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We investigate spherically symmetric solutions to a recently proposed covariant and locally Lorentz-
invariant varying speed of light theory. We find the metrics and variatiomsassociated with the counterpart
of black holes, the outside of a star, and stellar collapse. The remarkable novelty esgbes to zero or
infinity (depending on parameter sigrat the horizon. We show how this implies that, with appropriate
parameters, observers are prevented from entering the horizon. Concomitantly stellar collapse may end in a
“Schwarzchild radius” remnant. We then find formulas for gravitational light deflection, gravitational redshift,
radar echo delay, and the precession of the perihelion of Mercury, highlighting how these may differ distinctly
from their Einstein counterparts but still evade experimental constraints. The main tell-tale signature of this
theory is the prediction of the observation of a different value for the fine structure constamspectral lines
formed in the surface of stars. We close by mentioning a variety of new classical and quantum effects near
stars, such as aging gradients and particle production.
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[. INTRODUCTION coordinates. We find the limit under which the Schwarzchild
solution is still a solution of our theory, and note tleagoes
The possibility that the speed of liglest might vary has to zero or infinity at the horizon. We also find the most
recently attracted considerable attent[dr-21]. Most nota- general solution, which is similar to the solution found in
bly, in a cosmological setting, temporal variationscihave  [24]; however the relationship between the various param-
been shown to solve the so-called cosmological puzzles —eters in[24] is new. In all of these solutions we find that
the horizon, flatness, and Lambda problems of big-bang cosnust go to zero or infinity at the horizon. This is not acci-
mology. At a more conceptual level it is clear that varyingdental, and in Sec. IV we sketch a proof showing why this is
speed of light(VSL) theories require extreme departuresgenerally the case.
from the standard framework of physics, since they contra- The last result has two very significant implications. The
dict the leading postulate behind relativity and Lorentz in-first is discussed in Sec. V, and corresponds to the naive
variance. A number of alternative implementations for VSLexpectation that it goes to zero fast enough at the horizon
have been discussed, involving either h&2d or soft [1] then no observer can actually reach it. Indeeddill acts as a
breaking of Lorentz invariance. local speed limit. This insight proves to be true, even when a
In a recent papdrl9] it was shown that contrary to popu- number of complications are taken into account. First the
lar belief it is possible to set up covariant and locally Lorentzfield ¢ may also act as a gravitational field, pushing free-
invariant VSL theories, as long as these concepts are subjefalling particles off geodesics, accelerating or braking them.
to very minimal generalizations. As a matter of fact the nec-Secondly, ag changes so do all fine structure constants, and
essary generalizations glean from the usual definitions akilso the time rates of the interactions they promote. One
that is operationally meaningful, in the sense that the aspecthould attach the definition of time to these rates, and exam-
they preserve are exactly those which can be the outcome @ie the problem of an observer falling into a black hole from
experiment. Such a formulation arguably provides the mosthe point of view of the number of ticks of such “interaction
conservative VSL theory one may set up. It is found that intime.” We find that when all this is taken into account, there
such theories the local value ofis determined via a differ- is still a large region of parameter space for which reaching
ential equation, containing as source terms the cosmologicéihe horizon requires infinite free-falling time. VSL black
constant and the matter Lagrangian. holes are therefore not covered by an “horizon” but instead,
Naturally in such theories varies not only in timgover  the horizon represents an edge of space-time to be put on the
cosmological time scalgdut also in space, once the inho- same level as the asymptotic spatial infinity. This has the
mogeneity of the Universe is taken into acco[22]. In the  implication that the singularity may be excised from the
simplest case one should investigate such a phenomenon byanifold — we conjecture that perhaps one can get rid of all
seeking static and spherically symmetric solutions. Such isingularities in a similar way in VSL theories.
the purpose of this paper. We investigate VSL solutions rep- Another interesting result is described in Sec. VI: stellar
resenting the counterpart of black holes, the exterior of a stagollapse may take infinite interaction time when viewed by
and stellar collapse. It should be stressed that it is such s@n observer on the surface of the collapsing star. This fol-
lutions, not the cosmological ones, that bear relevance ttows directly from the above considerations, and implies that
many experimental testa point entirely missed bf20]). the end point of stellar collapse must be a Schwarzchild rem-
In Sec. Il we start by reviewing the key aspects of thenant. As this is formed the speed of light goes to zero for all
theory proposed ifil9]. Then in Sec. Ill we consider static points inside the star, thereby freezing all processes and pre-
spherically symmetric solutions, both in isotropic and radialventing the formation of a singularity.
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The final part of this paper, contained in Sec. VII, is de-Hence the second aspect®fas a dynamical field and cou-
voted to possible experimental tests for this theory basegling constant, is parameterized y b and . In [19] it
upon solar system gravitational physics. We concentrate owas shown how this aspect of the theory allows for analogies
the classical tests of GRgeneral gelativity, leaving to a  with some string theories to be mafz6].
future publication the analysis of more receiiut more Thirdly, the theory proposed ifi9] is covariant and lo-
complex experiments, such as the binary pulsar PSR 1918ally Lorentz invariant, in a generalized sense which accom-
+ 16[23]. We examine the effects of VSL upon the orbits of modates a varying. The generalization is trivial; and essen-
planets, gravitational light deflection, and the radar echdially amounts to the use of ax’ coordinate in all
time-delay. The real novelty is, however, the effects upon thelifferential geometry formulas. The only significant differ-
spectral lines formed at the surface of stars, for which ouence is that ifc varies, local measurements of spabeand
theory predicts a fine structure different from laboratorytime dt do not generally lead to closed forrfise. d’t#0 or
measurements. We find that it is possible to reproduce all the?x+0), leading to a fiber bundle structure where usually
standard GR tests, and still have a non-negligible spectraine finds a tangent bundle. However they admit integrating
effect. The application of techniques similar to the ones defactors, so thatlty/® anddxy#~* are closed forms. Henae
veloped by Weblet al.[25] should put this theory to the test. appears in a third role, as a conversion factor between space

We conclude with a brief qualitative discussion of an as-and time, and as an integrating factor defining the change of
sortment of exotic new phenomena expected in the vicinityunits which would convert the theory into a fixedtandard

of very massive stars in VSL theories. covariant and locally Lorentz invariant theory. The param-
eter B needs not be related to any other parameters, but we
Il. SUMMARY OF THE THEORY considered the casgg=3—q/2 andB=1—q/2.

The equations for such a theory are

We first summarize the covariant and locally Lorentz in-
variant VSL theory proposed {19]. In this theory the speed 87wG 1 5
of light plays 3 distinct rolegcorresponding to independent GMV:WTMV+ NP §ngé‘w ¥

i 0

aspects of the theoryparametrized by numbeig «, a, b,
andg. +e ¥V ,V, et—g, e 3

At its most innocuous, VSL is nothing but a theory pre-
dicting changing fine structure constanis=g?/(%c) (in  and
which i labels the various interactions, aggdare charges

with fixed ratiosa;/a;j. Choosing units such that changes B 87G 3
are attributed primarily ta is useful simply because they Hy+av, yviy= Cge(afb)¢(2K+3a2) (aT—2bLy).
lead to a simpler picture. A fixed-dual theory may be ob- (4)

tained by a change of units, but the ensuing local dynamics is

then rather contrived. Also, important global features may beA change of units rephrases these theories as Brans-Dicke
missed in fixeds units (e.g. the trans-eternal regions, or the theories[24] only whenb+qg=0 andB=1—q/2. However
black hole edges discussed[1t9]). In [19] we then required there is a formal analogy between acti6h) and Brans-
that the matter Lagrangian should not depenctothis fact  Dicke theory in the Jordan frame, established with the fol-
alone fixes the scaling with of all Lagrangian parameters lowing identifications:

up to the#(c) dependence. In particular particle rest ener-

gies scale likeEyx7c, and all gauge charges likg=7c. Pra=e>" )
Taking AcxcY we then haven;ecgiecficecd. In summary,
c's first role is to parametrize changes in all “constants” in _K

.. . . . . . Wpd= 2 (6)
minimal changingx theories for which the Lagrangian itself a
is required to remain invariant.

One must then endowwith its own action, and note that To=e>T,,. (7)

c appears in the gravitational Lagrangian as part of a conver-
sion factor between curvature and energy density. As pointedihe analogy is always valid in vacuum, but breaks down
out in [19] the definition ofc in terms of a field, its dynam- whenb+0 inside matter distributions. Indee‘l’chdV then de-
ics, and its coupling to gravity and matter may be defined irpends ong,q in the Jordan frameBearing this in mind, we
many different ways. In the simplegt=log(c/cy), and shall make use of this analogy for reading off solutions from
[24]. However careful rederivation will be required to ac-

167G count for novelties induced bly+0.

s e Lo (1) A further analogy with scalar-tensor theories arises from

0 the conformal equivalence of variofia,b, x} theories. Con-

) formal transformations do not change the speed of light,
where we shall not imposa—b=4 (and we have sef\  mapping VSL theories into VSL theories; but the gravita-

S= f d4x\/—_g( e (R+L,)+

=0). The simplest dynamics faf derives from tional action is modified leading to different values forb,
and k. This may be used to simplify the dynamics, in par-
Ly=—x(P)V GV . (2)  ticular reducing it to Brans-Dicke dynamics. The relevant
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transformations are spelled out in Appendix B, where a set o his is valid whenever the fielgh does not gravitate, e.g. in
results is derived which may then be used to provide alterthe bimetric theory discussed in the Appendi¥ 9] (a case
native derivations for many results in the main body of thisdeveloped further in Appendix )A This is also true in the
paper. theory described above in the limit,a—0. We may then
However, as stressed in Appendix B, the frame realizinchave x/a and «/b finite, or x/a andb finite if x/a>b. As
Brans-Dicke dynamics can only be achieved with very reawe will see the latter case distinguishes itself by predicting
stricted forms of matter. In particular, one must require thaihon-geodesic motiofbut no corrections to the metjiavhile
L., be homogeneous in the metric; clearly far from true inthe former predicts geodesic motion.
general. In the particular case in which we only consider The horizon is atr,=2Gm/(c2r), and the massn is
classical point particles the Lagrangian takes the form identified by comparingy,, and the weak field solution to
this theory. Later we shall see thatneed not be the Keple-
Eo e rian mass, ifo#0 (the case in which planets do not follow
S=- Zj dA[ =0, X" X"] (8) geodesics
Integrating Eq.(4) with metric (11) leads to the exact
in which a cana priori be any number. In metric theories of solution

gravity the value ofx is irrelevant, because? (with u=x) is b—a
a constant. One usually takes=1/2, so that the action be- y=——Ilog
comes the length of the world-line. The value @fis how- 2k
ever physically relevant ib#0 [19], and the results in this ] _
paper do depend oa. Arguments fora=1 were put for- I Whl(_:h th_e _factor b—a)/(2«) can be found using the
ward in[19], and we shall adopt this assumption in the mainWeak field limit. Hence
body of this paper. This implies that for classical point par-
ticles L,=—p/2, with p the energy density. Hencé,, is c=cm< 1—
homogeneous degree 1 in the metric.

For general forms of matter, minimal coupling, that is, the
requirement that’,, does not depend op, is not confor- We see that the speed of light goes to either zero or infinity
mally invariant. Therefore a conformal frarfend so a set of at the horizon depending on the couplings, a property we
a and b) is picked for its simplicity in describing non- shall prove in general in Sec. IV.
gravitational physicga point clearly made if31]). This ren- Physically the effect of the coupling parameters’ signs
ders the construction described in AppenBia useful math- and relative magnitudes is as follows. Let0 so that the
ematical tool, but with limited physical meaning, exceptenergy in the VSL fieldy is positive (but negligible, since
when the generality of,,, can be swept under the carpet. «—0). The field ¢ is then driven by direct couplings to
matter and to gravity, with strengths proportional to the cou-
plings b and a respectively{cf. Eq. (54) of [19]]. If both b
anda are positive the first coupling driveso decrease close
to matter concentrations, the second to increasé=a
Let us consider static spherically symmet(8SS solu- (such as in the case of the dilaton coupling at tree level, as

(12

2Gm
1- 2
car

oo

2Gm (b—a)/2x
) . (13

cir

lll. VACUUM SPHERICALLY SYMMETRIC
SOLUTIONS

tions. We shall work with both radial coordinates: discussed if19]) the speed of light does not change near
matter concentrations. Ib>a light slows down close to
ds?=—Bd&?+Adr?+r2dQ? (9)  massive bodies; i'<a it speeds up. In either case, we found

that near a black hole’s horizon something extreme must
(where dQ?=d#?+sirfed¢?) and with isotropic coordi- happen:c must go to either zero or infinity. The fact that
nates: something extreme must happen is due to the structure of
space-time, and can be linked to the usual proofs of the no-
ds?’=—Fdé&?+ G(dp?+ p?d0?). (100  hair theorem as we shall see. The choice between the two
options is made by the relative strengths of ¢hendb cou-
Recall that as ifi19] the usual tools of differential geometry plings, and follows whatever trend mis already present in

are unaffected under the condition thatx@rtype of coordi-  the weak field region.
nate is used, here denoted t§= cdt. The solution we have just found will be extremely useful

in clarifying the meaning of more complicated solutions. It
preserves the simplicity of the Schwarzchild solution while
allowing for a variety of non-gravitational VSL effects to be
The simplest SSS solution to VSL is the Schwarzchildpresent.

A. The VSL Schwarzchild solution

solution:
2 B. Brans-Dicke type of solutions
2Gm\ dr ) ] i
ds?=—|1— ——|dé&+ +redQ. (11 Given the formal analogy in vacuum between VSL theo-
car 2Gm . . ’ .
1- —5— ries and Brans-Dicke theories, we may (12d] to write the
Cor following exact solution:
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ds?= — F2hdg2+ 1+% 4F2()‘_C_1)/)‘(dp2+p2dﬂz)
(14
c=coFC/ar (15)
with
1—po!
“Tpels (19
A2=(C+1)?—C(1-«kCl/(2a?)). (17

PHYSICAL REVIEW D 63 043502

with A to be obtained from Eq17). We stress that a direct
substitution of Eq(6) in the Brans-Dicke resu[t24] misses
the terms inb.

The metric(14) may be cast into an Eddington-Robertson
expansior 27]:

2

M M
d52=—(1—2—+2/3—
P P

dé?

+ (26)

M
1+ 27?) (dp?+ p2dQ?)

with the parametrized post-NewtonidRPN parameters3

However, the weak field limit imposes a relation between=1 and

{C,\,po} and{a,b,x,m} which goes beyond the identifica-
tions (5)—(7). This is due to the fact that when “Brans-

Dicke” language is adopted for VSL theories the matter La-

grangian now depends a4, whenb#0 [cf. Eq. (7)].
Mimicking the weak field calculation presented [i24],
we find that Eqs(3) and(4) lead to

a—b 2m 18

V= 3a%r2x 1 (18
2a%+ ba

=1 am ™ 7" (19)
Goo r 3a%+ 2«

in which recall we have assumet},= — p/2 [cf. Eq.(8) and
its following discussioh Defining a Poisson mass

ba

232+K—7
M=2m—— 20
3a%+2«k 20

we then have
B a—b M o1
V= 27+ c—bai2 T b
2M

—0oo=1— - (22

We note once more thl need not be the Keplerian mass.
If we now expand Eqs(14) and (15) we obtain

CM
~ar 3

2M
—Goo=1—— (29)

r

with M=2py/\. Comparing with Egs(21) and (22) we
gather

a’—ba

C= % —ab

(25

a2+ k+abh/i2

y=C+1= 2a’+ k—ab/2’

(27)

The Schwarzchild limit may be obtained by lettiagk— 0,
keepingx/a andb finite but with k/a>b. Theny=~1, M
~m, and the metric reduces to Schwarzchild. However the
variation inc is non-negligible even in this regime:

1—- — ——

b—a Gm
cir)’

c= cw< (29

Also deviations from geodesic motion, dueliegs 0, may be
non-negligible. Hence it is possible to introduce two types of
new VSL effects without modifying the metric, a feature
which we shall use to solve a variety of problems.

IV. THE SPEED OF LIGHT MUST GO TO ZERO
OR INFINITY AT THE HORIZON

The fact that in the examples abowgoes to either zero
or infinity at the black hole’s horizon is far from accidental.

It may be generally proved by adapting techniques used in
proving the no-hair theoref82]. Here we sketch how such

a general proof might proceed, taking the particular case of a
scalarc (as opposed to a complexundergoing spontaneous
symmetry breaking as discussed 9], or ac derived from

a spinorial field.

Let us consider a static, vacuum, not necessarily spheri-
cally symmetric solution which is asymptotically flat and
contains an horizon. Let the metric take the form

dszz—Ld§2+hi,-dx‘dxj (29
with L andh;; time-independent. Let us discuss the problem
in terms of ¢,q=e?¥=0, which must satisfy

1
JLh

We first multiply this expression byLh and integrate over
the region() bounded by the horizotwhereL must go to
zerg and infinity. Integrating by parts reveals

(VLhhi g% =o0. (30)
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- . action rates changédue to changinge;) near the black
J()dxsx/mh”¢ﬁd¢,t]d— LQ\/Eeﬁbdh”d)ﬁdd%:O- hole. We shall use Schwarzchild VSL black holes as an
(31) illustration.

The piece of the surface integral corresponding to infinity is A. Free fall into VSL black holes

zero, by virtue of asymptotic flatness. AS poi . ; :
/ X . " pointed out iM19], b#0 VSL theories satisfy a weak
At this point VSL differs from relativity. In the usual GR form of the equivalence principléand do not conflict with

proof one then .shows that the integral over the horizoni m.usﬁje Edvos experiment however they predict non-geodesic
also be zero since —0 there. The only escape route is if oion |ndeed the action for a point particle, whi¥ 0, is
¢pq Or its gradient blow up at the horizon. This is preCIUdedgiven by ' '

by the requirement that the scalar field energy density b
finite. Hence the surface integral is zero, and since the vol- Eo o

ume integral is semi-positive definite it must be zero, so that S=- 7f dreg,, x#x" (32)
the identity is satisfied. This implies thét, ;=0 everywhere

outside the horizon. _in which the “x%-affine” parameter is given by =cdr,

Clearly the last part ,Of t.he argument may break dowp Myheredr is the actual affine paramet&proper time in the
VSL, because the gravitation may be negligible. Hence its g nits, for a time-like particle Hence, ifb=0, particles

divergence at the horizon need not produce a singularityy, ot follow lines of extremal length, but instead minimize

This is the case in the parameter region which produces g,o fnctional(32). Varying Eq.(32) shows that source terms
Schwarzchild solution. More generally we may define a re'appear in the geodesic equation, specifically

gion in the spacda,b,«} for which this type of behavior

occurs. ) o
It may also happen that thg¢ divergence at the “hori- x“+1“§,3x“x'3= -b

zon’causes a singularity. For instanf28,29 have shown

that this happens for (£C)/A <2. However such a singular . ) o )

horizon is not a problematic “naked singularity” in vSL _ Consider now radial geodesicsf<¢=0) in the

theories because, as we shall see in the next section, for somghwarzchild metric, so that

regions of the theory’s couplings information cannot flow

out of (or into) the singular surface. Hence a singular horizon £=ebV’(

e 1 By
XX = 2 00X XP |1, (39

L, T2
—B&24+ —
B&*+ 5

need not have the pathological connotations it has in general (34

relativity.

Whatever happens to the metric at the “horizon,” a non- C
trivial solution for ¢4 always requires that the surface inte- .- e/=BP* (35
gral in Eq.(31) diverges at the horizon. This implies that 0
must go either to zero or infinity at the horizon.

The generalization of this argument to stationary solu- B=1—
tions, to more general fields.e. whenc is derived from a c
bosonic invariant associated with a fermionic fighyl or in
the presence of an electromagnetic field, leads to the sanf@we have assumed the usual limit, with~a). There are two

2Gm

2
ol

(36)

conclusion. conserved quantities:
A word on terminology is in order. We are loosely using ]
the word horizon to describe what can in fact be a naked E=e"/B¢ (37
singularity. However, in either case VSL theories predict that
such a surface cannot be reached, as we shall show in the L=—€ (39

next section. Perhaps the wording “black hole edge” would

be more appropriate, since such a surface becomes part ofith e=1 for time-like particles from which we derive
the spatial infinity of the space-time. However we shall use

the expression horizon in what follows for simplicity. r=\E2Bb7/x_ pl-bi2«, (39)

V. THE INACCESSIBILITY OF SINGULARITIES If the speed of light does not change, we have

This theorem has the interesting implication that, at least fdr
for suitable couplings, the horizon, as well as the region in- = —
side it, are not physically accessible. Naively one might ex- ri co\/Ez—B
pect this to happen i€ goes to zero sufficiently fast at the
horizon. Indeect still acts as a local speed limit, and so  [wherer; andr,=2G m/(c2) label the starting point and the
—0 seems to imply that nothing can enter the horizon. How-horizon|, and so the proper time taken for a free falling ob-
ever two extra complications come into the problem: freesserver to reach the horizon converges. However, as is well
falling particles do not generally follow geodesics, and inter-known, such a process takes infinite coordinate time:

(40)
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m E wherem, and my, are the muon and the W masses, and
=f cgdr== (4)  a,=g,/(#c) is the weak fine structure constant. Another
fi ~0 example is an atomic clock, the period of which is given by

If ¢ changes, the proper time required to reach the horizon

' i
is now S o
e—e
h dr
™ f > —. (42)  whereE,=m.c? is the electron rest mass. SinEgxcH (like
i c\E2g b gl oben all other relativistic energi¢swe have thatr,oc1/c2*?,

These are two realizations of interaction clocks; if all else
Let us first assume thdit<<1 butb/« is non-negligible(so  fails remember that, is the pace at which we adé4].
thatb?/k<1). Then this differs from the fixed case in that A Dbetter formulation of the question of whether an ob-
“poc,” as naively expected. Hence the horizon is unreach-server may or may not reach the horizon is then: how many
able if c goes to zero faster than—2m, that is if b/(2«) 7o ticks are required? For a Schwarzchild solution this means
=1. Whenb?/ « is non-negligible, the fields also acts as an computing the dimensionless number:
extra gravitational force, accelerating or braking free-falling
particles. In the general casediverges if rpd7 . dr

fri TOC\/EZbeZIK_Blf(DZIZK)

(47)

b 7o

which diverges if
[with 1+ b?%/(2«)>0 andx>0].
In general(that is without assuming a Schwarzchild solu- b
tion) there are regions of parameter space for which the ho- - ﬂ[2q+ b]=1. (48)
rizon may be regarded as a boundary of space-time, since it

is located at infinite affine distance from any point in its This condition defines the parameter space for which the
exterior. horizon should be counted as part of the spatial infinity of the

black hole.
B. Interaction clocks in the vicinity of black holes

However one should bear in mind an extra complication, C. Are there VSL singularities?
already discussed i19]. Interaction paces also change near
the black hole, since all fine structure constants changesi

Strong decays are faster than weak ones becayser,,. there is in fact a naked singularity atr,). However this

SIImILaHyi as the _ﬁtrt(re]ng;t_h of altl mte;acﬁl(:rr:s varies neart;hesingularity is physically inaccessible; not just in the sense
ac toe, SO will the time rates ot all the processes ey, ot information cannot flow from it into the asymptotically
promote. flat region, but also in the sense that no observer starting

Somewhat phllqsoph|cally It was pomt'ed out[itd] that from the asymptotically flat region can actually reach it. The
our sensation of time flow derives precisely from ChangeSingularity lies in a disconnected piece of the manifold
and this is imparted by interactions and their rates. Hence wi ’

Which should simply be excised as unphysical
introduced the concept of an “interaction clock,” a device : : : ;
. X ’ i It is tempting to conjecture that all singularities are sub-
ticking to the time scales set by tlag (the fact that the ratios Pling J g

bet ™ tant bigifhe tick ject to the same constraint, in which case we seem to have
etween alw; are constant removes any am 'gl)?'ﬂ] euc eliminated the singularity problem, by means of a stronger
of such a clock is given by(«;) = 7o(c) [19], with

version of the cosmic censorship principle.

This result is extremely interesting. Our solution has a
ngularity atr=0 (in some cases for the general solution

f 1

=t —— (44 VI. COLLAPSING STARS AND THEIR REMNANTS
o Q C2q+1

70

We now discuss stellar collapse making use of the
in which Q is the energy scale of the process producing thé€@ppenheimer-Snyder solution, in which a spherical dust ball
tick 0. One such construction is a muon clock. Let us pro-collapses. This is the correct solution in the linaitx,b
duce a large number of non-relativistic muons. When half of—0, keepingx/a and «/b finite. In this case the metric is
them have decayed the clock ticks, and produces anoth&chwarzchild and motion is geodesics. Other cases are more
large number of muons. Such a clock would tick to a ratecomplicated(see[30] for an investigation in the context of

[35] Brans-Dicke theory
The Oppenheimer-Snyder solution makes use of Birkoff's
96734 theorem to match a Schwarzchild outside solution, to a
WS T T (45) Friedmann closed solution in collapsing stdgegeneral we
E o2 (_M) note that the solutions derived in Sec. Ill apply to the outside
KW myy of a static star for the same reagohhe inside metric is then
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ds?=—d?+ R2()[dx?+sirfxdQ?]. (49 light trajectories similar to those found in Brans-Dicke
theory. These corrections are embodied in the PPN param-
Here { is the properx® of free-falling observersy is the etery computed above. However there is a limit in which we
radial coordinate of a 3-sphere, aRds the expansion factor. recover the Schwarzchild metri@nd y=1) but in which
The latter satisfies standard Friedmann equatiarsch are  there are significant violations of energy conservation. In this
valid in the regime under studyB6]) for a dust Universe Ilimit we recover the GR results for light properties, but we
with densityp. One can show that there is no jump in the find non-negligible corrections to planetary orbits. Finally it

curvature provided that is possible to switch off these two effects, and so recover the
classical tests of GR, and still produce significant changes in
m= ‘_177 R3 (50) a and consequently in the fine structure of spectra in light
PR . . . .
3 emitted at the surface of stars. It is also possible to switch off
the latter, and keep either of the former two effects.
Ro=sinxoR({) (51
in which yg is the radial coordinate indexing the surface of A. The precession of the perihelion of Mercury
the star(which follows a geodesjc The internal value for We start by deriving the orbits of point particles, consid-
the speed of light is given by ering first the Schwarzchild metric. We are therefore in the
_ 5 limit a,x—0, but we shall assume thétis finite and«/a
. Elog 1 87CGr sinfxoR (52 > b sothatwe may exhibit deviations from geodesic motion.
K 3¢t ' Setting #= /2, =0, the Lagrangian ifcf. Eq. (32)]
Even though the Oppenheimer-Snyder solution may be o r2 )
adapted to our circumstances, the physics of collapse is en- £=eb"’( —B&+ E+r2¢>2). (53)

tirely different. The arguments applied in the previous sec-
tion to free falling observers are also valid for observers onrpere are three conserved quantities:
the surface of the star. In standard relativity collapse takes

infinite coordinate time, but finite proper time for an ob- E=e"B¢ (54)
server on the surface of the star. In VSL theories the proper

time, as felt by interaction clocks on the surface of a collaps- J=r2e¢ (55)
ing star, is infinite(for the parameter region identified in the

last sectioh As the surface of the star approaches its L[=—¢ (56)

Schwarzchild radius, all processes freeze-out. We are left

with a Schwarzchild remnant, the surface of which is part ofwhere e=0,1 for light and particles respectively. It follows
spatial infinity. The star itself has left the manifold. It's still that
black, but it is not a hole; rather its surface is an edge of
space.

When this happens there is also a divergence for the num-
ber of ticks for any process for observers inside the star,
sincec inside the star must also go to zero or infinity. HenceUsing the standard transformations
the singularity is never formed, a fact which in any case has

: J?
r2=Eg%e 2bV— ee*b*”B—r—ze’ZD‘/’B. (57)

little physical relevance. The inside of the star is pickled for U= 3 (58)
eternity as the Schwarzchild remnant is formed. rc.
VII. GRAVITATIONAL PHYSICS AROUND STARS d .d
o ¢>@ (59

We now turn to the study of gravitational phenomena in
the vicinity of VSL stars. A more detailed study within the 5. differentiating we get
framework of the PPN formalisif23] is warranted, but shall
not be attempted here. me

In summary we find the following. There are three classes u”+u=3mu*+ 37
of effects: upon planetary orbit®.g. the precession of the

perihelion of Mercury, upon light (e.g. gravitational light jn which we have used E13). Expanding the VSL contri-

bending, or the radar echo time-delagnd upon the fine  pytion (terms arising fromb? «x#0) up to first order iMmu
structure of absorption lines. These are caused, in differengagds to

combinations, by three distinct facts which we can switch on

and off independently: corrections to the Schwarzchild met- , 5

ric, violations of energy conservation, and spatial variations U’ TU=3mu+ 37

n «. (61)
If there are only corrections to the Schwarzchild metric

we obtain corrections to the GR result for the planetary ando be compared with the Newtonian result

b2
1+ —) (1-2mu)P*2  (60)
2K
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me M
u”+ u=5z (62 A:1+2yT (7D
and the GR result with M and y given by Egs.(20) and(27). Using the same
techniques as above we arrive at
me
u”+u23mu2+ ? (63) E2 u2 eebtlf

12 _
u'c= —-————. (72
. . - . ABFZ A 2
The Newtonian solutions are elliptical orbits: AJ
m WheneP”=1 this expression leads to standard res(dese
uOZJ—2(1+ecos¢>) (64  [27]). Hence we should add to these results any corrections
induced by the new terms associated with ¢ié factor. To

. . i v -
where e is the eccentricity. The GR termn8/? causes a [Ind the new terms we neeaf” up to second order iMu.

precession of the perihelion by Noting that
67m? p=r[1—(1+C)u] (73
Ap=—— (65) . .
J and expanding Eq15) we find
per revolution. In the case of Mercury this amounts to about ) bC bC/bC )
43’ per century. e‘”zl—?MuﬂL? 55 ~1-C|(Mw? (74

VSL causes two extra effects, even in the limit where the
metric remains Schwarzchild. First it causes a shift in theHence the new terms in E¢72) are
Keplerian mass, that is, the Newtonian formula still applies

but with mass e bC Mu M?2u?bC

b2

1+ —

M=m P

. (66) (79
where the ellipsis denotes terms present in the fixedlcu-
This can be guessed by comparing the relevant term in Edation for PPN metrics. This leads to

(61) with the Newtonian expressio(62). A derivation of

2
Kepler’'s third law, with a more rigorous derivation of Eg. U= .. b_CM_ M*u b_C 29+ b—C—l—C)
(66) may be found in Appendix C. Secondly, the last term in 2aJ° J a 2a '
Eqg. (61) induces a shift in the frequency, causing a preces- (76)

sion per revolution of . . . .
P Again the Keplerian mass receives a shift

47m? b?

A== 2.

b2

— bC
1+ 2K)' ©7 M=M(1+?). (77)
We see that, as announced above, even in the limit in whic
the metric remains Schwarzchild, VSL may induce signifi-
cant corrections to the orbit of Mercury.

E\s for the perihelion precession we should now add to the
standard formula

_ It may make more sense to rewrifeg in terms of M, 67M2 142y

since this is the mass measured using Kepler’'s third law. Ad)o:T 3 (78
Then, to first order ib?/ «, the joint GR and VSL effect is
67 M2 4 b2 [with y given by Eq.(27)] the extra term
Ap= -=—]. 68

=" 3 K> €8) 27M2 bC bC
A¢>1:—T— 2'y+2——1—C . (79

In the case of Mercury, in addition to the usual GR effect a a

there is a precession of about’Sfmesminus ¥/, purely
due to violations of energy conservation.

The general case is more difficult to compute. We us
the Eddington-Robertson form of the metric in radial
coordinates:

This result reduces to Ed67) in the limit a,x—0, and
x/a>b. An expression containing only physically meaning-
Gul quantities can then be obtained by rewriting these formu-

las in terms ofM by means of Eq(77).

d?= — Bd§2+Adr2+ r2d0?2 (69) B. Gravitational light deflection
) Considering now light trajectories, we should get0 in
B=1—2M+2(1— )M_ (70) Eq. (72). This cancels out the term ie®¥ and so VSL in-
r Y2 duces no effects on light trajectories other than those induced
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by distortions to the Schwarzchild metric. Henceaifkx  proach to the Sun. Then the time taken for the radar signal
—0, andx/a>b we predict the same result as GR for gravi-to move up to distance, in the absence of gravitational

tational light bending: effects, is
=7 At=f dr —————:. 82
oCx c(r)[rz—rg]m ( )

wherer is the impact parameter. In the case of a light ray\y

grazing the Sum ¢—1.75". The general case is ith a variation inc analogous to Eq13) we would get
r2—r2]¥2 p—a Gm
4GM 1+ B L]

= -7 At= —3 log
¢ o2 2 (81) C.. P

r+[r2—rg]”2)

I'o
(83

with y given by Eq.(27). I .

It would seem at first that in the limit in which the metric Hence to the u_sual gravitational time-delay, we would have
remains Schwarzchild there are no corrections to GR fof° add a delayif a_>0) due to a lower value foc close to
light bending, but the formula for the perihelion of Mercury the Sun. .Companng. Eq83) with the usua_xI_PP.N fqrmula
precession may be modified. This is a distinctive feature o 27] we f'|nd that this ?ffeCt’ due to explicit violations of
VSL, distinguishing it from Brans-Dicke theories, and can be orentz invariance, simulates a PPN parameter (b
traced to violations of energy conservation in the Jordan a)/K', . . . .
frame in these theories. In practice however the situation is,_NOthing like that happens in a locally Lorentz invariant

very different. The massem or M are not directly acces- VoL theory. From

sible; the mass of the Sun being estimated via Kepler’'s law.

The result is a Keplerian mags! given by either Eq(66) or P2

Eq. (77). Hence, even though VSL corrections of orthéf« AB

only affect time-like orbits, these corrections filter through to

formulas for light trajectories, because these must be exye obtain, after setting=0 and making use of

pressed in terms of Keplerian masses. The relevant result is

obtained by substituting Eq66) or Eq. (77) in Eq. (80) or dar E

Eq. (81). - _—
This situation is a good object lesson against harsh appli- ' d¢ eb'B

cations of conformal transformations. As spelled out in Ap-

pendix B, if we ignore the most general type 6f, it is the expression

possible to map the dynamics of our theory into Brans-Dicke

dynamics. This explains why our formulas for plan@tich 2B

are not conformally invariantdiffer from Brans-Dicke re- (

EZe—sz// JZ
= —ee PVB— r—ge-ZWB (84)

(85

sults, but the same does not happen to ligttich is con-
formally invarianj. However, such a direct application of a
conformal transformation would miss the interconnection be-
tween conformally invariant and non-invariant results whichin which all factors ine®” have cancelled out. This leads to
we have just pointed out. the standard expressi¢a7]

dr)z_ E?
dé/ — A/B (86)

C. Radar echo time delay r+[re— ré]l’z)

o

2 271/2 GM
_ ] ) Ag=[re—rg]"“+(1+vy)—log
Naively one might expect a different result for radar echo Co

time delays in VSL theories. Indeed if light traveled slower GM [r—r
or faster near the Sun, the echo time-delay should be larger > ( 0
or smaller. As we shall see this is not true in our theory, a c., \Ir+ro
feature due to the fact that we have not broken local Lorentz
invariance. As pointed out ifiL9] this manifests itself in the One needs now to transforginto time, but that is done on
absence of a global time coordinate, the differential structur¢he Earth, where~c,,. HenceAt=A¢/c.,, leading to the
associated with time forming a fiber bundle rather than asame result as in Brans-Dicke theories.
tangent bundle. Hence non-local calculations involving time The only novelty is again tha# is not the Keplerian
should be done with the coordinaggthe conversion to time mass, ifb?/ x is non-negligible. Once more we find that even
to be done locally. As a consequence whatever happeas tothough VSL is equivalent to Brans-Dicke in light experi-
locally along the path of the radar wave does not affect thenents, the fact that masses are estimated using time-like ob-
final result. jects induces corrections in formulas for light. In the present
We start by deriving results valid we were to break case we should use E@/7) to replaceM with M in Eq.
local Lorentz invariance. Lety be the point of closest ap- (87).

1/2

(87)
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D. Spectral lines Aa bg Gm
Naturally the hallmark and real novelty of VSL is a 7:_7%7' (%0

changing electromagnetic fine structure constant. This should
affect the fine structure of absorption lines created on thehis may be non-negligible even with negligibté/« (so
surface of stars, and be detectable using techniques similar that no corrections to the GR result are present in the peri-
Webb et al. [25]. As we shall see the larger the potential helion of Mercury. The prefactorbg/x may be inferred
difference, the stronger the effect, so perhaps dwarfs, or eveffom cosmological observatiori86] and can at most be of
neutron stars might be better candidates for this experimengrder 10 4. Hence we need an object sufficiently compact,
We first consider the effect upon spectra in the nonsuch as active galactic nucléhGN), a pulsar or a white
relativistic regime. We find that all spectral lines are propor-dwarf, for the effect to be non-negligible. Furthermore we
tional to the Rydberg energy, given bEg=me%%?  need the “chemistry” of such an object to be sufficiently
=Eea®, where E;=mc? is the electron’s rest energy. simple, so that line blending does not become problenatic.
Hence spectral lines have wavelengths proportional to Generally(i.e. for any matter configurationghe larger
=fic/Egx1la®=c™29. Considering that photons in free the gravitational potential differences, the stronger the effect.
flight have a constant wavelengtsee Sec. VA of19]) we  Indeed, for static configurations, batw/« and the gravita-
conclude that when we compare spectral lines coming frontional potential satisfy Poisson equations, with source terms
the surface of a star with those measured on an Earth lab@elated by a multiplicative constant. Hence the local value of
ratory, we find an extra “redshift” effect, due to VSL, of & should map the gravitational potential, and one would
magnitude need to have big variations in the gravitational potential to
observe corresponding spatial variationsdin It would be

A_)‘ - quz @ 921] (88) interesting to use this to infex maps fromN-body simula-
A c K Ccir tions, so as to deduce possible observational signatures of

VSL on cluster and supercluster scale.

where the last identity is valid only in the limé, x— 0, and
x/la>b. We therefore conclude that VSL theories have a
PPN parametetippn=2bg/ « [23]. Pound-Rebka-Snider ex-
periments are capable of constraining this parameter, but ng
by more than appy <102 (see Fig. 14.3 of23]). As will

be shown in36] the combinatiorbq/ « is of orderAa/«a at
cosmological redshifts or order 1. Hence the observation
made by Weblet al.[25], when interpreted with VSL, imply
violations of the weak equivalence principle at the level
appn~107°, consistent with current experimental tests. In
particular, measurements of non-relativistic spectral Iine%
formed on the surface of the Sun do not constr@aypy by

VIIl. THEORETICAL AND OBSERVATIONAL OUTLOOK

We have provided ample evidence for how VSL stars and
Black holes” may be rather exotic indeed. We have used
the covariant and locally Lorentz invariant formulation pro-
Qosed in[19], and stress that the results derived are by no
means generic to all VSL theories. Indeed in Appendix A we
showed how bimetric VSL black holes may differ distinctly
from the ones considered here. In this regard it would be of
reat interest to derive the properties of black holes in the
imetric theory of Clayton and Moffat9—11 and Drum-
mond[12]. Another variation upon the theme are VSL theo-

more than|appey <10™%. More compact objects, such as fies which explicitly break local Lorentz invariance, such as
dwarf | , displ t VSL redshift effect, b '
warss or puisars, dispiay a stronger reashitt efiec Uthe one proposed by Albrecht and Maguejj], and for

the effect is degenerate with respect to Doppler shifts in- . . . .
duced by their Snknown velocitieg with resp?a?:t to us ForWh'Ch black hole solutions remain elusive. In Sec. VII C we

such objects one has to go to look into the fine structure irgerived a distinctive effect to be expected in such thedses

order to measure, without degeneracy, the possible eﬁec@frlereLm raillo_ ech(_) tlin\e/gjl_elalwvhl_ch |an0t prtehsent |nt_lo-
upon spectra lines of varying constants. cally Lorentz invarian eories. Hence the exotic re-

Considering now the relativistic fine structure of spectralSUItS derivgd in this paper are generic to the type 9f theories
lines, we find that they directly measure the tell-tale signaprOposed |r[19], but by no means to all VSL theorlgs.
ture of VSL, since they are directly related do=e?/(fic) Yet, even within the framework of the VSL theories pro-

. e posed in[19], a large number of new effects still remain to
g;?/teto be confused withvppy). For small deviations we /o explored. We close this paper first by highlighting a few

obvious areas of interest which should prompt further theo-

retical work, and then describing observational prospects.
Aa  Ac q(y—1) GM An important omission in this paper is quantum effects,
—=g—=qY=—— = (89  which we have ignored. However it was showr 19] that a

o c a C..r . . . . .

varying- induces quantum particle creatiga point noted
before, in other VSL theories, HyL5]). That being the case,
VSL black holes might be sources of radiation in a process

where we have used E(L5) (recall thatacY). It is inter-
esting to note that Eq89) may be large even choosing pa-
rameters which render the metric Schwarzchild, and non-

geodesic effects associated witht 0 negligible. In the limit 1 would like to thank Lance Miller and GracRocha for tutoring
a,k—0, andx/a>b (so thaty=~1) we have me on the details of stellar spectral lines.
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complementary to Hawking’s radiation. The exact details ofin which the classical tests of GR are reproducegd{>1

such a process remain to be worked out. Also the interactiofor Brans-Dickea, k<1, k/a>b, andb?/ k<1 for VSL). In

between a changing and standard Hawking radiation is far this limit the theory still predicts a shift ix observable in

from obvious. These phenomena are currently being investithe fine structure of spectra from stars or other compact ob-

gated. jects. This effect makes VSL an interesting experimental
Further quantum effects arise from the fact that all gaugearget.

field strengths becoming zero or infinite will no doubt re-

shape the Iow—gnergy aspect of any quantum field theory. ACKNOWLEDGMENTS
Indeed, the scaling arguments mentioned in Sec. V B should
break down when the linee=1 is crossed. Therein non- | would like to thank Andy Albrecht, John Barrow, Kim

perturbative interactions will become perturbative, or viceBaskerville, Malcolm Perry, Kelly Stelle, and John Webb,
versa, a process which may have dramatic implications. Fdior discussion or comments. | am grateful to the Isaac New-
instance, the vacuum of a given theory may change. Théon Institute for support and hospitality while part of this
impact upon phenomena like confinement may be massivework was done.

There are also other interesting classical effects beyond
those described in this paper. All the arguments developed imppPENDIX A: BLACK HOLES IN BIMETRIC THEORIES
this paper concerned free-falling point particles. One may o ]
wonder what happens to free-falling extended objects. As is AS @ curiosity we now show an example of an alternative
well known, they will feel gravity by means of tidal forces. VSL theory which evades the theorem described in Sec. IV.
Shouldb# 0 they will also feel inertial forces, corresponding We show how this happens, using as an example the theory
to their acceleratiofor braking by the fieldy. Furthermore — described in the Appendix dfL9]. In this theory there are
there will also be effects induced by the gradients.inetus W0 metrics,g coupling to gravitation and matter, ahcou-
consider a body moving along a negative gradient gind  Pling to the fieldc only. The action is
assumeb=0). Given thatve«c, such a body would get
squashed along the direction of motion. In general a stress S=515
proportional tov- V ¢ will be felt.

Another finite size effect involves the time rates associ- 167G
ated with “interaction clocks” derived in Sec. V B. For a Sl:f d4x\/—_g< R+~ Lm
point particle falling into a black hole a slowing down of this Co€
rate means merely the slowing down of its progression to-
wards the horizon. However, for an extended object there
will also be an aging gradient, closely mapping thgradi-
ent, in addition to the stresses mentioned above. These is-
sues, as well as the quantum effects described above, will bghereg,, andh,,, lead to two Einstein tensor§,, and

S,= f d*x\—h(H—kh#"a,,p9,1) (A1)

the subject of a future publication. H,,. Varying with respect t@, ¢, andh leads to equations
Besides these interesting topics for future theoretical
work, there is the obvious hurdle of experiment. We saw that 871G
the theory produces effects very similar to Brans-Dicke Gu= @TW (A2)
0

theory, plus additional effects, namely departures from geo-
desic motion for non-null particles, and distorted fine struc-

ture in spectral lines in stellar light. =0 the classical tests _ 327G \ﬁ (A3)
of GR impose the constraih23] h= clet m
|y—1|<10°3. (92) 1
H V=K<V YV = 5h VValﬂV“lﬂ)- (Ad)
If we adopt the Schwarzchild limi{in which casey=1) this a g 2"

constraint becomes i ) ) o
Let us now consider SSS solutions to this theory. It is imme-

b2 diately obvious thag,,, is the Schwarzchild solution, with

m< 103, (92 massm. The solutions forc andh,, can be obtained by ap-
plying to this theory an argument similar to the one followed

#'n Sec. Il B. Solutiong14) and(15) are still valid, since we

In between th limi rather complex combination : ' .
between these two limits a rather complex combinatio OLre in vacuum. However the weak field limit now produces

a, b, and« is constrained to the same order of magnitude.

Should there be any departures from GR results in these 2Gm —ab
classical experiments, however, VSL would be an interesting —hge=1— - (A5)
competitor to Brans-Dicke theory, since it predicts correc- .l 2k
tions to light and planetary formulas distinct from Brans-
Dicke theory. More interesting still is that, unlike Brans- :_EG_m (A6)
Dicke theory, the theory does not become trivial in the limit K Col
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in which we haveb= —4 anda— 0. Hence, comparing with simplicity in describing non-gravitational physi¢a point

the asymptotic forms of Eq$14) and (15), we find clearly made in[31]). Another example of a case where a
preferred “physical” conformal frame is present was given
C=-2 (A7)  in[33].
If we can ignore generic matter fields, however, confor-
ra=2«. (A8) mal transformation may be a useful mathematical trick. Of
particular interest is the “Jordan” or “geodesic” frame, in
This leads to the result fdr,, andc: which b=0, and¢ does not couple t&,,. In such a frame

there is energy conservation, and particles follow geodesics.
2\2 s ais Two other frames of interest are the Einstein frarae=0)
) (dp°+p°dQ7)  (A9)  and the string framea=b).
Consider then an action of the form

Po
1‘(5

ds?=—dé&*+

1—P0/P) i "
C:C Alo = 4 — 0(’\ — 7% -
°| 14 polp (A0 s [ any g(¢> R— 5V, 8V 0= V(9)
in which the “horizon” is at 167G,
T f(h)Lrm (B9)
Po=— ALD) which, in our casef(¢)= ¢2. Under a conformal trans-

formationg,,,=?g,,, the transformed action is
The horizon ofg,, and that ot ,,, (which is wherec goes to In In

infinity) therefore do not need to be at the same place. o
s=f d“x\/—g{Q‘2¢“R+6¢C’Q‘4VMQV“Q
APPENDIX B: CONFORMAL DUALS

Here we examine the effect of conformal transformations - 6a¢“*10*3eﬂ¢%“9 - wq&"BQ’Z%MqS%“qB
on VSL theories. These are to be distinguished from changes 167G
of units which rendec constant, leading to fixed duals, as _ —4 0 P -2
studied in[19]. Conformal transformations take the form V($Q "+ Co M) Lm( 9251 (BLO)
di=dto (B1) If a portion of L, is homogeneous degreein the metric, it

is possible to transform away any coupling betwegmand
L. by settingQ2=¢" with n=b/(aa). Note that this is

dx=dx( (B2) only possible ifZ,, is homogeneous in the metric, something
A which is not generally truéfor instance kinetic terms are
9.=9u0 (B3) first order in the metric whereas interaction terms are zeroth
ordey. If we stick to classical particlesy is the power ofu
dE=dEQ 1 (B4) to be used in the Lagrangian
or equivalently . EJ dN[g, XX (B11)
Za g/.LV *
di=dt (BS)

In standard GR this does not matter, but here it is crucial. In
dx=dx (B6) [19] we have argued fow=1, but this need not be the case

(@«=1/2 is the value usually used in the literature, so that the

action becomes the length of the world-ling/e could even

9,,=0%,, (B7)  consider the case in which different types of classical matter
had differenta, another good example of a situation in
dE=dEQ 1 (Bg)  which the geodesic frame would not exigs indeed’,,
would then not be homogeneous in the metric
These transformations do not change the value, @nd so Action (B9) then becomes

map VSL theories into VSL theories; but the gravitational
action is modified leading to different values farb, and«. R _ . o+3n(l-n/2)~ -
The point we wish to make is that the degeneracy of confor- Szf d4x\/—_g 1 "R— — Vu#VHe
mally related theories is usually broken by the presence of ¢

matter. Indeed minimal couplinghe requirement that,, 167G
does not depend or) is not conformally invariant, and so a —V(¢)p 2"+ . 0
conformal frame(and so a set of andb) is picked for its Co

f($)Ln(0,, 272 [. (B12)
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Setting estimate the mass of the Sun, and therefore any corrections it
receives filter through to all formulas involving the mass of
x=¢' " (B13)  the Sun.
We consider first a VSL Schwarzchild metric, so thet
andV=0 we finally recover the Brans-Dicke action with  Eq. (72)]
. — . @~ - 167Gy~ . E? e
SZJ’ d4X _g[XR_;V”’XV'MX‘F To‘cm(g,u,v)] u,zz?_UZB_ JZ (Cl)
0
(B14)
Following [27] we now set to zero botbh’ and also its de-
with rivative with respect tai (the latter required for stability of
the orbi). This leads to
~ ©+3n(1-n/2)
©O= T mE (B15) E2=B(J%u’+e") (C2
By means of this transformation it is now possible to confirm [1+ b2/(2;<)]Bb2’2"B’
most of the results derived in this paper. For instance, Eq. J2= 5 - . (C3
(27) may be derived from the usual Brans-Dicke regwith u(2Bu—B’)
terms inb included. On the contrary the careless application
of this tool to the prediction of the precession of the perihe—From Egs.(54) and (55 we have
lion of Mercury and gravitational light deflection may be )
very misleading. One might expect light properties to remain d_¢’ _ Ju'B ~(M[ 1+ b%/(2k)ud)Y2 (C4)
unaffected by this transformation. While this is true on the dé E

surface, it is not in reality. Formulas for the light deflection ) ) )
contain the Keplerian mass, which is affected by conformal” which the last approximation reflects the fact that for all

transformations. This point is made clear in Sec. VII B.

APPENDIX C: KEPLERIAN ORBITS IN VSL THEORIES

The Keplerian mass is estimated from Kepler’s third law,
which here we simplify to circular orbits. Then planets at
distanceR have periodsT such thatR®/T? is a constant,

planets used to estimate the mass of the Bur<1. Hence,
with 0=2=/T, we have

2

w’RP=M=m| 1+ —|. (C5)
2K

A similar exercise using the general form of the equations of

proportional to the mass of the Sun. Kepler’'s law is used tanotion confirms Eq(77).

[1] J. Moffat, Int. J. Mod. Phys. 2, 351(1993; Found. Phys23,
411(1993.

[2] A. Albrecht and J. Magueijo, Phys. Rev.99, 043516(1999.

[3] J.D. Barrow, Phys. Rev. B9, 043515(1999.

[4] J.D. Barrow and J. Magueijo, Phys. Lett.483 104 (1998.

[5] J.D. Barrow and J. Magueijo, Phys. Lett. 487, 246 (1999.

[6] J.D. Barrow and J. Magueijo, Class. Quantum Grify.1435

(1999.
[7] 3.D. Barrow and J. Magueijo, Astrophys. J. LeiB2 L87
(2000.

[8] J. Moffat, astro-ph/9811390.

[9] M.A. Clayton and J.W. Moffat, Phys. Lett. B60, 263(1999.
[10] M.A. Clayton and J.W. Moffat, Phys. Lett. 877, 269(2000.
[11] M.A. Clayton and J.W. Moffat, gr-qc/0003070.

[12] I. Drummond, gr-qc/9908058.
[13] P.P. Avelino and C.J.A.P. Martins, Phys. Lett. 459, 468
(1999.

[14] P.P. Avelino, C.J.A.P. Martins, and G. Rocha, Phys. Lett. B

483 210(2000.
[15] T. Harko and M.K. Mak, Gen. Relativ. Gravil, 849(1999;
Class. Quantum Graw.6, 2741(1999.

[16] E. Kiritsis, J. High Energy Physl0, 010 (1999.

[17] S. Alexander, hep-th/9912037.

[18] B. Bassetet al,, Phys. Rev. D62, 103518(2000.

[19] J. Magueijo, Phys. Rev. B2, 103521(2000.

[20] S. Landau, P. Sisterna, and H. Vecetich, astro-ph/0007108.

[21] T. Jacobson and D. Mattingly, gr-qc/0007031.

[22] J. Barrow and C. O'Toole, astro-ph/9904116.

[23] C. Will, Theory and Experiment in Gravitational Physics
(Cambridge University Press, Cambridge, England, 1993

[24] C. Brans and R. Dicke, Phys. Rel24, 925 (1961).

[25] J.K. Webb, V.V. Flambaum, C.W. Churchill, M.J. Drinkwater,
and J.D. Barrow, Phys. Rev. Le8&2, 884 (1999.

[26] T. Damour and A.M. Polyakov, Nucl. PhyB423 532(1994);
Gen. Relativ. Gravit26, 1171(1994).

[27] S. WeinbergGravitation and CosmologiWiley, New York,
1972.

[28] M. Campanelli and C.O. Lousto, Int. J. Mod. Phys2pP451
(1993.

[29] A.G. Agnese and M. La Camera, Phys. Rev.50D, 2011
(1995.

[30] M.A. Scheel, S.L. Shapiro, and S.A. Teukolsky, Phys. Rev. D

043502-13



JOAO MAGUEIJO PHYSICAL REVIEW D 63 043502

51, 4208(1995; 51, 4236(1995. Principle (Oxford University Press, New York, 1986
[31] I. Quiros, gr-qc/9904004; Phys. Rev. @1, 124026(2000. [35] F. Mandl and G. ShawQuantum Field TheoryWiley, New
[32] J. Bekenstein, Phys. Rev. &) 1239(1972; 5, 2403(1972. York, 1984).
[33] T. Damour, G. Gibbons, and C. Gundlach, Phys. Rev. bdit.  [36] J. Barrow and J. Magueijo, “Cosmological scenarios arising
123(1990. from covariant and locally Lorentz-invariant varying speed of
[34] J.D. Barrow and F.J. TiplerThe Anthropic Cosmological light theories” (in preparation

043502-14



