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Excess power statistic for detection of burst sources of gravitational radiation
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We examine the properties of an excess power method to detect gravitational waves in interferometric
detector data. This method is designed to detect short-duration (&0.5 s! burst signals of unknown waveform,
such as those from supernovae or black hole mergers. If only the bursts’ duration and frequency band are
known, the method is an optimal detection strategy in both Bayesian and frequentist senses. It consists of
summing the data power over the known time interval and frequency band of the burst. If the detector noise is
stationary and Gaussian, this sum is distributed as ax2 ~non-centralx2) deviate in the absence~presence! of
a signal. One can use these distributions to compute frequentist detection thresholds for the measured power.
We derive the method from Bayesian analyses and show how to compute Bayesian thresholds. More generi-
cally, when only upper and/or lower bounds on the bursts duration and frequency band are known, one must
search for excess power in all concordant durations and bands. Two search schemes are presented and their
computational efficiencies are compared. We find that given reasonable constraints on the effective duration
and bandwidth of signals, the excess power search can be performed on a single workstation. Furthermore, the
method can be almost as efficient as matched filtering when a large template bank is required: for Gaussian
noise the excess power method can detect a source to a distance at least half of the distance detectable by
matched filtering if the product of duration and bandwidth of the signals is&100, and to a much greater
fraction of the distance when the size of the matched filter bank is large. Finally, we derive generalizations of
the method to a network of several interferometers under the assumption of Gaussian noise. However, further
work is required to determine the efficiency of the method in the realistic context of a detector network with
non-Gaussian noise.

DOI: 10.1103/PhysRevD.63.042003 PACS number~s!: 04.80.Nn, 07.05.Kf, 95.55.Ym
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I. INTRODUCTION AND SUMMARY

A. Background and motivation

The inspiral, merger, and ringdown of binary black ho
systems may be the most important source of gravitatio
radiation for detection by the kilometer-scale interferome
gravitational wave detectors such as the Laser Interferom
ric Gravitational Wave Observatory~LIGO! @1# and VIRGO
@2,3#. The importance of these sources is twofold@4#:

~1! A large amount of gravitational radiation is expect
to be emitted by the merger of two black holes. For interm
diate mass (;10M (21000M () black hole binaries this
radiation will be in the frequency band of highest sensitiv
for LIGO and VIRGO.1 These sources should therefore
amongst the brightest in the sky, and visible to much gre
distances than other sources. The detection rate for coa
ing binary black holes could therefore be higher than for a
other source.

1While the relative abundance of such systems is still a very o
question, we are encouraged by two recent developments in
astrophysics literature:~i! evidence suggesting that black holes
this mass range may exist@5,6# and~ii ! a globular cluster model tha
suggests LIGO I may expect to see about one black hole coa
cence event during the first two years of operation@7#.
0556-2821/2001/63~4!/042003~20!/$15.00 63 0420
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~2! The radiation emitted from the merger of black hol
probes the strong field regime of a purely gravitational s
tem. This radiation should therefore provide a sensitive
of general relativity.

These benefits can only be realized, however, if the gra
tational radiation from black hole mergers can be detecte

The best understood and most widely developed te
nique for detection of gravitational waves with interferome
ric detectors is matched filtering@8,9#. Matched filtering is
the optimal technique if the entire waveform to be detecte
accurately known in advance~up to a few unknown param
eters!. Unfortunately, the gravitational radiation from blac
hole mergers results from highly non-linear self-interacti
of the gravitational field. This makes it extremely difficult t
obtain gravitational waveforms. Efforts to do so have m
with only limited success thus far. Binary black hole merge
will therefore not be amenable to detection by matched
tering, at least for the first gravitational wave searches in
2002-2004 time frame.

Similarly, there are other classes of sources, such as c
collapse of massive stars in supernovae, or the accretion
duced collapse of white dwarfs, for which the physics is t
complex to allow computation of detailed gravitation
waveforms. For these sources, as for binary black hole m
ers, we must seek alternative signal detection metho
These methods are often called ‘‘blind search’’ methods.

One class of search methods is based on time-freque
decompositions of detector data.~For an exploration of a
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ANDERSON, BRADY, CREIGHTON, AND FLANAGAN PHYSICAL REVIEW D63 042003
variety of other methods, see Ref.@10#.! Time-frequency
strategies have become standard in many other areas o
nal analysis@11#. There is also a growing literature on th
application of time-frequency methods to gravitation
waves@12–19,10,20,21#. For binary black hole mergers, it i
possible to make crude estimates of signals’ durations
frequency bands@4#, although these estimates need to
firmed up and refined by numerical relativity simulation
This suggests that one should look only in the relevant tim
frequency window of the detector output.

Flanagan and Hughes@4# ~FH! have suggested a particula
time-frequency method for blind searches. The method u
only knowledge of the duration and frequency band of
signal: one simply computes the total power within this tim
frequency window, and repeats for different start times. T
method detects a signal if there is more power than one
pects from detector noise alone. Thus, we call it theexcess
powersearch method. Similar methods have been discus
elsewhere in the gravitational wave literature. Schutz@22#
investigated the method in the context of the cro
correlation of outputs from different detectors. An autoc
relation filter for unrestricted frequencies was published
Arnaudet al. @10,23# shortly after and independently of FH
A generalization of the excess power filter has also b
discussed in the signal analysis literature@24#, where it has
recently been ‘‘attracting considerable interest’’@25#. Finally
a method closely related to the excess power method
recently been explored by Sylvestre@26#.

The excess power method distinguishes itself for the
tection of signals of known duration and frequency band
a single compelling feature: in the absence of any ot
knowledge about the signal,the method can be shown to b
optimal. Furthermore, it can be shown that for mergers o
sufficiently short duration and narrow frequency band, it p
forms nearly as well as matched filtering.

The essence of the power filter is that one compares
power of the data in the estimated frequency band and for
estimated duration to the known statistical distribution
noise power. It is straightforward to show that if the detec
output consists solely of stationary Gaussian noise,
power in the band will follow ax2 distribution with the
number of degrees of freedom being twice the estima
time-frequency volume~i.e., the product of the time duratio
and the frequency band of the signal!. If a gravitational wave
of sufficiently large amplitude is also present in the detec
output, an excess of power will be observed; in this case,
power is distributed as a non-centralx2 distribution @27#
with non-centrality parameter given by the signal power. T
signal is detectable if the excess power is much greater
the fluctuations in the noise power which scales as
square-root of the time-frequency volume. Thus, the viabi
of the excess power method depends on the expected d
tion and bandwidth of the gravitational wave as well as on
intrinsic strength. For instance, the method is not competi
with matched filtering in detecting binary neutron star
spirals, since the time-frequency volume for such signal
very large,*104.

To implement this method, one needs to decide the ra
of frequency bands and durations to search over. For in
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LIGO, the most sensitive frequency band is;100–300 Hz,
and it makes sense to search just in this band. For bin
black hole mergers, signal durations might be of order t
or hundreds of milliseconds, depending on the black h
masses and spins@4#. Thus, the time-frequency volume of
merger signal can be as large as;100, and its power would
need to be more than one tenth as large as the noise p
for detectability with the excess power method.

One can also establish operational lower bounds on
time durations and frequency bands of interest. Because
largest operational frequency bandwidth is 200 Hz for
initial LIGO interferometers, the shortest duration of sign
that need be considered is 5 ms~for a minimum time-
frequency volume of unity!. Similarly, for a maximum dura-
tion of 0.5 s, the smallest bandwidth that needs to be con
ered is 2 Hz. The excess power in any of the allow
bandwidths and durations can thus be obtained by ju
ciously summing up power that is output from a bank of o
hundred 2 Hz band-pass filters~spanning the 200 Hz of pea
interferometer sensitivity! for the required duration.

Having established the statistic and its operational ra
of parameters, the following simple algorithm for imple
menting the excess power method emerges naturally:

~1! Pick a start timets , a time durationdt ~containingN
data samples!, and a frequency band@ f s , f s1d f #.

~2! Fast Fourier transform~FFT! the block of ~time do-
main! detector data for the chosen duration and start tim

~3! Sum the power in each of the; one hundred 2 Hz
bands spanning the peak sensitivity region of the detecto

~4! Further sum the power in the 2 Hz bands which c
respond to the chosen frequency band.

~5! Calculate the probability of having obtained th
summed power from Gaussian noise alone using ax2 distri-
bution with 23dt3d f degrees of freedom.

~6! If the probability is significant, record a detection.
~7! Repeat the process for all allowable choices of s

times ts , durationsdt, starting frequenciesf s and band-
widths d f .

This procedure, which must be repeated for every p
sible start time, can lead to moderately-large computatio
requirements. We find that the computational efficiency
this implementation, which we call the short FFT algorith
can be improved upon by considering data segments m
longer than the longest signal time duration. In this ca
after summing over the chosen band, we must FFT the d
back into the time domain. This implementation, which w
call the long FFT algorithm, is more efficient by at least
factor of ;4 over the parameter space of interest.

The most significant drawback of the filter outlined abo
is that thex2 statistic is appropriate only to Gaussian nois
Real detector noise will contain significant non-Gauss
components. There are likely to be transient bursts of br
band noise that have characteristics very similar to bl
hole merger signals.

The non-Gaussianity of real detector noise leads us to
considerations. First, like most blind search methods, the
cess power method will likely be a useful tool for charact
izing and investigating the non-Gaussian components of
noise. In particular, it can provide a simple and automa
3-2
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EXCESS POWER STATISTIC FOR DETECTION OF . . . PHYSICAL REVIEW D 63 042003
procedure for garnering statistical information about no
bursts. This is a useful and important feature of the exc
power method, even though we focus almost exclusively
signal detection in this paper. Second, since the method
not distinguish between noise bursts and signals in any
detector, it will be essential to use multiple-detector versio
of the power statistic for actual signal detections. In Sec
we derive the optimal multi-detector generalization of t
excess power statistic under the assumption of Gaus
noise. It will be important in the future to generalize th
analysis to allow for~uncorrelated! non-Gaussian noise com
ponents in individual detectors.

The layout of this paper is as follows: in Sec. I B w
begin with an overview of the filter and some of its prope
ties. This is done with an eye toward implementation, so t
readers whose primary interest is in applying the filter ne
not concern themselves with mathematical aspects of the
tistical theory of receivers. Subsequently we discuss pro
ties of the excess power statistic in Sec. II, its derivat
from a Bayesian framework in Sec. III, an efficient impl
mentation of the statistic in Sec. IV, and the generalization
the power statistic to multiple detectors in Sec. V.

B. Overview

The output h(t) of the gravitational wave detector i
sampled at a finite rate 1/Dt to produce a time serieshj
5h( j Dt), where j 50,1,2, . . . . This output can be writte
as

hj5nj1sj ~1.1!

wherenj is the detector noise andsj is a ~possibly absent!
signal. For most of this paper we assume that the nois
stationary and Gaussian. Under these assumptions, the
ponents of the Fourier transform of a segment containinN
samples of noise,

ñk5 (
j 50

N21

nje
2p i jk /N, ~1.2!

can be taken to be independent~we discuss the extent t
which this is true in Sec. IV!. The one-sided power spectru
Sk of the noise is defined by

^ñkñk* &5 1
2 Sk . ~1.3!

Here,^•& indicates an average over the noise distribution a
* denotes complex conjugation.

Consider a situation where all possible signals hav
fixed time durationdt and are band-limited to a frequenc
band@ f s , f s1d f #, but no other information is known abou
them. Then, as we show in Sec. III theoptimal statistic for
detection of this class of signals is theexcess power statisti

E54 (
k1<k,k2

uh̃ku2/Sk . ~1.4!

The sum in Eq.~1.4! is over the positive frequency compo
nentsk1<k,k2 that define the desired frequency band. T
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number of frequency components being summed is there
equal to the time-frequency volumeV5dt d f 5k22k1.

In practice, we search over every time-frequency wind
that is consistent with arangeof possible time durations an
bandwidths. The number of such windows per start time

Nwindows5
1
2 Nchannels~Nchannels11!~Nmax2Nmin11!

~1.5!

whereNmax5dtmax/Dt is the number of samples in the long
est expected signal durationdtmax, and Nmin5dtmin /Dt.
Here Nchannels5d f max/d f min is the ratio of the largest band
width searched overd f max to the shortest bandwidthd f min .
One strategy for this search was outlined above. A flowch
for this algorithm is presented in Fig. 1. We call this alg

FIG. 1. A flow chart for the short FFT algorithm for the powe
filter.
3-3
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ANDERSON, BRADY, CREIGHTON, AND FLANAGAN PHYSICAL REVIEW D63 042003
rithm theshort FFT method. We have also considered a se
ond algorithm which we call thelong FFT method, and its
flowchart is shown in Fig. 2.

Under the conditions that~i! the numberM of time do-
main data points being filtered is large and~ii ! one searches
over many different time-frequency volumes, the long F
method is computationally more efficient than the short F
method: the long FFT eliminates the redundancy of Fou
transforming data more than once when it falls into overl
ping time-frequency volumes. In Sec. IV we estimate
computational costs of the two methods. We find that
short FFT method requires

Cshort.
V2

2amax
S 3 log2V

amax
1

V

3 D ~1.6!

FIG. 2. A flow chart for the long FFT algorithm for the powe
filter.
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floating-point operations per start time whereV
5dtmaxd f max is the maximum time-frequency volume an
amax5d f maxDt is the maximum dimensionless bandwidt
~The frequency band from DC to Nyquist corresponds
amax5

1
2 .! The long FFT method requires only

Clong.amax
21 V2 ln V ~1.7!

floating-point operations per start time; the computatio
improvement is a factor of

Cshort

Clong
;

3

2 ln 2

1

amax
1

1

6

V

ln V
. ~1.8!

The first term shows that there is at least a factor of;4 to be
gained by the long FFT method; in addition to this, the co
putational gain increases with the total time-frequency v
ume to be searched. ForV5100, the value of the secon
term is also;4.

Having computed the total power for the various tim
frequency windows of interest, one must decide which
any, of those windows might contain a signal. A signal
creases the expected power in a window, so we seek w
dows containing a statistically significant excess of power
one knows the distribution of the noise data, one can de
the distribution for the noise power and thus set detect
thresholds on the power.

The powerE is distributed as ax2 distribution with 2V
degrees of freedom in the absence of a signal. When a si
is present,E is distributed as a non-centralx2 distribution
with 2V degrees of freedom@27#, where the non-central pa
rameter is the signal powerA2:

A254 (
k1<k,k2

us̃ku2/Sk . ~1.9!

The quantityA also represents the signal-to-noise ratio th
one would expect to achieve if a matched filter were used
detect the signal.

In Fig. 3 we show the central and non-centralx2 distri-
butions for several choices of parameters. It is straightf
ward to use thex2 distributions plotted in Fig. 3~a! to set a
frequentist threshold for the excess power statistic so th
desired false alarm probability is achieved; then the fa
dismissal probability can be computed as a function of sig
amplitude using the non-centralx2 distributions plotted in
Fig. 3~b!. Alternatively, one can fix both false alarm an
false dismissal probabilities, and then use thex2 and non-
centralx2 distributions to determine the expected signal-
noise ratio~A! of the signal which achieves these probab
ties. A curve demonstrating this for a false alarm probabi
of 1029 and false dismissal probability of 0.01 is shown
Fig. 3~c!.

A derivation of the statistical properties of the exce
power statistic~both with and without a signal! can be found
in Sec. II. In Sec. III we show that the method is optimal a
unique under suitable assumptions using a Bayesian anal

The excess power statistic requires minimal informat
about the signals to be detected, making it a useful stat
3-4
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EXCESS POWER STATISTIC FOR DETECTION OF . . . PHYSICAL REVIEW D 63 042003
for poorly modeled sources. Nevertheless, it is useful
compare the detection efficiency of the method to that
matched filtering. We characterize the excess power filte
the time-frequency volumeV and the matched filter bank b
the numberNeff of effectively independent filters. For give
false alarm and false dismissal probabilities, we denote
amplitude of the weakest signals detectable using the ex
power filter or a bank of matched filters byAmin

EP and Amin
MF

respectively. Therelative effectivenessh of the two search
methods is given by the ratio of these amplitudes:h
5Amin

EP /Amin
MF . In other words, the excess power statistic c

detect a source at a fractionh of the distance to which a ban
of matched filters can. The relative effectivenessh is plotted
as a function of the time-frequency volumeV and the num-
ber of templatesNeff is shown in Fig. 4. This figure show
that for time frequency volumesV less than;100, and for
all values of the effective number of templatesNeff , the
relative effectivenessh is greater than 1/2.

II. THE SEARCH METHOD IN A SINGLE
INTERFEROMETER

In this section we define the search method in the con
of a single interferometer, and derive its operating charac
istics from the frequentist statistical framework.

A. Definition of method for a single time-frequency window

Consider stretches of discretely sampled detector dah
5$h0 ,h1 , . . . ,hN21% consisting ofN data points. We will

FIG. 3. Cumulative probability functions for~a! thex2 distribu-
tion and~b! the non-centralx2 distribution for various degrees o
freedom 2V. The curves in~a! give the probability that the powerE
exceeds a thresholdE ! when no signal is present. They can be us
to fix the threshold given the time-frequency volumeV and the
desired false alarm probability. The curves in~b! give the probabil-
ity of detecting a signal whose power isA2 in the time-frequency
volume V and given a thresholdE !, where the thresholdE ! is
chosen to give a false alarm probability of 0.01.~c! The signal-to-
noise ratioA2 necessary to achieve a given false alarm probab
~FA! and a false dismissal probability~FD! of 0.01 for various
values of the number 2V of degrees of freedom.
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denote byV the N-dimensional vector space of all such da
stretches. We assume that the detector output consists
stationary, zero-mean, Gaussian noise componentnj , plus a
possible signalsj , so thathj5nj1sj . Under these assump
tions, the statistical properties of the noise are character
by theN3N correlation matrix

Ri j [^ninj&5Cn~ u i 2 j uDt !. ~2.1!

HereCn(t) is the correlation function of the noise andDt is
the sampling time. This correlation matrix determines a na
ral inner product onV given by

~a,b!5 (
i , j 50

N21

aiQi j bj , ~2.2!

whereQ5R21.
We now discuss the notion of time-frequency projectio

Consider the time-frequency window

T5$ts ,dt, f s ,d f % ~2.3!

defined by the frequency interval@ f s , f s1d f #, wheref s is a
starting frequency andd f is a bandwidth, and the time inter
val @ ts ,ts1dt#, wherets is a starting time anddt is a dura-
tion. Suppose that we want to focus attention on that port
of the data that lies inside the time-frequency windowT, to

y

FIG. 4. The relative effectivenessh of the excess power metho
with respect to matched filtering, for the case where the tim
frequency window is known in advance, as a function of the eff
tive number of independent templatesNeff characterizing the spac
of signals being sought, and the time-frequency volumeV. A false
alarm probability corresponding to one false alarm per one hund
days of observation~taken to have 1.7283109 independent arrival
times!, and a correct detection probability of 0.99 were assum
The quantityh is the ratio of the minimum signal amplitude that
required to achieve these false alarm and dismissal probabilitie
the excess power method, to the corresponding minimum ampli
for the matched filtering method. The loss in event rate due emp
ing the excess power method rather than matched filtering ish3.
This plot can be generated by combining Eqs.~2.24!, ~2.29!, ~2.30!
and ~2.31! of the text.
3-5
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ANDERSON, BRADY, CREIGHTON, AND FLANAGAN PHYSICAL REVIEW D63 042003
the extent that this is meaningful. One obvious thing to do
to truncate the data in the time domain, perform a discr
Fourier transform into the frequency domain, and then thr
away the data points outside the frequency band of inter
One then obtains the quantities

H̃K5 (
J50

Nt21

e2p iJK/Nthj 1J , ~2.4!

where j 5ts /Dt, Nt5dt/Dt, and K runs over the range
f sdt<K<( f s1d f )dt. We denote byWT the vector space o
the projected dataH̃K . The dimension of this vector spac
over the real numbers is

dimWT 52dtd f 52VT , ~2.5!

whereVT[dtd f is the time-frequency volume of the time
frequency windowT.

Of course, there are many other methods of attemptin
pick out the portion of the data in the time-frequency w
dow T.2 The lack of a preferred unique method is due to
uncertainty principle. In many circumstances the differen
between different reasonable choices will be relatively un
portant. For the remainder of this section we will assume t
we have picked some reasonable projection method.3 We can
write the projected data in general as

h̄J5 (
j 50

N21

AJ
j hj , ~2.6!

whereAJ
j is a real 2VT 3N matrix, the quantitiesh̄J are real,

andJ runs over 0<J<2VT21.
We define the power statistic associated withT and with a

choice of projection method to be

ET ~h![ (
I ,J50

2VT 21

QIJh̄I h̄J , ~2.7!

where(JQIJRJK5d IK and

RJK5^h̄Jh̄K&5(
j ,k

AJ
j AK

k Rjk ~2.8!

is the correlation matrix of the projected data. The quantitE
is, roughly speaking, just the total power in the data stre
within the given time-frequency window, where power is n
the physical power but is measured relative to the dete
noise~i.e., it is the conventional power of the pre-whiten
data stream!.

2For example, one could FFT the entire data segment, trunca
in the frequency domain, FFT back to the time domain, and t
truncate it again in the time domain.

3The choice of a projection method corresponds mathematical
the choice of a 2VT -dimensional subspace of the dual spaceV * of
V. When one specifies in addition the detector noise spectrum
projection method determines a 2VT dimensional subspace ofV.
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The statistic can also be described geometrically as
lows. The linear mapping defined by Eq.~2.6! has a kernel

$hi uh̄I50 for all I %. The set of all vectorsh perpendicular to
all elements of this kernel with respect to the inner prod
~2.2! form a subspaceVT of V which can be naturally iden
tified with WT . Any elementh in V can be decomposed a

h5hi1h' , ~2.9!

wherehi lies in VT andh' is perpendicular to all elements o
VT . The statistic~2.7! is the squared norm of the paralle
component:

ET ~h!5~hi ,hi!. ~2.10!

For the simple time-frequency truncation method~2.4!
discussed above, one can obtain a simple approximate
mula for the statistic. The correlation matrix of the quantiti
H̃J of Eq. ~2.4! is given by, to a first, crude approximation

^H̃J H̃K&50, ~2.11!

^H̃J H̃K* &5 1
2 dJK SK , ~2.12!

where 0<J,K<Nt/2,

SK5dt Sh~K/dt !/~Dt !2 ~2.13!

andSh( f ) is the conventional one-sided power spectral d
sity of the detector noise. The expressions~2.11! and ~2.12!
are accurate only whenf sdt@1 and whenSh( f ) does not
vary substantially on scales;1/dt; more accurate expres
sions can be computed if desired from Eqs.~2.1! and ~2.4!.
The definition~2.7! now yields

ET ~h!'4 (
K5 f sdt

( f s1d f )dt

uH̃Ku2/SK , ~2.14!

cf. Eq. ~1.4! of the Introduction. We show in Sec. IV below
that the expression~2.14! is an adequate approximation t
ET (h) for most purposes.

The search method consists of searching over tim
frequency windowsT, and selecting as possible events on
those windowsT for which ET exceeds a suitable thresho
E !. We discuss further how to search over time-frequen
windows in Sec. IV below. For the remainder of this secti
we assume that the time-frequency windowT is fixed and
known, and discuss the performance of the statistic.

B. Operating characteristics of the statistic

When a signal is not present in the data stream, the
tistic E[ET (h) is the sum of the squares of 2V independent,
zero-mean, unit-variance Gaussian random variables.4 Thus
it

n

to

he

4To see this, note that there is a basis ofWT in which the corre-
lation matrixRJK is equal to the 2V32V identity matrix, and use
Eqs.~2.7! and ~2.8!.
3-6
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E follows a x2 distribution with 2V degrees of freedom; th
upper-tail cumulative probability is

Q0~E !!5P~E.E !!5
G~V,E !/2!

G~V!
, ~2.15!

where G(a,x)5*x
`e2tta21dt is the incomplete Gamma

function. The quantityQ0(E !) is the false alarmprobability
for the detection thresholdE !. The distribution~2.15! is plot-
ted in Fig. 5 for several values ofV. An approximate expres
sion for Q0 in the regimeQ0!1 is @27#

Q0~E !!5A2V

p

1

A!
2 S 11

A!
2

2VD V

e2A!
2/2

3F11OS 1

VD1OS 1

A!
2D 1OS V

A!
4D G , ~2.16!

whereA!
2[E !22V.

We next consider the case when a signal is present, so
h5n1s. The formula for the statisticE given by Eqs.~2.6!
and ~2.7! becomes

E5 (
I ,J50

2V21

QIJ~ n̄I1 s̄I !~ n̄J1 s̄J!, ~2.17!

where n̄I5( jAI
jnj is the projected noise ands̄I5( jAI

jsj is

FIG. 5. The probabilityP(E.E !u0) of obtaining a value ofE
greater than a given thresholdE !, for stationary Gaussian noise i
the absence of a signal, as a function ofE !. The quantityE has ax2

distribution with 2V degrees of freedom, whereV is the time-
frequency volume~2.5! of the signal being sought. The lines sho
theoretical curves generated according to the standardx2 formula
~2.15!. The data points represent values obtained from Monte C
simulations~described in Sec. IV A!, where the noise is Gaussia
and white~circles! or colored~triangles!.
04200
at

the projected signal. We define the amplitudeA of the signal
by5

A25~si ,si!5 (
I ,J50

2V21

QIJs̄I s̄J , ~2.18!

where we use the notation of Eq.~2.9!. The expression~2.17!
can be simplified by~i! choosing the basis ofWT so that
QIJ5d IJ ~which is roughly equivalent to whitening the de
tector output for a large class of time-frequency window!
and ~ii ! further specializing the choice of basis so that t
signal vector is (s̄0 ,s̄1 , . . . ,s̄2V21)5(A,0, . . . ,0). The re-
sult is

E5~ n̄01A!21 (
I 51

2V21

n̄I
2 ~2.19!

where n̄0 ,n̄1 , . . . ,n̄2V21 are independent Gaussian rando
variables with zero mean and unit variance.

From Eq.~2.19! one can compute the moment generati
function for the random variableE. The result is

^etE&5
exp@A2t/~122t !#

~122t !V
. ~2.20!

The probability distribution forE can be now obtained by
taking the inverse Laplace transform, which is accomplish
by expanding the argument of the exponential in Eq.~2.20!
as a power series inA. The result is a weighted sum ofx2

probability distribution functions:

p~EuA,V!5 (
n50

`
e2A2/2~A2/2!n

n!

e2E/2~E/2!n1V21

G~n1V!
.

~2.21!

This is the non-centralx2 probability distribution with non-
centrality parameterA2 discussed in Sec. 26.4 of Ref.@27#. A
closed form expression for the probability distribution is@28#

p~EuA,V!5 1
2 e2(E1A2)/2~E 1/2/A!V21I V21~AE 1/2!,

~2.22!

whereI n(x) is the modified Bessel function of the first kin
of ordern.

The upper-tail cumulative probability distribution forE,

QA~E !,A,V!5P~E.E !uA,V!5E
E !

`

p~EuA,V!dE,

~2.23!

is thetrue detectionprobability for a given thresholdE ! and
a given signal amplitudeA. Figure 6 shows this true detec
tion probability QA , expressed as a function of sign
strengthA and false alarm probabilityQ0 @via Eq. ~2.15!#,
evaluated atQ050.01, for several different values of th
time-frequency volumeV.

5Note thatA is the signal-to-noise ratio that would be obtained
matched filtering if prior knowledge of the waveform shape allow
one to perform matched filtering, and if the signals were confined
to the time-frequency windowT.

lo
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Some qualitative insight into the detectability of a sign
can be obtained from the first two moments of the distrib
tion for E. The expected~mean! value is^E&52V1A2, while
the variance is VarE5^E 2&2^E&254V14A2. For large val-
ues of V the probability distributions are nearly Gaussi
within a few sigma of the expected value, so we can imag
setting the thresholdE ! to be a few timesA4V above the
mean noise level 2V in order to achieve the required fals
alarm probability. Thus, a signal will be detectable whenE
22V.~a few! 3A4V. In other words, the signal powerA2

can besmallcompared to the mean noise power 2V and still
be detectable; it need only be comparable to the m
smaller fluctuations;A4V in the noise power.

Once one specifies the time-frequency volumeV and de-
sired values of the false alarm probabilityQ0 and true detec-
tion probabilitiesQA , there is a minimum signal amplitud
Amin that can be detected with the excess power method
compute this amplitude, one first inverts Eq.~2.15! to obtain
the required thresholdE ! as a function ofQ0 and V: E !

5E !(Q0 ,V). Second, one inverts Eq.~2.23! to obtain the
amplitude A as a function of E !, QA and V: A
5A(E !,QA ,V). The minimum signal amplitude is the
given by

Amin~Q0 ,QA ,V!5A@E !~Q0 ,V!,QA ,V#. ~2.24!

This quantity is plotted as a function of the time frequen
volume in Fig. 3~c!, for various values ofQ0 and for QA
50.99.

FIG. 6. The probabilityP(E .E !uA) of obtaining a value ofE
greater than or equal to a given thresholdE ! given the presence o
a signal of powerA2 and stationary Gaussian noise, for seve
different values of the number 2V of degrees of freedom, as
function of A2. For eachV, the value ofE ! which gives a false
alarm probability ofQ050.01 is used. The lines show theoretic
curves generated according to the standard non-centralx2 formula
~2.23!. The data points represent values obtained from Monte C
simulations @described in Sec. IV A#, where the noise is white
~circles! or colored~triangles!.
04200
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C. Comparison of performance to that of matched filtering

The performance of the excess power statistic should
compared with that of a matched filtering search for the sa
class of signals. Of course, matched filtering searches
not be possible for the classes of signals we are intereste
~for example supernovae! due to the lack of theoretical tem
plates; nevertheless the comparison is useful as benchm
of the excess power method.

We start by discussing how the performance of match
filtering depends on the set of signals being searched
Suppose that a given class of signals have a known dura
and frequency band, so that they all lie inside a fixed tim
frequency windowT with time-frequency volumeV. Let
A!(Q0) be the signal-to-noise ratio threshold for th
matched filtering search necessary to give a false alarm p
ability of Q0 for each starting time. Now if the bank o
matched filters consisted ofN statistically independent fil-
ters, then the thresholdA! would be given by the formula

erfc~A! /A2!512~12Q0!1/N'Q0 /N. ~2.25!

In the more realistic case where the templates are no
statistically independent, the formula~2.25! motivates us to
define an effective number of independent templatesNeff
5Neff(Q0) by the relation6

erfc@A!~Q0!/A2#5Q0 /Neff~Q0!. ~2.26!

This effective number of templates depends on the fa
alarm probability Q0, or, equivalently, on the detectio
thresholdA! via the relationA!5A!(Q0). For a given class
of signals~e.g., inspiralling binaries!, it should be possible to
estimateNeff by a modification of the method of Ref.@29#
wherein one does not eliminate the intrinsic parameters
the signal amplitude and one chooses a minimal match
order ;0.3 say to give approximately statistically indepe
dent templates. We suspect thatNeff will not differ too sig-
nificantly from the actual number of templates used in
search.7 In any case, for a given matched filtering search,
detection threshold and the resulting effective number of
dependent filters will be determined by Monte Carlo simu
tions.

An illustrative special case of matched filtering is wh
the signal manifold is a linear subspaceS of the space of all
possible signals. In this case the maximum over all templa
of the signal-to-noise ratio squared is simply (hi ,hi), where
hi is the perpendicular projection of the detector outpuh

6In Ref. @4# the quantitiesA! , Q0 and Neff were denotedr! ,
e/Nstart-times, andNshapes, respectively.

7The grid of search templates used will be determined by havin
minimal match@29# of ;0.97 say instead of;0.3, which tends to
make the actual number of templates larger thanNeff . On the other
hand, a template grid needs only 2 templates to cover all poss
signal amplitudes and phases~when the other parameters are fixed!,
whereas the number of statistically independent templates that
be generated by varying the amplitude and phase can be m
greater than 2 for smallQ0.

l

lo
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into S @30#. Since this quantity has ax2 distribution, it fol-
lows from the approximate formula~2.16! and from the defi-
nition ~2.26! that for this special case we have

Neff~A!!5
A2d

A!
F11

A!
2

d Gd/2

3F11OS 1

dD1OS 1

A!
2D 1OS d

A!
4D G , ~2.27!

whered5dim(S) is the number of signal parameters. In R
@4# this relation was used to define an effective dimension
any space of signals, and that effective dimension was u
instead ofNeff(Q0) to characterize the signal space. He
however we will instead parameterize our comparisons
rectly in terms ofNeff .

We also note that for this special case of a linear sig
subspace, we have

Neff~A!!'2I s(A!), ~2.28!

whereI s(A!) is the number of bits of information about th
source carried by a detected signal with signal-to-noise r
A!, as defined in Ref.@30#. We conjecture that this relatio
might be approximately valid for general signal manifolds

We now turn to the relative performance of the exce
power and matched filtering search methods. As explaine
the previous subsection, once we specify the false al
probability Q0 and true detection probabilityQA we can
compute the minimum signal amplitudeAmin necessary for
detection via the excess power method, as a function ofQ0 ,
QA andV. Let us denote that value here asAmin

EP :

Amin
EP 5Amin~Q0 ,QA ,V!. ~2.29!

Similarly, we can compute the minimum amplitude nec
sary for detection with matched filtering withNeff indepen-
dent templates; the result is

Amin
MF5Amin~Q0 /Neff ,QA,1/2!. ~2.30!

In other words, one simply uses the same formula withQ0
replaced byQ0 /Neff , and with the number of degrees o
freedom 2V being unity. We define the relative effectivene
h of the excess power method relative to the bank of filt
by

h~Q0 ,QA ,Neff ,V!5Amin
EP /Amin

MF . ~2.31!

The factor by which the event rate for the excess pow
method is smaller than that for the bank of matched filter
h3. The relative effectiveness is plotted in Fig. 4 as a fu
tion of V andNeff . For V<100 we see thath>0.6 always,
showing that the excess power method performs almos
well as matched filtering.

When the time-frequency windowT is not known in ad-
vance, one must search over time frequency windows. T
reduces the efficiency of the excess power method comp
to matched filtering. An approximate parameterization of t
reduction can be obtained by replacing in Eq.~2.29! the false
04200
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alarm probabilityQ0 by Q0 /Nw , whereNw is the number of
statistically independent time frequency windows searc
over per start time. We have performed Monte Carlo sim
lations with white Gaussian noise which suggest thatNw
&100Vmax, whereVmax is the largest time-frequency vol
ume searched over. The resulting change in the relative
ciencyh is not very large.

Further insight into the relation between the excess po
and matched filtering methods can be obtained as follo
First, an approximate formula for the function~2.24! is ob-
tained by approximating the distribution ofE to be a Gauss-
ian:

Amin~Q0 ,QA ,V!25A!~Q0 ,V!212A2 erf21~2QA21!

3AV1A!~Q0 ,V!2, ~2.32!

whereA!(Q0 ,V) is obtained by inverting Eq.~2.16!. This
formula is typically accurate to a few percent for 0.5&QA
&0.99. WhenQ0!12QA ~which will typically be the case!,
we can neglect the second term in Eq.~2.32! in comparison
with the first, so that

Amin
EP ~Q0 ,QA ,V!'A!~Q0 ,V!. ~2.33!

Second, the quantityAmin
MF(Q0 ,QA) will similarly depend

weakly onQA and will be well approximated by the quantit
A!(Q0) obtained from Eq.~2.26!. Combining these approxi
mations together with Eq.~2.16!, we see that the exces
power method is equivalent~in terms of detection thresh
olds! to matched filtering with an effective number of tem
plates of

Neff5S 11
A!

2

2VD VAV

A!
;S 11

A!
2

2VD V

. ~2.34!

The quantity~2.34! was shown in Ref.@30# to be the total
number of distinguishable signals within the given tim
frequency window with signal-to-noise<A!. In other words,
it is the maximum possible value for the effective number
independent templatesNeff for anymanifold of signals inside
the time-frequency windowVT , as a function of the time-
frequency volumeV. Hence, we can understand the exce
power method as a limiting case of matched filtering: t
case where the manifold of signals becomes so large~per-
haps curving back and intersecting itself! that~when smeared
out by the noise! it effectively fills up the entire spaceVT of
signals within the given time-frequency window. Th
equivalence can also be seen from the fact, noted above,
the excess power statistic coincides with the matched fil
ing statistic when dependence of the signal on its parame
is linear and the number of parameters coincides with
dimension 2V of WT @30#.

III. BAYESIAN ANALYSIS OF SIGNAL DETECTION

In this section we show how our proposed search met
arises naturally from an analysis of the detection of sign
3-9
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from a Bayesian point of view. Section III A defines th
class of signals under consideration in terms of a prior pr
ability density function~PDF!. Section III B derives the ex-
cess power statistic, and Sec. III C compares detection c
ria based on a false alarm rate to criteria based on
probability that a signal is present in the data.

A. The space of signals

The signals of interest~e.g., black hole mergers! are
poorly understood. We characterize our knowledge in te
of a prior PDFp(s) for signalss in the vector spaceV. In this
subsection we explain how to encode knowledge of the
pected bandwidth and duration of the signals in the PDF

Suppose we know that the signals lies approximately
within some time-frequency window T5@ ts ,ts1dt#
3@ f s , f s1d f #, but that nothing else is known about the si
nal. Then we know thats belongs to a subspaceVT of V. Of
course, there are several slightly inequivalent choices of s
a subspace, as discussed in Sec. II A above, but we
assume that these differences are unimportant, and pick
choice ofVT .

For any vectorh in V, we can writeh5hi1h' , wherehi
is the projection ofh into VT andh' is perpendicular toVT .
We assume the following form for the prior PDFp(suT )
given the time-frequency windowT:

p~suT !dNs5d (N22V)~s'! d(N22V)s'3p1~A!d2Vsi ,
~3.1!

whereA25(si ,si) andN is the dimension ofV. Here the first
factor consisting of the (N22V)-dimensionald function re-
strictss to lie in VT . The second factor depends only on t
magnitudeA of si , which means that we assume all dire
tions in the vector spaceVT are equally likely when one
measures lengths and angles with the inner product~2.2!.8

We can rewrite the prior PDF~3.1! as

p~suT ! dNs5d (N22V)~s'! d(N22V)s'

3
G~V!

2pV
d(2V21)V ip~A! dA ~3.2!

where d(2V21)V i is the (2V21)-dimensional element o
solid angle and wherep(A)dA is the probability that the
signal amplitude lies betweenA andA1dA. We discuss the
choice ofp(A) in Sec. III C below.

So far we have assumed that the time interval@ ts ,ts
1dt# and frequency interval@ f s , f s1d f # are known. In a
real search, however, one must account for ignorance
these parameters. An appropriate prior which does this i

p~s! dNs5p~suT ! dNs pT ~T !d4T, ~3.3!

8It would be more realistic to make this assumption with resp
to an inner product onV whose definition did not depend on th
noise spectrum, but if the noise spectrum does not vary too rap
within the bandwidth of interest, the distinction is not too importa
and our assumption will be fairly realistic.
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wherepT (T)5pT (ts ,dt, f s ,d f ) is a prior PDF on the time-
frequency window parameters. The PDFpT (T ) should be
uniform in ts , but its dependence on the parametersdt, f s
and d f will depend on the class of sources under consid
ation. We will see below that our analysis depends o
weakly on the choice of PDFpT (T ), as long as it is a slowly
varying function of its parameters.

B. Derivation of the search method

In the Bayesian approach to signal detection there i
unique and optimal method to search the data stream
signals if the statistical properties of the detector noise
the prior probability distribution for signals are known. On
computes the probabilityps(h) that some signals is present
in the measured datah. The signal-detection criterion is tha
the probabilityps(h) exceeds some threshold value. This
the starting point for our analysis; more details can be fou
in Wainstein and Zubakov@31# or Finn and Chernoff
@32,33#.

The prior PDF given Eqs.~3.2! and ~3.3! describes our
state of knowledge about the signals to be searched for. N
let ps0 denote thea priori probability that gravitational
waves exist~or that our signal model is correct!, for which an
appropriate value for the first searches might beps051/2.
The signal PDF~3.3! then gets modified to

~12ps0!dN~s! dNs1ps0 p~s! dNs. ~3.4!

It then follows that the posterior probabilityps(h) that a
signal is present in the datah is given by

ps~h!

12ps~h!
5L~h!

ps0

12ps0
, ~3.5!

where the likelihood functionL(h) is

L~h!5E L~h;s! p~s! dNs

5E E L~h;s! p~suT !p~T ! dNsd4T ~3.6!

and

L~h;s!5
p~hus!

p~hus50!
. ~3.7!

In Eq. ~3.7! the quantityp(hus) is the probability of measur-
ing the time seriesh when the signals is present, and
p(hus50) is the corresponding probability when no signal
present. For stationary Gaussian noise the likelihood r
L(h;s) is @32#.

L~h;s!5exp@~h,s!2~s,s!/2#. ~3.8!

Equation ~3.5! shows that the probabilityps(h) increases
monotonically with increasingL(h). Consequently, thresh
olding onL(h) to detect signals is equivalent to thresholdi
on the probability that a signal is present in the data stre
This is also the optimal signal detection strategy in t

t
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t
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EXCESS POWER STATISTIC FOR DETECTION OF . . . PHYSICAL REVIEW D 63 042003
Neyman-Pearson sense of maximizing the detection p
ability for a fixed false alarm probability@31,34#.

The integral~3.6! includes an integral over all possib
time-frequency windowsT, which can be approximated as
sum:

L~h!'
1

Nwindows
(T

E L~h;s! p~suT ! dNs. ~3.9!

HereNwindows is the number of grid points in a grid on th
four dimensional space of time-frequency windows used
approximate the integral. Now if a signal is present, the su
mand in Eq.~3.10! will be a sharply peaked function ofT. If
the grid spacing is chosen to approximately coincide with
width of the peak~so thatNwindows is the number of statisti-
cally independent time-frequency windows! then the sum
will be dominated by the largest term, and we obtain

L~h!'
1

Nwindows
max

T
E L~h;s! p~suT ! dNs. ~3.10!

Thus it is sufficient to consider only a single time-frequen
region in the remainder of this section with the understa
ing that the signal detection will be based on the maxim
of the likelihood function over all relevant time-frequenc
windows. Also we can factorNwindows as Nwindows
5NstNw , whereNst is the number of statistically indepen
dent starting timests in the search, andNw is the number of
statistically independent time-frequency windows per s
time.

The evaluation of the integral in Eq.~3.10! with the prior
PDF given by Eq.~3.2! can be done in stages. First we int
grate over the delta-function to restrict the possible signal
the vector spaceVT . This essentially replacess by si in Eq.
~3.8!. Next we use the definition~2.10! of E to write the inner
product appearing in Eq.~3.8! as

~h,si!5AE 1/2cosu, ~3.11!

whereu is the angle between the vectorshi andsi . We then
obtain the formula

L~h!5
1

NstNw
E L~h;A! p~A! dA ~3.12!

with

L~h;A!5
G~V! e2A2/2

p1/2G~V21/2!
E

0

p

eAE 1/2 cosu sin2V22u du

5G~V!e2A2/2~AE 1/2/2!12VI V21~AE 1/2!

5p~EuA,V!/p~EuA50,V! ~3.13!

@cf. Eq.~2.22!#. HereI n(x) is the modified Bessel function o
the first kind of ordern, and maximization over time fre
quency windowsT is understood.

The quantity~3.13! is a monotonically increasing functio
of the powerE. Hence thresholding onL is equivalent to
04200
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thresholding onE, and soE is the optimal~in the Bayesian
sense! statistic for the detection of the class of signals w
have considered.

C. Bayesian thresholds

Frequentist detection thresholdsE ! are set by specifying a
false alarm rate, and can be computed using Eq.~2.15!. As is
well known, if such a threshold is exceeded it does not n
essarily mean that a signal is present with high probabil
even for low false alarm probabilities@35–37#. To determine
how likely it is that a signal is actually present in the da
stream requires the use of Bayesian methods.

For a Bayesian detection strategy, one sets a threshol
the posterior probabilityps(h) that a signal is present give
the data. This probability is related to the likelihood functio
L(h) by Eq. ~3.5!. In general, the integral~3.12! required to
computeL(h) must be performed numerically. SinceL(h)
depends on the datah only throughE(h), one can determine
a Bayesian threshold forE from the value ofps .

Consider a search characterized byNst statistically inde-
pendent start times andNw statistically independent time
frequency windows. The frequentist false alarm probabi
Q0 of the previous section@Eq. ~2.15!# is the false alarm
probability for a given start time and a given time-frequen
window. Hence the false alarm probability for the enti
search is

pfa~E !!5Q0~E !!NstNw . ~3.14!

It is natural, in comparing frequentist and Bayesian thre
olds, to setps512pfa . For example, for ‘‘99% confidence’
one would chooseps50.99512pfa . We emphasize tha
this means ‘‘99% confidence that events will be due to s
nals’’ for the Bayesian, while it means ‘‘99% confidence th
there will be no false events’’ for the frequentist; since the
are different statistical statements, the frequentist and
Bayesian will obtain different thresholds.

We first discuss approximate evaluation of Bayes
thresholds. The integral~3.12! can be approximately evalu
ated in the regimeV@1 by using the Laplace approximation
if the prior PDFp(A) does not vary too rapidly. The result i

L~h!5
A2pV

Â

p~Â!

NstNw
S 11

Â2

2V
D 2V

exp~Â2/2!

3F11OS 1

VD1OS 1

Â2D 1OS V

Â4D G , ~3.15!

whereÂ5Â(h) is defined by

E~h!52V1Â~h!2. ~3.16!

If we now compare Eqs.~2.16!, ~3.5!, ~3.14! and ~3.15! and
useps051/2 and 12ps!1, we see that the Bayesian thres
old Â and frequentist thresholdA! are related by

S 11
Â2

2V
D 2V

eÂ2/25F S 11
A!

2

2VD 2V

eA!
2/2, ~3.17!
3-11
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where the factorF is

F5
ÂA!

2

2Vp~Â!
. ~3.18!

Clearly the two thresholds coincide whenF51. However,
typically the factorF can be quite significant and can cau
the Bayesian and frequentist thresholds to differ subs
tially.

It is useful to consider a specific example. Suppose
we are searching for black hole mergers which we expec
produce short~a few ms! broad band signatures with a time
frequency volume ofV5100. We want to be 99% sure o
our detection, so we setps50.99512pfa . Suppose that the
search duration is 1/3 of a year, so that the number of in
pendent start time isNst51010 say, and that the number o
statistically independent windows is 104. For 99% confi-
dence that there will be no false alarms, we should cho
Q0510216, from Eq. ~3.14!. This gives from Eq.~2.15! a
frequentist threshold ofE !5411.3 corresponding to a signa
to-noise threshold ofA!514.5. The corresponding Bayesia
threshold depends on the specification of prior PDF for s
nal amplitudesA. A reasonable choice of prior is

p~A!5H 3Ac
3/A4, A>Ac,

0, A,Ac.
~3.19!

This is just the distribution that would be expected f
sources distributed uniformly in time and space, except
it is cutoff in an approximate way at smallA in order to
ensure correct normalization. The parameterAc

3 is prior
probability per start-time of an event being present w
signal-to-noise ratio exceeding unity. Based on populat
estimates such as Ref.@7#, we optimistically assume a prio
probability of order unity for approximately one merg
event per year withA.1, which translates intoAc

3;10210.
We can now compute a Bayesian threshold by combin
Eqs. ~3.5!, ~3.12!, and ~3.13!. The result isE5539 corre-
sponding a signal-to-noise ratio threshold ofÂ518.4, which
is substantially higher than the frequentist value of 14.5.

IV. IMPLEMENTATION

As discussed in Sec. II A, one will not know in advan
the start timets , duration dt and frequency band@ f s , f s
1d f # of signals in a real search, and thus one must perfo
a search over these four parameters. One needs to com
the excess powerET (h) for each possible time-frequenc
window, and record as possible events all of those windo
for which ET is above threshold.9 We assume that we wish t
search over all values ofdt in the range

dtmin<dt<dtmax, ~4.1!

9Note that different thresholds will be required for each windo
T, but the false alarm probabilityQ0 will be the same for each
window.
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and over allf s andd f with

d f min<d f <d f max

f min< f s ~4.2!

f s1d f < f min1d f max.

It is clear that the computational cost can quickly grow
unreasonable proportions, so it is important to achieve
efficient implementation of the search technique.

There are~at least! two different ways to implement a
search over a pre-specified set of time-frequency windo
The first uses many FFTs of data segments with duration
the range~4.1! as suggested by the derivation in Sec. II, a
for each FFT computesE for all frequency bands in the rang
~4.2!. This process is then repeated for every possible s
time. We call this procedure theshort FFT method. The
second method partitions the time series into long data s
ments each containingM samples, and for each of these se
ments computes its FFT. That FFT is then partitioned i
d f max/d f min non-overlapping frequency bands each of wid
d f min , and for each one the FFT is bandpass filtered to t
frequency band and then inverse Fourier transformed.
result is d f max/d f min different timeseries, which we cal
channels, each containing particular frequency informati
The elements of these time series are then squared. One
tains in this way a time-frequency plane in which each pi
represents the total power in a time-frequency volume
order;1. Finally, one computes the total power in the va
ous rectangles in this time-frequency plane. We call this p
cedure thelong FFT method. We now consider the compu
tational cost of each method in turn and argue that the sec
method is more computationally efficient.

A. Sufficiency of approximate version of statistic

In Sec. II A above we discussed how to compute an
proximate version of the excess power statistic@cf. Eq.
~2.14!#. Namely, for a given start timets , perform a Fourier
transform of theK point time series$hj% corresponding to
the time windowdt, whereK5dt/Dt. Denote the discrete
Fourier transform~DFT! by h̃k where 0<k<K/2. Identify
the frequency componentsk1<k,k2 of h̃k which belong to
the frequency bandd f , and construct the statistic

E54 (
k1<k,k2

uh̃ku2/Sk , ~4.3!

whereSk is the noise power spectrum defined in Eq.~2.13!.
The quantity~4.3! differs from the exact statisticE due to

the fact that the expectation value^h̃kh̃k8
* & is not diagonal.~It

becomes effectively diagonal only in the limitdt→`.! Con-
sequently, the expression~4.3! is not a sum of squares o
independent unit-variance Gaussian random variables, an
its distribution could in principle differ from the non-centra
x2 distribution. However, in practice, if the power spectru
of the noise is a slowly varying function of frequency, the
the correlations introduced by using the expression~4.3! are
3-12
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small. To confirm this, we have examined the behavior of
statistic~4.3! computed from the DFT of colored, Gaussia
noise. We generated colored noise according to the corr
tion generating scheme

nj5~mj20.8mj 2111.2944nj 2120.64nj 22!/1.3145
~4.4!

where mj are uncorrelated Gaussian deviates andnj5mj
50 for j ,0. To determine detection statistics, we used
signal model

sj5Sexp@216~ j /2N21!2#cos~2p j f 0! ~4.5!

with N54096 samples in the signal. The central frequen
of the signal wasf 05600/4096 and the constantS was cho-
sen to give the required value of signal amplitudeA. We
found the operating characteristics ofE were not significantly
affected by using the approximate formula~4.3! rather than
the exact formula. This is demonstrated in Figs. 5 and
where we have overlaid simulated false alarm and true
tection probabilities on top of the distributions computed
Sec. II B. We calculated the goodness of fit using ax2 test
for a few of the curves in these figures. In each case,
reducedx2 value was<1.03, indicating that it is unlikely
that the simulated data is drawn from distributions other th
those presented in Sec. II B. We therefore conclude that
can use the approximate formula~4.3! without significantly
modifying the behavior of the statisticE.

B. The short FFT method

The algorithm is:~1! pick a start time,~2! pick a time
duration dt, ~3! FFT the selected data and compute t
power in each frequency bin,~4! sum the power in the band
of interest,~5! loop over steps~2!–~4! until all time durations
are used, and~6! repeat steps~1!–~5! for all start times.

The computational cost for steps~3!–~4! can be estimated
as follows. The number of data points in segment of data
duration dt is N5dt/Dt, so each FFT requires 3Nlog2N
floating point operations. Since the relevant frequency b
has a dimensionless bandwidth10 amax5d f maxDt, the total
cost to compute the power in each frequency bin in the b
is 3Namax operations. Now, for thekth frequency bin, it
costs (Namax2k) floating point operations to compute th
power in all frequency intervals whose lowest frequen
component is in thekth bin; the number of operations re
quired to do this for all frequenciesk is

(
k51

Namax21

~Namax2k!5
Namax

2
~Namax21!. ~4.6!

10By dimensionless bandwidth we mean number of freque
bins, i.e., bandwidth multiplied byDt. Note that the dimensionles
bandwidth of the entire frequency band up to the Nyquist freque
is 1/2.
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These steps must be repeated for eachN with Nmin<N
<Nmax, whereNmin5dtmin /Dt and Nmax5dtmax/Dt. Thus,
the total computational cost per start timeCshort is

Cshort5 (
N5Nmin

Nmax

N@3log2N13amax1
1
2 amax~Namax21!#.

~4.7!

One will typically have Nmin;1 and Nmaxamax5V@1,
whereV is the total time-frequency volume to be searche
In this case, a useful approximation to the computational c
per start time is

Cshort.
V2

2amax
S 3 log2V

amax
1

V

3 D . ~4.8!

The total computational cost in flops~floating-point opera-
tions per second! can be obtained by multiplyingCshort by
the sampling rate.

C. The long FFT method

As discussed above, in the long FFT method one c
structs a time-frequency plane consisting ofNchannels
5d f max/d f min different channels. The power in any time
frequency window can then be computed by summing
power in that region of the time-frequency plane. The d
stream is broken into chunks of lengthM points, each chunk
is FFTed, and the requisite number of channels are produ
by bandpass filtering, Fourier transforming back into t
time domain, and squaring the time samples. For each ch
the computational cost of this step is

C15M @3~11Nchannels!log2M1Nchannels#. ~4.9!

To search over the time-frequency plane, we first pick
frequency intervald f and construct thed f max/d f channels
of this bandwidth; this requiresM (d f / f min21) additions.
For each of these new channels, we sum up the powe
various time intervals. This step requiresNmax operations per
start time, of which there areM2Nmin . Thus the total cost a
this stage of the search is

C25 (
j 51

NchannelsNchannels

j
@M ~ j 21!1Nmax~M2Nmin!#.

~4.10!

Since there are approximatelyM different start times, the
cost per start time is given by the approximate formula

Clong.amax
21 V2 ln V. ~4.11!

D. Comparison of the two methods

The space of time-frequency windows to search over w
delineated in the Introduction for the initial interferomete
in LIGO. We adopt the corresponding parameter valu
d f min52 Hz, d f max5200 Hz, dtmin50.005 s, anddtmax
50.5 s. The computational power required using the lo

y

y
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FFT method is 0.3 GFlops, which saves a factor of;14 over
the short FFT method ifDt50.001 seconds.

In general, the computational gain afforded by the lo
FFT method over the short FFT method is given appro
mately by

Cshort

Clong
;

3

2 ln 2

1

amax
1

1

6

V

ln V
. ~4.12!

The first term shows that there is at least a factor of;4 to be
gained by the long FFT method; in addition, the compu
tional gain increases with the total time-frequency volumeV.
For V5100, the second term is also;4.

There is a further benefit to the long FFT technique
allows finer frequency resolution in the choice of startsf s
and endsf s1d f s of the frequency bands to be explored~al-
though the above estimates of computational cost were f
search equivalent to the short FFT search!. Moreover, as part
of a hierarchical search, the long FFT method has a fur
advantage in that it allows follow ups to be made witho
significant further computations. The next stage of a hie
chical search might involve techniques other than the exc
power method, e.g., Hough transforms or other line track
algorithms.

V. MULTIPLE DETECTORS

The network of gravitational wave detectors under co
struction around the world brings benefits that a single
strument cannot. This is especially true for ‘‘blind’’ searc
techniques, such as the power statistic. Since these t
niques do not require the signal to have a specific fo
random noise glitches are much more likely to meet the
tection criteria than is the case for signal-specific searc
such as matched filtering. Multiple-detector statistics will
much more efficient at rejecting such false alarms th
single-detector statistics@38,39#. In this section we conside
the construction of the optimal detection strategy for a n
work of detectors. The derivation requires further formal d
velopment. For maximum clarity, we introduce most of o
notation in Sec. V A. We derive the multi-instrument dete
tion statistic for a network of aligned detectors in Sec. V
The two LIGO interferometers at the Hanford site form su
a network. In addition, if we ignore the slight misalignme
that arises from curvature of the earth, we can also incl
the interferometer in Livingston to form a three interferom
eter network. The general case when not all instruments
aligned is treated in Sec. V C.

Our analysis is based on the formalism of Ref.@30# which
followed earlier work of Ref.@40#. We assume that the nois
of the detector network is Gaussian. Even though we al
correlations between noise in different instruments, the
sumption of Gaussian noise is a serious limitation since
main benefit of having several detectors is to combat n
Gaussian noise. It should be possible to adapt the theore
models of non-Gaussian noise given in Ref.@39# in order to
derive robust multi-detector statistics. However, it is nec
sary to understand first the Gaussian case.
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A. Notation and terminology

Suppose the detector network consists ofnd detectors.
Denote the output of the entire network by the vector of tim
series

h¢5$hj
A%5$h1~0!,h1~Dt !, . . . ,h1@~N21!Dt#,

h2~0!, . . . ,h2@~N21!Dt#, . . . ,hnd@~N21!Dt#%
~5.1!

where AP$1,2, . . . ,nd% and j P$0,1, . . . ,N21%. We as-
sume that the noisen¢ of the network follows a multivariate
Gaussian distribution which is determined by the (Nnd)2

correlations

^nA~ iDt !nB~ j Dt !&5CAB~ u i 2 j uDt !5Ri j
AB ~5.2!

where^•& denotes an ensemble average. In general, the
ments of the network correlation matrix are

~R!AN1 i ,BN1 j5Ri j
AB . ~5.3!

The convention~5.3! for combining the capital and lowe
case indices to form in anNnd3Nnd matrix is used from
here on. The probability density function of the noise
given by

p~n¢ !5@~2p!NnddetR#21/2exp@2 1
2 ~n¢ ,n¢ !# ~5.4!

where the inner product is given by

~p¢ ,q¢ !5 (
A,B51

nd

(
i , j 50

N21

pi
AQi j

ABqj
B ~5.5!

and

Qi j
AB5~R21!AN1 i ,BN1 j . ~5.6!

For later convenience, we note that the inner product~5.5!
can be written in terms of the discrete Fourier transforms
the detector time series, that is

~p¢ ,q¢ !. (
A,B51

nd

4Re(
k50

bN/2c
p̃k

A * ~Sk
21!ABq̃k

B ~5.7!

where

Sk
ABdkk8.2 (

j , j 850

N21

e2p i jk /NRj j 8
ABe22p i j 8k8/N. ~5.8!

The notationbN/2c denotes the greatest integer less than
equal toN/2. These relations are strictly speaking valid on
in the continuum and infinite time limitsDt→0 and NDt
→`. Nevertheless, they are sufficiently accurate for m
practical applications. Finally, we note that the likelihoo
ratio L(h¢ ;s¢) is given by

L~h¢ ;s¢!5
p~h¢ us¢!

p~h¢ u0¢!
5exp@~h¢ ,s¢!2 1

2 ~s¢,s¢!#. ~5.9!
3-14
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TABLE I. The locationsx ~the coordinates are in meters! and direction vectors$nx,ny% for the various interferometers around the wor
based on the the data in@46,45# and the ellipsoidal model described in@44#. Note that the arm orientations reported by Allen@46# for the two
LIGO interferometers do not correctly represent the angles between the northing and the arms at the two sites; we have therefore
official LIGO arm orientation vectors. For VIRGO, GEO-600, and TAMA-300, see@45#. For the first five interferometers, the results a
based entirely on the numbers reported in Allen.

Project Location nx ny x (3106 m!

CIT Pasadena, CA $20.2648,20.4953,20.8274% $10.8819,20.4715,10.0000% $22.490650,24.658700,13.562064%
MPQ Garching, Germany $20.7304,10.3749,10.5709% $10.2027,10.9172,20.3430% $14.167725,10.861577,14.734691%
ISAS-100 Tokyo, Japan $10.7634,10.2277,10.6045% $10.1469,10.8047,20.5752% $23.947704,13.375234,13.689488%
TAMA-20 Tokyo, Japan $10.7727,10.2704,10.5744% $20.1451,20.8056,10.5744% $23.946416,13.365795,13.699409%
Glasgow Glasgow, UK $20.4534,20.8515,10.2634% $10.6938,20.5227,20.4954% $13.576830,20.267688,15.256335%

TAMA-300 Tokyo, Japan $10.6490,10.7608,10.0000% $20.4437,10.3785,20.8123% $23.946409,13.366259,13.699151%
GEO-600 Hannover, Germany$20.6261,20.5522,10.5506% $20.4453,10.8665,10.2255% $13.856310,10.666599,15.019641%
VIRGO Pisa, Italy $20.7005,10.2085,10.6826% $20.0538,20.9691,10.2408% $14.546374,10.842990,14.378577%
LIGO Hanford, WA $20.2239,10.7998,10.5569% $20.9140,10.0261,20.4049% $22.161415,23.834695,14.600350%
LIGO Livingston, LA $20.9546,20.1416,20.2622% $10.2977,20.4879,20.8205% $20.074276,25.496284,13.224257%
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B. Aligned detectors

The simplest type of multi-instrument network to analy
is a network consisting of instruments which all respond
the same polarization component of the gravitational w
field. The two LIGO interferometers in Hanford form such
detector, and if we ignore the slight misalignment arisi
from the curvature of the earth~a ;10% correction effect;
see Table I! the third LIGO interferometer in Livingston ca
also be included.

The signal at any detector is simply a time-delayed v
sion of the signal that would be detected at the coordin
origin, which for simplicity we take to be at the center of th
earth. Thus, the signal at detectorA is

sA~ t !5s~ t1tA!, ~5.10!

wheretA is the time of flight for a gravitational wave be
tween detectorA and the coordinate origin, ands(t) is the
signal at the coordinate origin. The time delaystA depend on
the direction to the source: ifm is a unit three vector in the
direction of propagation of the gravitational wave~i.e., op-
posite to the direction to the source! andxA is the location of
detectorA, then

tA5m•xA/c ~5.11!

wherec is the speed of light. Finally, the DFT of the sign
at detectorA can be written as

s̃k
A5e2p ikDA(m)/Ns̃k ~5.12!

whereDA(m)5tA /Dt ands̃k is the DFT of the signal at the
origin of coordinates.

A convenient description of the multi-instrument netwo
response is the effective strainh̃k

(eff) defined by@30#

h̃k
(eff)5Sk

(eff) (
A,B51

nd

e22p ikDA(m)/N~Sk
21!ABh̃k

B ~5.13!
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where

1/Sk
(eff)5 (

A,B51

nd

e22p ikDA(m)/N~Sk
21!ABe2p ikDB(m)/N.

~5.14!

We note that the effective strain depends on the directionm
to the putative source through the time delaysDA(m). Gen-
erally the same is true forSk

(eff) , although not if there are no
correlations between the instrumental noise at separated
@30#.11 We can now write the likelihood ratio~5.9! as

L~h¢ ;s!5exp@„~ h̃(eff),s̃!…2 1
2 „~ s̃,s̃!…#, ~5.15!

where

„~ p̃,q̃!…54 Re(
k50

bN/2c
p̃kq̃k* /Sk

(eff) . ~5.16!

The posterior probabilityps(h¢) that a signal is present give
the datah¢ is determined by integrating the likelihood again
prior probabilities densities for the signal and for the sou
directionm. Thus

ps~h¢ !

12ps~h¢ !
5L~h¢ !

ps0

12ps0
~5.17!

where

L~h¢ !5E E p~u,f!d2VE p~T !dTE p~suT !dNsL~h¢ ;s¢!

~5.18!

11It might be reasonable to make this assumption for the th
detectors at LIGO for example.
3-15
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andps0 is thea priori probability that any gravitational wav
sources exist. The mechanism of how information about
signals is encoded in the prior probabilitiesp(suT ) andp(T )
is treated in Sec. III A, and applies directly to the curre
context with only one modification: the inner product (•,•)
should be replaced by„(•,•)…. In particular, the probability
distribution p(suT) is given by Eq. ~3.2!. The function
p(u,f) is the expected distribution of source directions. F
sources that are mostly further than;30 Mpc, the distribu-
tion should be uniform on the sphere.

The integral in the expression~5.18! for the likelihood
function includes a sum over all time-frequency windowsT
and all source directionsm. However, it is nearly equivalent
and much easier, to adopt themaximumterm in the sum as
an approximation to the likelihood function, since the larg
term will dominate the sum when a signal is present. It
therefore sufficient to consider only a single time-frequen
regionT and fixed directionm in the remainder of this sec
tion, with the understanding that the detection statistic w
include a maximization over these variables@41#.

Using arguments similar to those in Sec. III B, we c
perform the integral over signalss. In particular, the prior
probability in Eq.~3.2! restrictss to lie in a vector spaceVT
which contains only signals in the time-frequency windowT.
This has the effect of replacings by si in the inner products.
Moreover, the inner product„(•,•)… induces a natural inne
product on the subspaceVT . The integral over angles can b
performed as in Eq.~3.13! to show that

L~h¢ !5E G~V!e2A2/2~AE 1/2/2!12VI V21~AE 1/2!p~A!dA

~5.19!

where

E5„~ h̃i
(eff) ,h̃i

(eff)!…54 Re (
k1<k,k2

h̃k
(eff)h̃k

(eff)* /Sk
(eff) .

~5.20!

Here h̃i
(eff) is the projection of the effective strain into th

time-frequency subspaceVT ; the second equality holds for
particular time-frequency window in which the signal h
durationNDt and is localized to the frequency bandk1<k

,k2. The amplitudeA is defined by theA25„( s̃i ,s̃i)…. Since
the right hand side of Eq.~5.19! is a monotonically increas
ing function ofE, the Neyman-Pearson theorem tells us t
E provides the optimal multi-instrument detection statist
Note that, as mentioned above, this detection statistic
cludes an implicit maximization over all source directionsm
and time-frequency windowsT.

C. General networks of detectors

When the network contains at least one instrument wit
different orientation to the others, it is necessary to disc
the two degrees of freedom, or polarizations, of the grav
tional wave signal. We denote these two independent sig
ass1(t) ands3(t), where the definition is with respect to
radiation coordinate system associated with the gravitatio
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waves.~See Appendix B for a detailed discussion of the
and the other coordinate systems relevant to this secti!
For theAth detector in the network, the gravitational wav
strain is

sA~ t !5F1
A s1~ t1tA!1F3

A s3~ t1tA! ~5.21!

whereF1
A , F3

A are the detector beam pattern functions a
tA5m•x A/c is the time delay between the origin of eart
fixed coordinates and the detectorA ~located atx A) for a
wave propagating in the directionm.

The concept of effective strain is particularly useful in t
formal development of the multi-instrument detection sta
tic for gravitational waves. To introduce this concept, co
sider the inner product

~s¢,s¢!5 (
A,B51

nd

4 Re(
k50

bN/2c
s̃k

A~Sk
21!ABs̃k

B * . ~5.22!

The DFT of the signal at theAth detector is

s̃k
A5e2p iDA(m)k/N~F1

A s̃k
11F3

A s̃k
3! ~5.23!

whereDA(m)5tA /Dt is the discrete time delay,Dt is the
sampling rate, ands̃1,3 are the DFTs of the plus and cros
polarizations of the signal defined in Eq.~5.21!. The inner
product can be rewritten as

~s¢,s¢!5 (
a,b51,3

4 Re(
k50

bN/2c
s̃k

aQab
k s̃k

b* ~5.24!

where

Qab
k 5 (

A,B51

nd

e2p i (DA2DB)k/NFa
A~Sk

21!ABFb
B . ~5.25!

We can now introduce a pair of effective strains, correspo
ing to the1 and 3 gravitational wave signals for the ne
work, by @30#

h̃k
a5 (

b51,3
Qk

ab (
A,B51

nd

Fb
Ae22p iDAk/N~Sk

21!ABh̃k
B

~5.26!

where (b51,3Qk
abQbg

k 5dg
a . In terms of the effective

strainsh̃k
a and the signalss1,3 , the likelihood ratio is

L~h¢ ;s¢!5exp@„~ h̃,s̃!…2 1
2 „~ s̃,s̃!…# ~5.27!

where the inner product is now defined as

„~ p̃,q̃!…5 (
a,b51,3

4 Re(
k50

bN/2c
p̃k

aQab
k q̃k

b* . ~5.28!

The effective strains and the inner product~5.28! depend on
the directionm to the putative source. Consequently t
probability that a signal with plus polarizations1 and cross
polarizations3 is present in the data stream is given by Eq
3-16
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~5.17! and ~5.18! with L(h¢ ;s¢) defined by Eq.~5.27! where
the measurep(suT ) on the space of signals is defined
follows.

The signal $s1,s3% now belongs to a 4V-dimensional
vector space which is the tensor product of two copies ofVT .
Within this vector space, all directions can also be cons
ered to be equally likely. These assumptions about the si
$s1 ,s3% reduce to the assumption in Sec. V B when t
detectors are aligned. Moreover, the reasoning from that
tion can be readily applied here provided one understa
that the vector space of signals is now 4V-dimensional and
that all angles and lengths are measured using the inner p
uct ~5.24!. Thus, the integrals can be carried out in much
same way to arrive at the excess power statistic fo
multiple-instrument network:

E5„~ h̃i ,h̃i!…5 (
a,b51,3

4 Re (
k1<k,k2

h̃k
aQab

k h̃k
b* .

~5.29!

As before there is an implicit maximization over tim
frequency windows and source directions.

Since the effective strains are linear combinations of
outputs of each of the detectors in the network, the stati
~5.29! is a bilinear function of the outputs of all the detecto
containing both auto-correlation terms from each detec
individually and cross-correlation terms between each pai
detectors. It is the optimal statistic in Gaussian noise. W
the noise in the instruments is non-Gaussian, it remains t
seen what is the best strategy. One obvious strategy i
simply omit the auto-correlation terms in Eq.~5.29! and re-
tain only the cross-correlation terms; the resulting stati
will share many of the nice features ofE and be more robus
against non-Gaussian noise bursts. The real challenge
derive the optimal statistic in the presence of uncorrela
noise bursts which are Poisson distributed in time. It is lik
that the model introduced in Ref.@39# can be used to addres
this issue.
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APPENDIX A: RELATED DETECTION STATISTICS

In this appendix we discuss some detection statistics
can be obtained from the Bayesian formalism discusse
Sec. III starting from different prior PDFs for signalss.

1. Known signal spectrum

Suppose that one knows, in addition to the duration a
frequency band, the spectrum of the expected signal, but
one does not know the phase evolution. Let us adopt
Fourier basis~assuming that the autocorrelation matrix
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reasonably close to diagonal in this basis! and assume tha
the noise is stationary and Gaussian. Then the likeliho
ratio is

L~h;s!5expF4(
k50

bN/2c
~ uh̃kuus̃kucosfk2 1

2 us̃ku2!/SkG ~A1!

where fk represents the relative phase difference betw
the data and the expected signal in thekth frequency bin.
Since the signal phases are considered unknown, we sh
integrate out these angles to obtain the integrated likelih
ratio

L~h;$Pk%,A!5 )
k50

bN/2c
2pe2A2Pk /SkI 0~23/2APk

1/2uh̃ku/Sk!

~A2!

where the one-sided signal spectrum is given by1
2 A2Pk

5us̃ku2 with 2(k50
bN/2cPk /Sk51.

In the limit of weak signal amplitudeA, we can approxi-
mate the likelihood ratio of Eq.~A2! by its expansion in
powers ofA. The first non-trivial term is thelocally optimal
@34# detection statistic

d2ln L~h;$Pk%,A!

dA2 U
A50

5~const!14(
k50

bN/2c
Pkuh̃ku2/Sk

2 .

~A3!

This statistic is the weighted average of the detector ou
power in each frequency bin. Unfortunately, it is not possi
to get simple expressions for the false alarm and false
missal probabilities for this statistic; one needs to use
merical methods to obtain these given a known signal po
spectrum$Pk%.

2. Non-Gaussian noise

It is unlikely that a gravitational wave detector will pro
duce purely stationary and Gaussian noise. In the case
the detector noise distribution is known, we can obtain
detection statistic for unknown signals using the Bayes
methodology. Unfortunately the most general noise distri
tion contains many free functions and will not be known
practice. However, constructing simple analytic no
Gaussian noise models and the associated detection stat
can give us insight into what kind of statistics to try out wi
real detectors.

One such simple model is as follows. We assume that
detector noise is stationary, and, as before, that each
quency bin in the Fourier basis is uncorrelated. Let us m
the additional assumption that the power in each freque
bin is independently distributed, while the phases of ea
frequency bin are uniform and independent. Then

p~n!dNn5 )
k51

b(N21)/2c
f k~ uñku2/Sk!

duñku2

Sk

d argñk

2p
~A4!

wheref k(x) are known non-exponential probability distribu
tion functions ~exponential functions would correspond
3-17
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Gaussian noise!. Here we have omitted the DC~and a pos-
sible Nyquist! component. The likelihood ratio is

L~h;s!5 )
k51

b(N21)/2c f k~ uh̃k2 s̃ku2/Sk!

f k~ uh̃ku2/Sk!

5 )
k51

b(N21)/2c H 122
Re~ h̃ks̃k* !

Sk

f k8~ uh̃ku2/Sk!

f k~ uh̃ku2/Sk!

1F2S Re~ h̃ks̃k* !

Sk
D 2

f k9~ uh̃ku2/Sk!

f k~ uh̃ku2/Sk!

1
us̃ku2

Sk

f k8~ uh̃ku2/Sk!

f k~ uh̃ku2/Sk!
G1O~ us̃ku3!J . ~A5!

We have expanded the likelihood ratio in powers of the~pre-
sumed small! signal in order to construct the locally optim
detection statistic@34#.

To compute the integrated likelihood function we need
integrate over our prior knowledge of signals. Let us supp
that we do not know the signal phase evolution; then we
integrate over the unknown phases args̃k in each frequency
bin. We find

L~h;$Pk%,A!511
A2

2 (
k51

b(N21)/2c us̃ku2

Sk
gk~ uh̃ku2/Sk!1O~A4!

~A6!

where 1
2 A2Pk5us̃ku2 and

gk~x!5@x fk9~x!1 f k8~x!#/ f k~x!. ~A7!

For Gaussian noise,f k(x)5e2x and gk(x)5x21 for all k,
which gives essentially the same detection statistic as in
~A3!. For a probability distribution with tails that decrea
more slowly in thekth bin, e.g.,f k(x)}(12x/2)22, then we
havegk(x)5(x21)/(12x/2)2, which increases withx up to
x52, and then decreases for larger values ofx. Thus, large
amounts of excess power in thekth bin aresuppressed.

When the signal is known to be band-limited to frequen
bins k1<k,k2, but we have no reason to believe that a
particular bin in the band will contribute more to the over
signal-to-noise ratio than any other bin, then we obtain
locally optimal statistic by assuming a uniform weighting
the terms in Eq.~A6!. Thus the locally optimal statistic is

(
k1<k,k2

gk~ uh̃ku2/Sk!. ~A8!

In the case of Gaussian noise this is the excess power s
tic; for noise models with larger tails, the components of
sum are attenuated if they have large power.

APPENDIX B: MULTIDETECTOR AMPLITUDES

In Sec. V C, we discussed the detection of burst sign
using multiple detectors. When the detectors are not align
one needs the response functions of each detector in the
04200
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work to a gravitational wave signal from a given sky po
tion. Here we define reference coordinates to which we re
each detectors response. Consider a coordinate system
at the center of the earth. In terms of latitude and longitu
$w,l%, the coordinate axes are oriented so that thex-axis
pierces the earth at$000,000%, they-axis pierces the earth a
$000,090°E%, and the z-axis pierces the earth a
$090°N,000%. We denote the location of a source on t
celestial sphere by standard spherical polar coordin
$u,f% measured with respect to this earth fixed frame.
fiducial signals comes from a sky position with right ascen
sion a5f1GMST ~GMST is the Greenwich mean sidere
time of arrival of the signal!, declinationd5p/22u, and has
polarization anglec—the angle~counter-clockwise abou
the direction of propagation! from the line of nodes to the
X-axis of the signal coordinates. In particular, this gravi
tional wave signal can be represented by a tensor

si j 5s1~e1! i j 1s3~e3! i j ~B1!

where the polarization tensors are given by

~e1! i j 5~X^ X2Y^ Y! i j ~B2!

~e3! i j 5~X^ Y1Y^ X! i j . ~B3!

The vectorsX andY are the axes of the wave frame, give
explicitly by

X5~sinf cosc2sinc cosf cosu!i2~cosf cosc

1sinc sinf cosu!j1sinc sinuk ~B4!

Y5~2sinf sinc2cosc cosf cosu!i1~cosf sinc

2cosc sinf cosu!j1sinu cosc k ~B5!

where the polarization anglec is defined above, andi, j and
k are unit vectors along thex, y and z-axes respectively.
Note, we use a right handed coordinate system in which
vector Z5X`Y points in the direction from the source to
wards the detector. The waveforms in Refs.@42,43# are re-
ferred to these coordinates; Thorne uses a different defini
in Ref. @8#.

One can characterize the response of an interferomete
the surface of the earth to the impinging gravitational wa
using another tensorD given by

Di j 5
1
2 ~nx

^ nx2ny
^ ny! i j ~B6!

wherenx andny are unit vectors along thex andy arms of
the interferometer respectively. For a given interferometeA,
it is now straightforward to compute the response

sA5 (
i , j 51

3

Di j
Asi j ~B7!

and to extract the response functionsF1,3
A by comparing the

result with the formula

sA5F1
A s11F3

A s3. ~B8!
3-18
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For a detector having its arms aligned with the coordin
axes at the center of the earth, we find

F152 1
2 ~11cos2 u! cos 2f cos 2c 2cosu sin 2f sin 2c

~B9!

F351 1
2 ~11cos2 u! cos 2f sin 2c2cosu sin 2f cos 2c.

~B10!

Finally, the responseD of the various detectors around th
world can be determined using the latitude Northw, longi-
tude Eastl, and arm orientations (cx,y ,vx,y) wherecx,y are
the azimuths~North of East! of thex andy arms andvx,y are
the tilts of thex andy arms above the horizontal defined b
the WGS-84 earth model@44#. This model is an oblate ellip
soid with semi-major axisa56 378 137 m and semi-mino
axisb56 356 752.314 m. The positionx5x i1y j1z k of a
detector at a given latitudew, longitudel, and elevationh
above~normal to! the surface is given by

x5@R~w!1h#cosw cosl ~B11!

y5@R~w!1h#cosw sinl ~B12!
A

J.

-

i-
at

D

tin

op
d
7

te

04200
e z5@~b2/a2!R~w!1h#sinw ~B13!

whereR(w)5a2(a2 cosw1b2 sinw)21/2 is the local radius of
the earth. At this position, the unit vectors pointing Ea
North, and Up are

el52sinl i1cosl j ~B14!

ew52sinw cosl i2sinw sinl j1coswk ~B15!

eh5cosw cosl i1cosw sinl j1sinwk ~B16!

respectively. The unit vector along thex arm is then given by

nx5cosvx coscx el1cosvx sincx ew1sinvx eh
~B17!

and similarly for they arm. For completeness, we list the
vectorsnx andny for each of the interferometers in Table
For the two LIGO interferometers, these vectors are provid
in @44#. For the other interferometers we used the values
@45# ~with tilt anglesv50), or the values given in Ref.@46#
~with elevationsh50 and tilt anglesv50).
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