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Improved methods for observingCP violation in BÁ\KD and measuring the CKM phaseg
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Various methods are discussed for obtaining the CKM angleg through the interference of the charged

B-meson decay channelsB2→K2D0 andB2→K2D̄0 where theD0 andD̄0 decay to common final states. It
is found that choosing final states which are notCP eigenstates can lead to large directCP violation which can
give significant bounds ong without any theoretical assumptions. If two or more modes are studied,g may be
extracted with a precision on the order of615° given;108 B-mesons. We also discuss the case of three body
decays of theD where additional information may be obtained from the distribution of theD decay products

and consider the impact ofDD̄ oscillations.

DOI: 10.1103/PhysRevD.63.036005 PACS number~s!: 11.30.Er, 12.15.Hh, 13.25.Hw
v
r

n
-

s
th
ex

a
i
o

ill
i

d.
n
-

m

e
a

t o
pr

f

de-
ting
m

r

l
e

ss

eral

rise
ed
el-
the

ase

in-
an-
ed a
will
ch

, in

of
I. INTRODUCTION

The only manifestations ofCP violation observed to the
present time are those in the neutral kaon system. The ad
of several machines capable of producing a large numbe
B mesons makes it likely that at least some examples ofCP
violation in B physics will soon be seen.

B factories at SLAC and KEK have been specifically co
structed to observeCP violation in the time dependent os

cillation of B0B̄0 whenB0 decays to aCP eigenstate such a
cKs or 2p. In such experiments one has the advantage
the CP violating phase may be in a few cases cleanly
tracted. In contrast directCP violation which can occur in
B6 decay always appears in combination with a strong ph
which cannot be easily determined since it has its origin
strong interaction physics. In order to put the extraction
the CP odd phase on the same footing as the clean osc
tion experiments it is thus important that some way of elim
nating the uncertainties due to the strong phase be foun

Direct CP violation in B6 decay may prove to be a
important component of the futureB physics program be
cause it offers signals sensitive to the angleg of the unitarity
triangle @1#. Here we focus on effects which originate fro
the interference ofB2→K2D0 with B2→K2D̄0. In con-
trast, experiments involvingB0 may only extracta ~from
B0→2p for instance! andb ~from B0→cKS). The unitarity
triangle which follows from the unitarity of the CKM matrix
is a key prediction of the standard model. Independent m
surements to over determine the triangle by measuring e
of its sides and angles therefore provide a non-trivial tes
the standard model. Furthermore, the standard model
dicts that a number of different measurements ofCP viola-
tion will depend on the same phaseg ~e.g. directCP viola-
tion in B→Kp and oscillations inBs). Comparing the
results of these experiments will thus be a sensitive test
new physics.
0556-2821/2001/63~3!/036005~17!/$15.00 63 0360
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Since the modes we consider are direct and not time
pendent, they may be observed in any experimental set
where large numbers ofB mesons are produced. Aside fro
the SLAC and KEK asymmetricB-factories, these include
CLEO and hadronicB experiments such as BTeV, Collide
Detector at Fermilab~CDF!, D0 and CERN LHCB or a high
luminosity Z factory.

A method for putting the determination ofg on the same
footing as the oscillation experiments by using directCP
violation was first suggested in@2# where the decayB2

→K2D0 is considered followed by the decay ofD0 to aCP
eigenstate~see also@3#!. In this case the fact that the fina
state is aCP eigenstate means that it will interfere with th

channelB2→K2D̄0. In Sec. II, for self containment, we
will review the important features of this method and discu
some problems which arise in its implementation.

These problems can be resolved through a more gen
method using non-CP eigenstates suggested in@4,5# and re-
fined in @6# which not only enable a clean extraction ofg but
in addition have the attractive feature that they can give
to large CP asymmetries. This is outlined and expand
upon in Secs. III and IV. In Sec. V we estimate some r
evant branching ratios and obtain a rough estimate of
attainable accuracy in extractingg.

In Sec. VI we discuss the somewhat more general c
where the distributions of three body decays ofD0 are con-
sidered. Here we consider two different methods for obta
ing g. First, one can fit the distributions to a resonant ch
nel model where each of the channels can be consider
quasi-two-body mode. The phases between the channels
thus give additional constraints on the fit. Second, if ea
point on the Dalitz plot is considered a separate mode
some cases the accumulated inequality bounds on sin2g can
provide a determination of sin2g. In Sec. VII we give our
summary and conclusions.

Throughout this paper we will assume that the effects
©2001 The American Physical Society05-1
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DD̄ mixing are negligible. In an Appendix, we discuss t
impact of DD̄ mixing on this method for determiningg.
Specifically, if one uses the time interval between the par
B2 decay and the subsequentD decay, one can eliminate th
effects of mixing. One can also obtain information aboutg in
time independent studies.

II. USING CP EIGENSTATES DECAYS OF D0

The Gronau-London-Wyler~GLW! strategy to extractg
from CP violation in the decayB2→K2D0 followed by
D0→ CP eigenstate is to separately determine the bran
ing ratios@2#:

~a! Br(B2→K2D0)
~b! Br(B2→K2D̄0)
~c! Br(B2→K2D1

0 ) or Br(B2→K2D2
0 )

together with their conjugates whereD6
0 denote theCP

eigenstateD6
0 5(D06D̄0)/A2.

Oncea, b, c and the corresponding quantities for the co
jugate modes are known then one can separate out the i
ference effects and thus determine cos(zK1g) and cos(zK
2g) simultaneously wherezK is the CP conserving strong
phase difference betweenB2→K2D0 and B2→K2D̄0

while g is the CP violating weak phase difference. From
these two cosines, the values of the actual phase anglezK
andg can clearly be determined, up to an eight-fold discr
ambiguity as will be discussed in more detail in Sec. IV.

The rate for~c! is experimentally observed through th
decay to aCP eigenstate such asK1K2, Ksf andp1p2

and presents no problem in principle. Likewise the decay~a!
should be readily measurable through either leptonic or h
ronic modes of theD0. As it stands, however, this metho
has a very serious problem in measuring the branching r
of ~b!, Br(B2→K2D̄0). The detector must distinguishD̄0

from D0 to determine the decay rate to this rare mode. T
background decayBr(B2→K2D0) @i.e. ~a!# is expected to
be larger by about two orders of magnitude.

There are only two ways that could possibly be used
tag the flavor of theD̄0:

~a! through semi-leptonic decays
~b! through hadronic decays
We will consider each of these individually and show th

neither is fully satisfactory.
The semi-leptonic tag, i.e. the quark level processc̄

→ l 2s̄n̄ l , has the problem that there is an overwhelmi
background from the direct semileptonic decay of theB me-
son. The signal here is the sequential decay:

B2→K2D̄0; D̄0→ l 2n̄ lXs̄ ~1!

while the background is from the direct semi-leptonic dec
of the b quark followed by hadronic decays of the char
quark:

B2→l 2n̄ l Xc ; c→sud̄. ~2!

Both give rise to the same sign lepton and while there
several features distinguishing the signal from the ba
ground it represents a serious problem as the branching
03600
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for the signal is expected to beO(1026) whereas that for the
background is expected to beO(1021). The signal/
background ratio is thus dauntingly small.

Let us note some of the characteristics of the signal wh
distinguish it from the background. First of all, in theB2 rest
frame theK2 tends to be monochromatic. Also the sign
tends to yield a pair of kaonsK2K1 ~or K2K0) whereas the
background dominantly has one kaon,K2 or K̄0. In the sig-
nal the semi-leptonic decays of theD̄0 originate from a ter-
tiary vertex in sharp contrast to the case of the backgroun
is difficult to say whether these distinctions are enough
separate the signal. Detector specific studies are require
give reliable answers but the size of the signal/backgro
ratio does not give us much ground for optimism.

While the use of such a leptonic tag is likely to be im
practical, the hadronic decay has a more fundamental p
lem. In this case one would detect the decayB2→K2D̄0 by
observing a final state where theD̄0 decays through a
Cabibbo-allowed~CBA! process, for instanceD̄0→K1p2.
Unfortunately, the doubly Cabibbo suppressed~DCS! decay
of D0 ~e.g.D0→K1p2) will also lead to the same final stat
at a branching ratio two orders of magnitude smaller.

On the other hand, as was pointed out in@6#, the initial
decayB2→K2D̄0 is color-suppressed~CLS! while the de-
cay B2→K2D0 is color-allowed~CLA!. Thus difference in
the production rate tends to offset the difference in the de
rates for the two processes and since the final states are r
indistinguishable, they will interfere quantum mechanical

As a specific example consider the possible tagD̄0

→K1p2. The signal fromB2→D̄0K2 and the background
from B2→D0K2 will be given by the sequences:

~A! B2→K2D̄0; D̄0→K1p2 ~3!

~B! B2→K2D0; D0→K1p2, ~4!

These two decay chains have the qualitative form

A: CLS^ CBA ~5!

B: CLA^ DCS. ~6!

Numerically the ratio of these two amplitudes is apprecia
close to 1 since it is expected to be given by

UM ~B2→K2D0@→K1p2# !

M ~B2→K2D̄0@→K1p2# !
U2

'UVcbVus*

VubVcs*
U2Ua1

a2
U2 B~D0→K1p2!

B~D̄0→K1p2!
. ~7!

Herea1 anda2 control the relative sizes of the CLA and th
CLS amplitudes. Experimentally@7# the indications are that

Ua2

a1
U'0.2660.0760.05 ~8!

which roughly agrees with the simple color counting value
1/3.
5-2
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Let us considerB(D0→K1p2)/B(D̄0→K1p2) which
is of order l4. We can formulate an estimate taking in
account SU~3! breaking effects in the form factors and th
decay constants. For the present purpose we use the ex
mental result@8#

Br~D0→K1p2!

Br~D̄0→K1p2!
5.00726.0025 ~9!

as well as the ratio of CKM elements@8#:

UVub

Vcb
U5.086.02. ~10!

Then with l50.23 and the central values from@Eqs. ~8!–
~10!# we therefore get

UM ~B2→K2D0@→K1p2# !

M ~B2→K2D̄0@→K1p2# !
U2

'1. ~11!

The two amplitudes are roughly comparable and we can
tell whether the charmed particle was aD0 or a D̄0. B2

→K2D̄0 with a D̄0 decaying hadronically will give rise to a
final state which is indistinguishable from the correspond
decay of theD0 in B2→K2D0. The two amplitudes will
thus be subject to large quantum mechanical interference
fects. The use of a hadronic tag for determiningB(B2

→K2D̄0) for the GLW method appears therefore to be ru
out.

Despite these difficulties, one need not discard the G
approach. The only input which is lacking is the branchi
ratio B2→K2D̄0. It may be possible to theoretically est
mate this quantity which will allow the GLW program to g
forward.

Here we consider an alternative approach where we
advantage of these interference effects to enhanceCP viola-
tion and ultimately provide another way for a clean~i.e. no
penguin pollution! way of extractingg. As discussed in@6#
the fact that these two amplitudes have large interfere
effects implies that there will be largeCP violating asym-
metries in such combined decay channels which in turn g
us a handle on measuringg. Thus, it is instructive to con-
sider why CP violation will be enhanced in this case a
compared to GLW.

In the eigenstate case, the size of the expectedCP asym-
metry is controlled only by the ratio of the amplitudes f
B2→K2D0 versusB2→K2D̄0. Following the above esti-
mate and taking into account the appropriate CKM facto

UM ~B2→K2D̄0!

M ~B2→K2D0!
U;Ua2

a1
U•U Vub

VcbVus* U.0.1. ~12!

This means that the maximum possible size of theCP asym-
metry is expected to be 0~10%!. In contrast Eq.~11! implies
that the two interfering amplitudes have roughly the sa
magnitude and so the interference effects, and in partic
CP violation, will be near maximal.
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Of course the search for large directCP violating signals
is interesting in its own right but the real goal is to extract t
angle g from experimental results cleanly, that is witho
any reference to a model for hadronization. While the ori
nal idea of @2#, though sound in principle is probably no
practical, the basic concept may be used if one observes
or more distinct hadronic states that are common decay p
ucts of D0 and D̄0 ~as all hadronic final states ofD0 are!.
With this information, one can reconstructg cleanly. We
now consider a number of methods based on this idea.

III. NON- CP EIGENSTATES DECAYS OF D0

Using this idea, let us now consider the case where
two channels

B2→K2D0, B2→K2D̄0 ~13!

interfere because bothD0 and D̄0 decay to some common
final stateX. In the GLW method the specific case whereX is
a CP eigenstate such asKsp

0 was chosen while we will
focus on the instance, considered in@6#, whereX is not aCP
eigenstate. In particular, following the logic of the previo
section, the case whereD0→X is a DCS decay andD̄0→X
is a CBA decay is of particular interest, for instanceX
5K1p2.

In order to formulate an expression for the rates, let
define the following branching ratios:

a~k!5Br~B2→k2D0!, ā~k!5Br~B1→k1D̄0!

b~k!5Br~B2→k2D̄0!, b̄~k!5Br~B1→k1D0!

c~X!5Br~D0→X!, c̄~X!5Br~D̄0→X!

c~X̄!5Br~D0→X̄!, c̄~X̄!5Br~D̄0→X̄!

d~k,X!5Br~B2→k2@X# !, d̄~k,X̄!5Br~B1→k1@X̄# !

~14!

Herek6 represents eitherK6 or K* 6 ~or indeed one may
consider any other kaonic resonance or system
strangeness521 and well definedCP @9#! and @X# is the
commonD0 andD̄0 decay channel observed. Thus the co
bined ratesd(k,X) and d̄(k,X̄) include the effects of the
interference of the two channels.

In the standard model, it is expected thata(k)
5ā(k), b(k)5b̄(k) and c̄(X)5c(X̄) all of which we will
assume from here on. In general, however ifgÞ0 one ex-
pectsd(k,X)Þd̄(k,X̄) (CP violation! and indeed the value
of the quantitiesd, d̄ may be expressed in terms ofa, b and
c as

d~k,X!5a~k!c~X!1b~k!c~X̄!

12Aa~k!b~k!c~X!c~X̄!cos~zk1dX1g!
5-3
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d̄~k,X̄!5a~k!c~X!1b~k!c~X̄!

12Aa~k!b~k!c~X!c~X̄!cos~zk1dX2g!

~15!

where zk is the strong phase difference betweenB2

→k2D0 andB2→k2D̄0; dX is the strong phase differenc
betweenD→X andD→X̄ andg is theCP violating weak
phase difference betweenB2→k2D0 andB2→k2D̄0.

In the standard modelg is given directly from the CKM
elements

g5arg~2VudVub* VcbVcd* !. ~16!

Existing data do not constraing very much giving an al-
lowed range in the SM at 95% C.L.@10# of 36°<g<97°
corresponding to 0.35<sin2g.

The strong phaseszk and dX that result from hadronic
final state interactions cannot be reliably calculated with a
known method and must be determined experimentally. H
we will take the approach that information aboutdX andzk
are extracted from the data along withb(k) andg.

The above may be made somewhat more general by
sidering the class of modesB2→k2D whereD is an excited
D meson. Let us suppose thatD subsequently decaysD
→D1N0 whereN0 is a single particle and theD then de-
cays into aCP non-eigenstate mode of the type we ha
considered above. For instanceD may be aD* 0 with k2

5K2 and we may use either of the following decay chai

B2→K2~D* →p0@D→X# !

B2→K2~D* →g@D→X# !. ~17!

HereD0→X is a DCS mode. In these sorts of examples
analysis would be essentially the same as considered fo
ground state of theD. The only constraint on this general
zation is that one of$k,D% should have spin 0 so that there
only one partial wave; otherwise multiple partial wav
would have to be separated and the analysis for the ex
tion of g would be more complicated and has been cons
ered in@11#.

IV. METHODS FOR EXTRACTION OF g

Let us now turn our attention to the extraction of the we
phaseg and incidentally also the total strong phasej(k,X)
5zk1dX . We will consider two scenarios under which su
a reconstruction is possible assuming that the values ofc(X)
andc(X̄) have been determined in advance and that the
of D0D̄0 mixing is negligible. In the Appendix we show how
the possible effects of mixing may be removed from the da

Case 1: For one particular mode,(k,X), d(k,X) and

d̄(k,X̄) are known and in addition a(k) and b(k) are known.
This is the simple generalization of the GLW method

the case whereX is not aCP eigenstate. We thus assume th
the branching ratiob(k) may be obtained from tagging theD̄
with the semileptonic decays as discussed in Sec. II or as
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result of some theoretical estimate@12#. If b(k) can be ob-
tained in some way, this method is less involved than
other method we will discuss below.

As in the GLW method we are required to extract t
interference terms ind and d̄ by solving the two equations
~15! which we can rewrite

d~k,X!5@a~k!c~X!1b~k!c~X̄!#

3@11R~k,X!cos~zk1dX1g!#

d̄~k,X̄!5@a~k!c~X!1b~k!c~X̄!#

3@11R~k,X!cos~zk1dX2g!# ~18!

whereR(k,X) is

R~k,X!5
2Aa~k!b~k!c~X!c~X̄!

a~k!c~X!1b~k!c~X̄!
. ~19!

Defining

l15
1

R~k,X!F d~k,X!

a~k!c~X!1b~k!c~X̄!
21G

l25
1

R~k,X! F d̄~k,X!

a~k!c~X!1b~k!c~X̄!21
G ,

~20!

the solution forg andj(k,X)5zk1dX is

g5
1

2
~s cos21l12t cos21l2!1np;

j~k,X!5
1

2
~s cos21l11t cos21l2!1np. ~21!

In the aboves, tP$61% and nP$0,1% expressing the
fact that there is an eightfold ambiguity@13# since the sign in
front of each of the cos21 functions is undetermined and w
can addp simultaneously toj and g without changing
the results. Specifically, the eight solutions giving resu
identical to a given (j,g) are $(j,g), (2j,2g), (g,j),
(2g,2j),(p1j,p1g), (p2j,p2g), (p1g,p1j),
(p2g,p2j)%. To resolve the ambiguities between th
strong phase and the weak phase we can use this metho
two or more modes sinceg will be the same for each mod
while j(k,X) should be different. This is a simple genera
zation of the GLW method discussed in Sec. II; in that ca
c(X)5 c̄(X) while dX5np.

More generally, if we do consider two decay modes w
different strong phases (modp), we can dispense with the
need to know the value ofb(k) as follows:

Case 2: For two distinct modes$(k,X1),(k,X2)% the

quantities d(k,Xi) and d̄(k,X̄i) are known. In addition a(k)
is known but not b(k).

In this case we assume that one cannot easily obtain
branching fractionb(k) using the semileptonic tag or by an
5-4
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other means. However, ifd and d̄ are known for two differ-
ent modes, we can solve for the missing information@g and
b(k) andj] up to a discrete set of ambiguities.

Specifically, forD0 decay modesX1 and X2 we assume
that we have measured the quantities$a(k),c(X1),c(X2),
c(X̄1),c(X̄2)% as well asd(k,Xi) and d̄(k,X̄i). There are
therefore four unknowns that must be solved f
$b(k),j1 ,j2 ,g%. To do this we use the four equations

d~K,X1!5a~K !c~X1!1b~K !c~X̄1!

12Aa~K !b~K !c~X1!c~X̄1!cos~j11g!

d̄~K,X̄1!5a~K !c~X1!1b~K !c~X̄1!

12Aa~K !b~K !c~X1!c~X̄1!cos~j12g!

d~K,X2!5a~K !c~X2!1b~K !c~X̄2!

12Aa~K !b~K !c~X2!c~X̄2!cos~j21g!

~22!

d̄~K,X̄2!5a~K !c~X2!1b~K !c~X̄2!

12Aa~K !b~K !c~X2!c~X̄2!cos~j22g!.

~23!

To solve these, let us define the quantities

ui5
b~k!c~X̄i !

a~k!c~Xi !
; yi5

d~k,Xi !2d̄~k,X̄i !

2a~k!c~Xi !
;

zi5
d~k,Xi !1d̄~k,X̄i !

2a~k!c~Xi !
21;

r5
c~X1!c~X̄2!

c~X̄1!c~X2!
5

u2

u1
;

d5z1
22z2

2/r22~z12z2!u11~12r!u1
2 ;

e5y1
22y2

2/r; Q5sin2g; ~24!

whereyi , zi , e andr are known directly from experimen
andui andQ5sin2g must be solved for.

The equation whichu1 must satisfy is easily derived:

4u1de5~e2d!„y1
2d2~z12u1!2e…. ~25!

Sinced is second order inu1 this equation is in general
quartic equation which may have up to 4 real roots. For e
real root (u1)k @where k51, . . . ,4 indexes the solutions o
Eq. ~25!#, sin2g is given by

sin2g[Q5
e

e2d
~26!

whered is given in terms ofu1 by Eq. ~24!. Each root leads
to a fourfold ambiguity in the determination ofg; taking up
03600
:

h

to four roots together there is therefore<16 fold ambiguity
in the determination ofg. To reduce this ambiguity~espe-
cially if it should turn out that all 16 possibilities manifest!, it
is therefore helpful if observations are made of at leas
modes ofD0 decay~for a givenk) in which case only an
overall fourfold ambiguity ing remains. Since this metho
determinesQ[sin2g it, therefore, cannot distinguish be
tween the solutions$6g,p6g%.

Needless to say, if Eq.~25! has no real roots, then th
consistency of the data is brought into question. If there
multiple real roots, then any of the roots may explain t
data and without more information or theoretical input the
is no way to decide between the<4 possible roots. As we
discuss below, this ambiguity will generally be resolved
additional modes~i.e. more than two! are observed. If one
can put a bound onb(k) from theoretical considerations, thi
too may reduce the ambiguity if some solutions violate su
a bound. Likewise, information concerning the strong pha
of the various modes could also serve to reduce the amb
ity.

For each solution the corresponding total strong ph
differencej i is then determined without further ambiguity b

sinj i5
2yi

2Aui sing

cosj i5
zi2ui

2Aui cosg
. ~27!

Another way to resolve the discrete ambiguity is to det
mine independently the phase difference

Dj5j22j15dX2
2dX1

~28!

from the study ofD0 decays@6,14#. It is related to the value
of g andu1 through Eq.~27! and in general only two value
of g andu1 will give the correct value ofDj, the remaining
two fold ambiguity being betweeng andg1p.

To qualitatively understand the solutions of these eq
tions, it is useful to consider a plot ofg versusb(k). First,
let us assume that we have perfect experimental informat
For a given decay modeXi where we know $a(k),
c(Xi),c(X̄i),d(k,Xi),d̄(k,X̄i)% while $j i ,g,b(k)% remain
unknown. The two equations~22! for the modeXi give a
locus of points in theg2b(k), or equivalently theg2ui
plane whenj i is eliminated. Let us now consider the pro
erties of this curve.

Inspection of these equations shows that they are left
changed under the transformations

~g,j i !→~p2g,p2j!

~g,j i !→~2g,2j!

~g,j i !→~p1g,p1j!. ~29!

Thus it follows that the curve is periodic with respect tog
→g1p and that the curve is also symmetric with respect
5-5
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g→p2g. The curve in the range 0<g<p/2 can therefore
be reflected throughg50 and g5p/2 to get the entire
curve.

For g5np, the two cosines in Eq.~23! are the same so i
there is anyCP violation the equations are inconsistent. Th
is obvious from the physics sinceg is the onlyCP violating
parameter; thusg5np implies there is noCP violation.
Conversely, if a finite amount ofCP violation is observed,
some bound can be placed ong. In particular, a lower bound
Qmin can be placed onQ:

Q.Qmin5
1

2
~11zi !„12A12a8~k,Xi !

2
… ~30!

anda8(k,Xi) is theCP asymmetry defined by

a8~k,Xi !5
d~k,Xi !2d̄~k,X̄i !

d~k,Xi !1d̄~k,X̄i !
5

yi

11zi
. ~31!

We also definegmin to be the angle in the first quadrant su
that Qmin5sin2gmin. Sincegmin represents the extreme le
edge of the figure eight curve, there is a unique value oui

which givesQ5Qmin we will denote this byûi which is
given by

ûi5zi12~12Qmin!. ~32!

Likewise, there can be noCP violation if u→0 or u
→` and so the observation ofCP violation implies an upper
and lower bound on the value ofu and henceb:

umax5~11Azi2uyi u11!2

umin5~12Azi1uyi u11!2 ~33!

which leads to the boundsbmin<b(k)<bmax where bmin

5a(k)c(X)umin /c(X̄) and bmax5a(k)c(X)umax/c(X̄). In
the case where there are two modes the allowed range
b(k) must overlap. Indeed this is a necessary condition
Eq. ~25! to have a solution.

Eliminating j i from the two equations~22! gives a qua-
dratic equation forui for a given value ofg which defines
the set of solutions in theg2ui plane:

Qui
222„zi12~12Q!…Qui1„Qzi

21~12Q!yi
2
…50.

~34!

This is quadratic inui ; therefore, there are zero, one
two solutions forui at any given value ofg. In particular, if
Q,Qmin there are no solutions while forQ5Qmin there
must be exactly one solution~i.e. u5û). It is also the case
that whenQ51, for instance, wheng5p/2, there is again
exactly one solutionui5zi . This follows from the fact that
in the sumd1d̄ the interference term vanishes and a va
of ui may thus be obtained. Taking theg axis horizontal, the
curve in the range 0<g<p therefore has the topology of
lazy eight centered about the vertical lineg5p/2 which
crosses itself at (p/2,zi).
03600
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In Fig. 1 we show a plot ofui versusg for zi51.5 and
yi50, 1, 2. The bounds given by Eqs.~30!,~33! are indi-
cated with the rectangular boxes. Clearly the greater
value ofyi ~and the greater the amount ofCP violation!, the
greater the bounds which may be placed onui andg through
these inequalities by considering just one mode. Thus sin
modes which have a high degree ofCP violation are quite
desirable since they lead to the most restrictive bounds in
g2ui plot. Indeed, as we have argued above, largerCP
violation is more likely to arise in the case of non-CP eigen-

state final states~such as D̄→K1p2) as compared to
CP-eigenstate modes.

Another property of the graph in Fig. 1 is that the stro
phase~up to a fourfold ambiguity! for a given solution will
be the abscissa of the point on the ‘‘other branch’’ of t
curve at the same value ofui . Which of the choices is cor-
rect can be determined by substitution back into Eq.~22!. To
see why this is the case, observe that the decay rates
given mode will satisfy a relation such as Eq.~22! which is
invariant under the interchangeg↔j1. In general, therefore
the set of solutions in thej i2ui plane would form an iden-
tical curve to the curve in theg2ui plane, the difference
being that for anyui the value ofj1 is the opposite branch
from the value ofg for a given solution.

Thus, if we defineQi85sin2ji , thenQi8 also satisfies Eq.
~34! for a givenui . This equation is quadratic and so on
solution isQ while the other solution isQi8 . Furthermore,
we can see that the points whereui5umin or umax given by
Eq. ~33! correspond to cases whereQ5Qi8 .

Let us now turn our attention to the case when we ha
two modes present. If we had perfect data concerning e
mode, we would generate two of these lazy-eight curves
the g2b(k) plane. In general, these curves will therefo
intersect in as many as four points in the range 0<g<p/2
which correspond to the solution of Eq.~25!. If the data were
inconsistent, then the curves would miss each other, co
sponding to a situation where Eq.~25! has no real solutions

FIG. 1. Each of the solid lines shows the locus of points ing
versusui of allowed solutions givenzi51.5 foryi50 ~outer curve!,
1 ~intermediate curve! and 2~inner curve!. The boxes indicate the
inequalities Eqs.~30!,~33!.
5-6
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for g. In order to understand how this might play out, let
now consider a scenario for the not yet observed branch
ratios.

V. ATTAINABLE ACCURACY

A. Estimates of branching ratios

For the purpose of illustrating the ability to extractg by
combining measurement of several modes, we need to m
a simple estimate of the branching ratios of DCS de
modes ofD which have not yet been measured. We w
proceed by relating these modes to the well measu
Cabibbo-allowed ones and then use factorization to br
down D→M1M2 to ^M2uJcduD&^M1uJusuD&. The SU~3!
breaking of the decay constants is used in keeping trac
the piecê M1uJusu0&. Single-pole dominance allows one
keep track of the SU~3! breaking in^M1uJcduD&. In the final
estimated rates, we also factor in the small difference
phase space.

For a concrete example let us consider the DCS m
D0→K1p2 which we relate in this procedure to CBA cou
terpartD0→K2p1. Using this reasoning the amplitude wi
be proportional to

A~D0→K1p2!}l2f K~mD
2 2mp

2 !S 12
mK

2

mD*
2 D 21

. ~35!

Thus

UA~D0→K1p2!

A~D0→p1K2!
U5l2S f K

f p
D S 12mp

2 /mD
2

12mK
2 /mD

2 D S 12mp
2 /mD

s*
2

12mK
2 /mD*

2 D .

~36!

In this instance there is no phase space correction. Usinl
50.22, f K5160 MeV, f p5132 MeV and other masse
we thus get

BR~D̄0→K1p2!

BR~D0→p1K2!
51.88l455.331023. ~37!

ThereforeBR(D0→p1K2)53.8331022 @8# gives

BR~D0→K1p2!5~2.06.7!31024 ~38!

which should be compared to the measured value@8#

BR~D0→K1p2!5~2.860.9!31024. ~39!

We will normalize our predictions for all the DCS modes
the measured central value.

For the other DCS modes of interest to us we can now
relations amongst DCS modes and their CBA counterp
Thus, e.g., forD0→K1r2 we should have

A~D0→K1r2!

A~D0→K1p2!
'

A~D0→p1K* 2!

A~D0→p1K2!
. ~40!

Similar scaling relations for the other two modes are
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A~D0→K1a1
2!

A~D0→K1p2!
'

A„D0→p1K1
2~1270!…

A~D0→p1K2!

A~D0→K* 1p2!

A~D0→K1p2!
'

A~D0→r1K2!

A~D0→p1K2!
. ~41!

The resulting branching ratio for all the DCS modes of
terest are given in Table I.

To complete our sample calculation, we need to estim
the expected magnitudes of$a,b%.

Starting witha(k), we will extrapolate from the observe
branching fraction for relatedB decays@8#

Br~B2→p2D0!5~5.360.5!31023

Br~B2→r2D0!5~13.461.8!31023.
~42!

Multiplying this by sin2uC one obtains the estimates fo
a(k):

a~K !'2.631024

a~K* !'6.631024. ~43!

The estimation ofb(k) is more uncertain since it is a
color suppressed process. Thus, to estimate the branc
ratio for B2→k2D̄0 we use the fact that the quark lev
diagram for this process is color suppressed with respec
B2→k2D0 and take the color suppression to be simply
factor of 1/Nc . Folding in all the appropriate CKM element
an estimate for the branching ratio may be obtained from
previous estimate ofa(k) ~taking Nc53):

b~k!

a~k!
'F uVubuuVcsu

NcuVcbuuVusu
G2

'0.015 ~44!

and so for the two specific cases

b~K !'4.031026

b~K* !'10.031026. ~45!

TABLE I. Cabibbo allowed~CBA! and doubly Cabibbo sup

pressed~DCS! modes ofD0(D̄0). BR’s for CBA modes are taken
from PDB @8# while those for DCS are predicted, using the mod

given in the text, except forD̄0→K1p2 wherein the measured
value is shown.

Mode Br(D0→final state) Br(D̄0→final state)

K1p2 (2.961.4)31024 3.8331022

K1r2 3.831024 10.831022

K1a1
2 7.031025 7.331022

K* 1p2 8.331024 5.031022
5-7
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B. CP violation in single modes

Let us now perform some sample calculations using
above estimated branching ratios in order to illustrate w
precision might be obtained by this method.

First, we will consider what can be learned through t
use of data in a single mode. As discussed above, this
not allow one to obtain an exact value ofg but can give a
bound ong if large CP violation is present. We will there
fore consider how manyB decays are needed to have a me
surable signal ofCP violation and what bounds ong would
follow. We will next consider the precision for extractingg
by combining the data from several modes.

To illustrate this let us consider the specific case ofCP
violation whenX5K1p2. The observed@8# branching ra-
tios for theD decays are

c~K1p2!5~2.961.4!31024

c~K2p1!5~3.8360.12!31022 ~46!

where the partial partial rate asymmetry is given by

a8~k,X!5
d~k,X!2d̄~k,X̄!

d~k,X!1d̄~k,X̄!
~47!

which from Eq.~15! can be written

a8~k,X!52
R~k,X!sin~zk1dX!sing

11R~k,X!cos~zk1dX!cosg
. ~48!

Let NB be the total number ofB6. In a given mode, letEi
be the acceptance times efficiency of a detector and le
denote

ÑB5EiNB . ~49!

Thus if ÑB
3s(k,X) is the number of chargedB6 required

to observe the partial rate asymmetry at a 3s level with an
ideal detector, it is related to the actual number,NB

3s(k,X),

of B6 by EiNB
3s(k,X)5ÑB

3s(k,X). In terms of theCP

asymmetry,ÑB
3s is given by

ÑB
3s~k,X!5

18

@a8~k,X!#2@d~k,X!1d̄~k,X̄!#
. ~50!

In order to obtain a large value ofa8 it is clearly neces-
sary to have a large value ofR(k,X) sinceua8u<R(k,X). As
defined, 0<R(k,X)<1 whereR(k,X) is maximized when
a(k)c(X)'b(k)c(X̄). It should be clear that this will hap
pen if the two channels have roughly the same amplitude
particular, using the numbers in the estimates abo
R(K2,K1p2)'R(K* 2,K1p2)'0.94. On the other hand
if we had considered the case whereD0 decays in a CBA
mode, then we would have obtained a much smaller va
R(K2,K2p1)'R(K* 2,K2p1)'.02 and soCP violation
would be small.

To completely specifya8 and ÑB
3s , of course we also

need to know cosj cosg and sinj sing. Since these are to
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tally unknown, to get a rough idea of the experimental
quirements we will take the sample values cos(j)cosg50
and sin(j)sing51/2.

In this example we obtain

a8~K2,K1p2!'a8~K* 2,K1p2!'0.47

ÑB
3s~K2,K1p2!'17.63107

ÑB
3s~K* 2,K1p2!'7.03107.

~51!

Using the estimated branching ratios in Table I, we can p
form a similar estimate for some of the other possible mod

ÑB
3s~K2,K1r2!'6.33107

ÑB
3s~K* 2,K1r2!'2.53107

ÑB
3s~K2,K1a1

2!'9.33107

ÑB
3s~K* 2,K1a1

2!'3.73107

ÑB
3s~K2,K* 1p2!'13.63107

ÑB
3s~K* 2,K* 1p2!'5.43107 ~52!

where the asymmetriesa8 for these modes are given i
Table II.

Since each of these modes as well as several other p
bilities have a different values ofjX it is at least likely that a
few instances of this kind ofCP violation can be observed in
the ÑB

3s;108 range.
For comparison let us consider one of theCP eigenstate

modes as in GLW, using the above numbers. In this casX
5XCP is aCP eigenstate. In particular, let us take the mo
XCP5KSp0. Using the k5K* case we have as befor
a(K* )56.631024; b(K* )510.031026. In this case
c(Ksp

0)5 c̄(Ksp
0)51.0531022. From this we get R

50.24. Hered50 so making a similar assumption as abo
concerning the phases, that sinz sing'1/2 and cosz cosg

TABLE II. The branching ratios for the combined decayB2

→K* 2D0 followed by the decay ofD0 to the modes given below
using the parameters considered in Sec. VI withg560° and the

given strong phasesj i . di andd̄ are given in units of 1028 anda8
is the partial rate asymmetry.

Mode di d̄i
1
2 (di1d̄i) a8 j i

K1p2 91 75 83 0.096 10
Ksp

0 842 740 791 0.064 20
K1r2 289 159 224 0.288 30
K1a1

2 203 90 146 0.383 40
Ksr

0 333 391 362 0.081 200
K* 1p2 97 34 65 0.477 50
5-8
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'0 we obtaina8(K* ,KSp0)'0.12. Substituting this into
Eq. ~50! we obtainÑB

3s'9.03107.
In principle we can improve this by folding in informatio

from all possible modes that areCP eigenstates.1 Some par-
ticular D0 decay modes which areCP eigenstates are

$3Ks,Ksh,Ksr
0,Ksv,Ksh8,Ksf0,Ksf,Ksf2,p1p2,K1K2%. ~53!

Using the observed branching fraction in@8# these have a
total branching fraction of about 5%~if the corresponding
modes withKL are included, this total roughly doubles!. Us-
ing the effectivec obtained with theCP non-eigenstate
method from all of these modes together, we g
ÑB

3s(K* 2,XCP)'1.93107 which is roughly what we ob-

tained in the single modeÑB
3s(K* 2,K1r2)'2.53107.

Thus, although the event rate for the various DCS mode
smaller than theCP eigenstate modes, theCP violating
asymmetries are larger andÑB

3s is comparable. The latte
case does have the following potential advantages

~1! Each mode has a different strong phase difference
so it is perhaps more likely that one will have a total stro
phase near6p/2 ~i.e., maximalCP violation!.

~2! Sincea8 tends to be larger, the bounds placed ong
will tend to be more restrictive.

In order to illustrate these two points, Fig. 2 shows t
locus of allowed points on a plot ofg versusb(K* ) which
would be obtained with the example above in the case o
K1p2 final state~solid line! and aKSp0 final state~dashed
line! assuming an ideal measurement. Clearly, in this
stance the restriction onb(k) andg is much tighter for the
K1p2 final state than for theKsp

0 final state.

1In particular we add thed(k,X) for CP even states tod̄(k,X) for
CP odd states and vice versa.

FIG. 2. The solid line shows the allowed points on theg
2b(K* ) plot given a measurement ofB2→K* D0 followed by
D0→K1p2 ~and charge conjugate! using the estimated values o
Sec. V, Eqs.~43!,~45!, assumingg590°. The dashed line show
the results which would follow in the same case given a meas
ment ofD0→Ksp

0 in the final state.
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C. Combining information from several modes

Let us now consider the degree of accuracy in the de
mination ofg that may be obtained through the combinati
of various modes. To do this, we will do an illustrative ca
culation of the 90% confidence levels one can obtain on
g2b(k) plane withÑB

3s5108.
To produce a scenario, we will consider some spec

values ofg andj i together with the branching ratios abov
and then calculate the values ofd and d̄ which would be
relevant. If we now take these as being the experime
value we can then consider the likelihood as a function og
andb(k).

The modes we will consider are (D0→K1p2,
D0→KSp0,D0→K1r2,D0→K1a1

2 ,D0→K0r0 and D0

→K* 1p2). We will take ÑB5108 and considerk5K* . It
is important to note that in this example we consider sta
tical errors only. It is clear that in order to perform such
study, systematic errors must be under control.

The exact experimental results will, of course depend
the strong phases andg. For the purposes of illustration, le
us assume thatg560° and the strong phases

j~K1p!510°, j~Ksp
0!520°

j~K1r2!530°, j~K1a1
2!540°

j~Ksr
0!5200°, j~K* 1p2!550°.

~54!

Numerically, the values ofd and d̄ are given in Table II
where thedi , d̄i entries are given in units of 1028.

In Figs. 3~a! and 3~b! we show the likelihood contours a
a function ofg andb(K* ). In Fig. 3~a! we consider only the
data from theK1p2 andKsp

0 final states.2 The solid curve
shows the locus of solutions which explain theK1p2 data
while the dashed curve shows the solutions which exp
the Ksp

0 data. As can be seen there are four intersecti
which is the case in general when just two modes are c
sidered. The contour regions correspond to 68% and 9
confidence levels based onÑB

3s5108. In Fig. 3~b! we con-
sider the situation where data from all six modes are used
this figure, the solution forK1p2 is shown in solid,KSp0

with short dashes,K1r2with long dashes,K1a1
2 with the

dash-dot line,KSr0 with the dash-dot-dot line andK* 1p2

with the dash-dash-dot line. As can be seen from this figu
the correct value ofg and b(k) is now identified with the
only ambiguity being the fourfold ambiguity ing between
6g andp6g.

2Note that it has been suggested@13# that the combination of a
DCS mode and aCP eigenstate mode~as in this example! offers
some advantage because of the larger statistics that can be obt
by combining different eigenstate modes. This may be the c
although how well a particular combination works also depends
great degree on the strong phases.

e-
5-9
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In Fig. 4 we have projected the likelihood from Fig. 3~b!
onto theg axis where we have considered the case og
515°,30°,60° and 90° which are indicated by the curv
peaked at those values ofg. In each of these cases, the 90
confidence interval is about610° about the solution.

FIG. 3. ~a! The likelihood distribution is shown as a function o

g and b(K* ) assuming thatÑB
3s5108 with the branching ratios

considered in Table II and assuming only theK1p2 and Ksp
0

modes are measured. The outer edge of the shaded regions
spond to 90% confidence while the inner edge corresponds to
confidence. The solid lines show the locus of points which g
exactly theK1p2 results while the short dashed curve shows
points which give theKsp

0 results.~b! The likelihood distribution
as in ~a! is shown assuming all of the modes in Table II are us
The solution for theK1p2 data is shown with the solid curve; tha
for theKSp0 data is shown with the short dashed curve; the one
theK1r2 data is shown with the long dashed curve; the one for
K1a1

2 data is shown with the dash-dot curve; the one for theKsr
0

data is shown with the dash-dot-dot curve and the solution for
K* 1p2 data is shown with the dash-dash-dot curve.
03600
s

It should be realized that three body statesK1r2, Ksr
0

and K* 1p2 can all lead to the common final sta
Ksp

1p2. If one examines the distribution in phase spa
then the vector resonances overlap to some extent and
channels will interfere with each other. In the following se
tion, we will discuss how the additional information implic
in this situation can assist in extracting the value ofg.

VI. USING THREE BODY DECAYS

Here we will consider the generalizations of the two a
proaches considered in Sec. IV to the case of a three b
decay. First of all, we can consider the three body decay
consisting of a number of quasi-two-body channels wh
we can regard as distinct modes and find a solution forb(k)
and g. A second approach is to regard each point of
Dalitz plot as a distinct mode. We can then apply the
equalities Eqs.~30!,~33! at each point. Since all of thes
inequalities must be true simultaneously, a very string
bound can generally be placed ong andb(k). In fact we will
argue that for at least some points this inequality is an eq
ity so the limit given by such an argument should in fact gi
g andb(k).

As an example we will consider in particular the case
D0, D̄0→K1p2p0. In this case the CBA decayD̄0

→K1p2p0 has been experimentally studied by the E6
Collaboration@15#. The data they obtain are fit to an amp
tude to a general multi-channel 3-body decay form:

M~D̄0→K1p2p0!5a0eid01(
i

ai exp~ id i !B~a,b,cur !

~55!

wherer is a label for the resonance anda, b andc are labels
for the three final state particles which are permuted so
(a,b) forms the resonance that a given term represe
Thus, the function B is given by B(a,b,cur )
5BW(a,bur )S(a,c) where if Jr is the spin ofr,

rre-
%

e
e

.

r
e

e

FIG. 4. The ratio between the the likelihood distribution and t
maximum likelihood is shown as a function ofg with the param-
eters as in Fig. 3~b! exceptg is taken to be 15°~dashed curve!; 30°
~solid curve!; 60° ~dotted curve!; 90° ~dash-dot curve!.
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BW~a,bur !52„sab2mr
21 iG r~sab!mr…

21

S~a,c!5H 1 if Jr50,

22PW a•PW c if Jr51,

2„3~PW a•PW c!
22uPW au2uPW cu2… if Jr52,

~56!

wheresab5(pa1pb)2 andPW a andPW c are the 3-momenta ofa andc in the ab rest frameand

G r~sab!5G r~mr
2!S mr

2uPW au2

~mr
41ma

41mb
422mr

2ma
222mr

2mb
222ma

2mb
2!
D Jr11/2

. ~57!
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Here mr is the mass of the resonance andG r is the energy
dependent width.

Thus, the general model used in@15# for a 3-body decay
includes a number of resonance channels, each of which
have a different spin and phased i together with a non-
resonant term@i.e. a0 exp(id0)#.

Specifically, forD̄0→K1p2p0 they use a non-resonan
term together with three channels:

M̄5a0 exp~ id0!1a~K* 0!exp~ idK* 0!B~K1p2p0uK* 0!

1a~K* 1!exp~ idK* 1!B~K1p0p2uK* 1!

1a~r2 !exp~ idr2!B~p2p0K1ur2!. ~58!

In this analysis@15# the decay fractions3 for each channe
and the relative phases were determined which we have s
marized in Table III. In our calculation we will use thes
decay fractions together with the global average for the t
branching ratio,Br(D̄0→K1p0p0)513.960.9% given in
@8#. For the purposes of our illustrative calculations we w
assume that these quantities take on their central values

The DCS decayD0→K1p2p0 has not likewise been in
vestigated experimentally, so for the purposes of making
merical estimates, we will use a model based on SU~3!. First
we write a decomposition ofM similar to that of Eq.~58!:

M~D0→K1p2p0!

5a08 exp~ id08!1a8~K* 0!exp~ idK* 08 !

3B~K1p2p0uK* 0!1a8~K* 1!exp~ idK* 18 !

3B~K1p0p2uK* 1!1a8~r2!exp~ idr28 !

3B~p2p0K1ur2!. ~59!

3The decay fraction for a given channelX is the rate ofD0

→K1p2p0 if all channels aside fromX are turned off divided by
the total rate ofD0→K1p2p0 with all channels present. Thus, fo
instance, the decay fraction through K* 1p2 is

Br(D̄0K* 1p2)Br(K* 1→K1p0). Due to interference effects, th
decay fractions need not add up to 1.
03600
ay

m-

al

l

u-

Using the relations between the branching ratios to two b
decays discussed in Sec. V A, we can relate the magnitu
ua8(K* 0)u, ua8(K* 1)u and ua8(r2)u to ua(K* 0)u, ua(r2)u
and ua(K* 1)u by regarding them as amplitudes for qua
two-body decays. In addition we setua08u5l2ua0u. Assuming
exact SU~3! for the phases of the DCS channels, they will

d085d0 , dK* 08 5p1dK* 0, dK* 18 5dr2 dr28 5dK* 1.
~60!

This model then predicts

Br~D0→K1p2p0!57.831024. ~61!

The only free parameters now are the strong phase dif
ence j betweenB2→k2D0 and B2→k2D̄0, the overall
branching ratiosa(k) and b(k) and of courseg. If we use
the estimates ofa(K* ) andb(K* ) discussed in Sec. V, we
can therefore obtain the Dalitz plots of theK1p2p0 final
state which resulting from interference ofD0 and D̄0 chan-
nels.

Figure 5~a! shows such a plot withg590° andj570°
which is intended to represent a sample ofÑB

3s51010. The
upper plot representsB2 decays where the variables used a
s5(pp21pK1)2 and t5(pp01ppi2)2 while the lower plot
represents theCP conjugate.

It is clear that in this case there is significant amount
CP violation. In Fig. 5~b! we have takenj5160° and again
it is clear thatCP violation is present but here it is mor
subtle. There are about the same number of points in eac
the plots but the distribution changes going fromB2 to B1.

TABLE III. The parameters of the model forD0→K2p1p0

decay obtained in@15#.

Channel Decay fraction~%! d r2dr ~deg.!

non-resonant 10.163.363.062.7 212261062162
K* 0 16.563.161.161.1 2261262362
K* 1 14.862.864.960.3 1626106764
r2 76.564.162.264.9 0
5-11
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FIG. 5. ~a! Dalitz plots for the decay products of theD0 in the decay chainB2→K* 2D0 followed by D0→K1p2p0 ~upper plot! and
the charge conjugate process~lower plot!. We use the model described in Sec. VI where we takeg590° andj590°. The plots represen
the results givenNB51010. ~b! Dalitz plot for the same system as in~a! with j50°.
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In these plots, the three resonant bands are prominent
could isolate the resonant contributions by fitting the plot
a model such as discussed above and thus obtain four m
~the three resonances plus the non-resonant contribution! to
feed into the analysis of the previous section. Obviou
there is more information implicit in these distributions. F
instance, one would have additional constraints since
would know the relative strong phase difference betwe
each of theD decay modes.

In particular, for this model one has the magnitudes
four amplitudes each forB2 andB1 decay~giving 8 param-
eters! and three phase differences4 giving a total of 14 pa-
rameters. The three unknowns in this case are justg, b(k)
andz so they are well over-determined.

In order to get an idea of how manyB mesons are re

4One cannot determine an overall phase so only the differen
between thed ’s can be extracted from measurements.
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quired to extract useful information from these kind of da
let us consider what is required to find a 3-s signal of CP
violation for this system. In Fig. 6~a! we show a plot of the
overall partial rate asymmetry for this mode forg590° as a
function of the overall strong phase differenceh. In Fig. 6~b!

we show with the solid line the number ofB0 (ÑB
3s) mesons

required to give a statistical 3-s signal for the partial rate
asymmetry.

When the partial rate asymmetry is small, for instance
the case whereh5160 in Fig. 5~b!, clearly ÑB

3s becomes
large but of course, we are not using the information co
tained in the full distribution. Using the methods of@16# if
we assume the CBA and DCS decays of theD0 are under-
stood we can construct an observable or system of weigh
various regions of the Dalitz plot which is optimally sens
tive to CP violation. Using this method,ÑB

3s is shown in

Fig. 6~b! with the dashed curve; depending onh, ÑB
3s varies

between (0.3522)3108.
Another approach to obtainingg is to use the generaliza

es
5-12
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tion of the bound given in Eq.~30!. If one fits the Dalitz plots
to continuous curves, then, regarding each point as a sep
mode, we would haveQmin<Q as a function of the Dalitz
plot variables. Since each lower bound must be valid,
maximum lower bound,Q̂5max(Qmin) will provide the
most stringent lower bound onQ so thereforeQ>Q̂.

In fact it is not unreasonable to expect thatQ̂5Q. To see
this note that Eq.~32! tells us that ifQ5Qmin , then

u5zi12 cos2g5u12Au cosg cosj12 cos2g ~62!

so therefore

cosj52cosg/Au. ~63!

If Eq. ~63! is true anywhere on the Dalitz plot, thenQ̂5Q
and one would expect that this condition would apply
some curve on the Dalitz plot. This is illustrated in Fig. 7~a!
where the locus of points whereQ5Qmin is shown forg
560° with z50° ~solid line!; z530° ~dashed line!; z
560° ~dotted line! andz590° ~dot-dashed line!.

FIG. 6. ~a! A plot of the partial rate asymmetry for the system
Fig. 5 as a function ofg. ~b! TheNB required for a 3-s signal as a
function ofj using only the PRA~solid line! and using the optima
observable~dashed line!.
03600
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FIG. 7. ~a! The locus of points on a Dalitz plot whereQmin

5Q for g560° andz50° ~solid line!; z530° ~dashed line!; z
560° ~dotted line! and z590° ~dot-dashed line!. ~b! A plot of
f (rQ) as a function ofg for z50° ~solid curves!; for z530°
~dashed curves!; for z560° ~dotted curves! and forz590° ~dash-
dot curves!. In each case the lower curve corresponds tor 50.9 and
the upper curve tor 50.7. ~c! A plot of f 2(q) is shown as a func-
tion of q for Q53/4 ~solid line!; Q51/2 ~dashed line! and Q
51/4 ~dotted line! wherez590°.
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To extractQ using this method, it is useful to consider th
function

f ~q!5

E
Dalitz

u„Qmin~s,t !2q…dsdt

E
Dalitz

dsdt

~64!

where the integral is over the allowed region of the Da
plot and u(x)50 if x,0 or 1 if x>0. Thus f (q) is the
fraction of the Dalitz plot such thatQmin>q. For values of
q→Q from below, f (q)}AQ2q and sof 2(q) will linearly
extrapolate its endpoint atq5Q.

In Fig. 7~b! we show a plot off (rQ) wherer 50.7 and
0.9 as a function ofg for z50° ~solid!; z530° ~dashed!;
z560° ~dotted! and z590° ~dot-dashed!. From this is ap-
parent that for almost every combination of strong and w
phases roughly 20% of the dalitz plot hasQmin>0.9Q.

In Fig. 7~c! we show a graph off 2(q) for z590° with
Q50.25, Q50.5, 0.75. As can be seen, in all cases a s
nificant fraction of the Dalitz plot hasQmin close toQ and
the curves extrapolate linearly to an endpoint atq5Q.

Likewise we can extractb(k) by applying Eq.~33! to
each point of the Dalitz plot. Here one has both an upper
a lower bound onb(k) so that if one considers the function

gmin~b!5

E
Dalitz

u„bmin~s,t !2b…dsdt

E
Dalitz

dsdt

gmax~b!5

E
Dalitz

u„b2bmin~s,t !…dsdt

E
Dalitz

dsdt

~65!

the support ofgmin must lie entirely belowb(k) while the
support ofgmax must lie entirely aboveb(k). As with the
bound in Q, the end point of the support in both cases
b(k).

In Fig. 8 we show a graph ofgmin
2 (b) and gmax

2 (b) as a
function of b/b(k) in the case ofD0→K1p2p0. Here we
takeg560° andz590°. Again a significant portion of the
Dalitz plot can be seen to give values ofbmin andbmax close
to the endpoint.

If b(k) were determined in this way, the informatio
could easily be combined with the branching ratio to a t
body final state~e.g.K1p2 or CP eigenstates! to obtaing
as discussed in case 1 of Sec. IV.

We can also apply the methods discussed in this sectio
the case where theD0 decays to a 2-body final state~eg.
D0→K1p2 or KSp0) but the parentB2 decays to a 3-body
final state, for instanceB2→D0KSp2. In this case, of
course the Dalitz plot variables are those of the parentB2

decay but other than that, one could solve forg by fitting the
03600
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distribution to a series of amplitudes which could be trea
as different modes or by findingQ̂min as described above.

VII. SUMMARY AND CONCLUSION

In conclusion, we have considered a number of ways
observing the interference betweenB2→K2D0 and B2

→K2D̄0 as a means of cleanly extractingg. In general, this
is achieved by observing final states common toD0 andD̄0

decay. To fully determineg with such observations, severa
different decay modes must be observed or else the diffi
to measure decay rate forB2→K2D̄0 must be indepen-
dently known.

Thus if for oneD0 decay modeX the branching ratios for
B2→K2X and B1→K1X̄ are known, where theX results
from the interference ofD0 andD̄0 channels and if one also
knowsB2→K2D̄0 theng can be determined up to an 8 fol
ambiguity. The special case whereX is aCP eigenstate was
originally considered in@2#.

On the other hand if the branching ratio forB2→K2D̄0

is not known but there is a large degree ofCP violation in
the mode, then it may be possible to put a lower bound
sin2g. A particularly promising class of decays which cou
give largeCP asymmetries are cases whereD0→X is a DCS
decay. In such cases the enhancement of the decayD̄0→X
which is CBA is balanced by the enhanced production a
plitude B2→K2D0 which is CLA. The two channels thu
have roughly equal amplitudes thereforeCP asymmetries
can be large.

If two or more modesX1 , . . . ,Xn are measured, then w
no longer need to knowB2→K2D̄0, it can be fit for along
with g. In the case of 2 modes there is potentially a 16 fo
ambiguity due to the need for solving of a quartic equation
sin2g. If 3 or more modes are considered, then there is o
a 4-fold ambiguity since the system of equations for sin2g is
over determined. In our sample calculation it was found t
for N̂B5108, that the 90% bound ong found from combin-

FIG. 8. A plot ofgmin
2 (b) ~solid line! andgmax

2 (b) ~dashed line!
line is shown as a function ofb/b(k). Here we have takenQ
53/4 andz5p/2.
5-14
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ing several modes is roughly 15° which is typical althou
the actual precision depends on the values of the str
phase differences.

This approach can be generalized to the case where
D0 undergoes a 3-body~or indeedn-body! decay. If one
considers each point in the Dalitz plot to be a single mo
one can obtain a lower bound for sin2g at each point. In
general, one expects that the maximum lower bound is
fact equal to sin2g so this method actually givesg up to a
four fold ambiguity. The same method may also be appl
to determineb(k) by obtaining upper and lower bounds o
b(k) at each point. Alternatively, fitting the Dalitz distribu
tions to a resonant channel model provides enough infor
tion to obtaing.

Although throughout we have assumed thatDD̄ mixing is
negligible, in the Appendix we show how the effects of su
mixing may be eliminated by using information about t
time between theB2 and D0 decays at the expense of in
creasing the statistical errors by aboutA2.
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APPENDIX: THE IMPLICATIONS OF D0-D̄0 MIXING

In the discussion so far we have explicitly assumed t
D0D̄0 was negligible. In particular, since we often take a
vantage of interferences involving DCS decays which
O(1%) of theinterfering CBA decay, the total probability o
mixing must be less thanO(1%) for theabove formulation
to remain valid. In this section we consider the generali
tion to the case whereDD̄ mixing may be present.

We will argue that for final states which involve the DC
decay of theD0 ~such asB2→K2@D0→K1p2#) the effects
of such mixing will be at mostO(10%) on the rates@i.e.
d(k,X)#.

In particular there are two possible ways to deal w
mixing

~1! Using information on the time between theB2 decay
and the subsequentD0 decay, then the effects of possib
mixing can be eliminated.

~2! If the parameters ofDD̄ mixing are known indepen
dently, then they can be taken into account in interpreting
time integrated data.

Indeed, if the mixing parameters and time dependent d
are available, then one can in principle extractg from just
one mode, though most likely the time dependence in
decay is too weak to make this a useful method.

In order to examine the question, let us first define
standard parametrization of this mixing as described in@17#.
We denote the mass eigenstates as

uDL&5puD0&1quD̄0&, uDH&5puD0&2quD̄0& ~A1!
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whereDL andDH represent the light and heavy eigenstat
respectively. If we denote the ratio

q/p5r qpe
2if ~A2!

wheref is a CP violating phase which could, in principle
be present inD0-D̄0 mixing andCP is also violated ifr qp
Þ1 though here we will suppose thatr qp'1 as would likely
be the case forCP violation generated by physics beyon
the SM.

Let us denote bymH andmL the mass of theDH andDL
states respectively. Likewise, we denote byGH and GL the
widths of these states. In terms of these quantities, we
use the definitions

m5
mH1mL

2
, G5

GH1GL

2
, m5m2 iG/2,

Dm5mH2mL , DG5GH2GL ,

xD5
Dm

G
, yD5

DG

2G
, zD5xD1 iyD[Zeil,

~A3!

and denote byuDphys(t)& and uD̄phys(t)& the time evolved
state which is created att50 as Dphys

0 and D̄phys
0 respec-

tively. These are thus related to the flavor eigenstates as

uDphys~ t !&5g1~ t !uD0&1r qpe
2ifuD̄0&;

uD̄phys~ t !&5g1~ t !uD̄0&1r qp
21e22ifuD0&

~A4!

with g6 given by

g1~ t !5e2 imt coshS i

2
zDt D ; g2~ t !5e2 imt sinhS i

2
zDt D

~A5!

with t5GDt.
A number of experiments have recently produced res

which bound these mixing parameters. The E791 experim
at Fermilab obtains@18# DG50.0460.14 ps21 correspond-
ing to y50.862.961.0% from the study of the lifetime ratio
of D0→K2p1 versusD0→K1K2. CLEO has reported@19#
a 95% C.L. bound ofux8u<2.8% and25.8%,y8,1.0%
where x85x cosdK1p21ysindK1p2 and y852y sindK1p2

1xcosdK1p2 obtained through the study of the time depe
dence of the decayD0→K1p2. Results from the FOCUS
experiment@20# at Fermilab, again using the lifetime ratio
give y53.4261.3960.74% which interestingly is 2.5-s
from 0.

In the standard model,D0-D̄0 mixing receives contribu-
tions from both short distance and long distance proces
The short distance mixing via the box diagram may be r
ably estimated to beyD,xD5O(1025). On the other hand
the long distance effects involve considerable uncerta
from the hadronic interactions involved. Calculations bas
on dispersion theory@21# suggest thatuzDu,1024. On the
5-15
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other hand, it has recently been suggested@22# that lifetime
differences driven by kaonic resonances in the vicinity of
D0 mass could lead toyD;1022. In the standard model, th
CP violating phasef will in all cases be negligible.

It is also possible thatD0-D̄0 mixing is driven by new
physics beyond the standard model. Many examples of s
mixing have been considered~see compilation in@23#! and in
this case, additionalCP violation through the phase anglef
is also possible.

In the case we are interested in,B2→K2@D0→X#, the
initial decay is to a mixed state ofD0-D̄0 where both theD0

and D̄0 components have some amplitude to decay toX.
SinceX is small, it is justified to expand the mixing effec
on the time dependent decay as follows:

d

dt
d~k,X!'„d0~k,X!1d1~k,X!t…e2t

d

dt
d̄~k,X̄!'„d̄0~k,X̄!1d̄1~k,X̄!t…e2t.

~A6!

Sinced0 and d̄0 represent the decay rate at 0 time interv
they will be identical with the expressions given in Eq.~22!.
If we assume that there is noCP violation in theDD̄ system,
thend1 and d̄1 are given by

1

2
~d11d̄1!512Aac~X̄!Z$Aac~X!sin~l1d!cosg

1Abc~X̄!sin~l2z!cos~g1f!%

12Abc~X!Z$Abc~X̄!sin~l2d!cosg

1Aac~X!sin~l1z!cos~g1f!%

1

2
~d12d̄1!522Aac~X̄!Z$Aac~X!cos~l1d!sing

1Abc~X̄!cos~l2z!sin~g1f!%

12Abc~X!Z$Abc~X̄!cos~l2d!sing

1Aac~X!cos~l1z!sin~g1f!%. ~A7!

In order to estimate the relative effect of the mixing, let
assume thatZ'0.01 and recall from our rough estimates th

b

a
'

c~X!

c~X̄!
'0.01 ~A8!

and thus from Eq.~A7! we can estimate

d1

d0
'

d̄1

d̄0

'0.1. ~A9!

Note that in Eq.~A7! the time dependent term depends
both z and d rather than just the sumj and, in addition, it
03600
e
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,
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depends on the mixing parameters. The simplest way to
tract g given time dependent data is therefore to try a
obtain the values ofd0 andd̄0 which do not have these extr
dependences, reducing the problem to the same situatio
if mixing were not present.

This can be accomplished through weighting the data w

w0~t!522t ~A10!

so that

d05E
0

`

@d~t!w0~t!#dt; d̄05E
0

`

@ d̄~t!w0~t!#dt.

~A11!

Using this method more data would be required to obt
the same statistical results as in the unmixed case. In
unmixed case whered150 one could obtaind0 more effec-
tively by taking the time integrated rate. Thus in the unmix
case if a measurement ofd0 is based onn events, the uncer-
tainty in d0 is given by

~Dd0!2

d0
2 5

1

n
~no mixing!. ~A12!

In the mixed case, using Eq.~A11! the uncertainty is

~Dd0!2

d0
2 5

2

n S 11
d1

d0
D 2

~with mixing!. ~A13!

From Eq. ~A9! this means that roughly twice the data a
needed to have the same statistical power as in the unm
case. In order to gauge the precision of time measurem
required, we can smear out the distribution in Eq.~A11! with
a Gaussian resolution function of the form

r ~t,t8!}e2(t2t8)2/2s2
~A14!

wheret is the actual time of the decay,t8 is the measured
time of the decay ands is the resolution~all in units of
1/GD). Sincer is symmetric undert↔t8, the fact thatw is
linear int implies Eq.~A11! will still be true for t8 but now
the error is

~Dd0!2

d0
2 5

2

n
~11s2!S 11

d1

d0
D 2

. ~A15!

As can be seen, the number of events required is not
versely effected ifs<1/GD but will be significantly de-
graded otherwise.

In the above strategy, it was assumed that the mixing w
relatively unconstrained except for the assumption thatd1 is
smaller thand0 which seems justified. If the rate ofDD̄
mixing is near the current experimental bounds, howev
then there is another possible way to obtaing. If one mea-
sures$d0 , d1 , d̄0 , d̄1% and knows all of the mixing param
eters, then there are just four unknown parameters that n
to be fitted for:$g, d, z, and b%. We therefore have four
5-16



ar

y

a

ore
n

tion

r
Eq.

es

he

ur

IMPROVED METHODS FOR OBSERVINGCP VIOLATION . . . PHYSICAL REVIEW D 63 036005
equations in four unknowns and can solve forg. To obtain
d1 we can use the weight function

w1~t!5t21. ~A16!

It is also possible to learn aboutg using time integrated
data. This has been previously considered in@24#. The cor-
rections due to mixing in the approximation we are using

d5d01d1

d̄5d̄01d̄1 . ~A17!

In the case that theDD̄ mixing parameters are alread
determined, ifn modes are measured, there are 31n un-
knowns: z, g, b and for each modeXi , d i . Each mode
provides two pieces of information,d and d̄, leading to a
total of 2n measurements. To solve for the unknowns at le
3 modes are thus required~six equations in six unknowns!. If
v.
-

t

ha
h
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the mixing parameters are unconstrained, this adds four m
unknowns, $x,y,r qp ,f%, and in principle at least seve
modes would be required.

On the other hand, using such time dependent informa
is probably not the best way to measureDD̄ oscillation pa-
rameters. Perhaps the best way to proceed is to consided1

andd̄1 to be corrections to the time integrated data. From
~A7! one can take the bound onx and y together with an
estimate ofb and bound these terms. As indicated, this giv
about a 10% correction which, as discussed in@24# leads to
about a 15° error ing. This is similar to the errors typically
obtained in the unmixed case forN̂B5108 and so to gain
improvements in the determinationg with larger numbers of
NB in this scenario one would both have to improve t
bounds onDD̄ mixing ~or indeed discover it!. Of course
since measurements ofDD̄ mixing can often be made at aB
facility, it would be natural for such improvements to occ
at the same time.
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