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Adaptive filtering techniques for gravitational wave interferometric data:
Removing long-term sinusoidal disturbances and oscillatory transients
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It is known by the experience gained from the gravitational wave detector prototypes that the interferometric
output signal will be corrupted by a significant amount of non-Gaussian noise, a large part of it being essen-
tially composed of long-term sinusoids with a slowly varying envelope~such as violin resonances in the
suspensions, or main power harmonics! and short-term ringdown noise~which may emanate from servo control
systems, electronics in a nonlinear state, etc.!. Since non-Gaussian noise components make the detection and
estimation of the gravitational wave signature more difficult, a denoising algorithm based on adaptive filtering
techniques~LMS methods! is proposed to separate and extract them from the stationary and Gaussian back-
ground noise. The strength of the method is that it does not require any precise model on the observed data: the
signals are distinguished on the basis of their autocorrelation time. We believe that the robustness and sim-
plicity of this method make it useful for data preparation and for the understanding of the first interferometric
data. We present the detailed structure of the algorithm and its application to both simulated data and real data
from the LIGO 40 m prototype.

DOI: 10.1103/PhysRevD.63.042004 PACS number~s!: 04.80.Nn, 07.05.Kf, 07.50.Hp, 07.60.Ly
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I. INTRODUCTION

Over the next decade, several large-scale interferome
gravitational wave detectors will come on-line. These
clude LIGO, composed of two Laser Interferomet
Gravitational-wave Observatories situated in the U.S.@1#,
VIRGO, a French-Italian project located near Pisa@2#,
GEO600, a German-British interferometer under constr
tion near Hannover@3#, TAMA in Japan, a medium-scal
laser interferometer @4#, and with funding approva
AIGO500, the proposed 500 meter project sponsored
ACIGA. There are also separate proposals for space-b
detectors which could be operational twenty-five years fr
now @e.g., the Laser Interferometer Space Antenna~LISA!, a
cornerstone project of the European Space Agency@5##. In
the meantime, a number of existing resonant bar detec
will have had their sensitivities further enhanced.

The key to gravitational wave detection is the very prec
measurement of small changes in distance. For laser inte
ometers, this is the distance between pairs of mirrors han
at either end of two long, mutually perpendicular vacuu
chambers. Gravitational waves passing through the ins
ment will shorten one arm while lengthening the other.
using an interferometer design, the relative change in len
of the two arms can be measured, thus signaling the pas
of a gravitational wave at the detector site. Long arm leng
high laser power, and extremely well-controlled laser sta
ity are essential to reach the requisite sensitivity, since
gravitational waves will be faint and will modify only
weakly the structure of space-time in the detector’s arms~see
e.g.,@6#!.

Gravitational wave detectors produce an enormous
ume of output~e.g., of the order of 16 MB/sec for the LIGO
0556-2821/2001/63~4!/042004~15!/$15.00 63 0420
ric
-
r

-

y
ed

rs

e
er-
ng

u-

th
ge

s,
l-
e

l-

instruments! consisting mainly of noise from a host o
sources both environmental and intrinsic to the appara
Buried in this noise will be the gravitational wave signatu
Sophisticated data analysis techniques will have to be de
oped to optimally extract astrophysical data. Many of t
techniques developed so far@7–9# are based on matched fi
tering and assume stationary Gaussian noise.

However, the real data stream from the detectors is
expected to satisfy the stationary and Gaussian assumpt
In fact, the data from the Caltech 40 meter proto-type int
ferometer has the expected broadband noise spectrum
superposed on this are several other noise features@7#; such
as long-term sinusoidal disturbances emanating from sus
sions and electric main harmonics and also transients oc
ring occasionally, typically due to servo-controls instabiliti
or mechanical relaxation in suspension system etc. While
precisea priori model can be given for this noise until th
detector is completed and fully tested, matched filtering te
niques cannot be used to locate or remove these noisy
nals.

This disparity between standard Gaussian assumpt
and real data characteristics poses a major problem to
direct application of matched filtering techniques. This
true when searching for burst sources such as blackhole
nary quasinormal ringings@10#. This is also the case for th
inspiral searches in Caltech 40 m data, where one ha
introduce a veto@7# on the decision taken with the matche
filter to ensure that the detected signal is actually the one
are looking for.

It is possible that in the future, improved experimen
techniques and greater experience, will reduce or even c
pletely eliminate some of these nonstationary and n
Gaussian features. Nevertheless, it will take probably so
©2001 The American Physical Society04-1
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time to reach such acceptable and high quality of da
Therefore, it is necessary and desirable to somehow com
this noise. Since such noise features defy modeling, a n
approach to the problem is called for.

We propose a denoising method based onleast mean
square (LMS) adaptive linear predictiontechniques which
does not require any precisea priori information about the
noise characteristics. Although our method does not pret
to optimality, we believe that its simplicity makes it usef
for data preparation and for the understanding of the fi
data.

In the following, we present the principles of LMS ada
tive denoising~Sec. II!, a characterization of its behavior o
a single model of the noise from the interferometer~Sec. III!,
the precise structure of the denoising algorithm~Sec. IV! and
results~Sec. V! obtained with simulated data and also wi
real data taken from the Caltech 40 m prototype interfero
eter @11#.

This work here is preliminary; its goal is to explore ho
effectively adaptive filtering techniques perform on the pro
lem we address. It is a first step towards a more comp
statistical evaluation of the algorithm.

II. METHODS

A. From hypothesis to method

We assume that the noise consists of broadband Gau
noise plus large amplitude oscillating interference sign
The model does not include anya priori knowledge of the
signal such as its exact frequency or shape of the envel
The only assumption we make is that its autocorrelation o
a small time-lagd — the time-lagd chosen greater than th
decorrelation time scale of the broadband noise — is ap
ciable, while for the broadband noise it is essentially ze
This difference can be used to advantage to discriminate
tween the narrow band interferences and the broadb
noise.

The idea is to predict the current signal sample give
collection of past samples of the data, these two object be
separated by the time-delayd. The prediction is effective
only if the target sample shares enough information w
~i.e., is sufficiently correlated to! the previous samples. In
other words, the only predictable part of the signal is the o
whose correlation length is sufficiently large~i.e., long-term
sinusoids or ringdowns!. Conversely, broadband noise ca
not be predicted, as it is not possible to guess the next v
in this way. It is this crucial underlying idea we use to d
criminate between the two noise signals.

B. Notation

As a general rule, we will denote scalar quantities
plain italics, e.g.,x1; vectors by boldface letters, e.g.x1; and
matrices by boldface capitals, e.g.,X1. We will represent the
components of vectors and matrices with superscripts wi
brackets, e.g.X1

(mn) designates the element located inmth
row andnth column of the matrixX1. Subscripts~no brack-
ets! denote the time index; e.g.wk denotes the vectorw at the
time indexk. The symbol[ will be used in the following to
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define our variables and therefore stands for ‘‘equal by d
nition.’’ Finally, the vectorsxt, x̄ andx†[ x̄t denote respec-
tively the transpose of the vector, the complex conjugate
the Hermitian transpose of the vectorx.

C. Mean square linear prediction

First, we recall some standard principles to design an
timal linear predictor. The question to address is to optima
predict the data samplexk with a collection of past sample
taken between the indexesk2d2(N21) andk2d. These
past samples may be placed in a column vectorxk whoseN
components are given by

xk
(m)[xk2d2m , m50,1, . . . ,N21. ~1!

For now, the delayd>1 also referred to asprediction
depth is fixed arbitrarily ~an explanation on how it may b
chosen is given later in Sec. III!. The prediction is obtained
by linearly combining these data samples weighted by thN
corresponding coefficientsw(m), forming the tap-weight~col-
umn! vector w[(w(m),m50,1, . . . ,N21)t. Therefore, the
predictionyk of xk reads

yk[wtxk . ~2!

The predictor is optimal in the mean square sense w
the variance of the prediction errorek5xk2yk is minimum.
Therefore, the problem is to find the set of weight coe
cients which minimizes

Jk~w![E @ek
2#5E @~xk2wtxk!

2#, ~3!

whereE @•# denotes the expectation value operator.
This leads to the minimization of the following quadrat

form

Jk~w!5sk
222wtpk1wtRkw, ~4!

wheresk
2[E @xk

2#, pk[E @xkxk# andRk[E @xk
t xk#. There ex-

ists only one solutionwk* , obtained when the gradient ofJk

vanishes. This situation is realized when

Rkwk* 5pk . ~5!

When the signal is stationary,Rk5R andpk5p are con-
stant~independent ofk). In this case,R defines the autocor
relation matrix of the signalxk and the solution of Eq.~5! is
referred to as theWiener filter.

D. Linear prediction and LMS method

Equation~5! requires the computationally expensive i
version of the matrixRk . An alternative and more efficien
solution for finding the minimum ofJk(w) in Eq. ~4! consists
in starting from an arbitrary initial valuewk,0 , and iterating
the tap-weight vector along the steepest descent directio

wk,n115wk,n2m“wJk~wk,n! ~6!

~the new indexn50,1, . . . counts the number of iteration
being implemented! given by the gradient
4-2
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ADAPTIVE FILTERING TECHNIQUES FOR . . . PHYSICAL REVIEW D 63 042004
“wJk~w!52~Rkw2pk!. ~7!

For a sufficiently small gainm, the weight vectors will
eventually converge to the optimal predictor filterwk* . This
procedure requires the second order statistics~namelyRk and
pk) of the signal. In our case, this information is not availab
and one has therefore to estimate these quantities. Inste
estimatingRk andpk directly and combining them with Eq
~7!, a more efficient solution is to estimate the gradie
From the derivation of Eq.~3!, one can rewrite the gradien
as

“wJk~w!522E @ekxk#. ~8!

A simple and natural way to obtain an estimator of th
quantity is to omit the expectation operator:

“wJk
ˆ 522ekxk . ~9!

Because the noise perturbs this estimate, the algori
may iterate in a direction which does not lie along the act
~noise free! direction of steepest descent, thus preventing
filter from converging to the Wiener filter. For this purpos
we stabilize the estimation above by setting the algorit
iteration indexn equal to signal time indexk in the Eq.~6!.
The final evolution equation for the tap-weight vector fina
reads

wk115wk12mekxk . ~10!

This amounts to~i! doing just one iteration at given tim
k @i.e., applying Eq.~6! once withn50] and ~ii ! setting the
result as the starting point for the next time index~i.e., set-
ting wk11,05wk,1).

At a fixed time k, the weight vector evolves along th
crude estimate of the steepest descent direction. But o
longer duration, the direction followed by the tap-weig
vector is governed by the sum of the successive grad
estimates obtained with different noise samples. In ot
words, we have replaced an ensemble average in Eq.~8! by a
time average. It also implies that we have implicitly call
for further assumptions on the signalxk : first its local sta-
tionarity ~more precisely, the second order statistics are s
posed to be constant during the convergence time of
algorithm! and second, its ergodicity.

Obviously, the early-time estimates~i.e., before the con-
vergence is completed! may be far from optimal, but accord
ing to the previous argument, as the data accumulate,
estimation is expected to converge to the Wiener filter. P
cise proofs of the statistical convergence of the algorithm
Eq. ~10! can be found in@15#.

Summarizing, the method we propose consists in linea
filtering the data to extract the part of the signal with a lo
correlation time. As illustrated with the block diagram in Fi
1, the finite impulse response filter~given bywk) is modified
at each iteration according to the relation~10! with the final
goal to minimize the mean square error. Once the filter
converged~i.e., wk is stable in time!, we reject the predicted
part of the signal~corresponding to the long-term sinusoid
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or the ringdown signals! and we send the rest of the sign
for further analysis for detection.

E. Properties of the LMS method

The method we described above is referred to asadaptive
line enhancer (ALE). It is a special case of theLMS algo-
rithm. Both, ALE and LMS algorithms have been first intro
duced by Widrow and Hoff@12# in the 1960s.

The acronym LMS~least mean square! designates a gen
eral scheme to design signal processing methods whe
minimization ~in a statistical sense! of a definite positive
quadratic cost function~usually related to some mean qu
dratic error! is needed. Its central idea is the use of the e
mate of the gradient of this function given in Eq.~9!. The
LMS technique has been extensively used for the last
years in communications problems such as echo canc
tion, channel equalization, antenna processing, etc. The m
advantages to be gained by applying the LMS technique
~i! adaptivity,~ii ! robustness and~iii ! simplicity.

In this context, the term ‘‘adaptivity’’ has two differen
meanings. First, it means that the LMS technique will au
matically adjust its parameters so as to reach the best s
for a problem which has not been initially precisely define
Second, it is also able to follow changes in the characteris
of the data being processed in the event that they occur.
latter property also shows that the method is robust. In f
this method has been proved to be robust according to
cific statistical criterion such as the minimax criterion@13#.

The ALE is an adaptive prediction algorithm using th
LMS technique. We have seen that the signal is predic
from a reference signal which is the signal itself. In som
other applications, although the same principles are app
the reference signal can be another signal, e.g., echo ca
lation or denoising. In such cases, the quantity of inter
might not be the prediction output but the linear filter used
compute it, e.g., deconvolution.

III. ADAPTING ALE FILTER TO CANCELING NOISE
IN GW DATA

In this section we essentially describe a model for und
standing the behavior of the ALE algorithm. The model w

FIG. 1. The figure illustrates the principle of the underlyin
method on which the algorithm we propose is based. The algori
is designed to discriminate the nonstationary and non-Gaus
noise features from the broadband background noise in interf
metric gravitational wave data. This method is referred to asLMS
adaptive line enhancementand its objective is to compare the sign
and its linear prediction, the predictor coefficients being adjusted
a feedback loop controlled by the prediction error.
4-3
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assume consists of a high amplitude narrowband signal
perposed on broadband noise. For simplicity, we assume
broadband noise to be white and Gaussian and the nar
band signals are sinusoids of constant envelope. The re
we obtain hold for more realistic signals when the evolut
of their amplitude and/or instantaneous frequency occ
adiabatically, i.e., the change is small over the period of
sinusoid.

The assumption of white noise is not too restrictive b
cause this is equivalent to choosing the noise correlation t
to be zero and therefore we are free to choose the predic
depth~i.e., the time delay between the current predicted d
sample and the reference signal to the LMS filter! to be ar-
bitrarily small. In a real situation, we must fix the delay to
greater than the correlation time of the broadband noise.
first analyze the case of the sinusoid because it is easie
investigate and provides invaluable insights into the wo
ings of the LMS algorithm.

It may be remarked that the denoising of sinusoids
white noise has been treated in the literature with great de
~see@13,14# for a review!. We give here only pertinent re
sults~with a short proof! for introducing the structure of the
algorithm, which we present later in the text.

A. Optimal filter

We consider the data to be of the following form

xk[cos~2p f 0tk1F!1nk , ~11!

wheretk[kd, d[1/f s being the sampling interval andF is
a random phase~at the origin! with uniform probability den-
sity function between2p and p. The sinusoid has fre
quencyf 0 and the units are so chosen that it is of unit a
plitude. The additive white noisenk with variance s2

satisfies the relation,

E @nknm#5s2dkm , ~12!

wheredkm is the Kronecker delta.
As mentioned in Sec. II C, the problem is to optima

predict xk from a reference signalxk which is just the de-
layed data by the amountdd ~or equivalently, a number ofd
samples!. More precisely, the reference is a column vec
whose components are equal toxk

(m)[xk2d2n , n
50,1, . . . ,N21.

The best linear prediction filter can be obtained by eva
ating the autocorrelation matrixR and the vectorp in Eq. ~4!.
In case of signal~11!, their components are given by

R(mn)51/2 cos~m2n!df1s2dmn , ~13!

p(m)51/2 cos~m1d!df, ~14!

where (m,n)50,1, . . . ,N21 and df52p f 0d. Note that
we have dropped the indexk because the autocorrelationR
does not depend uponk, since we are dealing with a station
ary signal.

From the above expressions ofR and p and solving Eq.
~5!, we obtain the optimum prediction~Wiener! filter
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2

N14s2
cos~m1d!df, m50,1, . . . ,N21,

~15!

where we have chosen the length of the filter to be h
integral number of cycles for reasons of simplicity, i.e
Ndf5 lp, wherel is an integer.

In other words, the optimum linear predictor is nothin
but a copy of the expected signal itself. The filter in Eq.~15!
is also referred to as the matched filter. In our situation,
practice,N@s2 and the term 4s2 can be omitted from the
amplitude ofw* .

For the reasons detailed before, we propose to use
ALE algorithm in order to find a good approximation ofw* .
Starting from an arbitrary initial tap-weight vector, we itera
the weightswk according to Eq.~10! to converge tow* .
Once the filter is ‘‘close’’ enough to the optimal solution~the
word ‘‘close’’ will be defined later in the text!, we then say
that the filter has locked on to the signal.

B. Approach to locking

a. Continuous time approximation of the locking traje
tory. We may analyze the approach to locking by deriving
difference equation for the averaged evolution of the weig
and then investigating this equation. It is impossible to o
tain the average evolution of the weights by using the st
dard definition of the expectation operatorE because of the
nonlinearity and the recursive scheme involved in evolv
the weights. We therefore adopt the time-average over s
cessive data points as the operational definition ofE.

Shifting the origin tow* by defining vk[wk2w* , we
may write the LMS evolution equation~10! in the following
form @15#:

vk112vk522m~xkxk
t !vk12mek* xk , ~16!

whereek* [xk2w* txk is the prediction error produced whe
using the optimal filter.

During the locking phase, the filter is far apart from th
optimal location~i.e., vk has a large modulus!. The homoge-
neous term dominates the forcing term in the differen
equation~16! which then can be approximated by

vk112vk522m~xkxk
t !vk . ~17!

In the situation where the step gain parameterm is chosen
to be very small so that the weight coefficients are alm
constant over a given time interval, the recursivity eventua
acts as an averaging operation on both sides of the equa
above. This leads to the difference equation which we us
describe the tap-weight trajectory in the space of weight
efficients we denoteW:

vk112vk522mRvk . ~18!

Let Q be the transformation which diagonalizesR. The
above difference equation is best analyzed by changing
frame inW to the principal axis
4-4
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ṽk112ṽk522mR̃ṽk , ~19!

where R̃[QRQ215diag(l (0), . . . ,l (N21)) and ṽk[Qvk .
Equation~19! gives decoupled difference equations for t
componentsṽk

(m) ,m50, . . . ,N21 of ṽk which can be

solved given the initial weight vectorṽ0
(m)

ṽk
(m)5ṽ0

(m)~122ml (m)!k. ~20!

b. Eigenvalues and eigenvectors ofR. We need to com-
pute the eigenvaluesl (m) of R. This can be conveniently
implemented by splittingR into a noise part, which is justs2

times the identity, plus the signal part which we denote
S/2, and thus

R5s2I1S/2, ~21!

where S(mn)[cos(m2n)df. It is easily verified that the
eigenvectors ofR andS are identical and the eigenvalues
R are obtained from those ofS by first halving them and then
addings2 to the result. It remains, therefore, to compute t
eigenvalues and eigenvectors ofS. We do this by observing
that we can writeS as follows:

S5~nn†1n̄n̄†!/2, ~22!

wheren[@1,exp(idf),exp(2idf), . . . ,exp„(N21)idf…# t.
Since the matrixS is real and is essentially made out

two external products ofn and n̄, its rank equals 2 (S has
N22 degenerate eigendirections inW with eigenvalue zero!
and has two nonzero real eigenvalues. Letv be an eigenvec-
tor associated to one of the nontrivial eigenvalues. Accord
to the structure ofS, the vectorv can be written without loss
of generality as the following linear combination:

v5n exp~2 ia!1n̄ exp~ ia!, ~23!

where the coefficients have been chosen arbitrarily to h
unit modulus.

Using the two scalar productsn†n5N and

ntn511exp~2idf!1•••1exp„2~N21!idf… ~24!

[b expig, ~25!

where the geometric series can be summed up and mod
and phase ascertained

b5
sin~Ndf!

sindf
, ~26!

g5~N21!df, ~27!

we obtain the effect of the matrixS on the vectorv, given by

Sv5n exp~2 ia!@N1b exp~2 ig12ia!#/21c.c.,
~28!

where c.c. denotes complex conjugate.
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This expression has to be compared with the second t
of the eigenvalue equationSv5lv, leading to two solutions
for a, namely,a5g/2 anda5(g2p)/2. These yield the
eigenvectorsv6 and the corresponding eigenvaluesl6 :

v15n exp~2 ig/2!1n̄ exp~ ig/2!, ~29!

v25 i n exp~2 ig/2!2 i n̄ exp~ ig/2!,

l65~N6b!/2. ~30!

If we chooseN large enough andNdf5mp, wherem is
an integer then the analysis becomes simpler. This amo
to choosing the length of the filter to have half-integral nu
ber of cycles: we haveb50 andl65N/2. ~Geometrically,
this means that the eigenvalue problem is degenerate
respect to the two signal eigenvectors: there is a two dim
sional eigenspace belonging to the eigenvalueN/2. The
weights thus evolve non-preferentially with respect to t
signal eigendirections.! Since typical cases imply generall
N@b, we will assume this simplification in the rest of th
paper.

In this situation, the spectrum ofR

sp~R!5$l (0)5l (1)5N/41s2 and

l (m)5s2,m52, . . . ,N21%, ~31!

consist of two sets of eigenvalues : the first two correspo
to directions in the signal space associated to ‘‘sig
1noise’’ ~or ‘‘signal,’’ for short! whereas the remainingN
22 characterize ‘‘noise’’ directions.

According to Eq.~20!, the weight vector will converge
more rapidly in directions associated with the largest eig
values, which are the signal eigenvalues. The other n
eigenvalues are unimportant in this consideration. The eig
vectors pertaining to the signal provide preferred directio
in W: it is along these directions that the slope of the p
formance surface is steep and hence promotes faster co
gence.

C. Steady state evaluation

If the step gain factor is sufficiently small, the tap-weig
coefficients eventually converge and stabilize in a neighb
hood of the optimal value. At this stage, the assumptio
made in obtaining the approximated evolution equation~18!
do not hold anymore. In contrast with the case of ‘‘the a
proach to locking,’’ the right hand side of the differenc
equation~16! is now dominated by the forcing term:

vk112vk52mek* xk . ~32!

Roughly speaking, the trajectory of the vectorwk during
the steady state can be viewed as a random walk cent
aroundw* lying within a region ofW space whose extent i
determined by two factors, namely,m and the intrinsic ge-
ometry ofW in the vicinity of w* .

The misalignment between the actual ALE filterwk and
the optimal onew* creates an additional error in the outpu
4-5
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In fact, a direct calculation from Eq.~4! shows that the tota
mean square error may decomposed as@12#

Jk~wk!5jmin1jk , ~33!

where~i! jmin[Jk(w* ) is the minimum mean square erro
arising from the fraction of the input noise which still re
mains in the output, assuming that the ALE filter has reac
exact optimality and~ii ! jk[vk

t Rvk is the excess mean
square error~EMSE! due to the misalignment between th
ALE filter and the Wiener filter.

One can verify that the EMSE vanishes when reach
optimality i.e., whenvk50. In other words, this term quan
tifies the nonoptimality of the current filter in use. We c
imaginejk as the square of a natural distance inW andR as
a intrinsic metric overW.

A good approximation ofjmin can be found for large
number of weight coefficients for the specific case of sin
soidal signals with high SNRs. Using Eqs.~4! and ~5!, we
may writejmin5E @xk

2#2ptw* . WhenN→`, a direct calcu-
lation shows that the second termptw* tends to the energy o
the sinusoid, which means that the remaining energy is
of the noise:jmin's2.

We complete the characterization of the mean square
ror ~33! with the evaluation of the average value of t
EMSE, which we denote byj (st). First, noticing that the
EMSE is invariant under the principal axis transformation

jk5ṽk
t R̃ṽk5 (

m50

N21

l (m)~ ṽk
(m)!2, ~34!

and secondly, using the approximationE @ ṽkṽk
t #'mjminI

proposed in@12# to obtain the typical value for (ṽk
(m))2 yields

j (st)'m (
m50

N21

l (m)jmin . ~35!

Since the signal is of much larger amplitude than
broadband noise, the trace ofR̃ is essentially due to the sig
nal eigenvalues@see Eq.~31!#. Combining with the expres
sion of jmin above, this leads to

j (st)'mNs2/2. ~36!

A better estimate ofj (st) can be obtained starting wit
more realistic hypotheses and using more sophisticated
proximations@14# :

j (st)' (
m50

N21
ml (m)

12ml (m)
jmin . ~37!

In the limit of small step size, this approximation tends
the simpler one in Eq.~36!.

D. Convergence time

In the expression of the EMSE in Eq.~34!, we separate
the sum into two parts: the first,jk

(n) associated with the
noise ~i.e., consisting of terms involving noise eigenvalu
04200
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and vectors!, the second,jk
(s) with the signal. Because th

signal eigenvalues are much larger than those of the no
the sum in Eq.~34! is essentially dominated in the beginnin
~for small k) by jk

(s) . These two errors decrease during t
locking phase until reaching a steady state value. The lo
ing time ~i.e., time at which the steady state is reached! is
defined to be that, whenjk

(s) is of the order of the total EMSE
expected in the steady state.

From Eqs.~20!, ~30! and ~34! we obtain

jk
(s)[l (0)~ ṽk

(0)!21l (1)~ ṽk
(1)!2 ~38!

'
N

4
„~ ṽ0

(0)!21~ ṽ0
(1)!2

…S 12
mN

2 D 2k

,

~39!

where we have assumedN@b.
We set the starting pointw0 in W to be0. It corresponds

to the initial valueṽ0 in the eigenspace which is given b

ṽ052Qw* . The first two coordinates ofṽ0 can be directly
obtained since the first two row vectors ofQ are just the
normalized signal eigenvectors of theR matrix, leading to,
for half integral wavelength filters andN@s2,

ṽ0
(0)5A2/Ncos~ddf1g/2!, ~40!

ṽ0
(1)5A2/Nsin~ddf1g/2!. ~41!

These considerations yield

jk
(s)'

1

2 S 12
mN

2 D 2k

. ~42!

This error must now be compared with the averag
EMSE in Eq.~36! in order to find the timet lock at whichj (s)

andj (st) are equal

t lock'd
ln~mNs2!

2 ln~12mN/2!
. ~43!

It is important to mention that, when the productmN/2
tends to 1, the convergence time diverges to infinity mean
that the weights do not converge towardw* anymore. In
order to ensure the stability of the algorithm, the parame
need to satisfy the stability condition 0,mN/2,1. How-
ever, we have observed in our simulations that when
<mN/2,1, the convergence is slowed down. This is due
the presence of oscillatory terms in the gradient which do
average to zero anymore. In practice, it is advisable
choose the parameters so thatmN/2,1/2.

For a sinusoid of amplitudeA instead of unity as we have
considered before, the condition for stability can be sim
obtained by replacing the parametermN/2 by r[mNA2/2
leading to 0,r,1.

We illustrate in Figs. 2 and 3 with an example the resu
of this section pertaining to the approach to locking a
steady state analysis.
4-6
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FIG. 2. Applying the ALE to a sinusoidal signal: approach to locking and steady state. The figure illustrates how the ALE performs o
a test signal composed of a sinusoid (f 0550 Hz sampled atf s51 kHz! corrupted by white noise@SNR5A2/(2s2)550(17 dB)#. We
initialize theN540 tap-weight coefficients to 0, set the prediction depthd55 ~ms! and the step gain parameterm50.003. ~a! The filter
output signalyk ~solid line! converges rapidly towards the actual noise free sinusoidal signal~dashed line!. ~b! This is confirmed by
observing that the ‘‘signal’’ EMSEjk

s defined in Eq.~38! which decreases with time until it reaches its steady state value. For compa
the horizontal dashed line indicates the theoretical mean value of the total EMSEjst in the steady state@see Eq.~36!#. We can verify that
the theoretical value obtained in Eq.~43! for the convergence timet lock corresponds effectively to the time instant at whichjk

s andjst are
of the same order. Finally, the two contour plots of the bottom line display the trajectory followed by the adaptive filter coefficient

eigenweight space: in~c!, the axis are the first two eigenvectors ofR namelyṽk
(0) and ṽk

(1) ~i.e., the ‘‘signal’’ eigenvectors! whereas in~d!

the diagram plane is given byṽk
(1) and ṽk

(2) ~i.e., a ‘‘signal’’ direction vs a ‘‘noise’’ direction!. As proved in Sec. III B, the weight

coefficients converge more rapidly along the two directionsṽk
(0) and ṽk

(1) given by eigenvectors associated with the largest eigenvalue
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IV. THE ALE IN PRACTICE

In the previous sections we have characterized the be
ior of the ALE in cases of interest. We will now elaborate
how this algorithm can be adapted to the interferome
data.

In the scheme we present here, we first decompose
signal inp frequency subbands to which we apply the AL
twice with different sets of parameters. In the first stage,
parameters are tuned to best remove long-term sinuso
components of the noise; whereas in the second stage
target consists of shorter oscillatory transients.

A. Subband decomposition

Interferences such as mains power and violin mode h
monics are distributed over a large dynamic scale~the first
harmonics are of much larger amplitude than those of h
order!. But, since the interferometer noise curve also
creases at low frequencies, their relative amplitude as c
pared to the background noise power spectrum at the s
04200
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frequency remains large. Therefore, the model introdu
previously, namely that of large amplitude sinusoidal sign
embedded in broadband noise, is a reasonable approxim
within the relevant small bandwidth of frequencies.

For this reason, we divide the frequency axis inp disjoint
frequency subbands of the same size. Thep signals lying in
each of the subbands are heterodyned and decimated t
sampling frequencyf s

band[ f s /p.
The tiling has the advantage that, ifp is sufficiently large,

we can consider the interferometer background noise alm
white within a subband, which implies that the noise h
vanishing correlation time. The prediction depthd which has
to be larger than the correlation time, can be then sim
fixed to any value greater than 1 sample period in each of
subbands.

B. Long-term sinusoid removal

Certain parts of the spectrum may not contain any lo
term periodic interferences. We apply a preliminary test
exclude subbands which may not require the first denois
4-7
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FIG. 3. Applying the ALE to a sinusoidal signal: convergence time. The figure shows the comparison between the convergence timet lock

obtained by simulations~solid line with ‘‘1’’ associated with one noise realization! and its theoretical value~solid line! given in Eq.~43!.
The test signal is a sinusoid in white Gaussian noise@see Eq.~11! with A51, f 0550 Hz, sampled atf s5200 Hz#. The convergence time
is shown as a function ofs2 in ~a! ~we have fixed the remaining ALE parameters toN5200 andmNA2/250.01) and in~b! as a function
of mNA2/2 (N5200 ands250.1). Simulations globally confirm the results obtained in Eq.~43! except when 1/2<mNA2/2,1. The reason
for this discrepancy is that the difference between the actual gradient~8! and its estimates~9! can be shown to be an oscillating term whic
does not average to zero any longer when the step gain parameter approaches the critical value for stability. Therefore, in practice,
parameters so thatmNA2/2,1/2.
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step. The test is crudely done by estimating the amplitudA
of the sinusoid from the largest peak of the power spectr
~Welch estimate! and comparing it to the variances2 of the
broadband noise~also estimated from the power spectrum!.
If it is found thatA.s, we decide that there exists a lon
term sinusoidal signal of sufficient amplitude in the ba
which needs to be removed, otherwise we proceed direct
the second step.

We apply the ALE in each of the selected subban
choosing parameters as follows.

Number of tap-weight coefficientsN
The number of tap-weight coefficients is fixed by pr

scribing an upperbound 0,hnoise,1 to the ratio between
the noise power corrupting the filtered outputyk of the opti-
mal filter w* and the input noise power. Let the colum
vector nk[(nk2d2m ,m50,1, . . . ,N21)t be a collection of
noise samples, then the above condition reads

E @~w* tnk!
2#<hnoiseE @~nk!

2#, ~44!

which, with the stationarity and whiteness of the backgrou
noisenk , results in a bound on the optimal filter gain:

w* tw* <hnoise. ~45!
04200
m

to

s

d

The L2 norm iw* i2
25(2/N2)@N1b cos(g12ddf)# is ob-

tained by squaring and summing the Eq.~15! for the optimal
filter. Since in typical casesb!N, this leads to simpler ex-
pressioniw* i2

2'2/N.
Consequently, the number of tap-weight coefficientsN

has to be chosen so that

N>2/hnoise. ~46!

Step gain parameterm
We fix the step gain parameter by imposing the condit

that on the average, the distance of the ALE filter from o
timality in the steady state is smaller than a given thresho
As we have seen in Sec. III C, this can be done naturally
imposing an upperbound 0,hsig,1 on the ratio of the ex-
cess square mean error to the signal powerEs5A2/2:

j (st)<hsigEs . ~47!

Using the expression obtained in the steady state ana
in Eq. ~36! for the EMSE, this condition reduces to

m<hsig /~Ns2!. ~48!
4-8
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ADAPTIVE FILTERING TECHNIQUES FOR . . . PHYSICAL REVIEW D 63 042004
Generally, this equation leads to small values ofm which
prevent the convergence of the ALE filter from its initi
state ~i.e., all tap-weight coefficients are fixed to 0) in
reasonable time~convergence faster than a tenth of seco
which is the duration of the chunk of data!. We solve this
problem by first applying the ALE on a sequence of traini
data, the step gain parameter being set at the beginning
large value~for fast convergence! and decreased gradually t
the value given in Eq.~48!. The filter obtained after the
completion of this training is close to the objective~i.e., the
Wiener filter!. We then start the longterm sinusoid remov
using this prepared filter.

We remark here that althoughm is small, it is nonzero
thus giving the ALE filter some flexibility of adapting t
changes~nonstationarities! in the signal such as slow drifts i
frequency and amplitude modulation. This property, ho
ever, needs to be investigated more in detail.

C. Ringdown removal

The aim of the second step of the algorithm is to remo
oscillatory transients~ringdowns! of large amplitude. These
transients are either frequency bands excited from time
time ~caused by dysfunctions in the interferometer! or relics
from the previous step~when the envelope of a long-term
sinusoid possesses fast variations to which the algori
cannot adapt or converge to during the first step of remov!.

The cleaning procedure consists in applying ALE the s
ond time to each of the subbands but now, the parameter
so adjusted that,~i! they select features with a larger ban
width than in the previous step, and~ii ! converge rapidly
onto an oscillatory noisy signal that may appear.

Number of tap-weight coefficientsN
The impulse response duration and frequency selecti

~i.e., the filter bandwidthD f ) of the transfer function are
dual in character. This follows from the uncertainty relatio
The rough approximate relation between these quantitie
given by

N5 f s /~pD f !, ~49!

where f s is the sampling frequency. We choose the num
of tap-weight coefficientsN by imposing a minimum band
width D f min to the filter and using the above equation.

Step gain parameterm
Assuming that the ringdown can be locally approxima

by a sinusoid, we choose the step gain parameter by im
ing a convergence time of the order of a typical transi
duration ~i.e., t lock'Nd). More concretely, settingr
[mNA2/2 in the unnormalized form of Eq.~43! ~i.e., for
arbitrary ringdown amplitudeA), we solve for

ln~2s2r!

2 ln~12r!
5N. ~50!

Using the crude estimateA2/2'ixki2
2/N for the ringdown

amplitude, the step gain parameter is finally obtained am
5r/ixki2

2.
Since the ringdown signals are of short duration and

occur with large time gaps, the ALE does not need to ope
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on each data segment. Accordingly, we have added a su
vision test which decides whether or not the denoising al
rithm should be applied to a given data segment. The
consists of observing the Gaussianity of the filtered out
yk5wk

t xk . If the input signalxk is a zero-mean white Gauss
ian process of variances2, then the output of the filteryk
shares the same characteristics, except that the variance
multiplied by the filter gain: varyk5iwki2

2s2. Furthermore,
under this hypothesis, the envelopeYk5iH(y)ki2 @H(y)k
denotes the~complex valued! analytic signal1 associated to
the real signalyk] follows by definition a chi-square distri
bution with 1 degree of freedom.

This implies that, up to an arbitrary probabilityP0, the
envelopeYk does not exceed the threshold given below:

Yk,k~P0! 2 f s
bandiwki2

2s2, ~51!

wherek(•) is the inverse function of the~unit variance! x2

cumulative distribution function~cdf!.
If Eq. ~51! is satisfied, we conclude that the filtered outp

is essentially due to a Gaussian background noise and
leave the input signal as it is. Otherwise, we conclude t
the filtered output carries a ringdown signal and decide
remove it from the input data.

The functioning of the second step of the denoising al
rithm could be interpreted as follows : it removes from t
input data, regions in the time-frequency plane presuma
associated with transients, whose support is defined along
frequency axis by the ALE filter, and along the time axis
the supervision criterion~51!.

After completing these two steps, we recombine the s
nal in all the subbands together to retrieve a single str
signal.

V. NUMERICAL RESULTS

A. Simulated data: test of the ringdown removal

In this section, the goal is to test how effectively the se
ond stage of the denoising algorithm~i.e., the ringdown re-
moval! described in Sec. IV operates on a simple signal. T
test signal is composed of three ringdown signals~of fixed
amplitude and frequency! occurring successively in the dat
stream and embedded in a additive Gaussian white no
This model may be used to represent ringdown disturban
originating from the same underlying physical mechanism

Each of these ringdown signals is a sinusoidal wavefo
similar to Eq. ~11! ~with A51, f 0550 Hz and sampling
frequencyf s5200 Hz!, whose support is limited in time by a
Gaussian envelope:

r k[A exp„2p~ tk2tc!
2/T2

… cos~2p f 0tk1F!, ~52!

1The analytic signalyn5H(x)n associated to the signalxn is es-
sentially obtained by cancelling its negative frequencies; more
cisely, Y( f )[2U( f )X( f ), with U( f )51 when f P@0,1/2# and 0
when f P] 21/2,0@ and whereX( f ) @andY( f )] denotes the Fourier
transform of the corresponding signalX( f )[(n50

N xn e22p in f .
4-9
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FIG. 4. Applying the ALE to oscillating transients : testing the ringdown removal algorithm. The figure depicts the results of the transie
removal algorithm presented in Sec. IV C to a signal in~a! composed of three successive oscillating bursts~see text for details! embedded
in Gaussian white noise@SNR5A2/(2s2)58(9 dB)#. In addition to the ALE, we measure the deviations of the filtered output fr
Gaussianity: when its envelope~c! exceeds some threshold@dashed line, see Eq.~51!#, we decide that the filtered output is not normal
distributed and, therefore contains a transient which has to be removed~this is indicated by dots at the top of the graph!. The final net effect
of the operation is that of time variant filtering of the input data. The corresponding~time varying! transfer function is represented in~d!: the
regions indicated with dark colors are parts of the time-frequency plane where the data are selected and removed from the inp~i.e., it
corresponds to the time-frequency ‘‘band’’ pass of the filter!. Comparing the spectrograms@21# @see Eq.~53! for a definition# in ~b! and~f!
respectively of the input and output~e! signals, we observe that the three transients are progressively removed from the input~dark regions
represent large values of the time-frequency energy density!.
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where three different reference timestc are given and the
equivalent time duration isT5200 ms~giving a frequency
bandwidth ofD f '1/T55 Hz andQ[ f 0T'10 cycles!.

Figure 4 describes the application of the denoising al
rithm configured withd55 sampling periods~equal to 25
ms! D f min53 Hz, andP050.01. It can be seen that th
algorithm operates better on the transient encountered
in the data train than its predecessor. The explanation is
a transient duration is too short for the filter to reach
steady state but, when it encounters the next transient,
filter benefits from the distance tow* previously covered,
thus improving the convergence towards optimality.

This can be verified with a time-frequency representat
@16# of the output signal such as Fig. 4, where we ha
chosen the spectrogramSx

h@n,m#[uFx
h@n,m#u2 defined as the

squared modulus of the short-time Fourier transform :

Fx
h@n,m#[(

k
xnhk2ne22p inm, ~53!

wherenP@1,2, . . . ,N#, mP] 21/2 . . .1/2] andhk is an ar-
bitrary window ~a Gaussian window here!.
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Notice that real time and frequency coordinates can
retrieved through the relationst5n/ f s and f 5m fs .

B. Results on Caltech 40 m prototype data

Here we have applied the algorithm to the Caltech 40
prototype data taken in October 1994@11#. This data was
recorded with a sampling frequency off s59.86 kHz. We
have used the calibrated strain signal@17# ~relative arm
length measurement! for applying our algorithm.

We tile the complete spectrum intop532 frequency sub-
bands of approximately 154 Hz each. Each subband enc
ters typically one or two long-term sinusoidal interference

We have chosen the prediction depth to bed55 sampling
periods, which corresponds to a delay ofpd/ f s'16 ms in
real time. The correlation time of the broadband noise
effectively smaller in each subband except at the extremi
of the spectrum where the steep slope of the spectrum d
not allow us to assume the background noise to be loc
white. It only affects the first and last subbands which are
too important for detection purposes.

In the first stage, we have chosenhnoise50.01 @giving
N5200 according to Eq.~46!# andhsig50.01. In the second
4-10
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FIG. 5. Illustration of the denoising procedure on Caltech prototype data. In subband 5~between 617 Hz and 771 Hz!, the signal@17#
~the data were taken on October 14, 1994, frame 2! in ~a! contains two power line harmonics~at 660 Hz and 720 Hz!, which are seen as
darkened horizontal lines in the spectrogram@see Eq.~53!# in ~b!. We apply ALE the first time to suppress long-term components~c! with
corresponding spectrogram~d!. A second run~g! supervised by the criterion~51! detailed in~e! and~f! @see similar plots in Figs. 4~c! and
4~d! for explanation# eliminates artifacts of shorter duration~such as fast fluctuations in the harmonic envelope!. Note that the spectrogram
~h! of the final signal presents a homogeneous energy density both in time and frequency directions~as expected for stationary broadban
noise!.
042004-11
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FIG. 6. ‘‘Caltech signal
only’’: comparison between
power spectra of ALE input-
output signals. The figure depicts
power spectra of the Caltech 4
meter signal~top! in the operating
frequency band, between 200 H
and 1.3k Hz and the same sign
after denoising~bottom!.
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stage of ringdown removal, the minimum filter bandwid
has been fixed toD f min53 Hz, which gives a filter withN
5100 tap-weight coefficients@see Eq.~49!# and we have se
P050.01 for the Gaussianity test.

We have performed two types of simulations.
04200
A ‘‘Caltech signal only’’ simulation to measure improve
ments after denoising : we check first, whether the freque
peaks are removed from the noise power spectrum and
ondly, whether the noise statistics is closer to Gaussian t
before denoising.
-

r
z

in
ell
e

FIG. 7. ‘‘Caltech signal
only’’: comparison between histo
grams of ALE input-output sig-
nals. The probability density func-
tions of the Caltech 40 mete
signal selected between 200 H
and 1.3 kHz~left column! and the
same signal after denoising~right
column! have been estimated with
histograms~top row!. The bottom
row shows the same histograms
special axes where a Gaussian b
curve appears as a straight lin
~i.e., ‘‘probability paper’’!.
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ADAPTIVE FILTERING TECHNIQUES FOR . . . PHYSICAL REVIEW D 63 042004
FIG. 8. ‘‘Caltech1inspiral’’ signal : matched filter response before and after denoising. The Newtonian approximation of a gravitation
wave emitted from an inspiraling binary~each with mass 1.4 solar masses, at a distance of 2 kpc and coalescence time fixed tot50) and
a simulated transient@Eq. ~52! with frequencyf 05700 Hz, durationT'0.8 s and arrival timetc'20.3 s# have been added to the Caltec
interferometric prototype data. Top row plots show this signal~a! and its corresponding version after denoising~b! which have been selecte
and whitened within the frequency band from 200 Hz~i.e., the lower frequency bound of the observation window! to 1.3 kHz ~i.e., the
predicted frequency for the last stable circular orbit of the binary!. The matched filter technique applied to detect the inspiral wavefo
shows in both cases@e.g., without~c! and with ~d! denoising# a peak at timet50 in their detector responses~the normalization so chose
that ‘‘noise only’’ detector fluctuations are of unit variance!. Note also that the effect of the spurious transient in the detector outpu
disappeared when denoising is used.

FIG. 9. ‘‘Caltech1inspiral’’ signal : zoomed view before and after denoising. As a complementary check, these diagrams present
corresponding labels, a zoomed view at the coalescence timet50 of the signal in Figs. 8~a! and 8~b!. We have superimposed on it~in bold!
the inspiral signal as it would appear in the noise free case. Both~noisy and noise free! signals are selected in the frequency bandwid
between 600 Hz and 1500 Hz and have been whitened using Welch estimate of the noise spectral density. Although the interpr
these graphs is difficult where the inspiral signal is below the noise level, we verify that, outside this region~meaning, for the last cycles o
the inspiral waveform!, the observed signal and the template waveform are of the same amplitude and more importantly, evolve
same phase.
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A ‘‘Caltech1inspiral’’ simulation to evaluate the conse
quences of the denoising algorithm on gravitational wa
detection; specifically, for the case of the inspiralling co
pact binary signal. The question here is to check whether
denoising operation has removed a significant part or e
whole of the inspiral signal.

Caltech signal only.Eleven of the thirty-two frequency
subbands (129, 11 and 17) are selected and sent to the fi
cleaning step of the algorithm. In these subbands, we
tained the following mean values forA'1.5310216 and s
'3.6310217 ~the sinusoid amplitudeA equals approxi-
mately 1 to at most 5 times the noise standard deviations)
leading to typical values for the signal-to-noise ratio of ab
SNR5A2/(2s2)'8.7(9.4dB) and for the step gain param
eter@see Eq.~48!# of mNA2/2'0.04 ~spanning from 0.01 to
0.14).

The complete set of subband signals is processed in
second step. The typical noise variance estimate iss51.35
310217 ~from 4.8310218 to 10216) leading according to Eq
~50! to values ofmNs2 which span the range of values fro
0.07 to 1024.

Figure 5 illustrates how the algorithm operates in the fi
frequency subband~from 617 Hz to 771 Hz! among thep
532 ones being processed. This frequency band cont
two power line harmonics~the 11th at 660 Hz and the 12th
720 Hz!.

Figures 6 and 7 show respectively comparisons betw
the power spectra and histograms of the signal before
after denoising. We observe that after denoising, the
quency peaks have been removed from the input signal
the histogram appears much closer to the Gaussian
curve.

Caltech signal1 inspiral waveform.The purpose of this
test is to evaluate how the cleaning operation affects gr
tational wave detection and in particular to make s
whether a significant part of the gravitational signature co
be removed from data. Answering this question by analyt
means is difficult, however a qualitative rational in the ca
of inspiral binaries can be made and verified with simu
tions.

The theory predicts@18# that the gravitational waves emi
ted from inspiralling binaries of neutron stars are oscillat
waveforms whose frequency evolves in time in a prescri
manner and scans the interferometer bandwidth from lo
end to the higher.

Their weak amplitude and short time duration within
single subband~in the case we have considered, less tha
second! make them ‘‘invisible’’ to the ALE filter. The am-
plitude and the duration of the gravitational wave signal
simply not large enough for the ALE coefficients to conver
onto the gravitational wave instantaneous frequency.

To check the validity of this argument, we consider t
signal obtained by summing together the Caltech signal,
inspiralling ‘‘chirp’’ waveform in the Newtonian approxima
tion @18# of a neutron star binary~each object having a mas
of M51.4 solar masses, and located at a distance
r 52 kpc from the Earth! and a simulated transient of larg
amplitude@similar to Eq.~52! with frequencyf 05700 Hz,
durationT'0.8 s#.
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Figure 8 depicts a comparison of matched filter detec
responses2 when applied to this signal with and without de
noising. Two conclusions can be given at this point.

The detector output displays a peak of the same he
and at the correct instant, showing that the cleaning al
rithm has not removed the inspiral signal from the data. T
can be crosschecked in Fig. 9 showing a zoomed view of
same signal after denoising.

This particular example shows that the denoising pro
dure is worthwhile since it has removed the effect of t
spurious transient in the matched filter response while ke
ing the actual signal detection peak to a similar value~the
detection threshold can clearly be set to a smaller value w
using the cleaning algorithm!. However, this result has to b
examined carefully: a more complete analysis~based on a
statistical approach rather than on one simple example,
also using realistic transients from the interferometer pro
type! is required in order to conclude on the efficiency of t
presented approach. This will be the subject of further wo

VI. CONCLUDING REMARKS

The originality of the idea of the proposed denoising
gorithm lies in its wide applicability, so that both types
disturbances, long-term sinusoidal and oscillatory transie
~the type of noise which has been ignored till now! can be
treated. Although the question of the computational burd
in applying this algorithm has not quite been addressed h
it appears from the simplicity of the operations involve
~e.g., no requirement such as long-term FFTs! that the total
computational cost should be within acceptable limits,
that the algorithm can be operated in real time. Furtherm
the structure of the algorithm already implemented with M
lab @19# can be easily translated into a parallel code~each
processing node can be associated with one frequency
band and the processing can be done independently!.

As part of future extensions to the present work, so
improvements to the current code might be needed: in o
to limit the finite size effects in the subband decomposit
and reconstruction, a reversible filter bank~e.g., a Gabor
transform! would be preferable than the crude method us
here.

The key idea~i.e., looking for correlation between th
current sample of the strain signal and a reference sig
namely a set of past samples! can be also extended to inve
tigate correlations of the detector output with other enviro
mental channels by simply using them as a reference ra
than the strain signal itself. Similarly to the cross-talk r
moval in @20# but with adaptive methods, such an algorith
would provide an estimation of any poorly known~linear!
transfer functions relating noise sources to their final leak
in the detector output and of the environmental contami
tion that must be subtracted from the data, if so desired.

2See, e.g.,@7# for a practical definition of the matched filter. In ou
case, the input signal is whitened using a Welch estimate of
noise spectral density over a ‘‘noise only’’ stretch of data.
4-14
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