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It is known by the experience gained from the gravitational wave detector prototypes that the interferometric
output signal will be corrupted by a significant amount of non-Gaussian noise, a large part of it being essen-
tially composed of long-term sinusoids with a slowly varying envelémech as violin resonances in the
suspensions, or main power harmomniasd short-term ringdown noigehich may emanate from servo control
systems, electronics in a nonlinear state,)efsince non-Gaussian noise components make the detection and
estimation of the gravitational wave signature more difficult, a denoising algorithm based on adaptive filtering
techniquegLMS method$ is proposed to separate and extract them from the stationary and Gaussian back-
ground noise. The strength of the method is that it does not require any precise model on the observed data: the
signals are distinguished on the basis of their autocorrelation time. We believe that the robustness and sim-
plicity of this method make it useful for data preparation and for the understanding of the first interferometric
data. We present the detailed structure of the algorithm and its application to both simulated data and real data
from the LIGO 40 m prototype.
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[. INTRODUCTION instrument$ consisting mainly of noise from a host of
sources both environmental and intrinsic to the apparatus.
Over the next decade, several large-scale interferometriBuried in this noise will be the gravitational wave signature.
gravitational wave detectors will come on-line. These in-Sophisticated data analysis techniques will have to be devel-
clude LIGO, composed of two Laser Interferometeroped to optimally extract astrophysical data. Many of the
Gravitational-wave Observatories situated in the UH, techniques developed so fiat—9] are based on matched fil-
VIRGO, a French-ltalian project located near Pig#d, tering and assume stationary Gaussian noise.
GEO600, a German-British interferometer under construc- However, the real data stream from the detectors is not
tion near Hannovef3], TAMA in Japan, a medium-scale expected to satisfy the stationary and Gaussian assumptions.
laser interferometer[4], and with funding approval In fact, the data from the Caltech 40 meter proto-type inter-
AIGO500, the proposed 500 meter project sponsored byerometer has the expected broadband noise spectrum, but
ACIGA. There are also separate proposals for space-basediperposed on this are several other noise feafifilesuch
detectors which could be operational twenty-five years fronas long-term sinusoidal disturbances emanating from suspen-
now [e.g., the Laser Interferometer Space Antefii8A), a  sions and electric main harmonics and also transients occur-
cornerstone project of the European Space Agdidl In ring occasionally, typically due to servo-controls instabilities
the meantime, a number of existing resonant bar detectois mechanical relaxation in suspension system etc. While no
will have had their sensitivities further enhanced. precisea priori model can be given for this noise until the
The key to gravitational wave detection is the very precisedetector is completed and fully tested, matched filtering tech-
measurement of small changes in distance. For laser interfeniques cannot be used to locate or remove these noisy sig-
ometers, this is the distance between pairs of mirrors hangingals.
at either end of two long, mutually perpendicular vacuum This disparity between standard Gaussian assumptions
chambers. Gravitational waves passing through the instruand real data characteristics poses a major problem to the
ment will shorten one arm while lengthening the other. Bydirect application of matched filtering techniques. This is
using an interferometer design, the relative change in lengtirue when searching for burst sources such as blackhole bi-
of the two arms can be measured, thus signaling the passagary quasinormal ringingsl0]. This is also the case for the
of a gravitational wave at the detector site. Long arm lengthsinspiral searches in Caltech 40 m data, where one has to
high laser power, and extremely well-controlled laser stabilintroduce a vetd7] on the decision taken with the matched
ity are essential to reach the requisite sensitivity, since théilter to ensure that the detected signal is actually the one we
gravitational waves will be faint and will modify only are looking for.
weakly the structure of space-time in the detector’s aises It is possible that in the future, improved experimental
e.g.,[6]). techniques and greater experience, will reduce or even com-
Gravitational wave detectors produce an enormous volpletely eliminate some of these nonstationary and non-
ume of outpute.g., of the order of 16 MB/sec for the LIGO Gaussian features. Nevertheless, it will take probably some
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time to reach such acceptable and high quality of datadefine our variables and therefore stands for “equal by defi-
Therefore, it is necessary and desirable to somehow combaftion.” Finally, the vectorsx!, x andx'=x! denote respec-

this noise. Since such noise features defy modeling, a noveely the transpose of the vector, the complex conjugate and

approach to the problem is called for. the Hermitian transpose of the vectar
We propose a denoising method based least mean

square (LMS) adaptive linear predictiotechniques which
does not require any precisepriori information about the ] o )
noise characteristics. Although our method does not pretend First, we recall some standard principles to design an op-
to optimality, we believe that its simplicity makes it useful timal linear predictor. The question to address is to optimally
for data preparation and for the understanding of the firspredict the data sampbe with a collection of past samples
data. taken between the indexés-d—(N—1) andk—d. These

In the following, we present the principles of LMS adap- past samples may be placed in a column vegfavhoseN
tive denoising(Sec. 1), a characterization of its behavior on components are given by
a single model of the noise from the interferomdteec. lI),
the precise structure of the denoising algoritt®ec. I\V) and
results(Sec. \J obtained with simulated data and also with

. For now, the delayd=1 also referred to agrediction
;?erﬁalt]a taken from the Caltech 40 m prototype Interferom'depthis fixed arbitrarily (an explanation on how it may be

. . - . . h is gi I i MITh iction i i
This work here is preliminary; its goal is to explore how chosen is given later in Sec. JliThe prediction is obtained

effectively adaptive filtering technigues perform on the prob—by linearly combining these data samples weighted byNhe

: ) corresponding coefficients™, forming the tap-weightcol-
Iem_vv_e address._lt is a first step towards a more completgmn) vector w=(W™ m=0,1, ... N—1). Therefore, the
statistical evaluation of the algorithm.

predictiony, of x, reads

C. Mean square linear prediction

xXM=x,_q_m, mMm=01,...N—1. 1)

Il. METHODS Vie= WX 2
A. From hypothesis to method The predictor is optimal in the mean square sense when

.the variance of the prediction erref=x,—y, is minimum.

We assume that the noise consists of broadband Gaussigil . afore  the problem is to find the set of weight coeffi-
noise plus large amplitude oscillating interference signalsCients whi’ch minimizes

The model does not include araypriori knowledge of the
signal such as its_exact freque_ncy or_shape of the envelope. J(W)=E[e2]=E[ (x,—wx)?], 3
The only assumption we make is that its autocorrelation over

a small time-lagd — the time-lagd chosen greater than the whereli[ -] denotes the expectation value operator.
decorrelation time scale of the broadband noise — is appre- This leads to the minimization of the following quadratic
ciable, while for the broadband noise it is essentially zeroform

This difference can be used to advantage to discriminate be-

tween the narrow band interferences and the broadband Je(W) = o — 2w+ WRW, (4)
noise.

The idea is to predict the current signal sample given heresi=E[x{], p=E[xx] andR=E[xxc]. There ex-
collection of past samples of the data, these two object beinigts only one solutionv , obtained when the gradient 6§
separated by the time-delay The prediction is effective, Vvanishes. This situation is realized when
only if the target sample shares enough information with N
(i.e., is sufficiently correlated jothe previous samples. In RiWie = P ®)
other words, the only predictable part of the signal is the one

\ggSzgiggrg?I%ﬁ?%éﬁ;‘g%gﬂiﬂgfmg’réaar(?sz Hcioggi_stgrr:an— stant(independent ok). In this caseR defines the autocor-
9 Y, relation matrix of the signat, and the solution of EQ5) is

not t_)e predlctgd, as it is not pOSS|bI§a to guess the next V."’llureeferred to as thaViener filter
in this way. It is this crucial underlying idea we use to dis-
criminate between the two noise signals.

When the signal is stationar®,=R and p,=p are con-

D. Linear prediction and LMS method

B. Notation Equation(5) requires the computationally expensive in-
. . version of the matriXR,. An alternative and more efficient
As a general rule, we will denote scalar quantities by ; - L : .
L ) . solution for finding the minimum aod,(w) in Eq. (4) consists
plain italics, e.g.x;; vectors by boldface letters, exy; and . . s X ;
in starting from an arbitrary initial valuay o, and iterating

matrices by boldface capitals, e'g'l" We. will represent th? .the tap-weight vector along the steepest descent direction,
components of vectors and matrices with superscripts within

brackets, e.gX{™ designates the element located riith Wi 1= Wi n— @V (Wi 1) (6)
row andnth column of the matrixX,. Subscriptgno brack- ’ ' '
et9 denote the time index; e.g4 denotes the vectav at the  (the new indexn=0,1, ... counts the number of iteration

time indexk. The symbol= will be used in the following to  being implementedgiven by the gradient
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V(W) =2(Rw—py). (7) input signal, 25 /7N eror ek =2k — g
For a sufficiently small gairu, the weight vectors will predictior],
eventually converge to the optimal predictor filtgf . This \ Yi
procedure requires the second order statigtiesnelyR, and delay adap\{i filthr
py) of the signal. In our case, this information is not available ) w
and one has therefore to estimate these quantities. Instead ]

estimatingR, and p, directly and combining them with Eq.
(7), a more efficient solution is to estimate the gradient.
From the derivation of Eq(3), one can rewrite the gradient
as

FIG. 1. The figure illustrates the principle of the underlying
method on which the algorithm we propose is based. The algorithm
is designed to discriminate the nonstationary and non-Gaussian
noise features from the broadband background noise in interfero-
metric gravitational wave data. This method is referred th.MS
adaptive line enhancemeand its objective is to compare the signal
and its linear prediction, the predictor coefficients being adjusted by
a feedback loop controlled by the prediction error.

Vidi(w) = =2 [ e ]. (8)

A simple and natural way to obtain an estimator of this
guantity is to omit the expectation operator:

or the ringdown signajsand we send the rest of the signal

Vudk= — 28X ©  for further analysis for detection.

Because the noise perturbs this estimate, the algorithm _
may iterate in a direction which does not lie along the actual E. Properties of the LMS method

(noise freg direction of steepest descent, thus preventing the The method we described above is referred tadeptive
filter from converging to the Wiener filter. For this purpose, ine enhancer (ALE)It is a special case of theMS algo-
we stabilize the estimation above by setting the algorithmyjihm, Both, ALE and LMS algorithms have been first intro-
iteration indexn equal to signal time indek in the Eq.(6). duced by Widrow and Hoff12] in the 1960s.
The final evolution equation for the tap-weight vector finally e acronym LMS(least mean squarelesignates a gen-
reads eral scheme to design signal processing methods where a
minimization (in a statistical sengeof a definite positive
Wiy 1= Wi+ 208X - (10) quadratic cost functioiusually related to some mean qua-
] . o ) . , . dratic erroj is needed. Its central idea is the use of the esti-
This amounts tdi) doing just one iteration at given time ate of the gradient of this function given in E@). The
k[i.e., applying Eq(6) once withn=0] and(ii) setting the | M3 technique has been extensively used for the last 30
result as the starting point for the next time indee., set-  years in communications problems such as echo cancella-
ting Wi;.1,0= W 1) ) tion, channel equalization, antenna processing, etc. The main
At a fixed timek, the weight vector evolves along the 5qyantages to be gained by applying the LMS technique are
crude estimate of the steepest descent direction. But on @® adaptivity, (ii) robustness andii) simplicity.
longer .duration, the direction followed by the jtap—weig_ht In this context, the term “adaptivity” has two different
vector is governed by the sum of the successive gradieftheanings. First, it means that the LMS technique will auto-
estimates obtained with different noise sampl_es. In OthanaticaIIy adjust its parameters so as to reach the best setup
words, we have replaced an ensemble average ity a  for 4 problem which has not been initially precisely defined.
time average. It also implies that we have implicitly called second, it is also able to follow changes in the characteristics
for further assumptions on the signgl: first its local sta-  of the data being processed in the event that they occur. The
tionarity (more precisely, the second order statistics are SUptter property also shows that the method is robust. In fact,
posed to be constant during the convergence time of theyis method has been proved to be robust according to spe-
algorithm and second, its ergodicity. cific statistical criterion such as the minimax criterig8].
Obviously, the early-time estimatése., before the con-  The ALE is an adaptive prediction algorithm using the
vergence is complet¢dnay be far from optimal, but accord- | s technique. We have seen that the signal is predicted
ing to the previous argument, as the data accumulate, thgom a reference signal which is the signal itself. In some
estimation is expected to converge to the Wiener filter. Pregther applications, although the same principles are applied,
cise proofs of the statistical convergence of the algorithm inpe reference signal can be another signal, e.g., echo cancel-
Eq. (10) can be found irf15]. lation or denoising. In such cases, the quantity of interest

_ Summarizing, the method we propose consists in linearlyyignt not be the prediction output but the linear filter used to
filtering the data to extract the part of the signal with a longcompute it, e.g., deconvolution.

correlation time. As illustrated with the block diagram in Fig.

1, the finite impulse response filtigiven bywy) is modified Il. ADAPTING ALE FILTER TO CANCELING NOISE

at each iteration according to the relatid©) with the final IN GW DATA

goal to minimize the mean square error. Once the filter has

convergedi.e., wy is stable in timg we reject the predicted In this section we essentially describe a model for under-

part of the signalcorresponding to the long-term sinusoidal standing the behavior of the ALE algorithm. The model we
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assume consists of a high amplitude narrowband signal su-
perposed on broadband noise. For simplicity, we assume the w* (™=
broadband noise to be white and Gaussian and the narrow- N+40°
band signals are sinusoids of constant envelope. The results (15

we obtain hold for more realistic signals when the evolution ,

of their amplitude and/or instantaneous frequency occurg\’here we have chosen the length of the filter to be half-

adiabatically, i.e., the change is small over the period of thd1tégral number of cycles for reasons of simplicity, i.e.,
sinusoid. Né&o =11, wherel is an integer.

The assumption of white noise is not too restrictive be- In other words, the optim_um Ii_near predic_tor ?S nothing
cause this is equivalent to choosing the noise correlation timBUt @ cOpy of the expected signal itself. The filter in Etp)
to be zero and therefore we are free to choose the predictidﬁ als_o referrezd to as the matcgled filter. In our situation, In
depth(i.e., the time delay between the current predicted dat&’raCt_'Ce'N>"* and the term 4 can be omitted from the
sample and the reference signal to the LMS filterbe ar- amplitude ofw*. _
bitrarily small. In a real situation, we must fix the delay to be  FOr the reasons detailed before, we propose to use the
greater than the correlation time of the broadband noise. WALE algorithm in order to find a good approximation\of .
first analyze the case of the sinusoid because it is easier tofarting from an arbitrary initial tap-weight vector, we iterate
investigate and provides invaluable insights into the work-n€ weightsw according to Eq(10) to converge tow*.
ings of the LMS algorithm. Once the filter is “close”_enough to_ the optimal solutitthe

It may be remarked that the denoising of sinusoids invord “close” will be defined later in the textwe then say
white noise has been treated in the literature with great detafhat the filter has locked on to the signal.

(see[13,14 for a review. We give here only pertinent re-
sults (with a short proof for introducing the structure of the B. Approach to locking
algorithm, which we present later in the text.

cogm+d)dp, m=0,1,... N—-1,

a. Continuous time approximation of the locking trajec-
tory. We may analyze the approach to locking by deriving a

A. Optimal filter difference equation for the averaged evolution of the weights
We consider the data to be of the following form and then investigating this equation. It is impossible to ob-
tain the average evolution of the weights by using the stan-

xg=coq 27 fot +d)+ng, (11 dard definition of the expectation operatoibecause of the

nonlinearity and the recursive scheme involved in evolving
wheret,=ké, 6=1/f4 being the sampling interval antl is  the weights. We therefore adopt the time-average over suc-
a random phaséat the origin with uniform probability den-  cessive data points as the operational definitiof.of
sity function between— 7 and 7. The sinusoid has fre- Shifting the origin tow* by defining v,=w,—w*, we
quencyfy and the units are so chosen that it is of unit am-may write the LMS evolution equatiofi0) in the following
plitude. The additive white noisa, with variance o®  form [15]:
satisfies the relation,

Vi1~ Uk= — 2( XX Ui+ 2 €5 X, (16)
E[ﬂknm]:(7'25kma (12

wheree} =x,—w*'x, is the prediction error produced when
where d,,, is the Kronecker delta. using the optimal filter.

As mentioned in Sec. Il C, the problem is to optimally  During the locking phase, the filter is far apart from the
predictx, from a reference signat, which is just the de- optimal location(i.e., v, has a large modullisThe homoge-
layed data by the amoudts (or equivalently, a number af  neous term dominates the forcing term in the difference
samples. More precisely, the reference is a column vectorequation(16) which then can be approximated by
whose components are equal to{™=x._4_,, n

=0,1,...N—1. Uys1— U= —2u(XX) vy - (17
The best linear prediction filter can be obtained by evalu-
ating the autocorrelation matrR and the vectop in Eq. (4). In the situation where the step gain parametes chosen
In case of signa(1l), their components are given by to be very small so that the weight coefficients are almost
constant over a given time interval, the recursivity eventually
R(MV=1/2 cogm—n) 5+ 0?5, (13)  acts as an averaging operation on both sides of the equation
above. This leads to the difference equation which we use to
p™=1/2 cogm+d) ¢, (14 describe the tap-weight trajectory in the space of weight co-

efficients we denotéV:
where (m,n)=0,1,... N—1 and §¢=2=fy,5. Note that

we have dropped the indéxbecause the autocorrelatiéh Vg1~ U= —2uRvuy. (18

does not depend updq since we are dealing with a station-

ary signal. Let Q be the transformation which diagonalizBs The
From the above expressions Rfand p and solving Eq. above difference equation is best analyzed by changing the

(5), we obtain the optimum predictioiwiene filter frame inW to the principal axis
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Vis1— 0= —2uRoy, (19) This _expression has .to be compare_d with the secqnd term
of the eigenvalue equatid® = \v, leading to two solutions
where R=QRQ =diag\®, ... AN and 5,=Qu,. fqr a, namely,a=vy/2 and a=(y— 7_r)/2. .These yield the
Equation(19) gives decoupled difference equations for the€igenvectory .. and the corresponding eigenvalues:
componentsv{™ ,m=0, ... N—1 of v, which can be

. v, =vexp —iy/2)+vexpivy/2), (29)
solved given the initial weight vectar{™ .

o v_=ivexp —iyl2)—ivexpiyl2),
U(km)=v(()m)(1—2/1,)\(m))k_ (20) p—iy/2) Qi y/2)

A=(Nxp)/2. 30
b. Eigenvalues and eigenvectorsRf We need to com- ==(N=5) 30

pute the eigenvalues(™ of R. This can be conveniently If we chooseN large enough andl 5¢=mar, wherem is
implemented by splittingR into a noise part, which is just”  an integer then the analysis becomes simpler. This amounts
times the identity, plus the signal part which we denote byto choosing the length of the filter to have half-integral num-
S/2, and thus ber of cycles: we havg=0 and\ . =N/2. (Geometrically,
5 this means that the eigenvalue problem is degenerate with

R=0%1+52, (21 respect to the two signal eigenvectors: there is a two dimen-
sional eigenspace belonging to the eigenvaNi®. The
weights thus evolve non-preferentially with respect to the
signal eigendirections.Since typical cases imply generally
N> 3, we will assume this simplification in the rest of the
paper.

In this situation, the spectrum &

where SMV=cosfn—n)d¢. It is easily verified that the
eigenvectors oR and S are identical and the eigenvalues of
R are obtained from those &by first halving them and then
addinga? to the result. It remains, therefore, to compute the
eigenvalues and eigenvectors®fWe do this by observing
that we can writeS as follows:

spR) =INO=\D=N/4+ o2 and
S=(w'+ w2, (22) ARI={

m_ 2 —
wherev=[1,exp(5¢),exp(25¢), . . . ,exg(N—1)i 5¢)]". MM=o?m=2,... N-1}, @
Since the matriXS is real and is essentially made out of consist of two sets of eigenvalues : the first two correspond
two external products of and v, its rank equals 2% has to directions in the signal space associated to “signal
N—2 degenerate eigendirections)iviwith eigenvalue zeno  +noise” (or “signal,” for short) whereas the remaininiy
and has two nonzero real eigenvalues. &.die an eigenvec- —2 characterize “noise” directions.
tor associated to one of the nontrivial eigenvalues. According According to Eq.(20), the weight vector will converge
to the structure o8, the vector can be written without loss  more rapidly in directions associated with the largest eigen-

of generality as the following linear combination: values, which are the signal eigenvalues. The other noise
o eigenvalues are unimportant in this consideration. The eigen-
v=vexp —ia)tvexgia), (23)  vectors pertaining to the signal provide preferred directions

in W: it is along these directions that the slope of the per-

where the coefficients have been chosen arbitrarily to havyrmance surface is steep and hence promotes faster conver-
unit modulus. gence.

Using the two scalar producig »=N and

Vr=1+exp2i8¢)+ - - +exp2(N—1)is¢) (24) C. Steady state evaluation

If the step gain factor is sufficiently small, the tap-weight
=B expiy, (25) coefficients eventually converge and stabilize in a neighbor-
hood of the optimal value. At this stage, the assumptions
where the geometric series can be summed up and modulugade in obtaining the approximated evolution equatits)

and phase ascertained do not hold anymore. In contrast with the case of “the ap-
proach to locking,” the right hand side of the difference
B Sin(N&¢) (26) equation(16) is now dominated by the forcing term:
- sind¢g
¢ Uit 1~ U= 2LE) X . (32
y=(N-1)6¢, (27)

Roughly speaking, the trajectory of the vectar during
the steady state can be viewed as a random walk centered
aroundw* lying within a region of\) space whose extent is
Sv=vexp —ia)[N+Bexp —iy+2ia)]l2+c.c., determined by two factors, namely, and the intrinsic ge-
(28)  ometry of W in the vicinity of w*.
The misalignment between the actual ALE filtgg and
where c.c. denotes complex conjugate. the optimal onev* creates an additional error in the output.

we obtain the effect of the matri® on the vectow, given by
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In fact, a direct calculation from E¢4) shows that the total and vectors the secondg® with the signal. Because the

mean square error may decomposed1®y signal eigenvalues are much larger than those of the noise,
B the sum in Eq(34) is essentially dominated in the beginning
Je(Wi) = Emin+ €. (33 (for smallk) by &5 . These two errors decrease during the

where (i) £,,,=J(W*) is the minimum mean square error !ocking phase pntil reaching a steady state ve_tlue. Tht_a lock-
arising from the fraction of the input noise which still re- N9 time (i.e., time at WE)'C_h the steady state is reaghisd
mains in the output, assuming that the ALE filter has reacheg€fined to be that, wheff? is of the order of the total EMSE
exact optimality and(ii) &=v'Rvy is the excess mean ©XPected in the steady state. _

square error(EMSE) due to the misalignment between the ~F0mM EAs.(20), (30) and(34) we obtain

ALE filter and the Wiener filter.

— - ~(1
One can verify that the EMSE vanishes when reaching 9=\ A Dd)? (38)
optimality i.e., wherv,=0. In other words, this term quan- ok
tifies the nonoptimality of the current filter in use. We can - E(('I")(O))z_'_(’l")(l))z) 1— ﬂ
imagineéy as the square of a natural distancé/¥handR as 4470 0 2 '
a intrinsic metric ove. (39

A good approximation of¢.,;, can be found for large
number of weight coefficients for the specific case of sinuwhere we have assumét> 3.
soidal signals with high SNRs. Using Eqd) and (5), we We set the starting poitg in ¥V to be0. It corresponds
may writegmin=ﬂﬂ[x§]—ptw*. WhenN— o, a direct calcu- to the initial valuev, in the eigenspace which is given by
lation shows that the second teplw* tends to the energy of vo=—Qw*. The first two coordinates af, can be directly
the sinusoid, which means that the remaining energy is thaibtained since the first two row vectors f are just the

of the noise:¢min~o?. o normalized signal eigenvectors of tlematrix, leading to,
We complete the characterization of the mean square efor half integral wavelength filters and> o2,
ror (33) with the evaluation of the average value of the

EMSE, which we denote bysY. First, noticing that the 2O = 2INcogdé¢+ y/2) (40)
EMSE is invariant under the principal axis transformation 0 '
. Nu _ o= \2/Nsin(d S+ y/2). (42)
G=viRo= 2 A (M)?, (34
m=0 These considerations yield
and secondly, using the approximatiti v }]~ uéminl 1 ES
proposed if12] to obtain the typical value fore(™)? yields £~ 5( 1- 7) . (42)
N—1
g(st)mluz ANmg (35) This error must now be compared with the averaged
m=0 EMSE in Eq.(36) in order to find the time,,. at which&®

. . _ _ and 69 are equal
Since the signal is of much larger amplitude than the ¢ q

broadband noise, the trace Rfis essentially due to the sig- In(uNo?)
nal eigenvalue$see Eq.(31)]. Combining with the expres- Lock™ 5m. (43
sion of &, above, this leads to B

£~ uNo?/2. (36) It is important to mention that, when the prodyeN/2
tends to 1, the convergence time diverges to infinity meaning

A better estimate o&®Y can be obtained starting with that the weights do not converge toward anymore. In
more realistic hypotheses and using more sophisticated agrder to ensure the stability of the algorithm, the parameters

proximations[14] : need to satisfy the stability condition<QuN/2<1. How-
ever, we have observed in our simulations that when 1/2
(s "o < uN/2<1, the convergence is slowed down. This is due to
3 %n12=0 mfmin- 37 the presence of oscillatory terms in the gradient which do not

average to zero anymore. In practice, it is advisable to
In the limit of small step size, this approximation tends to€hoose the parameters so theX/2<1/2.
the simpler one in Eq(36). Fo_r a sinusoid of amplltud{e_mstead of unity as we hgve
considered before, the condition for stability can be simply
obtained by replacing the parameteN/2 by p=uNA?/2
leading to G<p<1.
In the expression of the EMSE in E(34), we separate We illustrate in Figs. 2 and 3 with an example the results
the sum into two parts: the first{” associated with the of this section pertaining to the approach to locking and
noise (i.e., consisting of terms involving noise eigenvaluessteady state analysis.

D. Convergence time
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FIG. 2. Applying the ALE to a sinusoidal signal: approach to locking and steady.state figure illustrates how the ALE performs on
a test signal composed of a sinusoiy£50 Hz sampled af;=1 kHz) corrupted by white noiseSNR=A?/(2¢?)=50(17 dB)]. We
initialize the N=40 tap-weight coefficients to 0, set the prediction degth5 (ms) and the step gain parameter=0.003. (a) The filter
output signaly, (solid line) converges rapidly towards the actual noise free sinusoidal sigleshed ling (b) This is confirmed by
observing that the “signal” EMSE;, defined in Eq(38) which decreases with time until it reaches its steady state value. For comparison,
the horizontal dashed line indicates the theoretical mean value of the total EM8Ethe steady statfsee Eq(36)]. We can verify that
the theoretical value obtained in E@-3) for the convergence timg,, corresponds effectively to the time instant at whighand &t are
of the same order. Finally, the two contour plots of the bottom line display the trajectory followed by the adaptive filter coefficients in the
eigenweight space: ift), the axis are the first two eigenvectorshamelyv(? andv(" (i.e., the “signal” eigenvectoprswhereas ind)
the diagram plane is given by(" andv(? (i.e., a “signal” direction vs a “noise” direction As proved in Sec. Ill B, the weight

coefficients converge more rapidly along the two directiBf;Pé andf)(kl) given by eigenvectors associated with the largest eigenvalues.

IV. THE ALE IN PRACTICE frequency remains large. Therefore, the model introduced

In the previous sections we have characterized the beha\I/D-reViOUSIy’ namely that of large amplitude sinusoidal signals
. P X ) . embedded in broadband noise, is a reasonable approximation
ior of the ALE in cases of interest. We will now elaborate on

how this algorithm can be adapted to the inten‘erometricWithin the relevant small bandwidth of frequencies.
9 P For this reason, we divide the frequency axiidisjoint

data. . . S
' frequency subbands of the same size. phggnals lying in
. In the scheme we present here, we first decompose theeach of the subbands are heterodyned and decimated to the
signal inp frequency subbands to which we apply the ALE ampling frequency =1 _/
twice with different sets of parameters. In the first stage, theampiing req s = Is/P.

parameters are tuned to best remove long-term sinusoidal The tiling has the ?d"a”tage thatpifs sufficiently ]arge,
components of the noise; whereas in the second stage, t e can consider the interferometer background noise almost

r nsi f shorter illatorv transients. W it_e yvithin a su_bband, which implie_s that the_noise has
target consists of shorter oscillatory transients vanishing correlation time. The prediction deptlwhich has
to be larger than the correlation time, can be then simply
A. Subband decomposition fixed to any value greater than 1 sample period in each of the

. . subbands.
Interferences such as mains power and violin mode har-

monics are distributed over a large dynamic sdéhe first

harmonics are of much larger amplitude than those of high
orden. But, since the interferometer noise curve also de- Certain parts of the spectrum may not contain any long-
creases at low frequencies, their relative amplitude as comnterm periodic interferences. We apply a preliminary test to
pared to the background noise power spectrum at the sanexclude subbands which may not require the first denoising

B. Long-term sinusoid removal
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FIG. 3. Applying the ALE to a sinusoidal signal: convergence tififee figure shows the comparison between the convergence tigpe
obtained by simulationésolid line with “+" associated with one noise realizatjoand its theoretical valuésolid line) given in Eq.(43).
The test signal is a sinusoid in white Gaussian nfgs® Eq.(11) with A=1, f;=50 Hz, sampled at;=200 Hz. The convergence time
is shown as a function af? in (a) (we have fixed the remaining ALE parameters\te- 200 anduNA?/2=0.01) and in(b) as a function
of uNA2/2 (N=200 ando?>=0.1). Simulations globally confirm the results obtained in @8) except when 1/& uNA?/2<1. The reason
for this discrepancy is that the difference between the actual gra@eand its estimate€) can be shown to be an oscillating term which

does not average to zero any longer when the step gain parameter approaches the critical value for stability. Therefore, in practice, we choose
parameters so thatNAZ/2<1/2.

step. The test is crudely done by estimating the amplitde The L? norm |w*||5=(2/N?)[N+ B cos(y+2dé¢)] is ob-
of the sinusoid from the largest peak of the power spectruntained by squaring and summing the Ebp) for the optimal
(Welch estimatgand comparing it to the varianae® of the filter. Since in typical caseB<N, this leads to simpler ex-
broadband noiséalso estimated from the power spectium pression|w* |2~ 2/N.

If it is found thatA> o, we decide that there exists a long-  Consequently, the number of tap-weight coefficiehts
term sinusoidal signal of sufficient amplitude in the bandhas to be chosen so that

which needs to be removed, otherwise we proceed directly to
the second step.

. N=2/7n0ise- (46)
We apply the ALE in each of the selected subbands
choosing parameters as follows. Step gain parameter
Number of tap-weight coefficientsN pgein p o

: - . We fix the step gain parameter by imposing the condition

'_Fhe number of tap-weight coefficients Is f,'XEd bY Pre-ihat on the average, the distance of the ALE filter from op-
scrlblng an upperbound_<077noisq<l to the ratio betwe_en timality in the steady state is smaller than a given threshold.
the noise power corrupting the filtered outytof the opti-  Ag e have seen in Sec. Il C, this can be done naturally by
mal filter w* and the input noise power. Let the column imposing an upperbound<07.,,<1 on the ratio of the ex-
vectorn,=(ny_q_m,m=0,1, ... N—1)! be a collection of J

noise samples, then the above condition reads cess square mean error to the signal pofisr A%/2:

ELW 1021 = 7noisdl [ (0)2], (44) £0=mgigFs. (47)
which, with the stationarity and whiteness of the background Using the expression obtained in the steady state analysis
noisen,, results in a bound on the optimal filter gain: in Eq. (36) for the EMSE, this condition reduces to

W WF < 7ngise- (45) W= 7sig/ (No?). (48)
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Generally, this equation leads to small valueswofvhich ~ on each data segment. Accordingly, we have added a super-
prevent the convergence of the ALE filter from its initial vision test which decides whether or not the denoising algo-
state (i.e., all tap-weight coefficients are fixed to 0) in a rithm should be applied to a given data segment. The test
reasonable timéconvergence faster than a tenth of secondconsists of observing the Gaussianity of the filtered output
which is the duration of the chunk of dataVe solve this y,=wx,. If the input signak, is a zero-mean white Gauss-
problem by first applying the ALE on a sequence of trainingian process of variance?, then the output of the filtey,
data, the step gain parameter being set at the beginning toshares the same characteristics, except that the variance gets
large value(for fast convergengeand decreased gradually to multiplied by the filter gain: van=|w|30. Furthermore,
the value given in Eq(48). The filter obtained after the under this hypothesis, the envelope=|H(y)l? [H(Y)«
completion of this training is close to the objectitiee., the  denotes thecomplex valuel analytic signal associated to
Wiener filtey. We then start the longterm sinusoid removalthe real signaly,] follows by definition a chi-square distri-
using this prepared filter. bution with 1 degree of freedom.

We remark here that although is small, it isnonzero This implies that, up to an arbitrary probabilif, the

thus giving the ALE filter some flexibility of adapting to envelope)), does not exceed the threshold given below:
changegnonstationaritiesin the signal such as slow drifts in

frequency and amplitude modulation. This property, how- ban 2 2
evgr, negds to be iFr)westigated more in detaill.D Pery Ne< k(Pg) 2f 2" w502, (51)
where(-) is the inverse function of théunit variance y?

. ] ) cumulative distribution functioricdf).

The aim of the second step of the algorithm is to remove |f gq. (51) is satisfied, we conclude that the filtered output
oscillatory transientgringdowns of large amplitude. These s essentially due to a Gaussian background noise and we
transients are either frequency bands excited from time tRave the input signal as it is. Otherwise, we conclude that
time (caused by dysfunctions in the interferometer relics  the filtered output carries a ringdown signal and decide to
from the previous stegwhen the envelope of a long-term remove it from the input data.
sinusoid possesses fast variations to which the algorithm The functioning of the second step of the denoising algo-
cannot adapt or converge to during the first step of removal rithm could be interpreted as follows : it removes from the

The cleaning procedure consists in applying ALE the secinpyt data, regions in the time-frequency plane presumably
ond time to each of the subbands but now, the parameters aggsociated with transients, whose support is defined along the
so adjusted thatj) they select features with a larger band- frequency axis by the ALE filter, and along the time axis by
width than in the previous step, arid) converge rapidly the supervision criteriof51).
onto an oscillatory noisy signal that may appear. After completing these two steps, we recombine the sig-

Number of tap-weight coefficientsN ~_nal in all the subbands together to retrieve a single strain
The impulse response duration and frequency selectivitgignal.

(i.e., the filter bandwidthAf) of the transfer function are
dual in character. This follows from the uncertainty relation.

C. Ringdown removal

The rough approximate relation between these quantities is V. NUMERICAL RESULTS
given by A. Simulated data: test of the ringdown removal
N=fs/(pAf), (49 In this section, the goal is to test how effectively the sec-

ond stage of the denoising algorithiire., the ringdown re-

wherefs is the sampling frequency. We choose the numbeinoval described in Sec. IV operates on a simple signal. The
of tap-weight coefficient® by imposing a minimum band- test signal is composed of three ringdown sigr(alsfixed
width Af;, to the filter and using the above equation. amplitude and frequengyccurring successively in the data

Step gain parameteru stream and embedded in a additive Gaussian white noise.

Assuming that the ringdown can be locally approximatedThis model may be used to represent ringdown disturbances
by a sinusoid, we choose the step gain parameter by imposriginating from the same underlying physical mechanism.
ing a convergence time of the order of a typical transient Each of these ringdown signals is a sinusoidal waveform,
duration (i.e., tock=N&). More concretely, settingp  similar to Eq.(11) (with A=1, f;=50 Hz and sampling
=uNA?/2 in the unnormalized form of Eq43) (i.e., for  frequencyfs=200 H2, whose support is limited in time by a

arbitrary ringdown amplitud@), we solve for Gaussian envelope:
In(20%p) r=Aexp(— m(ty—t)%/T?) cog 2mf ot + d), (52
—_—= (50
2In(1—p)

U;ing the crude estimakzl2~||xk||§_/N _for the ””QdOW” The analytic signay,=H(x), associated to the signa}, is es-
amplitude, the step gain parameter is finally obtainedias gsenially obtained by cancelling its negative frequencies; more pre-
= pl|xl3- cisely, Y(f)=2U(f)X(f), with U(f)=1 whenfe[0,1/2] and O

Since the ringdown signals are of short duration and camhenf e]—1/2, and whereX(f) [andY(f)] denotes the Fourier
occur with large time gaps, the ALE does not need to operateansform of the corresponding signé(f)==N_x, e 27",
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FIG. 4. Applying the ALE to oscillating transients : testing the ringdown removal algoriffime figure depicts the results of the transient
removal algorithm presented in Sec. IV C to a signalancomposed of three successive oscillating bufste text for detaijsembedded
in Gaussian white noisESNR=A?/(20%)=8(9 dB)]. In addition to the ALE, we measure the deviations of the filtered output from
Gaussianity: when its envelofge) exceeds some threshdldashed line, see E@51)], we decide that the filtered output is not normally
distributed and, therefore contains a transient which has to be renfibveds indicated by dots at the top of the graphhe final net effect
of the operation is that of time variant filtering of the input data. The correspoitttiing varying transfer function is represented(d): the
regions indicated with dark colors are parts of the time-frequency plane where the data are selected and removed fromiteg input
corresponds to the time-frequency “band” pass of the filt&omparing the spectrograrfl] [see Eq(53) for a definitior] in (b) and (f)
respectively of the input and outp(#) signals, we observe that the three transients are progressively removed from thiglamkuegions
represent large values of the time-frequency energy density

where three different reference timesare given and the Notice that real time and frequency coordinates can be
equivalent time duration i¥ =200 ms(giving a frequency retrieved through the relationis=n/f¢ and f =mf;.
bandwidth ofAf~1/T=5 Hz andQ=f,T~10 cycles.

Figure 4 describes the application of the denoising algo-
rithm configured withd=5 sampling periodgequal to 25 ) )
ms Afmin=3 Hz, andP,=0.01. It can be seen that the Here we have appllgd the algorithm to thg Caltech 40 m
algorithm operates better on the transient encountered lat@fototype data taken in October 19981]. This data was
in the data train than its predecessor. The explanation is th&écorded with a sampling frequency 6{=9.86 kHz. We
a transient duration is too short for the filter to reach thehave used the calibrated strain sigrjal] (relative arm
steady state but, when it encounters the next transient, tHeéngth measurementor applying our algorithm.
filter benefits from the distance t* previously covered, We tile the complete spectrum in=32 frequency sub-
thus improving the convergence towards Opt|ma||ty bands of apprOXimater 154 Hz each. Each subband encoun-

This can be verified with a time-frequency representatiorf€rs typically one or two long-term sinusoidal interferences.
[16] of the output signal such as Fig. 4, where we have We have chosen the prediction depth todseS sampling
chosen the spectrogra®j[ n,m]=|F/[n,m]|? defined as the Periods, which corresponds to a delay pd/fs~16 ms in

effectively smaller in each subband except at the extremities

of the spectrum where the steep slope of the spectrum does
Fg[n,m]EE Xphy_ e~ 2mnm (53 not allow us to assume the background noise to be locally
k white. It only affects the first and last subbands which are not
too important for detection purposes.
wherene[1,2,...N], me]—1/2...1/2] andhy is an ar- In the first stage, we have chosefise=0.01 [giving
bitrary window (a Gaussian window here N =200 according to E¢(46)] and 7jg=0.01. In the second

B. Results on Caltech 40 m prototype data
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FIG. 5. lllustration of the denoising procedure on Caltech prototype datasubband Sbetween 617 Hz and 771 WHzhe signal17]
(the data were taken on October 14, 1994, fram&2a) contains two power line harmoni¢at 660 Hz and 720 Hz which are seen as
darkened horizontal lines in the spectrogrsae Eq(53)] in (b). We apply ALE the first time to suppress long-term componéjtsvith
corresponding spectrografd). A second rung) supervised by the criteriofb1) detailed in(e) and(f) [see similar plots in Figs.(4) and
4(d) for explanation eliminates artifacts of shorter duratiésuch as fast fluctuations in the harmonic envelopwte that the spectrogram
(h) of the final signal presents a homogeneous energy density both in time and frequency difestiexgected for stationary broadband
noise.
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stage of ringdown removal, the minimum filter bandwidth
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FIG. 6. “Caltech signal
only”:  comparison  between
power spectra of ALE input-
output signals The figure depicts
power spectra of the Caltech 40
meter signaltop) in the operating
frequency band, between 200 Hz
and 1.3k Hz and the same signal
after denoisingbottom).

A “Caltech signal only” simulation to measure improve-
ments after denoising : we check first, whether the frequency
peaks are removed from the noise power spectrum and sec-

ondly, whether the noise statistics is closer to Gaussian than

before denoising.
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FIG. 7. *“Caltech signal
only”: comparison between histo-
grams of ALE input-output sig-
nals The probability density func-
tions of the Caltech 40 meter
signal selected between 200 Hz
and 1.3 kHz(left column and the
same signal after denoisingight
column have been estimated with
histogramg(top row). The bottom
row shows the same histograms in
special axes where a Gaussian bell
curve appears as a straight line
(i.e., “probability paper”).
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FIG. 8. “Caltech+inspiral” signal : matched filter response before and after denoisifiie Newtonian approximation of a gravitational
wave emitted from an inspiraling binafgach with mass 1.4 solar masses, at a distance of 2 kpc and coalescence timetfix8yl &md
a simulated transieri€qg. (52) with frequencyf,= 700 Hz, durationT~0.8 s and arrival tim¢.~ —0.3 g have been added to the Caltech
interferometric prototype data. Top row plots show this sigaaind its corresponding version after denoisfhgwhich have been selected
and whitened within the frequency band from 200 ¢ie., the lower frequency bound of the observation windéw1.3 kHz(i.e., the
predicted frequency for the last stable circular orbit of the binafe matched filter technique applied to detect the inspiral waveform,
shows in both casd®.g., without(c) and with(d) denoising a peak at time=0 in their detector responséhe normalization so chosen
that “noise only” detector fluctuations are of unit variancBlote also that the effect of the spurious transient in the detector output has
disappeared when denoising is used.
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FIG. 9. “Caltech+inspiral” signal : zoomed view before and after denoisidg a complementary check, these diagrams present with
corresponding labels, a zoomed view at the coalescence #fleof the signal in Figs. &) and &b). We have superimposed on(iit bold)
the inspiral signal as it would appear in the noise free case. Batisy and noise freesignals are selected in the frequency bandwidth
between 600 Hz and 1500 Hz and have been whitened using Welch estimate of the noise spectral density. Although the interpretation of
these graphs is difficult where the inspiral signal is below the noise level, we verify that, outside this(regaring, for the last cycles of
the inspiral waveforr)) the observed signal and the template waveform are of the same amplitude and more importantly, evolve with the
same phase.
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A “Caltech+inspiral” simulation to evaluate the conse-  Figure 8 depicts a comparison of matched filter detector
quences of the denoising algorithm on gravitational waveresponséswhen applied to this signal with and without de-
detection; specifically, for the case of the inspiralling com-noising. Two conclusions can be given at this point.
pact binary signal. The question here is to check whether the The detector output displays a peak of the same height
denoising operation has removed a significant part or evend at the correct instant, showing that the cleaning algo-
whole of the inspiral signal. rithm has not removed the inspiral signal from the data. This

Caltech signal onlyEleven of the thirty-two frequency can be crosschecked in Fig. 9 showing a zoomed view of the
subbgnds (+9, 11 and 17)' are selected and sent to the firsggme signal after denoising.
cleaning step of the algorithm. In these SUbtﬁstv we ob- Thjs particular example shows that the denoising proce-
tained the following mean values fér=1.5x10""ando  qure is worthwhile since it has removed the effect of the

N _17 . . . . X R i . X
~3.6<10""" (the sinusoid amplitudeA equals approxi- g rigus transient in the matched filter response while keep-
mately 1 to at most 5 times the noise standard deviadipn ing the actual signal detection peak to a similar vaftre

lsezgfitzc; t%’ pizcaflv\éa;ugs‘é%r theji?na:;;to-n;)ise ratio of aboutyete tion threshold can clearly be set to a smaller value while
=A°l(207)~8.7(9. 2 ) and for the Siep gain param- using the cleaning algorithmHowever, this result has to be
eter[see Eq(48)] of uNA"/2~0.04(spanning from 0.01 to examined carefully: a more complete analy@issed on a

0.14). . . . statistical approach rather than on one simple example, and
The complete set of subband signals is processed in th ’

second step. The typical noise variance estimate=sl.35 Hso using realistic transients from the interferometer proto-
<1017 (fronin 4.8% 10 8to 10" 19) leading according tc; Eq. type) is required in order to conclude on the efficiency of the
(50) to values ofuNa? which span the range of values from presented approach. This will be the subject of further work.

0.07 to 10“.

Figure 5 illustrates how the algorithm operates in the fifth VI. CONCLUDING REMARKS
frequency subban@rom 617 Hz to 771 Hg among thep
=32 ones being processed. This frequency band contai
two power line harmonicg&he 11th at 660 Hz and the 12th at
720 H2.

The originality of the idea of the proposed denoising al-
rEorithm lies in its wide applicability, so that both types of
disturbances, long-term sinusoidal and oscillatory transients

Figures 6 and 7 show respectively comparisons betwee the type of noise which has been ignored till nosan be

the power spectra and histograms of the signal before an_éeated' Although the question of the computational burden

after denoising. We observe that after denoising, the frell applying this algorithm has not quite been addressed here,
; i ars from the simplicity of the operations involved

quency peaks have been removed from the input signal ard 2PP€

the histogram appears much closer to the Gaussian bdff-9- no requirement such as long-term FFihat the total
curve. computational cost should be within acceptable limits, so

Caltech signal+ inspiral waveformThe purpose of this that the algorithm can be operated in real time. Furthermore,
test is to evaluate how the cleaning operation affects gravithe structure of the algorithm already implemented with Mat-
tational wave detection and in particular to make surdab [19] can be easily translated into a parallel cdgech
whether a significant part of the gravitational signature could?rocessing node can be associated with one frequency sub-
be removed from data. Answering this question by analyticaPand and the processing can be done independently

means is difficult, however a qualitative rational in the case As part of future extensions to the present work, some
of inspiral binaries can be made and verified with simula-improvements to the current code might be needed: in order

tions. to limit the finite size effects in the subband decomposition
The theory predictgL8] that the gravitational waves emit- and reconstruction, a reversible filter bafég., a Gabor
ted from inspiralling binaries of neutron stars are oscillatingtransform would be preferable than the crude method used
waveforms whose frequency evolves in time in a prescribediere.
manner and scans the interferometer bandwidth from lower The key idea(i.e., looking for correlation between the
end to the higher. current sample of the strain signal and a reference signal,
Their weak amplitude and short time duration within anamely a set of past sampjesan be also extended to inves-
Sing]e Subban(ﬂin the case we have considered, less than élgate correlations of the detector output with other environ-
second make them “invisible” to the ALE filter. The am- mental channels by simply using them as a reference rather
plitude and the duration of the gravitational wave signal ardhan the strain signal itself. Similarly to the cross-talk re-
simply not large enough for the ALE coefficients to convergemoval in[20] but with adaptive methods, such an algorithm
onto the gravitational wave instantaneous frequency. would provide an estimation of any poorly knowinear
To check the validity of this argument, we consider thetransfer functions relating noise sources to their final leaking
Signa| obtained by Summing together the Caltech SignaL th@ the detector Output and of the environmental contamina-
inspira”ing “Chirp” Waveform in the Newtonian approxima_ tion that must be subtracted from the data, if so desired.
tion [18] of a neutron star binargeach object having a mass
of M=1.4 solar masses, and located at a distance of
r=2kpc from the Earthand a simulated transient of large 2see, e.g/[7] for a practical definition of the matched filter. In our
amplitude[similar to Eq.(52) with frequencyfo,=700 Hz, case, the input signal is whitened using a Welch estimate of the
durationT~0.8 4. noise spectral density over a “noise only” stretch of data.

042004-14



ADAPTIVE FILTERING TECHNIQUES FQR . .. PHYSICAL REVIEW D 63 042004

ACKNOWLEDGMENTS and the LIGO Collaboration for providing us the Caltech 40

m prototype data. E.C.-M. would like to thank W. Anderson,

We would like to thank B. F. Schutz for suggesting theR. Balasubramian, J. Creighton, and S. Mohanty for their
idea of adaptive methods and also for fruitful conversationsiseful comments and suggestions.

[1] A. Abramovici et al, Science256, 325 (1992. [15] O. Macchi,Adaptive Processing: The Least Mean Square Ap-

[2] B. Caronet al,, Class. Quantum Grad4, 1461(1997). proach with Applications in TransmissidkViley, New York,

[3] H. Luck et al,, Class. Quantum Graw4, 1471(1997. 1995.

[4] K. Kudora, in Gravitational Waves: Sources and Detectors [16] P. Flandrin Time-Frequency/Time-Scale Analygscademic,
edited by I. Ciufolini and F. FidecarONorld Scientific, Sin- San Diego, CA, 1999

gapore, 199y
[5] K. Danzmanret al,, Class. Quantum Graw4, 1399(1997.
[6] P. R. SaulsonFundamentals of Interferometric Gravitational
Wave Detector§World Scientific, Singapore, 1994
[7] B. Allen et al, Phys. Rev. Lett83, 1498(1999.
[8] S. D. Mohanty, Phys. Rev. B7, 630(1998.
[9] B. S. Sathyaprakash and S. V. Dhurandhar, Phys. Re44,D
3819(199).
[10] J. D. E. Creighton, “Listening for ringing black holes,”

[17] The Caltech signal has been downloaded and calibrated with
the GRASP package (version 1.9.3, http://www.Isc-
group.phys.uwm.edu

[18] K. S. Thorne, in300 Years of Gravitatignedited by S. W.
Hawking and W. Israe(Cambridge University Press, Cam-
bridge, England, 1987 pp. 330-458.

[19] E. Chassande-Mottin and S. V. Dhurandhar.MdirLAB codes
which have been used in this document can be freely down-

gr-qc/97120441997). loaded at ttle following  address:  http://www.aei-

[11] A. Abramovici et al, Phys. Lett. A218 157 (1996. postdam.mpg.de/ eric/ale.html.

[12] B. Widrow and S. D. Stearnsddaptive Signal Processing [20] B. Allen, W. Hua, and A. Ottewill, “Automatic cross-talk re-
(Prentice-Hall, Englewood Cliffs, NJ, 1984 moval from multi-channel data,” gr-qc/9909083999.

[13] S. Haykin, Adaptive Filter Theory3rd. ed. (Prentice-Hall, [21] The spectrograms shown here have been computed with the
Englewoods Cliffs, NJ, 1996 Time-Frequency Toolbox for MATLAB  (http://iut-saint-

[14] J. R. Zeidler, Proc. IEEES8, 1781(1990. nazaire.univ-nantes.f?/auger/tftb.htm).

042004-15



