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CMB B polarization to map the large-scale structures of the universe
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We explore the possibility of usingB-type polarization of the cosmic microwave background to map the
large-scale structures of the Universe taking advantage of the lens effects on the CMB polarization. The
functional relation between theB component with the primordial CMB polarization and the line-of-sight mass
distribution is explicated. Noting that a sizable fraction~at least 40%! of the dark halo population which is
responsible for this effect can also be detected in a galaxy weak lensing survey, we present statistical quantities
that should exhibit a strong sensitivity to this overlapping. We stress that it would be a sound test of the
gravitational instability picture, independent of many systematic effects that may hamper lensing detection in
CMB or a galaxy survey alone. Moreover, we estimate the intrinsic cosmic variance of the amplitude of this
effect to be less than 8% for a 100 deg2 survey with a 108 CMB beam. Its measurement would then provide
us with an original means for constraining the cosmological parameters, more particularly, as it turns out, the
cosmological constantL.
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I. INTRODUCTION

In the new era of precision cosmology we are enteri
forthcoming experiments will provide us with accurate da
on cosmic microwave background~CMB! anisotropies@1#.
This should lead to accurate determinations of the cos
logical parameters, provided the large-scale structures o
Universe indeed formed from gravitational instabilities
initial adiabatic scalar perturbations. It was quickly realize
however, that even with the most precise experiments,
cosmological parameter space is degenerate when the
mary CMB anisotropies alone are considered@2#. Comple-
mentary data that may be subject to more uncontrollable
tematics are thus required, such as supernova survey@3#
~but see@4#! or constraints derived from the large-scale stru
ture properties. Among the latter, weak lensing surveys
probably the safer@5#, but still have not yet proved to b
accurate enough with present day observations.

Secondary CMB anisotropies~i.e., induced by a subse
quent interaction of the photons with the mass or ma
fluctuations! offer opportunities for raising this degenerac
Lens effects@6# are particularly attractive since they are e
pected to be one of the most important. They also are
tirely driven by the properties of dark matter fluctuations, t
physics of which involves only gravitational dynamics, a
are therefore totally controlled by the cosmological para
eters and not by details of galaxy or star formation rat
More importantly an unambiguous detection of lens effe
on CMB maps would be a precious confirmation of t
gravitational instability picture. Methods to detect lens
fects on CMB maps have been proposed recently. High-o
correlation functions@7#, peak ellipticities@8#, or large-scale
lens-induced correlators@9,10# have been proposed for de
tecting such effects. All of them are, however, very sensit
to cosmic variance since lens effects are only a subdomi
0556-2821/2001/63~4!/043501~14!/$15.00 63 0435
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alteration of the CMB temperature patterns. The situation
different when one considers polarization properties. T
reason is that in standard cosmological models tempera
fluctuations at a small scale are dominated by scalar pe
bations. Therefore the pseudoscalar part, the so-calleB
component, of the polarization is negligible compared to
scalar part~the E component! and can only be significan
when CMB lens couplings are present. This mechanism
recognized in earlier papers@11,12,10#. The aim of this paper
is to study systematically the properties of the lens-induceB
field and uncover its properties.

In Sec. II, we perturbatively compute the lens effect
the CMB polarizationE andB fields. This first order equa
tion is illustrated by numerical experiments. The possibil
of direct reconstruction of the projected mass distribution
also examined. As has already been noted a significant f
tion of the potential wells that deflect the CMB photons c
actually be mapped in local weak lensing surveys@13,14#.
This feature has been considered so far in relation to
CMB temperature fluctuations. We extend in Sec. III the
studies to the CMB polarization, exploiting the specificiti
of the field found in the previous section. In particular w
propose two quantities that can be built from weak lens
and cosmic microwave background polarization surveys,
average value of which does not vanish in presence of C
lens effects. Compared to a direct analysis of the CMB
larization, such tools have the joint advantage of being l
sensitive to systematics—systematic errors coming fr
CMB mapping on the one hand and weak lensing meas
ment on the other have no reason to correlate—and
emerge even in presence of noisy data and of being an
cient probe of the cosmological constant. Indeed the
pected amplitude of correlation is directly sensitive to t
relative length of the optical bench, from the galaxy sou
plane to the CMB plane, which is mainly sensitive to t
©2001 The American Physical Society01-1
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cosmological constant. Filtering effects and cosmic varia
estimation of such quantities are considered in this sectio
well.

II. LENS EFFECTS ON CMB POLARIZATION

A. First order effect

Photons emerging from the last scattering surface are
flected by the large-scale structures of the Universe that
present on the lines of sight. Therefore photons obser
from the apparent directionaW must have left the last scatte
ing surface from a slightly different direction,aW 1jW (aW ),
where jW is the lens-induced apparent displacement at
distance. The displacement field is related to the angular
dient of the projected gravitational potential:

j i~aW !52
2

c2Ezs
dz

Dz→zs

DzDzs

F ,i~aW ,z!, ~1!

whereF ,i is the angular gradient of the gravitational pote
tial in the direction orthogonal to the line of sight,D is the
angular distance, andzs is the source plane. In the following
the lens effect will be described by the deformation effect
induces, encoded in the amplification matrix

A 215S 12k2g1 2g2

2g2 12k1g1
D 5d i

j1j ,i
j , ~2!

so that

k52
1

2
~j ,x

x 1j ,y
y !,

g152
1

2
~j ,x

x 2j ,y
y !,

g252j ,x
y 52j ,y

x . ~3!

All these fields can be written in terms of the second or
derivatives of the projected potential. The lens effect affe
the local polarization just by moving the apparent direct
of the line of sight@16#. Thus, if we use the Stokes param
etersQ andU to describe the local polarization vector

PW 5S Q

U D ,

we can relate the observed polarizationPŴ to the primordial
one by the relation

Q̂~aW !5Q~aW 1jW !, Û~aW !5U~aW 1jW !. ~4!

From now on we will denotex̂ an observed quantity andx
the primordial one. SinceaW 85aW 1jW is the sky coordinate
system for the observer, the amplification matrixA is also
the Jacobian of the transformation between the source p
and the image plane. We will restrain here our computat
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to the weak lensing effect, so the observed quantity will n
take into account any other secondary effect. It is very i
portant at this point to note that the lensing effect does
produce any polarization or rotate the Stokes parameters
this regime its effect reduces to a simple deformation of
polarization patterns, similar to the temperature maps. Th
the mechanism by which the geometrical properties of
polarization field are changed.

To see that we have to consider theelectric (E) andmag-
netic (B) components instead of the Stokes parameters
small angular scales~we assume that a small fraction of th
sky can be described by a plane!, these two quantities are
defined as

E[D21@~]x
22]y

2!Q12]x]yU#,

B[D21@~]x
22]y

2!U22]x]yQ#, ~5!

whereD21 refers here to the inverse of the Laplacian ope
tor. These fields reflect the nonlocal geometrical proper
of the polarization field. The electric component accounts
the scalar part of the polarization, and the magnetic one,
pseudoscalar part: by parity changeE is conserved, wherea
the B sign is changed. As has been pointed out in previo
papers@11,12,15#, lens effects partly redistribute the pola
ization power in these two fields.

We explicate this latter effect in the weak lensing regim
where the distortion,k andg i components are small. This i
indeed expected to be the case when lens effects by
large-scale structures are considered, for which the typ
value of the convergence fieldk is expected to be;2% at
the 108 scale. The leading order effect is obtained by simp
plugging Eq.~4! into Eq. ~5! and by expanding the result a
leading order inj, k, andg . Noting that, for any fieldX that
is affected by the lensing effect~these calculations are ver
similar to those done in@14#!,

] i X̂5]kX̂•~d i
k1j ,i

k !,

] i] j X̂5]k] l X̂•~d i
k1j ,i

k !~d j
l 1j , j

l !

1]kX̂•j ,i j
k , ~6!

we can write a perturbation description of the lensing eff
on electric and magnetic components of the polarization.
leading order one obtains

DÊ5DE1j i] iDE22kDE22d i j ~g iDPj1g ,k
i Pj ,k!

1O~g2!,

DB̂5DB1j i] iDB22kDB22e i j ~g iDPj1g ,k
i Pj ,k!

1O~g2!, ~7!

where we used the fact thatDX̂5DX1j i] iDX at the leading
order. The formulas forE andB are alike. The only differ-
ence is in thed i j ande i j ~the latter is the totally antisymmet
ric tensor, e115e2250, e1252e2151), which reflect the
geometrical properties of the two fields. The first three ter
1-2
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FIG. 1. Lens effect induced by a large isothermal sphere with finite core radius. Thek map of the lens is shown on left panel. Th
primordialE sky is presented in the middle left panel. It has been generated for aV050.3, L50.7 model, without tensor modes. The midd

right panel displays the true reconstructedDB̂ field in a 4.534.5 deg map and the right panel shows the first order approximation. Note
the rosettelike shape the eye seems to catch inB fields is a numerical coincidence and has no special significance.
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of each of these equations represent the naive effect:
lens-induced deformation of theE or B field. This effect is
complemented by an enhancement effect~respectively,kDE
andkDB) and by shear-polarization mixing terms. The lat
effects consist of two parts: one, which we will call theD
term, that couples the shear with the second derivative of
polarization field and the other one, hereafter the¹ term, that
mixes the gradient of the shear and polarization. In our p
vious work @14#, terms similar to¹ ~i.e., in the gradient of
the lens effect! had been neglected since they had a n
contribution to the correlation coefficient we computed. T
is no longer true here; we will indeed show later thatD and
¹ terms have similar amplitudes.

One consequence of standard inflationary models
CMB anisotropies is the unbalanced distribution of pow
between the electric (E) and magnetic (B) components of its
polarization. Adiabatic scalar fluctuations do not indu
B-type polarization and they dominate at small scales o
tensor perturbations~namely, the gravity waves!. So even
though gravity waves induceE- andB-type polarizations in a
similar amount, theprimary CMB sky is expected to be com
pletely dominated byE-type polarization at small scales
Then for this class of models the actual magnetic compon
of the polarization field is generated by the corrective par
Eq. ~7!:

DB̂522e i j ~g iD P̂j1g ,k
i P̂j ,k!. ~8!

This result extends the direct lens effects described in Be
bed and Bernardeau@12# who focused their analysis on th
lens effect due to the discontinuity of the polarization field
case of cosmic strings. Previous studies of the weak len
effect on the CMB showed that with lensing, theB compo-
nent becomes important at small scales@17#. We obtain here
the same result but with a different method. Equation~8!
means that the polarization signalP is redistributed by the
lensing effect in a way that breaks the geometrical proper
of the primordial field. Note here that it is mathematica
possible to build a shear field that preserves these geom
cal properties and that does not create anyB signal at small
scales. We will discuss this problem in Sec. II C. It al
means thatB directly reflects the properties of the shear ma
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We will take advantage of this feature to probe the corre
tion properties ofB with the projected mass distribution i
the next sections.

B. Lens-inducedB maps

We show examples of lens-inducedB maps. These map
have been calculated using ‘‘CMBSLOW’’ code developed by
Riazuelo~see@18#! to compute primordial polarization map
@we use realizations of standard cold dark matter~CDM!
model to illustrate lens effects#. Then various shear maps a
applied. We present both true distortions~obtained by De-
launay triangulation1 used to shear theQ and U fields! and
the first order calculations given by Eq.~8!.

Figure 1 presents the shear effect induced by an isot
mal sphere with finite core radius~and the lens edges hav
been suppressed by an exponential cutoff to minimize
merical noise!. The agreement between true distortion~cen-
tral panel! and the first order formula~right panel! is good.
However, a close examination of the maps reveals that s
structures in the true map are slightly wider than their co
terparts in the first order map. This error is more severe
the center, where the distortion is bigger, which is to
expected since the limits of the validity region of first ord
calculations are reached.

For illustration sake, Fig. 2 shows theB field induced by
a realistic distortion. We use second order Lagrangian d
namics @19# to create a 2.532.5 deg map that mimics a
realistic projected mass density up toz51000 and used its
gravitational distortion to compute a typical weak lensin
inducedB map. Again we compare theexacteffect ~i.e., the
left panel where Delaunay triangulation is used! and the first
order formula~middle panel!. The right panel shows the dif

1To perform the exact lensing effect on a CMB map, we comp
the displacement field and the polarization fields on regular gr
Then the CMB grid is deformed according to Eq.~4! to shear the
grid containing the CMB data. The resulting polarization fields a
remapped onto a regular grid using Delaunay triangulation, wh
provides us with an efficient algorithm to interpolate irregula
sampled data on a discreet grid. The result is accurate down to
grid size.
1-3
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FIG. 2. The effect of arealistic weak lensing field onB. 2.232.2 deg survey with 1.88 resolution. The left panel shows exact distortio
obtained by Delaunay triangulation, the middle one, the first order formula result, and the right gives the difference between the
three panels share the same color table. The mean amplitude in the difference map is about 3 times smaller.
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ference between the two maps. It reveals the locations w
the two significantly disagree. In fact most disagreements
due to a slight mismatch of theB patch positions, which lead
to dipolelike effects in this map.

We also show here a comparison of the two parts of
first order formula, Eq.~8!, in order to see which of theD or
¹ terms dominates. It would be more comfortable if one
the two terms were dominant; however, Fig. 3 shows tha
is not the case. Even if theD term dominates at low
(,1000) l , it is only twice bigger than the¹ one at this
scale. The inverse is true for higher~3000–5000! l ’s. This
can be seen by looking at Fig. 4 where we show the rela
amplitudes of theD and ¹ contributions. TheD part gives
birth to large patches~around 108) while the¹ panel shows
a lot more small features. Details of this calculations
given in the Appendix.

C. Direct reconstruction: The Kernel problem

The fact that the observableB is at leading order propor
tional to the weak lensing signal invites us to try a dire
reconstruction, similar to the lensing mass reconstruction
fact, we can write

FIG. 3. TheCl of DB ~solid line!, theD term ~dashed line!, and
the ¹ term ~dot-dashed line!. The D part is dominant at smalll ’s,
around l 51000, that is to say, for structures around 108. The ¹
contribution gives birth to smaller structures in the 1–2 arc m
range. TheCl curve is in good agreement with results presen
previously in the literature@11,15#.
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DB̂522e i j ~g iD P̂j1g ,k
i P̂j ,k![F@g# ~9!

and our reconstruction problem becomes an inversion p
lem for the operatorF. Unfortunately, one can prove that th
problem has no unique solution. It is due to the fact thaF
admits a huge kernel, in the sense that, given a polariza
map, there is a wide class of shear fields that will conserv
null B polarization. The demonstration of this property
sketched in the following.

Since the unlensed polarization is only electric in our a
proximation, we can describe it by the Laplacian of a sca
field:

E[Dw so H Q5~]x
22]y

2!w,

U52]x]yw.
~10!

The same holds for the shear and convergence fields

k[
Dc

2
, g15

1

2
~]x

22]y
2!c, g25]x]yc. ~11!

Thus we need to know, for a givenw field, whether there is
any c that satisfies the equation

g2DQ2g1DU1] ig2] iQ2] ig1] iU50. ~12!

w andc can be written as polynomial decompositions:

w~x,y!5(
n,l

anlx
nyl ,

c~x,y!5(
m,k

bmkx
myk. ~13!

Using Eqs.~13! in Eq. ~12! we are left with a new polyno-
mial whose coefficientsci j are sums ofanl3bmk and have to
be all put to zero. With the coefficient equations in hand, i
easy to prove that assuming all thebmk coefficients up to
m1k5N are known and writing the equations; i 1 j
5(N11)23, ci j 50, we can compute out of all theanl all
but threebmk with m1k5N11. This is somewhat similar to
mass reconstruction problems from galaxy surveys wh
one cannot avoid the mass sheet degeneracy. The situatio
however, worse in our case since not only constant con

d

1-4
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CMB B POLARIZATION TO MAP THE LARGE-SCALE . . . PHYSICAL REVIEW D 63 043501
FIG. 4. The effect of the two terms of the perturbation formula. Top row, the lens effect is the sum of the lenses up to recomb
Bottom row, we use the same line-of-sight mass fluctuations but only up to redshift unity; it represents our ‘‘local’’ lensing surve
convergence fields~left panels! have been computed by slicing thez axis and summing up the lensing effect in each slice. Lens-lens coup
~including departure from the Born approximation! terms have been neglected, which is consistent with our first order approximation
convergence in each slice has been created by using second order Lagrangian dynamics. The middle-left panels show the lea
contribution, the middle right theD contribution, and the right the¹ one. In this example, the correlation coefficient between the
convergence maps,r, is equal to 0.48 at 1.88. The cross-correlation coefficient between the guess map~f! and the real one~b! is 0.47. It is
0.37 between the real~b! andD ~g! maps and goes down to 0.16 for the real~b! and¹ ~h!.
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gence but also translations and a whole class ofank
realization-dependent complex deformations are indisc
ible. Thus, with only knowledge of theB component of the
polarization, one cannot, with the first order equation~8!,
recover the projected mass distribution.

It is worth noting here that this calculation is not in co
tradiction with the Guzik-Seljak-Zaldarriaga results@10#. In
their paper they show that using different statistics, based
polarization measurements, they are able to reconstruc
lens power spectrum of the large-scale structure. Moreo
this reconstruction is hampered bynoiseinduced by the au-
tocorrelation of the cosmic microwave background str
tures. This noise is strongly related to the kernel probl
addressed here. They can choose their statistic to reduce
noise to an acceptable level in the power spectrum, yet t
cannot reconstruct a shear map.

III. CROSS-CORRELATING CMB MAPS AND WEAK
LENSING SURVEYS

A. Motivation

Even with the most precise experiments it is clear t
clean detection ofB components will be difficult to obtain
The magnetic polarization amplitude induced with such
mechanism is expected to be one order of magnitude be
the electric one@17#. Besides, even if we know that there is
window on an angular scale where other secondary eff
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will not interfere too much with the detection of the len
induced B @20#, little is known about removing the fore
grounds@21# to obtain clean maps reconstruction algorithm
would require.

These considerations lead us to look for complement
data sets to compareB with. Although the source plane fo
weak lensing surveys@5# is much closer than for the lense
CMB fluctuations, we expect to have a significant overla
ping region in the two redshift lens distributions, so th
weak lensing surveys can map a fair fraction of the line-
sight CMB lenses. Consequently, weak lensing surveys
potentially provide us with shear maps correlated withB, but
which have different geometrical degeneracy, noise sour
and systematics than the polarization field.

The correlation strength between the lensing effects
two different redshifts can be evaluated. We definer as the
cross-correlation coefficient between two lens planes:

r ~zgal!5
^kkgal&

A^k2&^kgal
2 &

. ~14!

In a broad range of realistic cases~see Table I!, r;40%. To
take advantage of this large overlapping we will consider
quantity that cross-correlates the CMBB field and galaxy
surveys. Moreover, cross-correlation observations are
pected to be insensitive to noises in weak lensing surv
and in CMB polarization maps. This idea has already be
1-5
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explored for temperature maps@14#. We extend this study
here taking advantage of the specific geometrical dep
dences uncovered in the previous section.

B. Definition of bD and b¹

The magnetic component of the polarization in Eq.~8!
appears to be built from a pure CMB part, which comes fr
the primordial polarization, and a gravitational lensing pa
It is natural to defineb in such a way that mimics theDB̂
function dependence by replacing the CMB shear field by
galaxy one:

b5e i j ~ggal
i D P̂j1ggal,k

i P̂j ,k!

5e i j ~ggal
i DPj1ggal,k

i Pj ,k!1O~k2!. ~15!

In the following, we will label local lensing quantities, suc
as what one can obtain from lensing reconstruction on ga
surveys, with a ‘‘gal’’ index. This new quantity can b
viewed as a guess for the CMB polarizationB component if
lensing was turned on only in a redshift range matching
depth of galaxy surveys. The correlation coefficient of t
guess with the trueDB field, that is,^DB̂b&, is expected to
be quadratic both inP and ing and to be proportional to the
cross-coefficientr.

For convenience, and in order to keep the objects we
nipulate as simple as possible, we will not exactly implem
this scheme, as it will lead to uneven angular derivative
grees in the two terms of resulting equations. We can,
stead, decompose the effect in theD and¹ parts. These two
are not correlated, since their components do not share
same degrees of angular derivation.2 Hence, we can play the
proposed game, considering the two terms of Eq.~8! as if
they were two different fields, creating two guess quantit
that should correlate independently with the observedB field.
Following this idea we buildbD as

bD[e i j ggal
i D P̂j

5e i j ggal
i DPj1O~k2! ~16!

2Generically, a random field and its derivative at the same p
are not correlated.

TABLE I. Values ofr, the cross-correlation between two sour
planes (zgal and zcmb51100), for different models. The adopte
filter scale~see Sec. III C for details! is 2 arc min for both the weak
lensing survey and cosmic microwave background observati
Non-linear evolution of P(k) has been computed using th
Peacock-Dodds method@22#.

r coefficient zgal51 zgal52
EdS, linear 0.42 0.60
V50.3, L50.7, linear 0.31 0.50
V50.3, L50.7, nonlinear 0.40 0.59
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which corresponds to theD term in Eq.~8!. The amplitude of
the cross-correlation betweenDB andbD can easily be esti-
mated. At leading order, we have

^DB̂bD&522e i j ekl^g
kggal

i &^DPlDPj&. ~17!

The corresponding¹ correlation is

^DB̂b¹&522e i j ekl^]mgk]nggal
i &^]mPl]nPj&, ~18!

where we have defined

b¹[e i j ]kggal
i ]kP̂

j . ~19!

Figure 4 shows numerical simulations presenting maps
first order DB̂, its D and ¹ contributions, and the corre
sponding guess maps one can build with a low-z shear map.
The similarities between the top maps and the bottom m
are not striking. Yet under close examination one can rec
nize individual patterns shared between the maps. Thi
confirmed by the computation of the correlation coefficie
between the maps, which shows significant overlapping,
tween 50% and 15%, depending the correlation and filter
strategy. The calculations hereafter will evaluate the theo
ical correlation structure between maps given in Figs. 4b
4g, 4h.

For galaxy surveys, the amplification matrix is@23#

Agal
21~aW !2Id52E

0

zgal
dxwgal~x!

3E d3k

~2p!3/2
d~kW !ei[ krx1kW'D(x)aW ]

3S 11cos~2fk'
! sin~2fk'

!

sin~2fk'
! 12cos~2fk'

!D , ~20!

whered(k) is the Fourier transform of the density contrast
redshift z(x), w is the lens efficiency function, andfk'

is

the position angle of the transverse wave vectork' in the
k'5(kx , ky) plane. Assuming a Dirac source distributio
the efficiency function is given by

wgal~z!5
3

2
V0

DzDz→zgal

aDzgal

. ~21!

Note that the Fourier componentsd(k) include the density
time evolution. They are thus proportional to the growth fa
tor in the linear theory. The time evolution of these comp
nents is much more complicated in the nonlinear regime~see
@22#!.

Then,b\ is

b\~aW !5ExgalD~x, lW,kW !Ẽ~ l !d~k!G \
Ker~ lW,kW'!, ~22!

with the integration element defined as
t

s.
1-6
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D~x, lW,kW !5dx wgal~x!
d3k

~2p!3/2

d2l

2p
ei[ krx1(kW'D(x)1 lW)•aW ]

@it actually depends on the position of the source pla
through the efficiency functionw(z)] and where\ stands for
eitherD or ¹. The geometrical kernelG Ker is given by@us-
ing Eq. ~10!#

G D
Ker~ lW,kW ![ l 2sin 2~fk2f l !, ~23!

G ¹
Ker~ lW,kW ![ lk cos~fk2f l !sin 2~fk2f l !. ~24!

This function contains all the geometrical structures of theD
and ¹ terms. We can write the same kind of equation
DB̂. Then, the cross-correlation is

^DB̂ b\~aW !&522ExgalD~xgal, lWgal,kWgal!

3ExcmbD~xcmb, lWcmb,kW cmb!G \
Ker~ lWgal,kWgal!

3G \
Ker~ lWcmb,kW cmb!^d~kWgal!d~kW cmb!&

3^Ẽ~ lWgal!Ẽ~ lWcmb!&. ~25!

The completion of this calculation requires the use of
small-angle approximation:

k;k' . ~26!

Then,

^d~kWgal!d~kW cmb!&5P~k!dDirac~kWgal1kW cmb! ~27!

implies that, and after the radial components have been i
grated out,

xgal5xcmb5x. ~28!

We also define theCE( l ) as the angular power spectrum
the E field:

^Ẽ~ lWgal!Ẽ~ lWcmb!&5CE~ l !dDirac~ lWgal2 lWcmb!. ~29!

Eventually one gets

^DB̂ b\~aW !&522Ezgal
dxwgalwcmb

3E d2kd2l

~2p!4
CE~ l !P~k!G \

Ker~ lW,kW !2. ~30!

Then, integrating on the geometrical dependences inG \
Ker ,

we have

^DB̂ bD~aW !&522Ezgal
dx wgalwcmbE dkdl

2~2p!2
kl5CE~ l !P~k!

52^DE2&^kkgal& ~31!
04350
e

r

e

e-

and

^DB̂ b¹~aW !&52Ezgal
dx wgalwcmbE dkdl

2~2p!2
k3l 3CE~ l !P~k!

52
1

2
^~¹W E!2&^¹W k•¹W kgal&, ~32!

implying that, ignoring filtering effects, we are able to me
sure directly the correlation between lensing effect atzcmb

and anyzgal a weak lensing survey can access. SinceDÊ
5DE@11O(k)#, we get, for theD type quantity,

^DÊ2&5^DE2@11O~k!#2&5^DE2&@11O~^k2&!#.
~33!

The same holds for¹. We are then able to construct tw
quantities insensitive to the normalization of CMB ands8:

XD[
^DB̂ bD~aW !&

^DÊ2&^kgal
2 &

52
^kkgal&

^kgal
2 &

;2rA ^k2&

^kgal
2 &

~34!

and

X¹5
^DB̂ b¹~aW !&

^~¹W Ê!2&^~¹W kgal!
2&

52
1

2

^¹W k•¹W kgal&

^¹W kgal
2 &

;2
1

2
r ¹A ^¹k2&

^¹kgal
2 &

. ~35!

We implicitly definedr ¹ like r but with ¹k instead ofk:

r ¹~zgal!5
^¹W k•¹W kgal&

A^~¹k!2&^~¹kgal!
2&

. ~36!

We will see in Sec. III D that they behave very much alik
This result is to be compared with the formula for^cos(ug)&
established in@14# where the obtained quantity was goin
like rA^k2&. These calculations, however, have neglec
the filtering effects that may significantly affect our concl
sions. These effects are investigated in next section.

C. Filtering effects

In above section we conduct our calculations assuming
filtering. Obviously we have to take it into account. We w
show here that the results obtained in Sec. III B hold,
certain limits, when filtering effects are included.

In the following, we consider, for simplicity, top-hat fil
ters only. It is expected that other window functions w
show very similar behaviors so that this assumption does
limit the scope of our results. Let us callW(k) the top-hat
filter function in Fourier space:

W~k![2
J1~k!

k
. ~37!
1-7
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J1 is the firstJ Bessel function. We will also defineWi(k) as
a general function:

Wi~k![2
Ji~k!

k
, ~38!

whereJi is thei th J Bessel function, so thatW5W1. Then,
if X(aW ) is the value of any quantityX at positionaW on the
sky, its top-hat-filtered value can be computed as

X(u)~aW !5E d2k

2p
X̃kW~ku!eikW•aW , ~39!

whereX̃ is theX Fourier transform. In the following we will
denoteX(u) the filtered quantity at scaleu.

The tricky thing for^DB̂b\& is that the CMB part and the
low-redshift weak lensing part area priori filtered at differ-
ent scale. ForDB̂, which is a measured value, its pure CM
part and its weak lensing part are filtered at the same scau.
Hence,B̂ reads

DB̂~aW !(u)522ExcmbD~x, lW,kW !Ẽ~ l !d~k!@G D
Ker~ lW,kW'!

1G D
Ker~ lW,kW'!#W~ ukW'D1 lWuu!. ~40!

A contrario b\ is a composite value. The CMB part is st
filtered at u whereas the weak lensing part~which comes
from a weak lensing survey of galaxies! is filtered indepen-
dently at another scale which we denoteugal. It implies that

b\~aW !(u)522ExgalD~x, lW,kW !Ẽ~ l !d~k!G \
Ker~ lW,kW'!

3W~kDugal!W~ lu!. ~41!

Taking filtering into account, the cross-correlation coe
cient becomes

^DB̂(u)b\(u,ugal)
&522Ezgal

dx wgalwcmbE d2kd2l

~2p!4

3CE~ l !P~k!G \
Ker~ lW,kW !W~kDugal!

3W~ lu!W~ ukWD1 lWuu!. ~42!

It can be shown~from the summation theorems of the Bess
functions! that

W1~ ukWD1 lWuu!52(
i 51

iWi~kDu!Wi~ lu!

3~21! i
sin i ~fk2f l !

sin~fk2f l !
. ~43!

It is then possible to break theW(ukWD1 lWuu) into a sum of
Wi(kDu)Wi( lu) with coefficients that depend on the ge
04350
-

l

metrical properties of our problem. Integrating over the ge
metrical dependences ofG \

Ker leaves us with only a few non
vanishing terms in our sum,

E df sin2~2f!
sin~ if!

sinf
5H p i 51 or i 53,

0 elsewhere,
~44!

for the D term, and

E df cosf sin2~2f!sin~ if!sinf55
p/2 i 51,

3p/4 i 53,

p/4 i 55,

0 elsewhere,
~45!

for the ¹ term. Each term can be computed exactly, and
turns out that the terms built fromWi , i .1, are always
negligible compared to the ones coming fromW1. It implies
that we can safely ignore theW3 and W5 in both D and ¹
expressions; therefore it is reasonable to assume
W(ukWD1 lWuu)5W(kDu)W( lu). It is expected that othe
windows, in particular the Gaussian window function, sha
similar properties. Then, taking into accounts the filteri
effects, the equations for the cross-correlations reduce to

^DB̂(u)bD(u,ugal)
&52^DE(u)

2 &^k (u)kgal(ugal)
& ~46!

and

^DB̂(u)b¹(u,ugal)
&52

1

2
^¹E(u)

2 &^¹k (u)¹kgal(ugal)
&, ~47!

so that our correlation coefficients can be written,

XD(u,ugal)
52r (u,ugal)A ^k (u)

2 &

^kgal(ugal)
2 &

~48!

and

X¹(u,ugal)
52

1

2
r ¹(u,ugal)A ^¹k (u)

2 &

^¹kgal(ugal)
2 &

. ~49!

The results obtained in Eqs.~34!,~35! are thus still formally
valid. Actually, Eqs.~48!,~49! simply tell us that filtering
effects can simply be assumed to act independently on
lensing effects and on the primary cosmic microwave ba
ground maps. We are left with two quantities that only refle
the line-of-sight overlapping effects of lensing distortions

D. Sensitivity to the cosmic parameters

We quickly explore here the behavior ofX\ in different
sets of cosmological parameters. These quantities only
pend on weak lensing quantities. Ignoring theV0 depen-
dence in the angular distances and growing factor, one wo
expect ^k2& to scale likeV0

2. Yet because of the growth
factor, the convergence field exhibits a weaker sensitivity
1-8
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V0. AssumingL50 and a power law spectrum, we kno
from @23# that^kgal

2 &}V0
1.66 for zgal51. The same calculation

leads to^kcmbkgal&}V0
1.68, ^(¹kgal)

2&}V0
1.91, and ^¹W kcmb

•¹W kgal&}V0
1.915. Then, in this limit, the quantitiesX\ have a

very low dependence onV0:

X D}V0
0.02 and X ¹}V0

0.005.

Eventually, theX\ quantities should exhibit a sizable se
sitivity to L; changingL increases or reduces the size of t
optic bench and accordingly the overlapping betweenkcmb
andkgal.

Figures 5 and 6 present contour plots of the amplitude
XD and X¹ in the (V0 ,L) plane for CDM models. They
show the predicted lowV0 sensitivity and the expectedL
dependence. Both figures are very alike. This is due to
fact that the dominant features are contained in the efficie
function dependences on the angular distances.

E. Cosmic variance

In previous sections we looked at the sensitivity of o
servable quantities which mixed galaxy weak lensing s
veys and CMB polarization detection. It is very unlikely th
both surveys will be able to cover, with good resolution a
low foreground contamination, a large fraction of the sky
seems, however, reasonable to expect to have at our dis
patches of at least a few hundred square degrees. The

FIG. 5. ^k (u)kgal(ugal)
&/^kgal(ugal)

2 & for a CDM model consisten
with the values of (V0 ,L). u5ugal528.

FIG. 6. ^¹W k (u)•¹W kgal(ugal)
&/^(¹W kgal(ugal)

)2& for a CDM model.
u5ugal528.
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we address in this section is to estimate the cosmic varia
of such a detection in joint surveys in about 100 square
grees.

The computation of cosmic variance is a classical pr
lem in cosmological observation@24#. A natural estimate for
an ensemble average^X& is its geometrical average. If th
survey has sizeS, then

X̄5
1

SES
d2aX~aW !. ~50!

For a compact survey with circular shape of radiusJ we
formally have

X̄5E d2k

2p
,X̃~kW !W~kJ!. ~51!

For the sake of simplicity this is what we use in the follow
ing but we will see that the shape of the survey has no
nificant consequences.

Taking X̄ as an estimate of̂X& ~the ensemble average o

X) leads to an error of the order ofA^X̄2&2^X̄&2which usu-
ally scales like 1/AS if the survey is large enough.

FIG. 7. Diagrammatic representation of the terms contribut
to the cosmic variance of the correlation coefficients. In this rep

sentation the vertex xd representsDB̂; the crosses stand for theDP
part, the circles forgcmb. The other vertex xo represents anyb\ ;
the open circles stand forggal . The solid lines connectDP terms
and the dashed ones theg ’s.
1-9
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When we are measuringX\ on a small patch of sky, we
are apart from the statistical value by the same kind of er
We can neglect the errors on^DÊ2&, ^(¹Ê)2&, ^(¹kgal)

2&
and ^kgal

2 &; those may not be the dominant source of t
discrepancy and can even be measured on wider and i
pendent samples. The biggest source of error is the mea
of ^DB̂b\&. It is given by

C\5A^~DB̂b\2DB̂b\!2&2^DB̂b\2DB̂b\&2. ~52!

Computation of Eq.~52! is made easier if we write explicitly
the geometrical average as a summation overN measuremen
points (N can be as large as we want!,

X̄5
1

N (
i 51

N

X~u i !; ~53!

we then developed Eq.~52!, and replaced the ensemble a
erage of the summation sign by the geometrical average
the survey size. We are left with a sum of correlators c
taining eight fields taken at two, three, and four differe
points. The calculations can be carried out analytically if
assume that all our fields follow Gaussian statistics, whic
reasonable at the scale we are working on. In that case
deed, we can take advantage of the Wick theorem to con
each of the eight field correlators in products of two-po
correlation functions. By definition, Eq.~52! contains only
connected correlators; moreover, the ensemble aver

^DB̂& and^b\& vanish, and therefore only a small fraction
correlators among all the possible combination of the ei
04350
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fields survive. We can use a simple diagrammatic repres
tation to describe their geometrical shape. All the nonvani
ing terms inC\ are given in Fig. 7. Each line between tw
vertex represents a two-point correlation function such

^X(aW 1)X(aW 2)&, and the different symbols at the vertex co
respond to differentX fields ~the crosses stand forDP, the
solid circles forgcmb, and the open circles forggal). TheA
terms represent terms where the two top~and the two bot-
tom! DB and b\ are taken at the same point, but top a
bottom fields are not at the same place. TheB terms are
three-point diagrams: the topDB and b\ are at the same
point whereas the right and left bottom vertexes are at
different locations. TheC terms are four-point diagrams
where each vertex is at a different point. To illustrate o
notation, let us writeB2c

\ as an example:

B2c
\ 5^gcmb~aW 1!ggal~aW 2!&^ggal~aW 3!gcmb~aW 1!&

3^DP~aW 1!DP~aW 1!&^DP~aW 2!DP~aW 3!&. ~54!

We only focus on the calculation of theA terms because
we can use the approximation that

A@B@C. ~55!

Indeed, in perturbative theory, if the survey is large enou
the n-point correlation function naturally dominates over t
(n11) point correlation function. This is true as long as t
local variance is much bigger than the autocorrelation at s
vey scale and we assume the surveys are still large enoug
be in this case.

The general expression for anyA diagram is
The
Ai
\54Ecmb

D~xcmb1, lWcmb1,kW cmb1!D~xcmb2, lWcmb2,kW cmb2!

3Egal

D~xgal1, lWgal1,kWgal1!D~xgal2, lWgal2,kWgal2!G \
Ker~ lWcmb1,kW cmb1'

!G \
Ker~ lWcmb2,kW cmb2'

!G \
Ker~ lWgal1,kWgal1'

!

3G \
Ker~ lWgal2,kWgal2'

!Mi^kW i u lW j&W~ ukW cmb1'
D1 lWcmb1uu!W~ ukW cmb2'

D1 lWcmb2uu!W~kgal1'
D1ugal!W~ l gal1u!

3W~kgal2'
D2ugal!W~ l gal2u!W~ ukWgal1'

D11 lWgal11kW cmb1'
D11 lWcmb1uJ!W~ ukWgal2'

D21 lWgal21kW cmb2'
D21 lWcmb2uJ!,

~56!

whereMi gives the two-point correlations associated with the lines of the diagram. For example,

M15^d~kWgal1!d~kW cmb1!&^d~kWgal2!d~kW cmb2!&^Ẽ~ l gal1!Ẽ~ l gal2!&^Ẽ~ l cmb1!Ẽ~ l cmb2!&. ~57!

We explicate in the following the computation ofA1
\ . The other terms follow the same treatment or can be neglected.

lines in theA1
\ diagram give us the relations

kW cmb152kWgal15kW1 , kW cmb252kWgal25kW2 , lWcmb152 lWcmb25 lWcmb, lWgal152 lWgal25 lWgal. ~58!

Then, using these relations and the small angular approximation, we have
1-10
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A1
\54Egal

dx1dx2wcmb1wgal1wcmb2wgal2E d2k1d2k2

~2p!4

d2l gald
2l cmb

~2p!4
CE~ l gal!CE~ l cmb!P~k1!P~k2!G \

Ker~ lWcmb,kW1!

3G \
Ker~2 lWcmb,kW2!G \

Ker~ lWgal,2kW1!G \
Ker~2 lWgal,2kW2!W~ ukW1D1 lWcmbuu!W~ ukW2D1 lWcmbuu!

3W~k1Dugal!W~k2Dugal!W
2~ l galu!W2~ u lWgal1 lWcmbuJ!. ~59!

We apply the decomposition ofW1„ukWD(x)1 lWuu… we used in Eq.~43!. The geometry of our problem is the same and the re
~44! still holds for the terms inW1„ukW1D(x1)1 lWcmbuu… and W1„ukW2D(x2)1 lWcmbuu…. This, however, is not true forW1

2(u lWgal

1 lWcmbuJ) for which the application of the resummation theorem does not bring any simplification. Then, neglectingW3
parts and after integration onfki

, for theD term, we have

A1
D5Egal

dx1dx2wcmb1wgal1wcmb2wgal2E dk1dk2

~2p!2

d2l gald
2l cmb

~2p!4
l gal
4 l cmb

4 k1k2CE~ l gal!CE~ l cmb!P~k1!P~k2!

3W2~ u lWgal1 lWcmbuJ!cos22~f l cmb
2f l gal

!W~k1Dugal!W~k2Dugal!W
2~ l galu!W~k1Du!W~k2Du!W2~ l cmbu!. ~60!
t

in

ow

alu-
tion

e

Note that for the evaluation of the¹ part, using the same
kind of method, we obtain the same equation as Eq.~60!
wherel gal

4 l cmb
4 is replaced byl gal

2 l cmb
2 k1

2k2
2/2.

We can get rid of the remainingW2(u lWgal1 lWcmbuJ) with
another approximation. The power spectrumCE( l ) favors

large values ofl whereasW2(u lWgal1 lWcmbuJ) will be nonzero

for u lWgal1 lWcmbu;1/J. Then for a typical survey size of abou

100 square degrees,u lWgal1 lWcmbu! l i and we can assumelWgal

;2 lWcmb and lWgal1 lWcmb5eW . In this limit, cos22(flcmb
2f l gal

)

51 andA1
\ can be written

FIG. 8. Comparison betweenA2A1
D/signalD ~solid line! and

A2A1
¹/signal¹ ~dashed line!. The Cl are from aV50.3, L50.7

model. The survey size is 100 deg2, and Gaussian filters wer
used.
04350
A1
D5E l dl

~2p!2
l 8CE

2~ l !W4~ lu!E d2e

2p
l 8W1

2~eJ!

3F Egal

dxwcmbwgalE k dk

2p
P~k!W~kDu!W~kDugal!G2

,

~61!

which is essentially the cosmic variance of^DE2& for the D
part and of^(¹E)2& for the ¹ one @where l 8 in Eq. ~61! is
replaced byl 4k1

2k2
2/2]. Finally we have

A1
D

^B(u)bD(u,ugal)
&2

5
2p

S

E dl l 9CE
2~ l !W1

4~ lu!

F E dl l 5CE~ l !W1
2~ lu!G2

}cosmic variance ofDE2, ~62!

whereS5pJ2 in case of a disk-shaped survey. We show
Fig. 8 numerical results for a 100 deg2 survey although the
numerical calculations were done with a Gaussian wind
function instead of a top hat.

Numerically, foru5108, we get

A1
\

^B(u)b\(u,ugal)
&2

;
~3.7%!2

S/100 deg2
. ~63!

We expect that for the same reasons theA2
\ terms will be

dominated by the weak lensing variance. Yet a correct ev
ation here is harder to reach. We have made this estima
within the framework of a power lawP(k). With this sim-
plification in hand, we can write, forA2n

\ ~we focus only the
D part, but the same discussion holds for the¹ observable!,
1-11
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A2n
D

^B(u)bD(u,ugal)
&2

5
1

r 2E d2k1d2k2P~k1!P~k2!cos2~fk1
2fk2

!

3
W1

2~k1u!W1
2~k2ugal!W1

2~ ukW11kW2uJ!

F E d2kP~k!W1~ku!W1~kugal!G2 . ~64!

The last integral behaves essentially like the cosmic v
ance of^k2&. More exactly, it goes like 1/A2 of this vari-
ance. It should even be smaller, because of the extra2

factor. We evaluated this cosmic variance using the r
tracing simulations described in@25#. These simulations pro
vide us with realistic convergence maps~for the cosmologi-
cal models we are interested in! with a resolution of 0.18,
and a survey size of 9 deg2. The sources have been put a
redshift unity, and the ray lights are propagated throug
simulated Universe whose density field has been evol
from an initial CDM power spectrum. The measured cosm
variance of^k (u)k (ugal)

& is about 3%~see Table II! when

filtered at scalesugal558 andu5108 for a V050.3 cosmol-
ogy.

An estimation ofA2n
D is then given by

A2n
D

^B(u)bD(u,ugal)
&2

;S 2.12%

r D 2 1

S/100 deg2
. ~65!

Sincer ¹ is very comparable tor, we very roughly estimate
A2n

¹ :

A2n
¹

^B(u)b¹(u,ugal)
&2

;S 2.12%

r D 2 1

S/100 deg2
. ~66!

The same considerations give

TABLE II. Values of the cosmic variance of^k2& and^(¹W k)2&
for different models and different filtering radius. The size of t
survey is 100 deg2. For theV050.3 (V051) model, we use five
~seven! independent ray-tracing realizations~see@25#! to estimate
the cosmic variance in a 9 deg2 survey, which is then rescaled t
the cosmic variance we should obtain for a 100 deg2 survey. Given
the low number of realizations, the values here can only be use
a good estimation of the order of magnitude of CosVar(^k2&) and

CosVar(̂ (¹W k)2&). It also seems, from these figures, that the c

mic variance of^(¹W k)2& is more degraded by the difference
filtering beams than the other.

CosVar(̂ k2&) CosVar„^(¹W k)2&…
V050.3 V051 V050.3 V051

u558,ugal52.58 2.94% 1.86% 2.88% 2.07%
u558,ugal558 3.02% 1.87% 2.23% 1.75%
u5108,ugal558 3.54% 2.03% 4.25% 3.02%
04350
i-

s
-

a
d

c

A2n
\

^B(u)b\(u,ugal)
&2

5
~2.12%!2

S/100 deg2
. ~67!

There is nor dependence here; the diagram cross-correla
kcmb andkgal.

We can approximate the remainingA terms. They should
be smaller than the former. We have

A3n
\ ;

1

r \
2

~2.12%33.7%!2

S/100 deg2
^B(u)b\(u,ugal)

&2!A2n
\

and

A3c
\ ;

~2.12%33.7%!2

S/100 deg2
^B(u)b\(u,ugal)

&2!A2c
\ .

Then, only theA1
\ andA2

\ terms~boxed in Fig. 7! contribute
substantially to the cosmic variance ofX\ . SinceA1

\ andA2
\

are, respectively, the cosmic variance of^DE2& ~respec-
tively, ^(¹W E)2&) and of ^k2& ~respectively,^(¹W k)2&), we
can write the variance ofX\ as

CosVar~XD!5 CosVar~^DE2&!1S 11r 2

2r 2 D CosVar~^k2&!.

~68!

and

CosVar~X¹!5 CosVar„^~¹W E!2&…

1S 11r ¹
2

2r ¹
2 D CosVar„^~¹W k!2&…. ~69!

Table III presents numerical results for various filtering sc
narios and models.

The two quantitiesbD andb¹ lead to similar cosmic vari-
ances that are rather small. Obviously it would be even be
to useb5bD1b¹ . For such a quantity the resulting cosm
variance for the cross-correlation coefficient should even
smaller, by a factor ofA2, although a detailed analysis
made complicated because of the complex correlation
terns it contains.

as

-

TABLE III. Values of the cosmic variance ofX\ . The survey
size is 100 deg2. We used the results presented in Table II and F
8. Ther \ parameters are assumed to be equal and set to 0.4. W
not take into account the filtering effects in the definition ofr. The
difference due to the filtering correction is small, though. From t
estimation, we can expect a cosmic variance forX\ of less than
10% for realistic scenarios.

CosVar(XD) CosVar(X¹)
V050.3 V051 V050.3 V051

u558,ugal52.58 6.44% 4.77% 6.06% 4.72%
u558,ugal558 6.58% 4.79% 4.99% 4.23%
u5108,ugal558 8.71% 6.73% 9.49% 7.62%
1-12
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IV. CONCLUSION

We have computed a first order mapping that describe
real space, the weak lensing effects on the CMB polarizat
In particular we derived the explicit mathematical relati
between the primary CMB polarization and the shear field
leading order in the lens effect. It demonstrates that aB
component of the polarization field can be induced by le
couplings. We have shown, however, that theB map alone
cannot lead to a nonambiguous reconstruction of the p
jected mass map.

Nonetheless, theB component can potentially exhibit
significant correlation signal with local weak lensing su
veys. This opens a new window for detecting lens effects
CMB maps. In particular, and contrary to previous stud
involving the temperature maps alone, we found that suc
correlation can be measured with a rather high signal
noise ratio even in surveys of rather modest size and res
tion. Anticipating data sets that should be available in
near future (100 deg2 survey, with 58 resolution for galaxy
survey and 108 Gaussian beam size for CMB polarizatio
detection!, we have obtained a cosmic variance around 8
Needless to say, this estimation does not take into acc
systematics and possible foreground contaminations
shows anyway that cosmic microwave background polar
tion contains a precious window for studying the large-sc
mass distribution and consequently putting new constra
on the cosmological parameters.

In this paper we have investigated specific quantities
would be accessible to observations. They both would pe
one to put a constraint on the cosmological constant.
simulated maps we presented here are only of illustra
interest. We plan to complement this study with extens
numerical experiments to validate our results~in particular
on the cosmic variance! and explore the effect of realisti
ingredients we did not include in our simple analytic
framework: shear non-Gaussianity, lens-lens coupling,
so forth.
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APPENDIX: POWER SPECTRUM OF DB AND THE D

AND ¹ TERMS

The aim of this appendix is to succinctly present the co
putation of the power spectrum ofDB and the different terms
that contribute to it as shown in Fig. 3. Unlike previou
literature on the subject@9,15# we do not need to comput
the second order development of the lens effect if we res
our computations to the power spectrum of theB field. The
reason why is that assuming that the primordialB polariza-
tion is null, the second order of the lens effect will have
null contribution to theB power spectrum at leading order

Using Eq.~8!, we have

^DB̂~aW 1!DB̂~aW 2!&5^BD~aW 1!BD~aW 2!&1^B¹~aW 1!B¹~aW 2!&

1^BD~aW 1!B¹~aW 2!&

1^B¹~aW 1!BD~aW 2!&, ~A1!

where theB\ are theD and¹ parts ofDB. Then, one can
calculateCl

DB , the power spectrum ofDB,

Cl
DB5Cl

DD1Cl
¹¹12Cl

D¹ , ~A2!

whereCl
DD ~respectively,Cl

¹¹) is the power spectrum of the
D term (¹ term! andCl

D¹ is the cross-correlation at scalel of
the D and¹ terms. The latter must sum up to zero, so th
^B¹BD&50. Using the notations of Sec. III, we have

^B]~aW 1!B\~aW 2!&5E d2l

~2p!2
Cl

]\ei lW•(aW 22aW 1)

5E d2kd2h

~2p!4
CE~h!P̄~k!ei(kW1hW )•(aW 22aW 1)

3G \
Ker~hW ,kW !G ]

Ker~hW ,kW !, ~A3!

where we have assumed thatP̄(k) take into account the line
of-sight integration. We are left with the simple equation

Cl
]\5E d2h

~2p!2
CE~h!P̄~ u lW2hW u!G \

Ker~hW , lW2hW !G ]
Ker~hW , lW2hW !.

Figure 3 presentsCl
DD , Cl

¹¹ , andCl
DB obtained with these

equations.
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