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We study the finite-temperature phase structure and the transition temperature of QCD with two flavors of
dynamical quarks on a lattice with the temporal shte=4, using a renormalization group improved gauge
action and the Wilson quark action improved by the clover term. The region of a parity-broken phase is
identified, and the finite-temperature transition line is located on a two-dimensional parameter space of the
coupling (3= 6/g?) and hopping parameté&. Near the chiral transition point, defined as the crossing point of
the critical line of the vanishing pion mass and the line of finite-temperature transition, the system exhibits
behavior well described by the scaling exponents of the three-dimen$dgdalspin model. This indicates a
second-order chiral transition in the continuum limit. The transition temperature in the chiral limit is estimated
to beT,=171(4) MeV.
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[. INTRODUCTION work we pursue an extension of this pure gluon study to full
With the development of recent experimental projectsQCD with two flavors of dynamical quarks].
aimed towards a detection of the high-temperature quark- Here we focus our attention to the Wilson-type quark ac-
gluon plasma in relativistic heavy ion collisions, it is urgenttion, and study the effect of improvement for both gluon and
to theoretically establish the thermal properties of QCD di-quark sectors. Compared to Kogut-Susskitgtaggered
rectly from its first principles. quark action{8], a clear advantage of the Wilson-type quark
For the pure gluon system, numerical simulations on thections is manifest flavor symmetry. On the other hand, chi-
lattice are quite advanced by now, with the critical tempera+al symmetry is explicitly broken, causing some subtleties in
ture and the equation of state, which are the basic thermodyhe analysis. This leads to large lattice artifacts at the range
namic quantities needed for phenomenological studies, webf lattice spacinga™1~1-2 GeV, extensively used in finite
established in the continuum lim{tl]. Full lattice QCD temperature simulations when the combination of the
simulations incorporating dynamical quarks, however, havelaquette gluon action and the standard Wilson quark action
not reached such a status. In particular studies on spatiallyre used. The most notable artifact is an unexpected strength-
large lattices, which are required for the determination of theening of the finite-temperature transition at intermediate val-
equation of state, are still limited to lattices of a small tem-ues of the quark mag®,10]. This undesired behavior disap-
poral size,N;=4 and 6[2], due to the large computational pears when an RG-improved gauge action is empldgéd
power needed for dynamical quark simulations. A comparison with other action combinations, the plaquette
A possible way to bring the simulation close to the con-gluon action and a clover-improvéi2] Wilson quark action
tinuum is to employ improved lattice actions: the continuum[13], or the Symanzik-improved gluon action and a clover-
limit may be taken for thermodynamic quantities from coarseémproved quark action14], indicates that improvement of
lattice spacings and correspondingly small temporal latticehe gluon action is essential in removing the dominant lattice
sizes such afNy=4 and 6 or even smaller. For the pure artifacts at finite lattice spacings. On the other hand, we ex-
gluon system, there were a number of tests of this idea repect that improvement for the quark action renders the be-
ported some time agi8]. More recently it has been shown havior of fermionic thermodynamic quantities close to the
[4] that the equation of state calculated for a renormalizatiorcontinuum.
group (RG) improved gluon actiori5] agrees with that for Previous studies with the standard Wilson action have
the plaquette actiof6] in the continuum limit. In the present shown that the phase diagram in the plane of coupling and
hopping parameters 3=6/g%,K) contains a phase with
spontaneous breakdown of parity-flavor symméifry]. The
*On leave from High Energy Accelerator Research Organizatiorboundary of this phase is characterized by a vanishing of

(KEK), Tsukuba, Ibaraki 305-0801, Japan. pion (screening mass. The interplay of the boundary with
"Present address: Department of Physics, Columbia Universitythe line of finite-temperature transition plays a crucial role in
538 West 120th St., New York, NY 10027. understanding the finite-temperature transition with Wilson-
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type quark action$16,10,17. Thus, prior to calculation of TABLE I. Simulation parameters on the %64 lattice.

thermodynamics quantities, an examination of the finite _

temperature phase structure is indispensable when one usesB K Traj. Therm.

}rr:]e ;:I(\)Ivzr-wlnprnove?i Vr\]hlson quark action coupled to the RG- 4 0.1300-0.1450 500—2000 200-500
provec giuon action. 1.825 0.1425 1000 300

A particularly important point concerns the universality 1850

property of the finite-temperature transition. For the standard 0.1250-0.1440 500-1900 200-300
staggered quark action, extensive scaling analyses carried out86° 0.1400 2000 300
for N,=4 failed to establish either tH@(4) scaling expected 1.875 0.1350-0.1400 1580-2000 200
from the effective sigma model analydi$8], or the O(2) 1.890 0.1400 2200 300
scaling suggested from the actual symmetry of the staggeredt-900 0.1250-0.1425 500-2000 200-400
quark action[19—22. On the other hand, a study with the 1910 0.1350 2100 300
standard Wilson quark action coupled to the RG-improved 1.925 0.1300-0.1400 1000-2000 200-300
gauge action found that th®(4) scaling ansatz describes 1.950 0.1200-0.1410 500-2000 200
the chiral condensate data wgll1,17). Our interest here is  1.975 0.1300 1000 200
to explore whether th@(4) scaling is maintained for the 2.000 0.1150-0.1390 500-2000 200-300
clover-improved Wilson action. Such an analysis is also nec- 2.100 0.0900-0.1375 500-1000 200-900
essary to quantitatively locate the point of transition for 2.200 0.0700-0.1365 500 200

massless quarks. Combining this information with measure
ments of hadron masses at zero temperature, we obtain an
estimate of the critical temperature. 1 T

In this paper we specifically adopt the improved gluon Fuvzg(fw_fw)' 4
and quark actions, which resulted from a systematic com-
parative study of various combinations of improved actionswith f,, the standard clover-shaped combination of gauge
[23]. The combination is the same as that we have used ilinks. We adopt the mean field-improved clover coefficient
our zero-temperature studies reported elsewf24e25.

This pape? is organized as fF())"OWS. The action and the Cow= (W) 3= (1-0.841"1) "% 6)

simulation parameters are de§cr|ped in Sec. 1. The phgsﬁsingwl“, which was calculated in the one-loop perturba-
structure for our action is studied in Sec. lll. Section IV is

devoted to the issue oD(4) universality. Assuming the tion theory[5]. This choice ofcsw, when expanded ifg,

. .. agrees well with the actual one-loop resuttsy~=1
O(4) critical exponents, we then extrapolate the transmon+ 0.678(18)B+ - - - [26]. Furthermore, the one-loop values

line to obtain a precise estimate of the chiral transition point. 131 e
The transition temperature in physical units is discussed i F W™ reproduce the mean Va'”?s of plaquette within 8%
or the range of andK in our studieq24,25.

Sec. VI. A brief conclusion is given in Sec. VII. . S . .
This combination of improved gauge and quark actions

was tested in our full QCD comparative stu@®3]. We
IIl. SIMULATION found that the scaling violation in light hadron masses, and
A. Choice of the action the violation of rotational invariance in a static quark poten-
tial, are both small with this combination of actions already
ata '~1 GeV where our finite temperature simulations are

made, as compared to thé 1= 2 GeV needed for the stan-

Sy=—B{co > Wit (x)+cq > W}jz(x)], (1)  dard plaquette gauge and Wilson quark actions.
X, v

X, u<v

We employ the RG-improved gluon acti¢8]

with 8=6/g2, andc,=—0.331, andc,=1—8c;, coupled B. Detalls of simulations

with the clover-improved Wilson quark actidi?] defined We make our finite-temperature simulations on a lattice
by with a temporal extensioN,=4. Zero-temperature simula-
tions with temporal sizes comparable or larger than spatial
— sizes are also made to calculate hadron masses for the pur-
Sq= Xzy AxDxyy (2 pose of fixing the scale.
’ Our simulation parameters are summarized in Tables
I-IV. Runs are carried out on lattices of size*¥& and 18
Dyy=Sey— K2 {(1=¥,)Ux 61y at =1.8-2.2, and of size ¥4 and 13x24 at
s B=1.2-1.7. Except for the case of the3x24 lattice, we
use antiperiodic boundary conditions in the temporal direc-
+(1+ yM)UI’M5X,y+,;}— OxyCsuK > T uF - tion for quarks. All other boundary conditions are taken to be
wsv periodic. Simulations are carried out at seven to eleven val-
©) ues of the hopping paramet&r for each 8, which corre-
spond to mps/my~0.4—0.9 for the 8x4 lattices, and
Here,F ,, is the lattice discretization of the field strength  0.6-1.0 for the 16x 4 lattices.
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TABLE II. Simulation parameters on the 168=1.8—2.2 and TABLE IV. Simulation parameters on $2 24 lattice.
16°x 42 (8=2.25) lattices.
B K Traj. Therm.
B K Traj. Therm.

1.30 0.1375-0.1500 120 55-70
1.80 0.1300-0.1450 200 200-500 1.40 0.1400-0.1525 90-120 50-70
1.85 0.1250-0.1440 200-300 100-300 1.50 0.1375-0.1525 90-120 50-80
1.90 0.1250-0.1425 200 200-400 1.60 0.1370-0.1510 700-1240 50-150
1.95 0.1200-0.1410 200-300 100-400 1.70 0.1340-0.1510 120-1275 150
2.00 0.1150-0.1390 200-300 100-200
2.10 0.0900-0.1375 300 200-550
2.20 0.0700—0.1365 200-300 100-200 source, we perform a combined fit using both point and
2.25 0.1300-0.1360 250 smeared sources.

We measure the current quark mass defined through an
axial vector Ward-Takahashi identif27,28,

The hybrid Monte Carlo algorithm is employed to gener-
ate full QCD configurations with two flavors of dynamical V,A,=2mP+0(a), (6)
guarks. Details of the simulation are basically the same as in
our zero-temperature studig®4,25. The molecular dynam- whereP is the pseudoscalar density afg is the uth com-
ics time stepdt is chosen to yield an acceptance rate greateponent of the local axial vector current. In practice we make
than about 80%. The length of one trajectory is unity in mosta simultaneous fit of the two-point functiog# ,(t)P(0))
cases, but is reduced down to 0.25 at several points close &nd(P(t)P(0)) to extract the pion mass, and the ampli-
the critical line to keep the acceptance rate of about 80%ydes <o|p|w(5:o)>, <0|A,u|77(5:0)>' from which we
within 200 molecular dynamics time steps. The inversion ofcompute
the quark matrix is made with the BiConjugate Gradient Sta-
bilized (BiCGStah method forK <K, whereK_ is the criti- >
cal hoppi ; <0|A,u|77(p_0)>

pping parameter at zero temperature where the pion g=—m, - ) )

mass vanishes. Fd{>K_., we use the conjugate gradient (O|P|m(p=0))
(CG) method since the clover-Wilson operator may have
negative eigenvalues, in which case the BiCGStab algorithmve chooseu=4 for zero-temperature simulations, apd
fails to converge. =3 at finite temperatures, for which the screening masses

We measure gluonic observables, Wilson loops, and thare determined along theaxis. We also use an alternative

Polyakov line at every trajectory. Hadrgscreening propa-  definition of quark mass given by
gators are calculated at every 2-5 trajectories using both a

point source and an exponentially smeared source for quarks my=(1/2a) (K- 1=K ). @)
and a point sink. For hadronic measurements on the d ¢
lattice, we periodically double the lattice in one of the spatial
directions. On the 8x4 and 18x 24 lattices, we determine
hadron masses by a single hyperbolic cosine fit to the prop
gator calculated with the smeared source because of its cl
plateaus of effective mass. On the®*¥& and 16 lattices,
since a plateau is sometimes less clear with our smear

While these different definitions aof, give different values
at finite 8, they converge to the same value in the continuum
Fimit [29,25. In this work, we concentrate on the phase
egj . . -

Structure and critical properties around the finite temperature
%Jﬂral transition point. Therefore, in this work, we ignore the
e - .
renormalization factor&Zp, Z,, and Z,,, since they are
regular around the transition point.

TABLE lIl. Simulation parameters on the’& 4 lattice.
We use the zero-temperature vector meson mgssas a

B K Traj. Therm. measure of the lattice scale. F@=1.8, detailed hadron

mass data for light quarks are available from our extensive
1.20 0.1425-0.1475 118-120 70-72  calculations[24]. We use the results of hadron masses ob-
1.30 0.1475-0.1525 118-120 70-104 tained in this reference for our analysis. These data, however,
1.40 0.1500-0.1540 120-180 110-280 do not fully cover the region of heavy quarks where the
1.40 0.1625-0.1750 84-100 36-80 finite-temperature transition is located flf=4 at 3=1.8.
1.50 0.1475-0.1540 100-120 70  We evaluate hadron masses in these regions, and interpolate
1.50 0.1585-0.1700 88-100 50-90 them by a cubic spline formula to the point of transition.
1.60 0.1400-0.1525 250-300 75-510 No previous data are available in the region of strong
1.60 0.1560—0.1700 92-500 50—300 couplingB=1.3-1.7. Thus, the hadron masses in this region
1.65 0.1400—0.1500 300-500 200—460 are measured in the present work. We fit the vector meson
1.65 0.1565-0.1700 250-500 100—400 Mass in terms of pseudoscalar meson nmassby an ansatz
1.70 0.1400—0.1500 250-300 150—300 inspired by chiral perturbation theory,
1.70 0.1545-0.1700 250 80-240

mya=Ay+By(Mpga)*+ Cy(Mpa)°. 9
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FIG. 1. Chiral extrapolation of vector meson mass as a functiory,yer quark action ah,=4.

of (mpga)? obtained on the X 24 lattice.

The fit curves are illustrated in Fig. 1. The lattice spacingThin open symbols show the simulation points on Hie
defined by identifyingm,(T=0)=m,=770 MeV in the =4 Jattices. The solid line connecting symbols denoted as
limit of zero pion mass is given in Table V. K.(T=0) represents the critical line of vanishing pion mass
Errors are determined by a jackknife method. From agt zero temperature. Other objects on the phase diagram are
study of bin-size dependence, we adopt the bin size of 1-10ained on theN,—4 lattices. TheK, line shows the loca-
configurations(i.e., 2-50 trajectorigsfor hadron masses, o of the finite-temperature transition, above which the sys-
and 5-20 trajectories for other gluonic quantities. tem is in the high-temperature phase. We expectthtine
lIl. PHASE STRUCTURE to cross theKC(Tf 0) Ilir_le. The crossing point _is a natu.rjcll
_ _ _ _ ~candidate to be identified as the point of chiral transition
The phase diagram obtained in our study is summarizeft10]. The shaded region shows the parity-broken plasg
in Fig. 2. Details are discussed in the following subsectionsThe lower boundary of the parity-broken phase lies just

TABLE V. Results for the lattice scala™?, the chiral limit above theK(T=0) line.
K(T=0), and the upper and lower boundaries of the parity-broken
phaseK (N;=4). Results forK,(T=0) anda™! at 8 marked by

(*) are obtained using hadron mass results ff@dj. A. Critical line at zero temperature

The location of the critical line at zero temperature

K lower KPPer K.(T=0), where the pseudoscalar meson mass vanishes, is
B a ' [GeV] K(T=0) (Ni=4) (Ny=4) essential information for discussion of chiral properties with
Wilson-type quark actions. To determiig(T=0), we ex-

1:22812) 0.1504€0 0.17000 trapolatem,%s as a function of K using a quadratic ansatz
1.30 0.56821) 0.15408256) 0.1547525) 1 1 1 1\2

1.30307) 0.16500 (mpg':l)zz BPS(R - K—) + CPS(R - K—) . (10
1.36404) 0.16250 ¢ ¢

1.40 0.60631) 0.15630862) 0.1570215) 0.1610326)

1.43205) 0.16000 The results form3g are illustrated in Fig. 3 in the strong-
1.50 0.65811) 0.15664158) 0.1573@22) 0.1578021)  coupling region of3=1.3—1.7. Our values fdk.(T=0) are
1.60 0.70710) 0.15525%31) summarized in Table V and plotted in Fig. 2.

1.70 0.78010) 0.15198722) Towards the weak coupling limit3=c, the K,(T=0)
1.80*) 0.99519 0.14767815) line gradually approaches the free Wilson quark value 1/8.
1.85 1.03829 0.14552658) For the case of the standard unimproved Wilson quark ac-
1.90 1.20736) 0.143737498 tion, K;(T=0) is a monotonically decreasing curve connect-
1.95*) 1.331423) 0.14207214) ing K~1/4 at 3=0 and 1/8 atB=». For the case of our
2.00 1.44%33) 0.14081155) clover-improved quark action, thK.(T=0) line shows a
2.10*)  1.85158 0.13902021) maximum inK at f~1.47, and decreases as we lowgr
2.20%) 2.4214)  0.13765853 below this value. This is likely to arise from our choice for
2.25 2.4024)  0.13722%92) the clover coefficient, Eq(5), which diverges as8 ap-

proaches 0.8412.
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FIG. 3. Chiral extrapolation of pseudoscalar meson mass as a . _ .
function of K on the 123224 |attice P FIG. 5. Polyakov line susceptibility obtained on the %6} lat-

tice. Several data are omitted for clarity of the plot.
B. Finite-temperature transition crossover becomes monotonically weaker with increaging

We identify the finite temperature transition poitfrom  IncreasingB on the K, line corresponds to increasing the
inspection of the Polyakov line and Wilson loops. In Figs. 4distance to the critical line, i.e., increasing the quark mass. In
and 5, the Polyakov line and its susceptibilitygt1.8—2.2  the limit of infinite quark mas& =0, theK; line will end at
on the 16x 4 lattice are shown. We fit the peak of the sus-the first-order deconfinement transition of pure gauge theory,
ceptibility by a Gaussian form using three or four points neamwhich is located ajp=2.2863(10) forN,=4 [30,4].
the peak, except foB=2.2. The results foK; from the fit For the smalle region (3<1.7), where simulations are
are given in Table VI. The ratiompg/my,, and T,./my, made on an 8<4 lattice, data for the Polyakov line be-
with zero-temperature meson masses interpolated t&the comes too noisy to determine the positionkgf. We alter-
point, are also summarized in the table, whéig is the natively take the spatial plaguette shown in Fig. 6, and iden-
pseudocritical temperature Kt,. These results are used in tify K, from its rapid changes. The range & for
Secs. V and VL. B=1.6-1.7 thus estimated, is summarized in Table VI.

On theK; line thus determined, other physical observ- TheK, line approaches the zero-temperature critical line
ables, such as the plaquette, also show rapid changek.(T=0) as B decreasegsee Fig. 2. We expect the two
Smoothness of the data arouKd suggests, however, that, lines to cross at a pointd;;,K;). This point is a natural
for the range of quark mass we studied, the finite-candidate for the point of chiral transition since the pion
temperature transition &, is an analytic crossover. From mass, and hence, the quark mass defined through the Ward-
Fig. 4 and similar plots for other observables, we see that th&akahashi identity, vanishes at zero temperafd@. The

location of this point obtained by scaling analygsse Sec.

0.30 T T T T
TABLE VI. Finite temperature transition/crossover poitfor
Ni=4. Results formpdT=0)/m,(T=0) andT,./my(T=0) in-
terpolated to th&, point are also listed. No zero-temperature simu-
lations were made g8=1.65 and 1.925.
0.20 i
B Ki(Ni=4) Mps/My, Toc/my
_/I\ 1.600 0.154810) 0.346153 0.21711)
v 1.650 0.153810)
0.10 i 1.700 0.151Q10) 0.396170 0.23417)
1.800 0.1448B14) 0.69092) 0.21%15)
1.850 0.1401a8) 0.790%60) 0.191720)
1.900 0.1362(5) 0.852539) 0.180%12)
1.925 0.134123)
0.00 5 '08 7 '10 s '12 p '14 1.950 0.1304®7) 0.905164) 0.157262)
’ ’ K ’ ’ 2.000 0.1237@3) 0.945@36) 0.139829)
2.100 0.109213) 0.979@13) 0.111409)

FIG. 4. Polyakov line obtained on the %64 lattice.
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V) is marked by a star in Fig. 2.

Our estimate foK; stops a{3=1.6. For3<1.5, because
the parity-broken phase appears at intermediétas dis-
cussed in the next subsection, a more detailed study is r%-
quired to identify the location oK .

FIG. 7. Pseudoscalar meson mass as a functionkobbtained
on the §x4 lattice.

<(Ny) line should be in the low temperature phase. These
considerations imply that th¢, line runs close to the cusp of
C. Paritv-broken bh the K.(N,) line. Therefore, we expect that the chiral transi-
- rarity-broken phase tion point is located near and above the c{isf],

For Wilson-type quark actions, chiral symmetry is explic-
ity broken away from the continuum limit by the Wilson Bet= Beusst O(a), (1D
term. The appearance of massless pseudoscalar mgsens
ons at K,(T=0) is, therefore, not due to a spontaneouswith B.= B, The possibility that the chiral transition
breakdown of chiral symmetry. Analytic calculations in the point actually agrees with the cusp is not excluded. For the
strong coupling limit and numerical simulations at interme-case of the standard Wilson quark action coupled with the
diate couplings show that there exists a region in the phasglaquette gauge actioB, has indeed been found to be close
diagram in which parity-flavor symmetry is spontaneouslyto g,,[16]. Similar results were obtained for the case of the
broken (parity-broken phase[15,16. In this picture, the RG-improved gauge action with the standard Wilson quark
pion is understood as the zero mode of a second-order phaggtion[17].
transition that takes place along tkg(T=0) line, signaling Figure 7 shows results for a pion screening mass squared
spontaneous breakdown of parity-flavor symmetry. (mpga)? with our action on arN;=4 lattice. Solid lines are

At zero temperature, the parity-broken phase extendfinear or quadratic fits in K. In the upper figure showing
from the strong coupling region towards the weak couplingresults for 1.7 8=1.6, the two fit lines for3=1.6, from
region, forming sharp cusps which touch the weak couplingarge or small values of K/, cross each other. This indicates

limit g=c0 atK=1/8 as well as at four other valuesifIn  that mpg remains finite for all values oK, and hence the
the present work, we concentrate on the branch of the parityyarity-broken phase does not exist & 1.6.

broken phase with the smallest positive valueskofThe In contrast, when we decreagedown to 1.5 and 1.4, we
lower boundary of this branch is the usual critical line de-see evidence for two values &f.(N,=4) (lower figure in
noted byK(T=0) in Fig. 2. Fig. 7) corresponding to the upper and lower boundaries of

For finite temporal sizé\;, the cusp of the parity-broken the cusp of the parity-broken phase.
phase retracts from the weak coupling limit to a finite value e determine the location #¢.(N,=4) by an extrapola-
of B. Let us denote the position of the cusp 8 p, Keusp,  tion of (mpga)? linearly in 1K, using the lightest two to
and the boundary of the parity-broken phas&a@\;). This  three points. We confirm that a quadratic extrapolation gives
boundary is double valued foB<pfs, Whose two consistent results. Results Kf.(N,=4) are summarized in
branches we denote &"*'(N;) <K¢PP*(N;). Table V. We find the gap between two values oK J(N,

In the low temperature phasé<K;, we expect a mass- =4) to be
less pion to appear as is increased. Therefore, the lower
part of the K,(N;) line should be located near the zero-

temperature critical lin&.(T=0), with the difference being A(LK)=0.02012) at f=15 (12)
O(a). On the other hand, we do not expect a massless pion
in the high temperature phasé>K,. Hence, the whole =0.15912) at p=1.4. (13
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3.0 T

where the errors are estimated from the crossing points of the
one standard deviation error bands of the two fits. From the
discussions around Ed11), this value for 8., gives a
lower bound of8;.

® K=0.160
m K=0.1625
& K=0.165

IV. O(4) SCALING OF CHIRAL CONDENSATE

From universality arguments, the finite-temperature QCD
transition near the chiral limit is expected to be described by
an effectivec model[18]. According to this description, the
transition for two quark flavors in the chiral limit is either
first order or second order, depending on the strength of the
anomalous coupling which breaks axiah(@) symmetry.
When this effect is negligible, the transition is of second
order, and one expects that the critical properties are de-
0.0 LA ' scribed by those of the three-dimensio@|4) Heisenberg

' ' ' ' ' model. Hence, tests @(4) scaling provides us with a use-
ful way to study universality properties of the chiral transi-

FIG. 8. Pseudoscalar meson mass as a functighaiftained on  tion for two-flavor QCD[19].
the 8x 4 lattice. In the O(4) Heisenberg model, the order parameter is
given by the magnetizatiokl. Near the second order transi-
tion point, M satisfies the following scaling relation:

For the upperK.(N;=4) line, we also try to estimate its
location by extrapolatingripsa)? linearly in 3, at fixedK 1Us_ 16
=0.16, 0.1625, 0.165, and 0.17, as shown in Fig. 8. The M/h F/hTEE), (19

results are listed in Table V. As is seen in Fig. 2, the point§,hare 1 is the external magnetic fieldt=[T—T(h
c

for K¢(Ny=4), obtained from the K and f fits, form a  _qy)/1 (h=0) is the reduced temperature, the exponents
smooth curve together. have the values Bis=0.537(7) and W=0.2061(9)[31],

An enlargement of the phase diagram around the parityénd theO(4) scaling functionf (x) is also known(32].

broken.phase is given in Fig. 9. Sinc«_e the parity-brpken In Ref. [11], it was shown that th@©(4) scaling of Eq.
phase is absent g8=1.6, the boundaries of the parity- (15) is well satisfied for the standard Wilson quark action

broken phase S.hOUId termin_ate at a cuspBatl._S—l.G. I combined with the RG-improved gauge action under the
order to determine the location of the cusp point more pre

; . _ identificationst~ﬁ—,8u, h~mga, andM~<Ez,b>, where
giiyc’]lﬁ%:gtitg 2#55[? Ii?grrlnomt%él\fli}s 4V?/ed3tba}[;ﬁparately quark mass defined by the axial vector Ward-Takahashi

identity was employed. It is important to note that the naive
definition of the chiral condensate/) is not adequate for

Beus=1.53846), Kys=0.1568769), (14  Wilson-type quarks because chiral symmetry is explicitly

P P broken. A proper subtraction and renormalization are re-
quired. A properly subtractediyyy) can be defined via an
axial Ward-Takahashi identify28] as first employed in Ref.
[11]:

0.17 r

<E¢>5ub=2mqazg (m(x)7(0)), (16)

where (X) =0y4ys0y With g, the lattice quark field. For the
normalization coefficientZz, we adopt the tree valu&
=(2K)?, which is sufficient for our study of critical proper-
ties becausé is regular at the finite temperature transition
point.
Figure 10 shows the results ¢f),, as a function of
Ward-Takahashi identity quark mass from our actionBat
015 13 " 15 6 =1.8-2.2 obt.ained on a ig4 Iatti(_:e. We perform a fit to
) : B' | | the O(4) scaling functior{32] by adjusting the value o8,
as well as the scales forandh, with the exponents fixed to
FIG. 9. Cusp of the parity-broken phase. Cross shows an estthe O(4) values[31]. Since scaling is expected toward the
mate for the crossing point of the two lines extrapolated quadratichiral transition point corresponding to massless quark, we
cally in . start our fit with the entire data set, gradually reducing the
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AB=1.975

<—<1=2.00

V-V p=2.10

>—D>B=2.20

<W>sub

0.0 : 2
1.0

FIG. 10. (¢:h)syp as a function of mMya on the 16x 4 lattice.

range of (3,m,a) toward smalled andmga until an accept-
able x?/Np is obtained. We find this condition to become
satisfied for the rangg=1.8-1.95 and &\;a=0.0-0.9 with
X2INpg=0.82 forNpg=33, for which we obtain
Bo=1.46973). (17

This fit is shown in Fig. 11.

In this test we use the results foma obtained on the
finite-temperature 1%< 4 lattice. We repeat the test using the
mga determined on the zero-temperature lattice!, 146 the

same values off,K). Results for quark masses extracted on

a 16" and a 18x 4 lattice are mutually consistent for the
range 5=1.8-1.95 and &,a=0.0-0.9. As shown in Fig.
12, we again find a good agreement with thé4) scaling
function with y?/Npr=1.18 forNpr=22 at
Bei=1.46266). (19

15

)

5, 0p=1.80
op=1.85
o B=1.875
AB=1.90
4B=1.925
VB=1.95

/ h1/8

<W>sub

0'Ooo 0'5 1'0 )
. : 1/Bd""
t/h"

FIG. 11. O(4) scaling fit withh=2mga, using all data aj8
=1.8-1.95 and 4;a<0.9 on the 18x 4 lattice. The best fit is
obtained a{B.;=1.469.
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15 o . T
xR Op=1.80
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o 10F & .
= ﬁ
— éé
o
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A B\
Ig 05} TS 1
v -~ »
ot~
0-0 1 1 1
0.0 05 15

£y pree

FIG. 12. The same as Fig. 11, usinga obtained on the zero-
temperature 1%6lattice. The best fit is obtained @,=1.462.

The number of data points are smaller due to fewer simula-
tion points on the 16lattice.

The good consistency of our condensate data with the
O(4) scaling suggests that the chiral phase transition of two-
flavor QCD in the continuum limit is of second order. The
estimated value foB;; is somewhat low compared to the
result for the cuspBqus;=1.538(46) obtained in Sec. Il C.
The reason for this trend is not clear at present. A possible
origin is lack of condensate data belg9+= 1.8, closer the
chiral transition point in the scaling fit. We leave an exami-
nation of this point for future work.

V. SCALING OF THE PSEUDOCRITICAL TRANSITION
POINT

Let us denote, by,., the pseudocritical point defined as
the peak position of the magnetic susceptibility at fitite
From the scaling relation, E@15), we expect

tpcxhA? (19)
to be satisfied for this quantity. Identifyinig,.= 58,c— Bet,
where g, is the 8 coordinate of the; line, we expect

Bpe=Bert Bgh™P’(1+0(h)) (20
near the chiral transition point.
In Fig. 13, we plot the pseudocritical poigt,. choosing

h=m,a (21

i.e., the quark mass defined by the axial vector Ward-
Takahashi identity. Errors attachedrtga include the uncer-
tainty in the location of theX; line for each value of3,,
which actually dominates the error. The precision of our re-
sults is not sufficient to attempt a fit, taking the exponent
1/86 as a free parameter. We therefore make a fit adopting
the O(4) value for this exponent. Taking 63,.<1.95 for

the fit range, since this was the range acceptable for the
scaling analysis of the chiral condensate, we obtain

034502-8
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1.6 |

1.5 |
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0.0 0.1 0.2 0.3 0.4 0.5

mqa

(Mpg/ mv)2

FIG. 15. The same as Fig. 13 fdr=(mpg/my)2. The data

FIG. 13. The pseudocritical poiift,. as a function of the Ward Boo=2.2863(10) ah=1 is from the pure gauge theof$0,4].

identity quark massn,a. Result of the fit using th©(4) exponent
is shown by a solid line. The prediction f@, in the chiral limit h=(mpg/m )2 25
from this fit is shown by a star. The location of the cusp of the PSTTV/

parity-broken phase is shown by a diamond, which is slightly

shifted in the horizontal direction for clarity of the figure. obtained on the zero-temperature lattice. This choice has the

nice feature in that the location of the physical point can be
easily identified ash=(m7,/mp)220.031. Furthermore, the
entire range of quark masses, from 0% can be para-

, 5 B _ meterized in a finite interval @h=<1. Taking advantage of
with x ./NDF_ 1.04 forNpe=6. . ) ._the latter feature, we attempt a global fit including the data in
In Fig. 14 we show results of a similar analysis, makingi,e quenched limif30,4. We find that a Padéype ansatz

an alternative choice, extending Eq(19) given by

Bei=1.55728), (22)

h=1/K,— 1K, (23 (2)
o P s A (26
for the external field. The fit using this identification leads to 1+ C,(Bs)h
_ reproduces our data well, as shown in Fig. 15, with
Bct=1.61317) (24)

x?INpe=0.33 for Npe=5. The fitted value for the chiral

for data in th  E£@B<1.95 with y¥N transition point8.,=1.41(6) is too low, hoyvever,_ presum-
jrl 68 ?orllr\]l iﬁsame range, @ W XTNoF ably because results toward larger values afcluding that
' DR- in the quenched limit i{=1), having small errors, domi-

As the third possibility, we consider nantly determine the fit.

2.1 : ; x x
VI. CHIRAL TRANSITION TEMPERATURE
290 In order to calculate the transition temperature, we evalu-
ate Tpc/my=1/(N;mya), where my is the vector meson
R mass at the transition poifi8,K,(3)) evaluated at zero tem-
perature. The results are plotted in Fig. 16 as a function of
18 - (mps/my)2. We see that the difference in the values of
@_3 T,c/my at the chiral transition poing.; where Mps/my)?
17 =0, and at the physical poinines/my)?=0.031 is negli-
gible compared with the current magnitude of errors. Our
161 values of T,./my, are slightly smaller than those obtained
%4 with the standard Wilson quark action dh=4 lattices, and
15 1 consistent with the results from other improved actifihls
To estimate the transition temperature in the chiral limit,
1.4 : :

: we interpolate the vector meson mass along the zero-

0.2 04 0.6 0.8 - .
1/K, - 1/K temperature critical lind& (T=0) to 8= B.. For the nu-
¢ merical value of8.;, we take the result, Eq22), based on
FIG. 14. The same as Fig. 13 foe=1/K,— 1K . O(4) scaling of theK; line in terms of the Ward-Takahashi
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VII. CONCLUSIONS

025 T il We have studied the phase structure and the nature of the

chiral transition in two-flavor QCD at finite temperatures us-
ing an RG-improved gauge action and a clover-improved
Wilson-type quark action on a lattice with the temporal size
N;=4. We have identified the boundary of the parity-broken
phase and the finite temperature transition line on a two-
parameter space of the coupling and the hopping parameter.
] The chiral transition point is found to be located very close
to the cusp point of the parity-broken phase.
OT/m, from B, A subtracted chiral condensate is shown to satisfy the
scaling behavior with the exponents and the scaling function
0.10 ; ‘ . : : universal to theO(4) Heisenberg model. The quark mass
g 0.2 (rr?A/m )2 0.6 0.8 10 dependence of the transition point is also consistent with the
pSTTV 0O(4) prediction. These results, in agreement with the previ-
FIG. 16. Chiral transition temperature in units of vector mesonOUS Study of the standard Wilson quark action combined with
mass as a function ofifs/my)2. Hadron masses are measured atthe RG-improved gauge acti¢f1,17, indicate that the chi-
the same simulation point on a zero-temperature lattice. The chiraial transition of two-flavor QCD is of second order in the
transition temperature estimated frofly, discussed in Sec. V is continuum limit.
shown with an open symbol. The solid line is a guide to the eyes Assuming theO(4) scaling, we have extrapolated the

0.20

Tp(,/mV

based on a Padgpe ansatz. transition point towards the chiral limit. Fixing the lattice
_ _ o scale in terms of th@ meson mass, we obtaii,=171(4)
identity quark mass. This gives MeV for the transition temperature.

T./my=0.222451), (27
which is plotted by an open circle in Fig. 16. Converting to ACKNOWLEDGMENTS
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