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We present a high-statistic numerical study of the free energy of a monopole-antimonopole pair in pure
SU(2) theory. We find that the monopole-antimonopole interaction potential exhibits a screened behavior, as
one would expect in the presence of a monopole condensate. Screening occurs both in the low-temperature,
confining phase of the theory, and in the high-temperature deconfined phase, with no evidence of a disconti-
nuity of the screening mass across the transition. The mass of the object responsible for the screening at low
temperature is approximately twice the established value for the lightest glueball, indicating a prevalent cou-
pling to glueball excitations. At high temperature, the screening mass increases. We contrast the behavior of
the quantum system with that of the corresponding classical system, where the monopole-antimonopole po-
tential is of the Coulomb type.
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[. INTRODUCTION monopole-antimonopole system in the high-temperature, de-
confined phase of SW). The interaction still exhibits
It is well known that some Higgs theories with a non- screening, which can be ascribed to a magnetic mass. We
Abelian gauge group admit stable monopole solutidng].  Wwill investigate the temperature dependence of this mass.
In certain cases, most notably in grand unified theories, the
residual unbroken gauge group is non-Abelian. It is then par-
ticularly interesting to study the interaction between two !l MONOPOLE-ANTIMONOPOLE CONFIGURATION
monopoles, or between monopole and antimonopole, in- AND CALCULATION OF THE FREE ENERGY
duced by the quantum fluctuations of the unbroken gauge

group. Beyond the relevance that these interactions may ha\é)(?1 the lattice was devised by Ukawa, Windey, and Gagj

for the original theory, they can help clarify the low energy and Srednicki and Susskirid4], who built on éarlier semi-
properties of the residual theory itself: from the point of view al results by 't Hoof{15] Ma(;k and Petkova16,17], and

of the low energy theory, monopoles are point-like external, ¢ [18]. In this paper v,ve will follow the methbd bf Ref.
sources of non-Abelian gauge field, so they act as nontrivi 14]. In three dimensions, an external monopole-
probes_ of the strong coupling dynamics. Indeed, alread ntimonopole pair can be in'troduced by “twisting” the
some time ago t Hoof{3] an_d Mandelstanj4] proposed laquettes transversed by a string joining the monopole and
that condensation of magnetic monopoles could be resporﬁ)he antimonopolésee Fig. 1, i.e., by changing the coupling

sible for the confinement mechani¢si. If the vacuum state constant of these plaquettes accordinggtdo z,3, where

of a non-Abelian gauge theory is characterized by the presz'n=exp(27r|n/N) is an element of the center of the group.

ence of a monopole condensate, this will screen theI'he location of the string is unphysical. It can be changed by

monopole-antimonopole interaction, which should therefor S :
exhibit a Yukawa-like behavior. If there is no condensat:redefmmg link variables on the plaquettes transversed by the

whatever, one should expect instead a Coulombic interactioﬁtrmg byU—z, U, as illustrated in Fig. 2. The fact tha
between the monopoles, as is the case in classica?)SU IS an element of the center 8W) guarantees that the above

theory. Finally, in a theory characterized by a condensatioﬁedeﬁnition is a legitimate change of variables. On the other

of electric charges, the monopole-antimonopole interactiof2nd: the position of the cubes that terminate the string can-
not be changed. Those cubes contain two external monopoles

energy should increase linearly with separation. While a sub- 1 . .

stantial amount of work has already been done to understan(g chargez, andz, ~, r.espec.tlveb(or, equivalently, a mono-
the role of monopole condensation for the confinemenPl€ Of charge, and its antimonopole In the SU2) theory
mechanisn{6—12], to the best of our knowledge a precise W€ consider in this paper, the only nontrivial element of t_he
determination of the monopole-antimonopole interaction poSenter of the group ig=—1 and thus monopole and anti-
tential in a quantum non-Abelian theory is still lacking. In Monopole coincide.

this paper we plan to fill this void, presenting a numerical

calculation of the monopole-antimonopole potential in the

SU(2) theory. Our results show that the monopole- !The use of a string of plaquettes with modified couplings to study
antimonopole interaction potential is screened, buttressinghe disorder was also advocated by Groeneveld, Jurkiewicz, and
the conjecture of a monopole condensate. We also study th¢orthals Altes[19].

The procedure for introducing SN) monopole sources
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FIG. 1. Monopole-antimonopole pair induced by twisting the § . V I/
plaquettes transversed by the string. "

FIG. 2. Change of the string location brought about by the re-

In four dimensions, a static monopole-antimonopole pairdefinition of the gauge variable on the link denoted by a bolder line.
is induced by replicating the string on all time slices. The
insertion of a monopole-antimonopole pair can be reinterwhereC denotes the set of all configurations. Fr= 8 our
preted in terms of the electric flux operator and several in-generalized system obviously reduces to a homogeneous
vestigations have been devoted to the study of such an ofBU(2) lattice gauge system with coupling constagt
erator (see, for instance, Ref$20,21)). However, as we whereas for3’=— 3 it becomes an S(@) model with a
already stated, accurate numerical information on the freetatic monopole-antimonopole pair. In this latter case, as dis-
energy of a monopole-antimonopole has never been olrussed above, the partition function becomes independent of
tained. the actual location of the string, and depends only on the

The numerical calculation of a free energy by stochastigjistanced between monopole and antimonop¢teyond de-
simulation can be a quite challenging problem, since the fregending, of course, o and the extent of the lattiteThe
energy is related to the partition function and the partitionchange of free energy induced by the presence of the pair is
function, which is the normalizing factor for the simulation, thys
cannot be directly measured. In our case, we need the ratio of

the partition functions of a system containing the monopole- Z(B,—PB)
antimonopole pair to the partition function of the free sys- F=-T |09W (©)

tem. In order to calculate this quantity we define a general-

ized system where the coupling constgrtas been replaced \ypereT= N.a is the temperature of the systera (enotes,

by 8’ on all the plaquettes transversed by the string. For thgg usual, the lattice spacinghis is the quantity we want to
sake of precision, if we place the monopole at the spatial;iculate. Forg’ not equal tog or — 3, Z(8,5') does de-
location of integer value coordinateg+ %'}/O“L%JOJF% and  pend on the location of the string. Nevertheless @ycon-

the antimonopole ako+3,Yo+ 32,29+ d+ 3, the plaquettes  tinyes to define the partition function of a statistical system,
with coupling 8" will be all the x-y plaquettes with lower  \hjch we will use for our calculation df. The basic idea is
corner inxo,Yo,zt, wherezo+1<z<z,+d and O<t<N;  that we will perform Monte Carlo simulations of the modi-
—1. Ny,Ny,N;,N; denote the extents of the lattice in the fieg system for a set of values @' ranging from g to
four dimensions. The} offsets in the coordinates of the — B which is sufficiently dense that for all stepsf we can
monopole and antimonopole are due to the_fact that we CONeliably estimate the change induced in BgConceptually
sider them located at the center of two spatial cubes, namelfjs corresponds to the observation that for an infinitesimal

those with lowest corners iR,Yo,Zo andXo,Y0.20+d, re-  change ing’ the change in free energy will be
spectively. For the monopole-antimonopole configuration we

use periodic boundary conditions. We will also consider OE. 1
single monopole configurations. For these we use periodic —B:—< 2 Tr(up)> (4)
boundary conditions only in time and the two spatial direc- B’ 2\Pem g

tions orthogonal to the string, while we choose free boundary
conditions in the spatial direction parallel to the direction ofand thus the free energy of the monopole pair can be com-
the string. We let the string run from the midpoint of the puted as
lattice to the free boundary. This places a single monopole in
the middle of the lattice and emulates as well as possible a B IFg 1B
configuration where the antimonopole has been removed to F:J dﬁ'_,zif dﬁ'< > Tr(Up)> ®)
infinity. k9B KR B

Let us denote byM the set of all the plaquettes with
modified coupling constant. The action of the modified sys
tem is then

‘where the integrand in the right-hand side is an observable,
namely the energy

1

1 -

SB.A)=3 B3 THUR+E S THUR| @) : 2<p§M T“UP)> , ©
P¢M PeM B

of the strip of plaquettes transversed by the string. However,
implementing Eq«(5) would be inefficient, due to the large
number of subdivisions that the numerical integration would
Z(,B,B')=z e S(B.8) 2) require for accuracy. Rather, we calcul&téy following the

C Ferrenberg-Swendsen multihistogram meth?2].

and the corresponding partition function is
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TABLE Il. Computational details of the simulations at=2.6,
andN,=16,6,4,2(from left to righy. d is the monopole separation
in lattice units, #8’ is the number of’ steps, ad # m is the
number of independent configurations gEr, which measurements
were taken over.

#B #m #B' #m #B' #m #B' #m

it

frequency

11 200 11 600 11 600 11 800
21 200 21 600 21 600 21 800
31 200 31 600 31 600 31 800
41 200 41 600 41 600 41 800
51 200 51 600 51 600
51 200 61 600 61 600 61 800
101 200 101 600
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FIG. 3. The overlap of histograms gt=2.6 and differen{3’.

The monopole separation iss2andN,;=6. a common constant of proportionality by a self-consistent
procedure. We start from the crude approximation thaZ all

Following Ref.[22], we choose a set ofi+1 values are equal. Since we are only interested in ratios of partition
{B’ i} ranging fromB’ ,=B to B’ y=—B. In the actual cal- functions, we can set this common value to 1. We combine
culation, we chose them equally spaced, although this is ndhen the estimates of the density of states given by(Bq.
necessary. The numbet is determined by a criterion that into a first approximation
will be explained below. For each valy ; we perform a
Monte Carlo simulation of the corresponding system and (E):i E (E) ®)
record the values of the enerdy of the plaquettes trans- p N 5 PILE/:
versed by the strinfsee Eq(6)] in a histogramh;(E). More
exactly, in our calculation rather than simply accumulatingFrom this value of the density of states we can now obtain a
the entries in the histograms, we distributed the measureletter approximation of the partition functions
energy values over the four neighboring vertices according
to the weights of a cubic interpolation formula. This substan- _ =
il . : z=2 p(E)e F'E. ©)
tially increases the accuracy when the values in the histo- E
grams are subsequently used to approximate integrals over
the density of statesfp(E)f(E)dE~ZX[h(E)/n]f(E), n  Equations(7)—(9) can now be iterated to gef; up to a
being the total number of entries in the histogram. Indeed, bynultiplicative factor. If the iterations converge, the final re-
using this procedure, we were able to reduce the number «fults will provide a self-consistent set of values for the par-

bins to 200 without noticeable discretization effects. tition functionsZ;, up to a common constant. In particular,
From each separate histogram one can obtain an indepewe will be able to obtaiZ (8, — B8)/Z(B,8) =Zx/Z, and the
dent estimate of the density of states free energy of the monopole-antimonopole pair.
A necessary condition for the above procedure to work
pi(E)  hi(E) 5 E well is that the histograms corresponding to adjag&niave
Ti:n_ie " () a sufficient overlap. In Fig. 3 we plot the histograms ob-

tained in a typical run and one can see that they exhibit
indeed a substantial overlap. In our calculation we found that
andn; is the total number of histogram entries. Of course,f[he self-consistent p“’cedufe ou_tllned abqve converged rap-

idly for all the values of lattice size, coupling constant, and

the normalizing factorg; are still not known. Indeed, the . : .

entire goal of the computation is to calculate the relativemonopole-antlmonopole separation - we con5|derled. We

magnitude of the partition functior, . Starting from Eq. checked_ that the results for the free.energy.we obtained with

(7) one can, however, obtain the partition functicsup to the multlhlstogram method are (_:on5|ste_nt with the values one
can obtain from the numerical integration &F 5 /98" [cf.

Eq. (5)], within the error of the latter procedure.

whereZ; is the partition function for the specific valy@ ;

TABLE |I. Lattice sizes and couplings at which the simulation
was performed.

IIl. COMPUTATIONAL DETAILS AND NUMERICAL

B N XNy XN, N, RESULTS
2.82 32 32X 64 4 We simulated a pure SQ) system with a combined over-
2.6 20X 20X 40 2,4.6,16 relaxation and multihit-Metropolis algorithm for minimal au-
2.5 16X 16X 32 4,12 tocorrelation time. We studied systems with coupling con-
2.476 16< 16X 32 4,12 stants varying betweef=2.476 andB=2.82, spatial sizes

ranging from 16x32 to 32X 64 and Euclidean temporal
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TABLE Ill. Computational details of the simulations TABLE V. Free energy in units ola ! of the monopole-
=2.82, Ny=4; B=25, N;=12; =25, N;=4; B=2.476, N, antimonopole pair at various separatiodsat high temperature
=12; andB=2.476,N,=4 (from left to righy. (N¢=4) on aN,xN,XN,=32X32x 64 lattice at3=2.82 (left),

and for the confinedN,;=12) and deconfined\;=4) phases on a
d #B8'" #m #B #m #B #m #B' #m #B #m N, XNy XN,=16X16x32 lattice at §=2.5 (middle) and 8
=2.476(right).

11 100 11 600 11 600 11 200 11 800
21 100 21 600 21 600 21 200 21 800
31 100 31 600 31 600 31 200 31 800
41 100 41 600 41 600 41 200 41 800
61 100 61 600 61 600 61 200 61 800

o

F[N=4] F[N=12] F[N=4] F[N=12] F[N=4]

1.64840) 1.145158) 1.133292) 1.098835 1.092742)
2.03728) 1.402Q33) 1.354941) 1.324124) 1.288%53)
2.12920) 1.443728) 1.374136) 1.357416) 1.313340)
2.22216) 1.460124) 1.380637) 1.373@14) 1.318826)

extents ranging from 16 down to 2. The corresponding tem® 2.19117) 1.472623) 1.377926) 1.368326) 1.316918)
peratures span the deconfinement phase transition, which oc=
curs atN,~ 10 for 8=2.6 and betweedl;=7 andN,=8 for _
B=2.476 andB=2.5[23]. Full details of lattice sizes and free energy for a few data points and calculated the error
couplings used in our simulations are given in Table |. Forfrom the variance of the results. This came out approxi-
each lattice size, value g8, and monopole separation, we Mately four times larger than the corresponding estimate of
performed a sequence of Simu|ati0n5’ Starting Vﬁfh:ﬁ the error from the Jackkn|fe method. Thus we multlplled all
and decreasing}’ in Steps(cf_ Sec. ”) to its final Va|ue]8’ of the jaCkknife errors by a factor of four. While this univer-
= — B. Precisely, we performed 5000 thermalization steps afal rescaling can only produce an approximation to the true
B’ = followed by measurements separated by 50 update§Tors, because the correlation in the data will generally vary
We decreaseqs’, performed another 500 thermalizations from data point to data point, we feel that it gives the most
followed by the same number of measurements, again sepkgalistic estimate of the actual errors that can be obtained
rated by 50 updates, and so on, until completion of the meadithout embarking in an error analysis of prohibitive cost.
surements with3’ = — 8. For each measurement, as a vari-Our code was written iIlFFORTRAN 90 and was run on the
ance reduction technique, we performed 384 upgrades of tneG!-Origin 2000 at the Boston University Center for Com-

links in the plaquettes belonging to the flux tule while putational Science. It performs at140 MFlops on a single
keeping all other link variables fixed. In this way, we ob- 190 MHz R10000 CPU and scales well up to 64 CPU’s. The

tained 384 histogram entries per configuration. total CPU time needed for the simulations wa8x 10*

The number of measurements in each individual simula©PU hours.
tion, as well as the number of steps @, depended on We measured the free energy of the monopole-
monopole separation and lattice size and are given in Tablgdtimonopole pair for several values of lattice size, coupling
Il and III. In order to estimate the error we proceeded astonstan3, and monopole-antimonopole separatibfables
follows. For all data we performed a standard jackknife!V @nd V list all our results.
evaluation of the error based on 10 subsamples. The data are, TyPical results are illustrated in Fig. 4, where we plot the
however, highly correlated and this leads to an underestima@ata for the monopole-antimonopole free energy obtained at
of the error. An error analysis based on the full correlation3=2.6. The flattening of the potential at large separation
matrix would have been computationally too costly. Instead9!Ves evidence for the screening of the interaction. The lines
we performed seven totally independent calculations of the

O~ WN B

A WN PR

1.8

I e et

TABLE IV. Free energy in units ofa ! of the monopole-
antimonopole pair at various separatiothor the confined K,
=16) and deconfinedN;=6,4,2) phases. Results are for spatial L6 ¢
lattice sizeN, XNy XN,=20x20x40 at 8=2.6. The entry with
separatiore is twice the energy of a single monopole as measured =
on a N, XN, XN,=20x20x20 lattice and free boundary condi- g 14
tions in thez direction.

d F[N;=16] F[N;=6] F[N=4] F[N=2] 12

1 1.346450) 1.347238) 1.319392)  1.0236114

2 1.696128) 1.6741498) 1.581151) 1.149299) 1 :

3 1770818 1.735720) 1.605835  1.158669) 0 z 4 6

4 1790918  1.733425  1.625334)  1.153162) a

5 1.792710)  1.735Q19) FIG. 4. Free energy of the monopole-antimonopole pair versus
6 1.795@10) 1.737%33) 1.641126) 1.142@44) separation aB= 2.6 for different values oN,. The lines represent

©  1.792722) fits of the first four points to a Yukawa potential. The results of the

fit for the screening magw are listed in Table VI.
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TABLE VI. Screening masses from a Yukawa fit of the free energy in units of the zero-temperature string
tension o and in lattice units. For comparison, the temperature of the system in units of the zero-
temperature string tension is also given. The first table is for confined systems at comparable temperatures.
The second table is for deconfined systems, again at comparable temperatures. The third table gives the
screening masses for various high temperature simulati@smdm’ refer to the fits done with continuum
and lattice potential, respectivel) andQ’ are the corresponding qualities of the fit.

B TIo m/\o ma Q m'/Jo m’a Q'
2.476 0.419 4.682) 0.91864)  0.003 5.8745) 1.16889) 0.0001

25 0.454 5.043) 0.92478)  0.16 6.4360) 1.18q110  0.06

2.6 0.472 5.7@1) 0.76841)  0.54 7.2140) 0.95653) 0.67

B TIo m/\o ma Q m'/Jo m’a Q'

2.476 1.257 6.4.0 1.28200  0.85 8.61.7) 1.71(34) 0.72

25 1.363 8.66L.29 1.5924)  0.47 12.492.34  2.2943) 0.40
2.6 1.257 9.169 1.229) 0.0001  11.86..1) 15715 0.0004

B N, T/o m/\o ma Q m'/Jo m’a Q'

2.6 4 1885 8.2 1.1816)  0.006 12.02.0) 1.5926) 0.003
2.6 2 3771 188 2.4511)  0.53 31.817.3 415230 053
282 4 3771 7@.6 0.5217)  0.08 8.43.0 0.5520) 0.12

tempted a direct Coulombic fit to the data f8=2.6, N,
=16,6 and found the fit quality to b®~10 %2 for N,= 16
_ (10) andQ~10"°8 for N,=6, definitely ruling out a Coulombic
r behavior of the potential in both phases.
o o o ) In Table VII we compare our values for the screening
The fits give clear indications for a nonvanishing screeningy5ss at3=2.5 andS=2.6 with the values for the lightest
mass(fsee the tables f_or detailsind rule out a Coulombic glueball mass in the S) theory[25,26. We reproduce the
behavior of the potential. _ _ results from fits with the continuum Yukawa potential to the
We fit all of our data to a Yukawa potential, as in EQ. gata noints at separation 1 throughré,, from fits, always
(10). We used the points at separatior 1 to 4 for the fits. it the continuum potential, where we disregarded the
In the confined phase, it is also possible to perform meansqine ot separation 1 which have the largest discretization
ingful fits through the points at separation 2 to 6, leaving outg . (m,), and from fits to the points at separation 1 through
the point atd=1, where one expects the value of the poten-g \,iih the lattice Yukawa potentiahf’). The valuesn, and
tial to be most affected by lattice distortions. For higher tem-.+ 2. consistent and are approximately twice as large as the

peratures t_he rapid flattening of the pptentia_l makes the ﬁtﬁwass of the lightest glueball. This indicates that the predomi-
more sensitive to the removal of the first point. An alterna-nant coupling of the monopoles is to glueball excitations.

tive procedure consists in fitting the data to a lattice Yukawzaour results do not rule out that the lightest glueball may
. 2 . . .
potential, as suggested in this context in RE24]. The re- joninate screening at long distances, but this is not visible

sults of the fits_ for the_ screening masses are reproduced Within the range of lattice separationa<5a) for which we
Table VI. Unprimed(primed quantities refer to the values can obtain sufficiently accurate results

obtained from fits to a continuurdattice) potential of the In Fig. 5 we plot our results for the screening masss

data withd ra”ging from 1_ to 4. For the conversion in units temperature. At high temperatumeshould be identified with
of the sting tension Vo we used aJo e magnetic screening mass. Our results are consistent with
=0.198_9,0.1834,0.1326,0.0663 fop=2.476,2.5,2.6,2.82, ({ata obtained by StadR7] by another method. They appear
respectively. We took the values f@=2.5,2.6 from Ref. _ to be somewhat larger than the values fioobtained, by a
[25] and calculated the other values from the known scallnq,et different technique, by Heller, Karsch, and Rd28].
behavior of the theory. The fact that all fits produce a non-the authors of Ref28] quote results, however, for systems
vanishing value for the screening mass is a clear indicatiogjiy, larger N, and higherg than we generally used in our
that the data are not consistent with a Coulombic monopolej,estigation. The closest comparison can be made between
antimonopole interaction. To reinforce this point, we at-gr result for B=2.82, namelym/T=2.09(0.69), and the
results in Ref.[28]: m/T=2.01(0.29),1.24(0.04) forg
=2.74,2.88, respectively. These latter sets of results are rea-
2We are grateful to M. Chernodub and M. Polikarpov for bringing sonably consistent. It is interesting that, within the accuracy
this point to our attention. of our data, there is no indication for a discontinuous behav-

in the figure reproduce fits to a Yukawa potential

—mr

F(r)=Fo—c¢
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TABLE VII. Comparison of screening masses and the lowest glueball mgas(taken from[25,26)).
The massesn; and m, are obtained from fits with the continuum Yukawa potential to the data points at
separation 1 through 6 and 2 through 6, respectively. The massese from fits with the lattice Yukawa
potential to the data points at separation 1 through 6.

B mga ma mpa m'a Q(m,) Q(my) Q(m’)
2.6 0.513) 0.84926) 1.01914) 0.99836) 0.08 0.52 0.59

ior of m at the deconfinement transition. The apparently cone€onfined behavior. The dashed line in the figure reproduces a
tinuous behavior o should not come, though, as a surprise.fit of a Coulomb plus linear forna+ b/x+cx with param-

We should remember that the quantity we study is based oetersa=2.10712),b=0.6583),c=0.01673). It is interest-
insertion in the S(R) theory of an operatofthe sheet of ing to observe that from the fit we gefc=0.1291(11),
plaquettes with modified coupling joining the world line of while the string tension on a 2@attice at the same value of
the monopoleswhich is dual to thex—y Wilson loops[3]. Bis a\/5=0.1326(30).

Space-space Wilson loops exhibit an area law behavior both |t is interesting to compare our results to the solutions of
below and above the deconfinement transition and, corrghe classical theory. Since to the best knowledge of the au-
spondingly, one would expect that the free energy ofthors there is no analytical solution to the classical two
monopole-antimonopole pair, whose propagation spans gonopole problem, we have investigated its properties nu-
dual space-time surface, should exhibit screened behavior Gfierically. To do this, we found the minimal energy solutions
both sides of the phase transition. The discontinuity at then a lattice and checked their behavior. We put the classical
phase transition occurs in the behavior of space-time WilsoBystem on a three-dimensional lattice with free boundary
loops or in the correlation of timelike Polyakov loops. Ac- conditions.(We used free boundary condition because the
cordingly, we would expect a discontinuity in the partition calculation itself shows that the potential has a long range
function of the system with the monopole-antimonopole paimehavior and with free boundary conditions we can reduce
propagating in the space direction. In order to test this idedinite size effecty. We started both from a random non-
we also measured the partition function of a system wher@pelian configuration and from a random Abelian configu-
we changed the sign of tite-y plaguettes crossing a string ration and performed iterative local minimization to relax the
joining monopole and antimonopole separateddblattice  system to its lowest energy state. There were no surprises as
sites in thez direction and propagating in thedirection. We  we found that for both initial conditions the system relaxed
performed the calculation g8=2.6 with a lattice of size to a minimal energy state of the same energy and that the
N,=N,=20N,=40N;=6. While the physical meaning of non-Abelian solution, after going to a maximally Abelian
the “free energy” F=—(1/N,)log[Z(B,—B)/IZ(B.8)] be- gauge, turned out to be entirely Abelian in nature. Also, the
comes less obviouét would be the free energy for a low- potential of interaction was well fit by the Coulomb form
temperature system confined in a periodic box of wiNff), ~ V=1/(4r). (One expects a coefficient 1/4 in the Coulomb
our results, listed in Table VIII and illustrated in Fig. 6, show potential because the total magnetic flux from the monopole
that above the phase transition this quantity does exhibit & @ = 7. This value has been numerically confirmed in our

calculation)
i ‘ In Fig. 7 we compare the monopole-antimonopole poten-
20 ¢ ! ® =26 1 tials in the confined phase of the quantum system and in the
! Xp=2.82 [} classical system. The comparison shows a clear difference
: between the classical and quantum case and reinforces the
57 : conclusion that quantum fluctuations introduce a screening
o : of magnetic monopoles. We further illustrate this point by
Zer 10 | : | displaying in Fig. 8 snapshots of a typical quantum configu-
)
- | TABLE VIII. Value of the spatial 't Hooft loop in units o™ *
5r } at various separatiorssfor a deconfined systenN¢=6) with spa-
= tial lattice sizeN,xX Ny X N,=20x20x40 at3=2.6.
1
| I | L
%0 1o 2 3 4 d F
TNo 1 1.364013)
FIG. 5. Screening mass vs temperaturg3at2.6. Because of 2 1.739610)
the large systematic errors introduced by the small temporal lattice 3 1.851215)
extentN,=2 for the last data point, we also included results from 4 1.918@13)
simulation at the same physical volume and half the lattice spacing 6 1.99486)
(8=2.82). The dashed line indicates the critical temperatialeen 8 2.07566)

from [23]).
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FREE ENERGY OF AN S) MONOPOLE . ..

FIG. 6. Comparison of the “free energy” for propagation in the
space direction vs propagation in the time direction of the
monopole-antimonopole pair, for a system in the deconfined phase.
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® x—y plaquettes e r A a4 ey N 4 4
14l B x—t plaquettes | o N
4 % @ w0 b 60 ¥ qe N &
) ‘ Q © F o 2 ot w o | 2L A K 4
1'20 2 4 6 8 e 8 d > 3 oo e s s 4™
1/a Yo @ A W 0 % skl Mg 40t
» a7 eXa s X3 >
’
[ d
.

ration (from a simulation a{3=2.476 andN,=12) and of

the classical solution. In the pictures, vectors show the mag-
netic field in a maximal Abelian projection and the size of
the dots measures the non-Abelian character of the configu-
ration at that point(it is proportional to the square of the
components orthogonal to the Abelian projecjiom the
classical case the location of the monopole-antimonopole
pair is evident. In the quantum case it is marked by the
crosses in the middle of the second picture. Had we not
marked the location of monopole and antimonopole in the
guantum case, the reader would be hard pressed in finding
where they are. The marked difference between the classical

PHYSICAL REVIEW D 63 034506

and quantum configurations gives a vivid illustration of how

the quantum fluctuations of the gluon field provide a mecha-
nism for the screening of external monopole sources, Whiclﬂg

is most likely also responsible for confinement in the low-

o Q% % w9 Y ¢ 5 6 s PN
ap % A S 0 Qe e
¢ o o ot S e p = o b .
L O A S R e S )
@ @ B * ® o 9 ¥ FN q 8 a
LR R R B B B L N I
‘aﬁ'oi&w«‘“&t'
"2 I A I R U A T A R B
TP 4 pdE® 2 A @A N g~
b v b o e d s 0 noe
10‘5‘5;0&#«”‘10
" e s s . s e TPy % »
LI I K 2 0 B I T R B IR T R

FIG. 8. Comparison of the maximally Abelian projected con-
uration for the classical minimal energy solutidfirst picture
and an average over the time slices of a typical quantum configu-

temperature phase and for the emergence of the magnetigion. The second picture is a detail of a region around the mono-

mass in the high-temperature phase.

IV. CONCLUSIONS

We have measured the free energy of a monopole

antimonopole pair in pure SB) gauge theory at finite tem-

1.8 - ]
~ 16
o)
e
® confined phase
L X classical solution J
14
12 -
0 2 4 6

r/a

poles; the third one is from a region without monopoles.

perature. We find that the interaction is screened in both the
confined and deconfined phase. The mass of the object re-
Sponsible for the screening at low temperature is approxi-
mately twice the established value for the lightest glueball,
indicating a prevalent coupling to glueball excitations. There
is no noticeable discontinuity in the screening mass at the
deconfinement transition, but in the deconfined phase we
clearly see an increase of the screening mass with tempera-
ture. Our results support the hypothesis of the existence of a
monopole condensate in the vacuum of thgBltheory and
provide evidence that some glueball excitation could serve as
a “dual photon” in the dual superconductor hypothesis of
quark confinement. Finally, we would like to observe that the
method we have developed for the calculation of the
monopole-antimonopole free energy is applicable to other
models, beyond the SB) theory considered in this paper.
While moderately demanding in computer resources, it ap-
pears capable of producing accurate numerical results for the
monopole-antimonopole potential of interaction. Thus it

FIG. 7. Comparison of monopole-antimonopole potentials in thecould be used to shed light on the dynamics of other inter-
confined phase of the quantum system and in the classical syster@sting systems that are expected to exhibit the formation of

Data for the quantum system are@t 2.6 andN,= 16.

electric or magnetic condensates in their vacuum states.
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