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We study equilibrium and nonequilibrium aspects of ioemal state of cold and dense QCD and QED. The
exchange of dynamically screened magnetic glu@i®tons leads to infrared singularities in the fermion
propagator for excitations near the Fermi surface and the breakdown of the Fermi liquid description. We
implement a resummation of these infrared divergences via the Euclidean renormalization group to obtain the
spectral density, dispersion relation, widths, and wave function renormalization for single quasiparticles near
the Fermi surface. We find that all features scale with anomalous dimenﬁjg("ls):oc|k—kF|1’(1’2“, I'(k)

o [k—ke| Y725 Z (k) o< |[k— ke[ 272N with N = a/6m for QED, (ag/6m)(NZ—1)/2N, for QCD with N,

colors andNg flavors. The discontinuity of the quasiparticle distribution at the Fermi surface vanishes. For
k~kg we find nk%kF=Sir[7T)\]/27T)\—(k—kF)/WM(l—4)\)+O(k—kF)2 with M the dynamical screening
scale of magnetic gluonghotons. The dynamical renormalization group is implemented to study nonequi-
librium relaxation. The amplitude of single quasiparticle states with momentum near the Fermi surface falls off
as | Wiy ()= Wiy (to) e "MW1t /t]*. Thus quasiparticle states with Fermi momentum have zero
group velocity and relax with a power law with a coupling-dependent anomalous dimension.
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I. INTRODUCTION AND MOTIVATION trarelativistic heavy ion collisions, astrophysical observation
of the properties of neutron stars can provide observable sig-
There is a substantial theoretical and experimental efforbatures from cold and dense QCD if quark matter is the
to map the phase diagram of QCD as a function of temperacorrect description of the core of spinning neutron stars.
ture(T) and chemical potential). Current theoretical ideas While there is a substantial body of results on QCD at
suggest 1] that heavy ion collision experiments from SIS to finite temperature on the lattice, the lack of a manifest reality
the BNL Alternating Gradient SynchrotrofAGS), CERN  of the fermion determinant with finite chemical potential pre-
Super Proton Synchrotro(6PS, BNL Relativistic Heavy sents a problem for the lattice program with the important
lon Collider (RHIC), and finally the CERN Large Hadron exception of two colors which have received considerable
Collider (LHC) have the potential to study the region of the attention recentlf6—8|.
phase diagram fof <300—400 MeV angu<0.6 GeV with An important aspect of QCD at large chemical potential is
higher(T) and lower () for RHIC and LHC. Understanding that of color superconductivit{@] which arises from a par-
this region of the phase diagram can provide insight into théng instability of the free Fermi gas in the color antitriplet
QCD phase transition in the early Universe, about/® channel. Since the original proposal of color superconductiv-
after the big bang, as well as the equation of state of hot anily via a one(screeneflgluon exchang¢9], there has been
dense QCD. Matter at low temperatusel0 MeV and up to  an increased interest in color superconducti{it§—20 and
nuclear matter density,~0.16 fm 3, ©~300 MeV is ame- diquark condensatiof21]. The presence of diquark conden-
nable to study by low energy nuclear systems such as mukates in the cold and dense core of neutron stars could have
tifragmentation phenomena in nuclei. Cold and denseotential observable signatures in their cooling history as
nuclear matter for densities larger than a few times thewell as in the magnetic fields of pulsdi22—24. Therefore
nuclear matter density cannot be studied with terrestrial acthe study of cold and dense QCD is warranted by a definite
celerators and is the realm of astrophysical compact objectphenomenological and observable impact if not on terrestrial
such as neutron staf®,3]. The fascinating possibility of accelerator experiments certainly in the astrophysical signa-
detecting a phase transition in quark matter in neutron staures of neutron staf®5].
x-ray binaries was raised recentl¢,5], where the signal Goals. The common framework to study degenerate cor-
would be a pronounced peak in the frequency distribution ofelated fermion systems is that of Fermi liquid thedsge
X-ray neutron stars due to a long spin-up stage and the coohext sectioin The emergence of superconductivigiquark
ing history as revealed by thisoft) x-ray spectrd22—24.  condensation in the case of QL3 associated with the in-
Thus while QCD at high temperature and relatively smallstability of the normal Fermi liquid towards an attractive
chemical potential can be experimentally studied with ul-pairing interaction. In the case of a weakly interacting Fermi
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system the starting point is the free Fermi gas and pairindrermi liquid, which is relevant to cooling and thermodynam-
results in the opening of a gap in the single particle spectrunics of neutron stars.
at the Fermi surface. Fermi liquid theory is argued to de- In this article we begin this program by studying in detail
scribe the low energy effective field theory of nuclear matterthe breakdown of the Fermi liquid description and by pro-
[26] and is therefore an important tool to study nuclear matviding a comprehensive analysis of the spectrum of single
ter and its impact in astrophysical compact objects. quasiparticle excit_ations in theormal phase along with their
Recently it has been argued, within the context of color'€laxation properties.
superconductivity, that the exchange of dynamically StrategyWe study both QED and QCD at zero tempera-
screenedvia Landau dampingmagnetic gluons results in tUre but Iarge(bar_yor) dgnsny so that a perturbative analysis
strong infrared divergences that lead to the breakdown of thi$ "eliable. In this regime the hard-dense-loG#DL) ap-
Fermi liquid description of cold and dense QCD in perturba-Proximation, which is the finite density equivalent of the
tion theory[27]. A similar situation was found in the case of hard-thermal-loop program of Braaten and Pisarski for finite
a nonrelativistic electron gas with magnetic interactifgg-  temperaturg32-37, is reliable and describes the main as-
30], where it was argued that there would be no observabl@€CtS Of the static and dynamical screening of glutar
consequences of the breakdown of Fermi liquid theory folh0tons. The leading order in the HDL approximation is the
terrestrial densities samein Abelian (QED) and non-AbeliaiQCD) theories and
While diquark condensation and color superconductivityth® screening of gauge fields is completely determined by the
in its various forms have been studied extensively in the?n€ loop quark polarization at finitand large density[34—
literature, we are aware of only one previous study of non37)- In this approximation, static “longitudinal” gluongn-
Fermi-liquid aspects of cold and dense QG2Y], which stantaneous Coulomb mter_act)oare screened by a Debye
revealed large corrections to the superconducting[@Zp  SCréening massnp=gu while transverse gluons are only
Further corrections to the superconducting gap were foundynamicallyscreened via Landau dampiiig2,33. To this

from lifetime effectg31] not associated with the breakdown °rder in the HDL approximation the polarization tensor for
of Fermi liquid theory. gluons in QCD is similar to that for photons in QED save for

Studying Fermi liquid aspects of theormal phase is an trivial color and flavor factors. The main difference between

important part of the program towards understanding cold@CDP and QED in this approximation is that while one gluon
and dense QCD. As mentioned above, understanding tHexchange leads to an attractiygairing interaction in the
properties of the normal phase is perhaps the first step t@ntitriplet partlcle—par_tlcle channel and.therefore to.dlquark
wards a complete assessment of the pairing instabilities argPndensation, there is no such attractive channel in QED-
properties of the superconducting state. Furthermore, if théhus, to this order in the HDL approximation, the Fermi
pairing interaction opens a gap at the Fermi surfacsoofie Ilqu!d aspects of the normal state of cold and dense QC_D are
quarks, such as the two or three color superconductingiMilar to those of QED. Thus we present our study within
phases2SC or 3SC [10-16,20,2% the remaining gapless he framework of QED which, acc;ountmg for the ftrivial
quarks will be described by the concomitant Fermi liquid. color and flavor factqrs, also d_escrlbes those of _the .normal
Our goal in this article is to provide a comprehensiveState of QCD to leading order in the HDL approximation.
study of non-Fermi-liquid aspects in theormal phase of As described in detail in Sec. Il, a Fermi |IQUI_d des<_:r|p-
cold and dense QCD, postponing to a forthcoming article th&ion has an associated “order parameter”; this is the jump
study of the implications of the breakdown of Fermi liquid discontinuity of the Fermi distribution functiofof the inter-
theory on color superconductivity. While the study[27] aptlng system at_the Fermi momentum. Th|s'd|s.cont|nU|ty is
focused on the corrections to the color superconducting ga@iven by the residuéwave function renormalizatiorof the
and issues of gauge invariance, we study both equilibriunfluasiparticle pole for quasiparticles with the Fermi momen-
and nonequilibrium aspects of the non-Fermi-liquid behav{Um. The breakdown of the Fermi liquid picture is associated
ior. In particular we focus ofi) the dispersion relation and With the vanishing of this order parameter; i.e., the Fermi
damping rates of quasiparticles near the Fermi surface, é;jgstnbut!on funcno_n.lscontlnuousat the Fermi momentum.
these reveal anomalous dimensions resulting from the breakVe begm by obtaining f[he quark propagatqrs to leading or-
down of Fermi liquid theory, andii) the relaxation of these der in the HDL approximation, corresponding to one bare
quasiparticles: again we find anomalous relaxation with th&!uon exchange in the quark self-energy, and show explicitly
origin in the same infrared divergences responsible for thdhat to this order there is a sharp discontinuity at the Fermi
breakdown of Fermi liquid theory. Our main motivations for surface c_ietermlned by the wave function renormalization of
initiating this study and long term goals are manifoldr to  the quasiparticle pole. _ _
obtain a further assessment of non-Fermi-liquid corrections HOwever, this picture does not survive screening correc-
to the superconducting gaps, critical temperature, and sped©ns to the gluon propagator; whereas longitudinal gluon
trum of excitations in the superconducting phabea study exchange leads to an infrared finite contribution, the ex-
of the potential implications of non-Fermi-liquid corrections
to the neutrino emissivity and the cooling rate of neutron
stars with degenerate quark-matter cor@$,a more com-  However, we expect the Overhauser effect to be present in QED
plete and detailed understanding of the properties of dengeg, i.e., particles above and holes below the Fermi surface bound
QCD in a regime which is not yet amenable to lattice simu-by their mutual(screenefiCoulomb attraction. These are the coun-
lations, and(d) a study of transport phenomena in the nonterpart of exciton bound states in condensed matter.
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change of magnetic gluons which are onfiynamically single particle propagator for particle excitations near the
screened by Landau damping introduces logarithmic diverFermi surface. These divergences are akin to those found in
gences in the quark propagator for quasiparticles near theritical phenomena for a critical theory at the upper critical
Fermi surface. dimensionality. We implement a resummation of the pertur-
For excitations with Fermi momentum we argue that theséative expansion via the Euclidean renormalization group.
infrared divergences are similar to those of a critical theoryWe find that the particle component of the quark propagator
at the upper critical dimensionality. Thus we provide a re-for excitations near the Fermi surface is@ling functiornof
summation of the quark propagator for particles with thethe two variableso= w— u, k=k— u with anomalous expo-

Fermi momentum using the Euclidean renormalization group, . ts that depend on the gauge coupling.TE80 the spec-
which reveals the emergence of anomalous dimensions in thy '

. ity has the Breit-Wi iparticlg form, with
spectral density. Nonequilibrium aspects are studied b?al density has the Breit-Wigndguasiparticlg form, wi

. iparti i [ ion, width, and id

implementing a dynamical renormalization grd@s] which ¥he quaS|part|.cIe dispersion relation, wid and residue
; . ! : given, respectively, by

provides a resummation of the quark propagatioectly in

real time The dynamical renormalization group reveals ® (~k)oc|~k|l’(1’2") F('R)ocsir[w)\]rﬂl/(lfz)\)
power law relaxation with anomalous dimension for quasi- P
particles with Fermi momentum. 7 (~k)oc|~k|2"’<1‘2”) (1.1)
Summary of the resultsThe exchange of dynamically P ’
screened magnetic gluons leads to infrared divergences in thvgth the effective coupling given by
“ for QED
6 or QED,
A= 1.2
@ NeoL o oCDwith N, colors andNe -
67 2N, or QCD wi ¢ colors andNg flavors.
|
The residue of the quasiparticle pole vanishe&-askg, quasi-one-dimensional Fermi systems that feature non-Fermi
leading to the following form of théquasjparticle distribu-  liquid behavior and are described as Luttinger liquids
tion function near the Fermi surface: [39,4Q.
The article is organized as follows: in Sec. Il we summa-
sin ] -5 rize the aspects of Fermi liquids that are relevant for our
M~ke™ "2an  aM(1-4N) +0(k)%, discussion. In Sec. Ill we obtain the expression for the qua-

siparticle distribution function in terms of the quark spectral

g density and obtain the equation of motion for quarks which
— for QED, will be used to study nonequilibrium aspects. In Sec. IV we
M = 2m study the equilibrium aspects of single quasiparticles. We
gu Ng begin by studying the quark propagator to lowest order in the

for QCD with N flavors, HDL approximation, i.e., with the self-energy given by the
(1.3  exchange of hardbare gluons, and make contact with the
Fermi liquid description to this order. Softy&gu) gluons

revealing the vanishing of the discontinuity of the Fermi dis-require HDL resummation, and the propagator for particles

tribution function at the Fermi surface and therefore the vannear the Fermi surface is computed by including HDL
ishing of the Fermi liquid order parameter. (screeningcorrections to the exchanged gluon. The resulting
Implementing a real-time, i.e., a dynamical version of theinfrared divergences are recognized to be similar to those of
renormalization group to study the nonequilibrium relaxationa critical theory at its upper critical dimension and resummed
of single quasiparticles near the Fermi surface, we find thatising the Euclidean renormalization group. The renormaliza-
the amplitude of the wave function of single quasiparticletion group improved spectral density features scaling behav-
states near the Fermi surface fall off as ior that leads to the single quasiparticle dispersion relation
72 aﬂd Iifﬁtimﬁ that sct:jales with antf)rr;]alous Idimensilonj. We

I (t—ty Lo show that the jump discontinuity of the single particle distri-
|'ﬂk*kp(t)|x|‘/’k”kp(t0)| e 10t T} - (14 bution functioil vzfnishes at ch Fermi sugr]fac% as a conse-
quence of the vanishing of the single quasiparticle residue at

Thus quasiparticles with Fermi momentum have vanishthe Fermi momentum. Section V explores nonequilibrium
ing group velocity and relax with an anomalous power law.aspects: the relaxation of single quasiparticle excitations near
We make a comparison between these features of colthe Fermi surface. Implementing a real-time version of the
and dense QChand QED and those of strongly correlated renormalization group reveals that single quasiparticle states

27 2
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with Fermi momentum relax with a power law with anoma- function is distorted from the original Fermi-Dirac step func-
lous dimension. In Sec. VI we summarize the connectiortion (at zero temperatuyebut a “jump discontinuity” re-
between QED and the normal state of QCD to the ordemains at the Fermi surface which is determined by the wave
studied and address the important issue of vertex correctionfunction renormalization consta_ (see[47] for an ex-

Our conclusions are discussed in Sec. VII. In this section W%“Clt calculation in the electron gagn a well-defined sense,
also discuss the striking resemblance of the spectral densithjs jump discontinuity is associated with an “order param-
and relaxation to that obtained in a Luttinger liqBB,40  eter” for a Fermi liquid[40,39: a normal Fermi liquid cor-
and some related conjectures on the non-Fermi-liquid aspectgsponds taZ_#0 while for a non Fermi liquidZ, =0.

.Of high T, superconductlwn_/; we elab_orate on the IC?O.tem'alTransport properties of a degenerate Fermi gas depend on the
Impact pf the re_sults and discuss the!r range .Of validity. Anrenormalization of théquas)particles; for example, the co-
appendix contains many of the technical details. efficient of the linear power of temperature in the electronic
specific heat is proportional rZSkF.

IIl. HIGHLIGHTS OF A FERMI LIQUID There are some notable examples of the breakdown of
- . . Fermi liquid theory such as the Kondo model of electrons
The most successful description of interacting degeneratfﬁteracting with magnetic impurities and “quasi’-one-
Fermi systems in theormal state, i.e., nonsuperconducting gimensional metals which provide a novel type of behavior
or superfluid is Fermi liquid theory. Landau’s original for- ¢, oo related electron systems: the Luttinger liquike
mL_IIatlon, largely phenomenological, has as the ba_5|c hypot ,40 and references therginThis novel behavior of a cor-
esis a one-to-one correspondepce between the eigenstateq ghye g degenerate electron system is characterized by a van-
the interacting af!d honinteracting systems. 'Y‘ this forr.nUIaishing jump at the Fermi surface and power law correlations
tion the quasiparticlesare obtained from the single particle akin to those found in critical phenomefo].

states of the noninteracting system via an adiabatic  zpsher system in which the Fermi liquid description
switching-on of the perturbatiol89—41); hence for this pic-  yea1s down is that of nonrelativistic electrons interacting

ture to remain valid the interactions should not lead to phasgia the exchange of “magneticitransverspgauge bosons
transitions. TheLandau quaS|part|cIe_concept is appropriate 28-30. Recent conjectures suggest that this type of non-
for excitations very near the Fermi surface, since for shor ermi-liquid behaviorf48] or “Luttinger liquid” behavior

range int?gactions the lifetime of these quasiparticles is |4 explain the unusual properties of the normal phase of
~|k—kg| 7% [39-41], which after including screening effects high temperature superconduct®4s].

also holds in the case of Coulomb interacti¢43]. For qua- Our study of the normal state of cold and dense Q&m

siparticles near the Fermi surface the adiabatic hypothesis s QED) reveals a striking resemblance with Luttinger liquid

reasonablg39,4Q and Landau’s phenomenological theory is behavior; in particular, the renormalization group improved

applicable to study transport phenomena of low energy exCigark propagator that we find is remarkably similar to that
tations[41]. A more modern and consistent description of

SLTL i T i roposed in[48,49 to describe the normal phase of high

Fermi I|qU|d theo_ry is based on renormall_zatlon group 'dea{)emperature superconductors.
[44] which describe the low energy physics near the Fermi
surface as fixed points of the renormalization group, and
Fermi liquid interactions are those associated with marginaly, ppe| \vINARIES: QUASIPARTICLE DISTRIBUTION
operators near this fixed point. T_h|s formulation of Fermi FUNCTION AND EQUATIONS OF MOTION
liquid theory reveals that the physics near the Fermi surface
is very similar to that of critical phenomena and is com- In this section we obtain the general expressions for the
pletely determined by the gapless excitations associated wittjuasiparticle and quasiantiparticle distribution functions to
the formation of particle-hole states near the Fermi surfacenake contact with Fermi liquid theory. The main aspect of
[44]. the distribution function is that the existence of a jump dis-

Fermi liquid theory is the starting point of a consistentcontinuity of the quasiparticle distribution at the Fermi mo-
study of the properties of degenerate, interacting Fermi sysnentum is the signal of Fermi liquid behavior. Furthermore,
tems; in particular BCS superconductivity can be understoodve obtain the effective equation of motion for the Dirac field
as a result of the instability of the Fermi liquid towards pair-in the medium to extract nonequilibrium aspects. Typically
ing attractive interactiong45]. relaxation is studied by extracting the dampiage which is

It has been adapted to study dense nuclear m@6tand obtained from the imaginary part of the self-energy evalu-
recently the renormalization group description of Fermi lig-ated on the mass shell of the fermion and describes exponen-
uids has been extended to the interactions in field theory atal relaxation. However, from the results f84—-37 it is
nuclear matter densitj46]. The conclusion of these studies found that the damping rate vanishes for quasiparticles with
is that Fermi liquid theory is an effective low energy theorythe Fermi momentum. However, the form of the fermion
for excitations near the Fermi surface. The field theoreticakelf-energy(see next sectignstrongly suggests the buildup
approach to Fermi liquids quantifies the main concepts obf logarithmic infrared singularities just like in critical phe-
Fermi liquid theory in terms of the spectral density for thenomena with the potential for summing up to a power law
quasiparticles near the Fermi surface: a Breit-Wigner fornrelaxation with anomalous dimensions. The solution of the
with a small width(for k~kg) and a finite residue at the real-time equation of motion resummed via the dynamical
“quasiparticle pole,” Zy. - The quasiparticle distribution renormalization group will confirm power law relaxation
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with anomalous dimension for single quasiparticles with the _ 1 . .

Fermi momentum. Thus in order to extract the correct relax- ng= Zf ddo TrLP-(K)ps(do, k) 111 —N¢(go) ],
ation behavior we must study the real-time evolution of the 3.7)
amplitude of the quasiparticle state which is obtained from

the equation of motion.

with Pt(IZ) given in the Appendix. Thus to obtain the qua-
si(antparticle distribution functions we need to obtain the
The spatial Fourier transform of the Dirac field operator atfermion spectral density(qq,K).

any given timet can be written in the form The emission and absorption of hard glucihotons
with momentag= w will affect the distribution functions for
,/,(E,I)ZZ [bg,s(t)U(S)(lZ)+dES(t)V(S)(—IZ)], (3.1  fermions from deep within the Fermi sea up to excitations
s ’ near the Fermi surface. However, because of the Pauli block-
. . ing of states below the Fermi surface, the emission and ab-
with UG(k), V) (K) the usual free particle Dirac spinors. sorption of soft gluongphotons with q< . will only affect
We refer to the time-dependent operatbgg(t) anddEyS(t) the distribution function of particles near the Fermi surface
as the annihilation and creation of quasiparticles and quabut not those deep within the Fermi sea. Soft glugptso-
siantiparticles, respectively. Within the spirit of Fermi liquid tons are sensitive to screening corrections and their propa-
theory, upon adiabatically switching on the interaction theseggator must include screening arising from quark loops. The
operators interpolate between the ftbare particles and the leading order correction is given by the resummation of hard
dressed(quasjparticles and antiparticles, respectively. We dense loops corresponding to quark intermediate states with

define the average number of quasiparticles and quasiantipagromenta near the Fermi surfaf@4-37,33. The spectral
ticles as density in both cases, with hard and soft gluon exchange,
will be studied in detail in the next section.

A. Quasiparticle distribution function

1 T
ni=5 2 (b s, (3.2
B. Equation of motion

— 1 o We can treat the equilibrium and nonequilibrium aspects

=3 23: (dy dk.s). (33 of cold and dense QED and QCD by studying the real-time

equation of motion of a fermion condensate induced by an

where the expectation value is in tlexact ground state, external source. The equilibrium aspects studied here can all

which is obtained from the unperturbed ground state by adiabe addressed by obtaining the fermion propagator and the
batically switching on the perturbation from times — to ~ fermionic spectral density, while the equation of motion al-
t=0. Using the properties of the usual spinor wave functiondows us to study the real-time relaxation of an initially pre-

U,V and the results of the Appendix, it is straightforward topared condensate as an initial value problem prepared by
find using a suitable source term. The advantage of studying the

equation of motion in real time is that it will reveal the

Yo(K+m)yg — . R relaxation of fermions directly in real time. Since the leading
ng=Tr| —— (kD) ¥(k,1)) order corrections in the HDL approximation are similar for
4oy t=0 QED and QCD[34-37,33 and the gluor(photon polariza-
tion is completely determined by the one fermion loop, we
—Tr Yo(K+m) yo[—iSf(t ], (3.4 describe the necessary steps in QED; the final form for the
4oy k=0 spectral densities and relevant quantities for QCD can be
obtained by simply accounting for the proper color and fla-
_ [(K—m) o ] vor factors.
=Tr ((k,t) (k1)) The QED Lagrangian density in the Coulomb gauge is
4oy =0 given by (see[38] for a similar context
:Tr[(i m)[iSEa,t)Jfo}- (359 L=W(i0=gy° A+ gy AW+ W gt ¥
e + 3 [(2A)2+ (VAY)?], (3.9

We are considering the situation g&m so that we will
neglect the current quark masses and consider the quarks as
massless. Using the spectral representation of the propag@here the Grassmann valued source terms were introduced
tors for Dirac fields given in the Appendix, we find, for to obtain the effective Dirac equation in the medium by ana-
massless fermions, lyzing the linear response to these sources.
. Following the steps detailed if88], we find the Dirac
> > equation for the spatial Fourier transform of the expectation
k= Zf dgo TP+ (K)pr(Qo. k) INr(do), - (3.6 vglue in the masslloess case to be given by P
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p N . i ) ~ e o~
("}’oﬁ_)’k) ¢(k1t)+f7 dt/ E(k,t—t/) lﬂ(k,t/) ¢(w:k) SR(w!k)ﬂ(w!k)! (318)
—— (K1), (39 W
where3 (k,t—t’) is the retarded fermion self-energy given Sr(w,K)=— 3 [P_(K)S_(w,K)+ P, (K)S, (w,K)],
by the sum of the transverse and longitudinal contributions: (3.19
SKt—t)=3(Kt—t)+3.(kt—t'). (3.10 i _ i
, _ , S (w,kK)=[w—k+3_(w,k)] 1 (3.20
Using the results of the Appendix we find
. d3 ‘ ) — S )1
SrRi—t)=ig? [ LR EO/S) ()] Sr(@l)=[otkt= (w01 (3.2
(277)3 q
X[—iG7 S (tt)]—[iS (t,t)] S (0,K)=Zg(0,k)~Zq(w,K), (3.22
X[=1G7 (L)), (3.11) -
3 (@0,K)=2g(w,k)+ 21 (w,k), (3.23
R d3q
Sk t—t")=i Zf OIS " (t,t! .
L )=1g (277)3(7 it . (6] with P. (k) given in the Appendix. The fermion spectral
ot ., < s density is obtained from the imaginary part of the retarded
X[=ig (L) ]=[iSg (1,17)] propagator and is given by
X[=1G (1)1}, (3.12

o pi(@.K)=3[P-_(K)p—(@,K) +Ps(K)p (@,K)],
with p=k—q. The propagators are written in terms of their
spectral representation and using the results in the Appendix

it becomes clear that the retarded self-energy has the foIIov’\)/- (0.0)= i Im3_(w,k)
. . 3.2
S(kt—t"H)=3"(k,t—t")O(t—t"). (3.13 (3.29
Introducing the Fourier transforms in time for the expec- Imi (.K)
tation value of the Dirac field, the source and the self-energy, , (k)= — _ j ’ _ —.
and the Fourier representation ©f(t—t’) we find that the Tlo+k+ReS, (0,k)]?+[Im2 (w,k)]?
equation of motion in terms of the space-time Fourier trans- (3.29

forms becomes

0 R UL -~ - We consider two cases separately to obtain the spectral
[Y'o—y k+Z(0K]§(ok)=-n(wk). 3.14 densities:(i) The gluon(photon line in the fermion self-

. ) = ;
Introducing the dispersive representation for the retarde§ o' Y carriehard spatial MOMENtunp= . In this case
one(bare gluon exchange gives the leading order correction

self-energy, to the quark self-energy in the HDL approximatif@v—37
~ . for large chemical potentialii) The gluon(photon line car-
i(w,IZ)= Ef dag Im X (dg.k) , (3.19 ries soft spatial momentunp<<u in which case the gluon
™ gJo—w—i0" (photon propagator must be dressed by HDL fermion loops
[34—-37. The contribution from hard gluon exchange to the
a straightforward calculation reveals that self-energy of low momentum fermions deep within the

Fermi sea, i.e., wittk<<gu, must be treated nonperturba-
tively [32,34-317, resulting in a modified dispersion relation
and their description as quasiparticles. For fermions near the
(3.16 Fermi surface(and weak couplingthe HDL corrections
) ) from hard gluon exchange are perturbative. Thus hard gauge
For massless fermions we write fields will modify the fermion propagators for all fermion
_ . . states in the Fermi sea. On the other hand, the emigaiuwh
S(0,K)=9So(w,K)— 7-KS1(@,K). (3.17  absorption of soft gluons(photong with g<gu will only
affect fermionic statesear the Fermi surfacéNe now study
Hence the solution of the equation of motion is given byeach case in detail.

r*_r:i —igo(t—t)m > %
ST(k,t—t") - dg e~ 'do Im 2(qg,k).

034016-6



NON-FERMI-LIQUID ASPECTS OF COLD AND DENE. .. PHYSICAL REVIEW D 63 034016

IV. EQUILIBRIUM ASPECTS
A. Hard gauge fields: Fermi liquid behavior N_f (2m )3f ddo p— (0o K). (4.1

We are interested in particles near the Fermi surface;
therefore we will focus on the spectral densrpty(qo,k) and This expression relates the chemical potential to the fermion

we will neglect the antiparticles, for which there is no Ferm|number density. We now have the tools to understand the
surface. change in the Fermi sea in the HDL limit.

: . Since N(qg) =0 (n—0g) and w, (k)>k [33], from the
For hard gauge fields with loop moment we can
use the freegfielg propagators foftransversﬂiﬁd Iongltudlexpressmn for the particle distribution function given by Eq.
nal” gauge fields given in the Appendix. We find that the (4-8 wef see thatt f(f)rtr:/alues ?fTL:jCh that“’+(|l?<'“ the
instantaneous Coulomb interaction leads to a local contrlbureglon of support of the spectral density (do k) is con-

tion to the self-energy which is subleading for small fermlonta}t'nlfdhIn t(;we lngervaF;O<q0<u, therlef01r_ehfor thlese \;altr:es
momentum(36,37). In the HDL limit we find the distribution function isn,= e value of the

momentum at which the frequency of the fermion quasipar-

(00, K)=Z. 8(qo— KN+Z 8(an+ o (k ticle, w, (k)= u, is the limiting value for which the quasi-
p-(Go.k) =2 8(do= - (K)) (@t (k) particle pole is in the interval of support ®(qp), thus
+pc(Qo, k), (4.1)  defining the Fermi momentuke by w, (kg) = u.

We can obtain an estimate for the value of the Fermi
with . (k) andw_ (k) the fermion and plasmino quasipar- momentum in the HDL limit and weak coupling for which

ticle p0|eS with reS|dUeZ+ ' I’espectlve|y(see[33] for their M>Mf us|ng the |argd( limit of the quas|part|c|e po'e
complete expressiopsThe continuum spectral density has

support below the light cone and is given by 2

o (K~k+ =, k=My, 4.12
(o.k) = Im2_(w, IZ)
pclfo,K)= i i
c - [w K+ReS (o, k)]2+[lm2 (o, k)]z from which we obtain
(4.2) gz
) Ke=~u| 11— — (4.13
M+ 8m?
Im3, (w,K)= 772k<1——)®(k2—w ), 4.3
Fork> kg the quasiparticle pole is outside of the region of
M2 o) otk support ofN(qgg) but the spectral density still has a contri-
Rei_(w,IZ)=——f[<1——)In — | +2¢, (4.4  bution inside this region, given by the plasmino pole at
2k k] " Jo—k —w_(k) and the Landau damping continuum. Hemge
» 2 #0 as befits an interacting Fermi system. Thus, whereas for
m2= I (45 k<ke the distribution functionn,=1, for k>ke it is 0
T ogn?’ ' <ng<1. This analysis leads to the following result:
and satisfies the sum rule ng=Z2_(k)+2Z,(k)®(kg—k)
k y22 k 1, k kF_ €
= —‘,— =
Z.+Z_+ f_kdqopc(qo,k) 1. (4.6) fﬁ pc(do.Kk) 1-7.(k), K=kete.
. - (4.14
The spectral densities. (qq,k) are related by33]
. . We can estimate the discontinuity or “jump” at the Fermi
p+(0o,K)=p_(—qg,k), 4.7 surface in the HDL limit by using the sum rul(é.6) above

and the large limit of the quasiparticle residul33]:

and upon using this relation, the results of the previous sec-
2

tion, and the Appendix we find g 41
1-Z, (k=kg)=~|-— 21n E —-1/. (4.19
anZJ ddo - (Ao, KIN(do), 4.8 At the Fermi momentum we find
— L — g\? 4
an:f daop-(do.K)N(qp), 4.9 Nk=k. = N(do= ) Z 4 (kg) + - 21n T -1},
(4.10

N(Qo)=0(x—do), N(Go)=0(—u—0dy), ,
(%) (4= do) (G) (—u Qc&llo) where we have useld(qo= ) =1/2. Thus, to this order, the

Fermi surface is sharp with a jump discontinuity kat ke
and the fermion number density is given by given byng_k_— = Nk—k.+ = Z+(kg). The sharpness of the

034016-7



D. BOYANOVSKY AND H. J. de VEGA PHYSICAL REVIEW D63 034016

Fermi su_rface in the HDL approxima_tion is a conseq_ugn_cqj is the momentum of thésoft) gluon line withq< g and
that to this order the quasiparticle excitations have an 'nf'n't?ﬁ—ﬁlwk—q cos@) with 9 the angle betweek andﬁ In

lifetime. For momentea~ u the HDL approximation is not .. imit we find

truly justified since in this limitkk>gu and the contribution

from the hard momentum region of the two particle cut is of _

O(g?n) which becomes comparable to that of Landau Im3_(qg.k)= wng
damping ofO(g?u?/k). This fact notwithstanding, the main

d3
(qu)sf dpo({pr(Po.a)

purpose of this analysis is to reveal that the contribution _

from the hard loop momentum region to lowest order in the X[1-co$(8)]+pu(po,a)}
resummation program leads to a description consistent with X[O(pg)—O(u—k+qgcog))]

Fermi liquid theory with a discontinuity or “jump” at the

Fermi surface determined by the residue of the quasiparticle X 6(qo—Po—k+qcog )+ pr(Po.q)
pole which to this order is non-vanishing. As we will study

in detail below, the contribution from soft gluon exchange, X[1+205(6)10(Po) 2o+ Po

which requires screening corrections, invalidates the Fermi +k—qcog6))), (4.18

liquid description.

~ d3q
— 2
B. Soft gauge fields: Non Fermi liquid Im 2. (Qo. k) =79 f (2w)3f dpo(pr(Po.q)
We now focus on the damping effects on quasiparticles “[1+
near the Fermi surface, i.e&k~kg~u. Damping of these [1+cos(6)]
excitations results from the emission and absorption of soft X[O(pg)—O(u—k+qcog0))]
gluons which require the gluofphoton propagators in the
fermion self-energy to be HDL resumm¢82—37. These X 8(do—Po—k+qcog 8))+{pr(po.q)
dressed gauge propagators can be handily included in the “[1— "
calculation of the self-energy by writing the Wightman func- [1-cos(6)]+ pL(Po.0)} O (Po)
tions for the gauge fields in terms of their spectral represen- X 8(0g+ po+k—qcog0))). (4.19
tation described in the Appendix. Since the fermion momen-
tum is k~ke~u and the exchanged gluon is soft with For particles near the Fermi surface the quark propagator

<u, the fermion line in the self-energy does not requirehas poles neaw~k~ u, while for antiparticles there is no
HDL resummation and can be taken to be a bare fermiofrermi surface and the poles are at=—k. Therefore for
propagator. particles the self-energy is determined by3Im(qq,k) for

A straightforward calculation using the free fermion gy~ through the dispersion relation. Hence for particles
propagators for the internal fermion line and the HDL re-near the Fermi surface the important regiongig~ w~k
summed longitudinal and transverse gauge field propagatoghich implies that the argument @f(q,— po— k+ ¢ cos())
in terms of their spectral densities leads to the fermion selfhas support fop,~qcos(@) corresponding to the region of

energy in a dispersive representation as in BdL5 with Landau damping of the gluo(photon propagator(see the
20 Appendix. On the other hand, fogo~k~w=~ u the 5(qq
< - T9 q B B +po+k—qgcos@)) has support in the region gip~—2u
Im (o, k)= 2 f (2m)3 dpo{[© (Po) — O (1= a)] <0 and this contribution is canceled by tBép,). Thus the

) contribution to the self-energy of particles near the Fermi
X 8(do— Po— ) p1(Po.P)PL(P) Y P_(q) ¥ momentum from soft gluon exchange is completely deter-
mined by the first delta function

+pL(Po.p) Y°P-(a)¥°]
+0O(po)8(do+pPot+1a) |m§—(Qo=k)%ﬂ'92f
X[pL(Po,P)PL(P) Y P+ ()Y

q

dS
(2w)3({pT(po,q)[l—co§(0)]

+pL(Po,9)}[O(go—k+qcog 0))

- 0 0
+pL(p01p)’y P+(q)7 ]}1 (41D _®(/_L_k+q COS 0))])p0=q07k+qcosﬁa
where p=k—q and we have neglected the instantaneous (4.20
Coulomb interactionpr, are given in the Appendix. which obviously vanishes ajy= . Thus we see that the

The dispersive representati¢8.15 makes clear that the jmaginary part of the self-energy i.e., the damping rate for
largest contribution to the self-energy far~u is deter-  fermionic excitations, vanishes at the Fermi surfi@@37.
mined by the behavior of I (do,k) for do~w~pu. For antiparticles the propagator has poles dor —k, and

The contribution from soft gluons to the self-energy of for hard momentumk~ . and gy~ —k the 8(qg—po—k
fermions near the Fermi surfake- . can be extracted easily + q cos()) has support fopy~ — 2k~ —2u, i.e, in the hard

by first relabelling the integration momerﬁ%ﬁ—ﬁ so that region, while 8(gg+ po+k—qcos@)) has support fopy,=
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—Qgo—k+qcos@)~qcos@) which is in the Landau damping behavior ofp, which leads to the conclusion that the contri-

region of the spectral density. Hence bution from the longitudinal gluongphotons is «q3 [37].
e For excitations at the Fermi surface wkk- n the contribu-
3 q tion to the imaginary part from the transverse photons can be
~ 2 —
M=+ (do, k)~ g f (277)3({pT(p°’q)[1 cos'(0)] computed straighforwardly and it yields

+pL( po,Q)}(po))pO: —qo—k-+q cos() -
(4.21)

The case of antiparticles has been studiefBih35 with The contnbzlitzlon from the longitudinal gluorﬁphoton? is .
the result that the self-energy is analytic near the Fermi suclearly ofO(g”qg) and of the same order as the contribution
face and does not lead to novel phenomena. Hence in whiiom the hard gluor(photon region[37]. This is similar to
follows we will ignore the case of antiparticles and refer theth® case of nonrelativistic electrons interacting via the
reader td 37,35 for more details on this case. screened Coulomb interacti¢43]. The term proportional to

Since the imaginary part of the self-energy for particles~k=k—,u in Eq. (4.24) can be easily shown to yield a contri-
vanishes at the Fermi surface, we expand regge e as  pution of@(g2(~k2/M)|Z,/|\/||1/3)_

~ g -
Im > ®(d0,k) = 5-[al (4.28

follows: Therefore we conclude that
0O(go—k+qgcog6))—0O(n—k+qgcogh)) 2 =2 rar e
Im3_(q k)=g—|<~:| |+Agz%+B 9°— i )
=Go8(q cog 6) — (k=) + - - -, (4.22 S 24 T M M M| )
(4.29
with . - . .
with calculable coefficient#&\,B. This result was previously
To=(Uo— 1), 4.2 obtained in Refs[35,36. Our focus is to understand the
do= (o~ 1) 4.23 quasiparticle excitations and their distribution function very
and we are led to the expression near the Fermi surface, in particular the discontinuity of the

distribution function akg . In order to do this we need only
~ considerk<M with |w|<M; therefore we will keep only
p7(do,q) the first(leading contribution in Eq.(4.29.

m (a0~ S [
e We can now obtain the self-energy via the dispersion re-
k— 2
y ( - o)
q

5 lation (3.15 for w=~ u by using the first term of Eq4.29
+p|_(q0,q)1 dg. and integrating within a region of widts M aroundu since
this is the region in which Landau damping is effective for
(4.24 dynamical screening and the region that yields the leading
infrared contribution.

For go—0 we can approximate: We finally obtain, fork,qo~pu,
[T , - ~ 9% ~ w+i0" w+i0*
B M T 0(9?—q2) E_(w,k=,u,)=—24ﬂ_2u) In| — M +In M
p1(do.aq)~ =5\ 72 7, (4.29
g2+ 4M?2 q_S” + ™M?Go ? - 9~
q2 q =- 12#2(,0"1 M +|Elw|, (43@
2Mz<@) w=w—u, (4.30)
~ q ~
pL(do.q)~ m(qz—qé), (4.26  which combines the results of Refd.7,3§ into the real and

imaginary parts of the quark self-energy near the Fermi sur-
face. We finally obtain the retarded propagator and spectral
densities for particles near the Fermi surface by using the
relations(3.19—(3.25 and extracting the term proportional
to P_(K).

The region in which dynamical scr~eening via Landau damp- |t is convenient to introduck= k— u~k— kg (since from

ing is effective is determined bg,|go|<M; hence the va- the analysis of the previous sectikp= u[1—O(g?)]); for
lidity of the approximation invoked above relies dg,|  ®.k~u the inverse propagators for particles can be written
<M. as

We note that wheregs; has a strong infrared singularity . -
for q— 0 wheng,— 0, Debye screening cuts off the infrared S_(w,k)~w—k+2 _(w,k=p). (4.32

2
. 9T

M2= (4.27)

_4772.

N
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The form of the real part of the self-energyw In[w/M| Theref_ore_we interpreF the.vanishing of the wave function
strongly suggests a wave function renormalization. Such afeénormalization for quasiparticles at the Fermi surface as an
interpretation is obscured by the tefikmin the propagator; indication of the buﬂdup of an anomalous Q|men3|on as a

. I e consequence of the infrared singularities, which are only dy-
however,at the Fermi surfacevith k=0, the logarithmic o mica)ly screened via Landau damping. To make this inter-
singularities of infrared origin are reminiscent of those of a

" S . pretation explicit we now proceed to obtain a renormaliza-
prltlcal theo_ry and the .propaggtor is similar to that Obta.'r.‘edtion group improved quasiparticle propagator, focusing
n pertu_rbatlpn the_ory ina crltlc_al theory_ at the upper critical solely on the particle excitations near the Fermi surface.
dimensionality. This interpretation is validated by the current
ideas on Fermi liquid theory based on the renormalization
group, which describes the effective theory near the Fermi

surface as a critical theory with marginal Fermi liquid inter- 1. k=0

actions[44]. . o :
Si [ 1 the Fermi surfack&£0) the i t In order to obtain a renormalization group resummation of
ince at the Fermi surfac&<0) the inverse propagator the infrared singularities we must first perform an analytical

is proportional tow, the wave function renormalization con- continuation to Euclidean space. This is accomplished by the
stant at thequas)particle pole for excitations near the Fermi following analytical continuation:

surface would be given by

C. Euclidean renormalization group

1 w+i0" =iK, (4.37)

[ d -
Z(p)= _1+d_a) ReX_(@,K)|y=k=p with K taken to be a real variable. From E&.20 the par-

ticle propagator now reads

1
~T 5 ~7w=0- (4.33 K
1- J In e S (@,K)|y~0x=0=—1 T(K)’ (4.38
1272 | p
KZ
This wave function renormalization or residue at thea- I'(K)=K? 1— )\In( —2> ] ,
si)particle pole for excitations near the Fermi surface is pre- M

cisely the quantity that determines the “jump” of tligua-
si)particle distribution function at the Fermi surface as g
determined by Eq(4.16). However, the logarithmic singu- A= 242’
larities manifest in Eq(4.30 would lead to the conclusion &
thatZ(u) =0 and that the Fermi surface “vanishes.” Such
conclusion has also been obtained in nonrelativistic syste
with magnetic interactiong28-30.

2

(4.39

ObviouslyI'(K) has the same form as the inverse propa-
m5&1tor of a scalar theory with infrared corrections typical of a
OS R X , " critical theory as discussed above. The physics near the
A similar situation arises in a critical theory; for example, Fermi surface requireK<M, which obviously leads to a

in the Euclidean formulation of a critical scalar theory with breakdown of the perturbati\}e expansion. Just as in a critical
quartic interaqtion in four dimension; thg inverse propagaIO{heory takingk—0 and keepingM fixed.is the same as
for small Euclidean four-momentul is given by keepingK fixed and takingM — o, i.e, interpretingM as an
ultraviolet cutoff and taking the limit of large cutoff at a
fixed transferred momentum.

The renormalization group improvement proceeds in the
same manner as in the scalar theory; we first introduce a
wave function renormalization constant that will absorb the
cutoff dependence at a given renormalization seakend a

G YK)=K1—\%cIn(K?/ k?)], (4.34

with \ the quartic couplingg a combinatoric constant, and
a renormalization scale. Again the wave function renormal
ization or residue at the “pole’K?=0,

d —1 renormalized vertex function
= —G YK)|ke=o| 4.3

az® Kz“’l (439 Tr(K, k) =Z[x,M]T'(K,M), (4.40
vanishes The vanishing of the wave function renormaliza- 2
tion on the particle mass shell in a critical theory indicates Z[k]=1+N\In M2 e
that the propagator acquires amomalousscaling dimen- 44
sion. The logarithmic singularities are resummed via the (4.4
renormalization group, leading to the following improved The independence of the bare vertex upon the renormal-
propagator: ization scale leads to the renormalization group equation

2\ =7
GRé(K):K2<F) ., m=\%C. (4.36 k== 7| Tr(K,x)=0, (4.42)
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2\

K 9L ~ sifm\]| @ sinf A ]
n=z o =2\. (4.43 Ni—k f do O(—w) =M =Nizke =
(4.49

Using the fact that the vertex has scaling dimension 2, i.e.,
with N the Fermi-Dirac distribution function andl,g:gF

I'r(K, k)= k’P 5) (4.44) =1/2. The distribution functiori4.49 obviously attains the
K free field limit for A —0.
with @ a dimensionless function of its argument, the renor- 2 %£0
malization group equation for the scaling functidncan be o
solved straightforwardly, leading to The renormalization group method presented above for
the case ok=0 can be straightforwardly extendedke:0
2-7 . =~ .
Tr(K, k) =2 — d(1). (4.45 by recognizing that the propagator fo#0 is
K2
We can now obtain a renormalization group improved I'(K)=K? 1-\In| — Ve +iKk, (4.50

vertex function as follows. Requiring that at the sc#le
=M (i.e., at the scale of the cutoff where perturbation theory,

. similar to that obtained in a scalar theory in the large trans-
is valid) the bare” vertex obey

ferred momentum limit but with a “mass” term. This simi-
I(K=M,M)=M2=Z"{x,M]T[K=M,«] (4.46 larity suggests that the. ter'rﬁK can be treated just as a mass
term in the renormalization program of a scalar theory.
fixes the renormalization group resummedave function Therefore, along with the wave function renormalization
renormalization in terms of the solution of the renormaliza-(4.40 we also introduce the multiplicative renormalization
tion group equatiori4.45 at the scal& =M. The renormal- - .
ization group improved ‘“bare vertex” I'(K,M) kr=Z[x,M]k. (4.5))
=7 Y x,M]TRK,«] is valid for K<M and leads to the
following resummed particle propagator valid for ke, @
<M and weak coupling.<1:

Since there are no infrared divergences associated kyith
thenZ[ x,M] is chosen in perturbation theory to be that of

thek=0 case discussed above and is independekt of

i [k2] 1?2 The renormalization group equation now becomes
S—(w,k)|;sof<:o:_m VB (4.47) ; ;
K=t ykr—=|Tr(K, kg, k) =0, (4.52
The resummed spectral density for particles(w,k) K K
=Im S_(w,k)/ is obtained by performing the analytic con- .
tinuationK — —iw+0", leading to the following expression n= il (?_: ,
near the Fermi surface: Z ik
(4.53
sifan]| @ - -
(0K pk=p=—=— |55 » 0=0—pu, Kk kg
7w M Y=z ——"=2\.
kg JK
2 (4.54
A= (4.48
242" ' Using the fact that the vertex function has dimension 2, we

write
It is straightforward to check that this spectral density

becomes a delta function in the limit—0 by integrating it K kr
within a small region around the Fermi surface. This spectral Pr(K kg )=k (b(_ 7) (4.59
density is remarkably similar to that found in non-Fermi-
liquid systems such as Luttinger liquids and has been experi- Finally introducing the variables anéinsaze
mentally measured in condensed matter systems via the -
x-ray edge singularities at the Fermi surface of some metals Ko kg
—=e , r=—, (4.56

[42]. K K

Using the renormalization group improved spectral den-
sity (4.48 we can now obtain the value of the particle dis- d(e tLr)=e""2H[t,r], (4.57

tribution function at the Fermi surface by restricting the in-
tegral in Eq.(4.8) to a region of widthM near the Fermi the functionH[t,r] obeys the simple renormalization group
surface: equation
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Jd — 9 This condition and the identificatiof[0]=®(1) deter-
{ﬁ + 7fa—r} H[t,r]=0, (4.58 mineboth Z x,M] and 2 x,M] by comparing the powers of
k. Since H is a function of the scaling variable ¢
y=y—1=2\"—1. =kZ(K/k)?", the functional form ofH[ ¢] is uniquely de-

(4.59  termined fork<M. We are thus led to the following unique
form of the renormalization group resummed vertex function

The solution of this equation is simple, ~
for k<M, A<1:

H[t,r]=H[r(t)], 4.6 ~
[t,r]=H[r(t)] (4.60 KBk k2| , Tk wos
with r(t) the solution of the ordinary differential equation (K.k)= M2 ) K2\ M '
_ 2
o e =r(0)e (.61 .
—=—yr=r(t)=r(0)e " )
dt Y This discussion reveals another manifestation of the criti-

cal nature of the theory near the Fermi surface: the renormal-

Therefore we find that the renormalization group im-jzation group improved vertex function is of teealing form
proved vertex function is given by
RZ<K7*

K\ 2

K2\~

K2

I'(K,kK)=T(K,0D , A=1-2x. (469

I'r(K Kk, x)=K?

KA

, (462

Using the relation between the vertex function and the
where we have explicitly used the multiplicative renormal-Eyclidean particle propagator given by Hg.39 we find,
ization ofk and introduced the integration constahtwhich ~ from Eq. (4.64),
only depends o andM, to be determined later.

Comparison with the solutiof#.45 for k=0 reveals that 1

: A S (@0,K) pmphp=—o———, K=—iw+0".
H[0]=®(1). As in thecasek=0 we request that the (K ~
“bare” vertex coincide with the free field expression at the K| — —k
cutoff scaleK=M, i.e., (4.66

=1

We can now obtain the spectral density near the Fermi

= _1 D ~
Z T MITRIM K «]. surface by following the steps detailed in the céseO,
(4.63 leading to

[[MkM]=M? 1+i

M

-2\

sif7\] _ |o 1
p—(w!k)|w~,u,k~,u,: w M ~ | =2\ 2 ! (467)
~|® ~ -
{(m ol —keogmh] | +(ksinmn])?
|
which vanishes identically ab=0. This spectral density is _ . a2 |~k|2x/(1—2>\)
displayed as a function @b for several values dt and\ in vg(k)=[M~*" cog mA]] (1-2n) (4.69

Figs. 1 and 2.

3. Quasiparticles vanishesask—kg . We interpret this novel phenomenon in

Figures 1 and 2 clearly reveal that in weak coupling theterms of a collective backflow that surrounds the quasiparti-
spectral density features a narrow resonancekfof, the  cle.
position of which is obtained by the vanishing of the first Near the position of the resonance, i.e., %&Z)p, the
term in the denominator in E@4.67) which determines the spectral density can be approximated by a Breit-Wigner form
quasiparticle dispersion relatiorit is given by

wp(K)=sgrR)[[KIM 2 cog ) JYA-2), (4.6 cog mA] L

7w,k;%;%:Z~k — —
We note that the group velocity of the quasiparticles neaf) (@] prk pLk] ™ [w—wp(k)]2+F2(k)

the Fermi surface, (4.70
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FIG. 1. p_(k/M,w/M) for A\=0.1,k/M=0.2.
~ o~ |2\
’w,)(k)
Z[k]= W' (4.71
' (k)=Z,[K][K|sin 7\ ]. 4.72

Therefore the residue of the “quasiparticle pole” and the
“quasiparticle width” vanishes near the Fermi surface as

Z,[K]or |k— kg 2720, (4.73

I (k) oc |k — kg |YE=2M), (4.74

It is straightforward to confirm that the quark propagator
(4.66 has a complex pole with the real and imaginary parts
given by EQgs.(4.68 and(4.72), respectively, in the narrow

width approximation I'(k)/w,(k)<1. For this purpose
write, for the complex pole,

Kp=—iw,—T, (4.79

with I'>0 corresponding to dampinghis is confirmeda
posteriori from the solution. In the narrow width approxi-
mation we can replace

(0p—iT) P~ ()t 1-(1-2))i ~L+ _
@p
4.76

Requiring the vanishing of the real and imaginary parts of

the denominator of Eq(4.66) we find the position of the
guasiparticle pole and its width given by Eq4.68 and
(4.72), respectively.

4. Requiem to the Fermi liquid: The jump of the distribution
function at kg vanishes
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such thaj |,

cut off at the scaléVl. Hence we find

ng=ng_+An(k), (4.7
sin 7\ ]
=N (4.78

- o _ _— -
k>=fﬁde[p_w,k)—p_(w,on.

(4.79
A detailed calculation reveals that
k < (—K/M)" sif(n+2)m\
A K 2 )" sinl(n+2)m\]
7™ = n+1-2(n+2)\
B k [sin2mn  k sin3m\ k2 sin4m\
T M| 14N M(2-6N) | M2Z(3—8n)
+0(k% |, (4.80

leading to the following form of the single quasiparticle dis-
tribution near the Fermi momentum:

~sifm] k -
Nk ="2mn  aM(i—dny oK)

(4.80

As was originally pointed out in Ref§14,17 the ex-
change of dynamically screened magnetic gluons leads to the
breakdown of the Fermi liquid description. The renormaliza-
tion group resummation of the infrared divergences respon-
sible for the breakdown of the Fermi liquid picture leads to
Eq. (4.8)) and therefore to the vanishing of the discontinuity
of the distribution function at the Fermi surface. This is one

We can now study the behavior of the distribution func-of the important results of this work.
tion near the Fermi surface by using the spectral density This is clearly a consequence of the result that the wave
(4.67 in the expressio.8). Since the domain of validity of function renormalization or residue at the quasiparticle pole
the approximations invoked to obtain the spectral density iwanishes as a power law at the Fermi surface. In Fermi liquid
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theory, the discontinuity at the Fermi surface enters in all A perturbative expansion of this equation is obtained by
thermodynamic response functions, for example, in the coefwriting
ficient of the linear power of temperature in the specific heat
[41,42]; thus the vanishing of the jump discontinuity will — F(t,k)=g?F®(t,k)+g*F®(t,k) + - - -,
likely result in an anomalous specific heat.
p(k )= Ok ) + @YDk +g* PR+ - -
V. NONEQUILIBRIUM ASPECTS: SINGLE (5.6

UASIPARTICLE RELAXATION . . . .
Q Replacing these expansions in E§.5) leads to a hierarchy

A. Dynamical renormalization group of equations, the first two terms of which are given by
The equation of motiori3.9) can be written in the form

d ) R
L\ t i} i (Wog—%k> ¥ O(k,)=0, (5.7)
(Woﬁ_‘}"k)l//(kat)+fmdt’ STk t—t") g(kt')

d " > . .
i vo— — v- (2) =—F® (0)
. 51 (')’oat yk)w (Kit)=—F@(0R) ¢O(K,1)

. t
with +f dt’ F@
0

- | ~ - A ’
)= —ilw(t—t") , oy -
2(k,t—t") Wf dolm3(w,k)e™ . (5.2 X (t—t",K) ¢OK,t).
- (5.9
In order to study the initial value problem as a perturba-

tive expansion, it proves convenient to write this self-energy The solution of the zeroth order equatih?) is given by
in the following form:
- 0 = i 0 - .
) ; ) POk =2 [BRU (ke 4D Ive(—k)el],
r = 4!
S'(k,t—t") Y F(t—t' k), (5.9

1 d while the second order equati@b.8) can be solved in terms
. 0w~ . ) , ; ) ;
F(t—t’,k)=;J’ jlmE(w,k)e"‘”(t‘t ) of the retarded free field Green'’s function

_ [ L )
®3 S(K t=t)= = 5 [P_(Rje 1)
Using the form of the self-energy given by E§.17 we
see that the functioff can be written as +P (ke et-t)  (5.10

.01 R ~ by proposing the form
Ft—t' R =3[P (OF _(t—t' & Y ProPOsing

(/,(2)(|2,t) = E [Bffs)(t)US(E)efikt—l— DE,(SZ)(t)VS( _ E)eikt],
(5.11

. 1(fde -~ . ,
Fi(t—t’,k):;f —ImX. (ke @, with the coefficient8{’)(t), D} ”(t) beingslowly time de-

+P_(KF,(t—t" K],

,S k,s
(5.4) pendentWe focus on the time evolution of an initial state of
particles near the Fermi surface; i.e., we @ét(so)=0 and
We now integrate by parts the nonlocal term in Egl) k~kg . A straightforward computation leads to the following
and use the fact that the adiabatic switching-on of the exteresult:
nal Grassman current leads to a vanishing time derivative for
the fermionic expectation value for0 [38]. Upon switch- Bffs)
ing off the external current d@t=0 the effective Dirac equa-

| b
=B+ (),

tion of motion for the induced expectation value for0 (22) 0.1 do = .
becomes By (D=IB ¢ t;J'; Im 2 _(w,k)
4 . .o K (do ~ .1
(uyoﬁ—yk) WK+ FOK) gk, 1) +;J7 Im 3 (0.0 o=
t . o 1 —
—fdt’ F(t—t" k) ¢(k,t')=0. (5.5 X t—M (5.12
0 (w—k) '

034016-14



NON-FERMI-LIQUID ASPECTS OF COLD AND DENE. ..

K (dw
(2b) 1y _ R0
By s (t)—Bﬁ,s{—;Jj
~ . 1-cog(w—k)t]

X1m E_(w,k)w . (5.13

Using the formulas in the Appendix of R¢B88], we find

that in the limitt—o the two terms in Eq(5.12 can be
combined to yield

0)

) =il

@ t Re 3_(w=kK).

B (5.19

The contributioanf;b)(t) in thet—oo andk=~u can be
understood by writing the integral in E¢p.13 as follows:

I L et (Cnl L
|= Wf_de Im X _(w,k) (Z)—E)Z

3

w=w—u, K=k—pu. (5.19

Using the formulas found in the Appendix of RE38] we
find for k<M andMt>1 that

BEY(1)=BO[-T'¢-2An(MD)],  (5.16
T=m\ [k|=Im 3_(2=K),
(5.1
e —
A=——, M=Me?, 51
24772 (5.18

and combining the above results leads to the final lowest

order perturbative result:

2)

B(E’S(t):B(E?S)[—i5kt—l“kt—2)\|n(l\7t)], (5.19
~ |k S~ =
8=2xklin|/ = —Re 3_(0=k),
(5.20

with 3_(@) given by Eq.(4.30 and y is the Euler-

Mascheroni constant. We note that the damping iate

PHYSICAL REVIEW D 63 034016

gins by recognizing that the terms in the square brackets in
Eqg. (5.2 can be interpreted as a renormalization of the co-

efficientB(IZOS). Thus following the procedure detailed[i88]
we introduce the renormalization consté{tr) in the form

Bg:BRJﬂZU% Z(1)=1+Nzg(7)+ - -
| (5.22

with 7 an arbitrary time scale. The coefficient( ) is cho-
sen to cancel the secular terms at the time scale Choos-

ing this scale so that the perturbative expansion is still valid
we find that the improved solution is given by

Bis(D)=Bis(7)|1—i(t—7)—Ty(t—7)— 2)\In( ET) }
(5.23

Since the scale is arbitrary, the invariance of the solution
on the choice of this scale, i.e.,

dByg s(1)
dr 0,

(5.29

leads to the dynamical renormalization group equation,
which to order\ is given by

9Bk s(7)
or

+Bis(7) =0. (5.2

, 2\
|5k+Fk+ T

Finally we choose the arbitrary scateto coincide witht
in the solution of Eq(5.25 [38], leading to the renormaliza-
tion group improved time-dependent amplitude
t 2\

B o(t) =By (to)e ! e Mt t0) 2

(5.26

Therefore the time evolution of the wave function of qua-
siparticle states near the Fermi surface is given by

t 2\
wk“‘k (t) Ifljk"‘k':( O) ( k)( O)e 1—‘k(t t0) —
~Kg ~ t e

(5.27

We see that the oscillation frequengyt 6, coincides
with the quasiparticle dispersion relati¢h 698 to lowest or-

given by Eq.(5.17) coincides with the result obtained in Ref. der in A while the “damping rate"I', coincides with the
[35], but the logarithmic term is a novel result of our analysisduasiparticle width(4.72 to lowest order in\. The novel
and is the dominant contribution for particles at the Fermi@SPect is the power law relaxation with anomalous dimen-

surface.

sion which cannot be extracted by computing the damping

Then up to second order we find that the coefficient of thé@te in an equilibrium formulation. Thus we are led to one of
positive energy spinors in the expectation value of the spinthe important results of this article: quasiparticle excitations

field is given by

Bis() =Bl [1-i5t—Tt—2\In(MD)].  (5.21)

The linear and logarithmic secular terms in the solution

with the Fermi momentum relax with a power law with an
anomalous dimension.

B. Time evolution from the resummed spectral density

1. k=0

invalidate the perturbative expansion at very long times. The
dynamical renormalization group introduces a systematic re- We now use the renormalization group improved form of
summation of these secular terms as describd@&h The the propagator for particles near the Fermi surface to obtain
implementation of the dynamical renormalization group be-the real time evolution from the inverse Fourier transform of
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Eqg. (3.18. An initial value problem is obtained by introduc- above, the most important novel feature is the power law
ing an adiabatically switched-on external Grassman sourceelaxation with anomalous dimension for quasiparticles with
that vanishes at=0 whose Fourier transform is given by  Fermi momentum as well as the anomalous scaling dimen-

sion for the quasiparticle dispersion relation, width, and resi-

ky due.

w—i

0
w,k)= o 2 [Bi V%K)~ DY V(= K)].

(5.28 VI. FROM QED TO QCD

An initial particle state is prepared by choosiBg ;=0 AIth_om_Jgh we have focused our calculations on the case of
: o~ a0 . ’ . QED, it is straightforward to extrapolate the results to QCD
with P_(k) (k) =2y"7(w,k). The Fourier transform is 5 yha same order in the HDL approximation. The reason is
obtained by writinge™'“'=e"'#'e”'“' and performing the that the polarization tensor for gluofishotons to this order
analytic continuatior{4.37. For k= u the long time behav- s given by the quark loop. In the cold non-Abelian theory,
ior is dominated by the regiok~0 for which the analyti- the gluons give only the vacuum contribution while the

cally continued propagator is given by Ed.47); we find quarks dominate the polarization tensor for large density.
This is unlike the case at finite temperature where the gluon
| kel oo —iut loops give a contribution of the same order as that of the
Pkt = z Bis US(k) e quark loop. Furthermore, again unlike finite temperature, a
magnetic gluon mass isot expected to arise because the
+ie+0 dK ke [K -1 gluons do not have any infrared divergence. The important
X f—imo 24iM M changes that are required to extrapolate the results from QED
to QCD are the following:
. e lmtp2n) sin(2m\) (a8 The gluon mass scalé.27) that enters in the longitu-
=i(k,0) 5 N . (529 dinal and transverse spectral densitié6 and(4.25, re-
m (Mt) spectively, now becomes

The power law can be extracted by a simple scaling of the 2 2
integration variableK =2/t and is clearly a consequence of MZCD:_(_
the anomalous scaling behavior of the propagator. Thus the Q 472\ 2
time evolution obtained directly from the Fourier transform
of the (Euclidean renormalization group improved propaga- with Ng the number of flavors of quarks in the fundamental
tor confirms the result from the dynamidakal-time renor-  representation.

malization group for excitations with Fermi momentutka ( () The effective coupling in the self-energy of the quark
=0) and relates the power law falloff to the anomalous scalhow includes the trace over the color matrices resulting in
ing dimension. that, for QCD,

2.k#0 N g2 N2-1
The Fourier transform with the improved propagator QP o4m? 2N,

(4.66) is more complicated because of the branch cut and the

complex pole. Although obtaining an exact expression for Thus the results obtained for QED to leading order in the
the full integral is a complicated task, we can confirm theHDL approximation can be extrapolated to QCD via the re-
exponential relaxation in the narrow width approximationplacementM —Mqcp, A—Xgcp-

(weak coupling from the contribution from the complex Vertex corrections:An important question that must be
pole (4.75), the real and imaginary parts of which are givenaddressed is that of vertex corrections. In leading order in
by Egs.(4.68 and(4.72), respectively, in the narrow width HDLs, QCD and QED are similar because the quark loop
approximation. Keeping only the contribution of the com- gives the leading contribution to the vector boson polariza-

p|ex p0|e to the Fourier transform f&rgﬁo we find tIOI’l tensor; there:fore the Only relevant vertex is Abelian.
Since the vertex is related to the self-energy by the Ward

kt>1 ' o B identity, one would expect logarithmic corrections arising

p(k,t) ~ p(k,0e #e lopMte=TWt (530  from the vertex. However, the results obtained from a de-

tailed study in[27] show that this is not the case. The basic
The exponential relaxation confirms the result of the dy-point of the argument is the following: the small momentum
namical renormalization group since the narrow width apdimit of the vertex, which is the relevant limit for long wave-
proximation impliesh <1 for which the power law arising length gluons, is related to the quark self-energy as
from the cut contribution is subleading.

Thus the study of both cas&s=0 andk+0 via the Fou- I#(q~0)= 92(p) ©6.1)
rier transform of the renormalization group improved propa- P, '
gator confirms the results obtained directly in real time via
the dynamical renormalization group. As was emphasized Since the leading behavior near the Fermi surface is
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S(w,K)c(o—p)Injo—pul, (6.2 The real-time evolution of the single quasiparticle wave
function for states near the Fermi momentum is given by
only the time component of the vertex would in principle

lead to an infrared divergence; however, this vertex corre- ket D (b T (t— 1| FO 2\
sponds to the exchange of a longitudinal gluon which is De- Yk (1)~ i~k (to)e™ e T eIt~ Tt "to) T

bye screened and does not lead to an infrared divergence. (7.3
The spatial components of the vertex are infrared finite, and

do not change the leading infrared divergence. Therefore quasiparticles with the Fermi momentum relax

The main conclusion extracted from this argument andyith a power law determined by the anomalous scaling di-

based on the detailed analysis of referef4 (to which we  mension, revealing that the physics near the Fermi surface is
refer the readeris that the infrared divergences in leading similar to that of a critical theory.

order in HDLsdo not receive vertex correctionslence we (i) The single quasiparticle distribution function ésn-
expect that the resummation of the leading infrared divertinuousnear the Fermi momentum; i.e., the “jump” discon-
gences provided by the renormalization group either Euclidtinuity in the Fermi-Dirac distribution vanishes as a conse-
ean or in real time do not receive vertex corrections. quence of the vanishing of the quasiparticle residue at the
Fermi momentum. We find
VIl. CONCLUSIONS AND CONJECTURES

Our goal in this article is a systematic study of the break- Nyeg = sitmh]__ (k—ke)
down of the Fermi liquid description of theormal state of Foo2mh aM(1-4)N)
cold and dense QED and QCD. As was recognized before, o ) . L
the exchange of magnetic gluons and photons that are onl The vanishing of_the dlscqntlnmty of the distribution
dynamically screened by Landau damping leads to infrare nction at th<=T I_:er.ml surface is the hallmark of the break-
divergences in the quark self-energy for particles near thdoWwn of Fermiliquid theory.

Fermi surface. The main aspect of this article is the recogni- | Nere are some remarkable similarities between these fea-
tion that these divergences are akin to those arising in 4/res of cold dense QCD and QED and those of quasi-one-
critical theory near its upper critical dimensionality. We thendimensional Fermi systems with marginal interactions that
implemented both the Euclidean and the dynamical renor©@d to a description as Luttinger liquifi39,40. These sys-
malization group to provide a nonperturbative resummatior}éms also feature 'spectr.al dens_ltles and corrglatlon functions
of the leading infrared singularities to analyze equilibriumWith anomalous dimensions which are nonuniversal and de-
and nonequilibrium aspects of the singiquasjparticle ~ PeNd on the couplingg39,40. The fermion propagator that
states near the Fermi surface. The non-perturbative resurf€SUlts from one gluon exchangeynamically screengds
mation of the single particle propagator leads to a novel dealso_smllar to that conjectured to descnbe the normal phase
scription of the spectrum of quasiparticle excitations with®' Nigh temperature superconductors in terms of marginal
momentum near the Fermi momentum summarized as foll_:erml liquids[48,49. Even if these similarities are just co-

+O(k—kp)?. (7.9

lows incidental, it is possible that a body of results in the con-
(i) The quasiparticle pole, width, and residweave func- densed matter literature could be useful to understand _the
tion renormalizationare given by Ijundqmental aspects of the normal phase of QCD at high
ensity.
wp(K)=sgr(k)[[k|M~2* cog 7\ ) [YE~2Y), Potential impact of the resultsAs we mentioned in the
Introduction, the properties of the normal state not only de-
I (&) =2,k |I~<|sir'{7-r)\] f[ermine the thermodynamics and transport prop_erties but also
P ' influence those of the superconducting state, since supercon-
%K) 21 ductivity appears as an instability of the normal state towards
‘P_ pairing interactions. Therefore the results obtained in this
7 [K]= article that pertain solely to the nor_mal phase could bear on
P (1—=2)\) characteristics of the superconducting state as well as trans-
port in the normal(and possible in the superconducting
o=0—ke, k=k—kg, phase.

(i) In Ref.[27] it was found that the same type of infrared
respectively. Therefore the residue of the “quasiparticledivergences that lead to the breakdown of Fermi liquid
pole” and the “quasiparticle width” vanishes near the Fermi theory are responsible for a substantial decrease of the super-

surface as conducting gap. In the calculation of R¢27], these diver-
gences are manifest through the wave function renormaliza-
Z[k]oc| k—kg| 2220, (7.1)  tion in the equation for the gap. Furthermore, recently
lifetime effects (of the normal state quasiparticjesvere
r("k)oc|k_kF|1/(1—2>\), (7.2) shown to lead to a further decrease of the superconducting

gap[31]. In this article we have shown how the wave func-
and the group velocity of quasiparticles with Fermi momen-tion renormalization logarithmic divergence sums up to pro-
tum vanishes, indicating a collective backflow. duce anomalous dimensions, which change the quasiparticle
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description. The spectral density features anomalous dimerore of neutron stars. Thus our studies for the properties of
sions for frequency and momenta near the putative Fernthe normal phase, along with those of color superconductiv-
surface as well as important modifications in the quasipartiity, must be taken as indicative of novel and potentially rel-
cle dispersion relations, lifetimes, and residues. It is thereforevant phenomena, but must be carefully extrapolated to the
a relevant question to assess the potential corrections of thealm of the baryochemical potentiébaryon density rel-
resummed spectral densities for the normal quark propagavant to quark matter in neutron stars, requiring alternative
tors to the superconducting gap. This entails solving the gaponperturbative techniques.

equation or alternatively the Dyson-Schwinger equation but

with the normal quark propagators replaced by those ob- ACKNOWLEDGMENTS

tained from the resummed spectral functions. We are cur-
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tion from the core of neutron stars is cooling, which is stud-

ied through(soft) x-ray emmisior{50]. The cooling equation APPENDIX: REAL-TIME PROPAGATORS
dE dT 1. Dirac fields
azca:_[LﬁLy] In this appendix we summarize the various real-time

propagators used in this article. The fermion propagators are
relates the neutrino and photon luminosities to the specifi€lefined by
heatC. For normal quark matter the neutrino emissivity is 3
dominated by the direct quark Urca procesdesu e v, u (\Ifa(i,t)\l_fb(i’,t’»:i f ﬂgﬁab(t,tr) gik- (x=x')
e—dw [51]. A normal weakly interacting degenerate Fermi (2m)3
gas has a typical specific heat linear in temperatn(&)

=C,T where the coefficien€, depends on the Fermi liquid S|§'+(t,t')=Sl;>(t,t’)0(t—t’)

properties. In particular the wave function renormalization

(residue at the quasiparticle pplenormalizes the free field +S§(t,t’)0(t’ -1),

(free Fermi gapvalue ofCy. Since the quasiparticle residue

vanishes, signaling the breakdown of Fermi liquid theory, we Slz__(t,t’)zsf(t,t’)e(t’ —1)

conjecturethat the linear law will be replaced in a manner

similar to that of Kondo-type systenjg2], CxIn(T). If a +S§(t,t’)0(t—t’),
superconducting instability introduces a gap for all quarks,

then the specific heat will have a typical behavior Slfi(t,t’)zsf(t,t’), (A1)

C, e AT (for T<T.) whereA(T) is the superconducting

gap andC, depends on the density of quasiparticle statesyherea, b= .

near the Fermi surface which again receives non-Fermi- |n an equilibrium situation the propagators can be written
liquid renormalization corrections. If the neutrino and photonin terms of spectral densities as follows:

emissivity of quarks is suppressed because of the presence of

a superconducting gap, then the electronic specific heat will Ca> S P

becoene relevant,gir? vShich case again the ngn-Fermi-quuid IS (Lt ):J ddop” (do,kpe™ "1,

corrections to the specific heat will be important since there

are no superconducting pairing instabilities in QED. If some < S
of the quarks are ungapped, these aoemal and will re- —ISc(tt ):f dgop™(do,k)e %1,
ceive renormalization of their Fermi liquid behavior.
Understanding the potential corrections of the breakdown P>(QO,|Z):P(QO:|Z)[1— N¢(do.k) 1,
of Fermi liquid theory both for quarks and leptons could
therefore lead to a deep<_ar u.n.derstanding of .cooling in neu- p<(q0,IZ)=p(q0,IZ)Nf(qo,k), (A2)
tron stars and therefore justifies further studies along these
lines. where the Fermi-Dirac distribution functions for particles

Our analysis was based on a perturbative approach; therand antiparticles, for the case under consideration of finite
fore its range of validity is restricted to asymptotically large chemical potential. and zero temperature, are given by
densities so that the effective coupling(w)/67<<1. Using

the running of the QCD coupling constant, the weak cou- N¢(do) =0 (x—do), (A3)
pling condition implies chemical potentials and baryon den- o
sities orders of magnitude larger than those available at the N¢(0o)=0O(—u—0dp)- (A4)

034016-18



NON-FERMI-LIQUID ASPECTS OF COLD AND DENE. .. PHYSICAL REVIEW D 63 034016

For free fields the fermion Wightman functions are given

by
S (tt)=— I—{(K+ m)[1—Ng(wp)]e ert-t)
2wg

i P ’
SE(t,t’)z _{(K+ m) NF((‘)IZ) eflwk(tft )
2wy

+ yo(K—m) yo[ 1— N (wp) el et}
(A5)

with K= (wi,k), K=7%wi—v-k, and wi= Vk?®+m?. For
massless fermion@he case under consideratjpn

[(K+m)
g

} =P_(k=7"—7y-K,
m=0

-

=P (k)=»"+7

>

[ Yo(K—m) 70]

, (AB)
Wy -0
with the properties
(P_(K))?=(P. (K))*=0,
P(KP, (K)=29°P, (K),
P (K)P_(K)=27°P_(K). (A7)

2. Gauge fields
a. Spatial components
The transverse photon propagators are defined by

. i . - d3
(P OARE )= | e

X P(q) e X,

GF s (L) =07 (L) f(t—t")
+G7 4Lt Ot 1),

Grq (L) =07 4(t,t) ot —1)

+0r (Lt e(t—t"),
7 (L) =Gr (t,1), (A8)

wherePl(q)=61—q'q’ is the transverse projector and the

photon Wightman functions can be written in terms of a

spectral representation as follows:

g;q(t't’):iJ' ddo pr(do.q) [1+ng(gg)] e 4ot

g;q(t,t’)zif ddo pr(do, ) Na(qo) € 9ot
(A9)

where p1(do,q) is the spectral density andg(q,) is the
Bose-Einstein distribution function.
At zero temperature

Ng(do)=—0O(—do), 1+na(go)=0(qgg). (AL0)
For free fields at zero temperature we find
g> t.t —i_ —iq(t-t")
T,q( 1 )_qu ’
= (L) =) A1l
gT,q( ’ )_qu . ( )

In the HDL approximation, the spectral densﬁy(qo,q)
is given by

pr(do,9) =Ssgr(do) Z(q) 95— wF(a) ]+ Br(do.q) 8(4°—af),

gZMZw wz)
472 K k?
Arlwl)= _ 9’u?| 20? o 0?\ |kt+wl]]’ 9’u’ w w2\ *
S e PR L T

(A12)
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andZ+(q) is the residue at the pole of the collective excita-  For free fieldsp, (q,,9)=0 and
tion [33].

b. Time component of the photon propagator 1

o Gl i) ==d8(t—-t"),
The time-time component of the photon propagator de- a q?
scribes the instantaneous Coulomb interaction including

screening corrections and is given by

d3q

1
g ()= a(t=t),
(2m)°

<AS(>?,t)A8(>?’,t')>=if GEb(L,t)ed X,

. 1 _ G q(t,t")=0. (A15)
Glgtt)= ?5(t—t')+g_q(t,t')a(t—t')

In the hard dense loop approximation the spectral density

+ G (Lt 6t —1), ~ o
L pL(do.0) is given by

1
—— ’, :__5 Y > ’/ 0 r__ _
Gua (L) == U+ GO0 2 0 a)=sar(do) Zu(a) SLaZ— wl(a)]

+G5 (L) 0t —t), +BL(do,0) 6(q*—ap),
Gig(tLt) =G q(t,t"), (A13)
9°u? qo
with the Wightman functions expressed in terms of the spec- o2 E
Lo~ a
tral densityp, as BL(o,9)= > CRCRNETE
g2 S8 (2_% ‘q+qo ] [g p q_}
giq(t,t'):_if ddo pL(do,a) [1+ng(gg)] e "ot~ 2m? a4 147 % 2m 9
(A16)
< A -~ —igg(t—t")
G q(tLt’) = 'f ddo pL(Clo,q) Na(do) €790, wherew, (q) is the plasmor{longitudinal photoh pole and
(A14)  Z,(q) is the corresponding resid(id3].
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