¥l. We can therefore set
theory can reproduce the rotation curve out to 30 kpe

end of the measured rangequally as well as dark matter M=LSL’, (A3)
models. The theory also predicts that the rotation curve will

fall away in the 100—200 kpc range and eventually tend to avhereL andL’ are independent Lorentz transformations and
standard inverse square root of distance behavior but with a8 can be given a special form that depends on the valde of
apparent mass 10-20 times the expected mass of the galaag follows:

Xl. CONCLUSIONS

: (A1)

wheread—bc=1. The quantity
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For f=2 the special form foSis

s A o)
o At

where— o<\ <% andf=A?+\"2. For—2<fg=<2 Shas
the form

(A4)

(A5)

(cose

—sing
siné '

cosé

where 0<#<m/2 and f=2 cog §—2sirf =2cos ¥. The
remaining possibility i< -2 whenSis given by

0 —)\‘1)
s—A o |

wheref=—(\2+\"?)<-2.

(AB)
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| 2 fd‘l Ig IuN\ [ I\ AB
=T Tomea) I I A8
If flies in the second range, then
) cosf —sing\( cosf sinb 0 -1
J6=%\ sing  cos |\ —sing cose) |1 o )%
(A9)
and the linking action will have the form
| 2 f d*xJg*” A10
L= 167cG xJg*"d,,00d,0. (A10)

The third range can be dealt with similarly.

A key point is the change sign in the action between the
two ranges. The second range represents tumbling of the
matter vierbein relative to the gravitational vierbein. This is

The three ranges together cover all possibilities for thean undesirable effect since it can lead to an interchange of

value off. We therefore can conclude that the matvxwill
be gauge equivalent to the appropriate special f&pro-
vided that form is chosen according to the valud.of

If flies in the first range, then

R P A |

and the linking action will have the form

space and time. However, the relevant sign for the action
suggests that a positive energy is generated by motion of this
kind with the result that it is likely to be restrained. In the
first region the kinetic energy term is negative, suggesting an
instability for this kind of straining between the veirbeins.
This is not obviously a bad thing. An effect of this kind can
be discerned in the equations for the expansion of an
Friedman-Robertson-WalkefFRW-) type universe dis-
cussed above. More complicated possibilities of a similar
kind exist for the four dimensional case.
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