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Reconstructing the inflationary power spectrum from cosmic microwave background
radiation data
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The cosmic microwave background radiati@MBR) holds information about almost all the fundamental
cosmological parameters, and by performing a likelihood analysis of high precision CMBR fluctuation data,
these parameters can be inferred. However, this analysis relies on assumptions about the initial power spec-
trum, which is usually taken to be a featureless power IB¢k)>k"s*. Many inflationary models predict
power spectra with non-power-law features. We discuss the possibility for detecting such features by describ-
ing the power spectrum as binskrspace. This method for power spectrum reconstruction is demonstrated in
practice by performing likelihood optimization on synthetic spectra, and the difficulties arising from recon-
structing smooth features using discontinuous bins are discussed in detail.
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I. INTRODUCTION spectrum, but binned ikspace. Using a Fisher matrix analy-
sis, it was shown by Wang, Spergel and Strauss that it is
Fluctuations in the cosmic microwave background radiafossible to determine the power in each bin to reasonable
tion (CMBR) were detected for the first time by the Cosmic precision, so that some features could be detectable. In the
Background ExploreCOBE) satellite in 1992[1]. Subse- next section we discuss the prospects for detecting features
quently it was realized that precision measurements of th# more detail, also using the Fisher matrix technique. Par-
fluctuation spectrum can be used to infer almost all of thdicularly, it is shown that there is a trade-off between the
fundamental cosmological parametd-7]. The method Precision Fo which the power in each bin can be measured
most commonly used for determining parameters from thénd the width of each bin.

data is to maximize the likelihood functiofi over the space lih IndSec. :” we gt(;]on;_o dis(;:uss in detailthow .SUCh ? Iike-d
of model parameters to be determinei={Q,Q,. .0y, ihood analysis with a binned power spectrum is performe

Ho.7, ...}. A large number of papers have dealt with this M practice. This analysis highlights some of the difficulties

: . i ) which can be expected. In general it is quite difficult to re-
issue in great detail. However, when calculating the theoret P g q

) L8 construct a power spectrum with smooth features using a set
|pal CMBR powerlspect.rum nggded for the likelihood fur‘C'of discontinlﬁ)ous binpamplitudes. If the binning is too cogarse,
tion, a necessary Input is the initial power spectrum Of. ﬂuc'the individual bins being comparable in size or broader than
fcuatl(_)ns, usually assumed to have been produced during ﬂiﬁe power spectrum features, the spectrum reconstruction can
inflationary gpoch. . . . easily give misleading results. For a reasonable reconstruc-
There exists a plethora of different inflationary r‘nOdGLQ"tion it is necessary to choose a binning which is significantly

each having a specific prediction for the produced fluctuatiqqiner than the features to be detected. However, maximizing

spectrum. In the simplest slow-roll models, the spectrum 'She likelihood function is a highly non-linear optimization

; ; ng—1
discnbeg 1by8a ﬁllmple fee}[trlljreless powert IB(\k)ockk; ' i problem. If the number of free parameters in theNit N,
wherens=1 [8]. However, the power spectrum could easily + Npins, iS too large, the computation time to retrieve the

behave differently, depending both on the specific form Ofmaximum likelihood becomes very long. Nevertheless, it is

the ir)flaton potentialv(gb)., a’?d on the presence of different demonstrated that it is computationally feasible to use at
physical phenomena during inflation. A plethora of dn‘ferentIeast 20 bins irk space

models predicting such behavior exig#. Examples of such Finally, Sec. IV contains a discussion of the results, with

phenomena are the resonant production of particles duringmphasis on how the techniques can be used on results from

inflation, proposed by Chungt al. [10], and the multiple . o - : .
inflation model discussed by Adams, Ross and Sarkay. ,r;\lr?ir;oa:ggc);/s Ig?ozzﬂ'l&tg)e;ﬁg rllarratar]r::'tilg]u ch as the Microwave
In almost all existing likelihood analyses the initial power '

spectrum is assumed to have the power-law fdagk)

k"1 whereng is a constanf2—7]. This type of analysis

restricts the parameter estimation in such a way that no non- CMBR temperature fluctuations are usually expressed in

power-law features can be detected. Since there are so ma@tms of spherical harmonics as

different inflationary models, each with unique predictions, it AT

is highly desirable to have a more model-independent way of

estimating the initial power spectrum. T(‘g"ﬁ):% AimYim( 6, ). @)
Such a possibility has been discussed by Souradeap

[12] and by Wang, Spergel and Stra(i$8,14]. In both treat-  From thesea,,, coefficients it is possible to construct the

ments, the power spectrum was described as a featurelegewer spectrum as

Il. FISHER MATRIX ANALYSIS

0556-2821/2001/63)/0430097)/$15.00 63 043009-1 ©2001 The American Physical Society



STEEN HANNESTAD PHYSICAL REVIEW D 63 043009

Ci=(lam/?, 2 #x? Nmx 1 40 ac

a0 " 2 236 70 v
where the average in principle is an ensemble average. Such 06,00, = a(C)?2 96, 30;

an ensemble average can obviously not be performed since _ o o _
we have access to only one realization of the underlyingThe Fisher matrix is closely related to the precision with

distribution. However, in a universe which is isotropic the Which the parameters);, can be determined. If all free pa-
ensemble average can be replaced by an average nover fameters are to be determined from the data alone without

values for a giver [17]. any priors, then it follows from the Cramer-Rao inequality

It is possible to estimate the precision with which the[19] that
cosmological model parameters can be extracted from a
given hypothetical data set. The starting point for any param-
eter extraction is the vector of data points,This can be in
the form of the raw data, or in compressed form, either as th
22‘3 Cgsgtlﬁlti;]ttiznosr tfk;g rrF: o;";ﬁg%ﬁg? n dE?](c:)?sggfcsism _In general, the standard error on Becoefficients can be
+Xnoise- If both signal and noise are Gaussian distributed, itV ritten as

o(6)=(F by (8

{eor an optimal unbiased estimator, such as the maximum
ikelihood [20].

is possible to build a likelihood function from the measured 12
data which has the following forrfi.8]: S D —
9 r[ﬂ' ] O-(CI) (2|+1)fsky (CI+Aexpt)- (9)
1
E(@))“GXF{ - EXT[C()_l]X : (3)  Here,fg, is the sky coverage anfile, is a (Gaussiah ex-

perimental error. Notice that even fake,,=0, o(C))
where @ =(Q,Q,,Ho.n,7, ...) is avector describing the #0. This derives from the fact that the ensemble average in
given point in model parameter space a@@(®)=(xx") is  Ed.(2) has been replaced by an average owemlues, and is
the data covariance matrix. In the following we shall alwaysusually referred to as “cosmic variancg17].
work with data in the form of a set of power spectrum coef- The CMBR is also predicted to be polarized, and this
ficients, C; . polarization power spectrum can in principle be measured.

If the data points are uncorrelated so that the data covarfFOr scalar perturbations there are only three independent

ance matrix is diagonal, the likelihood function can be re-guantities: The temperatur€, r; the E-field polarization,
duced toLxe X2 where C,e; and the temperature-polarization cross correlation,

C, c. Then the Fisher matrix of Eq7) is, instead 20],
NI’T'I X
2_ v (Cl,obs_ Cl,theors)2 (4)

Nmax
X O')CL
(=2 a(C)? Fij= |22 XEY a0,
= , 1

dC) x
96;

*Cov }(Cix,Cyy) (10)

is a x? statistics andN ., is the number of power spectrum

data pointg18]. In this case the covariance matrix, C@&(x,C, y), is a sym-

The maximum likelihood is an unbiased estimator, whichmetric 3x3 matrix with the following elementg20]:
means that

i ) .
— 2
(0)=0,. (5) COV(CI,TaCI,T)__(ZI +1)fsky_(c|,T+Aexpt,J)
Here ®, indicates the true parameter vector of the underly- - 2 :
ing cosmological model an¢®) is the average estimate of CoMC g,Cg)=| =—+|(C g+ AexptZ)Z
parameters from maximizing the likelihood function. S L@ Dy '
The likelihood function should thus peak @=0,, and i 2 .
we can expand it to second order around this value. The first _ 2
order derivatives are zero, and the expression is thus CoUCc.Cic) (2l +1)fsky_[C"C+(C"T+Aexf’“)
2= x2. +E (6,—6) NEW 1 &_C|8_C| X(Cret o]
BRI (R LR 2 1.
CovC 1,Cig)=|—=5—+|C
) ) e, o ) (C 1.CE) 2+ D)yl i
(Ci,obs I)W (60;—0), (6) ,

CovC 1,Ci o)== 7|Cic(C| 7+ Agypt 1)
wherei,j indicate elements in the parameter vedgor The S (PR
second term in the second derivative can be expected to be ) 5
very small becauseQ| ,,s— C)) is in essence just a random _
measurement error which should average out. The remaining CovCe.Ci o) [(21+1)fgy) Cio(Cret Ao,
term is usually referred to as the Fisher information matrix 11
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FIG. 1. The precision with which the spectral indices in each bin  FIG. 2. The precision with which the spectral indices in each bin
can be measured, shown for three different numbers of s ( can be measured, shown for three different numbers of Hihs (
=1,5,20), for the case where only the temperature anisotropy cae: 1,5,20), for the case where both temperature and polarization can
be measured. Shown are the &rror bars around the central value be measured. Shown are the &rror bars around the central value
which in all cases isi;=1. which in all cases isig=1.

whereA,; are again experimental experimental errors re-syrprisingly, the precision with which the effective spectral
lated to pixel noise and beamwidf0]. index in each bin can be measured depends strongly on the
For the purposes of the present paper we assume thalmper of bins. For only one bimAn./n.=8.21x 10 3,
fsy=1, Aexpti=0, andlma=1500, corresponding to a full-  \hereas for 20 bins, the smallean,/ng is 3.49<10 2.
sky survey up tdna,=1500, limited only by cosmic vari- Thys, there is a trade-off between the resolutiork space
ance. If the temperature power spectrum alone is consideregnq the resolution ims. Detecting a low-amplitude narrow
this is not too far from what can be expected with MAP, faatyre is not possible, whereas either a broad low-amplitude
whereas PLANCK will likely measure both temperature andor g narrow high-amplitude feature should be detectable. In
polarization to this accuracy. agreement with Wang, Spergel and Straiis3;14 we find

Ag the free cosmologica_l parameters we use the mattef,5t the CMBR data are most sensitive in the rarige
density, Q,,; the cosmological constanf}), ; the baryon _1g-3_1¢0! MpcL. If polarization can also be mea-

density, (1 ; the Hubble parameteH; the optical depth t0  greq, the precision with which they(i) can be measured
reionization,7; and the overall normalizatiorQ. Instead of  jcreases. Figure 2 shows the same as Fig. 1, but with the
using the spectral index of a featureless power-law spectrungciysion of polarization. Indeed, the precision on the indi-
ns, as the last free parameter, we bin the spectral indéx in y;igual bin amplitudes increases by a large factor. For only
space. In practice we usébins of equal size in lod, from one bin, Ang/ng=2.90x10"3, whereas for 20 bins, the
k=1.27x10 5> Mpc ! to k=0.25 Mpc 1_ (this covers the  gmallestAn,/n, is now 9.49< 10" 3.
entire range ok space which is visible in the CMBRIn Next, a fundamental question is how much the ability to
each bin the power spectrum is assumed to follow a powegetermine the other fundamental parameters depends on the
law, P(k);>k"s")~ %, Thus, the parameter vector is number of bins irk-space. Figures 3 and 4 show the preci-
sion in measuring the other cosmological parameters as a
0={Qpn,04,0p,Ho,7,Q,ng(1), ... .Ns(N)} (12 function of N, the number of bins. Figure 3 is for the case
where only the temperature anisotropy can be measured. For
As the reference model around which to calculate the Fisheall the cosmological parameters, excepthere little degen-
matrix, we take the standard CDM model witfb=(,,  eracy between these parameters and the power spectrum in-
=1, 0,=0.05, H,=50 kms ! Mpc %, and r=0. The dices, meaning that there is little loss of ability to pin down
reference model has a power-law initial spectrum withthese parameters. Frol= 10, the resolution begins to de-
ng(i)=1 for alli. crease, although quite slowly, andNu= 30 it is for instance
In Fig. 1 the precision with whiclmg(i) can be measured down by about 40% foK),. Clearly, the spectral indices,
is shown for different numbers of bins, for the case whereng(i), are not very degenerate with the other cosmological
only the temperature power spectrum can be measured. Nparameters. The reason is that the discontinuous binning in
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0.10[ N D ] mic variance. In this work 75 bins irk space were used and
i ] the power spectrum smoothened by cubic spline interpola-

0.08; o(a) ] tion, leading to a very large degree of degeneracy between
[ —.— h,/05 ] the k-space power spectrum and the other cosmological pa-
~ 008 _ . 1/5 & 7 rameters.
% r Y ] The one exception to the above is the optical depth to
Q8 e ] reionization,r. Here there is a very large degree of degen-
i ' ] eracy, which increases rapidly with the number of bins. This
0.0z oo z effect was also described by Wang, Spergel and Stifdi3$s

It happens because the effect of re-ionization is to suppress
the amplitude at small scales by a faceor?”. This can be
quite easily mimicked by suppressing tlkespace power
spectrum at small scales.

FIG. 3. The precision with which the other cosmological param- However, Fig. 4 shows the case where polarization can
eters,(),,Q, ,Q), andH,, measured as a function of the number of also be measured. In this case, the degeneracy betnaed
bins ink space, for the case where only the temperature anisotropthe k-space spectrum is broken, and the ability to determine
can be measured. The precision is quantified in terms of the stanhe value ofr is increased by a large factor. For the other
dard error,o. cosmological parameters, the precision is also increased, but

not as dramatically.
the power spectrum is very hard to mimic by continuous
changes in other parameters. This finding is in agreement . NUMERICAL SPECTRUM RECONSTRUCTION
with Ref.[13,14], where such a binning was also used. How- ] o ) ) o
ever, there is a marked difference compared with the findings Having done this initial estimate of ho_vv_ premsely the ini-
of Ref.[12]. In this work, smoothness of the power spectrumtial power spectrum can be estimated, it is important to see
was enforced by using smooth shape functions peaked atW such a power spectrum reconstruction works in practice.
given point ink space instead of discontinuous binning. N order to investigate thls,_ we have produced 10 synthetic
These authors find that the uncertainty in the other paranSPectra based on a underlying theoretical model. These spec-
eters increases very rapidly witd, rising by more than a tra are calculated assuming Gaussian errors given by cosmic
factor of 10 atN=30[12]. However, using smooth functions Variance only. In ord_er to simulate a p0$5|ble feature in the
to describe the power spectrum could indeed be expected RPWeEr spectrum we introduce a Gaussian “bump,” so the
be able to mimic changes in other parameters to a mucfPectral index has the form
higher degree than our approach. So it is not surprising that a )
much higher degree of degeneracy is found. On the other . '{_ [log(k, ) —log(ko, )]
; ) . . . . ns=1-—Aex , (13

hand, as will be seen in the next section, using a discontinu- a
ous binning has the very clear disadvantage that it can be
difficult to achieve reasonable likelihood fits if the number of where k, =k/1 Mpc™t. This bump is characterized by
bins is too small. three parametersh, the amplitudek,, , the position ink

In line with this discussion, it was shown by Kinngl5]  space; andw, the width. For the underlying cosmological
that smooth power spectrum features can mimic variations imodel we have chosen the same standard cold dark matter
the cosmological parameters almost exaétty within cos- (CDM) model as in the last section, so the model param-
eters areQ=Q,=1, Q,=0.05 Hy=50 kms! Mpc1,

0.00L . L

0.10 ] : A=0.7, «=0.1, and lo@y,=—2. Thus, the bump has
[ — o(0) ] been placed closed to the region where the CMBR data are
0.08F U(QA) P . most sensitive. Note that in this section we use only infor-
- E(g/za),éu.()a mation related to the temperature power spectrum, not the
__006F _ _r°/10’ . polarization spectrum.
&; - 1 On each of these synthetic spectra we try reconstructing
® 0.04F N the power spectrum using the logarithmic binning method
i 1 introduced in the previous section. The likelihood optimiza-
0.02F e tion algorithm is based on the simulated annealing principle
] described in Refl21]. This method has the advantage that it
000 L o T ] is very fast for highly non-linear optimization over many-
1 10 dimensional parameter spaces, exactly the problem that is
No. k—bins faced here. In Fig. 5 we show the values extracted by the

FIG. 4. The precision with which the other cosmological param-Parameter reconstruction for three different numbers of bins,

eters 0,0, ,Q, andH,, measured as a function of the number of N=5,10 and 20. o .
bins in k space, for the case where both temperature and polariza- In the N=5 case the individual bins are broader than the
tion can be measured. The precision is quantified in terms of th®uUmp to be reconstructed. This shows up in the fact that no

standard errorg. good fit is achieved{((x3;,//Npe=12.7), and the spectrum
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FIG. 6. The reconstructed power spectrum from likelihood
maximization over 10 synthetic spectra, for the casBl &f20. The
boxes show the & error intervals. The solid line shows the under-
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¢ 1.0 I T lying k-space power spectrum used to generate the synthetic spec-
0.5 tra.
0'0 L L d . B -
10074 10073  107%  10” constant amplitude over the entire bin so thék);=A,; . We
k (Mpe™) show the reconstruction for the caseN# 20 in Fig. 6. For

this case, the reconstruction of the power spectrum bump is
actually better than for the “tilt” spectrum reconstruction.
There is no trace of the spuriously low spectral index found
at high k. However, they? is substantially worse for this
method, with(x2,)/Npr=3.45. From this, a robust conclu-
reconstruction is quite poor. The reconstructed Spectrurﬁion is that for discontinuous binning the obtainable fits are
does show some evidence of a lower spectral index aroun@uite poor in terms of?, regardless of the binning method.
the position of the bump, but the magnitude is not correctHowever, it is possible to detect features in the spectrum by
For N=10 the reconstruction is already much better and rethis method. At least the tilted binning method can show
produces the actual slope of the underlying spectrum. Howspurious effects, so one should be careful about making
ever, (x2,)/Np=8.06, so the fit is not very good in this Strong conclusions without going through several different
case either. In the last case whate-20 the reconstructed Methods of spectrum reconstruction.

spectrum again follows the underlying one reasonably well, Just for comparison we have also done a spectrum recon-
However, alN =20 the uncertainty on the individual bin am- struction Wherg thg free parameters are those derscnbmg a
plitudes is already significantly larger than fir=10. By ~ Smooth scale invariant power-law spectrum<1) with a
going to an even higher number of individual bins, the spec®aussian bumpA, ko, , ande;, instead of usingiy(i). The
trum bump will be smeared out beyond recognition. e values extracted from likelihood maximization on the 10

fit is significantly better than forN=10 (<X§1in>/NDF synthetic spectra are given in Table I. Clearly, in this case,

=2.84), although far from what should be expected from athe true underlying spectrum is recovered to very good ac-

“ o 2 — curacy because the same functional form is used in the fit as
good” fit ( {xmin)/Npr=1). in the underlying power spectrum. Also thé values are

FIG. 5. The reconstructed power spectrum from likelihood
maximization over 10 synthetic spectra. The boxes show the 1
error intervals. The solid line shows the underlyikgpace power
spectrum used to generate the synthetic spectra.

The reason for these very h'gﬁ values is that it is quite completely consistent with what is expected from a good fit.
hard to mimic a smooth feature in the power spectrum with a : i .
. ; . ...~ So using smooth fitting functions could have the advan-
sequence of discontinuous bins. Thus, even though it is in- ; ) .
. tage of being better able to fit smooth features in the under-
deed possible to map out the shape of the power spectrum, |

. ) . o o lying initial power spectrum. However, the discontinuous
|s_n0t pOSS|_bIe to achieve a good fit m_terms of the I|kel|hoodbirming method has the advantage of being very model inde-
without letting N— Npe. However, going much beyond

=20 increases the uncertainty in the individual bin ampli-

tudes and doing the likelinood maximization is already quite, ;A%LE”".;I Lzeorr??:s;?: .2a;?2re]:irsefézmn§hig';f 2tﬁe?.lf:'aenc
demanding numerically atl=20. ump overiay invan pectrum. y ICsp

Finally, with a large number of bind0 or 20 the recon- tra were used for the reconstruction.
struction at scales smaller than the buftgrgek) is consis-

L . X . Parameter Found Expected
tently predicting a too low spectral index. This effect is wor-
rying and to investigate whether it is a generic feature of anw?,, 1516.7-50.4 1496-54.7
discontinuous binning method, or specific to our choice, 0.1004+0.0035 0.1
where each bin has a “tilt,P(k);<k"(") "%, we also do the logk,, —2.0004*+0.0059 -2
reconstruction using the same method as Wang, Spergel and 0.6931+ 0.003 0.7

Strausq13]. Here, the power in each bin is assumed to have
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pendent. So a possible way to proceed would be to initiallypredicted to occur in the multiple inflation model of Adams,
try the discontinuous binning method, and only for refine-Ross and Sarkdd 1]. Here, the effect of symmetry breaking

ments go to more complicated fitting functions. during the inflationary period was discussed. If such sponta-
neous symmetry breaking occurs along flat directions,
IV. DISCUSSION short inflationary periods will result, leaving distinct non-

. o . power-law features in the power spectrum. Another possible
We have discussed the possibility for measuring the shap@echanism for producing features is the resonant production

of the primordial power spectrum by using precision mea-of particles during inflation discussed by Chueigal. [10].
surements of CMBR fluctuations. The method employed was Note that the CMBR is mainly sensitive to power spec-

to parametrize the spectrum as a power law, binne& in y,m atk=10"3—10"1 Mpc™ L. Any features outside this
space. An analysis of the obtainable precision in measuringsgion ink space would not be detectable, so the CMBR can
the power spectrum, using a Fisher matrix analysis, showegi most probe a very small region of the inflationary period.
that it should be possible to detect features that are SUff'However, as discussed for instance in RE18,14), by also
ciently broad by using CMBR observations. _ _using data from large scale structuteSS) surveys such as
_However, there are some practical problems involved inpe Sjoan Digital Sky Survey it is possible to increase the
this spectrum reconstruction. If the power spectrum is paregion ofk space that can be probed. LSS surveys are sensi-
rametrized by binning it irk space, it is very difficult 10  tjye to smaller scales than the CMBR instance the Sloan
mimic any smooth features in the underlying power SPeCsurvey should probe the regide=10"2—1 Mpc ), and

trum. Especially, if the feature is comparable in width to theby combining MAP/PLANCK with such surveys it should be
individual bins, the reconstructed spectrum can show Spuripossible to have sensitivity in the regiok=10"3

ous features. Nevertheless, by going to a sufficiently fine_ 1 Mpc L. In addition to this, including data from large

binning it is possible to map out the general shape of thgcgle surveys can break some of the cosmological parameter
power spectrum, al'ghough still very difficult to get a good fit degeneracief7]. For instance, using CMBR data alone it is
in terms of the likelihood. impossible to determine eithé®,, or Q, separately with

The fact that it is possible to reconstruct the underlyinghigh precision. The parameter that can be measured is the
k-space power spectrum from CMBR observations opens URtal energy densitf)=0,,+Q, . However, the LSS sur-

the possibility of probing physics at the time of spec:trumveyS are sensitive to a different combination(f, and( , ,

formation by observing the universe at CMBR formation 4 by adding this information the degeneracy between them
(T~4000 K). As was for instance discussed in Refs..., po brokefi7].

[22,23, if the primordial fluctuations are produced during
the inflationary epoch, it is possible to reconstruct the infla-
tionary potentialV(¢), from thek-space spectrum.

However, in addition to that it will be possible to detect
non-power-law features in the power spectrum using this Use of thecMBFAST code developed by Seljak and Zal-
discrete binning method. Such features are for instancdarriagal24] is acknowledged.
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