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CMB B polarization to map the large-scale structures of the universe
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We explore the possibility of usinB-type polarization of the cosmic microwave background to map the
large-scale structures of the Universe taking advantage of the lens effects on the CMB polarization. The
functional relation between tH& component with the primordial CMB polarization and the line-of-sight mass
distribution is explicated. Noting that a sizable fracti@i least 40% of the dark halo population which is
responsible for this effect can also be detected in a galaxy weak lensing survey, we present statistical quantities
that should exhibit a strong sensitivity to this overlapping. We stress that it would be a sound test of the
gravitational instability picture, independent of many systematic effects that may hamper lensing detection in
CMB or a galaxy survey alone. Moreover, we estimate the intrinsic cosmic variance of the amplitude of this
effect to be less than 8% for a 100 demrvey with a 10 CMB beam. Its measurement would then provide
us with an original means for constraining the cosmological parameters, more particularly, as it turns out, the
cosmological constant.
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[. INTRODUCTION alteration of the CMB temperature patterns. The situation is
different when one considers polarization properties. The
reason is that in standard cosmological models temperature
fluctuations at a small scale are dominated by scalar pertur-

S 2 . . pations. Therefore the pseudoscalar part, the so-cdled
on cosmic microwave backgrour€MB) anisotropieq1]. A .. .

. o component, of the polarization is negligible compared to its
This should lead to accurate determinations of the cosmo- A
; : scalar part(the E component and can only be significant
logical parameters, provided the large-scale structures of the : . .

: : - : L when CMB lens couplings are present. This mechanism was
Universe indeed formed from gravitational instabilities of

initial adiabatic scalar perturbations. It was quickly realized,.recognlzecj n ea”'ef papef$1,12,10. _The i th|s_ paper
; . ] is to study systematically the properties of the lens-indiged
however, that even with the most precise experiments, th . .
ield and uncover its properties.

cosmological parameter space is degenerate when the pri- .
mary CMB anisotropies alone are considef&fi Comple- In Sec. I, we perturbatlvely compute t.he lens effect on
the CMB polarizationE and B fields. This first order equa-

'?;?nn;filg d;? iﬂﬁtsn:gyubireezugﬁgatc;;ngf gpnc:\?;rzllljar\[\%e zy%i_on is illustrated by numerical experiments. The possibility
q ' P YS of direct reconstruction of the projected mass distribution is

(but seq4]) or constraints derived from the large-scale StrLIC'also examined. As has already been noted a significant frac-

ture properties. Among the latter, weak lensing surveys arg .
. ion of the potential wells that deflect the CMB photons can
probably the safef5], but still have not yet proved to be actually bepmapped in local weak lensing sur\?@ys 14,

accurate enough with present day observations. This feature has been considered so far in relation to the
Secondary CMB anisotropie@.e., induced by a subse- . .
y piet Y ICMB temperature fluctuations. We extend in Sec. Ill these

guent interaction of the photons with the mass or matte : o o P
fluctuations offer opportunities for raising this degeneracy. studies to the CMB polarization, exploiting the specificities
of the field found in the previous section. In particular we

Lens effectd6] are particularly attractive since they are ex- - ] !
pected to be one of the most important. They also are erPrOPose two quantities that can be built from weak lensing

tirely driven by the properties of dark matter fluctuations, theBnd cosmic microwave background polarization surveys, the
physics of which involves only gravitational dynamics, andaverage value of which does not vanish in presence of CMB
are therefore totally controlled by the cosmological paramlens effects. Compared to a direct analysis of the CMB po-
eters and not by details of galaxy or star formation rateslarization, such tools have the joint advantage of being less
More importantly an unambiguous detection of lens effectssensitive to systematics—systematic errors coming from
on CMB maps would be a precious confirmation of theCMB mapping on the one hand and weak lensing measure-
gravitational instability picture. Methods to detect lens ef-ment on the other have no reason to correlate—and so
fects on CMB maps have been proposed recently. High-ordegmerge even in presence of noisy data and of being an effi-
correlation function$7], peak ellipticitied 8], or large-scale cient probe of the cosmological constant. Indeed the ex-
lens-induced correlatorl®,10] have been proposed for de- pected amplitude of correlation is directly sensitive to the

tecting such effects. All of them are, however, very sensitiverelative length of the optical bench, from the galaxy source
to cosmic variance since lens effects are only a subdominamiane to the CMB plane, which is mainly sensitive to the

In the new era of precision cosmology we are entering
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cosmological constant. Filtering effects and cosmic variancéo the weak lensing effect, so the observed quantity will not
estimation of such quantities are considered in this section aske into account any other secondary effect. It is very im-

well. portant at this point to note that the lensing effect does not
produce any polarization or rotate the Stokes parameters. In

Il. LENS EFFECTS ON CMB POLARIZATION this regime its effect reduces to a simple deformation of the

_ polarization patterns, similar to the temperature maps. This is

A. First order effect the mechanism by which the geometrical properties of the

Photons emerging from the last scattering surface are déolarization field are changed. _
flected by the large-scale structures of the Universe that are To see that we have to consider ilectric (E) andmag-
present on the lines of sight. Therefore photons observetetic (B) components instead of the Stokes parameters. At
from the apparent direction must have left the last scatter- SMall angular scalegve assume that a small fraction of the

ing surface from a slightly different directiony+ &(a), Zgincea:jnabse described by a planénese two quantities are
where £ is the lens-induced apparent displacement at that

distance. The displacement field is related to the angular gra- E=A"Y(s2— af,)QJrZ&XayU],

dient of the projected gravitational potential:

B=A"[(d5—3d5)U~23,3,Q], (5)

N 2 (zs DZ—»ZS o
Gila)=— ?f dzg 5= ®.i(a.2), (1) whereA ! refers here to the inverse of the Laplacian opera-

2% tor. These fields reflect the nonlocal geometrical properties

where® ; is the angular gradient of the gravitational poten-Of the polarization field. Th(_—j elgctric component accounts for

tial in the direction orthogonal to the line of sighd, is the ~ the scalar part of the polarization, and the magnetic one, the

angular distance, ar is the source plane. In the following, PSeudoscalar part: by parity changés conserved, whereas

the lens effect will be described by the deformation effects ith€ B Sign is changed. As has been pointed out in previous

induces, encoded in the amplification matrix papers[11,12,15, lens effects partly redistribute the polar-
ization power in these two fields.

1-k—1y, — vy o We explicate this latter effect in the weak lensing regime
A= B 1 et =6+¢, (20 where the distortionx andy; components are small. This is
Y2 N indeed expected to be the case when lens effects by the
so that large-scale structures are considered, for which the typical
value of the convergence fiekl is expected to be-2% at
1 the 10 scale. The leading order effect is obtained by simply
K=— §(§f(x+ &), plugging Eq.(4) into Eq. (5) and by expanding the result at
leading order irg, «, andy . Noting that, for any fielX that
1 is affected by the lensing effe¢these calculations are very
y1=— §(§'XX_ g?/y), similar to those done ih14]),
GX= X (8 +£5),
vo=—&=—¢&). 3) | Y
STy sk gk |
All these fields can be written in terms of the second order 90 X=X (5 +§vi)(§li+§~i)
derivatives of the projected potential. The lens effect affects + X 551 ' 6)

the local polarization just by moving the apparent direction
of the line of sight{16]. Thus, if we use the Stokes param- \ye can write a perturbation description of the lensing effect

etersQ andU to describe the local polarization vector on electric and magnetic components of the polarization. At
0 leading order one obtains
P=| "1, . . o
(U) AE=AE+EGAE-2kAE-25(Y' AP+ PI¥)

o o +0(%),
we can relate the observed polarizatiBrto the primordial
one by the relation AB=AB+ & 3AB—2kAB~2¢; (Y AP+, PI¥)

Q(a)=Q(a+§), U(a)=U(a+§). (4) +0(?), @)

From now on we will den9te< an gbserved quantity and  \here we used the fact thAiX=AX+ & 3,AX at the leading
the primordial one. Sincex' =a+ ¢ is the sky coordinate order. The formulas foE and B are alike. The only differ-
system for the observer, the amplification matdxis also  ence is in thej;; ande;; (the latter is the totally antisymmet-
the Jacobian of the transformation between the source plan& tensor, e;;=€>,=0, €1,= —€,,=1), which reflect the
and the image plane. We will restrain here our computatioryeometrical properties of the two fields. The first three terms
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FIG. 1. Lens effect induced by a large isothermal sphere with finite core radius« Thap of the lens is shown on left panel. The
primordial E sky is presented in the middle left panel. It has been generatedIgra.3, A =0.7 model, without tensor modes. The middle
right panel displays the true reconstructed field in a 4.5<4.5 deg map and the right panel shows the first order approximation. Note that
the rosettelike shape the eye seems to catdb fields is a numerical coincidence and has no special significance.

of each of these equations represent the naive effect: thé&/e will take advantage of this feature to probe the correla-
lens-induced deformation of the or B field. This effect is  tion properties oB with the projected mass distribution in
complemented by an enhancement effeespectivelyxkAE  the next sections.
andxAB) and by shear-polarization mixing terms. The latter
effects consist of two parts: one, which we will call the
term, that couples the shear with the second derivative of the
polarization field and the other one, hereafter¥hierm, that We show examples of lens-induc8maps. These maps
mixes the gradient of the shear and polarization. In our prehave been calculated usingMBsLow”’ code developed by
vious work[14], terms similar toV (i.e., in the gradient of Riazuelo(see[18]) to compute primordial polarization maps
the lens effegt had been neglected since they had a nul[we use realizations of standard cold dark matiebM)
contribution to the correlation coefficient we computed. Thismodel to illustrate lens effectsThen various shear maps are
is no longer true here; we will indeed show later thaaind  applied. We present both true distortiofabtained by De-
V terms have similar amplitudes. launay triangulatiohused to shear th® and U fields) and

One consequence of standard inflationary models othe first order calculations given by E@).
CMB anisotropies is the unbalanced distribution of power Figure 1 presents the shear effect induced by an isother-
between the electridy) and magneticB) components of its mal sphere with finite core radiuand the lens edges have
polarization. Adiabatic scalar fluctuations do not inducebeen suppressed by an exponential cutoff to minimize nu-
B-type polarization and they dominate at small scales ovemerical nois¢ The agreement between true distorti@en-
tensor perturbationgnamely, the gravity waves So even tral panel and the first order formul&ight pane] is good.
though gravity waves indudeé- andB-type polarizations ina However, a close examination of the maps reveals that some
similar amount, therimary CMB sky is expected to be com- structures in the true map are slightly wider than their coun-
pletely dominated byE-type polarization at small scales. terparts in the first order map. This error is more severe in
Then for this class of models the actual magnetic componerthe center, where the distortion is bigger, which is to be
of the polarization field is generated by the corrective part ofexpected since the limits of the validity region of first order
Eq. (7): calculations are reached.

For illustration sake, Fig. 2 shows tligefield induced by
a realistic distortion. We use second order Lagrangian dy-
namics[19] to create a 2.82.5 deg map that mimics a
realistic projected mass density up Zze- 1000 and used its
This result extends the direct lens effects described in Benagravitational distortion to compute a typical weak lensing-
bed and Bernardedil2] who focused their analysis on the inducedB map. Again we compare thexacteffect (i.e., the
lens effect due to the discontinuity of the polarization field inleft panel where Delaunay triangulation is usadd the first
case of cosmic strings. Previous studies of the weak lensingrder formula(middle panel The right panel shows the dif-
effect on the CMB showed that with lensing, tBecompo-
nent becomes important at small scdl&g]. We obtain here
the same result but W'th a d!ffere_nt me_thqd' Equati8p To perform the exact lensing effect on a CMB map, we compute
means that the polarization sigrlis redistributed by the yhe gisplacement field and the polarization fields on regular grids.
lensing effect in a way that breaks the geometrical propertie$nen the CMB grid is deformed according to Hd) to shear the
of the primordial field. Note here that it is mathematically grig containing the CMB data. The resulting polarization fields are
possible to build a shear field that preserves these geometiemapped onto a regular grid using Delaunay triangulation, which
cal properties and that does not create Brgignal at small  provides us with an efficient algorithm to interpolate irregularly
scales. We will discuss this problem in Sec. Il C. It alsosampled data on a discreet grid. The result is accurate down to the
means thaB directly reflects the properties of the shear map.grid size.

B. Lens-inducedB maps

AB=—2¢;(Y'API+ /| P19, (8

043501-3



K. BENABED, F. BERNARDEAU, AND L. van WAERBEKE PHYSICAL REVIEW 63 043501

FIG. 2. The effect of aealistic weak lensing field oiB. 2.2x2.2 deg survey with 18resolution. The left panel shows exact distortion
obtained by Delaunay triangulation, the middle one, the first order formula result, and the right gives the difference between the two. The
three panels share the same color table. The mean amplitude in the difference map is about 3 times smaller.

ference b_etvyc_aen the two maps. It reveals th.e locations where AB=— 2¢;i( YAPI+ y!kpj,k)z Fly] (9)

the two significantly disagree. In fact most disagreements are

due to a slight mismatch of tH& patch positions, which lead and our reconstruction problem becomes an inversion prob-

to dipolelike effects in this map. lem for the operatoF. Unfortunately, one can prove that this
We also show here a comparison of the two parts of theyroblem has no unique solution. It is due to the fact fhat

first order formula, Eq(8), in order to see which of tha or  admits a huge kernel, in the sense that, given a polarization

V terms dominates. It would be more comfortable if one ofmap, there is a wide class of shear fields that will conserve a

the two terms were dominant; however, Fig. 3 shows that itwull B polarization. The demonstration of this property is

is not the case. Even if thd term dominates at low  sketched in the following.

(<1000) I, it is only twice bigger than th& one at this Since the unlensed polarization is only electric in our ap-

scale. The inverse is true for highe8000-5000 I's. This  proximation, we can describe it by the Laplacian of a scalar

can be seen by looking at Fig. 4 where we show the relativgield:

amplitudes of thel andV contributions. TheA part gives

birth to large patchegaround 10) while theV panel shows Q= (s~ d)¢,

a lot more small features. Details of this calculations are E=Ae so U=2d,dy¢. (10

given in the Appendix. Y

The same holds for the shear and convergence fields
. . Alﬂ 1 2 2
The fact that the observabRis at leading order propor- K= > y1=§(ax—ay)¢, Yo=0dxdyp.  (11)
tional to the weak lensing signal invites us to try a direct

reconstruction, similar to the lensing mass reconstruction. Ifpys we need to know. for a given field, whether there is
fact, we can write any ¢ that satisfies the equation

C. Direct reconstruction: The Kernel problem

LIS B B T T T T T 177 ’)/ZAQ_'}’1AU+(9|'}’25|Q_07|'}’1(7|U:O (12)

¢ and ¢ can be written as polynomial decompositions:

10-10 P(xy) =2 anxy,
5 ,

PO6Y) = 2, By (13

; ' Using Egs.(13) in Eq. (12) we are left with a new polyno-

10-11 £ AT Co mial whose coefficients;; are sums of,; X by, and have to

100 1000 10* be all put to zero. With the coefficient equations in hand, it is

1 easy to prove that assuming all the, coefficients up to
FIG. 3. TheC, of AB (solid line), the A term (dashed ling and M+ k=N are known and writing the equationg i+ ]
the V term (dot-dashed line The A part is dominant at smalts, = (N+1)—=3, ¢;;=0, we can compute out of all the, all

aroundl = 1000, that is to say, for structures around .1TheV  but threeb,, with m+k=N-+1. This is somewhat similar to
contribution gives birth to smaller structures in the 1-2 arc minmass reconstruction problems from galaxy surveys where
range. TheC, curve is in good agreement with results presentedone cannot avoid the mass sheet degeneracy. The situation is,
previously in the literaturg¢11,15]. however, worse in our case since not only constant conver-
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FIG. 4. The effect of the two terms of the perturbation formula. Top row, the lens effect is the sum of the lenses up to recombination.
Bottom row, we use the same line-of-sight mass fluctuations but only up to redshift unity; it represents our “local” lensing survey. The
convergence fielddeft panelg have been computed by slicing thexis and summing up the lensing effect in each slice. Lens-lens coupling
(including departure from the Born approximatiderms have been neglected, which is consistent with our first order approximation. The
convergence in each slice has been created by using second order Lagrangian dynamics. The middle-left panels show the leading order
contribution, the middle right th& contribution, and the right th& one. In this example, the correlation coefficient between the two
convergence maps, is equal to 0.48 at 1'8 The cross-correlation coefficient between the guess (fagnd the real onéb) is 0.47. It is
0.37 between the redb) andA (g) maps and goes down to 0.16 for the ré@alandV (h).

gence but also translations and a whole classagf  will not interfere too much with the detection of the lens-
realization-dependent complex deformations are indiscerninduced B [20], little is known about removing the fore-
ible. Thus, with only knowledge of thB component of the grounds[21] to obtain clean maps reconstruction algorithms
polarization, one cannot, with the first order equati®,  would require.
recover the projected mass distribution. These considerations lead us to look for complementary
It is worth noting here that this calculation is not in con- data sets to compai® with. Although the source plane for
tradiction with the Guzik-Seljak-Zaldarriaga resuli®]. In  weak lensing surveygb] is much closer than for the lensed
their paper they show that using different statistics, based o@MB fluctuations, we expect to have a significant overlap-
polarization measurements, they are able to reconstruct thgng region in the two redshift lens distributions, so that
lens power spectrum of the large-scale structure. Moreoveryeak lensing surveys can map a fair fraction of the line-of-
this reconstruction is hampered hgiseinduced by the au- sight CMB lenses. Consequently, weak lensing surveys can
tocorrelation of the cosmic microwave background struc-potentially provide us with shear maps correlated vidttbut
tures. This noise is strongly related to the kernel problenwhich have different geometrical degeneracy, noise sources,
addressed here. They can choose their statistic to reduce thdad systematics than the polarization field.
noise to an acceptable level in the power spectrum, yet they The correlation strength between the lensing effects at
cannot reconstruct a shear map. two different redshifts can be evaluated. We defires the
cross-correlation coefficient between two lens planes:

IIl. CROSS-CORRELATING CMB MAPS AND WEAK <KKga|>
LENSING SURVEYS r(zga.) = T (14
o V(K25
A. Motivation

Even with the most precise experiments it is clear thain a broad range of realistic cas@ee Table), r~40%. To
clean detection oB components will be difficult to obtain. take advantage of this large overlapping we will consider the
The magnetic polarization amplitude induced with such aguantity that cross-correlates the CMBfield and galaxy
mechanism is expected to be one order of magnitude belowurveys. Moreover, cross-correlation observations are ex-
the electric on¢17]. Besides, even if we know that there is a pected to be insensitive to noises in weak lensing surveys
window on an angular scale where other secondary effectsnd in CMB polarization maps. This idea has already been
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TABLE I. Values ofr, the cross-correlation between two source which corresponds to th& term in Eq.(8). The amplitude of
planes ggo and z.,,=1100), for different models. The adopted the cross-correlation betweéB andb, can easily be esti-
filter scale(see Sec. Il C for detailss 2 arc min for both the weak mated. At leading order, we have
lensing survey and cosmic microwave background observations.

Non-linear evolution of P(k) has been computed using the 5 _ o K. i I A DJ
Peacock-Dodds methd@2]. (ABDby) 2€ij € Y vga)(AP'AP). (a7

The corresponding correlation is

r coefficient Zga=1 Zga=2

EdS, linear 0.42 0.60 N K i | ].

0=0.3, A=0.7, linear 0.31 0.50 (ABby) = = 2€j €(Im Y InYgad{(ImP dnP’),  (18)

01=0.3, A=0.7, nonlinear 0.40 0.59 )

where we have defined

explored for temperature map4]. We extend this study by=€i; 9k vgadkP’. (19
here taking advantage of the specific geometrical depen- Figure 4 shows numerical simulations presenting maps of
dences uncovered in the previous section. first order AB, its A and V contributions, and the corre-

sponding guess maps one can build with a lbshear map.
The similarities between the top maps and the bottom maps
) S are not striking. Yet under close examination one can recog-
The magnetic component of the polarization in E8)  nize individual patterns shared between the maps. This is
appears to be built from a pure CMB part, which comes fromeonfirmed by the computation of the correlation coefficient
the primordial polarization, and a gravitational IensingApart.between the maps, which shows significant overlapping, be-
It is natural to defineb in such a way that mimics thaAB tween 50% and 15%, depending the correlation and filtering
function dependence by replacing the CMB shear field by theatrategy. The calculations hereafter will evaluate the theoret-

B. Definition of b, and by

galaxy one: ical correlation structure between maps given in Figs. 4b and
S 49, 4h.
b= € (Vg P+ yga P! For galaxy surveys, the amplification matrix[23]
= € (YA P!+ Y kP + O(x2). (15)

P Zgal
Agdt@)=1d=— | vt

In the following, we will label local lensing quantities, such
as what one can obtain from lensing reconstruction on galaxy d®k = Tk y+K, DOl
surveys, with a “gal” index. This new quantity can be f(2—)3,25(k)e' TR
viewed as a guess for the CMB polarizatiBrcomponent if &
lensing was turned on only in a redshift range matching the 1+cog2¢y ) sin(2¢y )
depth of galaxy surveys. The correlation coefficient of this * -

( sin(2¢y ) 1-coq2¢y )|’

guess with the truéB field, that is,(ABb), is expected to
be quadratic both i and iny and to be proportional to the ) ) _
cross-coefficient. whered(k) is the Fourier transform of the density contrast at
For convenience, and in order to keep the objects we ma€dshiftz(x), wis the lens efficiency function, andy is
nipulate as simple as possible, we will not exactly implementhe position angle of the transverse wave vedtorin the
this scheme, as it will lead to uneven angular derivative dek, =(k, k,) plane. Assuming a Dirac source distribution,
grees in the two terms of resulting equations. We can, inthe efficiency function is given by
stead, decompose the effect in theandV parts. These two
are not correlated, since their components do not share the 3 D,b,.,
. g gal
same degrees of angular derivatioHence, we can play the Woa(2)= 5 Qo—=—
S . 2 ab,
proposed game, considering the two terms of &j.as if
they were two different fields, creating two guess quantities

that should correlate independently with the obse®digld. ~ Note that the Fourier componendk) include the density
Following this idea we build, as time evolution. They are thus proportional to the growth fac-

tor in the linear theory. The time evolution of these compo-
nents is much more complicated in the nonlinear regisee

ba=e€ij VgaA P! [22)).
) ) Then,b, i
= € YA PI T O(k?) (16 enby 18

(20

(21)

gal

by(a)= f DT REM KGR, (22)

2Generically, a random field and its derivative at the same point
are not correlated. with the integration element defined as
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d*k

-t [k x+(k D) +1)-a]
(27T)3/2 2

D(x,T,K) = dx Wga( x)

[it actually depends on the position of the source plane

through the efficiency functiow(z)] and wherel stands for
eitherA or V. The geometrical kerng}¥®" is given by[us-
ing Eq. (10)]

GEE(T K =1%sin 2y~ ), (23
Gyo'(T k) =1k cos dy— Bp)sin 2 b= ). (24)

This function contains all the geometrical structures of4dhe

andV terms. We can write the same kind of equation for

AB. Then, the cross-correlation is

~ N Xgal > _>
<ABbh(a)>:_2f D(Xgalilgalikgal)

Xcmb

D(Xcmbs I_)cmb ) IZcmh) g Ih<er( I_)gal ) |Zga|)

X g I:er( I->cmb1 Izcmb)< 5( lZgal) 5( lzcmb))

X<E( I-)gal)“lé( I_)cmh)>- (25

The completion of this calculation requires the use of the

small-angle approximation:
k"’ kJ_ . (26)

Then,

<5( IZgal) 5( lzcmb»: P(k) é\Dirac( Izgal"' Izcmb) (27)

implies that, and after the radial components have been inte-

grated out,
Xgal= Xcmb— X+ (28)

We also define th€g(l) as the angular power spectrum of
the E field:

<E( I->ga|)‘é( IQcmb)> = Cg(l) dpirad I-)gal_ I-)cmb)-

Eventually one gets

(29

~ > Zgal
<ABbh(a)>:_2J ’ dXWgaIWcmb
jdzkdzl
X
(2m*

Then, integrating on the geometrical dependence@ﬁ'ﬁ,
we have

Ce(NP(K)GK(T K)2. (30)

dkdl
2(2m)?

<AébA(&)>:_2fzgaldXWgaWcmbf k|5CE(|)P(k)

:_<AE2><KKgaI> (31

PHYSICAL REVIEW D 63 043501
and

dkdl

mk?’l 3Ce(H)P(k)

~ N Zgal
(4B o) =~ [ g

1 . - -
= {(VE) (Vi Viga, (32
implying that, ignoring filtering effects, we are able to mea-
sure directly the correlation between lensing effectgt,
and anyzg, a weak lensing survey can access. Sinde
=AE[1+0(k)], we get, for theA type quantity,

(AE?)=(AE[1+0(k)1?)=(AE?)[1+O0((x?))].

The same holds foW. We are then able to construct two
guantities insensitive to the normalization of CMB amgt

<AébA(&)> <KKgaI> <K2>
=2 =— ~— (34)
AN (K2 (k) (k22
and

_ (ABby(a))

Y VE) D (Vrga)?)

_ 1V Vkgad 1 (V)
2wy 2Ny ®

We implicitly definedry like r but with V « instead of«:

<€K-€K9ap
(VO (Vg

rV(Zgal) = (36)

We will see in Sec. Il D that they behave very much alike.
This result is to be compared with the formula {@os(@,))
established if14] where the obtained quantity was going
like r\{(«?). These calculations, however, have neglected
the filtering effects that may significantly affect our conclu-
sions. These effects are investigated in next section.

C. Filtering effects

In above section we conduct our calculations assuming no
filtering. Obviously we have to take it into account. We will
show here that the results obtained in Sec. 1l B hold, in
certain limits, when filtering effects are included.

In the following, we consider, for simplicity, top-hat fil-
ters only. It is expected that other window functions will
show very similar behaviors so that this assumption does not
limit the scope of our results. Let us calN(k) the top-hat
filter function in Fourier space:

J1(k)
T

W(k)=2 (37
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J; is the first Bessel function. We will also defing/,(k) as  metrical properties of our problem. Integrating over the geo-
a general function: metrical dependences §ﬂfer leaves us with only a few non-
vanishing terms in our sum,

Ji (k)
Wi(k)=2—— (38 n(|¢) m i=1 or i=3
k 1
f deb sir(2¢) — o= sing 0 elsewhere, “4
whereJ; is theith J Bessel function, so tha/=W;. Then,
if X(Ez) is the value of any quantitX at position& on the for the A term, and
sky, its top-hat-filtered value can be computed as /2 —
. [ Pk e . o 3ml4 =
x((,)(a)zfﬁxkvv(ka)ék'a, (39 f dep cos¢b sirP(2)sin(i ¢)sin = /a s,
- 0 elsewhere,
whereX is the X Fourier transform. In the following we will (45)

denoteX 4 the filtered quantity at scale.
The tricky thing for(AIABb,Q is that the CMB part and the
low-redshift weak lensing part awee priori filtered at differ-

ent scale. FoAB, which is a measured value, its pure CMB
part and its weak lensing part are filtered at the same gtale

for the V term. Each term can be computed exactly, and it
turns out that the terms built frordv;, i>1, are always
negligible compared to the ones coming fré. It implies

that we can safely ignore thé&/; and W5 in both A andV
expressions; therefore it is reasonable to assume that

Hence,B reads W(|KkD+1|6)=W(kD)W(I 6). It is expected that other
windows, in particular the Gaussian window function, share
@)(p)= f "D(x.TREN SK[GK(TK,) similar properties. Then, taking into accounts the filtering

effects, the equations for the cross-correlations reduce to

Ker ~
(K )IW(IK, D+ T]6). 40 <AB(0)bA(0,0ga|)>:_<AE(20)><K(0)KgaI(09a,)> (46)

A contrario b, is a composite value. The CMB part is still and
filtered at & whereas the weak lensing pdwhich comes

from a weak lensing survey of galaxjes filtered indepen- R 1
dently at another scale which we den@lg,. It implies that (A B(g)bv(gyggap)z - §<V Efy)(VyV Kga,(ﬁgal)), (47)
by(a)g=—2 D(X JOE() 8K GRE(T K, ) so that our correlation coefficients can be written,

2
X W(KD 6) W(1 0). 41 [ (ko)
( gal) (16) (41 XA(evggal)z_r(g*ﬁgal) <K2 (6) > (49)
gal(agap

Taking filtering into account, the cross-correlation coeffi-

cient becomes and

~ Zgal dzkd2| 1 \Y 2
] L e AN
W8P ) Y Hoalerb] ) Hond= 3 von \igiz e @9
gal

X Ce(DNP(K)GK(T,K)W(kD
Ce(DPIIG™ (1 k)W(kD g2 The results obtained in Eq&34),(35) are thus still formally

XW(I 0)W(|KD+1]6). (42)  valid. Actually, Egs.(48),(49) simply tell us that filtering
effects can simply be assumed to act independently on the
It can be showrifrom the summation theorems of the Bessel!ensing effects and on the primary cosmic microwave back-
functions that ground maps. We are left with two quantities that only reflect
the line-of-sight overlapping effects of lensing distortions.

Wy (kD +1]6)= —;l iW;(kDa)W;(16) D. Sensitivity to the cosmic parameters
We quickly explore here the behavior &f, in different
% (=1) sini(¢x— 1) (43  sets of cosmological parameters. These quantities only de-

sin(¢x—¢y) pend on weak lensing quantities. Ignoring thy depen-
dence in the angular distances and growing factor, one would
It is then possible to break tHA/(|IZD+r| 6) into a sum of expect(x?) to scale Iikeﬂg. Yet because of the growth
W;(kDO)W,(16) with coefficients that depend on the geo- factor, the convergence field exhibits a weaker sensitivity to
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¢ Yo x§ Xo «\\;p
Cy =2 x + i i + ,,v\\
e« X0 ® xO ® xo
Al AL, A,
® ¥° '\\ 0
+2 X : : +2 X M
L} )
® Xo o Jo
0.0 0.2 0.4 0.6 0.8 1.0 b A
0y value _3" 3¢
¢ X0 xq xq x& Xxp
FIG. 5. <K(g)Kga|(ggap>/<K5a|(9gal)> for a CDM model consistent _ax I .\ 4! \'+ N
with the values of Qg,A). 0=0g=2". ,.,,'_x, el
---0 o o e o
Q,. AssumingA =0 and a power law spectrum, we know Bt B B
. 1 2n 2e¢
from [23] that( k)= Qg *°for zg,=1. The same calculation
leads to<Kcmngal>ocQ%'68v <(VKgaI)2>ocQ%'9lv and <V_)Kcmb +9 IQI \q\+2 I.\‘x’Y
> TR " X X
-V kga) = Qg°™. Then, in this limit, the quantitieg’; have a / } RAMN
. " o ° °
very low dependence ofl: : :
B B

Xy Qg% and XyxQgo®,

Eventually, theX, quantities should exhibit a sizable sen-
sitivity to A; changingA increases or reduces the size of the
optic bench and accordingly the overlapping betwegg,
and gy

Figures 5 and 6 present contour plots of the amplitude of

X, and Xy in the (Qq,A) plane for CDM models. They
show the predicted low, sensitivity and the expected
dependence. Both figures are very alike. This is due to th
fact that the dominant features are contained in the efficienc

FIG. 7. Diagrammatic representation of the terms contributing

(tao the cosmic variance of the correlation coefficients. In this repre-

entation the vertex® representd B; the crosses stand for tieP
gart, the circles fory.y,. The other vertex & represents anp, ;
the open circles stand foyy,. The solid lines connech P terms
and the dashed ones thés.

function dependences on the angular distances.

E. Cosmic variance
p-We address in this section is to estimate the cosmic variance

In previous sections we looked at the sensitivity of o A .
servable quantities which mixed galaxy weak lensing sur-Of such a detection in joint surveys in about 100 square de-

veys and CMB polarization detection. It is very unlikely that grees. . . . . .

both surveys will be able to cover, with good resolution and The computation of cosmic variance IS a cla_ssmal prob-
low foreground contamination, a large fraction of the sky. ItIern in cosmological obse_rvgtldﬂ4]. A n_atural estimate for
seems, however, reasonable to expect to have at our dispo?zﬂ ensemble_ averadi) is its geometrical average. If the
patches of at least a few hundred square degrees. The isstidVey has sizé&, then

— 1 N
_ -
_Efzd aX(a). (50)

For a compact survey with circular shape of radiiswe
formally have

2

[

21

X= X(KW(KE). (51)
For the sake of simplicity this is what we use in the follow-
ing but we will see that the shape of the survey has no sig-
nificant consequences.

Taking X as an estimate gX) (the ensemble average of

X) leads to an error of the order qf(X2)—(X)2which usu-
ally scales like 143 if the survey is large enough.

0.2

0.6
0, value

0.4 0.8 1.0

FIG. 6. <€K(0).ﬁKgal(ﬁgal)>/<(€Kgal(egal))2> for a CDM model.
0= 0ga|: 2’ .
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When we are measuring’, on a small patch of sky, we fields survive. We can use a simple diagrammatic represen-
are apart from the statistical value by the same kind of errortation to describe their geometrical shape. All the nonvanish-
We can neglect the errors qAE?), ((VE)?), (Vg 22 ing terms inC, are given in Fig. 7. Each line between two
and<K .); those may not be the dominant source of thevertex represents a two-point correlation function such as
d|screpancy and can even be measured on wider and indéX(a;)X(ay)), and the different symbols at the vertex cor-
pendent samples. The biggest source of error is the measurespond to differenX fields (the crosses stand faxP, the
of (ABb,). It is given by solid circles forycm,, and the open circles foyg,). The A

terms represent terms where the two tepd the two bot-
) ABr An - o tom) AB andb, are taken at the same point, but top and
Ci= \/«ABb”_ABb“)2>_<ABb”_ABb”>2' (52 pottom fields ahre not at the same place. Theaerms are
Computation of Eq(52) is made easier if we write explicitly three-point diagrams: the topB and b, are at the same
the geometrical average as a summation d&vereasurement point whereas the right and left bottom vertexes are at two
points (N can be as large as we want different locations. TheC terms are four-point diagrams,
where each vertex is at a different point. To illustrate our
notation, let us write33, as an example:

_ 1 2
=N 2, X(0; (53)

BZc:<'ycml{a1) 'Ygal( a2)><')’gal(a3) Yemd( @1))
we then developed E@52), and replaced the ensemble av- - - - -
erage of the summation sign by the geometrical average over X(AP(a1)AP(a1) (AP(az)AP(as)). (54)
the survey size. We are left with a sum of correlators con- We only focus on the calculation of thé terms because
taining eight fields taken at two, three, and four differentwe can use the approximation that
points. The calculations can be carried out analytically if we A B>C (55)
assume that all our fields follow Gaussian statistics, which is '
reasonable at the scale we are working on. In that case, inndeed, in perturbative theory, if the survey is large enough,
deed, we can take advantage of the Wick theorem to contraghe n-point correlation function naturally dominates over the
each of the eight field correlators in products of two-point(n+ 1) point correlation function. This is true as long as the
correlation functions. By definition, Eq52) contains only  |ocal variance is much bigger than the autocorrelation at sur-
connected correlators; moreover, the ensemble averagggy scale and we assume the surveys are still large enough to
(AB) and(b,) vanish, and therefore only a small fraction of be in this case.
correlators among all the possible combination of the eight The general expression for any diagram is

cmb N N - N
Aiq = 4J’ D(Xemb1s | cmb1,Kembd) P(Xembzs | cmb2s Kemb2)

gal
P " r " Ker/ " Ker/ " Ker/ "
X D(Xgalla I galls kgall)D(XgaIZ: l gal2; kgalz)g her( I emb1s kcmblL)g her( I emb2s kcmbzi)g her( I gallvkgalli)

X g ( gal2s gal2 M <k | I ]>W(|kcmb1 D+I cmb1| G)W(|kcmb2 D+l cmb2| Q)W( kgall D egal)W(l galla)
X W( I(gaIZL D26gaI)W( I galza)W( | IZgallL D1+ Ianll'*' IZcmblL D1+ IQcmbl| E )W( | IZgal2L D2+ Ianl2+ Izcmb2L D2+ IQcmb2| E )v

(56)

where M; gives the two-point correlations associated with the lines of the diagram. For example,

My ={8(Kgair) 8(Kempn) Y 8 Kgar2) 8 Kemb2) ) E (1 gai) E(l gar2) ) E (! empD E(l e - (57)

We explicate in the following the computation ﬂfj . The other terms follow the same treatment or can be neglected. The
lines in theA; diagram give us the relations

> - > > -

Kemb1= — kgal1: Ki, Kembo= — I(gal2: Ko,  lembar™ = lemboe=lembs | gall™ ol gal2™ =1 gal- (58

Then, using these relations and the small angular approximation, we have
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Py lgalems
(2m*  (2m)*

gal R
Ai = 4J' dX1dXZWcmblwgallwcmeWgalzf Ce(l gaI)CE( lemp) P(K1)P(k2)G Ker( I'embsK1)

XG4 (= Temoik2) G (1 gar, — K1) G4 (= Tgar, — ko) W(|Ky D + T o] 6)W(| oD + Tl 0)
X W( le egal)W( kZD egal)Wz(l gaIG)W2(| I gal+ I cmb| g ) (59)
We apply the decomposition &%, (kD (x) + | 6) we used in Eq(43). The geometry of our problem is the same and the result

(44) still holds for the terms ifW,(|KyD (x1) + [eme ) and Wy ([KoD (x2) + [emd 6). This, however, is not true fon3(|T gy

+ fcde) for which the application of the resummation theorem does not bring any simplification. Then, neglectvg all
parts and after integration afy , for the A term, we have

dkldkz d2 gald2| cmb
(2m?  (2m*

gal
AQZJ‘ dX1dX2Wcmb1WgaI1Wcmb2WgaI2f alI mlJ<1kZCE(|gaI Ce(lemp P(kq)P(k2)

XW(| T gart Tomd E)00$2( b1~ 1 ) W(K1D Oga) W(KoD Bga) WA(1 o) W(K; D O)W(kD )Wl ). (60)

Note that for the evaluation of th€ part, using the same
kind of method, we obtain the same equation as 66) Al=
wherel gl 6y is replaced bytZ, |2 kik5/2.
We can get rid of the remainin\glz(|fga|+ [em 2) With
another approximation. The power spectr@g(l) favors X
large values of whereasW?(|T g+ I o E) will be nonzero
for | fga|+ Iemd ~ 1/Z. Then for a typical survey size of about
100 square degreeflgat | omd <Ii and we can assumlga  yhich is essentially the cosmic variance(dfE?) for the A

—Temp @nd [ o+ Tomp= €. In this limit, cos2(¢y_ — é,)  part and of((VE)?) for the V one[wherel® in Eq. (61) is
=1 and.AJ can be written replaced byl *k?k3/2]. Finally we have

82 4 dzfs 2, =
3 1PCROWA10) | 5—1PW(eE)

2

gal k dk
dXWcmngaIf o P(KYW(kD#)W(kD agal) )

(61)

A8 fd||9c (HWwi(l6)

1

<B(9)bA(H'ggaI)>2 U di ISCE(l)Wf(W)

i 1 o« cosmic variance ofAE?, (62)

whereZ = 72 in case of a disk-shaped survey. We show in
Fig. 8 numerical results for a 100 degurvey although the
numerical calculations were done with a Gaussian window
function instead of a top hat.

Numerically, for§=10", we get

Variance/Signal (percent)

Al (3.7%)2
B b 25/100 deg’ (63
I ] (B(o)Dy(6.6,)) e
0 P S S S—Y M P
0 5 10 5 20 We expect that for the same reasons the terms will be

Filtering scale (arcmin)

dominated by the weak lensing variance. Yet a correct evalu-
FIG. 8. Comparison betweer2A}/signal (solid line and  ation here is harder to reach. We have made this estimation
[2AY/signak (dashed ling The C, are from aQ=0.3, A=0.7 within the framework of a power Iavl?(k) With this sim-
model. The survey size is 100 degand Gaussian filters were plification in hand, we can write, fad}, (we focus only the
used. A part, but the same discussion holds for Thebservablg
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TABLE II. Values of the cosmic variance ¢i?) and((V «)?) . TABLE lll. Values of the cosmic variance oﬂ . The survey .
for different models and different filtering radius. The size of the Size is 100 defy We used the results presented in Table Il and Fig.
survey is 100 deg For theQ,=0.3 (Qo=1) model, we use five 8. Ther , parameters are assumed to be equal and set to 0.4. We did
(seven independent ray-tracing realizatiofsee[25]) to estimate ~ hot take into account the filtering effects in the definitiorr oThe
the cosmic variance in a 9 degurvey, which is then rescaled to difference due to the filtering correction is small, though. From this
the cosmic variance we should obtain for a 100 “dagvey. Given ~ estimation, we can expect a cosmic variance 4gr of less than
the low number of realizations, the values here can only be used &% for realistic scenarios.
a good estimation of the order of magnitude of CosVaff) and

CosVar((V«)?)). It also seems, from these figures, that the cos- CosVar(,) CosVar(ty)
mic variance of((V«)?) is more degraded by the difference in , ) 2=03 Q=1 Q=03 Q=1
filtering beams than the other. 0=5",0ga=2.5 6.44% 4.77% 6.06% 4.72%
0:5’,0ga|:5’ 6.58% 4.79% 4.99% 4.23%
CosVar( K2>) COSV&(<(§K)2>) 0=10, Hgalz 5’ 8.71% 6.73% 9.49% 7.62%
90203 Qozl 90203 QO:]‘
0=5",044=2.5 2.94% 1.86% 2.88% 2.07% !
0=5",0g=5' 3.02%  1.87%  2.23% 1.75% Azn (21297 67
-10 5/ 0 0, 0 0 - )
0=10',0g,=5 3.54%  2.03%  425%  3.02% (BioDi(n,0,)° /100 ded
A There is nor dependence here; the diagram cross-correlates
AZI’] Kemb and Kga| .
(B(pb )2 We can approximate the remaininggterms. They should
(0780, 0ga) be smaller than the former. We have

(2.12%% 3.7%)?

1
:r_zf dzkldzkzp(kl)P(k2)00§(¢k1_¢k2) b
3/100 ded

1 2 b
i~ (B()Ds(4.0590) "< Azn
b
W2(Ky0)W2(Ko 0ga) Wa(|Ky+Ko| 2
1(Kq ) 1(kz gal) 1(| 1 2|2). (64) and

2

3/100 ded

i

3c (B(ﬂ)bh(e,egap>2<A§c-

The last integral behaves essentially like the cosmic vari-

2 . . . .
ance of(«?). More exactly, it goes like 12 of this vari- e only the4; and.A} terms(boxed in Fig. 7 contribute

?;c(iglr Itv\fgog\l,(;ﬁ;fer& aﬁisﬁggiicbsgﬁgiﬁeozé?ﬁg etxhtf r(6:1(;§ubstantially to the cosmic variancedf . SinceA{ and.A}
. - . . . 2 _
tracing simulations described j&5]. These simulations pro- are, respectively, the cosmic variance @E") (respec

vide us with realistic convergence maffer the cosmologi-  tVely, _<(VE)2>) and of («?) (respectively((V«)?)), we
cal models we are interested) imith a resolution of 0., ~ ¢an write the variance ot as

and a survey size of 9 dégThe sources have been put at a 1+
redshift unity, and the ray lights are propagated through a _ 2 r 2
simulated U¥1iverse whosye 3ensity figld pha?s been evglvedcosva(XA)_ CosVa((AE >)+( o2 ) CosVat(«?)).
from an initial CDM power spectrum. The measured cosmic (68)
variance °f<’<(9)"(ﬁga|)> is about 3% (see Table Il when

filtered at scalegy,=5" and 6=10" for a{),=0.3 cosmol- and

2

ogy. -
An estimation ofA3, is then given by CosVar Xy)= CosVa(((VE)?))
1+r2 B
An (2.12%)2 1 65 +( . ZV CosVa({(Vk)?)). (69
- _ ;
(B(o)ba(s,0,9)° r/ =/100 deg v

Table Il presents numerical results for various filtering sce-
Sincery is very comparable to, we very roughly estimate narios and models.
A5 The two quantitied, andby lead to similar cosmic vari-
ances that are rather small. Obviously it would be even better
AT 2 1294 2 1 to useb=b, +by . For such a quantity the resulting cosmic
5 ~( ) . (66) variance for the cross-correlation coefficient should even be
<B(0)bV(8,0ga.)> /100 deg smaller, by a factor of/2, although a detailed analysis is
made complicated because of the complex correlation pat-
The same considerations give terns it contains.

r
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IV. CONCLUSION APPENDIX: POWER SPECTRUM OF AB AND THE A

. . . . AND V TERMS
We have computed a first order mapping that describes, in

real space, the weak lensing effects on the CMB polarization. The aim of this appendix is to succinctly present the com-
In particular we derived the explicit mathematical relation putation of the power spectrum AB and the different terms
between the primary CMB polarization and the shear field athat contribute to it as shown in Fig. 3. Unlike previous
leading order in the lens effect. It demonstrates tha a literature on the subjed®9,15] we do not need to compute
component of the polarization field can be induced by lenghe second order development of the lens effect if we restrict
couplings. We have shown, however, that Bienap alone our computations to the power spectrum of Béeld. The
cannot lead to a nonambiguous reconstruction of the proreason why is that assuming that the primord@abolariza-
jected mass map. tion is null, the second order of the lens effect will have a
Nonetheless, th& component can potentially exhibit a null contribution to theB power spectrum at leading order.
significant correlation signal with local weak lensing sur- Using Eq.(8), we have
veys. This opens a new window for detecting lens effectson = _ . . . .
CMB maps. In particular, and contrary to previous studies (AB(a1)AB(ay))=(B(a1)Bs(az))+(By(ai)By(ay))
involving the temperature maps alone, we found that such a

correlation can be measured with a rather high signal-to- +(Balay)By(a,))
noise ratio even in surveys of rather modest size and resolu- - -
tion. Anticipating data sets that should be available in the +(By(ay)Ba(az)), (A1)

near future (100 dégsurvey, with 5 resolution for galaxy where theB
survey and 10 Gaussian beam size for CMB polarization calculateCAE
detection, we have obtained a cosmic variance around 8%. !
Needless to say, this estimation does not take into account CiB=cPr+CV+2CY, (A2)
systematics and possible foreground contaminations. It
shows anyway that cosmic microwave background polarizawhereC,AA (respectively,C,VV) is the power spectrum of the
tion contains a precious window for studying the large-scaleA term (V term) andC|AV is the cross-correlation at scdlef
mass distribution and consequently putting new constraintthe A andV terms. The latter must sum up to zero, so that
on the cosmological parameters. (ByB,)=0. Using the notations of Sec. Ill, we have

In this paper we have investigated specific quantities that
would be accessible to observations. They both would permit R R d?l
one to put a constraint on the cosmological constant. The <Ba(“1)5u(a2)>=j (2m)2
simulated maps we presented here are only of illustrative 7
interest. We plan to complement this study with extensive d2kdh
numerical experiments to validate our resufits particular :f
on the cosmic variangeand explore the effect of realistic
ingredients we did not include in our simple analytical
framework: shear non-Gaussianity, lens-lens coupling, and
so forth.

are theA andV parts of AB. Then, one can
, the power spectrum afB,

Clﬁheif-(&z—&l)

7 CE(h)E(k)ei('erﬁ)'(;‘f‘;l)
)
X G (h,k)G5*(h k), (A3)

where we have assumed th(k) take into account the line-
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