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Stars and black holes in varying speed of light theories

João Magueijo
Theoretical Physics, The Blackett Laboratory, Imperial College, Prince Consort Road, London, SW7 2BZ, United Kingdom

~Received 31 July 2000; published 18 January 2001!

We investigate spherically symmetric solutions to a recently proposed covariant and locally Lorentz-
invariant varying speed of light theory. We find the metrics and variations inc associated with the counterpart
of black holes, the outside of a star, and stellar collapse. The remarkable novelty is thatc goes to zero or
infinity ~depending on parameter signs! at the horizon. We show how this implies that, with appropriate
parameters, observers are prevented from entering the horizon. Concomitantly stellar collapse may end in a
‘‘Schwarzchild radius’’ remnant. We then find formulas for gravitational light deflection, gravitational redshift,
radar echo delay, and the precession of the perihelion of Mercury, highlighting how these may differ distinctly
from their Einstein counterparts but still evade experimental constraints. The main tell-tale signature of this
theory is the prediction of the observation of a different value for the fine structure constant,a, in spectral lines
formed in the surface of stars. We close by mentioning a variety of new classical and quantum effects near
stars, such as aging gradients and particle production.
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I. INTRODUCTION

The possibility that the speed of lightc might vary has
recently attracted considerable attention@1–21#. Most nota-
bly, in a cosmological setting, temporal variations inc have
been shown to solve the so-called cosmological puzzles
the horizon, flatness, and Lambda problems of big-bang
mology. At a more conceptual level it is clear that varyi
speed of light~VSL! theories require extreme departur
from the standard framework of physics, since they con
dict the leading postulate behind relativity and Lorentz
variance. A number of alternative implementations for VS
have been discussed, involving either hard@2# or soft @1#
breaking of Lorentz invariance.

In a recent paper@19# it was shown that contrary to popu
lar belief it is possible to set up covariant and locally Loren
invariant VSL theories, as long as these concepts are su
to very minimal generalizations. As a matter of fact the n
essary generalizations glean from the usual definitions
that is operationally meaningful, in the sense that the asp
they preserve are exactly those which can be the outcom
experiment. Such a formulation arguably provides the m
conservative VSL theory one may set up. It is found that
such theories the local value ofc is determined via a differ-
ential equation, containing as source terms the cosmolog
constant and the matter Lagrangian.

Naturally in such theoriesc varies not only in time~over
cosmological time scales! but also in space, once the inho
mogeneity of the Universe is taken into account@22#. In the
simplest case one should investigate such a phenomeno
seeking static and spherically symmetric solutions. Suc
the purpose of this paper. We investigate VSL solutions r
resenting the counterpart of black holes, the exterior of a s
and stellar collapse. It should be stressed that it is such
lutions, not the cosmological ones, that bear relevance
many experimental tests~a point entirely missed by@20#!.

In Sec. II we start by reviewing the key aspects of t
theory proposed in@19#. Then in Sec. III we consider stati
spherically symmetric solutions, both in isotropic and rad
0556-2821/2001/63~4!/043502~14!/$15.00 63 0435
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coordinates. We find the limit under which the Schwarzch
solution is still a solution of our theory, and note thatc goes
to zero or infinity at the horizon. We also find the mo
general solution, which is similar to the solution found
@24#; however the relationship between the various para
eters in@24# is new. In all of these solutions we find thatc
must go to zero or infinity at the horizon. This is not acc
dental, and in Sec. IV we sketch a proof showing why this
generally the case.

The last result has two very significant implications. T
first is discussed in Sec. V, and corresponds to the na
expectation that ifc goes to zero fast enough at the horiz
then no observer can actually reach it. Indeedc still acts as a
local speed limit. This insight proves to be true, even whe
number of complications are taken into account. First
field c may also act as a gravitational field, pushing fre
falling particles off geodesics, accelerating or braking the
Secondly, asc changes so do all fine structure constants, a
also the time rates of the interactions they promote. O
should attach the definition of time to these rates, and ex
ine the problem of an observer falling into a black hole fro
the point of view of the number of ticks of such ‘‘interactio
time.’’ We find that when all this is taken into account, the
is still a large region of parameter space for which reach
the horizon requires infinite free-falling time. VSL blac
holes are therefore not covered by an ‘‘horizon’’ but instea
the horizon represents an edge of space-time to be put on
same level as the asymptotic spatial infinity. This has
implication that the singularity may be excised from t
manifold — we conjecture that perhaps one can get rid of
singularities in a similar way in VSL theories.

Another interesting result is described in Sec. VI: stel
collapse may take infinite interaction time when viewed
an observer on the surface of the collapsing star. This
lows directly from the above considerations, and implies t
the end point of stellar collapse must be a Schwarzchild re
nant. As this is formed the speed of light goes to zero for
points inside the star, thereby freezing all processes and
venting the formation of a singularity.
©2001 The American Physical Society02-1
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The final part of this paper, contained in Sec. VII, is d
voted to possible experimental tests for this theory ba
upon solar system gravitational physics. We concentrate
the classical tests of GR~general gelativity!, leaving to a
future publication the analysis of more recent~but more
complex! experiments, such as the binary pulsar PSR 1
1 16 @23#. We examine the effects of VSL upon the orbits
planets, gravitational light deflection, and the radar ec
time-delay. The real novelty is, however, the effects upon
spectral lines formed at the surface of stars, for which
theory predicts a fine structure different from laborato
measurements. We find that it is possible to reproduce all
standard GR tests, and still have a non-negligible spec
effect. The application of techniques similar to the ones
veloped by Webbet al. @25# should put this theory to the tes

We conclude with a brief qualitative discussion of an a
sortment of exotic new phenomena expected in the vicin
of very massive stars in VSL theories.

II. SUMMARY OF THE THEORY

We first summarize the covariant and locally Lorentz
variant VSL theory proposed in@19#. In this theory the speed
of light plays 3 distinct roles~corresponding to independen
aspects of the theory! parametrized by numbersq, k, a, b,
andb.

At its most innocuous, VSL is nothing but a theory pr
dicting changing fine structure constantsa i5gi

2/(\c) ~in
which i labels the various interactions, andgi are charges!,
with fixed ratiosa i /a j . Choosing units such that chang
are attributed primarily toc is useful simply because the
lead to a simpler picture. A fixed-c dual theory may be ob
tained by a change of units, but the ensuing local dynamic
then rather contrived. Also, important global features may
missed in fixed-c units ~e.g. the trans-eternal regions, or th
black hole edges discussed in@19#!. In @19# we then required
that the matter Lagrangian should not depend onc; this fact
alone fixes the scaling withc of all Lagrangian parameter
up to the\(c) dependence. In particular particle rest en
gies scale likeE0}\c, and all gauge charges likegi}\c.
Taking \c}cq we then havea i}gi}\c}cq. In summary,
c’s first role is to parametrize changes in all ‘‘constants’’
minimal changinga theories for which the Lagrangian itse
is required to remain invariant.

One must then endowc with its own action, and note tha
c appears in the gravitational Lagrangian as part of a con
sion factor between curvature and energy density. As poin
out in @19# the definition ofc in terms of a field, its dynam-
ics, and its coupling to gravity and matter may be defined
many different ways. In the simplestc5 log(c/c0), and

S5E d4xA2gS eac~R1Lc!1
16pG

c0
4 ebcLmD ~1!

where we shall not imposea2b54 ~and we have setL
50). The simplest dynamics forc derives from

Lc52k~c!¹mc¹mc. ~2!
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Hence the second aspect ofc, as a dynamical field and cou
pling constant, is parameterized bya, b and k. In @19# it
was shown how this aspect of the theory allows for analog
with some string theories to be made@26#.

Thirdly, the theory proposed in@19# is covariant and lo-
cally Lorentz invariant, in a generalized sense which acco
modates a varyingc. The generalization is trivial; and esse
tially amounts to the use of anx0 coordinate in all
differential geometry formulas. The only significant diffe
ence is that ifc varies, local measurements of spacedx and
time dt do not generally lead to closed forms~i.e. d2tÞ0 or
d2xÞ0), leading to a fiber bundle structure where usua
one finds a tangent bundle. However they admit integrat
factors, so thatdtcb anddxcb21 are closed forms. Hencec
appears in a third role, as a conversion factor between sp
and time, and as an integrating factor defining the chang
units which would convert the theory into a fixedc standard
covariant and locally Lorentz invariant theory. The para
eterb needs not be related to any other parameters, but
considered the casesb532q/2 andb512q/2.

The equations for such a theory are

Gmn5
8pG

c0
4e(a2b)c

Tmn1kS ¹mc¹nc2
1

2
gmn¹dc¹dc D

1e2ac~¹m¹neac2gmnheac! ~3!

and

hc1a¹mc¹mc5
8pG

c0
4e(a2b)c~2k13a2!

~aT22bLm!.

~4!

A change of units rephrases these theories as Brans-D
theories@24# only whenb1q50 andb512q/2. However
there is a formal analogy between action~1! and Brans-
Dicke theory in the Jordan frame, established with the f
lowing identifications:

fbd5eac ~5!

vbd5
k

a2 ~6!

Tmn
bd5ebcTmn . ~7!

The analogy is always valid in vacuum, but breaks do
whenbÞ0 inside matter distributions. IndeedTmn

bd then de-
pends onfbd in the Jordan frame. Bearing this in mind, we
shall make use of this analogy for reading off solutions fro
@24#. However careful rederivation will be required to a
count for novelties induced bybÞ0.

A further analogy with scalar-tensor theories arises fr
the conformal equivalence of various$a,b,k% theories. Con-
formal transformations do not change the speed of lig
mapping VSL theories into VSL theories; but the gravit
tional action is modified leading to different values fora, b,
and k. This may be used to simplify the dynamics, in pa
ticular reducing it to Brans-Dicke dynamics. The releva
2-2
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STARS AND BLACK HOLES IN VARYING SPEED OF . . . PHYSICAL REVIEW D 63 043502
transformations are spelled out in Appendix B, where a se
results is derived which may then be used to provide al
native derivations for many results in the main body of t
paper.

However, as stressed in Appendix B, the frame realiz
Brans-Dicke dynamics can only be achieved with very
stricted forms of matter. In particular, one must require t
Lm be homogeneous in the metric; clearly far from true
general. In the particular case in which we only consid
classical point particles the Lagrangian takes the form

S52
E0

2aE dl@2gmnẋmẋn#a ~8!

in which a cana priori be any number. In metric theories o
gravity the value ofa is irrelevant, becauseu2 ~with u5 ẋ) is
a constant. One usually takesa51/2, so that the action be
comes the length of the world-line. The value ofa is how-
ever physically relevant ifbÞ0 @19#, and the results in this
paper do depend ona. Arguments fora51 were put for-
ward in @19#, and we shall adopt this assumption in the ma
body of this paper. This implies that for classical point p
ticles Lm52r/2, with r the energy density. HenceLm is
homogeneous degree 1 in the metric.

For general forms of matter, minimal coupling, that is, t
requirement thatLm does not depend onc, is not confor-
mally invariant. Therefore a conformal frame~and so a set of
a and b) is picked for its simplicity in describing non
gravitational physics~a point clearly made in@31#!. This ren-
ders the construction described in Appendix B a useful math-
ematical tool, but with limited physical meaning, exce
when the generality ofLm can be swept under the carpet.

III. VACUUM SPHERICALLY SYMMETRIC
SOLUTIONS

Let us consider static spherically symmetric~SSS! solu-
tions. We shall work with both radial coordinates:

ds252Bdj21Adr21r 2dV2 ~9!

~where dV25du21sin2udf2) and with isotropic coordi-
nates:

ds252Fdj21G~dr21r2dV2!. ~10!

Recall that as in@19# the usual tools of differential geometr
are unaffected under the condition that anx0-type of coordi-
nate is used, here denoted bydj5cdt.

A. The VSL Schwarzchild solution

The simplest SSS solution to VSL is the Schwarzch
solution:

ds252S 12
2Gm

c`
2 r Ddj21

dr2

12
2Gm

c`
2 r

1r 2dV. ~11!
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This is valid whenever the fieldc does not gravitate, e.g. in
the bimetric theory discussed in the Appendix of@19# ~a case
developed further in Appendix A!. This is also true in the
theory described above in the limitk,a→0. We may then
havek/a andk/b finite, or k/a andb finite if k/a@b. As
we will see the latter case distinguishes itself by predict
non-geodesic motion~but no corrections to the metric! while
the former predicts geodesic motion.

The horizon is atr h52Gm/(c`
2 r ), and the massm is

identified by comparingg00 and the weak field solution to
this theory. Later we shall see thatm need not be the Keple
rian mass, ifbÞ0 ~the case in which planets do not follow
geodesics!.

Integrating Eq.~4! with metric ~11! leads to the exac
solution

c5
b2a

2k
logS 12

2Gm

c`
2 r D ~12!

in which the factor (b2a)/(2k) can be found using the
weak field limit. Hence

c5c`S 12
2Gm

c`
2 r D (b2a)/2k

. ~13!

We see that the speed of light goes to either zero or infin
at the horizon depending on the couplings, a property
shall prove in general in Sec. IV.

Physically the effect of the coupling parameters’ sig
and relative magnitudes is as follows. Letk.0 so that the
energy in the VSL fieldc is positive~but negligible, since
k→0). The field c is then driven by direct couplings to
matter and to gravity, with strengths proportional to the co
plings b anda respectively@cf. Eq. ~54! of @19# #. If both b
anda are positive the first coupling drivesc to decrease close
to matter concentrations, the second to increase. Ifb5a
~such as in the case of the dilaton coupling at tree level
discussed in@19#! the speed of light does not change ne
matter concentrations. Ifb.a light slows down close to
massive bodies; ifb,a it speeds up. In either case, we foun
that near a black hole’s horizon something extreme m
happen:c must go to either zero or infinity. The fact tha
something extreme must happen is due to the structur
space-time, and can be linked to the usual proofs of the
hair theorem as we shall see. The choice between the
options is made by the relative strengths of thea andb cou-
plings, and follows whatever trend inc is already present in
the weak field region.

The solution we have just found will be extremely use
in clarifying the meaning of more complicated solutions.
preserves the simplicity of the Schwarzchild solution wh
allowing for a variety of non-gravitational VSL effects to b
present.

B. Brans-Dicke type of solutions

Given the formal analogy in vacuum between VSL the
ries and Brans-Dicke theories, we may use@24# to write the
following exact solution:
2-3
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ds252F2/ldj21S 11
r0

r D 4

F2(l2C21)/l~dr21r2dV2!

~14!

c5c0FC/al ~15!

with

F5
12r0 /r

11r0 /r
~16!

l25~C11!22C„12kC/~2a2!…. ~17!

However, the weak field limit imposes a relation betwe
$C,l,r0% and $a,b,k,m% which goes beyond the identifica
tions ~5!–~7!. This is due to the fact that when ‘‘Brans
Dicke’’ language is adopted for VSL theories the matter L
grangian now depends onfbd , whenbÞ0 @cf. Eq. ~7!#.

Mimicking the weak field calculation presented in@24#,
we find that Eqs.~3! and ~4! lead to

c5
a2b

3a212k

2m

r
~18!

2g00512
4m

r

2a21k2
ba

2

3a212k
~19!

in which recall we have assumedLm52r/2 @cf. Eq. ~8! and
its following discussion#. Defining a Poisson mass

M52m

2a21k2
ba

2

3a212k
~20!

we then have

c5
a2b

2a21k2ba/2

M

r
~21!

2g00512
2M

r
. ~22!

We note once more thatM need not be the Keplerian mas
If we now expand Eqs.~14! and ~15! we obtain

c52
CM

ar
~23!

2g00512
2M

r
~24!

with M52r0 /l. Comparing with Eqs.~21! and ~22! we
gather

C52
a22ba

2a21k2ab/2
~25!
04350
n

-

with l to be obtained from Eq.~17!. We stress that a direc
substitution of Eq.~6! in the Brans-Dicke result@24# misses
the terms inb.

The metric~14! may be cast into an Eddington-Roberts
expansion@27#:

ds252S 122
M

r
12b

M2

r Ddj2

1S 112g
M

r D ~dr21r2dV2! ~26!

with the parametrized post-Newtonian~PPN! parametersb
51 and

g5C115
a21k1ab/2

2a21k2ab/2
. ~27!

The Schwarzchild limit may be obtained by lettinga,k→0,
keepingk/a and b finite but with k/a@b. Theng'1, M
'm, and the metric reduces to Schwarzchild. However
variation inc is non-negligible even in this regime:

c5c`S 12
b2a

k

Gm

c`
2 r D . ~28!

Also deviations from geodesic motion, due tobÞ0, may be
non-negligible. Hence it is possible to introduce two types
new VSL effects without modifying the metric, a featu
which we shall use to solve a variety of problems.

IV. THE SPEED OF LIGHT MUST GO TO ZERO
OR INFINITY AT THE HORIZON

The fact that in the examples abovec goes to either zero
or infinity at the black hole’s horizon is far from accidenta
It may be generally proved by adapting techniques used
proving the no-hair theorem@32#. Here we sketch how such
a general proof might proceed, taking the particular case
scalarc ~as opposed to a complexc undergoing spontaneou
symmetry breaking as discussed in@19#, or ac derived from
a spinorial field!.

Let us consider a static, vacuum, not necessarily sph
cally symmetric solution which is asymptotically flat an
contains an horizon. Let the metric take the form

ds252Ldj21hi j dxidxj ~29!

with L andhi j time-independent. Let us discuss the proble
in terms offbd5eac>0, which must satisfy

1

ALh
~ALhhi j f ,i

bd! , j50. ~30!

We first multiply this expression byALh and integrate over
the regionV bounded by the horizon~whereL must go to
zero! and infinity. Integrating by parts reveals
2-4
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E
V

dx3ALhhi j f ,i
bdf , j

bd2E
]V

ALhfbdhi j f ,i
bddSj50.

~31!

The piece of the surface integral corresponding to infinity
zero, by virtue of asymptotic flatness.

At this point VSL differs from relativity. In the usual GR
proof one then shows that the integral over the horizon m
also be zero sinceL→0 there. The only escape route is
fbd or its gradient blow up at the horizon. This is preclud
by the requirement that the scalar field energy density
finite. Hence the surface integral is zero, and since the
ume integral is semi-positive definite it must be zero, so t
the identity is satisfied. This implies thatfbd50 everywhere
outside the horizon.

Clearly the last part of the argument may break down
VSL, because thec gravitation may be negligible. Hence it
divergence at the horizon need not produce a singula
This is the case in the parameter region which produce
Schwarzchild solution. More generally we may define a
gion in the space$a,b,k% for which this type of behavior
occurs.

It may also happen that thec divergence at the ‘‘hori-
zon’’causes a singularity. For instance@28,29# have shown
that this happens for (11C)/l,2. However such a singula
horizon is not a problematic ‘‘naked singularity’’ in VSL
theories because, as we shall see in the next section, for s
regions of the theory’s couplings information cannot flo
out of ~or into! the singular surface. Hence a singular horiz
need not have the pathological connotations it has in gen
relativity.

Whatever happens to the metric at the ‘‘horizon,’’ a no
trivial solution for fbd always requires that the surface int
gral in Eq. ~31! diverges at the horizon. This implies thatc
must go either to zero or infinity at the horizon.

The generalization of this argument to stationary so
tions, to more general fields~i.e. whenc is derived from a
bosonic invariant associated with a fermionic fieldc), or in
the presence of an electromagnetic field, leads to the s
conclusion.

A word on terminology is in order. We are loosely usin
the word horizon to describe what can in fact be a na
singularity. However, in either case VSL theories predict t
such a surface cannot be reached, as we shall show in
next section. Perhaps the wording ‘‘black hole edge’’ wou
be more appropriate, since such a surface becomes pa
the spatial infinity of the space-time. However we shall u
the expression horizon in what follows for simplicity.

V. THE INACCESSIBILITY OF SINGULARITIES

This theorem has the interesting implication that, at le
for suitable couplings, the horizon, as well as the region
side it, are not physically accessible. Naively one might
pect this to happen ifc goes to zero sufficiently fast at th
horizon. Indeedc still acts as a local speed limit, and soc
→0 seems to imply that nothing can enter the horizon. Ho
ever two extra complications come into the problem: fre
falling particles do not generally follow geodesics, and int
04350
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action rates change~due to changinga i) near the black
hole. We shall use Schwarzchild VSL black holes as
illustration.

A. Free fall into VSL black holes

As pointed out in@19#, bÞ0 VSL theories satisfy a weak
form of the equivalence principle~and do not conflict with
the Eötvos experiment!; however they predict non-geodes
motion. Indeed the action for a point particle, withbÞ0, is
given by

S52
E0

2 E dlebcgmnẋmẋn ~32!

in which the ‘‘x0-affine’’ parameter is given bydl5cdt,
wheredt is the actual affine parameter~proper time in the
VSL units, for a time-like particle!. Hence, ifbÞ0, particles
do not follow lines of extremal length, but instead minimiz
the functional~32!. Varying Eq.~32! shows that source term
appear in the geodesic equation, specifically

ẍm1Gab
m ẋaẋb52bS ẋmẋn2

1

2
gabẋaẋbgmnDc ,n . ~33!

Consider now radial geodesics (u̇5ḟ50) in the
Schwarzchild metric, so that

L5ebcS 2Bj̇21
ṙ 2

B
D ~34!

c

c0
5ec5Bb/2k ~35!

B512
2Gm

c`
2 r

~36!

~we have assumed the usual limit, withb@a). There are two
conserved quantities:

E5ebcBj̇ ~37!

L52e ~38!

~with e51 for time-like particles! from which we derive

ṙ 5AE2B2b2/k2B12b2/2k. ~39!

If the speed of light does not change, we have

t5E
r i

r h dr

c0AE22B
~40!

@wherer i andr h52Gm/(c`
2 ) label the starting point and th

horizon#, and so the proper time taken for a free falling o
server to reach the horizon converges. However, as is
known, such a process takes infinite coordinate time:
2-5
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t5E
r i

r h E

c0B
dr5`. ~41!

If c changes, the proper time required to reach the hori
is now

t5E
r i

r h dr

cAE2B2b2/k2B12b2/2k
. ~42!

Let us first assume thatb!1 but b/k is non-negligible~so
thatb2/k!1). Then this differs from the fixedc case in that
‘‘ v}c, ’’ as naively expected. Hence the horizon is unrea
able if c goes to zero faster thanr 22m, that is if b/(2k)
>1. Whenb2/k is non-negligible, the fieldc also acts as an
extra gravitational force, accelerating or braking free-falli
particles. In the general caset diverges if

b

2k
~12b!>1 ~43!

@with 11b2/(2k).0 andk.0].
In general~that is without assuming a Schwarzchild sol

tion! there are regions of parameter space for which the
rizon may be regarded as a boundary of space-time, sin
is located at infinite affine distance from any point in
exterior.

B. Interaction clocks in the vicinity of black holes

However one should bear in mind an extra complicati
already discussed in@19#. Interaction paces also change ne
the black hole, since all fine structure constants chan
Strong decays are faster than weak ones becauseas@aw .
Similarly, as the strength of all interactions varies near
black hole, so will the time rates of all the processes th
promote.

Somewhat philosophically it was pointed out in@19# that
our sensation of time flow derives precisely from chan
and this is imparted by interactions and their rates. Hence
introduced the concept of an ‘‘interaction clock,’’ a devic
ticking to the time scales set by thea i ~the fact that the ratios
between alla i are constant removes any ambiguity!. The tick
of such a clock is given byt0(a i)5t0(c) @19#, with

t05
\

a2Q
}

1

c2q11
~44!

in which Q is the energy scale of the process producing
tick t0 . One such construction is a muon clock. Let us p
duce a large number of non-relativistic muons. When hal
them have decayed the clock ticks, and produces ano
large number of muons. Such a clock would tick to a r
@35#

tm5
96p3\

Emaw
2 S mm

mW
D ~45!
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where mm and mW are the muon and the W masses, a
aw5gw /(\c) is the weak fine structure constant. Anoth
example is an atomic clock, the period of which is given

te5
\

ae
2Ee

~46!

whereEe5mec
2 is the electron rest mass. SinceEe}cq ~like

all other relativistic energies! we have thatte}1/c2q11.
These are two realizations of interaction clocks; if all e
fails remember thatt0 is the pace at which we age@34#.

A better formulation of the question of whether an o
server may or may not reach the horizon is then: how m
t0 ticks are required? For a Schwarzchild solution this me
computing the dimensionless number:

N5E
r i

r hdt

t0

5E
r i

r h dr

t0cAE2B2b2/k2B12(b2/2k)
~47!

which diverges if

2
b

2k
@2q1b#>1. ~48!

This condition defines the parameter space for which
horizon should be counted as part of the spatial infinity of
black hole.

C. Are there VSL singularities?

This result is extremely interesting. Our solution has
singularity atr 50 ~in some cases for the general solutio
there is in fact a naked singularity atr 5r h). However this
singularity is physically inaccessible; not just in the sen
that information cannot flow from it into the asymptotical
flat region, but also in the sense that no observer star
from the asymptotically flat region can actually reach it. T
singularity lies in a disconnected piece of the manifo
which should simply be excised as unphysical.

It is tempting to conjecture that all singularities are su
ject to the same constraint, in which case we seem to h
eliminated the singularity problem, by means of a stron
version of the cosmic censorship principle.

VI. COLLAPSING STARS AND THEIR REMNANTS

We now discuss stellar collapse making use of
Oppenheimer-Snyder solution, in which a spherical dust b
collapses. This is the correct solution in the limita,k,b
→0, keepingk/a and k/b finite. In this case the metric is
Schwarzchild and motion is geodesics. Other cases are m
complicated~see@30# for an investigation in the context o
Brans-Dicke theory!.

The Oppenheimer-Snyder solution makes use of Birko
theorem to match a Schwarzchild outside solution, to
Friedmann closed solution in collapsing stage~in general we
note that the solutions derived in Sec. III apply to the outs
of a static star for the same reason!. The inside metric is then
2-6
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ds252dz21R2~z!@dx21sin2xdV2#. ~49!

Here z is the properx0 of free-falling observers,x is the
radial coordinate of a 3-sphere, andR is the expansion factor
The latter satisfies standard Friedmann equations~which are
valid in the regime under study@36#! for a dust Universe
with densityr. One can show that there is no jump in th
curvature provided that

m5
4

3
prR0

3 ~50!

R05sinx0R~z! ~51!

in which x0 is the radial coordinate indexing the surface
the star~which follows a geodesic!. The internal value for
the speed of light is given by

c5
b2a

k
logS 12

8pGr sin2x0R2

3c`
2 D . ~52!

Even though the Oppenheimer-Snyder solution may
adapted to our circumstances, the physics of collapse is
tirely different. The arguments applied in the previous s
tion to free falling observers are also valid for observers
the surface of the star. In standard relativity collapse ta
infinite coordinate time, but finite proper time for an o
server on the surface of the star. In VSL theories the pro
time, as felt by interaction clocks on the surface of a colla
ing star, is infinite~for the parameter region identified in th
last section!. As the surface of the star approaches
Schwarzchild radius, all processes freeze-out. We are
with a Schwarzchild remnant, the surface of which is part
spatial infinity. The star itself has left the manifold. It’s st
black, but it is not a hole; rather its surface is an edge
space.

When this happens there is also a divergence for the n
ber of ticks for any process for observers inside the s
sincec inside the star must also go to zero or infinity. Hen
the singularity is never formed, a fact which in any case
little physical relevance. The inside of the star is pickled
eternity as the Schwarzchild remnant is formed.

VII. GRAVITATIONAL PHYSICS AROUND STARS

We now turn to the study of gravitational phenomena
the vicinity of VSL stars. A more detailed study within th
framework of the PPN formalism@23# is warranted, but shal
not be attempted here.

In summary we find the following. There are three clas
of effects: upon planetary orbits~e.g. the precession of th
perihelion of Mercury!, upon light ~e.g. gravitational light
bending, or the radar echo time-delay!, and upon the fine
structure of absorption lines. These are caused, in diffe
combinations, by three distinct facts which we can switch
and off independently: corrections to the Schwarzchild m
ric, violations of energy conservation, and spatial variatio
in a.

If there are only corrections to the Schwarzchild met
we obtain corrections to the GR result for the planetary a
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light trajectories similar to those found in Brans-Dick
theory. These corrections are embodied in the PPN par
eterg computed above. However there is a limit in which w
recover the Schwarzchild metric~and g51) but in which
there are significant violations of energy conservation. In t
limit we recover the GR results for light properties, but w
find non-negligible corrections to planetary orbits. Finally
is possible to switch off these two effects, and so recover
classical tests of GR, and still produce significant change
a and consequently in the fine structure of spectra in li
emitted at the surface of stars. It is also possible to switch
the latter, and keep either of the former two effects.

A. The precession of the perihelion of Mercury

We start by deriving the orbits of point particles, consi
ering first the Schwarzchild metric. We are therefore in t
limit a,k→0, but we shall assume thatb is finite andk/a
@b so that we may exhibit deviations from geodesic motio
Settingu5p/2, u̇50, the Lagrangian is@cf. Eq. ~32!#

L5ebcS 2Bj̇21
ṙ 2

B
1r 2ḟ2D . ~53!

There are three conserved quantities:

E5ebcBj̇ ~54!

J5r 2ebcḟ ~55!

L52e ~56!

wheree50,1 for light and particles respectively. It follow
that

ṙ 25E2e22bc2ee2bcB2
J2

r 2 e22bcB. ~57!

Using the standard transformations

u5
G

rc`
~58!

d

dl
5ḟ

d

df
~59!

and differentiating we get

u91u53mu21
me

J2 S 11
b2

2k D ~122mu!b2/2k ~60!

in which we have used Eq.~13!. Expanding the VSL contri-
bution ~terms arising fromb2/kÞ0) up to first order inmu
leads to

u91u53mu21
me

J2 S 11
b2

2k D2
m2e

J2

b2

k S 11
b2

2k Du

~61!

to be compared with the Newtonian result
2-7
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u91u5
me

J2 ~62!

and the GR result

u91u53mu21
me

J2 . ~63!

The Newtonian solutions are elliptical orbits:

u05
m

J2 ~11e cosf! ~64!

where e is the eccentricity. The GR term 3mu2 causes a
precession of the perihelion by

Df5
6pm2

J2 ~65!

per revolution. In the case of Mercury this amounts to ab
439 per century.

VSL causes two extra effects, even in the limit where
metric remains Schwarzchild. First it causes a shift in
Keplerian mass, that is, the Newtonian formula still appl
but with mass

M5mS 11
b2

2k D . ~66!

This can be guessed by comparing the relevant term in
~61! with the Newtonian expression~62!. A derivation of
Kepler’s third law, with a more rigorous derivation of E
~66! may be found in Appendix C. Secondly, the last term
Eq. ~61! induces a shift in the frequency, causing a prec
sion per revolution of

Df52
4pm2

J2

b2

2k S 11
b2

2k D . ~67!

We see that, as announced above, even in the limit in wh
the metric remains Schwarzchild, VSL may induce sign
cant corrections to the orbit of Mercury.

It may make more sense to rewriteDf in terms ofM,
since this is the mass measured using Kepler’s third l
Then, to first order inb2/k, the joint GR and VSL effect is

Df5
6pM 2

J2 S 12
4

3

b2

k D . ~68!

In the case of Mercury, in addition to the usual GR effe
there is a precession of about 579 timesminus b2/k, purely
due to violations of energy conservation.

The general case is more difficult to compute. We u
the Eddington-Robertson form of the metric in rad
coordinates:

ds252Bdj21Adr21r 2dV2 ~69!

B5122
M

r
12~12g!

M2

r 2 ~70!
04350
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A5112g
M

r
~71!

with M andg given by Eqs.~20! and ~27!. Using the same
techniques as above we arrive at

u825
E2

ABJ2 2
u2

A
2

eebc

AJ2
. ~72!

When ebc51 this expression leads to standard results~see
@27#!. Hence we should add to these results any correcti
induced by the new terms associated with theebc factor. To
find the new terms we needebc up to second order inMu.
Noting that

r5r @12~11C!u# ~73!

and expanding Eq.~15! we find

ebc512
bC

a
Mu1

bC

a S bC

2a
212CD ~Mu!2. ~74!

Hence the new terms in Eq.~72! are

u825•••1
bC

a

Mu

J2 2
M2u2

J2

bC

a S 2g1
bC

2a
212CD

~75!

where the ellipsis denotes terms present in the fixedc calcu-
lation for PPN metrics. This leads to

u95•••1
bC

2a

M

J2 2
M2u

J2

bC

a S 2g1
bC

2a
212CD .

~76!

Again the Keplerian mass receives a shift

M5M S 11
bC

a D . ~77!

As for the perihelion precession we should now add to
standard formula

Df05
6pM2

J2

112g

3
~78!

@with g given by Eq.~27!# the extra term

Df152
2pM2

J2

bC

a S 2g1
bC

2a
212CD . ~79!

This result reduces to Eq.~67! in the limit a,k→0, and
k/a@b. An expression containing only physically meanin
ful quantities can then be obtained by rewriting these form
las in terms ofM by means of Eq.~77!.

B. Gravitational light deflection

Considering now light trajectories, we should sete50 in
Eq. ~72!. This cancels out the term inebc and so VSL in-
duces no effects on light trajectories other than those indu
2-8



vi-

a

ic
fo

ry
o

be
a

n
-
aw

to
e
lt

p
p

k

a
be
ich

ho
e
rg
,
n

u

m

to
th

-

nal
l

ve

f

nt

o

n
i-
ob-

ent

STARS AND BLACK HOLES IN VARYING SPEED OF . . . PHYSICAL REVIEW D 63 043502
by distortions to the Schwarzchild metric. Hence ifa,k
→0, andk/a@b we predict the same result as GR for gra
tational light bending:

Df5
4Gm

r 0c`
2 ~80!

wherer 0 is the impact parameter. In the case of a light r
grazing the SunDf51.759. The general case is

Df5
4GM

r 0c`
2

11g

2
~81!

with g given by Eq.~27!.
It would seem at first that in the limit in which the metr

remains Schwarzchild there are no corrections to GR
light bending, but the formula for the perihelion of Mercu
precession may be modified. This is a distinctive feature
VSL, distinguishing it from Brans-Dicke theories, and can
traced to violations of energy conservation in the Jord
frame in these theories. In practice however the situatio
very different. The massesm or M are not directly acces
sible; the mass of the Sun being estimated via Kepler’s l
The result is a Keplerian massM given by either Eq.~66! or
Eq. ~77!. Hence, even though VSL corrections of orderb2/k
only affect time-like orbits, these corrections filter through
formulas for light trajectories, because these must be
pressed in terms of Keplerian masses. The relevant resu
obtained by substituting Eq.~66! or Eq. ~77! in Eq. ~80! or
Eq. ~81!.

This situation is a good object lesson against harsh ap
cations of conformal transformations. As spelled out in A
pendix B, if we ignore the most general type ofLm it is
possible to map the dynamics of our theory into Brans-Dic
dynamics. This explains why our formulas for planets~which
are not conformally invariant! differ from Brans-Dicke re-
sults, but the same does not happen to light~which is con-
formally invariant!. However, such a direct application of
conformal transformation would miss the interconnection
tween conformally invariant and non-invariant results wh
we have just pointed out.

C. Radar echo time delay

Naively one might expect a different result for radar ec
time delays in VSL theories. Indeed if light traveled slow
or faster near the Sun, the echo time-delay should be la
or smaller. As we shall see this is not true in our theory
feature due to the fact that we have not broken local Lore
invariance. As pointed out in@19# this manifests itself in the
absence of a global time coordinate, the differential struct
associated with time forming a fiber bundle rather than
tangent bundle. Hence non-local calculations involving ti
should be done with the coordinatej, the conversion to time
to be done locally. As a consequence whatever happensc
locally along the path of the radar wave does not affect
final result.

We start by deriving results validif we were to break
local Lorentz invariance. Letr 0 be the point of closest ap
04350
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proach to the Sun. Then the time taken for the radar sig
to move up to distancer, in the absence of gravitationa
effects, is

Dt5E dr
r

c~r !@r 22r 0
2#1/2

. ~82!

With a variation inc analogous to Eq.~13! we would get

Dt5
@r 22r 0

2#1/2

c`
1

b2a

k

Gm

c`
3 logS r 1@r 22r 0

2#1/2

r 0
D .

~83!

Hence to the usual gravitational time-delay, we would ha
to add a delay~if a.0) due to a lower value forc close to
the Sun. Comparing Eq.~83! with the usual PPN formula
@27# we find that this effect, due to explicit violations o
Lorentz invariance, simulates a PPN parameterg5(b
2a)/k.

Nothing like that happens in a locally Lorentz invaria
VSL theory. From

ṙ 25
E2e22bc

AB
2ee2bcB2

J2

r 2 e22bcB ~84!

we obtain, after settinge50 and making use of

ṙ 5
dr

dj

E

ebcB
~85!

the expression

S dr

dj D 2

5

12
J2B

E2

A/B
~86!

in which all factors inebc have cancelled out. This leads t
the standard expression@27#

Dj5@r 22r 0
2#1/21~11g!

GM

c`
2 log S r 1@r 22r 0

2#1/2

r 0
D

1
GM

c`
2 S r 2r 0

r 1r 0
D 1/2

. ~87!

One needs now to transformj into time, but that is done on
the Earth, wherec'c` . HenceDt5Dj/c` , leading to the
same result as in Brans-Dicke theories.

The only novelty is again thatM is not the Keplerian
mass, ifb2/k is non-negligible. Once more we find that eve
though VSL is equivalent to Brans-Dicke in light exper
ments, the fact that masses are estimated using time-like
jects induces corrections in formulas for light. In the pres
case we should use Eq.~77! to replaceM with M in Eq.
~87!.
2-9
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D. Spectral lines

Naturally the hallmark and real novelty of VSL is
changing electromagnetic fine structure constant. This sh
affect the fine structure of absorption lines created on
surface of stars, and be detectable using techniques simil
Webb et al. @25#. As we shall see the larger the potent
difference, the stronger the effect, so perhaps dwarfs, or e
neutron stars might be better candidates for this experim

We first consider the effect upon spectra in the no
relativistic regime. We find that all spectral lines are prop
tional to the Rydberg energy, given byER5mee

4/\2

5Eea
2, where Ee5mec

2 is the electron’s rest energy
Hence spectral lines have wavelengths proportional tol
5\c/ER}1/a2}c22q. Considering that photons in fre
flight have a constant wavelength~see Sec. V A of@19#! we
conclude that when we compare spectral lines coming fr
the surface of a star with those measured on an Earth l
ratory, we find an extra ‘‘redshift’’ effect, due to VSL, o
magnitude

Dl

l
522q

Dc

c
5

2bq

k

Gm

c`
2 r

~88!

where the last identity is valid only in the limita,k→0, and
k/a@b. We therefore conclude that VSL theories have
PPN parameteraPPN52bq/k @23#. Pound-Rebka-Snider ex
periments are capable of constraining this parameter, bu
by more thanuaPPNu,1023 ~see Fig. 14.3 of@23#!. As will
be shown in@36# the combinationbq/k is of orderDa/a at
cosmological redshifts or order 1. Hence the observati
made by Webbet al. @25#, when interpreted with VSL, imply
violations of the weak equivalence principle at the lev
aPPN;1025, consistent with current experimental tests.
particular, measurements of non-relativistic spectral lin
formed on the surface of the Sun do not constrainaPPN by
more thanuaPPNu,1022. More compact objects, such a
dwarfs or pulsars, display a stronger VSL redshift effect,
the effect is degenerate with respect to Doppler shifts
duced by their unknown velocities with respect to us. F
such objects one has to go to look into the fine structure
order to measure, without degeneracy, the possible eff
upon spectra lines of varying constants.

Considering now the relativistic fine structure of spect
lines, we find that they directly measure the tell-tale sig
ture of VSL, since they are directly related toa5e2/(\c)
~not to be confused withaPPN). For small deviations we
have

Da

a
5q

Dc

c
5qc52

q~g21!

a

GM

c`
2 r

~89!

where we have used Eq.~15! ~recall thata}cq). It is inter-
esting to note that Eq.~89! may be large even choosing p
rameters which render the metric Schwarzchild, and n
geodesic effects associated withbÞ0 negligible. In the limit
a,k→0, andk/a@b ~so thatg'1) we have
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. ~90!

This may be non-negligible even with negligibleb2/k ~so
that no corrections to the GR result are present in the p
helion of Mercury!. The prefactorbq/k may be inferred
from cosmological observations@36# and can at most be o
order 1024. Hence we need an object sufficiently compa
such as active galactic nuclei~AGN!, a pulsar or a white
dwarf, for the effect to be non-negligible. Furthermore w
need the ‘‘chemistry’’ of such an object to be sufficient
simple, so that line blending does not become problema1

Generally ~i.e. for any matter configurations! the larger
the gravitational potential differences, the stronger the eff
Indeed, for static configurations, bothDa/a and the gravita-
tional potential satisfy Poisson equations, with source te
related by a multiplicative constant. Hence the local value
a should map the gravitational potential, and one wou
need to have big variations in the gravitational potential
observe corresponding spatial variations ina. It would be
interesting to use this to infera maps fromN-body simula-
tions, so as to deduce possible observational signature
VSL on cluster and supercluster scale.

VIII. THEORETICAL AND OBSERVATIONAL OUTLOOK

We have provided ample evidence for how VSL stars a
‘‘black holes’’ may be rather exotic indeed. We have us
the covariant and locally Lorentz invariant formulation pr
posed in@19#, and stress that the results derived are by
means generic to all VSL theories. Indeed in Appendix A
showed how bimetric VSL black holes may differ distinct
from the ones considered here. In this regard it would be
great interest to derive the properties of black holes in
bimetric theory of Clayton and Moffat@9–11# and Drum-
mond@12#. Another variation upon the theme are VSL the
ries which explicitly break local Lorentz invariance, such
the one proposed by Albrecht and Magueijo@2#, and for
which black hole solutions remain elusive. In Sec. VII C w
derived a distinctive effect to be expected in such theorie~a
different radio echo time-delay! which is not present in lo-
cally Lorentz invariant VSL theories. Hence the exotic r
sults derived in this paper are generic to the type of theo
proposed in@19#, but by no means to all VSL theories.

Yet, even within the framework of the VSL theories pr
posed in@19#, a large number of new effects still remain
be explored. We close this paper first by highlighting a fe
obvious areas of interest which should prompt further th
retical work, and then describing observational prospects

An important omission in this paper is quantum effec
which we have ignored. However it was shown in@19# that a
varying-c induces quantum particle creation~a point noted
before, in other VSL theories, by@15#!. That being the case
VSL black holes might be sources of radiation in a proc

1I would like to thank Lance Miller and Grac¸a Rocha for tutoring
me on the details of stellar spectral lines.
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STARS AND BLACK HOLES IN VARYING SPEED OF . . . PHYSICAL REVIEW D 63 043502
complementary to Hawking’s radiation. The exact details
such a process remain to be worked out. Also the interac
between a changingc and standard Hawking radiation is fa
from obvious. These phenomena are currently being inve
gated.

Further quantum effects arise from the fact that all gau
field strengths becoming zero or infinite will no doubt r
shape the low-energy aspect of any quantum field the
Indeed, the scaling arguments mentioned in Sec. V B sho
break down when the linea51 is crossed. Therein non
perturbative interactions will become perturbative, or v
versa, a process which may have dramatic implications.
instance, the vacuum of a given theory may change.
impact upon phenomena like confinement may be mass

There are also other interesting classical effects bey
those described in this paper. All the arguments develope
this paper concerned free-falling point particles. One m
wonder what happens to free-falling extended objects. A
well known, they will feel gravity by means of tidal force
ShouldbÞ0 they will also feel inertial forces, correspondin
to their acceleration~or braking! by the fieldc. Furthermore
there will also be effects induced by the gradients inc. Let us
consider a body moving along a negative gradient ofc ~and
assumeb50). Given thatv}c, such a body would ge
squashed along the direction of motion. In general a st
proportional tov•“c will be felt.

Another finite size effect involves the time rates asso
ated with ‘‘interaction clocks’’ derived in Sec. V B. For
point particle falling into a black hole a slowing down of th
rate means merely the slowing down of its progression
wards the horizon. However, for an extended object th
will also be an aging gradient, closely mapping thec gradi-
ent, in addition to the stresses mentioned above. Thes
sues, as well as the quantum effects described above, w
the subject of a future publication.

Besides these interesting topics for future theoret
work, there is the obvious hurdle of experiment. We saw t
the theory produces effects very similar to Brans-Dic
theory, plus additional effects, namely departures from g
desic motion for non-null particles, and distorted fine stru
ture in spectral lines in stellar light. Ifb50 the classical tests
of GR impose the constraint@23#

ug21u,1023. ~91!

If we adopt the Schwarzchild limit~in which caseg51) this
constraint becomes

b2

uku
,1023. ~92!

In between these two limits a rather complex combination
a, b, andk is constrained to the same order of magnitude

Should there be any departures from GR results in th
classical experiments, however, VSL would be an interes
competitor to Brans-Dicke theory, since it predicts corre
tions to light and planetary formulas distinct from Bran
Dicke theory. More interesting still is that, unlike Bran
Dicke theory, the theory does not become trivial in the lim
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in which the classical tests of GR are reproduced (vBD@1
for Brans-Dicke,a,k!1, k/a@b, andb2/k!1 for VSL!. In
this limit the theory still predicts a shift ina observable in
the fine structure of spectra from stars or other compact
jects. This effect makes VSL an interesting experimen
target.
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APPENDIX A: BLACK HOLES IN BIMETRIC THEORIES

As a curiosity we now show an example of an alternat
VSL theory which evades the theorem described in Sec.
We show how this happens, using as an example the th
described in the Appendix of@19#. In this theory there are
two metrics,g coupling to gravitation and matter, andh cou-
pling to the fieldc only. The action is

S5S11S2

S15E d4xA2gS R1
16pG

c0
4e4c

LmD
S25E d4xA2h~H2khmn]mc]nc! ~A1!

where gmn and hmn lead to two Einstein tensorsGmn and
Hmn . Varying with respect tog, c, andh leads to equations

Gmn5
8pG

c0
4e4c

Tmn ~A2!

hhc5
32pG

c0
4e4ck

Ag

h
Lm ~A3!

Hmn5kS ¹mc¹nc2
1

2
hmn¹ac¹ac D . ~A4!

Let us now consider SSS solutions to this theory. It is imm
diately obvious thatgmn is the Schwarzchild solution, with
massm. The solutions forc andhm can be obtained by ap
plying to this theory an argument similar to the one follow
in Sec. III B. Solutions~14! and~15! are still valid, since we
are in vacuum. However the weak field limit now produc

2h00512
2Gm

c`r

2ab

2k
~A5!

c52
b

k

Gm

c`r
~A6!
2-11
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in which we haveb524 anda→0. Hence, comparing with
the asymptotic forms of Eqs.~14! and ~15!, we find

C522 ~A7!

la5A2k. ~A8!

This leads to the result forhmn andc:

ds252dj21S 12 S r0

r) D
2D 2

~dr21r2dV2! ~A9!

c5c0 S 12r0 /r

11r0 /r
D 2A2/k

~A10!

in which the ‘‘horizon’’ is at

r05
A2m

k
. ~A11!

The horizon ofgmn and that ofhmn ~which is wherec goes to
infinity! therefore do not need to be at the same place.

APPENDIX B: CONFORMAL DUALS

Here we examine the effect of conformal transformatio
on VSL theories. These are to be distinguished from chan
of units which renderc constant, leading to fixedc duals, as
studied in@19#. Conformal transformations take the form

d t̂5dtV ~B1!

dx̂5dxV ~B2!

ĝmn5gmn ~B3!

dÊ5dEV21 ~B4!

or equivalently

d t̂5dt ~B5!

dx̂5dx ~B6!

ĝmn5V2gmn ~B7!

dÊ5dEV21. ~B8!

These transformations do not change the value ofc, and so
map VSL theories into VSL theories; but the gravitation
action is modified leading to different values fora, b, andk.
The point we wish to make is that the degeneracy of con
mally related theories is usually broken by the presence
matter. Indeed minimal coupling~the requirement thatLm
does not depend onc) is not conformally invariant, and so
conformal frame~and so a set ofa andb) is picked for its
04350
s
es

l

r-
of

simplicity in describing non-gravitational physics~a point
clearly made in@31#!. Another example of a case where
preferred ‘‘physical’’ conformal frame is present was give
in @33#.

If we can ignore generic matter fields, however, conf
mal transformation may be a useful mathematical trick.
particular interest is the ‘‘Jordan’’ or ‘‘geodesic’’ frame, i
which b50, andc does not couple toLm . In such a frame
there is energy conservation, and particles follow geodes
Two other frames of interest are the Einstein frame (a50)
and the string frame (a5b).

Consider then an action of the form

S5E d4xA2gS faR̂2
v

fb ¹mf¹mf2V~f!

1
16pG0

c0
4 f ~f!LmD ~B9!

in which, in our case,f (f)5fb/a. Under a conformal trans
formation ĝmn5V2gmn , the transformed action is

Ŝ5E d4xA2ĝH V22faR̂16faV24¹̂mV¹̂mV

26afa21V23¹̂mf¹̂mV2vf2bV22¹̂mf¹̂mf

2V~f!V241
16pG0

c0
4 f ~f!L̂m~ ĝmnV22!J . ~B10!

If a portion ofLm is homogeneous degreea in the metric, it
is possible to transform away any coupling betweenf and
Lm by settingV25fn with n5b/(aa). Note that this is
only possible ifLm is homogeneous in the metric, somethin
which is not generally true~for instance kinetic terms are
first order in the metric whereas interaction terms are zer
order!. If we stick to classical particles,a is the power ofu
to be used in the Lagrangian

S52
E0

2aE dl@gmnẋmẋn#a. ~B11!

In standard GR this does not matter, but here it is crucial
@19# we have argued fora51, but this need not be the cas
(a51/2 is the value usually used in the literature, so that
action becomes the length of the world-line!. We could even
consider the case in which different types of classical ma
had differenta, another good example of a situation
which the geodesic frame would not exist~as indeedLm
would then not be homogeneous in the metric!.

Action ~B9! then becomes

Ŝ5E d4xA2ĝH f12nR̂2
v13n~12n/2!

f11n
¹̂mf¹̂mf

2V~f!f22n1
16pG0

c0
4 f ~f!L̂m~ ĝmnV22!J . ~B12!
2-12
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Setting

x5f12n ~B13!

andV50 we finally recover the Brans-Dicke action with

Ŝ5E d4xA2ĝH xR̂2
v̂

x
¹̂mx¹̂mx1

16pG0

c0
4 L̂m~ ĝmn!J

~B14!

with

v̂5
v13n~12n/2!

~12n!2 . ~B15!

By means of this transformation it is now possible to confi
most of the results derived in this paper. For instance,
~27! may be derived from the usual Brans-Dicke result~with
terms inb included!. On the contrary the careless applicati
of this tool to the prediction of the precession of the perih
lion of Mercury and gravitational light deflection may b
very misleading. One might expect light properties to rem
unaffected by this transformation. While this is true on t
surface, it is not in reality. Formulas for the light deflectio
contain the Keplerian mass, which is affected by conform
transformations. This point is made clear in Sec. VII B.

APPENDIX C: KEPLERIAN ORBITS IN VSL THEORIES

The Keplerian mass is estimated from Kepler’s third la
which here we simplify to circular orbits. Then planets
distanceR have periodsT such thatR3/T2 is a constant,
proportional to the mass of the Sun. Kepler’s law is used
. B

04350
q.

-

n

l

,
t

o

estimate the mass of the Sun, and therefore any correctio
receives filter through to all formulas involving the mass
the Sun.

We consider first a VSL Schwarzchild metric, so that@cf.
Eq. ~72!#

u825
E2

J2 2u2B2
ebcB

J2
. ~C1!

Following @27# we now set to zero bothu8 and also its de-
rivative with respect tou ~the latter required for stability of
the orbit!. This leads to

E25B~J2u21ebc! ~C2!

J25
@11b2/~2k!#Bb2/2kB8

u2~2Bu2B8!
. ~C3!

From Eqs.~54! and ~55! we have

df

dj
5

Ju2B

E
'„m@11b2/~2k!#u3

…

1/2 ~C4!

in which the last approximation reflects the fact that for
planets used to estimate the mass of the Sunmu!1. Hence,
with v52p/T, we have

v2R35M5mS 11
b2

2k D . ~C5!

A similar exercise using the general form of the equations
motion confirms Eq.~77!.
.
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