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Bimetric gravity and ‘‘dark matter’’
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DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, England

~Received 18 August 2000; published 22 January 2001!

We present a bimetric theory of gravity containing a length scale of galactic size. For distances less than this
scale the theory satisfies the standard tests of general relativity. For distances greater than this scale the theory
yields an effective gravitational constant much larger than the locally observed value of Newton’s constant.
The transition from one regime to the other through the galactic scale can explain the observed rotation curves
of galaxies and hence the effects normally attributed to the presence of dark matter. Phenomena on an
extragalactic scale such as galactic clusters and the expansion of the universe are controlled by the enhanced
gravitational coupling. This provides an explanation of the missing matter normally invoked to account for the
observed value of Hubble’s constant in relation to observed matter.
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I. INTRODUCTION

The presence of dark matter in the universe has been
voked to explain a number of phenomena: the rotation cur
of galaxies@1–4#, the apparent mass of galactic clusters@5,6#
and the observed expansion of the universe. Many attem
to detect this conjectured matter are under way but at
moment there has been no direct observation of it. In
paper we present a model with a modified version of grav
that can accommodate these points in a relatively straigh
ward way. It does so without the necessity of postulat
dark matter. The theory, which is geometrical in character
perfectly covariant, locally Lorentz invariant and satisfies
equivalence principle. It also satisfies all the tests of gen
relativity on the scales at which they have been carried o

The theory is a bi-metric theory. Such theories have
long history@7–9# and have recently been used as a way
realizing variable speed of light~VSL! theories@10–19#. An
earlier incomplete version of the theory presented here
motivated in this way@20#. Bi-metric theories ran into diffi-
culties when, as then formulated, they appeared to be in
sistent with the tests of general relativity@21,22#. However
the theory proposed here does meet all those tests@21–25#.
Of course VSL is built into bi-metric theories. This will b
important in applying the model to early universe studi
However, in this paper we concentrate on those implicati
of our theory for the gravitational interaction of matter th
provide an explanation of the current state of the unive
without recourse to dark matter.

Our proposal is to introduce into the space-time manif
two vierbein bundles. Each bundle supports its own met
One is associated with matter and the other with~underlying!
gravity. The matter vierbein can be strained and scaled r
tive to the gravitational vierbein. The dynamics of the theo
includes this straining and scaling as dynamical degree
freedom. The justification for introducing these new effe
is ultimately in the results that emerge. However, if da
matter is not present, some modification of dynamics, a
the modified nonrelativistic dynamics~MOND! scenario
@26–28#, or gravity is essential. We choose to modify grav
in a way that permits the introduction of a galactic sca
something that is impossible with standard general relativ
0556-2821/2001/63~4!/043503~13!/$15.00 63 0435
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The equations of motion are obtained from an action co
prising three parts: a gravitational termI G of the standard
curvature form, a matter termI M of the standard form base
on the matter metric, and a linking actionI L that depends on
the variables that determine the relationship between the
vierbein bundles. The full action,I, is the sum of all three
terms:

I 5I G1I L1I M . ~1!

Each term has its own gravitational coupling constant w
the dimensions of Newton’s constant,GN . In developing the
theory we show how these different constants are relate
one another and to Newton’s constant.

II. GENERAL STRUCTURE

The geometrical character of the theory is clearly revea
by its formulation in the vierbein formalism. The local Lo
entz invariance in both the gravitational and matter vierb
frame is explicit throughout as a gauge invariance. We int
duce a vierbein bundle appropriate to gravity,$ema%, with the
associated metric

gmn5emaen
a, ~2!

where the raising and lowering ofa indices is carried out
with the standard Lorentz metrichab5$1,21,21,21%. The
inverse vierbein is$eam% so that

emaean5dm
n , eamemb5db

a , ~3!

and

gmn5eamea
n. ~4!

The vierbein associated with matter is$ēmā% and the raising
and lowering ofā indices is by means of the Lorentz metri
h āb̄5$1,21,21,21%. The associated metric is

ḡmn5ēmāēn
ā. ~5!

The two vierbein bundles are related by a local linear tra
formation
©2001 The American Physical Society03-1
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ēmā5emaMa
āef, ~6!

where the matrixM is an element ofSL(4,R) and the local
scaling is introduced through the factoref. The determinants
associated with the volume elements of the bundles areJ and
J̄ where

J5det$em
a% and J̄5det$ēm

ā%. ~7!

We have thereforeJ̄5Je4f. We denote the inverse matri
by Mā

a so that

Ma
āMā

b5db
a , Mā

aMa
b̄5d b̄

ā . ~8!

The vierbein connections and associated coordinate
nections are defined so that the vierbeins are covariantly
stant in the appropriate way:

Dmena5]mena1vma
benb2Gmn

l ela50 ~9!

and

D̄mēnā5]mēnā1v̄mā
b̄ēnb̄2Ḡmn

l ēlā50. ~10!

The requirement thathab and h āb̄ be covariantly constan
implies thatvmab52vmba and v̄māb̄52v̄mb̄ā .

It is convenient to define a covariant derivative ofM that
includes both the right and left vierbein connections:

DmMa
ā5]mMa

ā1vm
a

bMb
ā2Ma

b̄ v̄m
b̄

ā . ~11!

However, further differentiation requires the coordinate co
nection,Gmn

l . The covariant derivativeD̄m can be defined
and extended in a similar way. Its effect onM is the same as
that of Dm but a second differentiation must use the coor

nate connectionḠmn
l .

Gravitational curvature tensors appropriate to each of
bundles are defined so that

@Dm
L ,Dn

L#Va5RabmnVb ~12!

and

@Dm
R ,Dn

R#Vā5R̄āb̄mnVb̄, ~13!

whereDm
L includes the left vierbein connection field,vmab

but not the coordinate connection,Gmn
l . Similarly Dm

R in-

cludes the only the right vierbein connection,v̄māb̄ . We
have then

Rabmn5]mvnab2]nvmab1vma
cvncb2vna

cvmcb ,
~14!

with a similar definition forR̄āb̄mn . It follows that

@Dm ,Dn#Ma
ā5Ra

bmnMb
ā2Ma

b̄R̄b̄
āmn22Cmn

l DlMa
ā ,
~15!

where
04350
n-
n-
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Cmn
l 5

1

2
~Gmn

l 2Gnm
l !. ~16!

The quantityCmn
l is the torsion tensor in the coordinate bas

It is not in general zero.

III. GRAVITATIONAL ACTION

The gravitational action has the standard form

I G52
1

16pGE d4xJR, ~17!

where

R5eamebnRabmn ~18!

and G is a coupling with the dimensions of Newton’s co
stant,GN . The vierbeins and the connections are treated
independent variables. If we vary the former, then

dI G5
1

8pGE d4xJdescS ecmRs
m2

1

2
ecsRD . ~19!

The variation of the vierbein connection yields

dI G52
1

16pGE d4xJeamebn~Dm
L dvnab2Dn

Ldvmab!.

~20!

Switching to the full covariant derivative we get

dI G52
1

16pGE d4xJeamebn~Dmdvnab

2Dndvmab12Cmn
l dvlab!. ~21!

Using the result

JDmVm5]m~JVm!12JClm
l Vm, ~22!

we can integrate by parts and obtain finally

dI G52
1

8pGE d4xJeamebn~Clm
l dn

s2Cln
l dm

s1Cmn
s !dvsab .

~23!

If there is no other interaction in the theory, we can dedu
from the vanishing of these variations thatCmn

l 50 and

Rs
m2

1

2
dm

sR50,

the standard equations for matterless gravity.

IV. LINKING ACTION

Proposals for constructing an action for the linear tra
formation relating the bundles have involved parametrizin
in terms of a vector or scalar field@15–19#. Our proposal
treats all the degrees of freedom inherent in the transfor
tion. This is crucial for the structure of the theory.
3-2



th
te
to
re

r
ea
iv
of
ug

ta

e
t

th

e
-
o
s
in
th
ct
s

at

t
in

-
ity

he

ck-
im-

to
a-

nge
he

or
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Because scaling commutes with the other elements of
group of linear transformations, it can be treated separa
The Lagrangian forf can be chosen to be proportional
gmn]mf]nf. The remaining degrees of freedom are rep
sented by the matrixM which lies in the non-linear manifold
SL(4,R). A natural way of constructing a Lagrangian fo
such a theory is to invoke the mechanism of the non-lin
sigma model and express it as a quadratic form in the der
tives (DmM )M 21 with the appropriate structure. The use
the covariant derivative guarantees the local Lorentz ga
invariance relative to both bundles and the presence ofM 21

guarantees that the derivative is a proper element of the
gent space to the manifoldSL(4,R). We take as our action

I L5
1

16pFE d4xJgmn Tr~ j m j n!

1
1

16pF8
E d4xJgmn~]mf]nf!, ~24!

where F and F8 are new gravitational constants with th
same physical dimensions asG. The matrix valued curren
j m is given by

j m5~DmM !M 21 ~25!

or, more explicitly,

j m
ab5~DmMa

b̄!Mb̄b. ~26!

It is also convenient to define an alternative version of

current, appropriate to the barred vierbein bundle,j̄ m
āb̄ , as

j̄ m
āb̄5~M 21DmM ! āb̄5Mā

aDmMab̄. ~27!

We also include inI L ‘‘mass’’ terms of the form

2
1

16pFE d4xJ
m2

4
~Ma

āMa
ā1Mā

aMā
a2g!

2
1

16pF8
E d4xJm2f2. ~28!

For simplicity we have chosen the mass parameterm to be
the same in both these additional terms. For the choicg
58, the action vanishes whenM represents a Lorentz trans
formation. Departures from this value introduce a cosm
logical constant term in the action. By construction the
additional terms clearly maintain local Lorentz invariance
both vierbein bundles. The mass terms are crucial for
effectiveness of the theory because we identify the gala
distance scale withm21. For effects on a scale much les
than this thereforem will be viewed as a small parameter th
can be neglected in certain circumstances.

We treat the vierbein, which enters throughgmn, the ma-
trix, M, and the connectionsvmab and v̄māb̄ as independen
variables. The result for the linking action from the vierbe
variation is
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dI L52
1

8pFE d4xJdescS ecngsm2
1

2
ecsgmnDTr~ j m j n!

2
1

8pFE d4xJdesce
cs

m2

8
~Ma

āMa
ā1Mā

aMā
a2g!

2
1

8pF8
E d4xJdescS ecngsm2

1

2
ecsgmnD ]mf]nf

2
1

8pF8
E d4xJdesce

cs
m2

2
f2. ~29!

From the left vierbein connection we have

dI L5
1

8pFE d4xJdvmabj mba ~30!

and, from the right vierbein connection,

dI L52
1

8pFE d4xJdv̄māb̄ j̄ mb̄ā. ~31!

On varying the matrixM we obtain

dI L52
1

8pFE d4xJ~dMM 21!abFDm j ba
m 22Clm

l j ba
m

1
m2

4
~Ma

c̄Mbc̄2Mc̄
aMc̄b!G , ~32!

where the square brackets@•••# indicate the traceless ver
sion of the quantity contained within them. The quant
dMM 21, being an arbitrary element of theSL(4,R) Lie al-
gebra, is sufficiently general to identify the other factor in t
integrand. Finally, on varyingf, we have

dI L52
1

8pF8
E d4xJdf@gmn~Dn]mf

22Cln
l ]mf!1m2f#. ~33!

V. MATTER ACTION

We assume that matter is propagated in the vierbein ba
ground$ēmā%. This seems a consistent approach since it
plies that matter behaves in a conventional way in relation
the gravitational field it experiences. In particular the equiv
lence principle is satisfied. However, the theory does cha
the relationship of this observed gravitational field to t
distribution of matter density. We have

dI M52
1

2E d4xJ̄dḡmnT̄mn, ~34!

whereT̄mn5T̄nm is the symmetric energy momentum tens
for matter. Since

ḡmn5ēmāēn
ā, ~35!
3-3
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it follows that

dI M52E d4xJ̄dēmāēn
āT̄mn. ~36!

However,

dēmā5demaMa
āef1emadMa

āef1dfēmā , ~37!

so the variation of the matter action takes the form

dI M52E d4xJe4f@descT
sc1Tr~dMM 21U !1dfT̄#,

~38!

whereT̄5ḡmnT̄mn,

Uba5em
aMb

āēn
āT̄mn2

1

4
habT̄, ~39!

and

Tsc5Mc
āēn

āT̄sn, ~40!

Ts
l5elcT

sc5ēlāēn
āT̄sn5T̄snḡln . ~41!

If we adopt the convention that barred quantities, that
those appropriate to the gravitational background of the m
ter, have spatial indices raised and lowered with the ba
metric, we can define

T̄s
l5T̄snḡln . ~42!

Hence we get the simple seeming result

Ts
l5T̄s

l . ~43!

However, it is important to recall that

Tst5Ts
lgltÞT̄st. ~44!

In fact Tst is not necessarily symmetric. This does not cau
any difficulty in the theory because, as we will show belo
the matter energy momentum tensorT̄mn, which is symmet-
ric, obeys the appropriate conservation equation. Note
T5Tm

m5T̄.

VI. EQUATIONS OF MOTION

We obtain the equations of motion by requiring that t
variation of the total action be zero. The result is

1

8pG S Rs
m2

1

2
dm

sRD2
1

8pF S Tr~ j s j m!2
1

2
dm

sTr~ j l j l! D
2

1

8pF

m2

8
dm

s~Ma
āMa

ā1Mā
aMā

a2g!

2
1

8pF8
S ~gsn]nf]mf!2

1

2
dm

s~gln]lf]nf! D
2

1

8pF8

m2

2
dm

sf25e4fT̄s
r . ~45!
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Equation~45! is a generalization of the standard equation
general relativity. The new straining degrees of freedom
controlled by the following equation:

1

8pF S Dm j ba
m 22Clm

l j ba
m 1

m2

4
@Ma

c̄Mbc̄2Mc̄
aMc̄b# D

1e4fUba50. ~46!

The generalization of the ‘‘no torsion’’ rule in general rel
tivity is represented by the two equations

j s[b,a]5
F

G
eamebn~Clm

l dn
s2Cln

l dm
s1Cmn

s !. ~47!

j̄ m
[ b̄,ā]50. ~48!

Finally the local expansion is controlled by

1

8pF8
@gmn~Dn]mf22Cln

l ]mf!1m2f#1e4fT̄50.

~49!

Equation~45! implies that

1

8pG
Rs

m2
1

8pF
Tr~ j s j m!2

1

8pF8
gsn]nf]mf

1
1

8pF

m2

8
dm

s~Ma
āMa

ā1Mā
aMā

a2g!

1
1

8pF8

m2

2
dm

sf25e4fS T̄s
m2

1

2
dm

s T̄D . ~50!

Although rather complex, these equations are surprisin
susceptible of analysis as we show below.

VII. BIANCHI IDENTITY

Just as in standard general relativity it is necessary
check that the theory satisfies the integrability conditions
sociated with the Bianchi identity. In the presence of tors
this is changed to the following:

Rltmn;s1Rltns;m1Rltsm;n522~RltrmCns
r 1RltrnCsm

r

1RltrsCmn
r !, ~51!

where ;m indicates the covariant derivativeDm . In the con-
tracted version it becomes

S Rm
s2

1

2
ds

mRD
;m

5Rmn
rsCmn

r 12Rm
rCsm

r . ~52!

If we take the covariant divergence of the left side of E
~45! and make use of the equations of motion together w
the identity

j m
ab5ean~ Ḡmn

l 2Gmn
l !el

b2hab]mf, ~53!
3-4
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we obtain the result

D̄sT̄s
l52C̄sl

s T̄22C̄sl
t T̄s

t . ~54!

It is easily checked that this is equivalent to the stand
conservation law

Ds
(ḡ)T̄s

l50, ~55!

whereDs
(ḡ) is the covariant derivative formed from the me

ric connection arising fromḡmn .

VIII. CONNECTION STRUCTURE

In standard general relativity the assumption that ma
couples to gravity only through the metric means that tors
plays no role in the theory. In the theory presented here
make the same assumption about matter. However, bec
of the extra complexity of the theoretical structure, torsion
in general not zero. Nevertheless, the equations of motion
permit the connection structure to be elucidated in a strai
forward way.

The starting point of the analysis is Eq.~48! which reveals
that the antisymmetric part ofj̄ māb̄ vanishes. It allows us to
expressv̄māb̄ in terms of the other dynamical variables a
hence eliminate it from the equations of motion.

We now expressj mab in terms of the symmetric part o
j̄ māb̄ as follows:

j mab5Ma
ā j̄ māb̄M b̄

b5Ma
ā j̄ m$ā,b̄%M

b̄
b . ~56!

We can write this more explicitly in the form

j mab5
1

2
Ma

ā~Mā
c]mMcb̄1Mā

cvmc
dMdb̄1Mb̄

c]mMcā

1Mb̄
cvmc

dMdā!M
b̄

b , ~57!

which shows thatj mab is a linear function ofvmab .
The torsion tensor is also a linear function ofvmab . The

covariant constancy ofema implies that

Gmn
l 5eal~]mena1vma

benb!. ~58!

Hence

Cmn
l 5

1

2
eal~]mena1vma

benb2]nema2vna
bemb!. ~59!

If we define

Clmn5glsCmn
s ~60!

and

vmln5el
aen

bvmab , ~61!

then we obtainvmab as a linear function of the torsion:

vmln5Clmn2Cnml1Cmln1v̂mln , ~62!
04350
d
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wherev̂mln is the metric version ofvmln and is given by

v̂mln5
1

2
~en

a]mela2el
a]mena1]nglm2]lgnm!. ~63!

We note that Eq.~47! relates the torsion tensorCmn
l linearly

to j mab :

Csmn1Clm
l gns2Cln

l gms52Xsmn , ~64!

where

Xsmn5
G

F
j s[m,n] ~65!

and

j smn5em
aen

bj sab . ~66!

It follows that

Csmn52Xsmn2
1

2
Xlm

l gns1
1

2
Xln

l gms . ~67!

Finally we have the linear relation

vmln52Xlmn1Xnml2Xmln2Xtl
t gmn1Xtn

t gml1v̂mln ,
~68!

which determinesvmab in terms of the other dynamical vari
ables.

For future reference and to show that the above equa
can take a simple form in special cases we computej lab
when the matrixM takes a diagonal form, namely

Ma
ā5Lad ā

a and Mā
a5La

21da
ā . ~69!

We enforce an obvious correspondence between the va
of the symbolsa and ā to give meaning to thed symbols.
We can computej mab from Eq. ~57! to obtain

j lab5
]lLa

La
hab1

1

2
vlabS 12

La
2

Lb
2D , ~70!

with the simple result

j l[a,b]5
1

4
vlabS 22

La
2

Lb
2

2
Lb

2

La
2D . ~71!

Used in conjunction with Eq.~68! this leads to an easy
evaluation of the vierbein connection.

IX. WEAK FIELD LIMIT

In order to apply it to planetary motion, galaxies and g
lactic clusters it is appropriate to examine the theory in
limit of weak gravitational fields. Since we are consideri
relatively local objects in an effectively flat background, w
will choose the parameterg58 in order to set the cosmo
logical constant to zero.
3-5
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The weak field limit has the form

ema5ema
(0)1hma , ~72!

where

e(0)
mae(0)

n
a5hmn . ~73!

Similarly we can set

ēmā5ēmā
(0)

1h̄mā , ~74!

where

ē(0)
māē(0)

n
ā5hmn . ~75!

The connectionsvmab , v̄māb̄ and the scaling fieldf are
first order quantities. The matrixM has the form

Ma
ā5M (0)a

ā1ma
ā , ~76!

where M (0) is a constant Lorentz transformation. We ha
then

M (0) ā
a5M (0)

a
ā. ~77!

We can useM (0) and its inverse ande(0) andē(0) to convert
superfixes and suffixes between the various bases. Fo
ample we have

ma
b5ma

āM (0) ā
b . ~78!

The requirement that detM51 implies that

ma
a5mā

ā5mm
m50. ~79!

The relationship betweene and ē implies that

h̄mā5hmā1mmā1fēmā
(0)

~80!

or

h̄mn5hmn1mmn1fhmn , ~81!

together with corresponding equations in other bases.
To lowest order,

Rabmn5]mvnab2]nvmab . ~82!

Hence

Rs
m5e(0)ase(0)bnRabmn , ~83!

so that

Rs
m5]mvn

sn2]nvm
sn, ~84!

and

R52]mvn
mn. ~85!

Again, in the lowest order approximation,
04350
x-

j mab5]mmab1vmab2v̄mab . ~86!

If we convert to the coordinate basis, we have

j mlt5]mmlt1vmlt2v̄mlt . ~87!

We can also evaluatej̄ m . In this lowest approximation it
coincides withj m . From Eq.~47! we have

j̄ m[l,t]5 j m[l,t]50. ~88!

That is

]sm[l,t]1vslt2v̄slt50. ~89!

From Eq. ~47! we see that the torsion in the gravitation
vierbein bundle vanishes. Explicitly we have

Cmn
l 5

1

2
~]mhn

l2]nhm
l1vm

l
n2vn

l
m!50. ~90!

Equation~46! yields

hms]m~]smlt1vslt2v̄slt!1m2m$l,t%528pFUlt ,
~91!

where

Ult5T̄lt2
1

4
hltT̄, ~92!

and we have assumed thatT̄mn and henceUmn are first order
quantities. Making use of Eq.~89! we obtain the result

hms]m]sm$l,t%1m2m$l,t%528pFS T̄lt2
1

4
hltT̄D .

~93!

Because we setg58 in Eq. ~45!, we obtain

Rsl2
1

2
hslR58pGT̄sl . ~94!

In the present approximationm[m,n] can be removed by
gauge transformations of the form

vslt→vslt1]sflt and v̄slt→v̄slt1]sf̄lt .
~95!

We can assume therefore that in this approximationm[m,n]
vanishes. Thereforemmn may be assumed symmetric. It sa
isfies

~]21m2!mmn528pFS T̄mn2
1

4
hmnT̄D . ~96!

The gauge invariance referred to above means also tha
are free to choosehmn to be symmetric with the result tha
h̄mn is also symmetric. Under these circumstances we
solve Eq.~90! to yield
3-6
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vnlm5]mhnl2]lhnm . ~97!

Equation~45! now implies that

]m]nhn
s1]s]nhn

m2]2hms2]m]shn
n

2hsm~]n]th
nt2]2hn

n!58pGT̄sm . ~98!

We now refine our coordinate system by choosing the h
monic gauge

gmnGmn
l 50. ~99!

In the lowest approximation it yields

]mhm
l5

1

2
]lhm

m . ~100!

The equation of motion then becomes

]2S hms2
1

2
hmsht

tD528pGT̄ms ~101!

or

]2hms528pGS T̄ms2
1

2
hmsT̄D . ~102!

The equation forf is

~]21m2!f528pF8T̄. ~103!

To demonstrate how the theory matches up to the stan
tests of general relativity we consider its implications f
phenomena on a scale such as the solar system that is
smaller than the galactic scale. For such applications we
set m50. We will return to the problem with the galacti
scale parameter later.

By combining the above equations we find for the ma
less case

]2h̄mn528p~G1F !T̄mn18pS 1

2
G1

1

4
F2F8DhmnT̄.

~104!

By making use of the result]sT̄n
s50, we can show also

that

]2@]mh̄m
n2j]nh̄m

m#50, ~105!

where

j5

1
2 G1 1

4 F2F8

G24F8
. ~106!

Assuming then that the relevant fields are sourced by
energy momentum tensor we can maintain the condition

]mh̄m
n2j]nh̄m

m50. ~107!
04350
r-

rd

uch
an

-

e

For arbitrary F8 this gauge condition onh̄mn is different
from that onhmn . However, the choice

F852
1

4
F ~108!

is of special interest. We have thenj5 1
2 . As a resulth̄mn

satisfies the same harmonic condition ashmn :

]mh̄m
n2

1

2
]nh̄m

m50. ~109!

The wave equation forhmn also takes a significant form an
becomes

]2h̄mn528p~G1F !S T̄mn2
1

2
hmnT̄D . ~110!

It follows that for this choice ofF8 weak field gravity is
related to the matter distribution exactly as in general re
tivity if we set Newton’s constantGN5G1F. Hereafter we
will assume thatF8 has this special value and that Newton
constant is obtained in this way from the theory.

For example in a static situation where]252¹2, T̄00

5T̄5r ~the density of matter! we have

¹2h̄0054pGNr. ~111!

Of course we can interpreth̄00 as the gravitational potentia
experienced by a material particle. In addition the spatial p
of the metric satisfies

¹2h̄i j 54pGNrd i j . ~112!

This is precisely the form for the spatial metric to yield Ei
stein’s prediction for the deflection of light and to satisfy t
time-of-flight measurements of radio signals@17,18#.

The remaining solar system scale test is the precessio
the orbit of Mercury. This requires a higher order correcti
than the Newtonian approximation of the weak field lim
For reasons of space we do not present this calculation
but we have checked the consistency of the theory on
point by examining the asymptotic behavior of th
Schwarzschild-like solution. The result is that the refinem
of the Newtonian potential that produces the precessio
correctly given by the theory.

It is clear from the wave equation forh̄mn , Eq. ~110!, and
the associated gauge condition, Eq.~109!, that the gravita-
tional waves emitted by a time dependent matter distribut
will be exactly the same as predicted by general relativ
~GR!. The detection of these waves by ordinary matter w
also be entirely conventional. It is reasonable to conclu
that the observations of the slowing of a binary quasar and
conformity with the predictions of GR will be reproduced
our theory@23–25#.

There are circumstances in which the bi-metric theo
could show differences with general relativity. These wou
occur were there to be a form of matter that coupled direc
to the metricgmn . Such matter would act as a source for a
3-7
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react to the unbarred metric. In the weak field limit it wou
therefore behave as ifGN5G and if mixed with other matter
would imply that the equivalence principle did not hold. P
of our theory of ordinary matter and gravity is that su
anomalous matter is not present. This is the assumption
use throughout this paper.

X. ‘‘DARK MATTER’’ AND THE GALACTIC SCALE

In order to apply our theory to objects of galactic or ext
galactic size we restore the ‘‘mass’’ parameterm. Our hy-
pothesis is thatm21 is a length of the order of 30 kpc. As
signing such a value tom21 achieves the purpose that th
theory exhibits three regions of length scale, namely~i! 0–1
kpc in which conventional Newtonian gravity holds sw
and for which the theory of the previous section is releva
~ii ! 1–100 kpc, a transition region appropriate to galac
dynamics, and~iii ! above 100 kpc in which Newtonian grav
ity with an enhanced coupling appears.

To analyze the gravitational effect of the galactic scale
set

h̄mn5hmn1hmn8 , ~113!

where

hmn8 5mmn1fhmn , ~114!

while hmn satisfies Eq.~102! andhmn8 satisfies

~]21m2!hmn8 528pFS T̄mn2
1

2
hmnT̄D . ~115!

Therefore while a highly localized matter distribution
massM at the origin yields

h0052GM
1

r
~116!

it gives rise to

h008 52FM
e2mr

r
~117!

for the remaining part of the metric. We have then

h̄0052
GM

r S 11
F

G
e2mrD . ~118!

It follows that the effective gravitational coupling formr
!1 is GN5G1F, while at distances beyond the galac
scale for whichmr@1, the effective coupling isG. Our
hypothesis is thatGN,G so that gravity is weaker at sho
distances than at long distances. This is the basis of
explanation for ‘‘dark matter.’’ For this to be true we clear
must haveF,0. We set

F52eG, ~119!

with e.0, so the above gravitational potential becomes
04350
t

e
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t,
c
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ur

h̄0052
GNM

~12e!

~12ee2mr!

r
. ~120!

More generally for a matter distributionr(r ) we have

h̄00~r !52E d3r 8r~r 8!
GN

~12e!

~12ee2mur2r8u!

ur2r 8u
.

~121!

We believe that this choice of a negative sign forF is in fact
the ‘‘natural’’ choice and stabilizes the theory against tu
bling of one vierbein relative to the other@21#. A simplified
analysis supporting this view is presented in the Append
Tumbling can turn a time direction in one vierbein into
space direction in the other if it is too severe. Such a sit
tion would create difficulties for causal structure in th
theory.

A. Galactic clusters

For objects much greater than galactic size such as ga
tic clusters, there is ample evidence that the observed m
is insufficient to account for the gravitational potential i
ferred from applications of the virial theorem to the motio
of galaxies in the cluster@5,6#. Currently the picture of such
clusters is that 5–10 % of the mass is galactic in origin w
a further contribution from hot gas. The bulk of the gravit
tional potential is accounted for by dark matter. It is al
significant that a detailed analysis of clusters suggests
the dark matter distribution follows that of the visible matt
@6#. The clusters appear to be condensed versions of the l
background.

The explanation of this effect is straightforward in o
model. The appearance of dark matter is simply the con
quence of an enhanced gravitational coupling of visible m
ter. The parametere represents the dark fraction of appare
matter. On the basis of the above observations we sho
expecte.0.9–0.95. Note that because our extragalactic
namics is still Newtonian, although with an enhanced co
pling, it is still possible to apply analyses of galactic cluste
that rely on the virial theorem for an inverse square law
force between galaxies@5#.

The inverse square law is also crucial for the argum
relating the motion of the local group to optical flux due
galaxies@32#. The close alignment of the motion of the loc
group through the cosmic microwave background~CMB!
with the net optical flux confirms that fluctuations in th
distribution of visible and dark matter are closely correlate
Disparities in the visible and dark matter distributions wou
tend to destroy this alignment. In our theory of course,
distribution of dark matter is identical to that of visible ma
ter of which it is merely a reflection. There is no room f
any bias between visible and dark matter fluctuations.

We will see later that the re-interpretation of dark mat
as an enhancement of the Newtonian constant at large s
extends also to the dynamics of the expanding universe.

This picture of strong large-scale gravity with weak sho
scale gravity has already been proposed as the FLAG
nario by Sanders@29,30#. There are distinctions between th
3-8
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BIMETRIC GRAVITY AND ‘‘DARK MATTER’’ PHYSICAL REVIEW D 63 043503
model and our proposal. As emphasized by Sanders
FLAG model is an intuitive extension of the vector mes
anti-gravity suggestion of Scherk@31#. Our model is a com-
plete geometrical theory with a well-defined dynamical sta
ing point. Some of the predictions of the FLAG model a
not acceptable. In particular the gravitational deflection
light is determined by strong gravity and so is an order
magnitude greater than the Einstein deflection even on
scale of the solar system. In our model, as we have sh
above, the deflection, along with all other short-scale p
nomena, is consistent with the predictions of general rela
ity.

B. Galactic rotation curves

On a galactic scale we are concerned with the rota
curves of galaxies. The apparent asymptotic flatness of m
of these curves is usually taken as the most direct evide
for dark matter@1–4#. Our explanation rests on the modifi
cation of the gravitational interaction described above
turns out that by choosing a value fore in the range sug-
gested by large scale dynamics it is possible, using a
model, appropriate for certain spiral galaxies, to comp
rotation curves that exhibit the features of observed rota
curves.

As an example we construct a model galaxy with a t
disk of surface density

s~r !5sde2adr . ~122!

The mass of the disk ismd52psd /ad
2 . The gravitational

potential in the plane of the galaxy is

c~r !52
GNsd

12e E d2r 8e2adr 8
1

ur2r 8u
~12ee2mur2r8u!,

~123!

and the tangential rotational velocity,v, is given by

v25r•¹c~r !

5
GNsdad

12e E d2r 8e2adr 8r• r̂ 8
1

ur2r 8u
~12ee2mur2r8u!.

~124!

The galaxy NGC 3198 has a well-measured rotation cu
and it is accepted that a simple exponential disk model g
a good account of its luminosity distribution@4#. We assume
a mass distribution with the same exponential shape. In
1 we show the resulting rotation curve where we have cho
the galaxy parameters to bead50.38 kpc21 and md52.9
31010M ( ; these are quite close to the values of a previo
dark matter analysis@4#. The theory parameters are chosen
be e50.937 andm50.035 kpc21 or m21528.6 kpc. We
stress that these parameters are not a best fit but merel
result of eyeball exploration. However, it is not easy to
duce the value ofe value by much and obtain a convincin
shape. It is encouraging thate does lie in the range we an
ticipated from our discussion of extragalactic structure.
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Figure 1 also shows the standard Newtonian curve for
assumed mass distribution. The difference between the
curves is normally attributed to dark matter. Here we achie
the same effect by means of our modified gravity theo
Figure 2 shows the extrapolation of the curve to larger
dius. There is clearly a beginning of a falloff around 90–1
kpc although there is still a substantial rotational velocity o
to 400 kpc. The rotation curve becomes Newtonian but w
an enhanced gravitational coupling

v.AGMd

r
. ~125!

Of course the challenge to our theory is to fit all galac
rotation curves simultaneously with common values form
and e and plausible masses and mass distributions for
galaxies. This is no easy task since many galaxies hav
more complicated structure than NGC3198 and deta
modeling will be required to determine the adequacy of o

FIG. 1. Data for NGC3198 compared to exponential disk mo
with enhanced gravity~solid line! and the Newtonian~no enhance-
ment! curve for the same mass~dashed line!.

FIG. 2. The extended rotation curve for the exponential d
model with enhanced gravity~solid line! and the Newtonian~no
enhancement! curve for the same mass~dashed line!.
3-9
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theoretical predictions. We intend to pursue this task in
future. However, one prediction of the theory does not
quire such a detailed attack. We predict thatall galactic ro-
tation curves will fall away in the range 100–200 kpc fro
the galactic center. Measurements in this range and bey
would be a direct test of our ideas.

Similar success in fitting the rotation curve of NGC31
was achieved by Sanders within his FLAG model@29,30#.
Indeed in parametrizing a modified Newtonian law for m
ter the two models are equivalent. For this reason San
also anticipated many of the points made above.

Our proposal of a galactic scale determining the shape
rotation curves must be reconciled with the construction o
proposed universal scaling curve for galaxies@33#. This ap-
proach takes the optical radius of the galaxy as the sig
cant length scale and uses a statistical approach to ob
well-defined rotation curves for classes of galaxies, thus
vealing systematic relationships among them. Whether
galactic phenomenology can be accommodated within
proposal remains to be seen. There is freedom within
model to parametrize mass distributions and this flexibi
gives some hope that the detailed modeling required to
our theory will provide an equally good description of gala
tic rotation curves. More importantly, however, if a comm
scale for the underlying structure of all galaxies were to
established, it would hold out the prospect of better dista
measurements and hence the possibility of measuring
Hubble constant with more certainty.

C. Expanding universe

Finally we wish to show that when the matter density
small as in the present epoch, the expansion of the univ
is controlled by the standard equations of general relati
but with Newton’s constant,GN , replaced by the enhance
constantG. In other words the dark matter component r
quired to relate the visible matter to the observed Hub
constant is again supplied by the enhancement mechan
Of course a complete reconciliation of the equations w
observation requires a contribution to the energy den
from the cosmological constant. This necessity can be
tered for also in our theory.

To apply our theory we take the usual starting point t
the spatial sections of the universe are isotropic and ho
geneous. In the present approach we meet these requirem
by assuming that there exist basis vierbein fields,Ema , such
that EtaEtbhab51 andEtaEmbhab50 for mÞt. We choose
our coordinates so thatEta is constant in space-time andEma
depends only on coordinates on the spatial section whem
Þt. We finally fix the nature of the space-time model
choosing structure constantsf bca so that

]mEna2]nEma52 f bcaEm
bEn

c. ~126!

Of coursef bca vanishes if any of the suffixes is 0~timelike!.
For a spatially flat universe all structure constants have
value zero. For a universe of positive spatial curvature
spatial constantsf jki52e jki , where 2 is a convenient nor
malization, and for a negatively curved universef jki5d i j nk
2d iknj wherenk is an arbitrary unit three-vector.
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We construct the expanding universe by choosing
gravitational vierbein to have the form

ema5AaEma , ~127!

where

A051 and Ai5A~ t !, ~128!

A similar structure is maintained for the matter vierbein
requiring the transformation matrixM to be diagonal. That is
~we equivalence the labelsa and ā in the obvious way!,

ēmā5efLaema5ĀaEma and Āa5LaAaef, ~129!

where L05L(t) and L i5LS(t). The requirement tha
detM51 implies thatLS5L21/3.

Using the above information and Eq.~63! we find that

v̂ i0 j52v̂ i j 05
Ȧ

A
d i j ~130!

and

v̂ i jk52
1

2A
~ f i jk1 f ki j1 f k j i !. ~131!

All other components vanish. A similar structure is found f
vabc . From Eq.~71! we obtain

v i0 j52v i j 05
Ȧ

AE
d i j , ~132!

where

E512
G

4F S 22
L2

LS
2

2
LS

2

L2D ~133!

and

v i jk5v̂ i jk . ~134!

From Eq.~14! we find, for the relevant components of th
curvature tensor,

R0052
3

A
] tS Ȧ

E
D ~135!

and

Ri j 5F 1

A
] tS Ȧ

E
D 12S Ȧ

AE
D 2Gd i j 2

1

4A2
~ f k j l1 f l jk1 f lk j !

3~ f l ik1 f kil1 f kli !1
1

2A2
~ f j ik1 f k j i1 f ki j ! f lkl .

~136!

If we evaluate this expression for the three curvature ca
we find

Ri j 5F 1

A
] tS Ȧ

E
D 12S Ȧ

AE
D 2

1
2k

A2Gd i j , ~137!
3-10
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where conventionallyk50,61 according as the spatial cu
vature is zero, positive or negative. We also have, from
~70!,

j tabj t
ba5

4

3
S L̇

L
D 2

~138!

and

j iabj j
ba5

1

2
S Ȧ

AE
D 2S 22

L2

LS
2

2
LS

2

L2D d i j . ~139!

If we denote the matter energy density and pressure br
andp respectively, then from Eq.~45! we obtain

2
3

A
] tS Ȧ

E
D 2

4G

3F
S L̇

L
D 2

2
G

F8
ḟ21

G

F

m2

8
~L21L2213LS

2

13LS
222g!1

G

F8

m2

2
f254pGe4f~r13p! ~140!

and

1

A
] tS Ȧ

E
D 12ES Ȧ

AE
D 2

1
2k

A2
2

G

F

m2

8
~L21L2213LS

2

13LS
222g!2

G

F8

m2

2
f254pGe4f~r2p!. ~141!

From Eq.~46! we find

] tS L̇

L
D 13

Ȧ

A

L̇

L
2

3

2
S Ȧ

AE
D 2S L2

LS
2

2
LS

2

L D
1

3m2

16
~L22L222LS

21LS
22!526pFe4f~r1p!.

~142!

Finally from Eq.~49! we obtain

f̈1
3Ȧ

A
ḟ1m2f528pF8e4f~r23p!. ~143!

Equations~140! and~141! can be combined to eliminate th
second derivative int:

ES Ȧ

AE
D 2

1
k

A2
2

2

9

G

F
S L̇

L
D 2

2
1

6

G

F8
ḟ22

G

F

m2

24
~L21L22

13LS
213LS

222g!2
G

F8

m2

6
f25

8pG

3
e4fr. ~144!

If we multiply this equation byA2 and differentiate with
respect tot, we can use the above equations of motion
deduce that
04350
.

o

ṙ5S L̇

L
23

Ȧ

A
23ḟ D ~r1p!. ~145!

This is easily re-expressed as

] tS r
e3fA3

L D1p] tS e3fA3

L D ~146!

or

] t~rĀ3!1p] t~Ā3!, ~147!

where Ā5efAL21/3 is the cosmic radius parameter appr
priate to matter. Equation~147! is therefore the standar
equation for the conservation of the energy-momentum t
sor in this special case, as we should have expected.

The above equations are rather complicated but can
simplified if we ask how they might be applied to our e
panding universe in which the pressure vanishes and the
ter density is low and getting lower. In the absence of ma
Eq. ~145! has a solution for whichf[0. For weak density
we assume that there is a solution for whichf.O(r). We
have then, as a leading approximation,

f̈1
3Ȧ

A
ḟ1m2f528pF8r. ~148!

The form of this equation suggests that, ignoring transie
the solution is to a good approximation

f52
8pF8

m2
r52

2peG

m2
r. ~149!

We expect then thatf will remain O(r). If we setL5ej

and omit all termsO(j2), thenE.1 and Eq.~143! becomes

j̈13
Ȧ

A
j̇1Fm228S Ȧ

A
D 2Gj526pFr. ~150!

Again we expect there to be a solutionj5O(r). If now we
neglect all termsO(r2), we obtain the equations

S Ȧ

A
D 2

1
k

A2
5

8pG

3
~r1rCC!, ~151!

where the energy density associated with the cosmolog
constant,rCC , is given by

rCC5
m2

8pF S 12
g

8D5
m2~12e!

8pGNe S g

8
21D ~152!

and

] t~rA3!50. ~153!

These are the standard equations for the expanding univ
but with Newton’s constantGN replaced by the enhance
constantG. To lowest order inr the parametert is also the
proper time of comoving matter in its own metric since t
3-11
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two metrics coincide under these circumstances. It follo
that Hubble’s constantH05Ȧ/A and the current deceleratio
parameter isq052ÄA/Ȧ2 and that the critical density for a
flat universe is

rc5
3H0

2

8pG
5

3H0
2

8pGN
~12e!. ~154!

So rc in our theory is between 1/10th and 1/20th the va
appropriate to standard general relativity. This brings
within range of visible matter@34#. In fact recent measure
ments of distant supernovas@35# lead to an estimate ofq0
that suggestsr50.33rc andrCC50.73rc ~assuming a flat
universe@36#! with the further implication that in the presen
theory, visible matter may support the current expansion
the universe albeit with the help of a cosmological consta

XI. CONCLUSIONS

In this paper we have constructed a modified theory
gravity that fits all the standard tests of general relativity t
can be made on the scale of the solar system including
bending of light by the sun, time delay measurements and
precession of Mercury’s orbit. The theory is a bi-met
theory of a novel kind with a very geometrical structure.
has the flexibility to permit the introduction of a galact
length-scale of roughly 30 kpc. Gravitational effects of m
ter at distances below the galactic scale, in the solar sys
for example, are of a conventional kind and of a stren
determined by Newton’s constant,GN . This outcome is
achieved in the theory as the result of a competition betw
two gravitational effects, a strong attraction and a repuls
that is nearly as strong. Over the range of the galactic s
the theory allows the repulsion to fade out exponentia
leaving the much stronger underlying gravity to sho
through. The gravitational effects of matter on this lar
scale are also conventional in character but of a stren
determined by the much stronger underlying gravitatio
constantG.102203GN . These results are consistent wi
observations of galactic clusters and also apply to the exp
sion of the universe as a whole. As a result the critical d
sity for a flat universe is between 1/10th and 1/20th of
value calculated in general relativity. This makes it mo
plausible that visible baryonic matter can support the exp
sion of the universe without dark matter, though supp
mented by a cosmological constant.

The theory provides a natural explanation for the te
dency of dark matter to follow the distribution of visibl
matter since the former is simply an amplification of t
latter. Dark matter does not have a separate dynamics o
own. On this basis the apparent dark matter is not in any w
biased in its fluctuation structure relative to visible matte

We showed that at least for the galaxy NGC3198
theory can reproduce the rotation curve out to 30 kpc~the
end of the measured range! equally as well as dark matte
models. The theory also predicts that the rotation curve
fall away in the 100–200 kpc range and eventually tend t
standard inverse square root of distance behavior but wit
apparent mass 10–20 times the expected mass of the g
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(;331010M ( for NGC3198! if the conventional Newton-
ian constant is used for the estimate. Our theory howe
assigns the expected mass but uses the enhanced valu
the gravitational constant appropriate at extra-galactic
tances. This phenomenon should appear for all galaxies.
therefore important for the theory to test rotation curves
distances of 100–200 kpc from the galactic center. It is a
important to test the effectiveness of the theory in a range
galaxies and to arrive at a consistent picture with a comm
set of gravitational parameters. This task requires a g
understanding of the structure of individual galaxies and
curate knowledge of their distance. However, we note t
the establishment of a fixed scale associated with all gala
would be of considerable help in establishing galactic d
tances.

In addition to the incomplete phenomenological analy
discussed above there are many issues yet to be explor
our bi-metric theory. Of particular importance are the dev
opment of density fluctuations, dynamics and formation
galaxies using the modified gravitational law, and evoluti
of the early universe. In this last context the ability of b
metric theories to support anomalous propagation of sign
~VSL phenomena! will be of great importance. The existenc
within the theory of black holes is also a topic that it wou
be very interesting to resolve. On intuitive grounds it see
reasonable to suppose that black holes will exist in
theory but the nature of the horizon may be more com
cated than in general relativity because of its double lig
cone structure.
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APPENDIX

Because of the indefinite character of the local Lore
metric, it turns out that the degrees of freedom in the linki
field M can lie in a number of distinct sectors. We can illu
trate this idea by considering a configuration for whichM is
non-trivial only in the (0,1) plane. By confining attention
this plane we can treatM as a two-dimensional matrix of th
form

M5S a b

c dD , ~A1!

wheread2bc51. The quantity

f 5a21d22b22c2 ~A2!

is invariant under separate left and right~two-dimensional!
Lorentz transformations ofM. We can therefore set

M5LSL8, ~A3!

whereL andL8 are independent Lorentz transformations a
S can be given a special form that depends on the valuef
as follows:
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For f >2 the special form forS is

S5S l 0

0 l21D , ~A4!

where2`,l,` and f 5l21l22. For 22< f g<2 S has
the form

S5S cosu 2sinu

sinu cosu D , ~A5!

where 0<u<p/2 and f 52 cos2 u22 sin2 u52 cos 2u. The
remaining possibility isf <22 whenS is given by

S5S 0 2l21

l 0 D . ~A6!

where f 52(l21l22)<22.
The three ranges together cover all possibilities for

value off. We therefore can conclude that the matrixM will
be gauge equivalent to the appropriate special formS pro-
vided that form is chosen according to the value off.

If f lies in the first range, then

j m.]mS l 0

0 l21D S l21 0

0 l
D 5S 1 0

0 21D S ]ml

l D ,

~A7!

and the linking action will have the form
d,

J.

is

04350
e

I L.2
2

16peGE d4xJgmnS ]ml

l D S ]nl

l D . ~A8!

If f lies in the second range, then

j m.]mS cosu 2sinu

sinu cosu D S cosu sinu

2sinu cosu D 5S 0 21

1 0 D ]mu,

~A9!

and the linking action will have the form

I L.
2

16peGE d4xJgmn]mu]nu. ~A10!

The third range can be dealt with similarly.
A key point is the change sign in the action between

two ranges. The second range represents tumbling of
matter vierbein relative to the gravitational vierbein. This
an undesirable effect since it can lead to an interchang
space and time. However, the relevant sign for the ac
suggests that a positive energy is generated by motion of
kind with the result that it is likely to be restrained. In th
first region the kinetic energy term is negative, suggesting
instability for this kind of straining between the veirbein
This is not obviously a bad thing. An effect of this kind ca
be discerned in the equations for the expansion of
Friedman-Robertson-Walker~FRW-! type universe dis-
cussed above. More complicated possibilities of a sim
kind exist for the four dimensional case.
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