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We examine the properties of an excess power method to detect gravitational waves in interferometric
detector data. This method is designed to detect short-durati@b5(9 burst signals of unknown waveform,
such as those from supernovae or black hole mergers. If only the bursts’ duration and frequency band are
known, the method is an optimal detection strategy in both Bayesian and frequentist senses. It consists of
summing the data power over the known time interval and frequency band of the burst. If the detector noise is
stationary and Gaussian, this sum is distributed g8 &non-centraly?) deviate in the absendpresenceof
a signal. One can use these distributions to compute frequentist detection thresholds for the measured power.
We derive the method from Bayesian analyses and show how to compute Bayesian thresholds. More generi-
cally, when only upper and/or lower bounds on the bursts duration and frequency band are known, one must
search for excess power in all concordant durations and bands. Two search schemes are presented and their
computational efficiencies are compared. We find that given reasonable constraints on the effective duration
and bandwidth of signals, the excess power search can be performed on a single workstation. Furthermore, the
method can be almost as efficient as matched filtering when a large template bank is required: for Gaussian
noise the excess power method can detect a source to a distance at least half of the distance detectable by
matched filtering if the product of duration and bandwidth of the signals 190, and to a much greater
fraction of the distance when the size of the matched filter bank is large. Finally, we derive generalizations of
the method to a network of several interferometers under the assumption of Gaussian noise. However, further
work is required to determine the efficiency of the method in the realistic context of a detector network with
non-Gaussian noise.
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I. INTRODUCTION AND SUMMARY (2) The radiation emitted from the merger of black holes

probes the strong field regime of a purely gravitational sys-
tem. This radiation should therefore provide a sensitive test
N . . of general relativity.

The inspiral, merger, anq ringdown of binary blagk hple These benefits can only be realized, however, if the gravi-
systems may be the most important source of gravitationghional radiation from black hole mergers can be detected.
radiation for detection by the kilometer-scale interferometric  The best understood and most widely developed tech-
gravitational wave detectors such as the Laser Interferomehique for detection of gravitational waves with interferomet-
ric Gravitational Wave Observato}.IGO) [1] and VIRGO ric detectors is matched filtering,9]. Matched filtering is
[2,3]. The importance of these sources is twofpAdt the optimal technique if the entire waveform to be detected is

(1) A large amount of gravitational radiation is expectedaccurately known in advandep to a few unknown param-
to be emitted by the merger of two black holes. For interme£ters. Unfortunately, the gravitational radiation from black
diate mass €10M,—1000M) black hole binaries this hole merggrs_result_s from hlghly non-lmear self—lr]teractlon
radiation will be in the frequency band of highest sensitivityOf the gravitational field. This makes it extremely difficult to

1 obtain gravitational waveforms. Efforts to do so have met
for LIGO and \_/IRGO'_ These sources _S_hOUId therefore bewith only limited success thus far. Binary black hole mergers
amongst the brightest in the sky, and visible to much great

X X &Nill therefore not be amenable to detection by matched fil-
distances than other sources. The detection rate for coalesggying, at least for the first gravitational wave searches in the

ing binary black holes could therefore be higher than for any»002-2004 time frame.

other source. Similarly, there are other classes of sources, such as core-
collapse of massive stars in supernovae, or the accretion in-
duced collapse of white dwarfs, for which the physics is too

While the relative abundance of such systems is still a very opefOmplex to allow computation of detailed gravitational

guestion, we are encouraged by two recent developments in th@@veforms. For these sources, as fpr binary bla_Ck hole merg-

astrophysics literature(i) evidence suggesting that black holes in €rS, we must seek alternative S|gnal detection methods.

this mass range may ex{&,6] and(ii) a globular cluster model that These methods are often called “blind search” methods.

suggests LIGO | may expect to see about one black hole coales- One class of search methods is based on time-frequency
cence event during the first two years of operafioh decompositions of detector datézor an exploration of a

A. Background and motivation
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variety of other methods, see Rdfl0].) Time-frequency LIGO, the most sensitive frequency band-s.00-300 Hz,
strategies have become standard in many other areas of sigrd it makes sense to search just in this band. For binary
nal analysig11]. There is also a growing literature on the black hole mergers, signal durations might be of order tens
application of time-frequency methods to gravitationalor hundreds of milliseconds, depending on the black hole
waves[12-19,10,20,2lL For binary black hole mergers, itis masses and spifd]. Thus, the time-frequency volume of a
possible to make crude estimates of signals’ durations andherger signal can be as large-a400, and its power would
frequency bandg$4], although these estimates need to beneed to be more than one tenth as large as the noise power
firmed up and refined by numerical relativity simulations. for detectability with the excess power method.
This suggests that one should look only in the relevant time- One can also establish operational lower bounds on the
frequency window of the detector output. time durations and frequency bands of interest. Because the
Flanagan and Hugh¢4] (FH) have suggested a particular largest operational frequency bandwidth is 200 Hz for the
time-frequency method for blind searches. The method usésitial LIGO interferometers, the shortest duration of signal
only knowledge of the duration and frequency band of thethat need be considered is 5 nf®r a minimum time-
signal: one simply computes the total power within this time-frequency volume of unity Similarly, for a maximum dura-
frequency window, and repeats for different start times. Thdion of 0.5 s, the smallest bandwidth that needs to be consid-
method detects a signal if there is more power than one exered is 2 Hz. The excess power in any of the allowed
pects from detector noise alone. Thus, we call it éheess bandwidths and durations can thus be obtained by judi-
powersearch method. Similar methods have been discussetiously summing up power that is output from a bank of one
elsewhere in the gravitational wave literature. ScHi&2]  hundred 2 Hz band-pass filtefspanning the 200 Hz of peak
investigated the method in the context of the crossinterferometer sensitivityfor the required duration.
correlation of outputs from different detectors. An autocor- Having established the statistic and its operational range
relation filter for unrestricted frequencies was published byof parameters, the following simple algorithm for imple-
Arnaudet al.[10,23 shortly after and independently of FH. menting the excess power method emerges naturally:
A generalization of the excess power filter has also been (1) Pick a start times, a time durationst (containingN
discussed in the signal analysis literat{izd], where it has data samplgsand a frequency bar{d,f+ 5f].

recently been “attracting considerable intereg®5]. Finally (2) Fast Fourier transfornfFFT) the block of (time do-
a method closely related to the excess power method hasain detector data for the chosen duration and start time.
recently been explored by Sylvesfi2g]. (3) Sum the power in each of the one hundred 2 Hz

The excess power method distinguishes itself for the debands spanning the peak sensitivity region of the detector.
tection of signals of known duration and frequency band by (4) Further sum the power in the 2 Hz bands which cor-
a single compelling feature: in the absence of any otherespond to the chosen frequency band.
knowledge about the signahe method can be shown to be  (5) Calculate the probability of having obtained the
optimal Furthermore, it can be shown that for mergers of asummed power from Gaussian noise alone using distri-
sufficiently short duration and narrow frequency band, it perbution with 2X 6t X 5f degrees of freedom.
forms nearly as well as matched filtering. (6) If the probability is significant, record a detection.

The essence of the power filter is that one compares the (7) Repeat the process for all allowable choices of start
power of the data in the estimated frequency band and for theémes ts, durations ét, starting frequencie$s and band-
estimated duration to the known statistical distribution ofwidths &f.
noise power. It is straightforward to show that if the detector This procedure, which must be repeated for every pos-
output consists solely of stationary Gaussian noise, theible start time, can lead to moderately-large computational
power in the band will follow ay? distribution with the requirements. We find that the computational efficiency of
number of degrees of freedom being twice the estimatethis implementation, which we call the short FFT algorithm,
time-frequency voluméi.e., the product of the time duration can be improved upon by considering data segments much
and the frequency band of the signdf a gravitational wave longer than the longest signal time duration. In this case,
of sufficiently large amplitude is also present in the detectomafter summing over the chosen band, we must FFT the data
output, an excess of power will be observed; in this case, thback into the time domain. This implementation, which we
power is distributed as a non-centrgf distribution [27]  call the long FFT algorithm, is more efficient by at least a
with non-centrality parameter given by the signal power. Thefactor of ~4 over the parameter space of interest.
signal is detectable if the excess power is much greater than The most significant drawback of the filter outlined above
the fluctuations in the noise power which scales as thés that they? statistic is appropriate only to Gaussian noise.
square-root of the time-frequency volume. Thus, the viabilityReal detector noise will contain significant non-Gaussian
of the excess power method depends on the expected dureemponents. There are likely to be transient bursts of broad
tion and bandwidth of the gravitational wave as well as on ithand noise that have characteristics very similar to black
intrinsic strength. For instance, the method is not competitivdhole merger signals.
with matched filtering in detecting binary neutron star in- The non-Gaussianity of real detector noise leads us to two
spirals, since the time-frequency volume for such signals igonsiderations. First, like most blind search methods, the ex-
very large,=10%. cess power method will likely be a useful tool for character-

To implement this method, one needs to decide the rangiging and investigating the non-Gaussian components of the
of frequency bands and durations to search over. For initiahoise. In particular, it can provide a simple and automated
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get M data spanning time T

bursts. This is a useful and important feature of the excess much longer than any signal |

power method, even though we focus almost exclusively on +
signal detection in this paper. Second, since the method can-

procedure for garnering statistical information about noise (

not distinguish between noise bursts and signals in any one ety thn interval rue

detector, it will be essential to use multiple-detector versions hasheen conaidersd
of the power statistic for actual signal detections. In Sec. V false
we derive the optimal multi-detector generalization of the ¢
excess power statistic under the assumption of 'Gaus_5|an I ——
noise. It will be important in the future to generalize this (t 4/8t)
analysis _to f’i”O_V\{ fofuncorrelatefinon-Gaussian noise com- where 5t consists of ndata
ponents in individual detectors. +

The layout of this paper is as follows: in Sec. | B we
begin with an overview of the filter and some of its proper- fast Fourier transform data
ties. This is done with an eye toward implementation, so that In the Intorval (= o, 3¢)
readers whose primary interest is in applying the filter need +
not concern themselves with mathematical aspects of the sta- sum power in 2 Hz bands
tistical theory of receivers. Subsequently we discuss proper- spanning peak sensitivity
ties of the excess power statistic in Sec. Il, its derivation +
from a Bayesian framework in Sec. lll, an efficient imple-

. L ! S every frequency band
mentation of the statistic in Sec. IV, and the generalization of —tme< t:’az)eee::onsrdered
the power statistic to multiple detectors in Sec. V. :

false
B. Overview ¢
The outputh(t) of the gravitational wave detector is °h°°se?fﬁeq;:';cyband
Ol

sampled at a finite rate At to produce a time seriek; where5 £ le o muliple of 2 Kz
=h(jAt), wherej=0,1,2, ... . This output can be written ¢
as

sum power in the frequency
h;j=n;+s; (1.7 band (£ ,,8£)

wheren; is the detector noise ang| is a (possibly absent

signal. For most of this paper we assume that the noise is

stationary and Gaussian. Under these assumptions, the com- true
ponents of the Fourier transform of a segment contaiNng

samples of noise, record
event
N—1

ﬁk: 2 r-]J_eZ'n'ijk/N, (12)
=0

is significant for

Ise
X2 with 25t 55 18

FIG. 1. A flow chart for the short FFT algorithm for the power

can be taken to be independemie discuss the extent to filter.
which this is true in Sec. 1Y The one-sided power spectrum

S of the noise is defined by number of frequency components being summed is therefore
~~eo 1 equal to the time-frequency volumé= ot 5f =k, —K;.
(i) =3 Sk (1.3 In practice, we search over every time-frequency window

that is consistent with eangeof possible time durations and

Here,(-) indicates an average over the noise distribution angy5qwidths. The number of such windows per start time is
* denotes complex conjugation.

Consider a situation where all possible signals have a
fixed time durationst and are band-limited to a frequency Nyindows= 5 NehanneléNehannelid 1) (Nmasx— Nimint 1)
band[ fg,fs+ 6f], but no other information is known about 1.5
them. Then, as we show in Sec. Il tloptimal statistic for
detection of this class of signals is th&cess power statistic
whereN .= Stmax/ At is the number of samples in the long-
_ = 2 est expected signal duratiodt,,,,, and Ny = otmin/At.
&= 4k1§2k<k2 /S (1.4 Here N¢pannei= O max! 0f min 1S the ratio of the largest band-
width searched ove#f ., to the shortest bandwidtf ,;, .
The sum in Eq(1.4) is over the positive frequency compo- One strategy for this search was outlined above. A flowchart
nentsk; <k<Kk, that define the desired frequency band. Thefor this algorithm is presented in Fig. 1. We call this algo-
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get M data spanning time T
‘ much longer than any signal

{

| fast Fourler transform data

!

sum power in 2 Hz bands
spanhing peak sensitivity

!

every frequency band true -
has been considered

faise

{

choose a frequency band
(£4,85)
where £ is a multiple of 2 Hz

!

inverse Fourler transform data
in frequency band (£, 3 £)

PHYSICAL REVIEW D63 042003

floating-point operations per start time wher&/

= Stmax Of max IS the maximum time-frequency volume and
Amax= Of madt is the maximum dimensionless bandwidth.
(The frequency band from DC to Nyquist corresponds to
amax=3.) The long FFT method requires only

Ciong= a2 InV (1.7)

floating-point operations per start time; the computational
improvement is a factor of

Cshortw 3 1
C|0ng 2In2 O max

Vv
Inv’

+ ! 1.8
5 (19
The first term shows that there is at least a factor-dfto be
gained by the long FFT method; in addition to this, the com-
putational gain increases with the total time-frequency vol-
ume to be searched. FM=100, the value of the second
term is also~4.

Having computed the total power for the various time-

+ frequency windows of interest, one must decide which, if

any, of those windows might contain a signal. A signal in-
—true< every time nterval creases the expected power in a window, so we seek win-

has been considered dows containing a statistically significant excess of power. If

false one knows the distribution of the noise data, one can derive

y the distribution for the noise power and thus set detection

thresholds on the power.
(t 4, 8¢) The power€ is distributed as a2 distri.bution with 2/ .
where 5 t consists of  data _degrees of fr_eed_om_ln the absence of a S|gnal._W_hen_a signal
1 is present£ is distributed as a non-centrgf distribution

with 2V degrees of freedorf27], where the non-central pa-
rameter is the signal powex?:

choose a new time interval

sum power in the time interval
(ty.8t)

A?=4 > [50¥S. (1.9

ky=<k<k,

is significant for

27 with 25t 52 12158

The quantityA also represents the signal-to-noise ratio that
one would expect to achieve if a matched filter were used to
detect the signal.
In Fig. 3 we show the central and non-centsdl distri-
butions for several choices of parameters. It is straightfor-
FIG. 2. A flow chart for the long FFT algorithm for the power Ward to use they® distributions plotted in Fig. @) to set a
filter. frequentist threshold for the excess power statistic so that a
desired false alarm probability is achieved; then the false
rithm theshort FFT methodWe have also considered a sec- dismissal probability can be computed as a function of signal
ond algorithm which we call théong FFT methodand its ~ amplitude using the non-centragf distributions plotted in
flowchart is shown in Fig. 2. Fig. 3(b). Alternatively, one can fix both false alarm and
Under the conditions thai) the numberM of time do-  false dismissal probabilities, and then use gfeand non-
main data points being filtered is large afiid one searches centraly? distributions to determine the expected signal-to-
over many different time-frequency volumes, the long FFTnoise ratio(A) of the signal which achieves these probabili-
method is computationally more efficient than the short FFTties. A curve demonstrating this for a false alarm probability
method: the long FFT eliminates the redundancy of Fourieof 10" ° and false dismissal probability of 0.01 is shown in
transforming data more than once when it falls into overlap+ig. 3(c).
ping time-frequency volumes. In Sec. IV we estimate the A derivation of the statistical properties of the excess
computational costs of the two methods. We find that thepower statistiqdboth with and without a signatan be found
short FFT method requires in Sec. Il. In Sec. lll we show that the method is optimal and
unigue under suitable assumptions using a Bayesian analysis.
The excess power statistic requires minimal information
about the signals to be detected, making it a useful statistic

2
\Y; (3 log,V !) 1.6

Cshore=
20max\  Xmax 3
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FIG. 4. The relative effectivenesgof the excess power method
FIG. 3. Cumulative probability functions fdg) the x distribu-  with respect to matched filtering, for the case where the time-

tion and(b) the non-centrak? distribution for various degrees of frequency window is known in advance, as a function of the effec-
freedom 2/. The curves in(a) give the probability that the powet  tive number of independent templat&&, characterizing the space
exceeds a thresholé* when no signal is present. They can be usedof signals being sought, and the time-frequency voluma false
to fix the threshold given the time-frequency voludeand the  alarm probability corresponding to one false alarm per one hundred
desired false alarm probability. The curved(m give the probabil-  days of observatioftaken to have 1.72810° independent arrival
ity of detecting a signal whose power A€ in the time-frequency  times, and a correct detection probability of 0.99 were assumed.
volume V and given a threshold*, where the threshold* is  The quantitys is the ratio of the minimum signal amplitude that is
chosen to give a false alarm probability of 0.@d). The signal-to-  required to achieve these false alarm and dismissal probabilities for
noise ratioA? necessary to achieve a given false alarm probabilitythe excess power method, to the corresponding minimum amplitude
(FA) and a false dismissal probabilifFD) of 0.01 for various  for the matched filtering method. The loss in event rate due employ-
values of the number\2 of degrees of freedom. ing the excess power method rather than matched filtering?is

- This plot can be generated by combining E@24), (2.29, (2.3
for poorly modeled sources. Nevertheless, it is useful t nd(g.?ﬂ) of the ?ext. y g BGs24, (2.29, (230

compare the detection efficiency of the method to that o

matched filtering. We characterize the excess power filter b}ﬁenote by the N-dimensional vector space of all such data

:22 2?;;(;6[/(\1/“62?;;;233:" a?nddtehi%ﬂﬁ?ﬁﬁ;ge;g?m&z stretches. We assume that the detector output consists of a
eff Y P ) 9 stationary, zero-mean, Gaussian noise compongnplus a

e o ] Plobaliles. e encts gsste sgnat, so i —n; 5. Under these assump
P 9 9 |§)ns, the statistical properties of the noise are characterized

; - P MF
power fllter or a baqk of matghed filters Wy, and A, by theNx N correlation matrix
respectively. Theelative effectivenesg of the two search

methods is given by the ratio of these amplitudes: Rij=(nin;)=Cp(|i —j|At). 2.9
=ALE/AME | In other words, the excess power statistic can

detect a source at a fractionof the distance to which a bank HereC(t) is the correlation function of the noise aid is

of matched filters can. The relative effectiveness plotted  the sampling time. This correlation matrix determines a natu-
as a function of the time-frequency voluriveand the num- ral inner product oV given by

ber of templatesVy is shown in Fig. 4. This figure shows
that for time frequency volumeg less than~ 100, and for
all values of the effective number of templatdgs, the (a’b):izo a;Qijb;, (2.2)
relative effectivenesg is greater than 1/2.

N—-1

whereQ=R 1.
Il. THE SEARCH METHOD IN A SINGLE We now discuss the notion of time-frequency projections.
INTERFEROMETER Consider the time-frequency window

In this section we define the search method in the context
. X o . T={ts,ot,fg,of 2.3
of a single interferometer, and derive its operating character- {ts 10t} @3

istics from the frequentist statistical framework. defined by the frequency intervl, f<+ 6f], wheref. is a
starting frequency andf is a bandwidth, and the time inter-
val [tg,ts+ 6t], wheretg is a starting time andt is a dura-
Consider stretches of discretely sampled detector Hata tion. Suppose that we want to focus attention on that portion
={hg,hq, ... ,hy_1} consisting ofN data points. We will of the data that lies inside the time-frequency winddwo

A. Definition of method for a single time-frequency window
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the extent that this is meaningful. One obvious thing to do is The statistic can also be described geometrically as fol-
to truncate the data in the time domain, perform a discretédows. The linear mapping defined by E@®.6) has a kernel
Fourier transform into the frequency domain, and then throwh |h, =0 for all I}. The set of all vectors perpendicular to
away the data points outside the frequency band of interesy|| elements of this kernel with respect to the inner product
One then obtains the quantities (2.2) form a subspac®; of V which can be naturally iden-
tified with Wz . Any elementh in V can be decomposed as

Ni—1
[ 2miJK/N
Hg= JEO e ™ hy g, (2.9 h=h+h,, (2.9
where j=t,/At, N,=8t/At, and K runs over the range wherehj lies inVyandh, is perpendicular to all elements of

fot<K=(f+ of)t. We denote byV the vector space of V7 The statistic(2.7) is the squared norm of the parallel

the projected datil, . The dimension of this vector space component:

over the real numbers is

Ex(h)=(h;,h)). (2.10

For the simple time-frequency truncation meth(i4)

o . . : discussed above, one can obtain a simple approximate for-
whereV,= 5F5f is the time-frequency volume of the time- mula for the statistic. The correlation matrix of the quantities
frequency windowZ.

Of course, there are many other methods of attempting th's ©f EQ. (2.4) is given by, to a first, crude approximation,
pick out the portion of the data in the time-frequency win-

dimW,=25tsf =2V, (2.5

dow 7.2 The lack of a preferred unique method is due to the (HyHk)=0, (211
uncertainty principle. In many circumstances the differences o
between different reasonable choices will be relatively unim- (HyH¥) =36k Sk, (2.12
portant. For the remainder of this section we will assume that
we have picked some reasonable projection mefhtié.can  where 0<J,K<N/2,
write the projected data in general as

Sk = 6t S,(K/6t)/(At)? (2.13

N—1
h,= 2> Alh;, (2.6)
i=o
WhereAﬂ is a real 2/7X N matrix, the quantitiei;l_J are real,
andJ runs over G£J<2V,—1.

We define the power statistic associated witand with a
choice of projection method to be

V-1
&= 2 Quhihy, (2.7)
WhereEJQ|JRJK:5|K and
RJK:<H]FK>:% ASAkKRjk (2.9

and S, (f) is the conventional one-sided power spectral den-
sity of the detector noise. The expressid@sll) and(2.12

are accurate only whef,ét>1 and whenS;(f) does not
vary substantially on scales 1/6t; more accurate expres-
sions can be computed if desired from E(&1) and(2.4).
The definition(2.7) now yields

(f+ of) ot

EAhy~4 > |FAgl¥Sc, (2.14
K=Tgot

cf. Eq. (1.4) of the Introduction. We show in Sec. IV below
that the expressiof2.14) is an adequate approximation to
Er(h) for most purposes.

The search method consists of searching over time-
frequency windowsZ; and selecting as possible events only
those windowsT for which £ exceeds a suitable threshold

is the correlation matrix of the projected data. The quaidtity ¢+ \we discuss further how to search over time-frequency
is, roughly speaking, just the total power in the data streanindows in Sec. IV below. For the remainder of this section
within the given time-frequency window, where power is not,ya assume that the time-frequency windGws fixed and
the physical power but is measured relative to the detectqgnown, and discuss the performance of the statistic.

noise(i.e., it is the conventional power of the pre-whitened

data stream

2For example, one could FFT the entire data segment, truncate
in the frequency domain, FFT back to the time domain, and the

truncate it again in the time domain.

B. Operating characteristics of the statistic

When a signal is not present in the data stream, the sta-

'ﬂstic E=E4(h) is the sum of the squares oV2ndependent,

fero-mean, unit-variance Gaussian random varigbEsus

3The choice of a projection method corresponds mathematically to

the choice of a ¥ ,-dimensional subspace of the dual sp&teof

“To see this, note that there is a basis/®Bf in which the corre-

V. When one specifies in addition the detector noise spectrum, thiation matrix R is equal to the ¥ X2V identity matrix, and use

projection method determines &2 dimensional subspace ®t

Eqgs.(2.7) and(2.9).
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i O White noise
4 Colored noise
w V=1
A OV )
11} ----V=4
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— V=32
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FIG. 5. The probabilityP(£>£*|0) of obtaining a value of
greater than a given threshafd, for stationary Gaussian noise in
the absence of a signal, as a functiorféf The quantity€ has ay?
distribution with 2V degrees of freedom, wheré is the time-
frequency volumeg2.5) of the signal being sought. The lines show
theoretical curves generated according to the stangaribrmula

(2.195. The data points represent values obtained from Monte Carlo

simulations(described in Sec. IV A where the noise is Gaussian
and white(circles or colored(triangles.

£ follows a y? distribution with 2V degrees of freedom; the
upper-tail cumulative probability is

T(V,£*12)

Qo) =P(E=£")= [y

(2.19

where T'(a,x)=f;e 't*"1dt is the incomplete Gamma
function. The quantityQy(€™) is thefalse alarmprobability
for the detection thresholéi*. The distribution(2.15 is plot-
ted in Fig. 5 for several values &. An approximate expres-
sion for Qg in the regimeQy <1 is[27]

2V 1
Qo(&M) = \/7?(1

1+0 !
\%

A2

v 2
+— 7A*/2
2v) €

X +0 +0

\%
a2z F”' (2.19

whereA2=£*-2V.

PHYSICAL REVIEW D 63 042003
tr;% projected signal. We define the amplitudlef the signal
b

2v-1

A?=(s ,Sﬂ)zlzo Qi138i8s, (2.19
where we use the notation of EQ.9). The expressiof2.17)
can be simplified byi) choosing the basis ofV; so that
Q3= 6,3 (which is roughly equivalent to whitening the de-
tector output for a large class of time-frequency windpws
and (ii) further specializing the choice of basis so that the

signal vector is $y,S1, - .. ,Sov_1)=(A,0,...,0). The re-

sult is
2V—-1
E=(ng+A)%+ X, n? (2.19
I=1
whereng,ny, ... N, _; are independent Gaussian random

variables with zero mean and unit variance.
From Eq.(2.19 one can compute the moment generating
function for the random variablé. The result is

_exg A%t/(1-21)]
T (1—2t)V

(e) (2.20
The probability distribution for€ can be now obtained by
taking the inverse Laplace transform, which is accomplished
by expanding the argument of the exponential in £520

as a power series iA. The result is a weighted sum gf
probability distribution functions:

e7A2/2(A2/2) ne- 5/2( &l2) n+v-1

PEAVI= 2 — T(n+V)

n=0

(2.21

This is the non-centra}? probability distribution with non-
centrality parameteA? discussed in Sec. 26.4 of RE27]. A
closed form expression for the probability distributiori2§]

p(8|A,V) — %e—(S-%—AZ)/Z((c/'l/Z/A)V—lI V,]_(Agllz),
(2.22

wherel ,(x) is the modified Bessel function of the first kind
of ordern.

The upper-tail cumulative probability distribution fér

Qa(EXANV)=P(E>EXANV)= f;p(ElA,V)d&
(2.23

is thetrue detectiorprobability for a given threshold™ and
a given signal amplitudé. Figure 6 shows this true detec-

We next consider the case when a signal is present, so th@én probability Q,, expressed as a function of signal

h=n+s. The formula for the statisti€ given by Eqs.(2.6)
and(2.7) becomes

2V—-1

5:20 Qu(n+s)(ny+sy), (2.17)

wheren,==Aln; is the projected noise arsl=3;Als; is

strengthA and false alarm probabilit®, [via Eq. (2.15],
evaluated atQ,=0.01, for several different values of the
time-frequency volume/.

SNote thatA is the signal-to-noise ratio that would be obtained by
matched filtering if prior knowledge of the waveform shape allowed
one to perform matched filtering, and if the sigsakere confined
to the time-frequency window:
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C. Comparison of performance to that of matched filtering

©White noise The performance of the excess power statistic should be
08 |t gdopdnee i compared with that of a matched filtering search for the same
Vi class of signals. Of course, matched filtering searches will
—_ ——-v=8 not be possible for the classes of signals we are interested in
<o06 Vi . (for example supernovaelue to the lack of theoretical tem-
W plates; nevertheless the comparison is useful as benchmark
A of the excess power method.
§ 04 7 We start by discussing how the performance of matched
filtering depends on the set of signals being searched for.
0.2 | Suppose that a given class of signals have a known duration
and frequency band, so that they all lie inside a fixed time-
frequency window7 with time-frequency volumeV. Let
""" A,(Qg) be the signal-to-noise ratio threshold for the

1 10 100 matched filtering search necessary to give a false alarm prob-

ability of Qg for each starting time. Now if the bank of
FIG. 6. The probabilityP(£>£*|A) of obtaining a value of ~ Matched filters consisted of/ statistically independent fil-

greater than or equal to a given threshéltdgiven the presence of ters, then the thresholdl, would be given by the formula

a signal of powerA? and stationary Gaussian noise, for several IV
different values of the number\2 of degrees of freedom, as a erfa(A, /12)=1-(1-Qo)*"V~Qo/N.  (2.29

function of A%. For eachV, the value of£* which gives a false o
alarm probability 0fQ,=0.01 is used. The lines show theoretical IN the more realistic case where the templates are not all

curves generated according to the standard non-cegfrtrmula  Statistically independent, the formuf@.25 motivates us to
(2.23. The data points represent values obtained from Monte Carlglefine an effective number of independent templatés
simulations[described in Sec. IV A where the noise is white =Nei(Qo) by the relatiof

(circles or colored(triangles.
erfd A, (Qo)/v2]=Qo/Net(Qo)- (2.26

Some qualitative insight into the detectability of a signalThis effective number of templates depends on the false
can be obtained from the first two moments of the distribu-gjarm probability Q,, or, equivalently, on the detection
tion for £. The expectedmean value is(€)=2V+A? while  thresholdA, via the relationA, = A, (Q,). For a given class
the variance is Vaf=(£?%) — (£)>=4V+4A. For large val-  of signals(e.g., inspiralling binariés it should be possible to
ues of V the probability distributions are nearly GaussianestimateNys by a modification of the method of Ref29]
within a few sigma of the expected value, so we can imagingvherein one does not eliminate the intrinsic parameters or
setting the threshold* to be a few times/4V above the the signal amplitude and one chooses a minimal match of
mean noise level ¥ in order to achieve the required false order ~0.3 say to give approximately statistically indepen-
alarm probability. Thus, a signal will be detectable witen dent templates. We suspect thét; will not differ too sig-
—2V>(a few) X+/4V. In other words, the signal power’ nificantly from the actual number of templates used in a

can besmallcompared to the mean noise powéf and still searcH. In any case, for a given matched filtering search, the

be detectable; it need only be comparable to the muclletection threshold and the resulting effective number of in-

smaller fluctuations- 4V in the noise power. dependent filters will be determined by Monte Carlo simula-
Once one specifies the time-frequency voluvhand de-  tions.

sired values of the false alarm probabil®y and true detec- An illustrative special case of matched filtering is when

tion probabilitiesQ,, there is a minimum signal amplitude the signal manifold is a linear subspag®f the space of all
Anin that can be detected with the excess power method. Tpossible signals. In this case the maximum over all templates
compute this amplitude, one first inverts .15 to obtain  of the signal-to-noise ratio squared is simply (b)), where

the required threshold* as a function ofQ, and V: £* h, is the perpendicular projection of the detector output
=£*(Qq,V). Second, one inverts E@2.23 to obtain the

amplitude A as a function of £*, Q. and V: A

fA(E*,QA,V). The minimum signal amplitude is then 6, Ret. [4] the quantitiesA,, Q, and Ny were denotedp, ,
given by €l Natarttimes @NdNghapes respectively.
"The grid of search templates used will be determined by having a
minimal match[29] of ~0.97 say instead of- 0.3, which tends to
Anin(Q0,Qa.V)=A[£"(Q0,V),Qa,V].  (2.24  make the actual number of templates larger thap. On the other
hand, a template grid needs only 2 templates to cover all possible
signal amplitudes and phas@ghen the other parameters are fixed
This quantity is plotted as a function of the time frequencywhereas the number of statistically independent templates that can
volume in Fig. 3c), for various values ofQ, and forQ,  be generated by varying the amplitude and phase can be much
=0.99. greater than 2 for smal,.
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into S [30]. Since this quantity has g? distribution, it fol-  alarm probabilityQ, by Q, /N, , whereA, is the number of
lows from the approximate formul@.16 and from the defi-  statistically independent time frequency windows searched

nition (2.26) that for this special case we have over per start time. We have performed Monte Carlo simu-
214/ lations with white Gaussian noise which suggest that
Nog(A )=@[1+ & <100V ax, WhereV ., is the I_argest time?frequency_vol— _
et TA, d ume searched over. The resulting change in the relative effi-
q ciency 7 is not very large.
- il el Further insight into the relation between the excess power
X140 d O A® +0 Af) (229 and matched filtering methods can be obtained as follows.

First, an approximate formula for the functi@®.24) is ob-

whered=dim(5) is the number of signal parameters. In Ref. tained by approximating the distribution 6fto be a Gauss-
[4] this relation was used to define an effective dimension folgn:

any space of signals, and that effective dimension was used

instead of V(Qo) to characterize the signal space. Here 5 (Qo,Qa,V)2=A,(Qq V)2+2\/§erfl(2QA—1)
however we will instead parameterize our comparisons di- " - e

rectly in terms ofA\. XVV+A,(Qp, V)4, (2.32
We also note that for this special case of a linear signal
subspace, we have where A, (Qg,V) is obtained by inverting Eq2.16. This
formula is typically accurate to a few percent for 8.Q,
~ 21s(AL) . . .
Nei(A)~2 ' (2.28 =<0.99. WhemQy<1—Q, (which will typically be the case

we can neglect the second term in E8.32 in comparison

wherel(A,) is the number of bits of information about the gvith the first, so that

source carried by a detected signal with signal-to-noise rati
A,, as defined in Ref.30]. We conjecture that this relation

might be approximately valid for general signal manifolds. Anin(Q0,Qa V) ~A,(Qo.V). (2.33

We now turn to the relative performance of the excess

power and matched filtering search methods. As explained iSecond, the quantityAl(Qo,Qa) will similarly depend
the previous subsection, once we specify the false alariveakly onQ, and will be well approximated by the quantity
probability Q, and true detection probabilit, we can  A.(Qo) obtained from Eq(2.26). Combining these approxi-
compute the minimum signal amplitudke,,,, necessary for mations together with Eq(2.16, we see that the excess
detection via the excess power method, as a functiod@f Power method is equivaleriin terms of detection thresh-

Q, andV. Let us denote that value here Agfn; olds) to matched filtering with an effective number of tem-
plates of
A= Anin(Q0.Qa. V). (2.29
AZ\YW AZ\Y
Similarly, we can compute the minimum amplitude neces- Neﬁ:(1+ W) A ~( 1+ W) : (2.39

sary for detection with matched filtering with« indepen-

dent templates; the result is The quantity(2.34 was shown in Ref[30] to be the total

MF _ number of distinguishable signals within the given time-
Anin=Amin( Qo/Nett Qa1/2)- (230 frequency windovx?with signal—?o—noiseA*. In othgr words,

In other words, one simply uses the same formula @ it iS the maximum possible value for the effective number of
replaced byQ,/Nsy, and with the number of degrees of independent template€, for anymanifold of signals inside
freedom 2/ being unity. We define the relative effectivenessthe time-frequency window/7, as a function of the time-

7 of the excess power method relative to the bank of filterfrequency volumev. Hence, we can understand the excess

by power method as a limiting case of matched filtering: the
case where the manifold of signals becomes so |gpge-
7(Qo,Qp  Negr, V) =AEE AME (2.31)  haps curving back and intersecting itgetfat(when smeared

out by the noisgit effectively fills up the entire spacé; of

The factor by which the event rate for the excess powesignals within the given time-frequency window. The
method is smaller than that for the bank of matched filters isequivalence can also be seen from the fact, noted above, that
7°. The relative effectiveness is plotted in Fig. 4 as a functhe excess power statistic coincides with the matched filter-
tion of V and NV ;. For V=100 we see thay=0.6 always, ing statistic when dependence of the signal on its parameters
showing that the excess power method performs almost ds linear and the number of parameters coincides with the
well as matched filtering. dimension %/ of W;[30].

When the time-frequency windo@ is not known in ad-
vance, one mu_st_ search over time frequency windows. This IIl. BAYESIAN ANALYSIS OF SIGNAL DETECTION
reduces the efficiency of the excess power method compared
to matched filtering. An approximate parameterization of this In this section we show how our proposed search method
reduction can be obtained by replacing in Egj29 the false arises naturally from an analysis of the detection of signals
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from a Bayesian point of view. Section Il A defines the wherep(7)=p+(ts,dt,fs,5f) is a prior PDF on the time-
class of signals under consideration in terms of a prior probfrequency window parameters. The PPR(7) should be
ability density function(PDF). Section Il B derives the ex- uniform intg, but its dependence on the parametétsf,
cess power statistic, and Sec. Il C compares detection criteand 5f will depend on the class of sources under consider-
ria based on a false alarm rate to criteria based on thation. We will see below that our analysis depends only
probability that a signal is present in the data. weakly on the choice of PDB(7), as long as it is a slowly
varying function of its parameters.
A. The space of signals

The signals of intereste.g., black hole mergersare B. Derivation of the search method
poorly understood. We characterize our knowledge in terms In the Bayesian approach to signal detection there is a
of a prior PDFp(s) for signalssin the vector spac®. Inthis  unique and optimal method to search the data stream for
subsection we explain how to encode knowledge of the exsignals if the statistical properties of the detector noise and
pected bandwidth and duration of the signals in the PDF. the prior probability distribution for signals are known. One
Suppose we know that the signallies approximately computes the probabilitps(h) that some signa is present
within  some time-frequency window 7=[tg,ts+ 6t] in the measured data The signal-detection criterion is that
X[fq,fs+ 6f], but that nothing else is known about the sig- the probabilityps(h) exceeds some threshold value. This is
nal. Then we know thas belongs to a subspadé-of V. Of  the starting point for our analysis; more details can be found
course, there are several slightly inequivalent choices of sucim Wainstein and ZubakoJ31] or Finn and Chernoff
a subspace, as discussed in Sec. Il A above, but we wi[l32,33.
assume that these differences are unimportant, and pick one The prior PDF given Eqs(3.2) and (3.3) describes our
choice of V7. state of knowledge about the signals to be searched for. Now
For any vectoh in V, we can writth=h;+h, , whereh, let psg denote thea priori probability that gravitational
is the projection oh into V; andh, is perpendicular td’r.  waves existor that our signal model is corregfor which an
We assume the following form for the prior PDE S 7) appropriate value for the first searches mightpg=1/2.
given the time-frequency windo@: The signal PDR3.3) then gets modified to

p(sdVs=sM"2V)(s,) dN s X py(A)d?y), (1-pgo) 8N(s) dVs+pgo p(s) d''s. (3.9
(3.9
It then follows that the posterior probabilitygi(h) that a
whereA?=(s,s) andN is the dimension op. Here the first signal is present in the datais given by
factor consisting of theN—2V)-dimensionals function re-

strictss to lie in V7. The second factor depends only on the ps(h) _Ach Pso 3
magnitudeA of s, which means that we assume all direc- 1-pgyh) ( )1—pso’ (3.9
tions in the vector spac®; are equally likely when one
measures lengths and angles with the inner pro@@®.2  where the likelihood functior (h) is
We can rewrite the prior PDE.1) as
p(sT) dNs= sN-2V)(s ) dN-2V)g. A(h)zf A(h;s) p(s) dNs
(V) oveny _ . Ne 4
XS AP hpA dA - (32 =| | Ahis)p(ST)p(7) d"sd*T (3.6
o

where d2V=1Q, is the (2V—1)-dimensional element of and
solid angle and wher@(A)dA is the probability that the p(hls)
signal amplitude lies betweehand A+ dA. We discuss the A(h;s)= 3.7

choice ofp(A) in Sec. Ill C below. P(h[s=0)"

So far we have assumed that the time interMal,ts
+ 6t] and frequency intervdlfg,fs+ 8f] are known. In a
real search, however, one must account for ignorance
these parameters. An appropriate prior which does this is

p(s) dVs=p(g7) d"s pA(T)d*T, (3.3

In Eq. (3.7) the quantityp(h|s) is the probability of measur-
ing the time seriesh when the signals is present, and

(h|s=0) is the corresponding probability when no signal is
present. For stationary Gaussian noise the likelihood ratio
A(h;s) is[32].

A(h;s)=exgd (h,s)—(s,9)/2]. (3.8

&t would be more realistic to make this assumption with respectEquation (3.5 shows that the probabilitp(h) increases
to an inner product oV whose definition did not depend on the monotonically with increasing\ (h). Consequently, thresh-
noise spectrum, but if the noise spectrum does not vary too rapidiplding onA (h) to detect signals is equivalent to thresholding
within the bandwidth of interest, the distinction is not too important on the probability that a signal is present in the data stream.
and our assumption will be fairly realistic. This is also the optimal signal detection strategy in the
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Neyman-Pearson sense of maximizing the detection prolthresholding or€, and so€ is the optimal(in the Bayesian

ability for a fixed false alarm probability31,34. sensg statistic for the detection of the class of signals we
The integral(3.6) includes an integral over all possible have considered.

time-frequency windowq, which can be approximated as a

sum: C. Bayesian thresholds

Frequentist detection thresholé3 are set by specifying a
2 J A(h;9) p() dVs. (3.9  false alarm rate, and can be computed using(Ed5. As is

well known, if such a threshold is exceeded it does not nec-

essarily mean that a signal is present with high probability,
ven for low false alarm probabiliti¢85—37. To determine

ow likely it is that a signal is actually present in the data

A(h)=

windows

Here Myindgows IS the number of grid points in a grid on the

four dimensional space of time-frequency windows used t
approximate the integral. Now if a signal is present, the sum-
mand in Eq.(3.10 will be a sharply peaked function &t If stream requires the use of Bayesian methods.

the grid spacing is chosen to approximately coincide with the For a Bayesian detection strategy, one sets a threshold on

the posterior probabilityp(h) that a signal is present given
idth of th th th ber of statisti- s
\év;”y iﬁde;eggzgts?imea-?r\gaﬁgvrv\zlj W;ggﬁmgg Othz aslusr,r'] the data. This probability is related to the likelihood function

: ; ; A(h) by Eq.(3.9. In general, the integrdB.12 required to
Il be d ted by the | t term, and bt . .
Wifl be cominated by the largest term, and we obtain computeA (h) must be performed numerically. Singg h)

depends on the dataonly through&(h), one can determine
——max f A(h;s)p(d7)dNs. (3.10  a Bayesian threshold fa from the value ofps.
windows 7 Consider a search characterized by statistically inde-
pendent start times andl/, statistically independent time-
frequency windows. The frequentist false alarm probability
Q, of the previous sectiohEq. (2.19] is the false alarm
nbrobabmty for a given start time and a given time-frequency
Y window. Hence the false alarm probability for the entire

A(h)~

Thus it is sufficient to consider only a single time-frequency.
region in the remainder of this section with the understand

of the likelihood function over all relevant time-frequency
windows. Also we can factorNVyingows aS Nuindows

= Ng Ny, Where N, is the number of statistically indepen- search is

dent starting times; in the search, and/,, is the number of Pra(€*) = Qo(EX) NNy, - (3.14
statistically independent time-frequency windows per start

time. It is natural, in comparing frequentist and Bayesian thresh-

The evaluation of the integral in E¢8.10 with the prior ~ olds, to seps=1—pg,. For example, for “99% confidence”
PDF given by Eq(3.2) can be done in stages. First we inte- one would choosgs=0.99=1—ps,. We emphasize that
grate over the delta-function to restrict the possible signals tthis means “99% confidence that events will be due to sig-
the vector spac®r. This essentially replacesby s in Eq.  nals” for the Bayesian, while it means “99% confidence that
(3.8). Next we use the definitiof2.10 of £ to write the inner  there will be no false events” for the frequentist; since these

product appearing in Eq3.8) as are different statistical statements, the frequentist and the
Bayesian will obtain different thresholds.
(h,q|)=A81’2cosa, (3.1) We first discuss approximate evaluation of Bayesian

_ thresholds. The integrdB.12 can be approximately evalu-
whered is the angle between the vectdrsands;. We then  ated in the regim&> 1 by using the Laplace approximation,

obtain the formula if the prior PDFp(A) does not vary too rapidly. The result is
1 V2V p(A) A2 o
Ah=—JAh;A A)dA 3.1 = _ 2
(h) No, (h;A) p(A) (3.12 A(h)= NN, 145 exp(A?/2)
with 1 1 v
X 1+O +0|—=|+0|=—]||, (3.1H
r(V)e A2 o A2 A%
A(h;A)——ll f eherrcoslsintV=29dg o
T(V-1/2)Jo whereA=A(h) is defined by
=T(V)e AAAEVH2) VT4 (AEY?) &(h)y=2V+A(h)2. (3.1
=p(&|AV)Ip(E|A=0V) (3.13

If we now compare Eq92.16), (3.5, (3.14 and(3.15 and

[cf. Eq.(2.22]. Herel ,(x) is the modified Bessel function of usepso=1/2 and F-ps<1, we see that the Bayesian thresh-
the first kind of ordem, and maximization over time fre- ©Old A and frequentist threshold, are related by
guency windows7 is understood.

The quantity(3.13 is a monotonically increasing function
of the poweré. Hence thresholding ork is equivalent to

v
A2/2 —F

2

J’__
1 2V

-V

AZ
M2 (317

+_
1 2V
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where the factorF is and over allfg and 8f with
AAE of min< of < of max
F= —. (3.18
2V p(A) fmingfs (4-2)

Clearly the two thresholds coincide whef=1. However,
typically the factorF can be quite significant and can cause

the Bayesian and frequentist thresholds to differ substang js ¢jear that the computational cost can quickly grow to
tially. unreasonable proportions, so it is important to achieve an

It is useful to consider a specific example. Suppose thakicient implementation of the search technique.
we are searching for black hole mergers which we expect to There are(at least two different ways to implement a

produce shorta few mg broad band signatures with a time- o .0h gver a pre-specified set of time-frequency windows.

frequency volume of/=100. We want to be 99% sure of Tpe first uses many FFTs of data segments with durations in
our detection, so we s@=0.99=1—pg,. Suppose that the ¢ range4.1) as suggested by the derivation in Sec. II, and
search duratlor_1 is 1_/3 of a yoear, so that the number of inder,, aqch EET computegfor all frequency bands in the range
pendent start time i8/=10' say, and that the number of (4.2). This process is then repeated for every possible start
statistically independent windows is “.OFor 99% confi- time. We call this procedure thshort FFT method The
dence t_hlaet there will be no false alarms, we should chooSggcong method partitions the time series into long data seg-
Qo=10"" from Eq.(3.14. This gives from Eq(2.19 @  ments each containing samples, and for each of these seg-
frequentist threshold & *=411.3 corresponding to a signal- ments computes its FFT. That FFT is then partitioned into
to-noise threshold oA, =14.5. The corresponding Bayesian st _ /s5f . non-overlapping frequency bands each of width
threshold depends on the specification of prior PDF for sig-s¢  and for each one the FFT is bandpass filtered to that
nal amplitudesA. A reasonable choice of prior is frequency band and then inverse Fourier transformed. The
3AYAL A=A result is 8f max/ 6f min qlif_ferent t_imeseries, Which_ we ca!l
D(A) = o = Mer (3.19 channels, each containing partl_cular frequency information.
0, A<A.. The elements of these time series are then squared. One ob-
tains in this way a time-frequency plane in which each pixel
This is just the distribution that would be expected forrepresents the total power in a time-frequency volume of
sources distributed uniformly in time and space, except thadrder~ 1. Finally, one computes the total power in the vari-
it is cutoff in an approximate way at smaM in order to  ous rectangles in this time-frequency plane. We call this pro-
ensure correct normalization. The parameA%r is prior  cedure thdong FFT methodWe now consider the compu-
probability per start-time of an event being present withtational cost of each method in turn and argue that the second
signal-to-noise ratio exceeding unity. Based on populatioomethod is more computationally efficient.
estimates such as Rgf7], we optimistically assume a prior
probability of order unity for approximately one merger A. Sufficiency of approximate version of statistic
event per year wittA>1, which translates inttA§’~ 10719,
We can now compute a Bayesian threshold by combinin
Egs. (3.5, (3.12, and (3.13. The result is€=539 corre-

sponding a signal-to-noise ratio thresholdfof 18.4, which
is substantially higher than the frequentist value of 14.5.

fs+ 5f$fmin+ 5fmax-

In Sec. Il A above we discussed how to compute an ap-
%roximate version of the excess power statidii€. Eq.
(2.14)]. Namely, for a given start timg,, perform a Fourier
transform of theK point time seriegh;} corresponding to
the time windowét, whereK= 6t/At. Denote the discrete

Fourier transform(DFT) by h, where 0sk<K/2. Identify

the frequency componenks<k<k, of h, which belong to
As discussed in Sec. Il A, one will not know in advance the frequency bandf, and construct the statistic

the start timetg, duration 6t and frequency bandfg,fg

+ 6f] of signals in a real search, and thus one must perform £=4 z |Ek|2/Ski 4.3

a search over these four parameters. One needs to compute ky<k<k,

the excess powef(h) for each possible time-frequency

window, and record as possible events all of those windowsvhereS, is the noise power spectrum defined in £2.13).

for which £;is above thresholdWe assume that we wish to The quantity(4.3) differs from the exact statisti€ due to

IV. IMPLEMENTATION

search over all values aft in the range the fact that the expectation val(iehy, ) is not diagonal(lt
becomes effectively diagonal only in the lindit—«.) Con-
O pmin= OU= Ol max, (4.1 sequently, the expressidd.3) is not a sum of squares of

independent unit-variance Gaussian random variables, and so
its distribution could in principle differ from the non-central
°Note that different thresholds will be required for each window x? distribution. However, in practice, if the power spectrum
7, but the false alarm probabilit®, will be the same for each of the noise is a slowly varying function of frequency, then
window. the correlations introduced by using the expressiB) are

042003-12



EXCESS POWER STATISTIC FOR DETECTIONR . . PHYSICAL REVIEW D 63 042003

small. To confirm this, we have examined the behavior of the These steps must be repeated for ebctvith N,,;,<N
statistic(4.3) computed from the DFT of colored, Gaussian <N ., WhereN yin= 8tmin/At and N.,= Stma/ At. Thus,
noise. We generated colored noise according to the correlahe total computational cost per start tir@gy,; iS

tion generating scheme

N max

_ 1 _
n;=(m;—0.8m;_;+1.2944n, ;—0.64n; ,)/1.3145 Caror=, 21 NIBIOGN +3amact 3 amaf Ntma—1)

(4.4 .7

where m; are uncorrelated Gaussian deviates amem, One W'"_ typically have Nimin~1 and Npg,@ma=V>1,
=0 for j<0. To determine detection statistics, we used theWherev s the total tme-frequency volume to be sgarched.
signal model ' In this case, a useful approximation to the computational cost

per start time is

s;=Sexd — 16(j/2N—1)?]cog 2jf ) (4.5 V2 (3IogZV+V

Cshore= 2
max

4.9

Amax 3
with N=4096 samples in the signal. The central frequency

of the signal wad ,=600/4096 and the constaBtwas cho-  The total computational cost in flogéloating-point opera-
sen to give the required value of signal amplituleWe  tions per secondcan be obtained by multiplyin@shor by
found the operating characteristicsé®ivere not significantly ~ the sampling rate.

affected by using the approximate formyia3) rather than

the exact formula. This is demonstrated in Figs. 5 and 6 C. The long FFT method

where we have overlaid simulated false alarm and true de-

tection probabilities on top of the distributions computed in
Sec. Il B. We calculated the goodness of fit usingZatest
for a few of the curves in these figures. In each case, th
reducedy? value was=<1.03, indicating that it is unlikely
that the simulated data is drawn from distributions other tha
those presented in Sec. Il B. We therefore conclude that wi
can use the approximate formulé.3) without significantly
modifying the behavior of the statistit

As discussed above, in the long FFT method one con-
structs a time-frequency plane consisting Of:hannels
= 6f max! 6T min different channels. The power in any time-
Frequency window can then be computed by summing the
fpower in that region of the time-frequency plane. The data
gtream is broken into chunks of lengthpoints, each chunk
IS FFTed, and the requisite number of channels are produced
by bandpass filtering, Fourier transforming back into the
time domain, and squaring the time samples. For each chunk,
the computational cost of this step is
B. The short FFT method

The algorithm is:(1) pick a start time,(2) pick a time

duration 6t, (3) FFT the selected data and compute the Tq search over the time-frequency plane, we first pick the

power in each frequency bifd) sum the power in the bands frequency intervalsf and construct thesf ./ 8f channels

of interest,(5) loop over steps2)—(4) until all time durations  of this bandwidth; this requires (5f/f;,—1) additions.

are used, an€b) repeat stepsl)—(5) for all start times. For each of these new channels, we sum up the power in
The computational cost for stef®)—(4) can be estimated y4rious time intervals. This step requinds,., operations per

as follows. The number of data points in segment of data of;4t time, of which there afé —N,,;,. Thus the total cost at

duration 6t is N=6t/At, so each FFT requiresNBog,N s stage of the search is

floating point operations. Since the relevant frequency band

C1=M[3(1+ NchanneidlogM + Nehanneld- 4.9

has a dimensionless bandwitfthy .= 6f naAt, the total Nehannels|

cost to compute the power in each frequency bin in the band  C,= > Chf"””e'TM(j — 1)+ Nppa M = Npyin) ]-

is 3Na . Operations. Now, for th&th frequency bin, it i=1 ]

costs N k) floating point operations to compute the (4.10

power in all frequency intervals whose lowest frequency . _ . .
component is in theéth bin; the number of operations re- Since there are appro_xmateM different start times, the
quired to do this for all freciuencidsis cost per start time is given by the approximate formula

Natpay—1 Ciong™= &maV/2In V. (4.12

max max

S (N )= (Nape1). (49

D. Comparison of the two methods

The space of time-frequency windows to search over was
198y dimensionless bandwidth we mean number of frequencyd€lineated in the Introduction for the initial interferometers
bins, i.e., bandwidth multiplied byt. Note that the dimensionless N LIGO. We adopt the corresponding parameter values
bandwidth of the entire frequency band up to the Nyquist frequencydf min=2 Hz, 6f5=200 Hz, 6t,,;,=0.005 s, andotu
is 1/2. =0.5 s. The computational power required using the long
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FFT method is 0.3 GFlops, which saves a factor-df4 over A. Notation and terminology

the short FFT method iAt=0.001 seconds. Suppose the detector network consistsngf detectors.

In general, the computational gain afforded by the longpengte the output of the entire network by the vector of time
FFT method over the short FFT method is given approXi-ggries

mately by
Y h={hf={h%(0),h% (A1), ... h'[(N—1)At],
o, (4.12
6InV h2(0), ... h(N—1)At], ... h"d[(N—1)At]}
(5.1)

The first term shows that there is at least a factordfto be  \yhere Ae{1,2,...n4 and je{0,1,... N—1}. We as-
galned by Fhe long FFT method; n addition, the COMPUtA-g,me that the noise of the network follows a multivariate
tional gain increases with the total time-frequency volwhe Gaussian distribution which is determined by tHeng)2
For V=100, the second term is alse4. correlations

There is a further benefit to the long FFT technique. It
allows finer frequency resolution in the choice of stdris <nA(iAt)nB(jAt)>:CAB(|i _j|At):RiA_B (5.2)
and endd ¢+ 6f¢ of the frequency bands to be explored- '
though the above estimates of computational cost were for @here(-) denotes an ensemble average. In general, the ele-
search equivalent to the short FFT seardhoreover, as part ments of the network correlation matrix are
of a hierarchical search, the long FFT method has a further
advantage in that it allows follow ups to be made without (R)an+isn+ =R (5.3
significant further computations. The next stage of a hierar-
chical search might involve techniques other than the excesghe convention(5.3) for combining the capital and lower
power method, e.g., Hough transforms or other line trackingase indices to form in ahnyxNny matrix is used from
algorithms. here on. The probability density function of the noise is

given by

CshortN 3 1
Ciong  2IN2 apay

V. MULTIPLE DETECTORS p(n)=[(27)"\"adetR]Y2exd —i(n,n)] (5.4

The network of gravitational wave detectors under conwhere the inner product is given by
struction around the world brings benefits that a single in-
strument cannot. This is especially true for “blind” search R ng N-1 A AB.B
techniques, such as the power statistic. Since these tech- Pa= > E Pi Qijq; (5.9
niques do not require the signal to have a specific form, ABZLTLIZO
random noise glitches are much more likely to meet the dezpq
tection criteria than is the case for signal-specific searches
such as matched filtering. Multiple-detector statistics will be (%= (R Y an+i BN+ - (5.6)
much more efficient at rejecting such false alarms than
single-detector statistid88,39. In this section we consider For later convenience, we note that the inner prod&d)
the construction of the optimal detection strategy for a netcan be written in terms of the discrete Fourier transforms of
work of detectors. The derivation requires further formal de-the detector time series, that is
velopment. For maximum clarity, we introduce most of our . N2
notation in Sec. V A. We derive the multi-instrument detec- > > d ~A% e 1 AB=B
tion statistic for a network of aligned detectors in Sec. V B. (P.a= > 4Rek20 Pic” (S )™ 5.7
The two LIGO interferometers at the Hanford site form such
a network. In addition, if we ignore the slight misalignment where
that arises from curvature of the earth, we can also include

AB=1

the interferometer in Livingston to form a three interferom- 8 Nt i INAB. — 2t Tk N
eter network. The general case when not all instruments are SOk =2, Z e v R
aligned is treated in Sec. V C. 1,j7=0

Our analysis is based on the formalism of R80] which  The notation|N/2| denotes the greatest integer less than or
followed earlier work of Ref{40]. We assume that the noise gq3] toN/2. These relations are strictly speaking valid only
of the detector network is Gaussian. Even though we allow, the continuum and infinite time limitdt—0 and NAt

correlations between noise in different instruments, the as- Nevertheless, they are sufficiently accurate for most
sumption of Gaussian noise is a serious limitation since thgaqtical applications. Finally, we note that the likelihood
main benefit of having several detectors is to combat non
Gaussian noise. It should be possible to adapt the theoretic
models of non-Gaussian noise given in {&9] in order to (F‘|§)
derive robust multi-detector statistics. However, it is neces- A(h;9)= P —exf (1,9 -1(59]. (5.9
sary to understand first the Gaussian case. p(h|0)

(Eﬁtio A(h;9) is given by
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TABLE I. The locationsx (the coordinates are in metg@nd direction vector§n*,n¥} for the various interferometers around the world
based on the the data[i#6,45 and the ellipsoidal model described[#]. Note that the arm orientations reported by Alld®] for the two
LIGO interferometers do not correctly represent the angles between the northing and the arms at the two sites; we have therefore stated the
official LIGO arm orientation vectors. For VIRGO, GEO-600, and TAMA-300, g&g. For the first five interferometers, the results are
based entirely on the numbers reported in Allen.

Project Location n nY X (X 10° m)
CIT Pasadena, CA {—0.2648;-0.4953;-0.8274 {+0.8819;-0.4715;+0.000¢ {—2.490650;4.658700+ 3.562064
MPQ Garching, Germany{—0.7304;#0.3749;+0.5709 {+0.2027;+0.9172;-0.343¢ {+4.167725 0.861577+4.73469}
ISAS-100 Tokyo, Japan  {+0.7634;+0.2277;+0.6043 {+0.1469;0.8047;-0.5752 {—3.9477044+ 3.375234; 3.689488
TAMA-20 Tokyo, Japan {+0.7727;+0.2704;+0.5744 {-0.1451;-0.8056;+0.5744 {—3.946416; 3.365795; 3.699409
Glasgow Glasgow, UK {—0.4534;-0.8515;+0.2634 {+0.6938;-0.5227,-0.4954 {+3.576830;-0.267688+ 5.25633%

TAMA-300 Tokyo, Japan  {+0.6490;+0.7608;+0.000Q¢ {—0.4437;+0.3785;-0.8123 {—3.946409; 3.366259; 3.69915}
GEO-600 Hannover, Germany{ —0.6261;-0.5522;+0.5506¢ {—0.4453;+0.8665;+0.2255 {+3.8563104 0.666599;5.01964}

VIRGO Pisa, Italy {—0.7005;+0.2085;+0.682 {—0.0538;-0.9691;+0.2408 {+4.546374+0.842990; 4.37857F

LIGO Hanford, WA {—0.2239;+0.7998;+0.556% {—0.9140;0.0261;-0.4049 {—2.161415;3.834695;4.600350

LIGO Livingston, LA {—0.9546;-0.1416-0.2622 {+0.2977;-0.4879;-0.8205 {—0.074276;5.496284+ 3.224257
B. Aligned detectors where

The simplest type of multi-instrument network to analyze ng
is a network consisting of instruments which a}II r'espond to 1/ = D o 2mKAA(M)IN( g1y ABg2mikAg(MIN,
the same polarization component of the gravitational wave AL
field. The two LIGO interferometers in Hanford form such a (5.14
detector, and if we ignore the slight misalignment arising
from the curvature of the eartfa ~10% correction effect; We note that the effective strain depends on the direction
see Table)lthe third LIGO interferometer in Livingston can to the putative source through the time deldygm). Gen-
also be included. erally the same is true fa@" , although not if there are no

~ The signal at any detector is simply a time-delayed vercorrelations between the instrumental noise at separated sites
sion of the signal that would be detected at the coordinatgzp].!* we can now write the likelihood ratits.9) as

origin, which for simplicity we take to be at the center of the
earth. Thus, the signal at detectdiis A(ﬁ.s):exr[((’ﬁ(eff) 3)—L((E3)] (5.19

At =s(t+7a), (5.10
where
where 7, is the time of flight for a gravitational wave be-
tween detectoA and the coordinate origin, arg(t) is the -~ ~ o~ (e
signal at the coordinate origin. The time delaysdepend on ((p,a))=4 Rego P /SE". (5.18
the direction to the source: if is a unit three vector in the
direction of propagation of the gravitational watiee., op-
posite to the direction to the soujcndx” is the location of

[N/2]

The posterior probabilitps(ﬁ) that a signal is present given

detectorA, then the datah is determined by integrating the likelihood against
prior probabilities densities for the signal and for the source
Ta=m-x*c (5.12) directionm. Thus
wherec is the speed of light. Finally, the DFT of the signal ps(ﬁ) . Pso
at detectorA can be written as — =AM —— (5.17
1- ps(h) Pso
A p2mikA A (M)/INT
sy=¢€ A Sk (5.12 where
whereA 5(m) =, /At ands, is the DFT of the signal at the . R
origin of coordinates. A(h)=f f p(0,¢)d29f p(T)de p(s7)dNsA(h;s)
A convenient description of the multi-instrument network (5.18
response is the effective stra®™ defined by{30]
Nd
Tef) — g(efd) e 2mkAAM/N g~ 1yABRB (5 1 it might be reasonable to make this assumption for the three
k S A,82:1 (575 o (513 detectors at LIGO for example.
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andpg is thea priori probability that any gravitational wave waves.(See Appendix B for a detailed discussion of these
sources exist. The mechanism of how information about thend the other coordinate systems relevant to this segtion.

signals is encoded in the prior probabilitipés| 7) andp(7)

For the Ath detector in the network, the gravitational wave

is treated in Sec. Il A, and applies directly to the currentstrain is

context with only one modification: the inner produet -()
should be replaced bi(-,-)). In particular, the probability
distribution p(s|T) is given by Eq.(3.2. The function

p(8,¢) is the expected distribution of source directions. ForWhereF-.

sources that are mostly further thar80 Mpc, the distribu-
tion should be uniform on the sphere.

The integral in the expressiofb.18 for the likelihood
function includes a sum over all time-frequency windoWws
and all source direction®. However, it is nearly equivalent,
and much easier, to adopt theaximumterm in the sum as

SAt)=FL s (t+ 7a) +FASX(t+74) (5.21)
, F% are the detector beam pattern functions and
m-x*/c is the time delay between the origin of earth-
fixed coordinates and the detectar(located atx”?) for a
wave propagating in the direction.

The concept of effective strain is particularly useful in the
formal development of the multi-instrument detection statis-
tic for gravitational waves. To introduce this concept, con-

A

an approximation to the likelihood function, since the largestider the inner product

term will dominate the sum when a signal is present. It is
therefore sufficient to consider only a single time-frequency

region7 and fixed directiorm in the remainder of this sec-

tion, with the understanding that the detection statistic will

include a maximization over these variablé4].

Using arguments similar to those in Sec. Ill B, we can

perform the integral over signak In particular, the prior
probability in Eq.(3.2) restrictss to lie in a vector spac®’y
which contains only signals in the time-frequency winddw
This has the effect of replacirgby s, in the inner products.
Moreover, the inner produd{-,-)) induces a natural inner
product on the subspadé-. The integral over angles can be
performed as in Eq.3.13 to show that

A(h)= J T(V)e A 2(AEY22)1V],_(AEY)p(A)dA
(5.19
where
E(keff)’r"]f(eff)*/g((eff) )
(5.20

&= ((h{*™ hf*M))=4 Rek

Here h{®" is the projection of the effective strain into the
time-frequency subspadér; the second equality holds for a

particular time-frequency window in which the signal has

durationNAt and is localized to the frequency bakg<k

<k,. The amplitudeA is defined by the\?= ((s; ,5))). Since
the right hand side of Eq5.19 is a monotonically increas-

ing function of £, the Neyman-Pearson theorem tells us that
& provides the optimal multi-instrument detection statistic.
Note that, as mentioned above, this detection statistic in-

cludes an implicit maximization over all source directians
and time-frequency windowg.

C. General networks of detectors

When the network contains at least one instrument with a

[N/2]

Ng
(39= > 4ReY SNSHABE* .  (5.22
AB=1 k=0
The DFT of the signal at thAth detector is
§f= ezmAA(m)k/N(Fﬁg: + FQEkX (5.23

where A (m)=7,/At is the discrete time delayt is the
sampling rate, and™* are the DFTs of the plus and cross
polarizations of the signal defined in E(.21). The inner
product can be rewritten as

IN/2|
(9= 2 4Re> SIOX 3 (5.24
a,B=+,X k=0
where
Ng
@I;B:A;_l 2 (A~ ApNEA (G HABEE (525

We can now introduce a pair of effective strains, correspond-
ing to the + and X gravitational wave signals for the net-
work, by [30]

Ng
@gBA;l er—ZwiAAk/N(SK—l)AB'ﬁE

(5.26

where EB:+,X®§“B®"M= d5. In terms of the effective

hi= >

B=+,X

strainshi and the signals, ., the likelihood ratio is

A(h;9)=exd ((h,9)-3((59))] (5.27)
where the inner product is now defined as
[N/2]
(pa)= 2> 4Re> prOk . (528
a,B=+,X k=0

different orientation to the others, it is necessary to discuss
the two degrees of freedom, or polarizations, of the gravitaThe effective strains and the inner prod(®28 depend on
tional wave signal. We denote these two independent signathe directionm to the putative source. Consequently the

ass’ (t) ands™(t), where the definition is with respect to a

probability that a signal with plus polarizati@i and cross

radiation coordinate system associated with the gravitationglolarizations™ is present in the data stream is given by Egs.
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(5.17 and (5.18 with A(E;E) defined by Eq(5.27 where reasonably close to diagonal in this basied assume that
the measurg(s7) on the space of signals is defined asthe noise is stationary and Gaussian. Then the likelihood

follows. ratio is

The signal{s*,s*} now belongs to a ¥-dimensional IN/2]
vector space which is the tensor product of two copiegof A(h;s)= exr{ 4>, ([hy[sdcosdy—3[sd?)/Sc| (A1)
Within this vector space, all directions can also be consid- k=0

ered to be equally likely. These assumptions about the signal ) )
{s. sy} reduce to the assumption in Sec. VB when thewhere ¢, represents the relafuve p_hase difference be_tween
detectors are aligned. Moreover, the reasoning from that sel® data and the expected signal in &t frequency bin.

tion can be readily applied here provided one understandSince the signal phases are considered unknown, we should
that the vector space of signals is nowW-dimensional and integrate out these angles to obtain the integrated likelihood

that all angles and lengths are measured using the inner proEﬁtiO
uct (5.24). Thus, the integrals can be carried out in much the IN/2]
same way to arrive at tht.e excess power statistic for a Ah:{PY,A) = 11 0 e AZPyISy (237 P§/2|’ﬁk|/5k)
multiple-instrument network: k=0
(A2)

E=((hy ,hu))zaB; y 4 Rek ;ﬂ( hg@®k he* . where the one-sided signal spectrum is given J°P,
o P (529 =[S with 25V2p, /5 =1.
In the limit of weak signal amplitudé, we can approxi-
As before there is an implicit maximization over time- mate the likelihood ratio of Eq(A2) by its expansion in
frequency windows and source directions. powers ofA. The first non-trivial term is théocally optimal
Since the effective strains are linear combinations of thg34] detection statistic

outputs of each of the detectors in the network, the statistic
(5.29 is a bilinear function of the outputs of all the detectors,  d?In A(h;{P,},A) S
containing both auto-correlation terms from each detector A =(COHSD+4KZO Pilhil*/S; -
individually and cross-correlation terms between each pair of A=0
detectors. It is the optimal statistic in Gaussian noise. When (A3)
the noise in the instruments is non-Gaussian, it remains to
seen what is the best strategy. One obvious strategy is
simply omit the auto-correlation terms in E.29 and re-

[N/2|

bf"his statistic is the weighted average of the detector output
t|9ower in each frequency bin. Unfortunately, it is not possible
. . ) . .. to get simple expressions for the false alarm and false dis-
tain only the cross-correlation terms; the resulting statistiG issa) probabilities for this statistic; one needs to use nu-

will share many of the nice features &fand be more robust e jca| methods to obtain these given a known signal power
against non-Gaussian noise bursts. The real challenge is é‘bectrum{Pk}

derive the optimal statistic in the presence of uncorrelate
noise bursts which are Poisson distributed in time. It is likely
that the model introduced in R¢f39] can be used to address
this issue. It is unlikely that a gravitational wave detector will pro-
duce purely stationary and Gaussian noise. In the case that
ACKNOWLEDGMENTS the detector noise distribution is known, we can obtain a
detection statistic for unknown signals using the Bayesian
We are grateful to Bruce Allen, Sam Finn, Soumya Mo-methodology. Unfortunately the most general noise distribu-
hanty, Julien Sylvestre and Kip Thorne for helpful discus-tion contains many free functions and will not be known in
sions. This work was supported by National Science Founpractice. However, constructing simple analytic non-
dation grants PHY 9970821, PHY 9722189, PHY 9728704 Gaussian noise models and the associated detection statistics
PHY-9407194, and Phy-9900776. E.F. acknowledges thgan give us insight into what kind of statistics to try out with

2. Non-Gaussian noise

support of the Alfred P. Sloan foundation. real detectors.
One such simple model is as follows. We assume that the
APPENDIX A: RELATED DETECTION STATISTICS detector noise is stationary, and, as before, that each fre-

uency bin in the Fourier basis is uncorrelated. Let us make
e additional assumption that the power in each frequency
Bin is independently distributed, while the phases of each
frequency bin are uniform and independent. Then

In this appendix we discuss some detection statistics thq
can be obtained from the Bayesian formalism discussed i
Sec. Il starting from different prior PDFs for signas

[(N=1)/2|

p(n)dNn= k[[l fi (Nl %S

1. Known signal spectrum

d[n,/? d argn, s
Suppose that one knows, in addition to the duration and (Ad)

Sk 2
frequency band, the spectrum of the expected signal, but that
one does not know the phase evolution. Let us adopt thesheref, (x) are known non-exponential probability distribu-
Fourier basis(assuming that the autocorrelation matrix is tion functions (exponential functions would correspond to
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Gaussian noige Here we have omitted the D@nd a pos- work to a gravitational wave signal from a given sky posi-

sible Nyquisi component. The likelihood ratio is tion. Here we define reference coordinates to which we refer
each detectors response. Consider a coordinate system fixed
LNZD ¢ (Re—3d2/S0) at the center of the earth. In terms of latitude and longitude
A(his)= kll W {¢,\}, the coordinate axes are oriented so that sthexis
KTk pierces the earth §000,000, the y-axis pierces the earth at
L(N=1)/2] { Re(hs!) fi(|hd2/S0) {000,090°F, and the zaxis pierces the earth at
= H — = {090°N,000Q. We denote the location of a source on the
k=1 S fi([hil /S0 celestial sphere by standard spherical polar coordinates
e\ 2 {6,4} measured with respect to this earth fixed frame. A
(Re(hksk )) PREY fiducial signals comes from a sky position with right ascen-
Sk f([h %S sion a= ¢+ GMST (GMST is the Greenwich mean sidereal

5 - time of arrival of the signal declinations= w/2— 6, and has
[sl? fe([hil?/Sy) ~ 13 polarization angley—the angle(counter-clockwise about
gm +O(Is*) (- (AS)  the direction of propagationfrom the line of nodes to the
X-axis of the signal coordinates. In particular, this gravita-
We have expanded the likelihood ratio in powers of (e~ tional wave signal can be represented by a tensor
sumed smaljlsignal in order to construct the locally optimal N %
detection statisti¢34]. Sij=S" (& )ij +57 (&) (B1)
To compute the integrated likelihood function we need to

. . ; where the polarization tensors are given b
integrate over our prior knowledge of signals. Let us suppose P 9 y

that we do not know the signal phase evolution; then we can (€:);j=(X®X-Y®Y); (B2)
integrate over the unknown phasessrin each frequency
2N D2Ag 2 The vectorsX andY are the axes of the wave frame, given
A(h{P A =1+ gl ?gk(|hk|2/8k)+o(A4) explicitly by
(A6) X=(sin¢ cosy—siny cos¢ cosh)i— (CoS¢ cosyr
where1A?P,=[s,|? and +siny sin ¢ cos)j + sin s sin 6k (B4)
Gi(X) = [XT(X) + F () ]/ (). (A7) Y = (—sin ¢ sin— cosy cos¢ cosh)i+ (Cose sin g

For Gaussian noisd,(x)=e * andg,(x)=x—1 for all k, —cosysing cosh)j+sindcosy k (B5)

which gives essentially the same detection statistic as in Eq. o i . o
(A3). For a probability distribution with tails that decrease Where the polarization angig is defined above, andj and
more slowly in thekth bin, e.g.,f (x)e(1—x/2)~2, then we k are unit vectors along thg, y and zaxes respectively.
haveg,(x) = (x— 1)/(1—x/2)2, which increases witf up to Note, we use a right handed coordinate system in which the
x=2, and then decreases for larger valuex.cThus, large vectorZ=X/\Y points in the direction from the source to-
amounts of excess power in théh bin aresuppressed wards the detector. The waveforms in R¢#2,43 are re-
When the signal is known to be band-limited to frequencyfe”e‘j to these coordinates; Thorne uses a different definition
bins k;<k<k,, but we have no reason to believe that anyn Ref.[8]. _ .
particular bin in the band will contribute more to the overall ~One can characterize the response of an interferometer on
signal-to-noise ratio than any other bin, then we obtain thdéh€ surface of the earth to the impinging gravitational wave
locally optimal statistic by assuming a uniform weighting of USing another tensdp given by
the terms in Eq(A6). Thus the locally optimal statistic is

Dij:%(nx®nx_ny®ny)ij (86)
z gk(|'ﬁk|2/sk)_ (A8) wheren* andn? are unit vectors along the andy arms of
ky=k<k; the interferometer respectively. For a given interferomater

. . . It is now straightforward to compute the response
In the case of Gaussian noise this is the excess power statis-

tic; for noise models with larger tails, the components of the 3
sum are attenuated if they have large power. SA:'ZI Dﬁsij (B7)
L=
APPENDIX B: MULTIDETECTOR AMPLITUDES and to extract the response functidﬁ%lX by comparing the
In Sec. V C, we discussed the detection of burst signalgesult with the formula
using multiple detectors. When the detectors are not aligned, A A 4 LA
one needs the response functions of each detector in the net- s"=F s +F}s”. (B8)
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For a detector having its arms aligned with the coordinate z=[(b%/a?)R(¢)+h]sine (B13)
axes at the center of the earth, we find
) _ _ whereR(¢) =a?(a? cose+b?sing) 2 is the local radius of
F.=—3(1+cos 6) cos 2 cos 2/ —cosf sin 2¢ sin 2y the earth. At this position, the unit vectors pointing East,
(B9  North, and Up are

F.=+3(14cos 6) cos 2 sin 2¢/— cose sin 2¢ cos 2i). €,= —Sin\i+ Cos\j (B14)
(B10)

_ _ o o .
Finally, the responsP of the various detectors around the € sing Coski—sing sinAj + cosek (B19

world can be determined using the latitude Noghlongi-
tude East, and arm orientations, , , w, ,) Wherey, , are
the azimuthgNorth of Eas} of thex andy arms andv, , are  respectively. The unit vector along therm is then given by
the tilts of thex andy arms above the horizontal defined by

the WGS-84 earth modé#t4]. This model is an oblate ellip- N*=COoSwy COSiy € + COSwy SiNYy €,+ Sinwy &,

soid with semi-major axi®=6 378 137 m and semi-minor (B17)
axisb=6 356 752.314 m. The positiotex i+y j+z k of a
detector at a given latitude, longitude\, and elevatiorh
above(normal tg the surface is given by

€,=C0S¢ COS\i+ Ccosp SiN\j+sinek (B16)

and similarly for they arm. For completeness, we list these
vectorsn* andn” for each of the interferometers in Table .
For the two LIGO interferometers, these vectors are provided

x=[R(¢)+h]cose cosh (B11)  in [44]. For the other interferometers we used the values in
[45] (with tilt anglesw=0), or the values given in Ref46]
y=[R(¢)+h]cose sin\ (B12 (with elevationsh=0 and tilt anglesv=0).
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