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Strong coupling constant from t decay within a renormalization scheme invariant treatment
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We extract a numerical value for the strong coupling constantas from the t-lepton decay rate into non-
strange particles. A new feature of our procedure is the explicit use of renormalization scheme invariance in
analytical form in order to perform the actual analysis in a particular renormalization scheme. For the reference
coupling constant in theMS scheme we obtainas(M t)50.318460.0060expt which corresponds toas(MZ)
50.118460.0007expt60.0006hq mass. This new numerical value is smaller than the standard value fromt
data quoted in the literature and is closer toas(MZ) values obtained from high energy experiments.
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The physics oft-lepton hadronic decays is an importa
area of particle phenomenology where the theory of str
interactions~QCD! can be confronted with experiment to
very high precision. The central quantity of interest in th
process is the spectral density of hadronic states relate
the two-point correlator of hadronic currents with we
established and simple analytic properties. The accurac
the experimental data for a variety of observables of
t-lepton system is rather good and is steadily improv
@1–3#. The spectral density itself~more precisely, the two-
point correlator of hadronic currents in the Euclidean d
main! has been calculated with a very high degree of ac
racy within perturbation theory ~see e.g. @4–7#!.
Nonperturbative corrections to the correlator are known to
small and under control within the operator product exp
sion and factorization approximation@8,9#. The observables
in thet system are inclusive in nature which makes comp
son of the experimental data with theoretical calculatio
very clean@10–16#. Of some particular interest is the preci
determination of the numerical value of the strong coupl
constant at the low energy scale of thet-lepton mass. Within
the renormalization group approach this number can then
evolved to high energies. This is a powerful consisten
check of QCD since one is comparing hadron physics a
tremendous variety of scales, from one to hundreds of G
~e.g. @17#!.

In the present paper we provide a thorough analysis of
procedure of extracting numerical values ofas from t data
in perturbation theory. On the theory side one expects a h
degree of accuracy in the determination ofas because of the
existence of very accurate perturbation theory formulas
the simplicity of the renormalization group treatment of t
massless quark case. However, the numerical value of
expansion parameteras is not small at theM t scale and the
contribution of higher order terms in the perturbation theo
series can be significant. Arguments have been brought f
that the accuracy of finite-order perturbation theory is
ready close to its asymptotic limit which makes the interp
tation ~usually called the resummation! of the perturbation
theory series in higher orders necessary@18#. The resumma-
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tion of contributions related to the running of the couplin
constant is most advanced; see e.g.@19–25#.

The decisive new point of our analysis is the explicit u
of renormalization group invariance in the analysis of t
t-lepton decay rate within perturbation theory. Renormali
tion group invariance is a fundamental property of pertur
tion theory in quantum field theory which is related to t
freedom in defining the subtraction procedure@26#. It should
be respected in any numerical analysis. Renormaliza
group invariance allows one to formally perform the nume
cal analysis in any renormalization scheme because
schemes are connected by a renormalization group tran
mation. However, in the finite-order perturbation theory a
proach this equivalence is only approximate due to the s
tematic omission of higher order terms in the perturbat
theory expressions. This introduced numerical differen
into the results obtained in different renormalizatio
schemes. Generally one can consider two ways of using
turbation theory calculations. One is to find relations b
tween physical observables which are renormalization gr
invariant. Then perturbation theory calculations are jus
purely intermediate step for finding relations between o
servables~see e.g.@18,27#! and no numerical analysis fo
renormalization scheme noninvariant quantities is p
formed. Indeed, let the perturbation theory expressions
two observablesO1,2 in a given scheme have the form

O15as1r 1as
21O~as

3!,

O25as1r 2as
21O~as

3!. ~1!

Then the perturbation theory relation between observa
O1,2 reads

O25O11~r 22r 1!O 1
21O~O 1

3! ~2!

and is scheme independent. The differencer 22r 1 takes the
same value for calculations in any scheme. Another way
using perturbation theory calculations is to extract numer
values for renormalization scheme noninvariant quanti
©2000 The American Physical Society01-1
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~as the coupling constant in a fixed scheme!. These are then
compared with the results of other experiments. In this c
the truncation of the perturbation theory series leads to
merical violations of renormalization scheme invariance a
plays an essential role. In our simple example this means
the relations in Eqs.~1! are treated as quadratic functions
as in some fixed scheme and the accuracy of the extrac
of the coupling constant value~and prediction of other ob
servables! depends drastically on the scheme used, i.e.,
the numerical values of the coefficientsr 1,2.

In the present paper we consider just this second app
tion and extract a numerical value for the coupling const
which is not an immediate physical quantity. By conventi
the reference value of the coupling constant that is use
compare between different experiments is fixed to be
modified minimal subtraction (MS) scheme one. However—
and this is our point in this paper—this does not necessa
mean that for its extraction from a given experiment the
merical analysis should be performed in theMS scheme. It
can be more convenient~and numerically accurate! to ana-
lyze the system in its internal scheme and after finding
merical values for the internal parameters translate them
the MS scheme using renormalization scheme transfor
tion. This program heavily uses explicit renormalizati
scheme covariance of the theory. However, expressions
the amplitudes are available only in perturbation theory a
truncated series in the coupling constant. For a trunca
series the renormalization scheme invariance is only appr
mate with a precision of the order of the value of the fi
omitted term. Therefore numerical values obtained in theMS
scheme directly and through renormalization group trans
mations can differ. We discuss this problem and argue
the internal scheme results are the most reliable physic
and are more stable numerically than the results of the s
dard analysis in theMS scheme. Then numerical values f
the referenceMS-scheme parameters can be obtained b
renormalization group ‘‘rotation’’ from the numerical value
found in the internal schemes. Renormalization group ‘‘ro
tion’’ ~the recalculation of numerical values from on
scheme to another! is a quite formal operation and can b
easily controlled numerically. One example of such a ‘‘ro
tion’’ ~the renormalization group scaling which is a on
parameter subgroup of the general renormalization group! is
the evolution of the coupling constant to the reference sc
MZ . Below we give a detailed description of our approac

The normalizedt-lepton decay rate into nonstrange ha
ronshS50 is given by

RtS505
G~t→hS50n!

G~t→ l n̄n!
5NcuVudu2SEW~11dP1dEW1dNP!

~3!

whereNc53 is the number of colors. The first term in E
~3! is the parton model result while the second termdP rep-
resents perturbative QCD effects. For the flavor mixing m
trix element we useuVudu250.951160.0014@3#. The factor
SEW51.0194 is an electroweak correction term@28# and
dEW50.001 is an additive electroweak correction@29#. The
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nonperturbative corrections are rather small and consis
with zero; we usedNP520.00360.003~see e.g.@13#!. Note
that recently the problem of duality violation for two-poin
correlators has been discussed@30,31#. However, no estab-
lished quantitative estimates of that violation are availa
yet. Considerations show that they can be rather large
can reach the level of a few percent. This problem can af
the numerical value of the coupling extracted from the ana
sis because of the numerical change of the quantitydP ex-
tracted from Eq.~3!. In the present paper we concentrate
the perturbative part of the decay rate and numerical un
tainties related to the renormalization scheme freedom
perturbation theory. In this respect new possible correcti
do not qualitatively affect our analysis. The corrections d
to duality violation are of a new nature and they can
added independently to Eq.~3!. They would only change the
input numerical value for thedP within our approach.

The value for the decay rateRtS50 has been measured b
the ALEPH @1# and OPAL @2# Collaborations with results
very close to each other. For definiteness we use the ALE
data and briefly comment on the OPAL data later on. W
the experimental result

RtS50
expt 53.49260.016 ~4!

one obtains, from Eq.~3!,

dP
expt50.20360.007. ~5!

The basic object of the theoretical calculation is Adler’sD
function which is computable in perturbation theory in t
Euclidean domain. In theMS scheme the perturbative expa
sion for theD function is given by

D~Q2!511
as~Q!

p
1k1S as~Q!

p D 2

1k2S as~Q!

p D 3

1k3S as~Q!

p D 4

1O„as~Q!5
… ~6!

with ~see e.g.@4#!

k15
299

24
29z~3!,

k25
58057

288
2

779

4
z~3!1

75

2
z~5!. ~7!

Herez(x) is Riemann’sz function. In the following we use
the notation

as~Q!5
as~Q!

p
~8!

for the standardMS-coupling constant normalized at th
scalem5Q. Numerically we find

D~Q2!511as~Q!11.6398as~Q!216.3710as~Q!3

1k3as~Q!41O„as
5~Q!…. ~9!
1-2
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STRONG COUPLING CONSTANT FROMt DECAY WITHIN . . . PHYSICAL REVIEW D 63 036001
The coefficientk3 is still unknown which prevents us from
using the last term in Eq.~9! for our analysis. We neverthe
less list this term throughout the paper to obtain a feeling
the possible magnitude of theO(as

4) correction. The particu-
lar numerical value ofk3;25 is obtained on the basis o
geometric series approximation for the series~9! and is often
used in the literature@16,32,33#. In our analysis we do no
use any particular numerical value fork3 and only give some
illustrative results of the influence of this term on the n
merical value of the coupling constant extracted fromt data.

In the MS scheme the perturbative correctiondP is given
by the perturbation theory expansion

dP
th5as15.2023as

2126.366as
31~78.0031k3!as

41O~as
5!
~10!

where theMS-scheme coupling constantas5pas is taken at
the scale of thet-lepton massm5M t51.777 GeV. Usually
one extracts a numerical value foras(M t) by treating the
first three terms of the expression in Eq.~10! as an exact
function—the cubic polynomial; i.e. one solves the equat

as15.2023as
2126.366as

35dP
expt. ~11!

The solution reads

pas
st~M t![as

st~M t!50.340460.0073expt. ~12!

We call this method the standard method. The quoted err
due to the error in the input value ofdP

expt. We retain some
additional decimal points in the numerical expression for
coupling constant in order to use them for the evolution
the coupling constant to the scaleMZ . It is rather difficult to
estimate the theoretical uncertainty of the procedure its
The main problem is to estimate the quality of the appro
mation for the~asymptotic! series in Eq.~10! given by the
cubic polynomial in Eq.~11!.

As a criterion of the quality of the approximation one c
use the pattern of convergence of the series~10! which is

dP
expt50.20350.10810.06110.0341•••. ~13!

One sees that the corrections provide a 100% change o
leading term. Another criterion is the order-by-order beh
ior of the extracted numerical value for the coupling co
stant. In consecutive orders of perturbation theory@leading
order ~LO!, next-to-leading order~NLO!, next-next-to-
leading order~NNLO!# one has

as
st~M t!LO50.6377, as

st~M t!NLO50.3882,

as
st~M t!NNLO50.3404. ~14!

Formally we obtain a series for the numerical value of
coupling constant of the form

as
st~M t!NNLO50.637720.249520.04782•••. ~15!

Limiting ourselves to the NNLO result we can take a half
the last term as an estimate of the theoretical uncertainty.
only an indicative estimate. No rigorous justification can
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given for such an assumption about the accuracy of the
proximation without knowledge of the structure of the who
series. Nevertheless, we stick to this definition for our p
poses. The theoretical uncertainty obtained in such a wa
Das

st(M t) th50.0239—is much larger than the experimen
uncertainty given in Eq.~12!. This is a challenge for the
theory: the accuracy of theoretical formulas cannot comp
with experimental precision at present. Assuming this th
retical uncertainty we have

as
st~M t!NNLO50.340460.0239th60.0073expt. ~16!

Theory dominates the error even if the estimate for its p
cision 60.0239th is not reliable~heuristic and only indica-
tive!. Thus the straightforward analysis in theMS scheme is
not stable numerically and the naive estimate of the theo
ical uncertainty is large.

The use of theMS scheme is not obligatory for practica
calculations. TheMS scheme has a history of success
massless calculations where its results look natural and
corrections are usually small. This is not the strict rule, ho
ever, and there are cases~such as gluonic correlators@34#!
where corrections dramatically depend on the quantum n
bers of the operators. In fact, theMS scheme is rather artifi
cial. It is simply defined by convention~let us be remindful
of the evolution from the MS scheme to theMS scheme
which had its origin only in technical convenience@35#!.
From technical point of view, in practical calculations
massless diagrams of the propagator type, another schem
the G scheme—is the most natural one@36#. It normalizes
the basic quantity of the whole calculation within th
integration-by-parts technique—one loop massless sc
diagram—to unity @37#. b functions coincide in both
schemes. It could have well happened that theG scheme
would be historically adopted as the reference scheme
cause corrections in this scheme are typically smaller t
that in the MS scheme. However, for the tau system t
direct ~standard! analysis in theG scheme fails.

Therefore different schemes used for the numerical an
sis can produce rather different numerical results for the fi
reference quantity—the coupling constant in theMS scheme.
Note that strictly speaking any scheme is suitable for a gi
perturbative calculation. However, it can lead to unusual~or
even unacceptable! results in a numerical analysis. The on
criterion for the choice of scheme at present is the heuri
requirement of fast explicitly convergence: the terms of
series should decrease. Clearly this is a rather unreliable
terion. It does not provide strict quantitative constraints n
essary for the level of precision usually claimed for t
t-system analysis.

In the following we suggest a new procedure for extra
ing as in theMS scheme from thet system without explicit
use of Eq.~10!. This procedure is applicable to any obser
able in whatever scheme it was originally computed. T
observation is that any perturbation theory observable ge
ates a scale due to dimensional transmutation and this i
internal scale. It is natural for a numerical analysis~and is
our suggestion! to determine this scale first and then to tran
1-3
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form the result into aMS-scheme parameter~or any other
reference scheme! using renormalization group invarianc
We deliberately use the explicit renormalization scheme
variance of the theory to bring the result of the perturbat
theory calculation into a special scheme first; then we p
form a numerical analysis in this particular scheme. O
after that do we transform the obtained numbers into
referenceMS scheme. The last step is done only for co
parison with other experiments~or just for convenience; the
system itself can be well described in its internal sche
without any reference to theMS scheme!. This is our sug-
gestion for the resolution of the problem of the numeri
instability of extracting parameters from truncated pertur
tion theory expressions.

A dimensional scale in QCD emerges as a boundary va
parametrizing the evolution trajectory of the coupling co
stant. The renormalization group equation

m2
d

dm2
a~m2!5b„a~m2!…, a5

a

p
, ~17!

is solved by the integral

lnS m2

L2D 5F„a~m2!…1E
0

a(m2)S 1

b~j!
2

1

b2~j! Ddj ~18!

where the indefinite integralF(a) is normalized as follows:

F~a!5Ea 1

b2~j!
dj5

1

ab0
1

b1

b0
2

lnS ab0
2

b01ab1
D . ~19!

Here b2(a) and b(a) denote the second order and fullb
function, or as many terms as are available, given by

b2~a!52a2~b01ab1!,

b~a!52a2~b01b1a1b2a21b3a3!1O~a6!,
~20!

and a is a generic coupling constant. The four-loo
b-function coefficientb3 is now known in theMS scheme
@38#:

b35
140599

4608
1

445

32
z~3!547.228 . . . . ~21!

The integration constant in Eq.~18! is adjusted such that th
asymptotic expansion of the coupling constant at large m
mentaQ2→` reads

a~Q2!5
1

b0L S 12
b1

b0
2

ln~L !

L
D 1OS 1

L3D ,

L5 lnS Q2

L2D . ~22!
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This serves to define the parameterL ~dimensional scale! for
a generic coupling constant.Ls is the standardMS-scheme
scale for the coupling constantas .

The solution~18! of the renormalization group equatio
~17! describes the evolution trajectory of the coupling co
stant. This trajectory is parametrized by the scale param
L and the coefficients of theb function b i with i .2 ~see
e.g. @39#!. The evolution is invariant under the renormaliz
tion group transformation

a→a~11k1a1k2a21k3a31••• ! ~23!

with the simultaneous change

L2→L2e2k1 /b0, ~24!

b0,1 left invariant and

b2→b22k1
2b01k2b02k1b1

b3→b314k1
3b012k3b01k1

2b1

22k1~3k2b01b2!.

If this transformation was considered to be exact and
exactb function corresponding to the new charge was us
then it would be just a change of variable in a different
equation~17! or the exact reparametrization of the trajecto
~18! and hence would lead to identical results. However,
renormalization group invariance of Eq.~18! is violated in
higher orders of the coupling constant because we con
tently omit higher orders in the perturbation theory expr
sions for theb functions. This is the point where the finite
order perturbation theory approximation for the respectiveb
functions is made. This is the source for different numeri
outputs of analyses in different schemes.

Our procedure for the extraction ofas is heavily based on
the formal renormalization group invariance of the theo
We claim that because of this invariance we can do our
merical analysis in any scheme. The reason for the choic
a particular scheme is only the quality of the convergen
~which, of course, is subject to some personal taste!. We
have chosen the effective scheme because we consider
be more consistent and more stable numerically.

Technically we introduce an effective chargeat through
the relation@27,40–43#

dP
th5at[

at

p
~25!

and extract the parameterLt which is associated withat
through Eq.~18!. This is just the internal scale associat
with the physical observableRt . The effectiveb function is
given by the expression

bt52at
2~bt01bt1at1bt2at

21bt3at
31••• ! ~26!

with bt05b0 , bt15b1, and

bt25212.3204, bt352182.7191
9

2
k3 . ~27!
1-4
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The extraction of the numerical value for the internal sc
Lt is done from Eq.~18! with at(M t)5dP

expt. The coeffi-
cient bt3 does not enter the analysis. The parameterLs

[LMS is found according to Eq.~24!. The MS coupling at
m5M t is obtained by solving Eq.~18! for as(M t) with re-
gard to ln(Mt

2/Ls
2) which is known if Ls is obtained; theb

function is taken in theMS scheme. For consistency reaso
we only use theMS-schemeb function to three-loop orde
since the effectiveb function bt is only known up to the
second order; cf. Eq.~27!. A next-next-next-to-leading orde
~NNNLO! analysis is possible only if a definite value is ch
sen fork3. We give some estimates later.

Our procedure is based on renormalization group inv
ance and one can start from the expression for the decay
obtained in any scheme. The only perturbative obje
present are theb functions. BothbMS and bt , however,
converge reasonably well which is the only perturbat
theory restriction in our method. It also highlights the lim
of precision within our procedure: the expansion forbt is
believed to be asymptotic as any expansion in perturba
theory. The asymptotic expansion provides only limited
curacy for any given numerical value of the expansion
rameter which cannot be further improved by includi
higher order terms. The expansion used is presumably ra
close to its asymptotic limit as can be seen by taking a lo
at the expansion

bt~at!52at
2F9

4
14at212.3204at

2

1at
3S 2182.7191

9

2
k3D G1O~at

6! ~28!

with at;0.2 at the scaleM t . The convergence of the serie
depends crucially on the numerical value ofk3. If k3 had a
value where the asymptotic growth starts at third order, t
further improvement of the accuracy within finite-order pe
turbation theory is impossible.

At every order of the analysis we use the whole inform
tion of the perturbation theory calculation. Especially, t
appropriate coefficient of thebt function is present. In the
standard method the coefficientb2 enters only at order
O(as

4) of the t-lepton decay rate expansion. We call o
procedure the renormalization scheme invariant~RSI! extrac-
tion method hoping that it is clear what is meant by th
name from our explanations. Note also thatas itself is not a
physical object and is renormalization scheme noninvari
In this respect we extract the noninvariant parameteras us-
ing invariance of the physics in order to perform the nume
cal analysis in the most suitable scheme. Then the outpu
the analysis is simply transformed into a numerical value
as according to the renormalization group transformat
rules. For the coupling constant in theMS scheme in NNLO
we find

as
RSI~M t!50.318460.0060expt ~29!

which is smaller than the corresponding value obtain
within the standard procedure, Eq.~12!. How do we estimate
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the quality of this result? The parameter which is really e
tracted in consecutive orders of perturbation theory wit
our method is the scaleLt . Because of the relation@see Eqs.
~10!,~23!,~24!#

Ls5Lte
25.20232/2b050.3147Lt , ~30!

we can look atLs directly. We find

LsuLO5595 MeV, LsuNLO5288 MeV,

LsuNNLO5349 MeV ~31!

or, representing the NNLO result as a formal series,

LsuNNLO559523071612••• MeV. ~32!

Note that at leading order the scales~as well as charges! are
equal in all schemes. Therefore the leading order re
(LsuLO5595 MeV) is not representative, only indicativ
Assuming according to our convention that the uncertai
of Ls is given by the half of the last term of the series~32!
we have

Ls5349631 MeV ~33!

which leads to the numerical value for theMS-scheme cou-
pling constant

as50.318410.0160
20.0157. ~34!

This result is obtained from Eq.~18! with a three-loopb
function. Taking the average we find

as50.318460.0159. ~35!

This is better than the theoretical error of the standard res
Eq. ~16!. Still the theoretical error should be considered a
guess rather than a well-justified estimate of the uncertai

Let us briefly comment on thek3 contribution. Clearly the
estimatek3525 is rather speculative. We therefore use
different strategy in the analysis. We determine the range
k3 which is safe for explicit convergence of perturbatio
theory. If the actual value ofk3 are discovered in this range
then perturbation theory is still valid and will give a bett
accuracy in NNNLO. If not, the asymptotic growth of pe
turbation theory series is already reached and its accu
cannot be improved.

We require that the last term is equal to the half of t
previous one. In the standard way@Eq. ~10!# we have

u~781k3!asu,
1

2
26.36'13 ~36!

which for as50.1 gives

2208,k3
st,52. ~37!

In the RSI way@Eq. ~28!# we have
1-5
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US 21821
9

2
k3DatU,1

2
12.32'6 ~38!

which for at50.2 gives

33.8,k3
t,47.1. ~39!

This range is much narrower than that in Eq.~37!. The ef-
fective scheme method is much more sensitive to the st
ture of the series as can be seen from Eq.~28!. The actual
precision depends on the actual value chosen fork3 and it is
rather premature to speculate about numbers.

Still we show the worst result~in the optimistic scenario
thatk3 lies in the safe range! that can be expected within th
RSI approach. In the RSI approach withk3547 we find the
scale parameter in NNNLO:

LsuNNNLO5334 MeV. ~40!

With k3534 one has

LsuNNNLO5367 MeV. ~41!

Taking the average we have

Ls5350617 MeV ~42!

which is the best possible estimate if we require that
perturbation theory series for thebt function still converge
~according to our quantitative criterion of convergence!. That
results in the numerical value for theMS-scheme coupling
constant found with the four-loopb function from Eq.~18!:

0.3133,as,0.3314. ~43!

Therefore our conservative estimate of the theoretical e
in the optimistic scenario for the convergence of perturbat
theory series in NNNLO reads

as50.32260.009. ~44!

While the estimation of the theoretical uncertainty is a tric
matter and can be considered as indicative the central
merical value of the coupling constant definitely becom
smaller as compared to the standard result.

At present the reference value for the coupling constan
commonly given at the scaleMZ591.187 GeV. The run-
ning to this reference scale is done with the four-loopb
function in the MS scheme@38# and three-loop matching
conditions at the heavy quark~charm and bottom! thresholds
@44#. For the threshold parameters related to heavy qu
masses we usemc5m̄c(mc)5(1.3560.15) GeV andmb

5m̄b(mb)5(4.2160.11) GeV ~e.g. @45#! where m̄q(m) is
the running mass of the heavy quark in theMS scheme. Note
that because of the truncation of matching conditions,
result of the running slightly depends on at what scale
matching is actually performed. If the matching between
nf53 and nf54 effective theories is done directly at th
scaleM t , which is possible, then the result is sightly smal
than in the case when the evolution withinnf53 effective
03600
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is

rk

e
e
e

r

theory is done first to the scalemc . In the following we stick
to the procedure where the matching is performed precis
at the matching scalesmc,b . We first run the coupling con-
stant withinnf53 effective theory from the scaleM t to mc
and then match the result to thenf54 coupling constant, run
it to mb and match to thenf55 coupling constant. The las
step is just evolution toMZ . Note that the alternative would
be to perform matching betweennf53 andnf54 effective
theories directly at the scaleM t ~because it is rather close t
mc) but in this case the final result is slightly smaller than
our present procedure.

The running to the scaleMZ gives the following result for
the standard method estimate:

as
st~MZ!50.121060.0008expt60.0006c60.0001b

~45!

where the subscript ‘‘expt’’ denotes the error originatin
from dP

expt. The errors with subscriptsc,b arise from the
uncertainty of the numerical values of the charm and bott
quark masses that enter the evolution analysis. These e
are rather small~we retain the additional decimal place in th
result, which is not really justified from the precision of th
experimental input, just to show these uncertainties!. If the
matching between thenf53 andnf54 effective theories is
done directly at the scaleM t , one has to change the centr
value 0.1210→0.1202 which shows the uncertainty relate
to the truncation of the matching conditions.

The central value in Eq.~45! is slightly higher than that
calculated from high energy experiments@3#. The theoretical
perturbative expansions for observables in high energy
periments converge better numerically than expansion
low energies because the coupling, which is the paramete
the perturbative expansion, is smaller at higher energies
to the property of asymptotic freedom. This feature make
less important to treat the higher order terms carefully
high energy applications as compared to the low ene
t-lepton estimates. However, the experimental data in h
energy experiments are usually less precise which lead
large errors in theas determination from high energy exper
ments. The fact that the value in Eq.~45! is higher than that
calculated from high energy experiments caused some
cussion about the reliability of estimates from thet-lepton
data. Our analysis resolves this problem. The running
as

RSI(M t) given in Eq. ~35! to MZ with the four-loop b
function and with three-loop heavy quark matching accura
gives

as
RSI~MZ!50.118460.00074expt60.00053c60.00005b

~46!

where we have kept five decimal places in order to exh
the magnitude of different sources of uncertainty. Equat
~46! constitutes our main result for the couplingas(MZ)
derived from tau data.

The OPAL Collaboration has reported an experimen
value of RtS50

expt 53.48460.024 @2#. This leads to dP
expt

50.20060.009expt and
1-6
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as
RSI~M t!50.315860.0078expt ~47!

which, when evolved toMZ , gives

as
RSI~MZ!50.118160.00097expt60.00052c60.00005b .

~48!

This value is close to the one in Eq.~46! based on the
ALEPH data.

The theoretical uncertainty comes mainly from the tru
cation of the perturbation theory series. Taking the resul
the NNLO analysis, Eq.~35!, we find

Das
RSI~MZ! th50.0019. ~49!

In the most optimistic scenario with the NNNLO analys
Eq. ~44!, one has

as
RSI~MZ!N3LO50.11960.001 . ~50!

As we have already noted the interpretation of the hig
order terms in the perturbation theory expansion is num
cally important for the analysis of thet data. The regular
method to resume higher order perturbation theory cor
tions is based on the direct integration of the renormaliza
group improved correlators over the contour in the comp
Q2 plane@14#. This method allows one to resume correctio
generated by the running of the coupling constant along
integration contour and is now widely used for the analy
of the t data. We now briefly comment on the extraction
the strong coupling constant within resummed perturba
theory. As in Ref.@46# we fit the theoretical expression fo
the decay rate in the contour improved approach to the
perimental resultdP

expt Eq. ~5!, and find

as
CI~M t!50.34360.009expt ~51!

within the renormalization scheme invariant extracti
method described above, i.e. with the introduction of
effective charge first. This value differs from the finite-ord
perturbation theory result, Eq.~29!. Note that the two values
extracted from finite-order perturbation theory analysis,
~29!, and the contour improved perturbation theory analy
Eq. ~51!, do not overlap within their respective error ba
given from the experimental uncertainty only. This situati
was anticipated in@14# where the resummed NNLO analys
had been first performed. The point is clear: resumma
.

03600
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n

provides a specific estimate of higher order terms. In fin
order perturbation theory one adopts a model where
higher order terms have been neglected. In contour impro
perturbation theory one adopts an explicit model with high
order terms generated by the running of the coupling c
stant along the integration contour. With present experim
tal accuracy one can already distinguish between these
possibilities. One should always keep in mind that the t
determinations, Eqs.~29! and ~51!, result from different
models and one should not mix their predictions.

The numerical value of the coupling constant appropri
for high energy experiments is normally small~much smaller
than fort data! and perturbation theory converges faster~in
similar kinematical situations!. The resummation does no
produce any big numerical changes. Therefore finite-or
perturbation theory is normally used for the analysis of h
energy experiments~resummation of the contour type can b
done but produces a small numerical effect! and one usually
quotes numerical values of the coupling constant extrac
with finite-order perturbation theory. Or resummation of t
sort different from that used for thet system is used~such as
Coulomb type resummation for heavy quarks@47,48#!.
Therefore we suggest to use the finite-order perturba
theory prediction for the coupling constant extracted fromt
data in order to compare it with the results of high ener
experiments.

To conclude, we have extracted the numerical value of
strong coupling constant fromt-data within a procedure
based on explicit use of renormalization scheme invarian
The numerical value for the coupling constant is system
cally smaller than that derived by the standard treatme
When evolved toMZ our MS-scheme value for the couplin
constant extracted in finite-order perturbation theory read

as~MZ!50.118460.0007expt60.0006hqmass. ~52!

This central value is closer to the value ofas derived from
high energy experiments than previous determinations oas
from t data. The theoretical uncertainty of the result is s
only indicative: it ranges from the conservative estimate
NNLO, Das(MZ) th560.0019, to an optimistic one base
on the assumption about the NNNLO contributio
Das(MZ) th560.001.
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