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Reconstructing the inflationary power spectrum from cosmic microwave background
radiation data

Steen Hannestad
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~Received 19 September 2000; revised manuscript received 17 November 2000; published 31 January 2001!

The cosmic microwave background radiation~CMBR! holds information about almost all the fundamental
cosmological parameters, and by performing a likelihood analysis of high precision CMBR fluctuation data,
these parameters can be inferred. However, this analysis relies on assumptions about the initial power spec-
trum, which is usually taken to be a featureless power law,P(k)}kns21. Many inflationary models predict
power spectra with non-power-law features. We discuss the possibility for detecting such features by describ-
ing the power spectrum as bins ink space. This method for power spectrum reconstruction is demonstrated in
practice by performing likelihood optimization on synthetic spectra, and the difficulties arising from recon-
structing smooth features using discontinuous bins are discussed in detail.

DOI: 10.1103/PhysRevD.63.043009 PACS number~s!: 98.70.Vc, 98.80.Cq
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I. INTRODUCTION

Fluctuations in the cosmic microwave background rad
tion ~CMBR! were detected for the first time by the Cosm
Background Explorer~COBE! satellite in 1992@1#. Subse-
quently it was realized that precision measurements of
fluctuation spectrum can be used to infer almost all of
fundamental cosmological parameters@2–7#. The method
most commonly used for determining parameters from
data is to maximize the likelihood functionL over the space
of model parameters to be determined,u5$V,Vm ,Vb ,
H0 ,t, . . . %. A large number of papers have dealt with th
issue in great detail. However, when calculating the theo
ical CMBR power spectrum needed for the likelihood fun
tion, a necessary input is the initial power spectrum of flu
tuations, usually assumed to have been produced during
inflationary epoch.

There exists a plethora of different inflationary mode
each having a specific prediction for the produced fluctua
spectrum. In the simplest slow-roll models, the spectrum
described by a simple featureless power lawP(k)}kns21,
wherens.1 @8#. However, the power spectrum could eas
behave differently, depending both on the specific form
the inflaton potential,V(f), and on the presence of differen
physical phenomena during inflation. A plethora of differe
models predicting such behavior exists@9#. Examples of such
phenomena are the resonant production of particles du
inflation, proposed by Chunget al. @10#, and the multiple
inflation model discussed by Adams, Ross and Sarkar@11#.

In almost all existing likelihood analyses the initial pow
spectrum is assumed to have the power-law formP(k)
}kns21, wherens is a constant@2–7#. This type of analysis
restricts the parameter estimation in such a way that no n
power-law features can be detected. Since there are so m
different inflationary models, each with unique predictions
is highly desirable to have a more model-independent wa
estimating the initial power spectrum.

Such a possibility has been discussed by Souradeepet al.
@12# and by Wang, Spergel and Strauss@13,14#. In both treat-
ments, the power spectrum was described as a featur
0556-2821/2001/63~4!/043009~7!/$15.00 63 0430
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spectrum, but binned ink space. Using a Fisher matrix analy
sis, it was shown by Wang, Spergel and Strauss that
possible to determine the power in each bin to reasona
precision, so that some features could be detectable. In
next section we discuss the prospects for detecting feat
in more detail, also using the Fisher matrix technique. P
ticularly, it is shown that there is a trade-off between t
precision to which the power in each bin can be measu
and the width of each bin.

In Sec. III we go on to discuss in detail how such a lik
lihood analysis with a binned power spectrum is perform
in practice. This analysis highlights some of the difficulti
which can be expected. In general it is quite difficult to r
construct a power spectrum with smooth features using a
of discontinuous bin amplitudes. If the binning is too coar
the individual bins being comparable in size or broader th
the power spectrum features, the spectrum reconstruction
easily give misleading results. For a reasonable reconst
tion it is necessary to choose a binning which is significan
finer than the features to be detected. However, maximiz
the likelihood function is a highly non-linear optimizatio
problem. If the number of free parameters in the fit,N5Nu
1Nbins, is too large, the computation time to retrieve t
maximum likelihood becomes very long. Nevertheless, it
demonstrated that it is computationally feasible to use
least 20 bins ink space.

Finally, Sec. IV contains a discussion of the results, w
emphasis on how the techniques can be used on results
high precision satellite experiments, such as the Microw
Anisotropy Probe~MAP! and Planck@16#.

II. FISHER MATRIX ANALYSIS

CMBR temperature fluctuations are usually expressed
terms of spherical harmonics as

DT

T
~u,f!5(

lm
almYlm~u,f!. ~1!

From thesealm coefficients it is possible to construct th
power spectrum as
©2001 The American Physical Society09-1
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Cl5^ualmu2&, ~2!

where the average in principle is an ensemble average. S
an ensemble average can obviously not be performed s
we have access to only one realization of the underly
distribution. However, in a universe which is isotropic t
ensemble average can be replaced by an average ovm
values for a givenl @17#.

It is possible to estimate the precision with which t
cosmological model parameters can be extracted from
given hypothetical data set. The starting point for any para
eter extraction is the vector of data points,x. This can be in
the form of the raw data, or in compressed form, either as
alm coefficients or the power spectrum,Cl . Each data point
has contributions from both signal and noise,x5xCMBR
1xnoise. If both signal and noise are Gaussian distributed
is possible to build a likelihood function from the measur
data which has the following form@18#:

L~Q!}expS 2
1

2
x†@C~Q!21#xD , ~3!

whereQ5(V,Vb ,H0 ,n,t, . . . ) is avector describing the
given point in model parameter space andC(Q)5^xxT& is
the data covariance matrix. In the following we shall alwa
work with data in the form of a set of power spectrum co
ficients,Cl .

If the data points are uncorrelated so that the data cov
ance matrix is diagonal, the likelihood function can be
duced toL}e2x2/2, where

x25 (
l 52

Nmax ~Cl ,obs2Cl ,theory!
2

s~Cl !
2

~4!

is a x2 statistics andNmax is the number of power spectrum
data points@18#.

The maximum likelihood is an unbiased estimator, wh
means that

^Q&5Q0 . ~5!

HereQ0 indicates the true parameter vector of the unde
ing cosmological model and̂Q& is the average estimate o
parameters from maximizing the likelihood function.

The likelihood function should thus peak atQ.Q0, and
we can expand it to second order around this value. The
order derivatives are zero, and the expression is thus

x25xmin
2 1(

i , j
~u i2u!S (

l 52

Nmax 1

s~Cl !
2 F]Cl

]u i

]Cl

]u j

2~Cl ,obs2Cl !
]2Cl

]u i]u j
G D ~u j2u!, ~6!

wherei , j indicate elements in the parameter vectorQ. The
second term in the second derivative can be expected t
very small because (Cl ,obs2Cl) is in essence just a random
measurement error which should average out. The remai
term is usually referred to as the Fisher information matr
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]2x2

]u i]u j
5 (

l 52

Nmax 1

s~Cl !
2

]Cl

]u i

]Cl

]u j
. ~7!

The Fisher matrix is closely related to the precision w
which the parameters,u i , can be determined. If all free pa
rameters are to be determined from the data alone with
any priors, then it follows from the Cramer-Rao inequal
@19# that

s~u i !5~F21! i i ~8!

for an optimal unbiased estimator, such as the maxim
likelihood @20#.

In general, the standard error on theCl coefficients can be
written as

s~Cl !5F 2

~2l 11! f sky
G1/2

~Cl1Dexpt!. ~9!

Here, f sky is the sky coverage andDexpt is a ~Gaussian! ex-
perimental error. Notice that even forDexpt50, s(Cl)
Þ0. This derives from the fact that the ensemble averag
Eq. ~2! has been replaced by an average overmvalues, and is
usually referred to as ‘‘cosmic variance’’@17#.

The CMBR is also predicted to be polarized, and th
polarization power spectrum can in principle be measur
For scalar perturbations there are only three independ
quantities: The temperature,Cl ,T ; the E-field polarization,
Cl ,E ; and the temperature-polarization cross correlati
Cl ,C . Then the Fisher matrix of Eq.~7! is, instead@20#,

Fi j 5 (
l 52

Nmax

(
X,Y

]Cl ,X

]u i
Cov21~Cl ,X ,Cl ,Y!

]Cl ,X

]u j
. ~10!

In this case the covariance matrix, Cov(Cl ,X ,Cl ,Y), is a sym-
metric 333 matrix with the following elements@20#:

Cov~Cl ,T ,Cl ,T!5F 2

~2l 11! f sky
G~Cl ,T1Dexpt,1!

2

Cov~Cl ,E ,Cl ,E!5F 2

~2l 11! f sky
G~Cl ,E1Dexpt,2!

2

Cov~Cl ,C ,Cl ,C!5F 2

~2l 11! f sky
G@Cl ,C

2 1~Cl ,T1Dexpt,1!

3~Cl ,E1Dexpt,2!#

Cov~Cl ,T ,Cl ,E!5F 2

~2l 11! f sky
GCl ,C

2

Cov~Cl ,T ,Cl ,C!5F 2

~2l 11! f sky
GCl ,C~Cl ,T1Dexpt,1!

Cov~Cl ,E ,Cl ,C!5F 2

~2l 11! f sky
GCl ,C~Cl ,E1Dexpt,2!,

~11!
9-2
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RECONSTRUCTING THE INFLATIONARY POWER . . . PHYSICAL REVIEW D 63 043009
whereDexpt,i are again experimental experimental errors
lated to pixel noise and beamwidth@20#.

For the purposes of the present paper we assume
f sky51, Dexpt,i50, andl max51500, corresponding to a full
sky survey up tol max51500, limited only by cosmic vari-
ance. If the temperature power spectrum alone is conside
this is not too far from what can be expected with MA
whereas PLANCK will likely measure both temperature a
polarization to this accuracy.

As the free cosmological parameters we use the ma
density, Vm ; the cosmological constant,VL ; the baryon
density,Vb ; the Hubble parameter,H0; the optical depth to
reionization,t; and the overall normalization,Q. Instead of
using the spectral index of a featureless power-law spectr
ns , as the last free parameter, we bin the spectral indexk
space. In practice we useN bins of equal size in log(k), from
k51.2731025 Mpc21 to k50.25 Mpc21 ~this covers the
entire range ofk space which is visible in the CMBR!. In
each bin the power spectrum is assumed to follow a po
law, P(k) i}kns( i )21. Thus, the parameter vector is

Q5$Vm ,VL ,Vb ,H0 ,t,Q,ns~1!, . . . ,ns~N!% ~12!

As the reference model around which to calculate the Fis
matrix, we take the standard CDM model with,V5Vm
51, Vb50.05, H0550 km s21 Mpc21, and t50. The
reference model has a power-law initial spectrum w
ns( i )51 for all i.

In Fig. 1 the precision with whichns( i ) can be measured
is shown for different numbers of bins, for the case wh
only the temperature power spectrum can be measured.

FIG. 1. The precision with which the spectral indices in each
can be measured, shown for three different numbers of binsN
51,5,20), for the case where only the temperature anisotropy
be measured. Shown are the 1s error bars around the central valu
which in all cases isns51.
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surprisingly, the precision with which the effective spect
index in each bin can be measured depends strongly on
number of bins. For only one bin,Dns /ns58.2131023,
whereas for 20 bins, the smallestDns /ns is 3.4931022.
Thus, there is a trade-off between the resolution ink space
and the resolution inns . Detecting a low-amplitude narrow
feature is not possible, whereas either a broad low-amplit
or a narrow high-amplitude feature should be detectable
agreement with Wang, Spergel and Strauss@13,14# we find
that the CMBR data are most sensitive in the rangek
.102321021 Mpc21. If polarization can also be mea
sured, the precision with which thens( i ) can be measured
increases. Figure 2 shows the same as Fig. 1, but with
inclusion of polarization. Indeed, the precision on the in
vidual bin amplitudes increases by a large factor. For o
one bin, Dns /ns52.9031023, whereas for 20 bins, the
smallestDns /ns is now 9.4931023.

Next, a fundamental question is how much the ability
determine the other fundamental parameters depends o
number of bins ink-space. Figures 3 and 4 show the pre
sion in measuring the other cosmological parameters a
function of N, the number of bins. Figure 3 is for the ca
where only the temperature anisotropy can be measured
all the cosmological parameters, exceptt, there little degen-
eracy between these parameters and the power spectru
dices, meaning that there is little loss of ability to pin dow
these parameters. FromN510, the resolution begins to de
crease, although quite slowly, and atN530 it is for instance
down by about 40% forVb . Clearly, the spectral indices
ns( i ), are not very degenerate with the other cosmologi
parameters. The reason is that the discontinuous binnin

n

an

FIG. 2. The precision with which the spectral indices in each
can be measured, shown for three different numbers of binsN
51,5,20), for the case where both temperature and polarization
be measured. Shown are the 1s error bars around the central valu
which in all cases isns51.
9-3
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STEEN HANNESTAD PHYSICAL REVIEW D 63 043009
the power spectrum is very hard to mimic by continuo
changes in other parameters. This finding is in agreem
with Ref. @13,14#, where such a binning was also used. Ho
ever, there is a marked difference compared with the findi
of Ref. @12#. In this work, smoothness of the power spectru
was enforced by using smooth shape functions peaked
given point in k space instead of discontinuous binnin
These authors find that the uncertainty in the other par
eters increases very rapidly withN, rising by more than a
factor of 10 atN530 @12#. However, using smooth function
to describe the power spectrum could indeed be expecte
be able to mimic changes in other parameters to a m
higher degree than our approach. So it is not surprising th
much higher degree of degeneracy is found. On the o
hand, as will be seen in the next section, using a discont
ous binning has the very clear disadvantage that it can
difficult to achieve reasonable likelihood fits if the number
bins is too small.

In line with this discussion, it was shown by Kinney@15#
that smooth power spectrum features can mimic variation
the cosmological parameters almost exactly~to within cos-

FIG. 3. The precision with which the other cosmological para
eters,Vm ,VL ,Vb andH0, measured as a function of the number
bins in k space, for the case where only the temperature anisot
can be measured. The precision is quantified in terms of the s
dard error,s.

FIG. 4. The precision with which the other cosmological para
eters,Vm ,VL ,Vb andH0, measured as a function of the number
bins in k space, for the case where both temperature and pola
tion can be measured. The precision is quantified in terms of
standard error,s.
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mic variance!. In this work 75 bins ink space were used an
the power spectrum smoothened by cubic spline interp
tion, leading to a very large degree of degeneracy betw
the k-space power spectrum and the other cosmological
rameters.

The one exception to the above is the optical depth
reionization,t. Here there is a very large degree of dege
eracy, which increases rapidly with the number of bins. T
effect was also described by Wang, Spergel and Strauss@13#.
It happens because the effect of re-ionization is to supp
the amplitude at small scales by a factore22t. This can be
quite easily mimicked by suppressing thek-space power
spectrum at small scales.

However, Fig. 4 shows the case where polarization
also be measured. In this case, the degeneracy betweent and
the k-space spectrum is broken, and the ability to determ
the value oft is increased by a large factor. For the oth
cosmological parameters, the precision is also increased
not as dramatically.

III. NUMERICAL SPECTRUM RECONSTRUCTION

Having done this initial estimate of how precisely the in
tial power spectrum can be estimated, it is important to
how such a power spectrum reconstruction works in pract
In order to investigate this, we have produced 10 synth
spectra based on a underlying theoretical model. These s
tra are calculated assuming Gaussian errors given by co
variance only. In order to simulate a possible feature in
power spectrum we introduce a Gaussian ‘‘bump,’’ so t
spectral index has the form

ns512AexpS 2
@ log~k* !2 log~k0,* !#2

a D , ~13!

where k* 5k/1 Mpc21. This bump is characterized b
three parameters:A, the amplitude;k0,* , the position ink
space; anda, the width. For the underlying cosmologica
model we have chosen the same standard cold dark m
~CDM! model as in the last section, so the model para
eters areV5Vm51, Vb50.05, H0550 km s21 Mpc21,
A50.7, a50.1, and logk0,* 522. Thus, the bump has
been placed closed to the region where the CMBR data
most sensitive. Note that in this section we use only inf
mation related to the temperature power spectrum, not
polarization spectrum.

On each of these synthetic spectra we try reconstruc
the power spectrum using the logarithmic binning meth
introduced in the previous section. The likelihood optimiz
tion algorithm is based on the simulated annealing princi
described in Ref.@21#. This method has the advantage tha
is very fast for highly non-linear optimization over man
dimensional parameter spaces, exactly the problem tha
faced here. In Fig. 5 we show the values extracted by
parameter reconstruction for three different numbers of b
N55,10 and 20.

In the N55 case the individual bins are broader than t
bump to be reconstructed. This shows up in the fact that
good fit is achieved (̂xmin

2 &/NDF512.7), and the spectrum

-
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RECONSTRUCTING THE INFLATIONARY POWER . . . PHYSICAL REVIEW D 63 043009
reconstruction is quite poor. The reconstructed spect
does show some evidence of a lower spectral index aro
the position of the bump, but the magnitude is not corre
For N510 the reconstruction is already much better and
produces the actual slope of the underlying spectrum. H
ever, ^xmin

2 &/NDF58.06, so the fit is not very good in thi
case either. In the last case whereN520 the reconstructed
spectrum again follows the underlying one reasonably w
However, atN520 the uncertainty on the individual bin am
plitudes is already significantly larger than forN510. By
going to an even higher number of individual bins, the sp
trum bump will be smeared out beyond recognition. Thex2

fit is significantly better than forN510 (^xmin
2 &/NDF

52.84), although far from what should be expected from
‘‘good’’ fit ( ^xmin

2 &/NDF.1).
The reason for these very highx2 values is that it is quite

hard to mimic a smooth feature in the power spectrum wit
sequence of discontinuous bins. Thus, even though it is
deed possible to map out the shape of the power spectru
is not possible to achieve a good fit in terms of the likeliho
without letting N→NDF. However, going much beyondN
520 increases the uncertainty in the individual bin amp
tudes and doing the likelihood maximization is already qu
demanding numerically atN520.

Finally, with a large number of bins~10 or 20! the recon-
struction at scales smaller than the bump~largek) is consis-
tently predicting a too low spectral index. This effect is wo
rying and to investigate whether it is a generic feature of a
discontinuous binning method, or specific to our choi
where each bin has a ‘‘tilt,’’P(k) i}kns( i )21, we also do the
reconstruction using the same method as Wang, Sperge
Strauss@13#. Here, the power in each bin is assumed to ha

FIG. 5. The reconstructed power spectrum from likeliho
maximization over 10 synthetic spectra. The boxes show thes
error intervals. The solid line shows the underlyingk-space power
spectrum used to generate the synthetic spectra.
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constant amplitude over the entire bin so thatP(k) i5Ai . We
show the reconstruction for the case ofN520 in Fig. 6. For
this case, the reconstruction of the power spectrum bum
actually better than for the ‘‘tilt’’ spectrum reconstruction
There is no trace of the spuriously low spectral index fou
at high k. However, thex2 is substantially worse for this
method, with^xmin

2 &/NDF53.45. From this, a robust conclu
sion is that for discontinuous binning the obtainable fits
quite poor in terms ofx2, regardless of the binning method
However, it is possible to detect features in the spectrum
this method. At least the tilted binning method can sh
spurious effects, so one should be careful about mak
strong conclusions without going through several differe
methods of spectrum reconstruction.

Just for comparison we have also done a spectrum re
struction where the free parameters are those describin
smooth scale invariant power-law spectrum (ns51) with a
Gaussian bump:A, k0,* , anda, instead of usingns( i ). The
values extracted from likelihood maximization on the
synthetic spectra are given in Table I. Clearly, in this ca
the true underlying spectrum is recovered to very good
curacy because the same functional form is used in the fi
in the underlying power spectrum. Also thex2 values are
completely consistent with what is expected from a good

So using smooth fitting functions could have the adva
tage of being better able to fit smooth features in the und
lying initial power spectrum. However, the discontinuo
binning method has the advantage of being very model in

FIG. 6. The reconstructed power spectrum from likeliho
maximization over 10 synthetic spectra, for the case ofN520. The
boxes show the 1s error intervals. The solid line shows the unde
lying k-space power spectrum used to generate the synthetic s
tra.

TABLE I. The recovered parameters from the fit to a Gauss
bump overlayed on a scale invariant spectrum. Ten synthetic s
tra were used for the reconstruction.

Parameter Found Expected

xmin
2 1516.7650.4 1496654.7

a 0.100460.0035 0.1
logk0,* 22.000460.0059 22
A 0.693160.003 0.7
9-5
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STEEN HANNESTAD PHYSICAL REVIEW D 63 043009
pendent. So a possible way to proceed would be to initia
try the discontinuous binning method, and only for refin
ments go to more complicated fitting functions.

IV. DISCUSSION

We have discussed the possibility for measuring the sh
of the primordial power spectrum by using precision me
surements of CMBR fluctuations. The method employed w
to parametrize the spectrum as a power law, binned ik
space. An analysis of the obtainable precision in measu
the power spectrum, using a Fisher matrix analysis, sho
that it should be possible to detect features that are s
ciently broad by using CMBR observations.

However, there are some practical problems involved
this spectrum reconstruction. If the power spectrum is
rametrized by binning it ink space, it is very difficult to
mimic any smooth features in the underlying power sp
trum. Especially, if the feature is comparable in width to t
individual bins, the reconstructed spectrum can show sp
ous features. Nevertheless, by going to a sufficiently fi
binning it is possible to map out the general shape of
power spectrum, although still very difficult to get a good
in terms of the likelihood.

The fact that it is possible to reconstruct the underly
k-space power spectrum from CMBR observations opens
the possibility of probing physics at the time of spectru
formation by observing the universe at CMBR formati
(T;4000 K). As was for instance discussed in Re
@22,23#, if the primordial fluctuations are produced durin
the inflationary epoch, it is possible to reconstruct the in
tionary potential,V(f), from thek-space spectrum.

However, in addition to that it will be possible to dete
non-power-law features in the power spectrum using
discrete binning method. Such features are for insta
na
e

R.
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predicted to occur in the multiple inflation model of Adam
Ross and Sarkar@11#. Here, the effect of symmetry breakin
during the inflationary period was discussed. If such spon
neous symmetry breaking occurs along flat directio
short inflationary periods will result, leaving distinct non
power-law features in the power spectrum. Another poss
mechanism for producing features is the resonant produc
of particles during inflation discussed by Chunget al. @10#.

Note that the CMBR is mainly sensitive to power spe
trum at k.102321021 Mpc21. Any features outside this
region ink space would not be detectable, so the CMBR c
at most probe a very small region of the inflationary perio
However, as discussed for instance in Refs.@13,14#, by also
using data from large scale structure~LSS! surveys such as
the Sloan Digital Sky Survey it is possible to increase
region ofk space that can be probed. LSS surveys are se
tive to smaller scales than the CMBR~for instance the Sloan
survey should probe the regionk.102221 Mpc21), and
by combining MAP/PLANCK with such surveys it should b
possible to have sensitivity in the regionk.1023

21 Mpc21. In addition to this, including data from larg
scale surveys can break some of the cosmological param
degeneracies@7#. For instance, using CMBR data alone it
impossible to determine eitherVm or VL separately with
high precision. The parameter that can be measured is
total energy densityV5Vm1VL . However, the LSS sur-
veys are sensitive to a different combination ofVm andVL ,
and by adding this information the degeneracy between th
can be broken@7#.
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