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Improved methods for observing CP violation in B*—KD and measuring the CKM phasey
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Various methods are discussed for obtaining the CKM angliarough the interference of the charged
B-meson decay channes —K ~D° andB~— K~ D° where theD? andD® decay to common final states. It
is found that choosing final states which are @& eigenstates can lead to large dir€d® violation which can
give significant bounds of without any theoretical assumptions. If two or more modes are stugliethy be
extracted with a precision on the orderofl5° given~ 10° B-mesons. We also discuss the case of three body
decays of theD where additional information may be obtained from the distribution ofDh#ecay products
and consider the impact @D oscillations.
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[. INTRODUCTION Since the modes we consider are direct and not time de-
pendent, they may be observed in any experimental setting
The only manifestations dC P violation observed to the where large numbers & mesons are produced. Aside from
present time are those in the neutral kaon system. The advetite SLAC and KEK asymmetriB-factories, these include
of several machines capable of producing a large number &€LEO and hadroni® experiments such as BTeV, Collider
B mesons makes it likely that at least some exampleS®f Detector at FermilalfCDF), DO and CERN LHCB or a high
violation in B physics will soon be seen. luminosity Z factory.
B factories at SLAC and KEK have been specifically con- A method for putting the determination of on the same
structed to observ€ P violation in the time dependent os- footing as the oscillation experiments by using dir€®

cillation of B°B® whenB° decays to &P eigenstate such as Violation was first suggested if2] where the decayB™

K, or 2ar. In such experiments one has the advantage that> K~ D? is considered followed by the decay@f to aCP

the CP violating phase may be in a few cases cleanly ex-eigenstatgsee alsd3]). In this case the fact that the final
tracted. In contrast diredE P violation which can occur in State is aCP eigenstate means that it will interfere with the
B* decay always appears in combination with a strong phasghannelB~—K D°. In Sec. II, for self containment, we
which cannot be easily determined since it has its origin inwill review the important features of this method and discuss
strong interaction physics. In order to put the extraction ofsome problems which arise in its implementation.

the CP odd phase on the same footing as the clean oscilla- These problems can be resolved through a more general
tion experiments it is thus important that some Way of elimi'method using noiGP eigenstates Suggested[ms] and re-
nating the uncertainties due to the strong phase be found. fined in[6] which not only enable a clean extraction-pbut

~ Direct CP violation in B~ decay may prove to be an in addition have the attractive feature that they can give rise
important component of the futur® physics program be- to |arge CP asymmetries. This is outlined and expanded
cause it offers signals sensitive to the anglef the unitarity  ypon in Secs. Ill and IV. In Sec. V we estimate some rel-
triangle[1]. Here we focus on effects which originate from eyant branching ratios and obtain a rough estimate of the
the interference 0B~ —K D° with B-—K D° In con-  attainable accuracy in extracting

trast, experiments involvin@® may only extracta (from In Sec. VI we discuss the somewhat more general case
B%— 24 for instanceé and 8 (from B%— K g). The unitarity ~ where the distributions of three body decaysDdf are con-
triangle which follows from the unitarity of the CKM matrix sidered. Here we consider two different methods for obtain-
is a key prediction of the standard model. Independent medng y. First, one can fit the distributions to a resonant chan-
surements to over determine the triangle by measuring eaaiel model where each of the channels can be considered a
of its sides and angles therefore provide a non-trivial test ofjuasi-two-body mode. The phases between the channels will
the standard model. Furthermore, the standard model prehus give additional constraints on the fit. Second, if each
dicts that a number of different measurement<Céf viola-  point on the Dalitz plot is considered a separate mode, in
tion will depend on the same phage(e.g. directCP viola-  some cases the accumulated inequality bounds Gy sian

tion in B—K# and oscillations inBg). Comparing the provide a determination of siy. In Sec. VII we give our
results of these experiments will thus be a sensitive test fosummary and conclusions.

new physics. Throughout this paper we will assume that the effects of
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DD mixing are negligible. In an Appendix, we discuss thefor the signal is expected to (10~ °) whereas that for the
impact of DD mixing on this method for determining. ~ Packground is expected to b€&(10™%). The signal/
Specifically, if one uses the time interval between the parenpackground ratio is thus dauntingly small. _ _
B~ decay and the subsequéhdecay, one can eliminate the _ Let us note some of the characteristics of the signal which
effects of mixing. One can also obtain information abgu distinguish it from the background. First of all, in tBe rest

time independent studies. frame theK™ tends to be monochromatic. Also the signal
tends to yield a pair of kaort§ "K ™ (or K~ K°) whereas the
Il. USING CP EIGENSTATES DECAYS OF D° background dominantly has one kadfi, or K°. In the sig-

nal the semi-leptonic decays of ti¥ originate from a ter-
The Gronau-London-Wyle(GLW) strategy to extracy iary vertex in sharp contrast to the case of the background. It
fr%m CP violation in the decayB —K D" followed by s ifficult to say whether these distinctions are enough to
D"— CP eigenstate is to separately determine the branchsgparate the signal. Detector specific studies are required to
ing ratios[2]: o give reliable answers but the size of the signal/background
(@ Br(B"—K E) ratio does not give us much ground for optimism.

(b) Br(B"—K™D?) While the use of such a leptonic tag is likely to be im-

(c) Br(B~—K™D%) orBr(B-—KD?%) practical, the hadronic decay has a more fundamental prob-
together with their conjugates whe denote theCP  |em. In this case one would detect the deay—K~D° by
eigenstatd? = (Do+ Do)/ 2. observing a final state where tHe® decays through a

Oncea, b, c and the corresponding quantities for the CON-Cahibbo-allowed CBA) process, for instancB®— K * 7.
jugate modes are known then one can separate out the imf{ﬂ'nfortunately, the doubly Cabibbo suppres$BdeS decay
ference effects and thus determine @@s(y) and coslc  4f PO (e.q.D% K * ) will also lead to the same final state
—7) simultaneously whergy is the CP conserving strong gt 5 pranching ratio two orders of magnitude smaller.
phase difference betweeB™—K™D® and B"—K™D° On the other hand, as was pointed ouf &}, the initial
while vy is the CP violating weak phase difference. From decayB‘HK‘SO is color-suppresse(CLS) while the de-
these two cosines, the valu'es of the actua! phase aggles cayB~—K DY is color-allowed(CLA). Thus difference in
andy can clearly be determined, up to an eight-fold discretgpe production rate tends to offset the difference in the decay
ambiguity as will be discussed in more detail in Sec. IV.  y5tes for the two processes and since the final states are really

The rate for(c) is experimentally observed through the jngjstinguishable, they will interfere quantum mechanically.
decay to aCP eigenstate such 4™ K™, K¢ anda” As a specific example consider the possible @§

and presents no problem in principle. Likewise the de@ay Lo ) B o
should be readily measurable through either leptonic or had="K ™ 7. The signal fromB~— DK™ and the background

- POk~ wi : .
ronic modes of theD®. As it stands, however, this method from B~ —D K™ will be given by the sequences:

has a very serious problem in measuring the branching ratio (A) B"—>K™D% D°—K* 7~ ©)
of (b), Br(B~—K DY. The detector must distinguidh®
from D° to determine the decay rate to this rare mode. The (B) B-—K D% D%—K*'#m, (4)
background deca@r(B~—K DO [i.e. (a)] is expected to These two decay chains have the qualitative form
be larger by about two orders of magnitude.

There are only two ways that could possibly be used to A: CLS®CBA %)

tag the flavor of theD®:
(@) through semi-leptonic decays
(b) through hadronic decays Numerically the ratio of these two amplitudes is appreciably
We will consider each of these individually and show that|gse to 1 since it is expected to be given by

neither is fully satisfactory.

The semi-leptonic tag, i.e. the quark level proce_ss

—17 sy, has the problem that there is an overwhelming
background from the direct semileptonic decay of Bhme-
son. The signal here is the sequential decay:

B"—K D% D°—l pXg (1)
while the background is from the direct semi-leptonic decay

: Herea,; anda, control the relative sizes of the CLA and the
of the b quark followed by hadronic decays of the charm 1 2
quark: | y y CLS amplitudes. Experimentally’] the indications are that

B: CLA®DCS (6)

M(B~—K DY —K" 7 ]|
M(B~—K D[ —K* 7]

Vc bV:s
Vu bV:S‘

2B(D°—K*7)
B(D°—K* 7 7)

2
HE
az

)

B —/"v,X.; c—sud ) a,

< ~0.26=0.07+0.05 8
1

Both give rise to the same sign lepton and while there are
several features distinguishing the signal from the backwhich roughly agrees with the simple color counting value of
ground it represents a serious problem as the branching rati3.
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Let us consideB(D°—K* 7~ )/B(D°—K*#~) which Of course the search for large dir€eP violating signals
is of Order)\‘l_ We can formulate an estimate tak|ng into is interesting in its own I’Ight but the real goal is to extract the

account S(B) breaking effects in the form factors and the angle y from experimental results cleanly, that is without
decay constants. For the present purpose we use the expear.]y reference to a model for hadronization. While the origi-

mental resul{8]

Br(D°—K*#7")

— =.0072+.0025 (9)
Br(D°—K*#7")
as well as the ratio of CKM elemenf8]:
V
‘ b — 0g+.02. (10)
Vcb

Then with A =0.23 and the central values frof&gs. (8)—
(10)] we therefore get
M(B~—K D[—K*7 ])|°

— ~1.
M(B-—K D[ —K' 7 )

11

nal idea of[2], though sound in principle is probably not
practical, the basic concept may be used if one observes two
or more distinct hadronic states that are common decay prod-
ucts of D® and D (as all hadronic final states @° are.

With this information, one can reconstrugt cleanly. We
now consider a number of methods based on this idea.

IIl. NON- CP EIGENSTATES DECAYS OF D°

Using this idea, let us now consider the case where the
two channels
B-—K D° B —K D° (13
interfere because both® and D° decay to some common
final stateX. In the GLW method the specific case wheres

The two amplitudes are roughly comparable and we canndt CP eigenstate such a;m° was chosen while we will

tell whether the charmed particle wasD€ or a D°. B~

—K~D° with aD® decaying hadronically will give rise to a
final state which is indistinguishable from the correspondin

decay of theD? in B~ —K D°. The two amplitudes will

thus be subject to large quantum mechanical interference e

fects. The use of a hadronic tag for determiniBgB~

HK‘SO) for the GLW method appears therefore to be ruled

out.

Despite these difficulties, one need not discard the GLW
approach. The only input which is lacking is the branching
ratio B-—K " D°. It may be possible to theoretically esti-
mate this quantity which will allow the GLW program to go

forward.

focus on the instance, considered @, whereX is not aCP
eigenstate. In particular, following the logic of the previous
ection, the case whe°— X is a DCS decay anB°— X
s a CBA decay is of particular interest, for instanie
i Kt .
In order to formulate an expression for the rates, let us
define the following branching ratios:

a(k)=Br(B"—k D%, a(k)=Br(B*—k*D?)

b(k)=Br(B~—k~D%, b(k)=Br(B*—k"D°

c(X)=Br(D°—=X), c(X)=Br(D°—X)

Here we consider an alternative approach where we take

advantage of these interference effects to enh@mReiola-
tion and ultimately provide another way for a cle@m®. no
penguin pollution way of extractingy. As discussed ifi6]

the fact that these two amplitudes have large interference d(k,X)=Br(B~—k"[X]),

effects implies that there will be largéP violating asym-

metries in such combined decay channels which in turn gives

us a handle on measuring Thus, it is instructive to con-

sider why CP violation will be enhanced in this case as

compared to GLW.
In the eigenstate case, the size of the expe€tPdasym-

c(X)=Br(D°=X), c(X)=Br(D°—X)

d(k,X)=Br(B*—k*[X])
(14)

Herek™ represents eithd€ ™ or K* = (or indeed one may

consider any other kaonic resonance or system of
strangeness—1 and well definedCP [9]) and [X] is the

commonD® andD° decay channel observed. Thus the com-

metry is controlled only by the ratio of the amplitudes for bined ratesd(k,X) and d(k,X) include the effects of the

B~ —K D° versusB~— K D°. Following the above esti-

mate and taking into account the appropriate CKM factors

M(B~—K D%
M(B~—K D9

(12

This means that the maximum possible size of@easym-
metry is expected to be(D0%). In contrast Eq(11) implies

that the two interfering amplitudes have roughly the same
magnitude and so the interference effects, and in particular

CP violation, will be near maximal.

interference of the two channels.

In the standard model, it is expected that(k)
=a(k), b(k)=b(k) andc(X)=c(X) all of which we will
assume from here on. In general, however#0 one ex-
pectsd(k,X)aﬁa(k,Y) (CP violation) and indeed the value

of the quantitied, d may be expressed in terms afb and
cas

d(k,X)=a(k)c(X)+b(k)c(X)

+2a(k)b(k)c(X)c(X)cos &+ Sx+ )
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d(k,X)=a(k)c(X)+b(k)c(X) result of some theoretical estimdte2]. If b(k) can be ob-
’ tained in some way, this method is less involved than the
+2\/a(k)b(k)c(X)c(Y)cos( Lt Sx— ) other method we will discuss below.

As in the GLW method we are required to extract the
interference terms il andd by solving the two equations
where ¢, is the strong phase difference betwe@ (15 which we can rewrite
kDO - kDO ; ; _

kD" andB™—k D", oxis the strong phasg difference d(k,X) = [a(k)c(X) +b(k)c(X)]
betweenD — X andD— X and v is the CP violating weak

(19

phase difference betwedi —k D° andB~—k D°. X[1+R(k,X)cog {x+ oxtv)]
In the standard modey is given directly from the CKM . _
elements d(k,X)=[a(k)c(X)+b(k)c(X)]
y=arg —VygViVepVig). (16) X[1+R(k,X)cod {+ ox—y)] (18)

Existing data do not constraiy very much giving an al- WhereR(k,X) is

lowed range in the SM at 95% C.I[[10] of 36°<y<97° —

corresponding to 0.35sir?y. R(K.X) = 2\a(k)b(k)c(X)c(X) 19
The strong phaseg, and &y that result from hadronic ' a(k)c(X)+b(k)c(X)

final state interactions cannot be reliably calculated with any

known method and must be determined experimentally. Here Defining

we will take the approach that information abaiy and ¢,

are extracted from the data along wiilk) and y. \ 1 [ d(k,X) 1]
The above may be made somewhat more general by con- 17 R(k,X vl

sidering the class of mod& — k™ D whereD is an excited ( )L a(kye(X) +bk)e(X)

D meson. Let us suppose thBt subsequently decay® 1 ak.X)

—D+N°® whereN® is a single particle and thB then de- A= ’ _ 1

cays into aCP non-eigenstate mode of the type we have R(k,X) [ a(k)c(X)+b(k)c(X)—1
considered above. For instanBemay be aD*® with k™ (20

=K~ and we may use either of the following decay chains:
Y g y the solution fory and &(k,X) = ¢, + 6y is

B~ —K (D*-#[D—X])

1
=—(0cos I\;—7cos I\,)+nm;
B~ K~ (D*—4[D—X]). 17 ¥=5(0C0S Ay mTCOS Thg) N

HereD%—X is a DCS mode. In these sorts of examples the 1

analysis would be essentially the same as considered for the ~ é(k.X)=5 (o cos’ N1+ 7cos hy) +nm (21
ground state of th®. The only constraint on this generali-

zation is that one ofk,D} should have spin 0 so that thereis  |n the aboves, re{+ 1} andne{0,1} expressing the
only one partial wave; otherwise multiple partial wavesfact that there is an eightfold ambiguity3] since the sign in
would have to be separated and the analysis for the extragront of each of the cos' functions is undetermined and we
tion of y would be more complicated and has been considcan add = simultaneously toé and y without changing

ered in[11]. the results. Specifically, the eight solutions giving results
identical to a given £,v) are {(&7), (—&—7), (.€),
IV. METHODS FOR EXTRACTION OF y (=y,= 8, (n+&m+y), (m—é&m—vy), (wty,7+E),

L . h . fh k(w— v,m—§&)}. To resolve the ambiguities between the
H etus ”3"_” tu_:jn ourlflttelntlor;]tot elextractlonho :ke WeaKstrong phase and the weak phase we can use this method on
phasey and incidentally also the total strong phas&,X) 5 or more modes since will be the same for each mode
=+ Ox. We will consider two scenarios under which such

- X i while £(k,X) should be different. This is a simple generali-
a reconstruction is possible assuming that the valueXf  ,ation of the GLW method discussed in Sec. II: in that case,

andc@ have been determined in advance and that the ratg(x) :ax) while 8y=n.

of D’D? mixing is negligible. In the Appendix we show how  More generally, if we do consider two decay modes with
the possible effects of mixing may be removed from the datagifferent strong phases (mod), we can dispense with the
__ Case 1: For one particular mode(k,X), d(k,X) and  need to know the value df(k) as follows:

d(k,X) are known and in addition &) and b(k) are known. Case 2: For two distinct mode$(k,X;),(k,X,)} the

This is the simple generalization of the GLW method to quantities dk,X;) and dk,X;) are known. In addition &)
the case wherK is not aCP eigenstate. We thus assume thatjs known but not tk).

the branching ratidp(k) may be obtained from tagging tie In this case we assume that one cannot easily obtain the
with the semileptonic decays as discussed in Sec. Il or as theranching fractiorb(k) using the semileptonic tag or by any
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other means. However, i andd are known for two differ-  to four roots together there is thereforel6 fold ambiguity
ent modes, we can solve for the missing informafigrand  in the determination ofy. To reduce this ambiguityespe-

b(k) and g] up to a discrete set of ambiguitiesl CIaIIy if it should turn out that all 16 pOSSib”itieS manlféﬂt
Specifically, forD® decay mode¥, and X, we assume IS therefore helpful if observations are made of at least 3
that we have measured the quantitiegk),c(X,),c(X,), ~ modes ofD? decay(for a givenk) in which case only an

c(X.).c(X,)! as well asd(k.X;) and d(k,X). There are overall .fourfold gmbiguity iny remains. Sincg t.his method
th(erle)for(e Z)fiur unknown(s tlh)at mu(st tl))e solved fOr:determlnesQEsmzy it, therefore, cannot distinguish be-

; ; tween the solution$= y, 7= y}.
b(k),&1,&5,y}. To do th the f t :
{b(k),£1.&2, v} To do this we use the four equations Needless to say, if Eq25) has no real roots, then the

d(K,Xy)=a(K)c(X )+b(K)c(Y) consistency of the data is brought into question. If there are
o ! ! multiple real roots, then any of the roots may explain the
+ 2\/a(K)b(K)c(X1)c(Y1)cos{ ) data and without more information or theoretical input there
is no way to decide between the4 possible roots. As we
Tk X — iva discuss below, this ambiguity will generally be resolved if
d(K,X;)=a(K)c(Xy)+b(K)c(X " .
( 1 =a(K)e(Xy) +h(K)e(Xy) additional modegi.e. more than twpare observed. If one
+2Va(K)b(K)c(Xy)c(X,)cos & — ¥) can put a bound oh(k) from theoretical considerations, this
too may reduce the ambiguity if some solutions violate such
_ iva a bound. Likewise, information concerning the strong phases
= +
d(K.Xz)=a(K)e(Xa) +h(K)e(Xo) of the various modes could also serve to reduce the ambigu-
+2\a(K)b(K)c(Xz)e(X;)cos £,+ ) 1y.

For each solution the corresponding total strong phase
(22) differenceg; is then determined without further ambiguity by

d(K,Xz)=a(K)c(Xp) +b(K)c(Xp) _ —y

— sinéj=_——_——

+23a(K)b(K)c(Xp)c(X5)coS £5— 7). 2\Jujsiny
= —— @21

To solve these, let us define the quantities cos¢; = 2\u, cosy’

Cb(eX) d(kX)—d(k,X) Another way to resolve the discrete ambiguity is to deter-
Ui= a(k)c(X;)’ Yi= 2a(k)c(X;) mine independently the phase difference

_d(k,Xi)—i-E(k,Z) _ Ag=&— &= 0x,— Ox, (28)

Z|_ L]
2a(k)c(X;
(k)e(X) from the study oD° decayq6,14). It is related to the value

c(X))e(Xy) U of y andu, through Eq.(27) and in general only two values
p:_1—2: “2. of y andu, will give the correct value ofA ¢, the remaining

c(X)e(Xp) W two fold ambiguity being betwees and y+ 7.

To qualitatively understand the solutions of these equa-
tions, it is useful to consider a plot of versusb(k). First,
2 2. — ity let us assume that we have perfect experimental information.
e=yi—Yslp; Q=siny; (24 For a given decay modeX; where we know{a(k),
c(X;),c(X;),d(k,X;),d(k,X;)} while {&,y,b(k)} remain

6=22—251p—2(z,— Zp)us + (1— p)U?;

wherey;, z;, e andp are known directly from experiment

andu; and Q= sir?y must be solved for. unknown. The two equation@?2) for the modeX; give a
The equation whictu; must satisfy is easily derived: locus of points in they—b(k), or equivalently they—u;
plane when¢; is eliminated. Let us now consider the prop-
4u,Se=(e— 8)(y516—(z1—Uuy)%e). (25)  erties of this curve.

Inspection of these equations shows that they are left un-
Since § is second order ini; this equation is in general a changed under the transformations
quartic equation which may have up to 4 real roots. For each
real root (u;), [wherek=1,...,4indexes the solutions of (7.&)—(m—y,m=§)

Eq. (25)], sirfy is given by (y,&)—( &)
Y:si) = (=Y, —

(v, &)= (mty,m+E). (29

€

€e—90

sify=Q= (26)

where§ is given in terms ofi; by Eq.(24). Each root leads Thus it follows that the curve is periodic with respectjto
to a fourfold ambiguity in the determination of, taking up ~ — y+ # and that the curve is also symmetric with respect to
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y—a—vy. The curve in the range<9y=</2 can therefore 8 T T
be reflected throughy=0 and y=m=/2 to get the entire s L _
curve.

For y=nr, the two cosines in Eq23) are the same so if s 7]
there is anyCP violation the equations are inconsistent. This 5 | ]

is obvious from the physics sinceis the onlyCP violating
parameter; thusy=nm implies there is noCP violation. 24T ]
Conversely, if a finite amount o€ P violation is observed, 3 —
some bound can be placed gnin particular, a lower bound > L &Mj ]
Qmin €an be placed oR:
1+ e S
——

1
Q>Qmin=5(1+2)A—\1-a’(kX)?) (30 % w0 w2 T o
gamma (deg)

anda’(k,X;) is the CP asymmetry defined by o o
FIG. 1. Each of the solid lines shows the locus of pointsyin

d(k,X;) —E(k %) y, versusu; of allowed solutions giver; = 1.5 fory;=0 (outer curve,
a' (kX)) =— v vt (30 1 (intermediate curveand 2(inner curve. The boxes indicate the
d(k,X)+d(k,X) 1tz inequalities Eqs(30),(33).

We al fi i h le in the fi h _
e also definey,,i, to be the angle in the first quadrant suc In Fig. 1 we show a plot ofs; versusy for z=1.5 and

that Q,in=SirPymin. Since ymi, represents the extreme left -~ : -
edge of the figure eight curve, there is a unique valueg;of yi=0, 1_’ 2. The bounds given by EqS0),(33) are indi-
which givesQ=0.... we will denote this by; which is cated with the rectangular boxes. Clearly the greater the
given bgy - emin i value ofy; (and the greater the amount @ violation), the

greater the bounds which may be placedupand y through
32) these inequalities by considering just one mode. Thus single
modes which have a high degree ©@P violation are quite
Likewise, there can be n&€P violation if u—0 or u  desirable since they lead to the most restrictive bounds in the

—o0 and so the observation GfP violation implies an upper ¥~ Ui Plot. Indeed, as we have argued above, largét

Ui=2+2(1~Qpin)-

and lower bound on the value afand hence: violation is more likely to arise in the case of n@P eigen-
state final stategsuch asD—K*#7~) as compared to
Unax=(1+Vz =y +1)? C P-eigenstate modes.
Another property of the graph in Fig. 1 is that the strong
Umin=(1=Vz+]yi[+1)? (33)  phase(up to a fourfold ambiguity for a given solution will

be the abscissa of the point on the “other branch” of the

which leads to the boundspin<b(k)=<bmax Where bmin  cyrve at the same value af . Which of the choices is cor-
=a(k)c(X)Upin/c(X) and by a=a(k)c(X)umax/c(X). In rect can be determined by substitution back into @8). To
the case where there are two modes the allowed ranges gee why this is the case, observe that the decay rates to a
b(k) must overlap. Indeed this is a necessary condition fogiven mode will satisfy a relation such as E82) which is
Eq. (25) to have a solution. _ _ invariant under the interchange— £&;. In general, therefore

Eliminating ¢; from the two equation$22) gives a qua-  the set of solutions in thé —u; plane would form an iden-
dratic equation fou; for a given value ofy which defines  ical curve to the curve in the/—u; plane, the difference

the set of solutions in the—u; plane: being that for anyu; the value of¢, is the opposite branch
2 _ _ 2y _ from the value ofy for a given solution.
Qui -2z +2(1-Q)Qu+(QF+(1-Q); )_0'(34) Thus, if we defineQ! =sir’¢, thenQ! also satisfies Eq.
(34) for a givenu;. This equation is quadratic and so one
This is quadratic iru; ; therefore, there are zero, one or solution isQ while the other solution i)/ . Furthermore,
two solutions foru; at any given value of. In particular, if ~ we can see that the points whare= Uy, OF Unyax given by
Q<Qmin there are no solutions while fo@=Qp,, there  Eq. (33) correspond to cases whe@=Q; .
must be exactly one solutiofie. u=u). It is also the case Let us now turn our attention to the case when we have
that whenQ=1, for instance, whery= /2, there is again two modes present. If we had perfect data concerning each
exactly one solution;=z;. This follows from the fact that mode, we would generate two of these lazy-eight curves in
in the sumd-+d the interference term vanishes and a valuethe y—b(k) plane. In general, these curves will therefore
of u; may thus be obtained. Taking theaxis horizontal, the intersect in as many as four points in the range o< /2
curve in the range € y< « therefore has the topology of a which correspond to the solution of E@5). If the data were
lazy eight centered about the vertical line=7/2 which  inconsistent, then the curves would miss each other, corre-
crosses itself at#/2,z). sponding to a situation where E@®5) has no real solutions
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for . In order to understand how this might play out, let us  TABLE I. Cabibbo allowed(CBA) and doubly Cabibbo sup-
now consider a scenario for the not yet observed branchingressedDCS) modes ofD°(D°. BR's for CBA modes are taken

ratios. from PDB [8] while those for DCS are predicted, using the model
given in the text, except fob®—K™ 7~ wherein the measured
V. ATTAINABLE ACCURACY value is shown.
A. Estimates of branching ratios Mode Br(D°—final state) Br(D°—final state)

For the purpose of illustrating the ability to extragtby

combining measurement of several modes, we need to mal&fl (2.9= 1'4)%}10 ) 3.83x 1072
a simple estimate of the branching ratios of DCS deca)}<+p7 3'8X1075 10.8x 104
modes ofD which have not yet been measured. We will K fl - 7.0x 1074 7.3% 1072
proceed by relating these modes to the well measurelf” 7 8.3x10 5.0x10
Cabibbo-allowed ones and then use factorization to break
down D—MM; to (M,|JegD){M4|JyD). The SUI)
breaking of the decay constants is used in keeping track of A(D°—K*a;) A(D°—7"K(1270)
the piece(M4|J,¢0). Single-pole dominance allows one to 0 vt - 0 Tt
keep track of the S(B) breaking in{M4|J.4/D). In the final AD"=KTm™) A(DT—mK™)
estimated rates, we also factor in the small difference in
phase space. A(D°—K**77) A(D°—pFK")

For a concrete example let us consider the DCS mode A(D°—K*7") AD = K)’ (42)

D°—K ™7~ which we relate in this procedure to CBA coun-
terpartDoﬁK‘qrﬂ Using this reasoning the amplitude will 11, resulting branching ratio for all the DCS modes of in-
be proportional to terest are given in Table I.

m2 | 1 To complete our_sample calculation, we need to estimate

A(DO— K+ ) e\ 2f (M — mi)( 1— TK) . (35 the expected_ magnitudes {ﬂ,b}.
My Starting witha(k), we will extrapolate from the observed
branching fraction for relate® decayq 8]
Thus
Br(B-—=m D%=(5.3t0.5x10 3

Br(B~—p D%=(13.41.8)x10 3.

1-m2/m? 1- mi/mé:
A(D°—7tK"™) fr

2
1-mg/mg,
(36)

A(D°—>K+Tr_)’_)\2<f_,<)

1-m2/mj (42)

In this instance there is no phase space correction. Using Multiplying this by sirfdc one obtains the estimates for

=0.22, fx=160 MeV, f_ =132 MeV and other masses a(k):
we thus get 4
a(K)~2.6x10
BRI K7 1.88\°=53x10°3.  (37) 4
=1. =2. . *)~ B
BRID"—7'K") a(K*)~6.6x10 “. (43
ThereforeBR(D®— 7+ K ~)=3.83x 102 [8] gives The estimation ofb(k) is more uncertain since it is a
color suppressed process. Thus, to estimate the branching
BR(D°—K* 7 )=(2.0=.7)x10 4 (38)  ratio for B~—k D° we use the fact that the quark level
. diagram for this process is color suppressed with respect to
which should be compared to the measured vaije B~ —k D° and take the color suppression to be simply a

factor of 1N.. Folding in all the appropriate CKM elements
an estimate for the branching ratio may be obtained from the
previous estimate adi(k) (takingN.=3):

BR(D°—K* 7 )=(2.8-0.9 x 10" 4. (39

We will normalize our predictions for all the DCS modes to

the measured central value. bk NI, 2
For the other DCS modes of interest to us we can now use (k) %{ Vubl[Ved ~0.015 (44)
relations amongst DCS modes and their CBA counterpart. a(k) [ Ng[Vep|[ Vg
Thus, e.g., foD°—K ' p~ we should have
and so for the two specific cases
A(D°—K*"p7) A(D°—7TK*") 40
~ . ~ — 6
A(DO_)KJr,n_*) A(DO—>7T+K7) b(K)~4OX1O
Similar scaling relations for the other two modes are b(K*)~10.0x 10" ®. (45)
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B. CP violation in single modes

Let us now perform some sample calculations using the
above estimated branching ratios in order to illustrate wha

precision might be obtained by this method.

First, we will consider what can be learned through the

use of data in a single mode. As discussed above, this wi
not allow one to obtain an exact value gfbut can give a
bound onvy if large CP violation is present. We will there-

fore consider how manB decays are needed to have a mea ;0

surable signal o€ P violation and what bounds o would
follow. We will next consider the precision for extracting
by combining the data from several modes.

To illustrate this let us consider the specific caseCét
violation whenX=K™* 7. The observed8] branching ra-
tios for theD decays are

c(K'm)=(2.9x1.4x10 4
c(K™7")=(3.83-0.12x 10 2 (46)
where the partial partial rate asymmetry is given by

~d(k,X)—d(k,X)

"(k,X)= — 4
@ X)) -
which from Eq.(15) can be written
o (k. X) = R(k,X)sin({,+ dx)siny 48

~ 1+R(k,X)coq {+ dy)cosy

Let Ng be the total number d~. In a given mode, IeE;

be the acceptance times efficiency of a detector and let us

denote

Ng=E;Ng. (49)

Thus if N3?(k,X) is the number of chargeB™ required
to observe the partial rate asymmetry ata [@vel with an
ideal detector, it is related to the actual numb@%ﬁ’(k,X),

of B by E;N3’(k,X)=N3"(k,X). In terms of theCP
asymmetry N3 is given by

18

N37(k,X)= —
5 (k%) [a’(k,X) ] d(k,X)+d(k,X)]

(50

In order to obtain a large value af' it is clearly neces-
sary to have a large value Bi{(k,X) since|a’|<R(k,X). As
defined, GER(k,X)_sl whereR(k,X) is maximized when
a(k)c(X)=h(k)c(X). It should be clear that this will hap-

PHYSICAL REVIEW D 63 036005

TABLE Il. The branching ratios for the combined decBy
—K* "D followed by the decay ob° to the modes given below
%Jsing the parameters considered in Sec. VI wth60° and the
given strong phases . d; andd are given in units of 10° anda’
is the partial rate asymmetry.

R/Iode

d d; 3 (di+dy) a &i
K"~ 91 75 83 0.096 10
842 740 791 0.064 20
Kfp~ 289 159 224 0.288 30
K*a; 203 90 146 0.383 40
Kp® 333 391 362 0081 200
*tr 97 34 65 0.477 50

tally unknown, to get a rough idea of the experimental re-
quirements we will take the sample values é&psgsy=0
and sin§)siny=1/2.
In this example we obtain
a' (K- Krm)=a'(K* K" )~0.47
N7 (K™, K" 7 7)~17.6x 10
N7 (K* K+ 7 7)~7.0x10'.
(51)

Using the estimated branching ratios in Table I, we can per-
form a similar estimate for some of the other possible modes:

N7 (K™, K"p™)~6.3x 10
N37(K* ~ KT p~)~2.5x10
N37(K~,K*a;)~9.3x 10
N37(K*~,Kta; )~3.7x 10
N3 (K™, K* " 77 )~13.6x 107
N7 (K* ~ K* T 77 ) ~5.4x 10 (52

where the asymmetriea’ for these modes are given in
Table II.

Since each of these modes as well as several other possi-
bilities have a different values @i it is at least likely that a
few instances of this kind o€ P violation can be observed in

pen if the two channels have roughly the same amplitude. Ithe N3°~10f range.

particular, using the numbers in the estimates above, For comparison let us consider one of {B® eigenstate
R(K™,K*77)~R(K* " ,K*77)~0.94. On the other hand modes as in GLW, using the above numbers. In this ¢ase
if we had considered the case whéd8 decays in a CBA =X¢p is aCP eigenstate. In particular, let us take the mode
mode, then we would have obtained a much smaller valueXcp=Kgm®. Using the k=K* case we have as before
R(K™,K 7 ")~R(K* " ,K 7")~.02 and soCP violation  a(K*)=6.6x10"% b(K*)=10.0x10 % In this case
would be small. B c(Kem®) =c(Km®)=1.05<10"2. From this we getR

To completely specifya’ and Ng", of course we also =0.24. Here6=0 so making a similar assumption as above
need to know co§cosy and sinésiny. Since these are to- concerning the phases, that gisiny~1/2 and cog cosy

036005-8



IMPROVED METHODS FOR OBSERVINGCP VIOLATION . ..

PHYSICAL REVIEW D 63 036005

104 | C. Combining information from several modes
o | ] Let us now consider the degree of accuracy in the deter-
¥ sl -~ _ - 1 mination of y that may be obtained through the combination
o 10 i ~ 1 of various modes. To do this, we will do an illustrative cal-
5 \ N\ 7 / culation of the 90% confidence levels one can obtain on the
2 .2l \ 7/ /- y—b(k) plane withN3"=10P.
5 \ \ / 1 To produce a scenario, we will consider some specific
c \ / values ofy and ¢; together with the branching ratios above
~ 10" |- b@ - and then calculate the values dfand d which would be
x ~ _ /< ] relevant. If we now take these as being the experimental
< . | | | | | value we can then consider the likelihood as a functiory of

10

30 60 90 120
gamma (deg)

150

180

andb(k).
The modes we will consider are DP—K* 7,

DO Kgn?D%—K*p~,D°—K*a; ,D°-K%° and D°
FIG. 2. The solid line shows the allowed points on the —K**7~). We will take Ng=10° and considek=K*. It

—b(K*) plot given a measurement & —K*D° followed by s important to note that in this example we consider statis-

D°—K*n~ (and charge conjugateising the estimated values of tical errors only. It is clear that in order to perform such a

Sec. V, Eqgs.(43),(45), assumingy=90°. The dashed line shows study, systematic errors must be under control.

the results which V\_/ould fc_>||ow in the same case given a measure- The exact experimental results will, of course depend on

ment of D°—K7® in the final state. the strong phases and For the purposes of illustration, let

us assume thay=60° and the strong phases
~0 we obtaina’ (K*,Kgm®)~0.12. Substituting this into

~ — o 0y — o
Eq. (50) we obtainN3’~9.0x 10, §(KTm)=10°,  &(Ksm”)=20
In principle we can improve this by folding in information
from all possible modes that a@P eigenstate$.Some par- EKTpT)=30°, &KTa;)=40°

ticular D° decay modes which al@P eigenstates are

) _ _ E(Kgp®)=200°, &K**ar)=50°.
3K, Ks7,Kp® Ko, K7 Kof o Ksh Kof o, m" ™ KTK ™). (53) S (54)

Using the observed branching fraction [i8] these have a
total branching fraction of about 5%f the corresponding

modes withK, are included, this total roughly doubjesJs- ~ Where thed;, d; entries are given in units of 16.
ing the effectivec obtained with theCP non-eigenstate In Figs. 3&) and 3b) we show the likelihood contours as

method from all of these modes together, we getafunction ofya}rnd_b(K*).InOFig.3(a)we§consider_onlythe
N37(K* = Xcp)~1.9x 107 which is roughly what we ob- data from theK™ 7~ andKg7" final states. The solid curve

- ) ; S 30s g — b . shows the locus of solutions which explain € 7~ data
tained in the single modeNg”(K*~,K"p~)~2.5X10".  \ypile the dashed curve shows the solutions which explain
Thus, although the event rate for the various DCS modes ifhe K 70 data. As can be seen there are four intersections
smaller than theCP eigenstate modes, the€P violating  \hich is the case in general when just two modes are con-
asymmetries are larger aidy” is comparable. The latter sidered. The contour regions correspond to 68% and 90%

case does have the following potential advantages confidence levels based &»éo: 10%. In Fig. 3b) we con-

(1) Each mode has a different strong phase difference angiger the situation where data from all six modes are used. In
so it is perhaps more likely that one will have a total strongipis figure, the solution foK * 7~ is shown in solid K g7°
phase near- 77,/2 (i.e., maximalCP violation). with short dashesK* p~with long dashesk *a; with the

. (2) Sincea’ tends to b_e .Iarger, the bounds placed®n  yash-dot lineK <o with the dash-dot-dot line and* * 7~
will tend to be more restrictive. _ _ with the dash-dash-dot line. As can be seen from this figure,
In order to illustrate these two points, Fig. 2 shows theyo correct value ofy and b(k) is now identified with the

locus of allowed points on a plot of versusb(K*) which 5y ampbiguity being the fourfold ambiguity iy between
would be obtained with the example above in the case of a y gutty g gty iy

T
K"~ final state(solid line) and aK s7° final state(dashed yandmy.
line) assuming an ideal measurement. Clearly, in this in-
stance the restriction ob(k) and y is much tighter for the
K* 7~ final state than for th& 7° final state.

Numerically, the values off andd are given in Table I

Note that it has been suggestgkB] that the combination of a
DCS mode and &P eigenstate modéas in this exampleoffers
some advantage because of the larger statistics that can be obtained
by combining different eigenstate modes. This may be the case
although how well a particular combination works also depends to a
great degree on the strong phases.

n particular we add the(k,X) for CP even states tE(k,X) for
CP odd states and vice versa.
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8 ) _
i
—_ ", |
3 o . —
= . !
- . ' |
=) '. l
© c \ X
L st - S
Py : -
o ! | |
« 60 75 20
gamma (deg)
o FIG. 4. The ratio between the the likelihood distribution and the
0 maximum likelihood is shown as a function gfwith the param-
(a) eters as in Fig. @) excepty is taken to be 15{dashed curve 30°
(solid curve; 60° (dotted curvg 90° (dash-dot curve
o
« It should be realized that three body stakeSp~, Kgp°
and K**7~ can all lead to the common final state
K.m" 7. If one examines the distribution in phase space,
o[- then the vector resonances overlap to some extent and the
channels will interfere with each other. In the following sec-
tion, we will discuss how the additional information implicit
e in this situation can assist in extracting the valueyof
< ef
=
VI. USING THREE BODY DECAYS
er N Here we will consider the generalizations of the two ap-
proaches considered in Sec. IV to the case of a three body
decay. First of all, we can consider the three body decay as
° | | ! | | consisting of a number of quasi-two-body channels which
0 15 30 45 60 75 90 we can regard as distinct modes and find a solutiorb{d)
) qaming deg and y. A second approach is to regard each point of the

Dalitz plot as a distinct mode. We can then apply the in-
equalities Eqgs(30),(33) at each point. Since all of these
FIG. 3. (@) The likelihood distribution is shown as a function of inequalities must be true simultaneously, a very stringent
y and b(K*) assuming thalN3’=10® with the branching ratios bound can generally be placed grandb(k). In fact we will
considered in Table Il and assuming only tké 7~ and Ksm®  argue that for at least some points this inequality is an equal-
modes are measured. The outer edge of the shaded regions corig so the limit given by such an argument should in fact give
spond to 90% confidence while the inner edge corresponds to 68% andb(k).
confidence. The solid lines show the locus of points which give Ag an example we will consider in particular the case of

+,_— P - —
exgctly th_eK m resultsowhlle the short d_ash_ed curye §hoyvs theDo’ DO K*m 7% In this case the CBA deca)DO
points which give theK 7" results.(b) The likelihood distribution L K*77° has been experimentallv studied by the E687
as in(a) is shown assuming all of the modes in Table Il are used. o P y_ . y .
The solution for theK * 7~ data is shown with the solid curve; that Collaboration[15]. The_data they obtain are fit to an ampli-
for the szo data is shown with the short dashed curve; the one forIUde to a general multi-channel 3-body decay form:
theK*p~ data is shown with the long dashed curve; the one for the
K*a; data is shown with the dash-dot curve; the one forkie® 0 b 0N s .
data is shown with the dash-dot-dot curve and the solution for the (D™ =K m 77) =a5e'*0+ E. a; exp(i5)B(a,b,clr)
K** 7~ data is shown with the dash-dash-dot curve. (55)

In Fig. 4 we have projected the likelihood from FighB  wherer is a label for the resonance aadb andc are labels
onto the y axis where we have considered the caseyof for the three final state particles which are permuted so that
=15°,30°,60° and 90° which are indicated by the curvega,b) forms the resonance that a given term represents.
peaked at those values ¢f In each of these cases, the 90% Thus, the function B is given by B(a,b,c|r)
confidence interval is about 10° about the solution. =BW(a,b|r)S(a,c) where ifJ, is the spin ofr,
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BW(a,b|r)= —(S3p— MZ+iT (Sap) M)

1 if J,=0,
S(a,c)= ~2Pa-Pe it J=1, (56)
2(3(Pa-Po)* =[PP/ if 3=2,
wheres,p= (p.+ pp)? and P, and P are the 3-momenta af andc in the ab rest framand
m2||3 2 J+1/2
r a
T (Sap) =T (M7) (57

(m?+mi+mi—2m?m2— 2m?mZ— 2m2m?)

Herem, is the mass of the resonance dndis the energy Using the relations between the branching ratios to two body
dependent width. decays discussed in Sec. VA, we can relate the magnitudes
Thus, the general model used[it5] for a 3-body decay |a’(K*?)[, |a’(K* )| and|a’(p )| to |a(K*?)|, |a(p™)|
includes a number of resonance channels, each of which mand |a(K* *)| by regarding them as amplitudes for quasi-
have a different spin and phas® together with a non- two-body decays. In addition we Set)| = \?|ao|. Assuming

resonant ternfi.e. agexpwo)]. exact SU3) for the phases of the DCS channels, they will be
Specifically, forD°—K* 7~ 7° they use a non-resonant
term together with three channels: 56=00, Oxxo=Tr+kx0, Oxs=0,- 5/;7: Sx+
M=agexp(i d) +a(K*°)exp(i cx0)B(K* 7~ 7|K*©) (60
+a(K* " )exp(i S« +)B(K ™ w07 |K* ) This model then predicts
+a(p—)explis, )B(m 7K™ |p7). (58) Br(D'—K* 7 %) =7.8x10*. (61)

In this analysis[15] the decay fractiorisfor each channel )
and the relative phases were determined which we have sum- The only free parameters now are theitrong phase differ-
marized in Table IIl. In our calculation we will use these ence ¢ betweenB~—k D® and B~ —k™D°, the overall
decay fractions together with the global average for the totapranching ratiosa(k) andb(k) and of coursey. If we use
branching ratio,Br(D°—K* 7%7%=13.9+0.9% given in the estimates o&(K*) andb(K*) discussed+in Seg. Vv, we
[8]. For the purposes of our illustrative calculations we will ¢an therefore obtain the Dalitz plots of the" 7~ final
assume that these quantities take on their central values. state which resulting from interference b andD° chan-
The DCS decap®— K" 7~ #° has not likewise been in- nels.
vestigated experimentally, so for the purposes of making nu- Figure 5a) shows such a plot withy=90° and¢=70°
merical estimates, we will use a model based orti33\First  which is intended to represent a sampleﬁtg"z 10° The

we write a decomposition ol similar to that of Eq(58):  upper plot represen®™ decays where the variables used are
o ue o s=(P,—+Px+)? andt=(p,o+ ppi-)? while the lower plot
M(D =K 7™ a) represents th€ P conjugate.

It is clear that in this case there is significant amount of

A Y ' *0 P!
=ag expi 6p) +a' (K*~)expli dy«o) CP violation. In Fig. b) we have takerg=160° and again

YB(K* 7~ 70 K*O) +a’ (K* Texn(i s it is clear thatCP violation is present but here_ it i§ more
( | ) ( JeXRli S ) subtle. There are about the same number of points in each of
XB(K* 707 |K*H)+a’(p )expid ) the plots but the distribution changes going fré&m to B*.
P
XB(7™ m°K*|p7). (59) TABLE Ill. The parameters of the model fd°— K~ 7+ 7°
decay obtained if15].
) ) ) Channel Decay fractiofPb) 6,— 6, (deg)
3The decay fraction for a given channXl is the rate ofD° Y % (0
— K" 7~ 7Y if all channels aside fronX are turned off divided by  non-resonant 10-t3.3-3.0=2.7 —122+10+21+2
the total rate oD%—K* 7w~ 7% with all channels present. Thus, for K*© 16.5-3.1+-1.1+1.1 —2*12+23+2
instance, the decay fraction throughK** 7z~ is K** 14.8+2.8+4.9+0.3 162-10+7+4
Br(D°K* * 7" )Br(K* *—K*7°%. Due to interference effects, the p- 76.5+4.1+2.2+4.9 0

decay fractions need not add up to 1.
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FIG. 5. (a) Dalitz plots for the decay products of tfiE’ in the decay chaifs ~— K* ~DP followed by D°—K* 7~ #° (upper plo} and
the charge conjugate procedswer ploY). We use the model described in Sec. VI where we tpkeéd0° andé=90°. The plots represent
the results giveriNg=10%. (b) Dalitz plot for the same system as (@ with £=0°.

In these plots, the three resonant bands are prominent; omglired to extract useful information from these kind of data,
could isolate the resonant contributions by fitting the plot tolet us consider what is required to find as3signal of CP
a model such as discussed above and thus obtain four modelation for this system. In Fig. (@) we show a plot of the
(the three resonances plus the non-resonant contribiitions overall partial rate asymmetry for this mode fp#90° as a
feed into the analysis of the previous section. Obviouslyfunction of the overall strong phase differengeln Fig. 6b)
there is more information implicit in these distributions. For we show with the solid line the number BP (Ng") mesons
instance, one would have additional constraints since oneequired to give a statistical @-signal for the partial rate
would know the relative strong phase difference betweermasymmetry.
each of theD decay modes. When the partial rate asymmetry is small, for instance in
In particular, for this model one has the magnitudes ofthe case where;=160 in Fig. §b), clearly N3 becomes
four amplitudes each fd8~ andB™ decay(giving 8 param-  large but of course, we are not using the information con-
etery and three phase differenéegiving a total of 14 pa- tained in the full distribution. Using the methods [df6] if
rameters. The three unknowns in this case are yisb(k) we assume the CBA and DCS decays of Bitare under-
and{ so they are well over-determined. stood we can construct an observable or system of weights of
In order to get an idea of how mar§ mesons are re- various regions of the Dalitz plot which is optimally sensi-
tive to CP violation. Using this methodN3” is shown in
Fig. 6(b) with the dashed curve; depending gn N3 varies

4One cannot determine an overall phase so only the differencelsetween (0.35 2)X 10°.
between thed’s can be extracted from measurements. Another approach to obtaining is to use the generaliza-
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FIG. 6. (a) A plot of the partial rate asymmetry for the system in
Fig. 5 as a function ofy. (b) TheNg required for a 3¢ signal as a
function of ¢ using only the PRAsolid line) and using the optimal 1
observablgdashed ling 0.9 |
. . . ) . 0.8 —
tion of the bound given in Eq30). If one fits the Dalitz plots
to continuous curves, then, regarding each point as a separa 97 ]
mode, we would hav€.,;;<Q as a function of the Dalitz ¢y 0.6 —
plot variables. Since each lower bound must be valid, thex 5 _
maximum lower boundQ=maxQ,,i,) Wwill provide the g 04 ]
most stringent lower bound o so thereforeQ= Q. 03 ]
In fact it is not unreasonable to expect tl@t: Q. To see 0.2 n
this note that Eq(32) tells us that ifQ=Qn, then ’
0.1 -
u=z+2 cofy=u+2ucosycosé+2 cofy (62 0.25 05 0.75 1
so therefore
cosé= —cosy/u. (63) FIG. 7. (@ The locus of points on a Dalitz plot whe@mi,

=Q for y=60° and{=0° (solid line); {=30° (dashed ling ¢
. . ~ =60° (dotted ling and {=90° (dot-dashed ling (b) A plot of
If Eq. (63) is true anywhere on the Da_ll_tz plot, th&y=Q f(rQ) as a function ofy for =0° (solid curves; for £=30°
and one would expect that this condition would apply ON(dashed curvesfor {=60° (dotted curvesand for ¢ =90° (dash-
some curve on the Dalitz plot. This is illustrated in Figa)7  dot curves. In each case the lower curve corresponds=®.9 and
where the locus of points wheil®=Qy,;, is shown fory  the upper curve to=0.7. (c) A plot of £2(q) is shown as a func-
=60° with {=0° (solid line); {=30° (dashed ling ¢ tion of q for Q=3/4 (solid ling; Q=1/2 (dashed ling and Q
=60° (dotted ling and {=90° (dot-dashed ling =1/4 (dotted ling whereZ=90°.
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To extractQ using this method, it is useful to consider the 1
function

08 [— _]
f a(Qmin(S,t)_q)det
Dalitz

f(a)= (64) N 08 - -
. Ve
f dsdt o) /
Dalitz D04 |- / u
/
where the integral is over the allowed region of the Dalitz oz L /
plot and 8(x)=0 if x<0 or 1 if x=0. Thusf(q) is the ' d 7]
fraction of the Dalitz plot such tha®,,;,=q. For values of v/

q— Q from below, f(q)/Q—q and sof2(q) will linearly L1 1
extrapolate its endpoint a=Q. 02 04 06 08 1 12 14 16 18 2

In Fig. 7(b) we show a plot off (rQ) wherer=0.7 and b/b(k)

0.9 as a function ofy for {=0° (solid); {=30° (dashe i )
fy for ¢ (solid); £ ( o FIG. 8. A plot ofg?,,(b) (solid ling) andg?,(b) (dashed ling

¢=60° (dotted and {=90° (dot-dgshg}j From this is ap- ;0 is shown as a function ob/b(k). Here we have take®
parent that for almost every combination of strong and weak_ 3/4 and= /2.

phases roughly 20% of the dalitz plot h@s,i,=0.9Q.

In Fig. 7(c) we show a graph of?(q) for {=90° with — : : :
Q=025 Q=05 0.75. As can be seen, in all cases a Sig_dlstr|but|on to a series of amplitudes which could be treated

nificant fraction of the Dalitz plot ha@,,;, close toQ and  as different modes or by findin@y;, as described above.
the curves extrapolate linearly to an endpoingatQ.

Likewise we can extracb(k) by applying Eq.(33) to VIl. SUMMARY AND CONCLUSION
each point of the Dalitz plot. Here one has both an upper and

a lower bound orb(k) so that if one considers the functions: " conclusion, we have considered a number of ways of

observing the interference betwe®i —K D° and B~
—K~DY as a means of cleanly extracting In general, this

fDamZ@(bmin(S,t)—b)det is achieved by observing final states commormtband D°
Imin(b)= decay. To fully determines with such observations, several
f dsdt different decay modes must be observed or else the difficult
Dalitz to measure decay rate f@ —K D° must be indepen-

dently known.

Thus if for oneD® decay modeX the branching ratios for

JDamza(b_bmin(s’t))det B~ —K~™X andB*—K™*X are known, where th& results
Imaxb) = (65  from the interference ab® andD® channels and if one also
fDalitzdet knowsB~—K ~D? theny can be determined up to an 8 fold

ambiguity. The special case wheXds a CP eigenstate was

: . i originally considered if2].
the support ofg,i, must lie entirely belowb(k) while the

i i i P -po
support ofg,ax Must lie entirely abové(k). As with the On the other hand if the branching ratio f8r —K D

. . : ._is not known but there is a large degree@P violation in
g?ll:)nd inQ, the end point of the support in both cases Sthe mode, then it may be possible to put a lower bound on

siry. A particularly promising class of decays which could
give largeC P asymmetries are cases wh&®&— X is a DCS
decay. In such cases the enhancement of the dBfayX
which is CBA is balanced by the enhanced production am-
plitude B~ —K~D° which is CLA. The two channels thus
have roughly equal amplitudes therefd@P asymmetries

In Fig. 8 we show a graph af?,(b) andg?.(b) as a
function of b/b(k) in the case oD°—K" 7~ #°. Here we
take y=60° and{=90°. Again a significant portion of the
Dalitz plot can be seen to give valueskgf;,, andb,, .4 close
to the endpoint.

If b(k) were determined in this way, the information
could easily be combined with the branching ratio to a two®@n b€ large.
body final statele.g.K* 7~ or CP eigenstatesto obtainy If two or more modesXy, . .. X, are measured, then we
as discussed in case 1 of Sec. IV. no longer need to knoB~—K DY, it can be fit for along

We can also apply the methods discussed in this section tith y. In the case of 2 modes there is potentially a 16 fold
the case where thB® decays to a 2-body final stateg. ~ ambiguity due to the need for solving of a quartic equation in
DO K" 7~ or Ksm®) but the parenB~ decays to a 3-body sirfy. If 3 or more modes are considered, then there is only
final state, for instanceB™—D%Ksm . In this case, of a 4-fold ambiguity since the system of equations fof gis
course the Dalitz plot variables are those of the paBnt over determined. In our sample calculation it was found that
decay but other than that, one could solve fdoy fitting the ~ for Ng=10%, that the 90% bound or found from combin-
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ing several modes is roughly 15° which is typical althoughwhereD, andD, represent the light and heavy eigenstates,
the actual precision depends on the values of the strongespectively. If we denote the ratio
phase differences. .

OThis approach can be generalized to the case where the Cl/pzrqpez"zS (A2)
D" undergoes a 3-bodyor indeedn-body) decay. If one . L . . I
considers each point in the Dalitz plot to be a single modeVhere ¢ is a CP violating phase which could, in principle,
one can obtain a lower bound for &jnat each point. In be present irD°-D° mixing andCP is also violated ifr o,
general, one expects that the maximum lower bound is i1 though here we will suppose thag,~1 as would likely
fact equal to sify so this method actually giveg up to a  be the case foCP violation generated by physics beyond
four fold ambiguity. The same method may also be appliedhe SM.
to determineb(k) by obtaining upper and lower bounds on  Let us denote byny andm, the mass of th&, andD_
b(k) at each point. Alternatively, fitting the Dalitz distribu- states respectively. Likewise, we denote by andI'; the
tions to a resonant channel model provides enough informavidths of these states. In terms of these quantities, we will

tion to obtainvy. use the definitions
Although throughout we have assumed th& mixing is Mo+ m Fu+T
negligible, in the Appendix we show how the effects of such m= — 3 L, =" 5 L ,  u=m—il/2,

mixing may be eliminated by using information about the
time between thé8~ and D° decays at the expense of in-

creasing the statistical errors by aba(&. Am=my-m_, Al=Iy-T,

Am AT
XD:_

, =——, zp=Xp+iyp=Ze*,
ACKNOWLEDGMENTS r Yo=5r p=XpT1Yp

(A3)
This research was supported in part by the U.S. DOE

contracts DE-FG02-94ER40817(ISU) and DE-AC-  and denote byD,n,{t)) and |5phy5(t)) the time evolved
76CHO0016(BNL). state which is created at=0 asDpy, and Dpy, ¢ respec-
tively. These are thus related to the flavor eigenstates as

. 0_nO P
APPENDIX: THE IMPLICATIONS OF D"-D* MIXING IDphyS(t)>=g+(t)|D°)+rqpe2'¢|D°>;

In the discussion so far we have explicitly assumed that _ o\ L1 2ig|m0
D°D? was negligible. In particular, since we often take ad- |Dphy5(t)>:g+(t)|D >+rqpe D°)

vantage of interferences involving DCS decays which are (Ad)
O_(l_%) of theinterfering CBA decay, the total probabili?y of \with g. given by
mixing must be less tha®(1%) for theabove formulation
to remain valid. In this section we consider the generaliza- i i I
tion to the case wherBD mixing may be present. g+()=e *cosh 5zp7|;  g-(t)=€ " sinh 5zp7
We will argue that for final states which involve the DCS (A5)
decay of theD® (such a8~ —K [D°—K* 7 7]) the effects
of such mixing will be at mosD(10%) on the rategi.e.  With 7=I"pt.
d(k,X)]. A number of experiments have recently produced results
In particular there are two possible ways to deal withwhich bound these mixing parameters. The E791 experiment
mixing at Fermilab obtain§18] AI'=0.04+0.14 ps* correspond-

(1) Using information on the time between tBe decay ingtoy=0.8=2.9+1.0% from the study of the lifetime ratio

and the subsequem® decay, then the effects of possible of D®—K ™ 7" versusD®—K*K~. CLEO has reportefil9]
mixing can be eliminated. a 95% C.L. bound ofx’|<2.8% and—5.8%<y’'<1.0%

(2) If the parameters oDD mixing are known indepen- Where x'=xcoséc+,-+ysinéc+,- and y’=—y sin &,
dently, then they can be taken into account in interpreting the™XC0Sé&- - obtained through the study of the time depen-
time integrated data. dence of the deca@0—>.K+7r‘. Results from the FOCUS

Indeed, if the mixing parameters and time dependent dat@xPeriment20] at Fermilab, again using the lifetime ratio,
are available, then one can in principle extracfrom just ~ 9ive y=3.42-1.39+0.74% which interestingly is 2.6-
one mode, though most likely the time dependence in thérom 0. _
decay is too weak to make this a useful method. In the standard modeD®-D° mixing receives contribu-

In order to examine the question, let us first define thetiions from both short distance and long distance processes.
standard parametrization of this mixing as described@j. = The short distance mixing via the box diagram may be reli-
We denote the mass eigenstates as ably estimated to bgp<xp=0(10"%). On the other hand,

the long distance effects involve considerable uncertainty
o _ from the hadronic interactions involved. Calculations based
D )=p|D% +q|D%, |Dy)=p|D°—q|D% (A1) on dispersion theory21] suggest thatzy|<10 *. On the
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other hand, it has recently been sugge$®4] that lifetime  depends on the mixing parameters. The simplest way to ex-
differences driven by kaonic resonances in the vicinity of thetract y given time dependent data is therefore to try and

D° mass could lead tgp~10"2. In the standard model, the optain the values of, andd, which do not have these extra
CP violating phasep will in all cases be negligible. dependences, reducing the problem to the same situation as
It is also possible thab®-D° mixing is driven by new if mixing were not present.
physics beyond the standard model. Many examples of such This can be accomplished through weighting the data with
mixing have been considerésee compilation ih23]) and in
this case, additional P violation through the phase angfe Wo(7)=2—17 (A10)
is also possible.
In the case we are interested B, —K [D°—X], the SO that

initial decay is to a mixed state &°-D° where both thé° . e
and D° components have some amplitude to decayXto do=f [d(T)wo(7)]dT; do=f [d(T)wo(7)]dT.

SinceX is small, it is justified to expand the mixing effects 0 0 ALl
on the time dependent decay as follows: (ALD)

d Using this method more data would be required to obtain
—d(k,X)= (do(k,X) +d(k,X)7)e" " the same statistical results as in the unmixed case. In the
dr unmixed case wherd;=0 one could obtaird, more effec-
tively by taking the time integrated rate. Thus in the unmixed
ig(k X)~ (do(k, X) +dp (k,X) 7)e"". case if a measurement df is based om events, the uncer-
dr " ' ’ tainty in dg is given by
(A6)
— (Adg)® 1 -
Sinced, andd, represent the decay rate at 0 time interval, & °n (no mixing). (A12)
they will be identical with the expressions given in EB2). 0

If we assume that there is 1®P violation in theDD system,  |n the mixed case, using EGA11) the uncertainty is
thend, andd, are given by

2 2
(4do) :E< + ﬁ) (with mixing). (A13)

1 — —
5(dy+dy) = +2Vac(X)Z{yac(X)sin(\ + 6)cosy s n\7 do
— From Eg.(A9) this means that roughly twice the data are
+Vbe(X)sin(\ — {)cod y+ )} needed to have the same statistical power as in the unmixed
= . case. In order to gauge the precision of time measurement
+2ybe(X)Z{Vbe(X)sin(\ — 5)cosy required, we can smear out the distribution in El1) with

+Jac(X)sin\ + £)cos y+ é)} a Gaussian resolution function of the form
’ —(7'—7")2/20'2
1 o _ r(r,7’")ce (A14)
E(dl—d1)= —2vac(X)Z{Jac(X)cog\ + §)siny
where 7 is the actual time of the decay, is the measured
time of the decay andr is the resolution(all in units of
1/T'p). Sincer is symmetric undet+ 7', the fact thatw is

+Vbe(X)cog\ = )sin( y+ ¢)}

+2\/WZ{ /bc(Y)cos()\—(S)siny ![it:]e?irrringimelies Eq.(A11) will still be true for 7' but now
+yac(X)cog A+ )sin(y+ ¢)}. (A7)
I (Adg)? 2 X d;\?
In order to estimate the relative effect of the mixing, let us d2 :ﬁ(1+ o)1+ dy (A15)

assume thaZ~0.01 and recall from our rough estimates that
As can be seen, the number of events required is not ad-

b c(X) versely effected ifo<1/MTp but will be significantly de-
—~——~0.01 (A8) .
a ¢(X) graded otherwise.
In the above strategy, it was assumed that the mixing was
and thus from Eq(A7) we can estimate relatively unconstrained except for the assumption thas
- smaller thand, which seems justified. If the rate @D
d1~ d1~ mixing is near the current experimental bounds, however,
d—0~a—o~0.1. (A9) then there is another possible way to obtainlf one mea-

sures{dy, dy, do, d;} and knows all of the mixing param-
Note that in Eq(A7) the time dependent term depends oneters, then there are just four unknown parameters that need
both ¢ and & rather than just the suré and, in addition, it to be fitted for:{y, &, ¢, andb}. We therefore have four
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equations in four unknowns and can solve forTo obtain  the mixing parameters are unconstrained, this adds four more

d; we can use the weight function unknowns, {X,y,rqp,¢}, and in principle at least seven
modes would be required.
wy(7)=7-1. (Al6) On the other hand, using such time dependent information

is probably not the best way to measl® oscillation pa-

rameters. Perhaps the best way to proceed is to condider
ndd, to be corrections to the time integrated data. From Eq.

(A7) one can take the bound onandy together with an

It is also possible to learn aboyt using time integrated
data. This has been previously considered24]. The cor-
rections due to mixing in the approximation we are using ar

d=dy+d, estimate ob and bound these terms. As indicated, this gives
about a 10% correction which, as discusse{i24| leads to
a:aﬁal. (A17) about a 15° error iny. This is similar to the errors typically

obtained in the unmixed case fofz=1C® and so to gain
In the case that th®D mixing parameters are already improvements in the determinationwith larger numbers of
determined, ifn modes are measured, there arer8un-  Ng in this scenario one would both have to improve the
knowns: ¢, y, b and for each modé;, &. Each mode bounds onDD mixing (or indeed discover )t Of course
provides two pieces of informatiord andd, leading to a  since measurements Bﬁmixing can often be made atk
total of 2n measurements. To solve for the unknowns at leastacility, it would be natural for such improvements to occur
3 modes are thus requirésix equations in six unknownslf at the same time.
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