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We extract a numerical value for the strong coupling constgnfrom the 7-lepton decay rate into non-
strange particles. A new feature of our procedure is the explicit use of renormalization scheme invariance in
analytical form in order to perform the actual analysis in a particular renormalization scheme. For the reference
coupling constant in th&1S scheme we obtairg(M ) =0.3184= 0.006Q,,,; which corresponds taxg(M )
=0.1184£0.000% 1= 0.0006,4 mass This new numerical value is smaller than the standard value from
data quoted in the literature and is closeratgM ;) values obtained from high energy experiments.
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The physics ofr-lepton hadronic decays is an important tion of contributions related to the running of the coupling
area of particle phenomenology where the theory of strongonstant is most advanced; see ¢19—25.
interactions(QCD) can be confronted with experiment to a  The decisive new point of our analysis is the explicit use
very high precision. The central quantity of interest in thisof renormalization group invariance in the analysis of the
process is the spectral density of hadronic states related tolepton decay rate within perturbation theory. Renormaliza-
the two-point correlator of hadronic currents with well- tion group invariance is a fundamental property of perturba-
established and simple analytic properties. The accuracy dfon theory in quantum field theory which is related to the
the experimental data for a variety of observables of thdreedom in defining the subtraction proced({26]. It should
7-lepton system is rather good and is steadily improvingbe respected in any numerical analysis. Renormalization
[1-3]. The spectral density itselinore precisely, the two- group invariance allows one to formally perform the numeri-
point correlator of hadronic currents in the Euclidean do-cal analysis in any renormalization scheme because all
main has been calculated with a very high degree of accuschemes are connected by a renormalization group transfor-
racy within perturbation theory (see e.g. [4-7]).  mation. However, in the finite-order perturbation theory ap-
Nonperturbative corrections to the correlator are known to bgroach this equivalence is only approximate due to the sys-
small and under control within the operator product expantematic omission of higher order terms in the perturbation
sion and factorization approximatids,9]. The observables theory expressions. This introduced numerical differences
in the 7 system are inclusive in nature which makes compariinto the results obtained in different renormalization
son of the experimental data with theoretical calculationsschemes. Generally one can consider two ways of using per-
very clean[10-16. Of some particular interest is the precise turbation theory calculations. One is to find relations be-
determination of the numerical value of the strong couplingtween physical observables which are renormalization group
constant at the low energy scale of théepton mass. Within  invariant. Then perturbation theory calculations are just a
the renormalization group approach this number can then beurely intermediate step for finding relations between ob-
evolved to high energies. This is a powerful consistencyservables(see e.g[18,27) and no numerical analysis for
check of QCD since one is comparing hadron physics at &normalization scheme noninvariant quantities is per-
tremendous variety of scales, from one to hundreds of GeYormed. Indeed, let the perturbation theory expressions for

(e.9.[17)). two observable®); , in a given scheme have the form
In the present paper we provide a thorough analysis of the

procedure of extracting numerical valuesaf from = data O1=as+ rla’§+ 0(“2),

in perturbation theory. On the theory side one expects a high

degree of accuracy in the determinationa@fbecause of the O,=agt r2a§+ O(aﬁ). (1)

existence of very accurate perturbation theory formulas and

the simplicity of the renormalization group treatment of theThen the perturbation theory relation between observables
massless quark case. However, the numerical value of th@; , reads

expansion parameter is not small at theM ; scale and the

contribution of higher order terms in the perturbation theory O,=01+(r,— 1) 02+ 0(03) 2
series can be significant. Arguments have been brought forth

that the accuracy of finite-order perturbation theory is al-and is scheme independent. The differenge r, takes the
ready close to its asymptotic limit which makes the interpre-same value for calculations in any scheme. Another way of
tation (usually called the resummatipof the perturbation using perturbation theory calculations is to extract numerical
theory series in higher orders necesdd§|. The resumma- values for renormalization scheme noninvariant quantities
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(as the coupling constant in a fixed schgnihese are then nonperturbative corrections are rather small and consistent

compared with the results of other experiments. In this caswith zero; we useSyp= —0.003+ 0.003(see e.g[13]). Note

the truncation of the perturbation theory series leads to nuthat recently the problem of duality violation for two-point

merical violations of renormalization scheme invariance andtorrelators has been discusg&,31. However, no estab-

plays an essential role. In our simple example this means thdished quantitative estimates of that violation are available

the relations in Eqs(1) are treated as quadratic functions of yet. Considerations show that they can be rather large and

a in some fixed scheme and the accuracy of the extractionan reach the level of a few percent. This problem can affect

of the coupling constant valu@nd prediction of other ob- the numerical value of the coupling extracted from the analy-

servables depends drastically on the scheme used, i.e., osis because of the numerical change of the quamiityex-

the numerical values of the coefficients,. tracted from Eq(3). In the present paper we concentrate on
In the present paper we consider just this second applicahe perturbative part of the decay rate and numerical uncer-

tion and extract a numerical value for the coupling constantainties related to the renormalization scheme freedom of

which is not an immediate physical quantity. By conventionperturbation theory. In this respect new possible corrections

the reference value of the coupling constant that is used tdo not qualitatively affect our analysis. The corrections due

compare between different experiments is fixed to be théo duality violation are of a new nature and they can be

modified minimal subtractionMS) scheme one. However— added independently to E(B). They would only change the

and this is our point in this paper—this does not necessariljnput numerical value for thép within our approach.

mean that for its extraction from a given experiment the nu- The value for the decay raf,s_, has been measured by

merical analysis should be performed in & scheme. It the ALEPH[1] and OPAL[2] Collaborations with results

can be more Conveniemand numerica”y accura)eo ana- very close to each other. For definiteness we use the ALEPH

lyze the system in its internal scheme and after finding nudata and briefly comment on the OPAL data later on. With

merical values for the internal parameters translate them int1€ experimental result

the MS scheme using renormalization scheme transforma- expt

tion. This program heavily uses explicit renormalization Rs20=3.492£0.016 ()

scheme povariance of .the theory.. However, gxpressions fone obtains, from EqQ3),

the amplitudes are available only in perturbation theory as a

truncated series in the coupling constant. For a truncated 5*P=0.203+0.007. (5)

series the renormalization scheme invariance is only approxi-

mate with a precision of the order of the value of the firstThe basic object of the theoretical calculation is Adl€D's

omitted term. Therefore numerical values obtained inMig&  function which is computable in perturbation theory in the

scheme directly and through renormalization group transforEuclidean domain. In th1S scheme the perturbative expan-

mations can differ. We discuss this problem and argue thadion for theD function is given by

the internal scheme results are the most reliable physically

and are more stable numerically than the results of the stan- as(Q) ag(Q)\?

dard analysis in thté1S scheme. Then numerical values for T * T *

the referenceViS-scheme parameters can be obtained by a

renormalization group “rotation” from the numerical values +k3( as(Q)

found in the internal schemes. Renormalization group “rota- T

tion” (the recalculation of numerical values from one

scheme to anothgis a quite formal operation and can be With (see e.g[4])

easily controlled numerically. One example of such a “rota- 299

tion” (the renormalization group scaling which is a one- ky=———9¢(3),

parameter subgroup of the general renormalization grsup 24

the evolution of the coupling constant to the reference scale

M. Below we give a detailed description of our approach. _ 58057 779 75§(5) @

D(Q%) =1+ Ky Ky

(as(Q))3
o
4

+0(as(Q)°) (6)

The normalizedr-lepton decay rate into nonstrange had- 27 288 4 2
ronshg_gq is given by . i .
Here {(x) is Riemann’s{ function. In the following we use
T(r—hg_qv) , the notation
———=— = N[V *Sewl 1+ Sp+ Sew+ dnp)
I'(r—lvy) as(Q)
3 a(Q)=——" ®

Ris-0=

whereN.=3 is the number of colors. The first term in Eq. {or the standardViS-coupling constant normalized at the
(3) is the parton model result while the second tefgrep-  gcale= Q. Numerically we find

resents perturbative QCD effects. For the flavor mixing ma-

trix element we uséV,4/?>=0.95110.0014[3]. The factor D(Q%)=1+ay(Q)+1.639&(Q)2+6.371&(Q)3
Sew=1.0194 is an electroweak correction tef@8] and 4 5
Sew=0.001 is an additive electroweak correcti®9]. The +k3as5(Q)"+0(as(Q)). 9
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The coefficientks is still unknown which prevents us from given for such an assumption about the accuracy of the ap-
using the last term in Eq9) for our analysis. We neverthe- proximation without knowledge of the structure of the whole
less list this term throughout the paper to obtain a feeling foseries. Nevertheless, we stick to this definition for our pur-
the possible magnitude of tt@(«2) correction. The particu- poses. The theoretical uncertainty obtained in such a way—
lar numerical value ok;~25 is obtained on the basis of Aait(MT)th=0.0239—is much larger than the experimental
geometric series approximation for the sefi@sand is often  uncertainty given in Eq(12). This is a challenge for the
used in the literatur¢16,32,33. In our analysis we do not theory: the accuracy of theoretical formulas cannot compete
use any particular numerical value floy and only give some  with experimental precision at present. Assuming this theo-
illustrative results of the influence of this term on the nu-retical uncertainty we have
merical value of the coupling constant extracted frociata.

In the MS scheme the perturbative correctiép is given aS(M ;) nnLo=0.3404+ 0.0239, + 0.0073,,t-  (16)
by the perturbation theory expansion
Theory dominates the error even if the estimate for its pre-
cision =0.0239, is not reliable(heuristic and only indica-
tive). Thus the straightforward analysis in tMS scheme is
where theviS-scheme coupling constamt= 7a, is taken at not stable numerically and the naive estimate of the theoret-

the scale of the-lepton masg.=M ,=1.777 GeV. Usually ic&l uncertainty is large. _ _ .
one extracts a numerical value fer(M,) by treating the The use of theViS scheme is not obligatory for practical
first three terms of the expression in H40) as an exact calculations. TheMS scheme has a history of success for

function—the cubic polynomial; i.e. one solves the equationmassless calculations where its results look natural and the
corrections are usually small. This is not the strict rule, how-

oW=a,+5.202%2+ 26.36@3+ (78.003+ ky)al+ O(ad)

as+5.202%%+26.36@3= 52", (1)  ever, and there are casésich as gluonic correlatof84])
) where corrections dramatically depend on the quantum num-
The solution reads bers of the operators. In fact, thdS scheme is rather artifi-

cial. It is simply defined by conventiotiet us be remindful
of the evolution from the MS scheme to tiMdS scheme

We call this method the standard method. The quoted error ihich had its origin only in technical convenienggs]).

due to the error in the input value 6£**'. We retain some From technical point of view, in practical calculations of
additional decimal points in the numerical expression for thenassless diagrams of the propagator type, another scheme—
coupling constant in order to use them for the evolution ofthe G scheme—is the most natural of@6]. It normalizes

the coupling constant to the scal, . It is rather difficult to ~ the basic quantity of the whole calculation within the
estimate the theoretical uncertainty of the procedure itselfintegration-by-parts technique—one loop massless scalar
The main problem is to estimate the quality of the approxi-diagram—to unity [37]. g functions coincide in both
mation for the(asymptoti¢ series in Eq(10) given by the ~schemes. It could have well happened that Giescheme

mai(M)=agi(M,) =0.3404-0.0073,pr.  (12)

cubic polynomial in Eq(11). would be historically adopted as the reference scheme be-
As a criterion of the quality of the approximation one cancause corrections in this scheme are typically smaller than
use the pattern of convergence of the sefl® which is that in the MS scheme. However, for the tau system the
direct (standard analysis in theG scheme falils.
65*P'=0.203=0.108+ 0.061+ 0.034+ - - -. (13 Therefore different schemes used for the numerical analy-

sis can produce rather different numerical results for the final
One_sees that the correqtiops p_rovide a 100% change of thference quantity—the coupling constant in M8 scheme.
leading term. Another criterion is the order-by-order behavote that strictly speaking any scheme is suitable for a given
ior of the extracted numerical value for the coupling con-peryrhative calculation. However, it can lead to unugoal
stant. In consecutive orders of perturbation thedepding  eyen unacceptableesults in a numerical analysis. The only
order (LO), next-to-leading order(NLO), next-next-to-  criterion for the choice of scheme at present is the heuristic
leading orde(NNLO)] one has requirement of fast explicitly convergence: the terms of the
st _ st _ series should decrease. Clearly this is a rather unreliable cri-
@5 (M:)10=0.6377, as(M;)n0=0.3882, terion. It does not provide stric}[/quantitative constraints nec-
essary for the level of precision usually claimed for the
7-system analysis.
Formally we obtain a series for the numerical value of the, In the following we suggest a new proce<_jure for e>§tr_act-
coupling constant of the form ing « in the MS sgheme from the system without explicit
use of Eq.(10). This procedure is applicable to any observ-
ait(MT)NNLoz0-6377—0-2495—0-0478—'"- (15) able in whatever scheme it was originally computed. The
observation is that any perturbation theory observable gener-
Limiting ourselves to the NNLO result we can take a half of ates a scale due to dimensional transmutation and this is its
the last term as an estimate of the theoretical uncertainty. It imiternal scale. It is natural for a numerical analy&sd is
only an indicative estimate. No rigorous justification can beour suggestionto determine this scale first and then to trans-

a(M,)nnLo=0.3404. (14
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form the result into aviS-scheme parametéor any other ~ This serves to define the parametetdimensional scalefor

reference schemeusing renormalization group invariance. @ generic coupling constank is the standardS-scheme

We deliberately use the explicit renormalization scheme inscale for the coupling constaat.

variance of the theory to bring the result of the perturbation The solution(18) of the renormalization group equation

theory calculation into a special scheme first; then we per{17) describes the evolution trajectory of the coupling con-

form a numerical analysis in this particular scheme. Onlystant. This trajectory is parametrized by the scale parameter

after that do we transform the obtained numbers into thel and the coefficients of th@ function g; with i>2 (see

referenceMS scheme. The last step is done only for com-€.9.[39)). The evolution is invariant under the renormaliza-

parison with other experimentsr just for convenience; the tion group transformation

system itself can be well described in its internal scheme

without any reference to th®IS schemg This is our sug-

gestion for the resolution of the problem of the numericalyith the simultaneous change

instability of extracting parameters from truncated perturba-

tion theory expressions. A?— A2e *1/Po, (24)
A dimensional scale in QCD emerges as a boundary value ) _

parametrizing the evolution trajectory of the coupling con-Bo. left invariant and

stant. The renormalization group equation By By Kf,80+ koBo— k1B

a—a(l+k,a+ ka’+kgas+---) (23

,U«Z%a(,uz):,g(a(ﬂZ)), azg, (17 '83_’ﬂ3+4'<§ﬂo+2'<3ﬁo+f<fﬁl
) —2k1(3K2B0+ B2).

If this transformation was considered to be exact and the
exactB function corresponding to the new charge was used,
d¢ (189) then i.t would be just a change of v.aria.ble in a diffgrential
equation(17) or the exact reparametrization of the trajectory
(18) and hence would lead to identical results. However, the
where the indefinite integrab(a) is normalized as follows: ~renormalization group invariance of E(L8) is violated in
higher orders of the coupling constant because we consis-

is solved by the integral

n? 2 a(;ﬁ)( 1
'“(p)—(b(aw [\ ae mw

a 1 1 B ap’ tently omit higher orders in the perturbation theory expres-
<I>(a)=f ngz a—+ —In 5 Tag. )" (199  sions for thep functions. This is the point where the finite-
Ba(§ Bo Bo Botapy order perturbation theory approximation for the respective

functions is made. This is the source for different numerical
Here B,(a) and B(a) denote the second order and flll  gutputs of analyses in different schemes.

function, or as many terms as are available, given by Our procedure for the extraction ef, is heavily based on
) the formal renormalization group invariance of the theory.
Bo(a)=—a%(Botapy), We claim that because of this invariance we can do our nu-
merical analysis in any scheme. The reason for the choice of
B(a)=—a%(Bo+ Bra+ Bra’+ Bza’) +0(a’), a particular scheme is only the quality of the convergence

(200 (which, of course, is subject to some personal astée

] ) ) have chosen the effective scheme because we consider it to
and a is a generic coupling constant. The four-loop he more consistent and more stable numerically.

B-function coefficientB; is now known in theMS scheme Technically we introduce an effective charge through
[38]: the relation[27,40-43
_ 149599 445 3)-a728 21 sh—a="2r (25

The integration constant in E(L8) is adjusted such that the and extract the parametekr, which is associated witha,
asymptotic expansion of the coupling constant at large mothrough Eq.(18). This is just the internal scale associated

mentaQ?— o reads with the physical obsgrvablér. The effectiveB function is
given by the expression
a(Q2 :iL(l_ﬁ_;ln(L))_FO(i)’ BT:_aE(BTO+ﬁTlaT+B72a3+BT3a§'+‘.') (26)
0 Bo L L .
with ﬁTOZBOY Brlzﬁli and
Q? 9
L=In ek (22 Bra=—12.3204, Ba=-18271% Sky.  (27)
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The extraction of the numerical value for the internal scalehe quality of this result? The parameter which is really ex-
A, is done from Eq(18) with a,(M,)=65*P". The coeffi- tracted in consecutive orders of perturbation theory within
cient 8,3 does not enter the analysis. The parametgr our method is the scal& .. Because of the relatidrsee Egs.

= Aws is found according to Eq24). The MS coupling at ~ (10),(23),(24)]

u=M, is obtained by solving Eq.18) for ag(M,) with re- 520230

gard to InM%A2) which is known if A is obtained; thes Ag=A e 520%2%0=0.3147\ ., (30
function is taken in théS scheme._For consistency reasons . ... look ath directly. We find
we only use theMiS-schemeB function to three-loop order

since the effectived function 8., is only known up to the AdLo=595 MeV, Adn.o=288 MeV,
second order; cf. Eq27). A next-next-next-to-leading order
(NNNLO) analysis is possible only if a definite value is cho- Adunio=349 MeV (31)

sen fork;. We give some estimates later.
Our procedure is based on renormal|_zat|on group invariy, renresenting the NNLO result as a formal series,
ance and one can start from the expression for the decay rate
obtained in any scheme. The only perturbative objects AdnnLo=595-307+61—--- MeV (32)
s .

present are thg8 functions. BothBys and 8., however,

converge reasonably well which is the only perturbationygie that at leading order the scales well as chargesre
theory .re.strictipn. in our method. It also highlights thellimit equal in all schemes. Therefore the leading order result
of precision within our procedure: the expansion ris (AdLo=595 MeV) is not representative, only indicative.
believed to be asymptotic as any expansion in perturbatioi\ssyming according to our convention that the uncertainty

theory. The asymptotic expansion provides only limited ac- A, is given by the half of the last term of the seri@®)
curacy for any given numerical value of the expansion paye have

rameter which cannot be further improved by including
higher order terms. The expansion used is presumably rather As=349+31 MeV (33)
close to its asymptotic limit as can be seen by taking a look

at the expansion which leads to the numerical value for tMS-scheme cou-

9 pling constant
B.(a,)=—a? 74— 12.32042 .
9
+ad —182.719+ §k3 +0(a%) (28)  This result is obtained from Eq18) with a three-loopgs

function. Taking the average we find

with a.~0.2 at the scal® .. The convergence of the series
depends crucially on the numerical valuelaf If k; had a

value where the asymptotic growth starts at third order, therJI_h_ is b han the th ical f th dard |
further improvement of the accuracy within finite-order per- Is Is better than the theoretical error of the standard resui,

turbation theory is impossible Eq. (16). Still the theoretical error should be considered as a
At every order of the analyéis we use the whole informa-9uess rather than a well-justified estimate of the uncertainty.
tion of the perturbation theory calculation. Especially, the L€tus brlefly comment on thie; contribution. Clearly the
appropriate coefficient of th@, function is present. In the e_st|matek3—25 IS rather spequlatwe. Wwe therefore use a
standard method the coefficient, enters only at order dlffere_nt st_rategy in the an_al_y5|s. We determine the range of
O(ai) of the r-lepton decay rate expansion. We call 0urk3 which is safe for explicit convergence of pe.rturbatlon
procedure the renormalization scheme invar{&®l) extrac- theory. If the aptual value. dts are d!scovereq n .th|s range,
tion method hoping that it is clear what is meant by thiSthen pertu_rbatlon theory is still valid and _W|II give a better
name from our explanations. Note also thatitself is not a accuracy in NNNLO. If not, the asymptotic growth of per-

physical object and is renormalization scheme noninvariantggr?r?gtoEet?ﬁ]o%\/seed”es is already reached and its accuracy
In this respect we extract the noninvariant parameteus- P :

ing invariance of the physics in order to perform the numeri- We require that the last term is equal to the half of the
cal analysis in the most suitable scheme. Then the output gjrevious one. In the standard wHo. (10)] we have

the analysis is simply transformed into a numerical value for 1

a according to the renormalization group transformation |(78+k3)ad <=26.36~13 (36)
rules. For the coupling constant in tMS scheme in NNLO 2

we find

as=0.3184+0.0159. (35)

which forag=0.1 gives

RSI
aRS(M ) =0.3184+ 0.006Q 29
° xw — 208<k'<52. (37)

which is smaller than the corresponding value obtained
within the standard procedure, E42). How do we estimate In the RSI way{Eq. (28)] we have
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9 1 theory is done first to the scale. . In the following we stick
‘( —182+ S ks |a,<512.32=6 (38  to the procedure where the matching is performed precisely
at the matching scalgs. ,. We first run the coupling con-
which fora,=0.2 gives stant withinn;= 3 effective theory from the scald , to u.
and then match the result to the=4 coupling constant, run
33.8<k3<<47.1. (39 it to u, and match to the;=5 coupling constant. The last

step is just evolution td1, . Note that the alternative would
This range is much narrower than that in E87). The ef-  pe to perform matching between=3 andn;=4 effective
fective scheme method is much more sensitive to the strugheories directly at the scaM , (because it is rather close to
ture of the series as can be seen from &§). The actual ;) but in this case the final result is slightly smaller than in
precision depends on the actual value choserkfand itis  our present procedure.
rather premature to speculate about numbers. The running to the scal¥, gives the following result for

Still we show the worst resulin the optimistic scenario the standard method estimate:

thatks lies in the safe rangehat can be expected within the

RSI approach. In the RSI approach witk=47 we find the (M) =0.1210+ 0.0008, .+ 0.0006+ 0.0001,
. : . xpit 0. +0.

scale parameter in NNNLO: (45)
Adlnnio=334 Mev. 40 where the subscript “expt” denotes the error originating
With ky=34 one has from 65*P'. The errors with subscripts,b arise from the
uncertainty of the numerical values of the charm and bottom
AglnnnLo=367 MeV. (41)  quark masses that enter the evolution analysis. These errors
are rather smallwe retain the additional decimal place in the
Taking the average we have result, which is not really justified from the precision of the

experimental input, just to show these uncertaintiéfsthe
matching between the;=3 andn;=4 effective theories is

which is the best possible estimate if we require that thedone directly at the scalil ;, one has to change the central

perturbation theory series for th&. function still converge }[/(?Itl;]i ?rjr?clagt?(?r;1()21‘0t2hgvr?1lg?cr?irr]10m</:sc>rt12(iatigr?scertalmy related
(according to our quantitative criterion of convergenddat 9 :

results in the numerical value for thdS-scheme coupling The central value in Eq49) is slightly higher than that
constant found with the four-loog function from Eq.(18): calculated from high energy experimep8. The theoretical

perturbative expansions for observables in high energy ex-
0.3133< @< 0.3314. (43) perlments_ converge better nur_nerlcally than expansions at
low energies because the coupling, which is the parameter of

Therefore our conservative estimate of the theoretical errofn€ perturbative expansion, is smaller at higher energies due
in the optimistic scenario for the convergence of perturbatiorf® the property of asymptotic freedom. This feature makes it

Ag=350+17 MeV (42)

theory series in NNNLO reads less important to treat the higher order terms carefully in
high energy applications as compared to the low energy
as=0.322+0.0009. (44)  t-lepton estimates. However, the experimental data in high

energy experiments are usually less precise which leads to
While the estimation of the theoretical uncertainty is a trickylarge errors in thers determination from high energy experi-
matter and can be considered as indicative the central nunents. The fact that the value in Eg5) is higher than that
merical value of the coupling constant definitely becomesalculated from high energy experiments caused some dis-
smaller as compared to the standard result. cussion about the reliability of estimates from thdepton

At present the reference value for the coupling constant islata. Our analysis resolves this problem. The running of

commonly given at the scalbl,=91.187 GeV. The run- «fS(M,) given in Eq.(35) to M, with the four-loop B
ning to this reference scale is done with the four-lg8p function and with three-loop heavy quark matching accuracy
function in the MS scheme[38] and three-loop matching gives
conditions at the heavy quatkharm and bottopthresholds
[44]. For the threshﬂd parameters related to heavy quark aSRSI(MZ)=O.1184t 0.00074,,+ 0.00053+ 0.00005
masses we usei.=my(uc)=(1.35-0.15) GeV andu, (46)
=mp(up)=(4.21+0.11) GeV(e.g.[45]) where my(u) is
the running mass of the heavy quark in 18 scheme. Note where we have kept five decimal places in order to exhibit
that because of the truncation of matching conditions, théhe magnitude of different sources of uncertainty. Equation
result of the running slightly depends on at what scale thé¢46) constitutes our main result for the coupling(M )
matching is actually performed. If the matching between thederived from tau data.
n;=3 andn;=4 effective theories is done directly at the = The OPAL Collaboration has reported an experimental
scaleM ., which is possible, then the result is sightly smallervalue of R¢:P\)=3.484+0.024 [2]. This leads to 65*P"
than in the case when the evolution within=3 effective =~ =0.200+0.009,,; and
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asRS|(MT)=0.3l58t 0.0078,pt 47) provides a specific estimate of higher order terms. In finite-

order perturbation theory one adopts a model where all
which, when evolved td,, gives higher order terms have been neglected. In contour improved
perturbation theory one adopts an explicit model with higher

aS%(Mz)=0.11810.00097%,,+ 0.00052+ 0.00005 . order terms generated by the running of the coupling con-

(48) stant along the integration contour. With present experimen-
) ) i tal accuracy one can already distinguish between these two
This value is close to the one in E¢46) based on the possibilities. One should always keep in mind that the two
ALEPH data. determinations, Eqgs(29) and (51), result from different
The theoretical uncertainty comes mainly from the trun-models and one should not mix their predictions.
cation of the perturbation theory series. Taking the result of The numerical value of the coupling constant appropriate

the NNLO analysis, Eq(35), we find for high energy experiments is normally sm@huch smaller
RS than for 7 datg and perturbation theory converges fadiar
Aag~(Mz)y=0.0019. (49 similar kinematical situations The resummation does not

produce any big numerical changes. Therefore finite-order
perturbation theory is normally used for the analysis of high
energy experimentgesummation of the contour type can be
done but produces a small numerical effeantd one usually
guotes numerical values of the coupling constant extracted
As we have already noted the interpretation of the higheWith filnite-order perturbation theory. Or re;ummation of the
order terms in the perturbation theory expansion is numerisort different from that used for thesystem is usedsuch as
cally important for the analysis of the data. The regular Coulomb type resummation for heavy quarks7,4g). _
method to resume higher order perturbation theory correcIherefore we suggest to use the finite-order perturbation
tions is based on the direct integration of the renormalizatiotheory prediction for the coupling constant extracted from
group improved correlators over the contour in the complexdata in order to compare it with the results of high energy
Q2 plane[14]. This method allows one to resume corrections€XPeriments. _

generated by the running of the coupling constant along the To conclude, we have extracted the n.unjerlcal value of the
integration contour and is now widely used for the analysisStrong coupling constant from-data within a procedure

of the = data. We now briefly comment on the extraction of Pased on gxphcﬂ use of renormallgatlon scheme invariance.
the strong coupling constant within resummed perturbatiorf N numerical value for the coupling constant is systemati-
theory. As in Ref[46] we fit the theoretical expression for cally smaller than that derived by the standard treatment.

the decay rate in the contour improved approach to the exWhen evolved tdVl; our MS-scheme value for the coupling
perimental resuls®*' Eq. (5), and find constant extracted in finite-order perturbation theory reads

In the most optimistic scenario with the NNNLO analysis,
Eq. (44), one has

aS3 (M 2)\30=0.119+0.001 . (50)

oS'(M )= 0.343+ 0009 51) ag(M7)=0.1184+ 0.000%, i+ 0.0006,qmass  (52)

This central value is closer to the value @f derived from

within the renormalization scheme invariant extraction,.. . . L
: . ) . ) high ener xperiments than previ rminati f
method described above, i.e. with the introduction of the, gh energy experiments than previous dete ations0

effective charge first. This value differs from the finite-order]crom T d_ata: Thg theoretical uncertainty of th_e resu!t Is Sti."
perturbation theory résult E€29). Note that the two values only indicative: it ranges from the conservative estimate in
extracted from finite-orde'r pertu.rbation theory analysis, E NNLO, Aas(Mz)ip=-0.0019, o an optimistic one based

. neory SIS, Bl the assumption about the NNNLO contribution,
(29), and the contour improved perturbation theory analyssAa (M) =+0.001
Eq. (51), do not overlap within their respective error bars =~ s\ Z/th™ —F--H=
given from the experimental uncertainty only. This situation  The present work is supported in part by the Volkswagen
was anticipated if14] where the resummed NNLO analysis Foundation under contract No. 1/73611 and by the Russian
had been first performed. The point is clear: resummatiorfrund for Basic Research under contract 99-01-00091.
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