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Free energy of an SU„2… monopole-antimonopole pair
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We present a high-statistic numerical study of the free energy of a monopole-antimonopole pair in pure
SU~2! theory. We find that the monopole-antimonopole interaction potential exhibits a screened behavior, as
one would expect in the presence of a monopole condensate. Screening occurs both in the low-temperature,
confining phase of the theory, and in the high-temperature deconfined phase, with no evidence of a disconti-
nuity of the screening mass across the transition. The mass of the object responsible for the screening at low
temperature is approximately twice the established value for the lightest glueball, indicating a prevalent cou-
pling to glueball excitations. At high temperature, the screening mass increases. We contrast the behavior of
the quantum system with that of the corresponding classical system, where the monopole-antimonopole po-
tential is of the Coulomb type.
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I. INTRODUCTION

It is well known that some Higgs theories with a no
Abelian gauge group admit stable monopole solutions@1,2#.
In certain cases, most notably in grand unified theories,
residual unbroken gauge group is non-Abelian. It is then p
ticularly interesting to study the interaction between tw
monopoles, or between monopole and antimonopole,
duced by the quantum fluctuations of the unbroken ga
group. Beyond the relevance that these interactions may h
for the original theory, they can help clarify the low ener
properties of the residual theory itself: from the point of vie
of the low energy theory, monopoles are point-like exter
sources of non-Abelian gauge field, so they act as nontri
probes of the strong coupling dynamics. Indeed, alre
some time ago ’t Hooft@3# and Mandelstam@4# proposed
that condensation of magnetic monopoles could be resp
sible for the confinement mechanism@5#. If the vacuum state
of a non-Abelian gauge theory is characterized by the p
ence of a monopole condensate, this will screen
monopole-antimonopole interaction, which should theref
exhibit a Yukawa-like behavior. If there is no condensa
whatever, one should expect instead a Coulombic interac
between the monopoles, as is the case in classical S~2!
theory. Finally, in a theory characterized by a condensa
of electric charges, the monopole-antimonopole interac
energy should increase linearly with separation. While a s
stantial amount of work has already been done to unders
the role of monopole condensation for the confinem
mechanism@6–12#, to the best of our knowledge a precis
determination of the monopole-antimonopole interaction
tential in a quantum non-Abelian theory is still lacking.
this paper we plan to fill this void, presenting a numeric
calculation of the monopole-antimonopole potential in t
SU~2! theory. Our results show that the monopo
antimonopole interaction potential is screened, buttress
the conjecture of a monopole condensate. We also study
0556-2821/2001/63~3!/034506~8!/$15.00 63 0345
e
r-

-
e
ve

l
al
y

n-

s-
e
e
e
n

n
n

b-
nd
t

-

l

-
g
he

monopole-antimonopole system in the high-temperature,
confined phase of SU~2!. The interaction still exhibits
screening, which can be ascribed to a magnetic mass.
will investigate the temperature dependence of this mass

II. MONOPOLE-ANTIMONOPOLE CONFIGURATION
AND CALCULATION OF THE FREE ENERGY

The procedure for introducing SU~N! monopole sources
on the lattice was devised by Ukawa, Windey, and Guth@13#
and Srednicki and Susskind@14#, who built on earlier semi-
nal results by ’t Hooft@15#, Mack and Petkova@16,17#, and
Yaffe @18#. In this paper we will follow the method of Ref
@14#. In three dimensions, an external monopo
antimonopole pair can be introduced by ‘‘twisting’’ th
plaquettes transversed by a string joining the monopole
the antimonopole~see Fig. 1!, i.e., by changing the coupling
constant of these plaquettes according tob to znb, where
zn5exp(2pın/N) is an element of the center of the group1

The location of the string is unphysical. It can be changed
redefining link variables on the plaquettes transversed by
string byU→zn

21U, as illustrated in Fig. 2. The fact thatzn

is an element of the center SU~N! guarantees that the abov
redefinition is a legitimate change of variables. On the ot
hand, the position of the cubes that terminate the string c
not be changed. Those cubes contain two external monop
of chargezn andzn

21 , respectively~or, equivalently, a mono-
pole of chargezn and its antimonopole!. In the SU~2! theory
we consider in this paper, the only nontrivial element of t
center of the group isz521 and thus monopole and ant
monopole coincide.

1The use of a string of plaquettes with modified couplings to stu
the disorder was also advocated by Groeneveld, Jurkiewicz,
Korthals Altes@19#.
©2001 The American Physical Society06-1
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In four dimensions, a static monopole-antimonopole p
is induced by replicating the string on all time slices. T
insertion of a monopole-antimonopole pair can be rein
preted in terms of the electric flux operator and several
vestigations have been devoted to the study of such an
erator ~see, for instance, Refs.@20,21#!. However, as we
already stated, accurate numerical information on the
energy of a monopole-antimonopole has never been
tained.

The numerical calculation of a free energy by stocha
simulation can be a quite challenging problem, since the
energy is related to the partition function and the partit
function, which is the normalizing factor for the simulatio
cannot be directly measured. In our case, we need the rat
the partition functions of a system containing the monopo
antimonopole pair to the partition function of the free sy
tem. In order to calculate this quantity we define a gene
ized system where the coupling constantb has been replace
by b8 on all the plaquettes transversed by the string. For
sake of precision, if we place the monopole at the spa
location of integer value coordinatesx01 1

2 ,y01 1
2 ,z01 1

2 and
the antimonopole atx01 1

2 ,y01 1
2 ,z01d1 1

2 , the plaquettes
with coupling b8 will be all the x-y plaquettes with lower
corner inx0 ,y0 ,z,t, wherez011<z<z01d and 0<t<Nt
21. Nx ,Ny ,Nz ,Nt denote the extents of the lattice in th
four dimensions. The1

2 offsets in the coordinates of th
monopole and antimonopole are due to the fact that we c
sider them located at the center of two spatial cubes, nam
those with lowest corners inx0 ,y0 ,z0 andx0 ,y0 ,z01d, re-
spectively. For the monopole-antimonopole configuration
use periodic boundary conditions. We will also consid
single monopole configurations. For these we use perio
boundary conditions only in time and the two spatial dire
tions orthogonal to the string, while we choose free bound
conditions in the spatial direction parallel to the direction
the string. We let the string run from the midpoint of th
lattice to the free boundary. This places a single monopol
the middle of the lattice and emulates as well as possib
configuration where the antimonopole has been remove
infinity.

Let us denote byM the set of all the plaquettes wit
modified coupling constant. The action of the modified s
tem is then

S~b,b8!5
1

2 S b (
P¹M

Tr~UP!1b8 (
PPM

Tr~UP! D ~1!

and the corresponding partition function is

Z~b,b8!5(C
e2S(b,b8) ~2!

FIG. 1. Monopole-antimonopole pair induced by twisting t
plaquettes transversed by the string.
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whereC denotes the set of all configurations. Forb85b our
generalized system obviously reduces to a homogene
SU~2! lattice gauge system with coupling constantb,
whereas forb852b it becomes an SU~2! model with a
static monopole-antimonopole pair. In this latter case, as
cussed above, the partition function becomes independe
the actual location of the string, and depends only on
distanced between monopole and antimonopole~beyond de-
pending, of course, onb and the extent of the lattice!. The
change of free energy induced by the presence of the pa
thus

F52T log
Z~b,2b!

Z~b,b!
~3!

whereT5Nta is the temperature of the system (a denotes,
as usual, the lattice spacing!. This is the quantity we want to
calculate. Forb8 not equal tob or 2b, Z(b,b8) does de-
pend on the location of the string. Nevertheless Eq.~2! con-
tinues to define the partition function of a statistical syste
which we will use for our calculation ofF. The basic idea is
that we will perform Monte Carlo simulations of the mod
fied system for a set of values ofb8 ranging from b to
2b which is sufficiently dense that for all steps inb8 we can
reliably estimate the change induced in logZ. Conceptually
this corresponds to the observation that for an infinitesim
change inb8 the change in free energy will be

]Fb8

]b8
5

1

2 K (
PPM

Tr~UP!L
b8

~4!

and thus the free energy of the monopole pair can be c
puted as

F5E
2b

b

db8
]Fb8

]b8
5

1

2E2b

b

db8K (
PPM

Tr~UP!L
b8

~5!

where the integrand in the right-hand side is an observa
namely the energy

E5
1

2 K (
PPM

Tr~UP!L
b8

~6!

of the strip of plaquettes transversed by the string. Howe
implementing Eq.~5! would be inefficient, due to the larg
number of subdivisions that the numerical integration wo
require for accuracy. Rather, we calculateF by following the
Ferrenberg-Swendsen multihistogram method@22#.

FIG. 2. Change of the string location brought about by the
definition of the gauge variable on the link denoted by a bolder li
6-2
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Following Ref. @22#, we choose a set ofN11 values
$b8 i% ranging fromb8 05b to b8 N52b. In the actual cal-
culation, we chose them equally spaced, although this is
necessary. The numberN is determined by a criterion tha
will be explained below. For each valueb8 i we perform a
Monte Carlo simulation of the corresponding system a
record the values of the energyE of the plaquettes trans
versed by the string@see Eq.~6!# in a histogramhi(E). More
exactly, in our calculation rather than simply accumulati
the entries in the histograms, we distributed the measu
energy values over the four neighboring vertices accord
to the weights of a cubic interpolation formula. This substa
tially increases the accuracy when the values in the hi
grams are subsequently used to approximate integrals
the density of states:*r(E) f (E)dE'Z(E@h(E)/n# f (E), n
being the total number of entries in the histogram. Indeed
using this procedure, we were able to reduce the numbe
bins to 200 without noticeable discretization effects.

From each separate histogram one can obtain an inde
dent estimate of the density of states

r i~E!

Zi
5

hi~E!

ni
eb8 iE, ~7!

whereZi is the partition function for the specific valueb8 i
and ni is the total number of histogram entries. Of cour
the normalizing factorsZi are still not known. Indeed, the
entire goal of the computation is to calculate the relat
magnitude of the partition functionsZi . Starting from Eq.
~7! one can, however, obtain the partition functionsZi up to

FIG. 3. The overlap of histograms atb52.6 and differentb8.
The monopole separation is 2a andNt56.

TABLE I. Lattice sizes and couplings at which the simulatio
was performed.

b Nx3Ny3Nz Nt

2.82 32332364 4
2.6 20320340 2,4,6,16
2.5 16316332 4,12

2.476 16316332 4,12
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a common constant of proportionality by a self-consist
procedure. We start from the crude approximation that alZi
are equal. Since we are only interested in ratios of partit
functions, we can set this common value to 1. We comb
then the estimates of the density of states given by Eq.~7!
into a first approximation

r~E!5
1

N (
i

r i~E!. ~8!

From this value of the density of states we can now obtai
better approximation of the partition functions

Zi5(
E

r~E!e2b8 iE. ~9!

Equations~7!–~9! can now be iterated to getZi up to a
multiplicative factor. If the iterations converge, the final r
sults will provide a self-consistent set of values for the p
tition functionsZi , up to a common constant. In particula
we will be able to obtainZ(b,2b)/Z(b,b)5ZN /Z0 and the
free energy of the monopole-antimonopole pair.

A necessary condition for the above procedure to w
well is that the histograms corresponding to adjacentb8 have
a sufficient overlap. In Fig. 3 we plot the histograms o
tained in a typical run and one can see that they exh
indeed a substantial overlap. In our calculation we found t
the self-consistent procedure outlined above converged
idly for all the values of lattice size, coupling constant, a
monopole-antimonopole separation we considered.
checked that the results for the free energy we obtained w
the multihistogram method are consistent with the values
can obtain from the numerical integration of]Fb8 /]b8 @cf.
Eq. ~5!#, within the error of the latter procedure.

III. COMPUTATIONAL DETAILS AND NUMERICAL
RESULTS

We simulated a pure SU~2! system with a combined over
relaxation and multihit-Metropolis algorithm for minimal au
tocorrelation time. We studied systems with coupling co
stants varying betweenb52.476 andb52.82, spatial sizes
ranging from 162332 to 322364 and Euclidean tempora

TABLE II. Computational details of the simulations atb52.6,
andNt516,6,4,2~from left to right!. d is the monopole separatio
in lattice units, #b8 is the number ofb8 steps, and # m is the
number of independent configurations perb8, which measurements
were taken over.

d # b8 # m # b8 # m # b8 # m # b8 # m

1 11 200 11 600 11 600 11 800
2 21 200 21 600 21 600 21 800
3 31 200 31 600 31 600 31 800
4 41 200 41 600 41 600 41 800
5 51 200 51 600 51 600
6 51 200 61 600 61 600 61 800
` 101 200 101 600
6-3
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extents ranging from 16 down to 2. The corresponding te
peratures span the deconfinement phase transition, which
curs atNt'10 for b52.6 and betweenNt57 andNt58 for
b52.476 andb52.5 @23#. Full details of lattice sizes and
couplings used in our simulations are given in Table I. F
each lattice size, value ofb, and monopole separation, w
performed a sequence of simulations, starting withb85b
and decreasingb8 in steps~cf. Sec. II! to its final valueb8
52b. Precisely, we performed 5000 thermalization steps
b85b followed by measurements separated by 50 upda
We decreasedb8, performed another 500 thermalization
followed by the same number of measurements, again s
rated by 50 updates, and so on, until completion of the m
surements withb852b. For each measurement, as a va
ance reduction technique, we performed 384 upgrades o
links in the plaquettes belonging to the flux tubeM, while
keeping all other link variables fixed. In this way, we o
tained 384 histogram entries per configuration.

The number of measurements in each individual simu
tion, as well as the number of steps inb8, depended on
monopole separation and lattice size and are given in Ta
II and III. In order to estimate the error we proceeded
follows. For all data we performed a standard jackkn
evaluation of the error based on 10 subsamples. The data
however, highly correlated and this leads to an underestim
of the error. An error analysis based on the full correlat
matrix would have been computationally too costly. Inste
we performed seven totally independent calculations of

TABLE IV. Free energy in units ofa21 of the monopole-
antimonopole pair at various separationsd for the confined (Nt

516) and deconfined (Nt56,4,2) phases. Results are for spat
lattice sizeNx3Ny3Nz520320340 at b52.6. The entry with
separatioǹ is twice the energy of a single monopole as measu
on a Nx3Ny3Nz520320320 lattice and free boundary cond
tions in thez direction.

d F@Nt516# F@Nt56# F@Nt54# F@Nt52#

1 1.3464~50! 1.3472~38! 1.3193~92! 1.0236~114!
2 1.6961~28! 1.6741~48! 1.5811~51! 1.1492~98!

3 1.7708~18! 1.7357~20! 1.6056~35! 1.1586~69!

4 1.7909~18! 1.7334~25! 1.6253~34! 1.1531~62!

5 1.7927~10! 1.7350~19!

6 1.7950~10! 1.7375~33! 1.6411~26! 1.1420~44!

` 1.7927~22!

TABLE III. Computational details of the simulations atb
52.82, Nt54; b52.5, Nt512; b52.5, Nt54; b52.476, Nt

512; andb52.476,Nt54 ~from left to right!.

d # b8 # m # b8 # m # b8 # m # b8 # m # b8 # m

1 11 100 11 600 11 600 11 200 11 80
2 21 100 21 600 21 600 21 200 21 80
3 31 100 31 600 31 600 31 200 31 80
4 41 100 41 600 41 600 41 200 41 80
6 61 100 61 600 61 600 61 200 61 80
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free energy for a few data points and calculated the e
from the variance of the results. This came out appro
mately four times larger than the corresponding estimate
the error from the jackknife method. Thus we multiplied a
of the jackknife errors by a factor of four. While this unive
sal rescaling can only produce an approximation to the t
errors, because the correlation in the data will generally v
from data point to data point, we feel that it gives the mo
realistic estimate of the actual errors that can be obtai
without embarking in an error analysis of prohibitive co
Our code was written inFORTRAN 90 and was run on the
SGI-Origin 2000 at the Boston University Center for Com
putational Science. It performs at'140 MFlops on a single
190 MHz R10000 CPU and scales well up to 64 CPU’s. T
total CPU time needed for the simulations was'33104

CPU hours.
We measured the free energy of the monopo

antimonopole pair for several values of lattice size, coupl
constantb, and monopole-antimonopole separationd. Tables
IV and V list all our results.

Typical results are illustrated in Fig. 4, where we plot t
data for the monopole-antimonopole free energy obtaine
b52.6. The flattening of the potential at large separat
gives evidence for the screening of the interaction. The li

l

d

TABLE V. Free energy in units ofa21 of the monopole-
antimonopole pair at various separationsd at high temperature
(Nt54) on aNx3Ny3Nz532332364 lattice atb52.82 ~left!,
and for the confined (Nt512) and deconfined (Nt54) phases on a
Nx3Ny3Nz516316332 lattice at b52.5 ~middle! and b
52.476~right!.

d F@Nt54# F@Nt512# F@Nt54# F@Nt512# F@Nt54#

1 1.648~40! 1.1451~58! 1.1332~92! 1.0988~35! 1.0927~42!

2 2.037~28! 1.4020~33! 1.3549~41! 1.3241~24! 1.2885~53!

3 2.129~20! 1.4437~28! 1.3741~36! 1.3574~16! 1.3133~40!

4 2.222~16! 1.4601~24! 1.3806~37! 1.3736~14! 1.3188~26!

6 2.191~17! 1.4726~23! 1.3779~26! 1.3683~26! 1.3169~18!

FIG. 4. Free energy of the monopole-antimonopole pair ver
separation atb52.6 for different values ofNt . The lines represen
fits of the first four points to a Yukawa potential. The results of t
fit for the screening massm are listed in Table VI.
6-4



string
zero-
ratures.
ives the

FREE ENERGY OF AN SU~2! MONOPOLE- . . . PHYSICAL REVIEW D 63 034506
TABLE VI. Screening masses from a Yukawa fit of the free energy in units of the zero-temperature
tension As and in lattice units. For comparison, the temperature of the system in units of the
temperature string tension is also given. The first table is for confined systems at comparable tempe
The second table is for deconfined systems, again at comparable temperatures. The third table g
screening masses for various high temperature simulations.m andm8 refer to the fits done with continuum
and lattice potential, respectively.Q andQ8 are the corresponding qualities of the fit.

b T/As m/As ma Q m8/As m8a Q8

2.476 0.419 4.62~32! 0.918~64! 0.003 5.87~45! 1.168~89! 0.0001
2.5 0.454 5.04~43! 0.924~78! 0.16 6.43~60! 1.180~110! 0.06
2.6 0.472 5.79~31! 0.768~41! 0.54 7.21~40! 0.956~53! 0.67

b T/As m/As ma Q m8/As m8a Q8

2.476 1.257 6.4~1.0! 1.28~20! 0.85 8.6~1.7! 1.71~34! 0.72
2.5 1.363 8.65~1.29! 1.59~24! 0.47 12.49~2.34! 2.29~43! 0.40
2.6 1.257 9.16~69! 1.22~9! 0.0001 11.86~1.11! 1.57~15! 0.0004

b Nt T/As m/As ma Q m8/As m8a Q8

2.6 4 1.885 8.9~1.2! 1.18~16! 0.006 12.0~2.0! 1.59~26! 0.003
2.6 2 3.771 18.5~8! 2.45~11! 0.53 31.3~17.3! 4.15~2.30! 0.53
2.82 4 3.771 7.9~2.6! 0.52~17! 0.08 8.4~3.0! 0.55~20! 0.12
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in the figure reproduce fits to a Yukawa potential

F~r !5F02c
e2mr

r
. ~10!

The fits give clear indications for a nonvanishing screen
mass~see the tables for details! and rule out a Coulombic
behavior of the potential.

We fit all of our data to a Yukawa potential, as in E
~10!. We used the points at separationd51 to 4 for the fits.
In the confined phase, it is also possible to perform me
ingful fits through the points at separation 2 to 6, leaving
the point atd51, where one expects the value of the pote
tial to be most affected by lattice distortions. For higher te
peratures the rapid flattening of the potential makes the
more sensitive to the removal of the first point. An altern
tive procedure consists in fitting the data to a lattice Yuka
potential,2 as suggested in this context in Ref.@24#. The re-
sults of the fits for the screening masses are reproduce
Table VI. Unprimed~primed! quantities refer to the value
obtained from fits to a continuum~lattice! potential of the
data withd ranging from 1 to 4. For the conversion in uni
of the string tension As we used aAs
50.1989,0.1834,0.1326,0.0663 forb52.476,2.5,2.6,2.82
respectively. We took the values forb52.5,2.6 from Ref.
@25# and calculated the other values from the known sca
behavior of the theory. The fact that all fits produce a no
vanishing value for the screening mass is a clear indica
that the data are not consistent with a Coulombic monop
antimonopole interaction. To reinforce this point, we

2We are grateful to M. Chernodub and M. Polikarpov for bringi
this point to our attention.
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tempted a direct Coulombic fit to the data forb52.6, Nt

516,6 and found the fit quality to beQ'10262 for Nt516
andQ'10268 for Nt56, definitely ruling out a Coulombic
behavior of the potential in both phases.

In Table VII we compare our values for the screeni
mass atb52.5 andb52.6 with the values for the lightes
glueball mass in the SU~2! theory@25,26#. We reproduce the
results from fits with the continuum Yukawa potential to t
data points at separation 1 through 6 (m1), from fits, always
with the continuum potential, where we disregarded
points at separation 1 which have the largest discretiza
error (m2), and from fits to the points at separation 1 throu
6 with the lattice Yukawa potential (m8). The valuesm2 and
m8 are consistent and are approximately twice as large as
mass of the lightest glueball. This indicates that the predo
nant coupling of the monopoles is to glueball excitation
Our results do not rule out that the lightest glueball m
dominate screening at long distances, but this is not vis
within the range of lattice separations (a–5a) for which we
can obtain sufficiently accurate results.

In Fig. 5 we plot our results for the screening massm vs
temperature. At high temperaturem should be identified with
the magnetic screening mass. Our results are consistent
data obtained by Stack@27# by another method. They appea
to be somewhat larger than the values form obtained, by a
yet different technique, by Heller, Karsch, and Rank@28#.
The authors of Ref.@28# quote results, however, for system
with larger Nt and higherb than we generally used in ou
investigation. The closest comparison can be made betw
our result for b52.82, namelym/T52.09(0.69), and the
results in Ref. @28#: m/T52.01(0.29),1.24(0.04) forb
52.74,2.88, respectively. These latter sets of results are
sonably consistent. It is interesting that, within the accura
of our data, there is no indication for a discontinuous beh
6-5
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TABLE VII. Comparison of screening masses and the lowest glueball massmga ~taken from@25,26#!.
The massesm1 and m2 are obtained from fits with the continuum Yukawa potential to the data point
separation 1 through 6 and 2 through 6, respectively. The massesm8 are from fits with the lattice Yukawa
potential to the data points at separation 1 through 6.

b mga m1a m2a m8a Q(m1) Q(m2) Q(m8)

2.6 0.51~3! 0.849~26! 1.019~14! 0.998~36! 0.08 0.52 0.59
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cin
ior of m at the deconfinement transition. The apparently c
tinuous behavior ofm should not come, though, as a surpris
We should remember that the quantity we study is based
insertion in the SU~2! theory of an operator~the sheet of
plaquettes with modified coupling joining the world line
the monopoles! which is dual to thex2y Wilson loops@3#.
Space-space Wilson loops exhibit an area law behavior b
below and above the deconfinement transition and, co
spondingly, one would expect that the free energy
monopole-antimonopole pair, whose propagation span
dual space-time surface, should exhibit screened behavio
both sides of the phase transition. The discontinuity at
phase transition occurs in the behavior of space-time Wil
loops or in the correlation of timelike Polyakov loops. A
cordingly, we would expect a discontinuity in the partitio
function of the system with the monopole-antimonopole p
propagating in the space direction. In order to test this id
we also measured the partition function of a system wh
we changed the sign of thet2y plaquettes crossing a strin
joining monopole and antimonopole separated byd lattice
sites in thez direction and propagating in thex direction. We
performed the calculation atb52.6 with a lattice of size
Nx5Ny520,Nz540,Nt56. While the physical meaning o
the ‘‘free energy’’ F52(1/Nx)log@Z(b,2b)/Z(b,b)# be-
comes less obvious~it would be the free energy for a low
temperature system confined in a periodic box of widthNx),
our results, listed in Table VIII and illustrated in Fig. 6, sho
that above the phase transition this quantity does exhib

FIG. 5. Screening mass vs temperature atb52.6. Because of
the large systematic errors introduced by the small temporal la
extentNt52 for the last data point, we also included results fro
simulation at the same physical volume and half the lattice spa
(b52.82). The dashed line indicates the critical temperature~taken
from @23#!.
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confined behavior. The dashed line in the figure reproduc
fit of a Coulomb plus linear forma1b/x1cx with param-
etersa52.107(2),b50.658(3),c50.0167(3). It is interest-
ing to observe that from the fit we getAc50.1291(11),
while the string tension on a 204 lattice at the same value o
b is aAs50.1326(30).

It is interesting to compare our results to the solutions
the classical theory. Since to the best knowledge of the
thors there is no analytical solution to the classical t
monopole problem, we have investigated its properties
merically. To do this, we found the minimal energy solutio
on a lattice and checked their behavior. We put the class
system on a three-dimensional lattice with free bound
conditions.~We used free boundary condition because
calculation itself shows that the potential has a long ran
behavior and with free boundary conditions we can red
finite size effects.! We started both from a random non
Abelian configuration and from a random Abelian config
ration and performed iterative local minimization to relax t
system to its lowest energy state. There were no surprise
we found that for both initial conditions the system relax
to a minimal energy state of the same energy and that
non-Abelian solution, after going to a maximally Abelia
gauge, turned out to be entirely Abelian in nature. Also,
potential of interaction was well fit by the Coulomb form
V51/(4r ). ~One expects a coefficient 1/4 in the Coulom
potential because the total magnetic flux from the monop
is F5p. This value has been numerically confirmed in o
calculation.!

In Fig. 7 we compare the monopole-antimonopole pot
tials in the confined phase of the quantum system and in
classical system. The comparison shows a clear differe
between the classical and quantum case and reinforces
conclusion that quantum fluctuations introduce a screen
of magnetic monopoles. We further illustrate this point
displaying in Fig. 8 snapshots of a typical quantum config

e

g

TABLE VIII. Value of the spatial ’t Hooft loop in units ofa21

at various separationsd for a deconfined system (Nt56) with spa-
tial lattice sizeNx3Ny3Nz520320340 atb52.6.

d F

1 1.3640~13!

2 1.7396~10!

3 1.8512~15!

4 1.9180~13!

6 1.9948~6!

8 2.0756~6!
6-6
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ration ~from a simulation atb52.476 andNt512) and of
the classical solution. In the pictures, vectors show the m
netic field in a maximal Abelian projection and the size
the dots measures the non-Abelian character of the con
ration at that point~it is proportional to the square of th
components orthogonal to the Abelian projection!. In the
classical case the location of the monopole-antimonop
pair is evident. In the quantum case it is marked by
crosses in the middle of the second picture. Had we
marked the location of monopole and antimonopole in
quantum case, the reader would be hard pressed in fin
where they are. The marked difference between the clas
and quantum configurations gives a vivid illustration of ho
the quantum fluctuations of the gluon field provide a mec
nism for the screening of external monopole sources, wh
is most likely also responsible for confinement in the lo
temperature phase and for the emergence of the mag
mass in the high-temperature phase.

IV. CONCLUSIONS

We have measured the free energy of a monop
antimonopole pair in pure SU~2! gauge theory at finite tem

FIG. 6. Comparison of the ‘‘free energy’’ for propagation in th
space direction vs propagation in the time direction of
monopole-antimonopole pair, for a system in the deconfined ph

FIG. 7. Comparison of monopole-antimonopole potentials in
confined phase of the quantum system and in the classical sys
Data for the quantum system are atb52.6 andNt516.
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perature. We find that the interaction is screened in both
confined and deconfined phase. The mass of the objec
sponsible for the screening at low temperature is appro
mately twice the established value for the lightest glueb
indicating a prevalent coupling to glueball excitations. The
is no noticeable discontinuity in the screening mass at
deconfinement transition, but in the deconfined phase
clearly see an increase of the screening mass with temp
ture. Our results support the hypothesis of the existence
monopole condensate in the vacuum of the SU~2! theory and
provide evidence that some glueball excitation could serve
a ‘‘dual photon’’ in the dual superconductor hypothesis
quark confinement. Finally, we would like to observe that t
method we have developed for the calculation of t
monopole-antimonopole free energy is applicable to ot
models, beyond the SU~2! theory considered in this pape
While moderately demanding in computer resources, it
pears capable of producing accurate numerical results for
monopole-antimonopole potential of interaction. Thus
could be used to shed light on the dynamics of other in
esting systems that are expected to exhibit the formation
electric or magnetic condensates in their vacuum states.

e.

e
m.

FIG. 8. Comparison of the maximally Abelian projected co
figuration for the classical minimal energy solution~first picture!
and an average over the time slices of a typical quantum confi
ration. The second picture is a detail of a region around the mo
poles; the third one is from a region without monopoles.
6-7
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