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Influence of the U(1) , anomaly on the QCD phase transition
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The SU(3), X SU(3), linear sigma model is used to study the chiral symmetry restoring phase transition of
QCD at nonzero temperature. The line of second order phase transitions separating the first order and smooth
crossover regions is located in the plane of the strange and nonstrange quark masses. It is found that if the
U(1), symmetry is explicitly broken by th&J(1), anomaly, then there is a smooth crossover to the chirally
symmetric phase for physical values of the quark masses. However,Uf(thg, anomaly is absent, the region
of first order phase transitions is significantly enlarged and it is found that there is a phase transition for
physical values of the quark masses provided thatstteson mass is at least 600 MeV. In both cases, the
region of first order phase transitions in the quark mass plane is enlarged as the massr ahésen is
increased.
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The ultimate goal of relativistic heavy ion experiments istibility vanishes afT .. in the largeN, limit [10]. On the other
to probe the phase diagram of quantum chromodynamickand, the fate of thé&J(1), anomaly in nature is not com-
(QCD). General theoretical considerations indicate that apletely clear since instanton liquid model calculations indi-
sufficiently high temperatures there should be a transitioifate that the topological susceptibility is essentially un-
from ordinary hadronic matter to a chirally symmetric changed all [11]. Additionally, other lattice computations
plasma of quarks and gluof4]. The order parameter for Which measure the chiral susceptibility find that 11€1),
this phase transition is the quark-antiquark condensate. R6ymmetry restoration is at or below the 15% lej&2,13.
sults from lattice gauge theory predict the temperature of this Unlike the idealized massless quark limit, there are no
transition to be about 150 Mef2]. The order of the phase general theoretical arguments which require that a phase

transition, however, seems to depend very much on the nuntransition exists for massive quarks. Indeed, some lattice
ber of qu;ark flavoré and their masg@3 simulations indicate that for physical quark masses, no phase

Classically, the matter part of the QCD Lagrangian With:iransmgqn otcct?rrf&il‘ltﬁat. i-LhtPh gerlle;al C?ﬂsﬁ?sus rfliorl;? lat-
N; flavors is invariant under the symmetry gro8pJ(Ny), ce computations Is tha € plane of ight qua asses

% SU(N{); X U(1)x. The axialU(1), symmetry is broken (see Fig. 1there is a first order region bounded by a line of

i ; I second order transitions. Outside this region, there is no
to Z(N¢)» by a nonvanishing topological susceptibilifs] 9

- phase transition, but rather a crossover characterized by a
and theSU(Ny), X SU(Ny); symmetry is spontaneously bro- raniq byt smooth and continuous decrease of the quark-

ken to the diagonal group of vector transformations,antiquark condensate. Given the present difficulties with per-
SU(Nf)r+1=SU(Ny)y, by a nonvanishing expectation value forming lattice computations with realistic quark masses and
for the quark-antiquark condensate. Th&U(Nf);  a large number of sites, it is useful to complement the
X SU(N¢); XU(1)s group is also explicitly broken by the

effects of nonzero quark masses. It was shown by Pisarski

T T
two-state, JLQCD

and Wilczek that for three or more massless flavors, the y ° :
phase transition for the restoration of th8U(N;), 025 A Tstorderlike, JLACD
. g . F & crossover like, JLQCD
X SU(N¢); symmetry is f|rst_order, while for two massless _ O two-state, Columbia(3]
flavors the phase transition is second orddr 02 . ® O notwo-state, Columbia[3] ]
The U(1), symmetry may also be restored, if only par- [ X physical point

tially, since instanton effects are Debye screened at hightem- 45 [ ]
peratureg5,6]. There are now two possibilities: either the I
U(1), symmetry is restored at a temperature much greater ™% 3 . crossover . . )
than theSU(N;), X SU(N;), symmetry or the two symme- o1 ¢ ”’///,\,\\\\\\

tries are restored a@pproximately the same temperature i \\\\\\\\\\\\\\\\ ;/

[7]. Recent lattice gauge theory computations have demon- 0.05 A A\\\

strated a rapid decrease in the topological susceptibilify. at p first order %
[8] and random matrix models also indicate that the two ol v L
symmetries are restored simultaneoug®y. Perhaps more 0 002 ¢y 004 0.06
dramatically, it was also shown that the topological suscep- w

FIG. 1. The phase diagram on the(4,ms) plane as obtained
from lattice computations. These results are a compilation of data
*Current address: The Niels Bohr Institute, Blegdamsvej 17, DK-from the JLQCD and the Columbia groups taken from Rg&kand
2100 Copenhagent,benmark. [14]. The plot is from Ref[14].
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present lattice results with effective models that captureand two quartic couplingsy; and\,. The various patterns
some of the relevant dynamics of QCD. Some work for threeof symmetry breaking and the parametrizations of the cou-
flavors has been done in this directiph6—-19. In these pling constants for this Lagrangian were studied2a] and
works, theSU(3), X SU(3), linear sigma model was used to will only be briefly reviewed here. Fdd=0, c=0 andm?
study the order of the chiral symmetry restoring phase tran=0, the Lagrangian has a glob8lUJ(3), X SU(3); XU (1)a
sition as a function of the current quark masses with the ratidymmetry. The effects of thd (1), symmetry breaking by a

of the up-down to strange quark masses held fixed. In Refsionvanishing topological susceptibilitj.e. the presence of
[16,17,19, a loop expansion is used to compute the effectivanstantons in the QCD vacuynare included by setting
potential and in Ref.18] a mean-field analysis of this model 0 which reduces the symmetry ®U(3), X SU(3),. For
was presented. The effects of the restoration ofWl{é),  nonzeroH, chiral symmetry is explicitly broken.

symmetry on the spectrum of hadronic observables in heavy | assume that there are nonzero vacuum expectation val-
ion collisions were addressed within the context of thisyes for theo, and o fields which | denote byr, and og.
model in Ref.[20]. After shifting these fields by their expectation values and

In this paper, | present results concerning the order of thes|iowing [23], the Lagrangian can be rewritten as
chiral symmetry restoring phase transition as a function of

the current quark masses using B&(3), X SU(3), linear
sigma model without fixing the ratio of the masses. In addi-
tion, the effects of théJ(1), anomaly on the order of the
QCD phase transition are investigated. Here, the Cornwall-
Jackiw-Tomboulis(CJT) [21] formalism is used to derive
gap equations for the condensates and the tadpole-resummed

L= %[§M0a3“0a+ 3, w0 Ty — (mé)aba'aa'b
5 _
—(Mp)apTap ]+ (Gapc— %fabcdo'd) 0a0p0¢

—3(Gapct %Habcdo'd) TaThO ¢~ 2HapcdTa0pTc Ty

scalar and pseudoscalar nonet meson masses atnonzerotem-  _1rz (4 5 o g+ mamymormg) —Naoa, )
perature. The derivation of and the solutions to this set of
equations in a variety of limits have been presented else-
where[22]. The results agree qualitatively with earlier stud- Where
ies on a latticg[3,14,19 and with other studies using the
SU(3), X SU(3), linear sigma mode[16—19. In the pres- Gabe= [ dape— 2(Sa0donet Spoaoc+ Sc0ano)
ence of an explicitU(1), symmetry breaking term, | find 0
that for physical values of the strange and nonstrange current +2d0008209b09col
qguark masses, there is no phase transition but rather a smooth
crossover. For smallgr valugs of the masses, the pha;e tran- 7., .= M 1(8apSedt GadOpct SacObd)
sition is first order with a line of second order transitions
separating the first order and the crossover regions. In the + i\ 2(daprdneat dagndnbet dacndnbd),
absence of an explicit/ (1), symmetry breaking term, the
region of phase transitions is greatly enlarged. In particular, _1 1
if the o meson mass is greater than 600 MeV, then the tran- Haved= eh10andeat sMa(daprnca™ Facnf nbd
sition is driven to first order for physical values of the quark +fpenfnad)s
masses. In both cases, the region of first order phase transi-
tions is enlarged as the mass of #heneson is increased. 2 o — —
The most general renormalizable theory compatible with ~ (Ms)ab=M"8ap~6Gabc Tc 4 FapcaT e,
the flavor symmetries of QCD is thi&U(3), X SU(3), linear
sigma model. While this model cannot account for the full (MB) ab=M?Sap+6GapcTc+ 4HapcaTc0d - )

dynamics of QCD, on the line of second order phase transi-
tions the only relevant dynamics are determined by the sym-
metries of the theory. So, in the vicinity of this line, the use Here the summation runs over the indegnly andd,,. and

of the SU(3), X SU(3), linear sigma model is appropriate. fapc are the symmetric and antisymmetric structure con-
Its Lagrangian is given by stants, respectively, df (3).

The o, fields are members of the scalal"&0") nonet
and the 7, fields are members of the pseudoscalaf (
=07) nonet. Them, 3 are the pions, ther, ¢, are the
kaons and therg and themrg are admixtures of they and the
n' with mixing angleéfp. The situation with the scalar nonet
is not as clear and still somewhat controver§2d]. The o
and theog are admixtures of ther and thefy(1370) with

L(P)=Tr(d,DTo*®—m? DTD) =Ny [Tr(DTD)]?
=N\, Tr(®Td)?+c[Det(d)+ Det(P )]
+THH(®+dN)]. (1)

Here,® is aU(3) matrix defined byb =T, (o, +i7,). The

T.=\,/2 are the generators &f(3) where\, are the Gell-
Mann matrices with o= v2/31. The T, are normalized such
that Tr(T,Ty) = Sa,/2.

The parameters of the Lagrangian are the bare mmass
background matrix fieléH=hyTy+ hgTg, a cubic coupling

mixing angleds. The o, ; 5 are identified with theay(980)
and theoy 5 ¢ 7 With the k meson.

The explicit symmetry breaking terms can be determined
(see, for instance, Ref[22]), to be hy=(1/\6)(m3f,,
+2mgfy), hg=(2/y/3)(m% f,—mgfy).
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The gap equationéSchwinger—Dyson equationderived 100
from the CJT effective potentia[21] in the tadpole-
resummed approximation, or Hartree approximation, are
found to be

(San(k)) =K+ m25ab_ 6gabc;c+ 4-7:abcd;c;d

+4-7:abchkScd(k) +4Habcd fkpcd(k)1

Condensate [MeV]

(Pap(K) "= —k2+mM? 85+ 6Gapc 0+ 4Hapcgoc 0

" . . . - |
+4Habcdfk3cd(k) +4F 3pcd fkpcd( k), 150 170 19ql'[MeV710 230 250

— S FIG. 2. Theo, condensate for various values of the kaon mass
ha=m* 03— 30Gapcoh0c—3Gabe kscb( k) with a pion mass of 100 MeV. The kaon mass is 80, 200 and 300
MeV for curves(a), (b) and (c), respectively. Curveda) is a first

. I order phase transition, curyb) is close to second order and curve
+3gachchb( K)+ 5 FabcdTdTb0c (c) lies in the crossover region.
+4fabcd3dfscb<k>+4mca£dfPcb<k), tre forM ., Mic, M, My, Mg, Mic, My, Moy, 00, 0,

k k

0p and 5. The numerical solutions for a variety of param-
(4)  eters are given in Ref22].

The condensate and mass gap equations are solved with
where, in the last equation,=0,8 andS,p(K) [Pap(K)] are  fixed m, ¢, N, and\,, while varying the background fields,
the Green’s functions for the scalgrseudoscaldrmesons. ho and hg. The determination of the coupling constants is
Soa(k) andPog(k), however, are nonzero on account of the getajled in Ref.[22]. For c#0, the four couplings in the
mixing between the singlet and the octet states. All othey agrangian are fitted to yield the physical tree-level masses
non-diagonal entries are identically zero. As such, it is necyf the pion, kaong, » and 5’, while for c=0, the remain-
essary to rotate these Green'’s functions into the mass eige[pfg three couplings are determined from the physical tree-
basis since only physical fluctuations can contribute to thgaye| masses of the pion, kaom, and 5. The background

masses. fields are proportional to the current quark masses;
S s ~ p p =~ :_mdown:a(h0+h8/\/§)i mstrange:_ b(ho—\/ihs)- For S!m' )
UiaSan(KUjp=Si(K) 8ij, Ui Pan(K)Uj,=Pi(K) S, (5  plicity, | assume temperature independent proportionality
constants,a and b. Requiring thatm_=138 MeV, mg
whereU{, = §j, for i,a#0,8 and wherdJ[] is given by an =496 MeV, Myp=Mgown= 10 MeV_and Mganqe 150 MeV
O(2) rotation by#p in the 0-8 block. The definition fod?,  gives  a=4.64x10"° [MeV] 2 and b=2.27
is similarly given by 6p— 6s. The thermal integral arising Xx10 ® [MeV] 2.
from tadpole diagrams is To determine the order of the phase transition, | examined
the continuity of the order parameters as a function of tem-
~ dk 1 el (M3)i] - perature. For a first order transition, the condensates are mul-
f i(k)= f 3 r— T -1 tivalued functions of temperature in the vicinity of the phase
K (2m)° e (Mg)i] transition. For a smooth crossover, the condensates are

e . smooth singlevalued functions of temperature and always
and similarly for the pseudoscalar tadpole integralsyonzero. This behavior is demonstrated in Fig. 2. Only the
JkPea(K). Here, e[ (M3)i1=[k?+(M%);]¥2is the relativis- nonstrange condensate is shown since both condensates ex-
tic energy of theé th scalar quasiparticle with momentdm!  hibit qualitatively the same behavior.
have neglected the vacuum contribution arising from the The numerical results are plotted in Fig. 3. Fo#0,
loop integrals. Implementing a systematic renormalizatiorthese results agree with those of lattice grolfs4,15. For
scheme is difficult but possible in this approximati®Bee m_=1000 MeV, the authors of Ref18] report the ratio of
[25]). The results, however, are not significantly altered.  the critical current up-down quark mass to the physical up-

Since in the Hartree approximation the gap equations delown quark mass faMgangd Myp dowr= 32 t0 be~0.01. The
not have an explicit momentum dependence, we can assungerresponding value found in the present work~i€.20.
that[ S,u(k) ] 1= —k?+ MéwhereMs depends on tempera- The larger value found here is most likely due to the inclu-
ture but not momentum, and similarly foP,,(k)] 1. Equa-  sion of thermal fluctuations from the scalar and pseudoscalar
tions (4) and (5) are then fixed point equations and can benonets. Fom,,=my,,=0, the transition is first order from
numerically solved simultaneously as a function of temperazero strange quark mass to some critical strange quark mass.
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with anomaly without anomaly that forc=0 there is a first order phase transition for three
f"" T T T & 1 ¢ ' ' ' j"" flavors provided only that one of the flavors is sufficiently
123 ! ¢ 1 ms 600 mev g 333 heavier than the other two flavors. The departure of the sec-
P m;" 600MeV | oo ond order phase transition line from the strange quark mass
B = S| q . . . .
ol T orer 1 100 axis was _also predlc_ted using arguments from laxgehiral
ol o o o o CEEOE , . EPESRIED perturbation theory in Ref26].
160 b . i 1 400 At this point, it should be mentioned that the Hartree ap-
s 120} m - BoMey e B00MeY 1 300 proximation sometimes predicts a first order transition when
= eof st ¢ + 2 1 200 the transition is actually second order. For example, renor-
S — oossoved 100 Malization group arguments predict a second order phase
0 e = = = = i 0 transition for the massless limit of th®(4) linear sigma
160 10 . T m- 900Mev 1400 model[1], while the Hartree approximation predicts a first
ke by o 4 g . . .
120 m_ 900 MeV 300 order transition(see, for instance, Ref25]). This is not a
:’;Z 1 T et . 1 fgg problem in the low quark mass region since the transition is
0 crossovery order , L crossover] expected to be first order. The location of the second order
0 5 do. 15 0 & . © 2 line should not be significantly affected.
M,q M,q Additionally, the cubic and quartic couplings are fixed

_ o and temperature independent. The running of the couplings
FIG. 3. The lines of second order phase transitions in the plangit, temperature should be at most logarithmic, while the
of the nonstrange and strange current quark massesmipr  jnieqrals arising from the tadpole diagrams depend quadrati-
;6%0 1|\/|ev,m0=8§)0 MeV allnc_itlmgb= glg)o Ntl)evt'h The_clases where  cally on the temperature. So it is reasonable that the running
e U(1), symmetry is explicitly broken by the axial anomaly, ¢ yne couplings does not qualitatively alter these results. On
#0, are shown on the left, and the cases Wherd‘“@’* SYMME  the other hand, if the Coleman-Weinberg mechanism is
E%:Sd::?ig Moé\7 ;enSrr:Z:::: ;nlg]g '\r/llzr\)t) ;hlﬁ dr;:;zgagyn:ﬁzsd?; Intstrongly opera_ltive, some portion of the crossover region may
mor?d. 9 actually be_ driven to first orde[|27_]. _
| especially want to thank Dirk H. Rischke, Robert D.
Pisarski and Jgen Schaffner-Bielich for many valuable dis-
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In particular, the line of second order transitions does noto Mark Alford, Tom Blum, Eduardo Fraga, Robert Har-
seem to approach the strange quark mass axis.nkor lander, Alex Krasnitz, and Ove Scavenius for useful discus-
=600 MeV, the physical pointm,,=mg,,~10 MeV and sions. | am supported by the Director, Office of Energy Re-
Msirange 150MeV, is just outside the first order region. For search, Division of Nuclear Physics of the Office of High
larger values of thee meson mass, the physical point is well Energy and Nuclear Physics of the U.S. Department of En-
within the first order region. The results also seem to indicatergy under Contract No. DE-AC02-98CH10886.

[1] R.D. Pisarski and F. Wilczek, Phys. Rev.29, 338(1984). (1996.

[2] A. Peikertet al., Nucl. Phys. B(Proc. Supp). 73, 468(1999. [17] D. Metzger, H. Meyer-Ortmanns, and H.-J. Pirner, Phys. Lett.
[3] F.R. Brownet al, Phys. Rev. Lett65, 2491(1990. B 321, 66 (1994.

[4] G. 't Hooft, Phys. Rev. Lett37, 8 (1976. [18] S. Gavin, A. Gocksch, and R.D. Pisarski, Phys. Rev4®

[5] E. Shuryak, Phys. LetZ9B, 135 (1978. 3079(1994.

[19] H. Meyer-Ortmanns, H.J. Pirner, and A. Pak®hys. Lett. B
295 255(1992; Int. J. Mod. Phys. (3, 993(1992.

[20] J. Schaffner-Bielich, Phys. Rev. Le&4, 3261(2000.

[21] J.M. Cornwall, R. Jackiw, and E. Tomboulis, Phys. Revi@

[6] R.D. Pisarski and L.G. Yaffe, Phys. Lefi7B, 110(1980.
[7] E. Shuryak, Comments Nucl. Part. Phgg, 235 (1994.
[8] B. Alles, M. D’Elia, and A. Di Giacomo, Phys. Lett. B83

139 (2000. 2428(1974).

[9] R-A. Janiket al, hep.-lat/99.11024. [22] J.T. Lenaghan, D.H. Rischke, and J. Schaffner-Bielich, Phys.
[10] D. Kharzeev, R.D. Pisarski, and M.H. Tytgat, Phys. Rev. Lett. Rev. D62, 085008(2000.

81, 512(1998. [23] L.-H. Chan and R.W. Haymaker, Phys. Rev7P402 (1973.
[11] T. Schafer, Phys. Lett. B89, 445(1996. [24] N.A. Tornqvist, Eur. Phys. J. @1, 359(1999; M. Alford and
[12] C. Bernardet al,, Phys. Rev. Lett78, 598 (1997). R.L. Jaffe, Nucl. PhysB578 367 (2000.

[13] S. Chandrasekharat al, Phys. Rev. Lett82, 2463(1999. [25] J.T. Lenaghan and D.H. Rischke, J. Phys26& 431 (2000.
[14] S. Aoki et al, Nucl. Phys. B(Proc. Supp). 73, 459 (1999. [26] R. Escribano, F.S. Ling, and M.H. Tytgat, Phys. Rev6®)
[15] Y. Iwasakiet al, Phys. Rev. D64, 7010(1996. 056004(2000.

[16] H. Meyer-Ortmanns and B.-J. Schaefer, Phys. Re§3[6586 [27] S. Coleman and E. Weinberg, Phys. Rev7,01888(1973.

037901-4



