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Non-Fermi-liquid aspects of cold and dense QED and QCD: Equilibrium and nonequilibrium
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We study equilibrium and nonequilibrium aspects of thenormalstate of cold and dense QCD and QED. The
exchange of dynamically screened magnetic gluons~photons! leads to infrared singularities in the fermion
propagator for excitations near the Fermi surface and the breakdown of the Fermi liquid description. We
implement a resummation of these infrared divergences via the Euclidean renormalization group to obtain the
spectral density, dispersion relation, widths, and wave function renormalization for single quasiparticles near
the Fermi surface. We find that all features scale with anomalous dimensions:vp(k)}uk2kFu1/(122l), G(k)
}uk2kFu1/(122l); Zp(k)}uk2kFu2l/(122l) with l5a/6p for QED, (as/6p)(Nc

221)/2Nc for QCD with Nc

colors andNF flavors. The discontinuity of the quasiparticle distribution at the Fermi surface vanishes. For
k'kF we find nk'kF

5sin@pl#/2pl2(k2kF)/pM (124l)1O(k2kF)2 with M the dynamical screening
scale of magnetic gluons~photons!. The dynamical renormalization group is implemented to study nonequi-
librium relaxation. The amplitude of single quasiparticle states with momentum near the Fermi surface falls off
as uCk'kF

(t)u'uCk'kF
(t0)ue2G(k)(t2t0)@ t0 /t#2l. Thus quasiparticle states with Fermi momentum have zero

group velocity and relax with a power law with a coupling-dependent anomalous dimension.

DOI: 10.1103/PhysRevD.63.034016 PACS number~s!: 12.38.Mh, 11.15.Bt, 12.38.Aw, 12.38.Lg
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I. INTRODUCTION AND MOTIVATION

There is a substantial theoretical and experimental ef
to map the phase diagram of QCD as a function of temp
ture~T! and chemical potential (m). Current theoretical idea
suggest@1# that heavy ion collision experiments from SIS
the BNL Alternating Gradient Synchrotron~AGS!, CERN
Super Proton Synchrotron~SPS!, BNL Relativistic Heavy
Ion Collider ~RHIC!, and finally the CERN Large Hadro
Collider ~LHC! have the potential to study the region of th
phase diagram forT<300–400 MeV andm<0.6 GeV with
higher~T! and lower (m) for RHIC and LHC. Understanding
this region of the phase diagram can provide insight into
QCD phase transition in the early Universe, about 10ms
after the big bang, as well as the equation of state of hot
dense QCD. Matter at low temperature<10 MeV and up to
nuclear matter densityr0'0.16 fm23, m'300 MeV is ame-
nable to study by low energy nuclear systems such as m
tifragmentation phenomena in nuclei. Cold and den
nuclear matter for densities larger than a few times
nuclear matter density cannot be studied with terrestrial
celerators and is the realm of astrophysical compact obje
such as neutron stars@2,3#. The fascinating possibility of
detecting a phase transition in quark matter in neutron
x-ray binaries was raised recently@4,5#, where the signal
would be a pronounced peak in the frequency distribution
x-ray neutron stars due to a long spin-up stage and the c
ing history as revealed by the~soft! x-ray spectra@22–24#.
Thus while QCD at high temperature and relatively sm
chemical potential can be experimentally studied with
0556-2821/2001/63~3!/034016~21!/$15.00 63 0340
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trarelativistic heavy ion collisions, astrophysical observat
of the properties of neutron stars can provide observable
natures from cold and dense QCD if quark matter is
correct description of the core of spinning neutron stars.

While there is a substantial body of results on QCD
finite temperature on the lattice, the lack of a manifest rea
of the fermion determinant with finite chemical potential pr
sents a problem for the lattice program with the importa
exception of two colors which have received considera
attention recently@6–8#.

An important aspect of QCD at large chemical potentia
that of color superconductivity@9# which arises from a par-
ing instability of the free Fermi gas in the color antitripl
channel. Since the original proposal of color superconduc
ity via a one~screened! gluon exchange@9#, there has been
an increased interest in color superconductivity@10–20# and
diquark condensation@21#. The presence of diquark conden
sates in the cold and dense core of neutron stars could
potential observable signatures in their cooling history
well as in the magnetic fields of pulsars@22–24#. Therefore
the study of cold and dense QCD is warranted by a defi
phenomenological and observable impact if not on terres
accelerator experiments certainly in the astrophysical sig
tures of neutron stars@25#.

Goals.The common framework to study degenerate c
related fermion systems is that of Fermi liquid theory~see
next section!. The emergence of superconductivity~diquark
condensation in the case of QCD! is associated with the in
stability of the normal Fermi liquid towards an attractiv
pairing interaction. In the case of a weakly interacting Fer
©2001 The American Physical Society16-1
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system the starting point is the free Fermi gas and pai
results in the opening of a gap in the single particle spect
at the Fermi surface. Fermi liquid theory is argued to d
scribe the low energy effective field theory of nuclear mat
@26# and is therefore an important tool to study nuclear m
ter and its impact in astrophysical compact objects.

Recently it has been argued, within the context of co
superconductivity, that the exchange of dynamica
screened~via Landau damping! magnetic gluons results in
strong infrared divergences that lead to the breakdown of
Fermi liquid description of cold and dense QCD in perturb
tion theory@27#. A similar situation was found in the case o
a nonrelativistic electron gas with magnetic interactions@28–
30#, where it was argued that there would be no observa
consequences of the breakdown of Fermi liquid theory
terrestrial densities.

While diquark condensation and color superconductiv
in its various forms have been studied extensively in
literature, we are aware of only one previous study of n
Fermi-liquid aspects of cold and dense QCD@27#, which
revealed large corrections to the superconducting gap@27#.
Further corrections to the superconducting gap were fo
from lifetime effects@31# not associated with the breakdow
of Fermi liquid theory.

Studying Fermi liquid aspects of thenormal phase is an
important part of the program towards understanding c
and dense QCD. As mentioned above, understanding
properties of the normal phase is perhaps the first step
wards a complete assessment of the pairing instabilities
properties of the superconducting state. Furthermore, if
pairing interaction opens a gap at the Fermi surface ofsome
quarks, such as the two or three color superconduc
phases~2SC or 3SC! @10–16,20,25#, the remaining gaples
quarks will be described by the concomitant Fermi liquid

Our goal in this article is to provide a comprehensi
study of non-Fermi-liquid aspects in thenormal phase of
cold and dense QCD, postponing to a forthcoming article
study of the implications of the breakdown of Fermi liqu
theory on color superconductivity. While the study in@27#
focused on the corrections to the color superconducting
and issues of gauge invariance, we study both equilibr
and nonequilibrium aspects of the non-Fermi-liquid beh
ior. In particular we focus on~i! the dispersion relation an
damping rates of quasiparticles near the Fermi surface
these reveal anomalous dimensions resulting from the br
down of Fermi liquid theory, and~ii ! the relaxation of these
quasiparticles: again we find anomalous relaxation with
origin in the same infrared divergences responsible for
breakdown of Fermi liquid theory. Our main motivations f
initiating this study and long term goals are manifold:~a! to
obtain a further assessment of non-Fermi-liquid correcti
to the superconducting gaps, critical temperature, and s
trum of excitations in the superconducting phase,~b! a study
of the potential implications of non-Fermi-liquid correction
to the neutrino emissivity and the cooling rate of neutr
stars with degenerate quark-matter cores,~c! a more com-
plete and detailed understanding of the properties of de
QCD in a regime which is not yet amenable to lattice sim
lations, and~d! a study of transport phenomena in the n
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Fermi liquid, which is relevant to cooling and thermodynam
ics of neutron stars.

In this article we begin this program by studying in det
the breakdown of the Fermi liquid description and by pr
viding a comprehensive analysis of the spectrum of sin
quasiparticle excitations in thenormalphase along with their
relaxation properties.

Strategy.We study both QED and QCD at zero temper
ture but large~baryon! density so that a perturbative analys
is reliable. In this regime the hard-dense-loop~HDL! ap-
proximation, which is the finite density equivalent of th
hard-thermal-loop program of Braaten and Pisarski for fin
temperature@32–37#, is reliable and describes the main a
pects of the static and dynamical screening of gluons~and
photons!. The leading order in the HDL approximation is th
samein Abelian~QED! and non-Abelian~QCD! theories and
the screening of gauge fields is completely determined by
one loop quark polarization at finite~and large! density@34–
37#. In this approximation, static ‘‘longitudinal’’ gluons~in-
stantaneous Coulomb interaction! are screened by a Deby
screening massmD}gm while transverse gluons are onl
dynamicallyscreened via Landau damping@32,33#. To this
order in the HDL approximation the polarization tensor f
gluons in QCD is similar to that for photons in QED save f
trivial color and flavor factors. The main difference betwe
QCD and QED in this approximation is that while one glu
exchange leads to an attractive~pairing! interaction in the
antitriplet particle-particle channel and therefore to diqua
condensation, there is no such attractive channel in QE1

Thus, to this order in the HDL approximation, the Ferm
liquid aspects of the normal state of cold and dense QCD
similar to those of QED. Thus we present our study with
the framework of QED which, accounting for the trivia
color and flavor factors, also describes those of the nor
state of QCD to leading order in the HDL approximation.

As described in detail in Sec. II, a Fermi liquid descri
tion has an associated ‘‘order parameter’’; this is the ju
discontinuity of the Fermi distribution function~of the inter-
acting! system at the Fermi momentum. This discontinuity
given by the residue~wave function renormalization! of the
quasiparticle pole for quasiparticles with the Fermi mome
tum. The breakdown of the Fermi liquid picture is associa
with the vanishing of this order parameter; i.e., the Fer
distribution function iscontinuousat the Fermi momentum
We begin by obtaining the quark propagators to leading
der in the HDL approximation, corresponding to one ba
gluon exchange in the quark self-energy, and show explic
that to this order there is a sharp discontinuity at the Fe
surface determined by the wave function renormalization
the quasiparticle pole.

However, this picture does not survive screening corr
tions to the gluon propagator; whereas longitudinal glu
exchange leads to an infrared finite contribution, the

1However, we expect the Overhauser effect to be present in Q
@19#, i.e., particles above and holes below the Fermi surface bo
by their mutual~screened! Coulomb attraction. These are the cou
terpart of exciton bound states in condensed matter.
6-2
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change of magnetic gluons which are onlydynamically
screened by Landau damping introduces logarithmic div
gences in the quark propagator for quasiparticles near
Fermi surface.

For excitations with Fermi momentum we argue that th
infrared divergences are similar to those of a critical the
at the upper critical dimensionality. Thus we provide a
summation of the quark propagator for particles with t
Fermi momentum using the Euclidean renormalization gro
which reveals the emergence of anomalous dimensions in
spectral density. Nonequilibrium aspects are studied
implementing a dynamical renormalization group@38# which
provides a resummation of the quark propagatordirectly in
real time. The dynamical renormalization group revea
power law relaxation with anomalous dimension for qua
particles with Fermi momentum.

Summary of the results.The exchange of dynamicall
screened magnetic gluons leads to infrared divergences in
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single particle propagator for particle excitations near
Fermi surface. These divergences are akin to those foun
critical phenomena for a critical theory at the upper critic
dimensionality. We implement a resummation of the pert
bative expansion via the Euclidean renormalization gro
We find that the particle component of the quark propaga
for excitations near the Fermi surface is ascaling functionof
the two variablesṽ5v2m, k̃5k2m with anomalous expo-
nents that depend on the gauge coupling. Fork̃Þ0 the spec-
tral density has the Breit-Wigner~quasiparticle! form, with
the quasiparticle dispersion relation, width, and resid
given, respectively, by

vp~ k̃!}uk̃u1/(122l), G~ k̃!}sin@pl#uk̃u1/(122l),

Zp~ k̃!}uk̃u2l/(122l), ~1.1!

with the effective coupling given by
l5H a

6p
for QED,

as

6p

Nc
221

2Nc
for QCD with Nc colors andNF flavors.

~1.2!
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The residue of the quasiparticle pole vanishes ask→kF ,
leading to the following form of the~quasi!particle distribu-
tion function near the Fermi surface:

nk'kF
5

sin@pl#

2pl
2

k̃

pM ~124l!
1O~ k̃!2,

M5H gm

2p
for QED,

gm

2p

NF

2
for QCD with NF flavors,

~1.3!

revealing the vanishing of the discontinuity of the Fermi d
tribution function at the Fermi surface and therefore the v
ishing of the Fermi liquid order parameter.

Implementing a real-time, i.e., a dynamical version of t
renormalization group to study the nonequilibrium relaxat
of single quasiparticles near the Fermi surface, we find
the amplitude of the wave function of single quasiparti
states near the Fermi surface fall off as

uck'kF
~ t !u}uck'kF

~ t0!u e2G( k̃)(t2t0)F t0

t G2l

. ~1.4!

Thus quasiparticles with Fermi momentum have vani
ing group velocity and relax with an anomalous power la

We make a comparison between these features of
and dense QCD~and QED! and those of strongly correlate
-
-

at

-
.
ld

quasi-one-dimensional Fermi systems that feature non-Fe
liquid behavior and are described as Luttinger liqui
@39,40#.

The article is organized as follows: in Sec. II we summ
rize the aspects of Fermi liquids that are relevant for o
discussion. In Sec. III we obtain the expression for the q
siparticle distribution function in terms of the quark spect
density and obtain the equation of motion for quarks wh
will be used to study nonequilibrium aspects. In Sec. IV
study the equilibrium aspects of single quasiparticles.
begin by studying the quark propagator to lowest order in
HDL approximation, i.e., with the self-energy given by th
exchange of hard~bare! gluons, and make contact with th
Fermi liquid description to this order. Soft (q,gm) gluons
require HDL resummation, and the propagator for partic
near the Fermi surface is computed by including HD
~screening! corrections to the exchanged gluon. The result
infrared divergences are recognized to be similar to thos
a critical theory at its upper critical dimension and resumm
using the Euclidean renormalization group. The renormali
tion group improved spectral density features scaling beh
ior that leads to the single quasiparticle dispersion relat
and lifetime that scales with anomalous dimensions.
show that the jump discontinuity of the single particle dist
bution function vanishes at the Fermi surface as a con
quence of the vanishing of the single quasiparticle residu
the Fermi momentum. Section V explores nonequilibriu
aspects: the relaxation of single quasiparticle excitations n
the Fermi surface. Implementing a real-time version of
renormalization group reveals that single quasiparticle st
6-3
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with Fermi momentum relax with a power law with anom
lous dimension. In Sec. VI we summarize the connect
between QED and the normal state of QCD to the or
studied and address the important issue of vertex correcti
Our conclusions are discussed in Sec. VII. In this section
also discuss the striking resemblance of the spectral den
and relaxation to that obtained in a Luttinger liquid@39,40#
and some related conjectures on the non-Fermi-liquid asp
of high Tc superconductivity; we elaborate on the potent
impact of the results and discuss their range of validity.
appendix contains many of the technical details.

II. HIGHLIGHTS OF A FERMI LIQUID

The most successful description of interacting degene
Fermi systems in thenormal state, i.e., nonsuperconductin
or superfluid is Fermi liquid theory. Landau’s original fo
mulation, largely phenomenological, has as the basic hyp
esis a one-to-one correspondence between the eigensta
the interacting and noninteracting systems. In this formu
tion the quasiparticlesare obtained from the single partic
states of the noninteracting system via an adiab
switching-on of the perturbation@39–41#; hence for this pic-
ture to remain valid the interactions should not lead to ph
transitions. TheLandau quasiparticleconcept is appropriate
for excitations very near the Fermi surface, since for sh
range interactions the lifetime of these quasiparticles it
'uk2kFu22 @39–41#, which after including screening effect
also holds in the case of Coulomb interactions@43#. For qua-
siparticles near the Fermi surface the adiabatic hypothes
reasonable@39,40# and Landau’s phenomenological theory
applicable to study transport phenomena of low energy e
tations @41#. A more modern and consistent description
Fermi liquid theory is based on renormalization group ide
@44# which describe the low energy physics near the Fe
surface as fixed points of the renormalization group, a
Fermi liquid interactions are those associated with marg
operators near this fixed point. This formulation of Fer
liquid theory reveals that the physics near the Fermi surf
is very similar to that of critical phenomena and is co
pletely determined by the gapless excitations associated
the formation of particle-hole states near the Fermi surf
@44#.

Fermi liquid theory is the starting point of a consiste
study of the properties of degenerate, interacting Fermi s
tems; in particular BCS superconductivity can be underst
as a result of the instability of the Fermi liquid towards pa
ing attractive interactions@45#.

It has been adapted to study dense nuclear matter@26# and
recently the renormalization group description of Fermi l
uids has been extended to the interactions in field theor
nuclear matter density@46#. The conclusion of these studie
is that Fermi liquid theory is an effective low energy theo
for excitations near the Fermi surface. The field theoret
approach to Fermi liquids quantifies the main concepts
Fermi liquid theory in terms of the spectral density for t
quasiparticles near the Fermi surface: a Breit-Wigner fo
with a small width ~for k'kF) and a finite residue at th
‘‘quasiparticle pole,’’ ZkF

. The quasiparticle distribution
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function is distorted from the original Fermi-Dirac step fun
tion ~at zero temperature! but a ‘‘jump discontinuity’’ re-
mains at the Fermi surface which is determined by the w
function renormalization constantZkF

~see @47# for an ex-
plicit calculation in the electron gas!. In a well-defined sense
this jump discontinuity is associated with an ‘‘order para
eter’’ for a Fermi liquid@40,39#: a normal Fermi liquid cor-
responds toZkF

Þ0 while for a non Fermi liquidZkF
50.

Transport properties of a degenerate Fermi gas depend o
renormalization of the~quasi!particles; for example, the co
efficient of the linear power of temperature in the electro
specific heat is proportional toZkF

.
There are some notable examples of the breakdown

Fermi liquid theory such as the Kondo model of electro
interacting with magnetic impurities and ‘‘quasi’’-one
dimensional metals which provide a novel type of behav
for correlated electron systems: the Luttinger liquid~see
@39,40# and references therein!. This novel behavior of a cor-
related degenerate electron system is characterized by a
ishing jump at the Fermi surface and power law correlatio
akin to those found in critical phenomena@39#.

Another system in which the Fermi liquid descriptio
breaks down is that of nonrelativistic electrons interact
via the exchange of ‘‘magnetic’’~transverse! gauge bosons
@28–30#. Recent conjectures suggest that this type of n
Fermi-liquid behavior@48# or ‘‘Luttinger liquid’’ behavior
could explain the unusual properties of the normal phase
high temperature superconductors@49#.

Our study of the normal state of cold and dense QCD~and
of QED! reveals a striking resemblance with Luttinger liqu
behavior; in particular, the renormalization group improv
quark propagator that we find is remarkably similar to th
proposed in@48,49# to describe the normal phase of hig
temperature superconductors.

III. PRELIMINARIES: QUASIPARTICLE DISTRIBUTION
FUNCTION AND EQUATIONS OF MOTION

In this section we obtain the general expressions for
quasiparticle and quasiantiparticle distribution functions
make contact with Fermi liquid theory. The main aspect
the distribution function is that the existence of a jump d
continuity of the quasiparticle distribution at the Fermi m
mentum is the signal of Fermi liquid behavior. Furthermo
we obtain the effective equation of motion for the Dirac fie
in the medium to extract nonequilibrium aspects. Typica
relaxation is studied by extracting the dampingrate which is
obtained from the imaginary part of the self-energy eva
ated on the mass shell of the fermion and describes expo
tial relaxation. However, from the results of@34–37# it is
found that the damping rate vanishes for quasiparticles w
the Fermi momentum. However, the form of the fermi
self-energy~see next section! strongly suggests the buildu
of logarithmic infrared singularities just like in critical phe
nomena with the potential for summing up to a power la
relaxation with anomalous dimensions. The solution of
real-time equation of motion resummed via the dynami
renormalization group will confirm power law relaxatio
6-4
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with anomalous dimension for single quasiparticles with
Fermi momentum. Thus in order to extract the correct rel
ation behavior we must study the real-time evolution of
amplitude of the quasiparticle state which is obtained fr
the equation of motion.

A. Quasiparticle distribution function

The spatial Fourier transform of the Dirac field operator
any given timet can be written in the form

c~kW ,t !5(
s

@bkW ,s~ t !U (s)~kW !1dkW ,s
†

~ t !V(s)~2kW !#, ~3.1!

with U (s)(kW ), V(s)(kW ) the usual free particle Dirac spinor
We refer to the time-dependent operatorsbkW ,s(t) anddkW ,s

† (t)
as the annihilation and creation of quasiparticles and q
siantiparticles, respectively. Within the spirit of Fermi liqu
theory, upon adiabatically switching on the interaction the
operators interpolate between the free~bare! particles and the
dressed~quasi!particles and antiparticles, respectively. W
define the average number of quasiparticles and quasiant
ticles as

nkW5
1

2 (
s

^bkW ,s
†

bkW ,s&, ~3.2!

n̄kW5
1

2 (
s

^dkW ,s
†

dkW ,s&, ~3.3!

where the expectation value is in theexact ground state,
which is obtained from the unperturbed ground state by a
batically switching on the perturbation from timet→2` to
t50. Using the properties of the usual spinor wave functio
U,V and the results of the Appendix, it is straightforward
find

nkW5Tr H g0~K” 1m!g0

4vkW
^c̄~kW ,t !c~kW ,t !&J

t50

5TrH g0~K” 1m!g0

4vkW
@2 iSkW

,
~ t,t !# t50J , ~3.4!

n̄kW5TrH ~K” 2m!

4vkW
^c~kW ,t !c̄~kW ,t !&J

t50

5TrH ~K” 2m!

4vkW
@ iSkW

.
~ t,t !# t50J . ~3.5!

We are considering the situation ofm@m so that we will
neglect the current quark masses and consider the quar
massless. Using the spectral representation of the prop
tors for Dirac fields given in the Appendix, we find, fo
massless fermions,

nkW5
1

4E dq0 Tr@P1~kW !r f~q0 ,kW !#Nf~q0!, ~3.6!
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n̄kW5
1

4E dq0 Tr@P2~kW !r f~q0 ,kW !#@12Nf~q0!#,

~3.7!

with P6(kW ) given in the Appendix. Thus to obtain the qu
si~anti!particle distribution functions we need to obtain th
fermion spectral densityr(q0 ,kW ).

The emission and absorption of hard gluons~photons!
with momentaq>m will affect the distribution functions for
fermions from deep within the Fermi sea up to excitatio
near the Fermi surface. However, because of the Pauli blo
ing of states below the Fermi surface, the emission and
sorption of soft gluons~photons! with q!m will only affect
the distribution function of particles near the Fermi surfa
but not those deep within the Fermi sea. Soft gluons~pho-
tons! are sensitive to screening corrections and their pro
gator must include screening arising from quark loops. T
leading order correction is given by the resummation of h
dense loops corresponding to quark intermediate states
momenta near the Fermi surface@34–37,33#. The spectral
density in both cases, with hard and soft gluon exchan
will be studied in detail in the next section.

B. Equation of motion

We can treat the equilibrium and nonequilibrium aspe
of cold and dense QED and QCD by studying the real-ti
equation of motion of a fermion condensate induced by
external source. The equilibrium aspects studied here ca
be addressed by obtaining the fermion propagator and
fermionic spectral density, while the equation of motion
lows us to study the real-time relaxation of an initially pr
pared condensate as an initial value problem prepared
using a suitable source term. The advantage of studying
equation of motion in real time is that it will reveal th
relaxation of fermions directly in real time. Since the leadi
order corrections in the HDL approximation are similar f
QED and QCD@34–37,33# and the gluon~photon! polariza-
tion is completely determined by the one fermion loop, w
describe the necessary steps in QED; the final form for
spectral densities and relevant quantities for QCD can
obtained by simply accounting for the proper color and fl
vor factors.

The QED Lagrangian density in the Coulomb gauge
given by ~see@38# for a similar context!

L5C̄~ i ]”2gg0A01ggW •AW T!C1C̄h1h̄C

1 1
2 @~]mAW T!21~¹A0!2#, ~3.8!

where the Grassmann valued source terms were introdu
to obtain the effective Dirac equation in the medium by an
lyzing the linear response to these sources.

Following the steps detailed in@38#, we find the Dirac
equation for the spatial Fourier transform of the expectat
value in the massless case to be given by
6-5
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S ig0

]

]t
2g•kW Dc~kW ,t !1E

2`

`

dt8 S~kW ,t2t8! c~kW ,t8!

52h~kW ,t !, ~3.9!

whereS(kW ,t2t8) is the retarded fermion self-energy give
by the sum of the transverse and longitudinal contributio

S~kW ,t2t8!5ST~kW ,t2t8!1SL~kW ,t2t8!. ~3.10!

Using the results of the Appendix we find

ST~kW ,t2t8!5 ig2E d3q

~2p!3
Pi j ~p!„g i$@ iSqW

11
~ t,t8!#

3@2 iG T,pW
11

~ t,t8!#2@ iSqW
,

~ t,t8!#

3@2 iG T,pW
,

~ t,t8!#%g j
…, ~3.11!

SL~kW ,t2t8!5 ig2E d3q

~2p!3
„g0$@ iSqW

11
~ t,t8!#

3@2 iG L,pW
11

~ t,t8!#2@ iSqW
,

~ t,t8!#

3@2 iG L,pW
,

~ t,t8!#%g0
…, ~3.12!

with pW 5kW2qW . The propagators are written in terms of the
spectral representation and using the results in the Appe
it becomes clear that the retarded self-energy has the fol
ing causal structure:

S~kW ,t2t8!5S r~kW ,t2t8!Q~ t2t8!. ~3.13!

Introducing the Fourier transforms in time for the expe
tation value of the Dirac field, the source and the self-ene
and the Fourier representation ofQ(t2t8) we find that the
equation of motion in terms of the space-time Fourier tra
forms becomes

@g0v2gW •kW1S̃~v,kW !#c̃~v,kW !52h̃~v,kW !. ~3.14!

Introducing the dispersive representation for the retar
self-energy,

S̃~v,kW !5
1

pE dq0

Im S̃~q0 ,kW !

q02v2 i01
, ~3.15!

a straightforward calculation reveals that

S r~kW ,t2t8!5
1

pE dq0 e2 iq0(t2t8)Im S̃~q0 ,kW !.

~3.16!

For massless fermions we write

S̃~v,kW !5g0S̃0~v,kW !2gW •kŴ S̃1~v,kW !. ~3.17!

Hence the solution of the equation of motion is given
03401
:

ix
-

-
y,

-

d

c̃~v,kW !5SR~v,kW !h̃~v,kW !, ~3.18!

with

SR~v,kW !52 1
2 @P2~kW !S2~v,kW !1P1~kW !S1~v,kW !#,

~3.19!

S2~v,kW !5@v2k1S̃2~v,kW !#21, ~3.20!

S1~v,kW !5@v1k1S̃1~v,kW !#21, ~3.21!

S̃2~v,kW !5S̃0~v,kW !2S̃1~v,kW !, ~3.22!

S̃1~v,kW !5S̃0~v,kW !1S̃1~v,kW !, ~3.23!

with P6(kW ) given in the Appendix. The fermion spectra
density is obtained from the imaginary part of the retard
propagator and is given by

r f~v,kW !5 1
2 @P2~kW !r2~v,kW !1P1~kW !r1~v,kW !#,

r2~v,kW !5
1

p

Im S̃2~v,kW !

@v2k1ReS̃2~v,kW !#21@ Im S̃2~v,kW !#2
,

~3.24!

r1~v,kW !5
1

p

Im S̃1~v,kW !

@v1k1ReS̃1~v,kW !#21@ Im S̃1~v,kW !#2
.

~3.25!

We consider two cases separately to obtain the spe
densities:~i! The gluon ~photon! line in the fermion self-
energy carrieshard spatial momentump>m. In this case
one~bare! gluon exchange gives the leading order correct
to the quark self-energy in the HDL approximation@34–37#
for large chemical potential.~ii ! The gluon~photon! line car-
ries soft spatial momentump!m in which case the gluon
~photon! propagator must be dressed by HDL fermion loo
@34–37#. The contribution from hard gluon exchange to t
self-energy of low momentum fermions deep within t
Fermi sea, i.e., withk!gm, must be treated nonperturba
tively @32,34–37#, resulting in a modified dispersion relatio
and their description as quasiparticles. For fermions near
Fermi surface~and weak coupling! the HDL corrections
from hard gluon exchange are perturbative. Thus hard ga
fields will modify the fermion propagators for all fermio
states in the Fermi sea. On the other hand, the emission~and
absorption! of soft gluons~photons! with q<gm will only
affect fermionic statesnear the Fermi surface. We now study
each case in detail.
6-6
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IV. EQUILIBRIUM ASPECTS

A. Hard gauge fields: Fermi liquid behavior

We are interested in particles near the Fermi surfa
therefore we will focus on the spectral densityr2(q0 ,kW ) and
we will neglect the antiparticles, for which there is no Fer
surface.

For hard gauge fields with loop momentumq>m we can
use the free field propagators for transverse and ‘‘longitu
nal’’ gauge fields given in the Appendix. We find that th
instantaneous Coulomb interaction leads to a local contr
tion to the self-energy which is subleading for small fermi
momentum@36,37#. In the HDL limit we find

r2~q0 ,kW !5Z1d„q02v1~k!…1Z2d„q01v2~k!…

1rc~q0 ,k!, ~4.1!

with v1(k) andv2(k) the fermion and plasmino quasipa
ticle poles with residuesZ6 , respectively~see@33# for their
complete expressions!. The continuum spectral density ha
support below the light cone and is given by

rc~q0 ,k!5
1

p

Im S̃2~v,kW !

@v2k1ReS̃2~v,kW !#21@ Im S̃2~v,kW !#2
,

~4.2!

Im S̃2~v,kW !5p
M f

2

2k S 12
v

k DQ~k22v2!, ~4.3!

ReS̃2~v,kW !52
M f

2

2k H S 12
v

k D lnUv1k

v2kU12J , ~4.4!

M f
25

g2m2

8p2
, ~4.5!

and satisfies the sum rule

Z11Z21E
2k

k

dq0 rc~q0 ,k!51. ~4.6!

The spectral densitiesr6(q0 ,kW ) are related by@33#

r1~q0 ,kW !5r2~2q0 ,kW !, ~4.7!

and upon using this relation, the results of the previous s
tion, and the Appendix we find

nkW5E dq0 r2~q0 ,kW !N~q0!, ~4.8!

n̄kW5E dq0 r2~q0 ,kW !N̄~q0!, ~4.9!

N~q0!5Q~m2q0!, N̄~q0!5Q~2m2q0!,
~4.10!

and the fermion number density is given by
03401
e;

i

i-

u-

c-

N5E d3k

~2p!3E2m

m

dq0 r2~q0 ,kW !. ~4.11!

This expression relates the chemical potential to the ferm
number density. We now have the tools to understand
change in the Fermi sea in the HDL limit.

Since N(q0)5Q(m2q0) and v1(k).k @33#, from the
expression for the particle distribution function given by E
~4.8!, we see that for values ofk such thatv1(k),m the
region of support of the spectral densityr2(q0 ,k) is con-
tained in the interval2`,q0,m; therefore for these value
of k the distribution function isnk51. The value of the
momentum at which the frequency of the fermion quasip
ticle, v1(k)5m, is the limiting value for which the quasi
particle pole is in the interval of support ofN(q0), thus
defining the Fermi momentumkF by v1(kF)5m.

We can obtain an estimate for the value of the Fer
momentum in the HDL limit and weak coupling for whic
m@M f using the largek limit of the quasiparticle pole,

v1~k!'k1
M f

2

k
, k@M f , ~4.12!

from which we obtain

kF'mF12
g2

8p2G . ~4.13!

For k.kF the quasiparticle pole is outside of the region
support ofN(q0) but the spectral density still has a contr
bution inside this region, given by the plasmino pole a
2v2(k) and the Landau damping continuum. Hencenk.kF

Þ0 as befits an interacting Fermi system. Thus, whereas
k,kF the distribution functionnk51, for k.kF it is 0
,nkW,1. This analysis leads to the following result:

nkW5Z2~k!1Z1~k!Q~kF2k!

1E
2m

m

rc~q0 ,k!5H 1, k5kF2e,

12Z1~kF!, k5kF1e.

~4.14!

We can estimate the discontinuity or ‘‘jump’’ at the Ferm
surface in the HDL limit by using the sum rule~4.6! above
and the largek limit of the quasiparticle residue@33#:

12Z1~k'kF!'S g

4p D 2 F2 ln S 4p

g D21G . ~4.15!

At the Fermi momentum we find

nk5kF
5N~q05m!Z1~kF!1S g

4p D 2 F2 lnS 4p

g D21G ,
~4.16!

where we have usedN(q05m)51/2. Thus, to this order, the
Fermi surface is sharp with a jump discontinuity atk5kF
given bynk5kF2e2nk5kF1e5Z1(kF). The sharpness of the
6-7
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Fermi surface in the HDL approximation is a conseque
that to this order the quasiparticle excitations have an infi
lifetime. For momentak'm the HDL approximation is not
truly justified since in this limitk@gm and the contribution
from the hard momentum region of the two particle cut is
O(g2m) which becomes comparable to that of Land
damping ofO(g2m2/k). This fact notwithstanding, the mai
purpose of this analysis is to reveal that the contribut
from the hard loop momentum region to lowest order in
resummation program leads to a description consistent
Fermi liquid theory with a discontinuity or ‘‘jump’’ at the
Fermi surface determined by the residue of the quasipar
pole which to this order is non-vanishing. As we will stud
in detail below, the contribution from soft gluon exchang
which requires screening corrections, invalidates the Fe
liquid description.

B. Soft gauge fields: Non Fermi liquid

We now focus on the damping effects on quasipartic
near the Fermi surface, i.e.,k'kF'm. Damping of these
excitations results from the emission and absorption of
gluons which require the gluon~photon! propagators in the
fermion self-energy to be HDL resummed@32–37#. These
dressed gauge propagators can be handily included in
calculation of the self-energy by writing the Wightman fun
tions for the gauge fields in terms of their spectral repres
tation described in the Appendix. Since the fermion mom
tum is k'kF'm and the exchanged gluon is soft withq
!m, the fermion line in the self-energy does not requ
HDL resummation and can be taken to be a bare ferm
propagator.

A straightforward calculation using the free fermio
propagators for the internal fermion line and the HDL r
summed longitudinal and transverse gauge field propaga
in terms of their spectral densities leads to the fermion s
energy in a dispersive representation as in Eq.~3.15! with

Im S̃~q0 ,kW !5
pg2

2 E d3q

~2p!3E dp0$@Q~p0!2Q~m2q!#

3d~q02p02q!@ r̃T~p0 ,p!P T
i j ~p!g iP2~q!g j

1 r̃L~p0 ,p!g0P2~q!g0#

1Q~p0!d~q01p01q!

3@ r̃L~p0 ,p!P T
i j ~p!g iP1~q!g j

1 r̃L~p0 ,p!g0P1~q!g0#%, ~4.17!

where pW 5kW2qW and we have neglected the instantaneo
Coulomb interaction.r̃T,L are given in the Appendix.

The dispersive representation~3.15! makes clear that the
largest contribution to the self-energy forv'm is deter-
mined by the behavior of ImS(q0 ,k) for q0'v'm.

The contribution from soft gluons to the self-energy
fermions near the Fermi surfacek'm can be extracted easil
by first relabelling the integration momentapW ↔kW2qW so that
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qW is the momentum of the~soft! gluon line with q!m and
ukW2qW u'k2q cos(u) with u the angle betweenkW and qW . In
this limit we find

Im S̃2~q0 ,k!5pg2E d3q

~2p!3E dp0„$rT~p0 ,q!

3@12cos2~u!#1rL~p0 ,q!%

3@Q~p0!2Q„m2k1q cos~u!…#

3d„q02p02k1q cos~u!…1rT~p0 ,q!

3@11cos2~u!#Q~p0!d„q01p0

1k2q cos~u!……, ~4.18!

Im S̃1~q0 ,k!5pg2E d3q

~2p!3E dp0„rT~p0 ,q!

3@11cos2~u!#

3@Q~p0!2Q„m2k1q cos~u!…#

3d„q02p02k1q cos~u!…1$rT~p0 ,q!

3@12cos2~u!#1rL~p0 ,q!%Q~p0!

3d„q01p01k2q cos~u!……. ~4.19!

For particles near the Fermi surface the quark propag
has poles nearv'k'm, while for antiparticles there is no
Fermi surface and the poles are atv'2k. Therefore for
particles the self-energy is determined by ImS̃1(q0 ,k) for
q0'v through the dispersion relation. Hence for particl
near the Fermi surface the important region isq0'v'k
which implies that the argument ofd„q02p02k1q cos(u)…
has support forp0'qcos(u) corresponding to the region o
Landau damping of the gluon~photon! propagator~see the
Appendix!. On the other hand, forq0'k'v'm the d„q0
1p01k2q cos(u)… has support in the region ofp0'22m
,0 and this contribution is canceled by theQ(p0). Thus the
contribution to the self-energy of particles near the Fer
momentum from soft gluon exchange is completely det
mined by the first delta function

Im S̃2~q0 ,k!'pg2E d3q

~2p!3
„$rT~p0 ,q!@12cos2~u!#

1rL~p0 ,q!%@Q„q02k1qcos~u!…

2Q„m2k1q cos~u!…#…p05q02k1q cosu ,

~4.20!

which obviously vanishes atq05m. Thus we see that the
imaginary part of the self-energy i.e., the damping rate
fermionic excitations, vanishes at the Fermi surface@36,37#.
For antiparticles the propagator has poles forv'2k, and
for hard momentumk'm and q0'2k the d„q02p02k
1q cos(u)… has support forp0'22k'22m, i.e, in the hard
region, whiled„q01p01k2q cos(u)… has support forp05
6-8
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2q02k1qcos(u)'qcos(u) which is in the Landau damping
region of the spectral density. Hence

Im S̃1~q0 ,k!'pg2E d3q

~2p!3
„$rT~p0 ,q!@12cos2~u!#

1rL~p0 ,q!%Q~p0!…p052q02k1q cos(u) .

~4.21!

The case of antiparticles has been studied in@37,35# with
the result that the self-energy is analytic near the Fermi
face and does not lead to novel phenomena. Hence in w
follows we will ignore the case of antiparticles and refer t
reader to@37,35# for more details on this case.

Since the imaginary part of the self-energy for partic
vanishes at the Fermi surface, we expand nearq0'm as
follows:

Q„q02k1q cos~u!…2Q„m2k1q cos~u!…

5q̃0d„q cos~u!2~k2m!…1•••, ~4.22!

with

q̃05~q02m!, ~4.23!

and we are led to the expression

Im S̃2~q0 ,k!'
g2

4p
q̃0E

uk2mu

q* FrT~ q̃0 ,q!

3S 12
~k2m!2

q2 D 1rL~ q̃0 ,q!Gdq.

~4.24!

For q̃0→0 we can approximate:

rT~ q̃0 ,q!'

M2S q̃0

q
DQ~q22q̃0

2!

Fq214M2S q̃0
2

q2D G 2

1FpM2q̃0

q G 2 , ~4.25!

rL~ q̃0 ,q!'

2M2S q̃0

q
D

@q214M2#2
Q~q22q̃0

2!, ~4.26!

M25
g2m2

4p2
. ~4.27!

The region in which dynamical screening via Landau dam
ing is effective is determined byq,uq̃0u,M ; hence the va-
lidity of the approximation invoked above relies onuq̃0u
,M .

We note that whereasrT has a strong infrared singularit
for q→0 whenq̃0→0, Debye screening cuts off the infrare
03401
r-
at

s

-

behavior ofrL which leads to the conclusion that the cont
bution from the longitudinal gluons~photons! is }q̃0

2 @37#.
For excitations at the Fermi surface withk5m the contribu-
tion to the imaginary part from the transverse photons can
computed straighforwardly and it yields

Im S̃2
(a)~q0 ,k!5

g2

24p
uq̃0u. ~4.28!

The contribution from the longitudinal gluons~photons! is
clearly ofO(g2q̃0

2) and of the same order as the contributi
from the hard gluon~photon! region @37#. This is similar to
the case of nonrelativistic electrons interacting via t
screened Coulomb interaction@43#. The term proportional to
k̃5k2m in Eq. ~4.24! can be easily shown to yield a contr
bution of O„g2( k̃2/M )uṽ/M u1/3

….
Therefore we conclude that

Im S̃2~q0 ,k!5
g2

24p
uq̃0u1Ag2

q̃0
2

M
1BS g2

k̃2

M
U ṽ

M
U1/3D ,

~4.29!

with calculable coefficientsA,B. This result was previously
obtained in Refs.@35,36#. Our focus is to understand th
quasiparticle excitations and their distribution function ve
near the Fermi surface, in particular the discontinuity of t
distribution function atkF . In order to do this we need only
considerk̃!M with uṽu!M ; therefore we will keep only
the first ~leading! contribution in Eq.~4.29!.

We can now obtain the self-energy via the dispersion
lation ~3.15! for v'm by using the first term of Eq.~4.29!
and integrating within a region of width'M aroundm since
this is the region in which Landau damping is effective f
dynamical screening and the region that yields the lead
infrared contribution.

We finally obtain, fork,q0'm,

S̃2~v,k5m!52
g2

24p2
ṽH lnF2

ṽ1 i01

M
G1 lnF ṽ1 i01

M
G J

52
g2

12p2
ṽ lnU ṽ

M
U1 i

g2

24p
uṽu, ~4.30!

ṽ5v2m, ~4.31!

which combines the results of Refs.@17,36# into the real and
imaginary parts of the quark self-energy near the Fermi s
face. We finally obtain the retarded propagator and spec
densities for particles near the Fermi surface by using
relations~3.19!–~3.25! and extracting the term proportiona
to P2(kW ).

It is convenient to introducek̃5k2m'k2kF „since from
the analysis of the previous sectionkF5m@12O(g2)#…; for
v,k'm the inverse propagators for particles can be writ
as

S2
21~v,k!'ṽ2 k̃1S̃2~v,k5m!. ~4.32!
6-9
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The form of the real part of the self-energy}ṽ lnuṽ/Mu
strongly suggests a wave function renormalization. Such
interpretation is obscured by the termk̃ in the propagator;
however,at the Fermi surfacewith k̃50, the logarithmic
singularities of infrared origin are reminiscent of those o
critical theory and the propagator is similar to that obtain
in perturbation theory in a critical theory at the upper critic
dimensionality. This interpretation is validated by the curre
ideas on Fermi liquid theory based on the renormalizat
group, which describes the effective theory near the Fe
surface as a critical theory with marginal Fermi liquid inte
actions@44#.

Since at the Fermi surface (k̃50) the inverse propagato
is proportional toṽ, the wave function renormalization con
stant at the~quasi!particle pole for excitations near the Ferm
surface would be given by

Z~m!5F11
d

dv
ReS̃2~v,k!uv5k5mG21

'
1

F12
g2

12p2
lnU ṽ

m
UG ṽ50 . ~4.33!

This wave function renormalization or residue at the~qua-
si!particle pole for excitations near the Fermi surface is p
cisely the quantity that determines the ‘‘jump’’ of the~qua-
si!particle distribution function at the Fermi surface
determined by Eq.~4.16!. However, the logarithmic singu
larities manifest in Eq.~4.30! would lead to the conclusion
that Z(m)50 and that the Fermi surface ‘‘vanishes.’’ Suc
conclusion has also been obtained in nonrelativistic syst
with magnetic interactions@28–30#.

A similar situation arises in a critical theory; for exampl
in the Euclidean formulation of a critical scalar theory wi
quartic interaction in four dimensions the inverse propaga
for small Euclidean four-momentumK is given by

G21~K !'K2@12l2cln~K2/k2!#, ~4.34!

with l the quartic coupling,c a combinatoric constant, andk
a renormalization scale. Again the wave function renorm
ization or residue at the ‘‘pole’’K250,

Z5F d

dK2
G21~K !UK250G21

, ~4.35!

vanishes. The vanishing of the wave function renormaliz
tion on the particle mass shell in a critical theory indica
that the propagator acquires ananomalousscaling dimen-
sion. The logarithmic singularities are resummed via
renormalization group, leading to the following improve
propagator:

GRG
21~K !5K2S K2

k2 D 2h

, h5l2c. ~4.36!
03401
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Therefore we interpret the vanishing of the wave functi
renormalization for quasiparticles at the Fermi surface as
indication of the buildup of an anomalous dimension as
consequence of the infrared singularities, which are only
namically screened via Landau damping. To make this in
pretation explicit we now proceed to obtain a renormaliz
tion group improved quasiparticle propagator, focusi
solely on the particle excitations near the Fermi surface.

C. Euclidean renormalization group

1. k̃Ä0

In order to obtain a renormalization group resummation
the infrared singularities we must first perform an analyti
continuation to Euclidean space. This is accomplished by
following analytical continuation:

ṽ1 i015 iK , ~4.37!

with K taken to be a real variable. From Eq.~3.20! the par-
ticle propagator now reads

S2~v,k!uv'0,k5052 i
K

G~K !
, ~4.38!

G~K !5K2F12l lnS K2

M2D G ,

l5
g2

24p2
. ~4.39!

ObviouslyG(K) has the same form as the inverse prop
gator of a scalar theory with infrared corrections typical o
critical theory as discussed above. The physics near
Fermi surface requiresK!M , which obviously leads to a
breakdown of the perturbative expansion. Just as in a crit
theory takingK→0 and keepingM fixed is the same as
keepingK fixed and takingM→`, i.e, interpretingM as an
ultraviolet cutoff and taking the limit of large cutoff at
fixed transferred momentum.

The renormalization group improvement proceeds in
same manner as in the scalar theory; we first introduc
wave function renormalization constant that will absorb t
cutoff dependence at a given renormalization scalek and a
renormalized vertex function

GR~K,k!5Z@k,M #G~K,M !, ~4.40!

Z@k#511l lnF k2

M2G1••• .

~4.41!

The independence of the bare vertex upon the renorm
ization scale leads to the renormalization group equation

Fk ]

]k
2hGGR~K,k!50, ~4.42!
6-10
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h5
k

Z

]Z

]k
52l. ~4.43!

Using the fact that the vertex has scaling dimension 2,

GR~K,k!5k2FS K

k D , ~4.44!

with F a dimensionless function of its argument, the ren
malization group equation for the scaling functionF can be
solved straightforwardly, leading to

GR~K,k!5k2FK

k G22h

F~1!. ~4.45!

We can now obtain a renormalization group improv
vertex function as follows. Requiring that at the scaleK
5M ~i.e., at the scale of the cutoff where perturbation the
is valid! the ‘‘bare’’ vertex obey

G~K5M ,M !5M25Z21@k,M #GR@K5M ,k# ~4.46!

fixes the renormalization group resummedwave function
renormalization in terms of the solution of the renormaliz
tion group equation~4.45! at the scaleK5M . The renormal-
ization group improved ‘‘bare vertex’’ G(K,M )
5Z21@k,M #GR@K,k# is valid for K!M and leads to the
following resummed particle propagator valid fork5kF , ṽ
,M and weak couplingl!1:

S2~v,k!uṽ'0,k̃5052
i

M F K2

M2G l21/2

. ~4.47!

The resummed spectral density for particlesr2(v,k)
5Im S2(v,k)/p is obtained by performing the analytic con
tinuationK→2 i ṽ101, leading to the following expressio
near the Fermi surface:

r2~v,k!uv'm,k5m5
sin@pl#

puṽu
U ṽ

M
U2l

, ṽ5v2m,

l5
g2

24p2
. ~4.48!

It is straightforward to check that this spectral dens
becomes a delta function in the limitl→0 by integrating it
within a small region around the Fermi surface. This spec
density is remarkably similar to that found in non-Ferm
liquid systems such as Luttinger liquids and has been exp
mentally measured in condensed matter systems via
x-ray edge singularities at the Fermi surface of some me
@42#.

Using the renormalization group improved spectral d
sity ~4.48! we can now obtain the value of the particle d
tribution function at the Fermi surface by restricting the
tegral in Eq.~4.8! to a region of widthM near the Fermi
surface:
03401
.,

-

y

-

al

ri-
he
ls

-

nkW5kWF
5E

2M

M

dṽ Q~2ṽ !
sin@pl#

pṽ
U ṽ

M
U2l

5NkW5kWF

sin@pl#

pl
,

~4.49!

with NkW the Fermi-Dirac distribution function andNkW5kWF

51/2. The distribution function~4.49! obviously attains the
free field limit for l→0.

2. k̃Å0

The renormalization group method presented above
the case ofk̃50 can be straightforwardly extended tok̃Þ0
by recognizing that the propagator fork̃Þ0 is

G~K !5K2F12l lnS K2

M2D G1 iKk̃, ~4.50!

similar to that obtained in a scalar theory in the large tra
ferred momentum limit but with a ‘‘mass’’ term. This simi
larity suggests that the termi k̃K can be treated just as a ma
term in the renormalization program of a scalar theo
Therefore, along with the wave function renormalizati
~4.40! we also introduce the multiplicative renormalization

k̃R5Z@k,M # k̃. ~4.51!

Since there are no infrared divergences associated witk̃,
then Z@k,M # is chosen in perturbation theory to be that
the k̃50 case discussed above and is independent ofk̃.

The renormalization group equation now becomes

Fk
]

]k
2h1g k̃R

]

] k̃R
GGR~K,k̃R ,k!50, ~4.52!

h5
k

Z

]Z

]k
52l,

~4.53!

g5
k

k̃R

] k̃R

]k
52l.

~4.54!

Using the fact that the vertex function has dimension 2,
write

GR~K,k̃R ,k!5k2FS K

k
;
k̃R

k
D . ~4.55!

Finally introducing the variables andAnsätze

K

k
5e2t, r 5

k̃R

k
, ~4.56!

F~e2t,r !5et(h22)H@ t,r #, ~4.57!

the functionH@ t,r # obeys the simple renormalization grou
equation
6-11
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F ]

]t
1ḡr

]

]r GH@ t,r #50, ~4.58!

ḡ5g2152l21.
~4.59!

The solution of this equation is simple,

H@ t,r #5H@ r̄ ~ t !#, ~4.60!

with r̄ (t) the solution of the ordinary differential equation

dr̄

dt
52ḡ r̄⇒ r̄ ~ t !5 r̄ ~0!e2ḡt. ~4.61!

Therefore we find that the renormalization group im
proved vertex function is given by

GR~K,k̃,k!5K2S K2

k2 D 2l

HF k̃Z
K S K2

k2 D lG , ~4.62!

where we have explicitly used the multiplicative renorm
ization of k̃ and introduced the integration constantZ, which
only depends onk andM, to be determined later.

Comparison with the solution~4.45! for k̃50 reveals that
H@0#5F(1). As in the case k̃50 we request that the
‘‘bare’’ vertex coincide with the free field expression at th
cutoff scaleK5M , i.e.,

G@M ,k̃,M #5M2F11 i
k̃

M
G5Z21@k,M #GR@M ,k̃,k#.

~4.63!
th

st

ea

03401
-

This condition and the identificationH@0#5F(1) deter-
mineboth Z@k,M # andZ@k,M # by comparing the powers o
k̃. Since H is a function of the scaling variable w

5 k̃Z(K/k)2l, the functional form ofH@w# is uniquely de-
termined fork̃!M . We are thus led to the following uniqu
form of the renormalization group resummed vertex funct
for k̃!M , l!1:

G~K,k̃!5K2S K2

M2D 2lF 11
i k̃K

K2S K2

M2D 2lG . ~4.64!

This discussion reveals another manifestation of the c
cal nature of the theory near the Fermi surface: the renorm
ization group improved vertex function is of thescaling form

G~K,k̃!5G~K,0!DF k̃

KDG , D5122l. ~4.65!

Using the relation between the vertex function and
Euclidean particle propagator given by Eq.~4.38! we find,
from Eq. ~4.64!,

S2~v,k!v'm,k'm5
1

F iK S K

M
D 22l

2 k̃G , K52 i ṽ101.

~4.66!

We can now obtain the spectral density near the Fe
surface by following the steps detailed in the casek̃50,
leading to
r2~v,k!uv'm,k'm5
sin@pl#

p
uṽuU ṽ

M
U22l

1

F S ṽU ṽ

M
U22l

2 k̃ cos@pl# D 2

1~ k̃ sin@pl#!2G , ~4.67!
in
rti-

rm
which vanishes identically atṽ50. This spectral density is
displayed as a function ofṽ for several values ofk̃ andl in
Figs. 1 and 2.

3. Quasiparticles

Figures 1 and 2 clearly reveal that in weak coupling
spectral density features a narrow resonance fork̃Þ0, the
position of which is obtained by the vanishing of the fir
term in the denominator in Eq.~4.67! which determines the
quasiparticle dispersion relation. It is given by

ṽp~ k̃!5sgn~ k̃!@ uk̃uM 22l cos~pl!#1/(122l). ~4.68!

We note that the group velocity of the quasiparticles n
the Fermi surface,
e

r

vg~ k̃!5†M 22l cos@pl#‡1/(122l)
uk̃u2l/(122l)

~122l!
, ~4.69!

vanishesask→kF . We interpret this novel phenomenon
terms of a collective backflow that surrounds the quasipa
cle.

Near the position of the resonance, i.e., forṽ'ṽp , the
spectral density can be approximated by a Breit-Wigner fo

r2~v,k!uṽ'ṽp ,k'm5Zp@ k̃#
cos@pl#

p

G~ k̃!

@ṽ2ṽp~ k̃!#21G2~ k̃!
,

~4.70!
6-12
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Zp@ k̃#5

Uṽp~ k̃!

M
U2l

~122l!
, ~4.71!

G~ k̃!5Zp@ k̃#uk̃usin@pl#. ~4.72!

Therefore the residue of the ‘‘quasiparticle pole’’ and t
‘‘quasiparticle width’’ vanishes near the Fermi surface as

Zp@ k̃#}uk2kFu2l/(122l), ~4.73!

G~ k̃!}uk2kFu1/(122l). ~4.74!

It is straightforward to confirm that the quark propaga
~4.66! has a complex pole with the real and imaginary pa
given by Eqs.~4.68! and ~4.72!, respectively, in the narrow
width approximation G( k̃)/ṽp( k̃)!1. For this purpose
write, for the complex pole,

Kp52 i ṽp2G, ~4.75!

with G.0 corresponding to damping~this is confirmeda
posteriori from the solution!. In the narrow width approxi-
mation we can replace

~ṽp2 iG!122l'~ṽp!122lF12~122l!i
G

ṽp

1•••G .

~4.76!

Requiring the vanishing of the real and imaginary parts
the denominator of Eq.~4.66! we find the position of the
quasiparticle pole and its width given by Eqs.~4.68! and
~4.72!, respectively.

4. Requiem to the Fermi liquid: The jump of the distribution
function at kF vanishes

We can now study the behavior of the distribution fun
tion near the Fermi surface by using the spectral den
~4.67! in the expression~4.8!. Since the domain of validity of
the approximations invoked to obtain the spectral densit

FIG. 1. r2( k̃/M ,ṽ/M ) for l50.1, k̃/M50.2.
03401
r
s

f
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ty
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such thatuṽu, uk̃u,M , the integral in the variableṽ must be
cut off at the scaleM. Hence we find

nkW5nkWF
1Dn~ k̃!, ~4.77!

nkWF
5

sin@pl#

2pl
, ~4.78!

Dn~ k̃!5E
2M

0

dṽ@r2~ṽ,k̃!2r2~ṽ,0!#.

~4.79!

A detailed calculation reveals that

Dn~ k̃!52
k̃

pM (
n50

`
~2 k̃/M !n sin@~n12!pl#

n1122~n12!l

52
k̃

pM Fsin 2pl

124l
2

k̃ sin 3pl

M ~226l!
1

k̃2 sin 4pl

M2~328l!

1O~ k̃3!G , ~4.80!

leading to the following form of the single quasiparticle di
tribution near the Fermi momentum:

nkW'kWF
5

sin@pl#

2pl
2

k̃

pM ~124l!
1O~ k̃2!. ~4.81!

As was originally pointed out in Refs.@14,17# the ex-
change of dynamically screened magnetic gluons leads to
breakdown of the Fermi liquid description. The renormaliz
tion group resummation of the infrared divergences resp
sible for the breakdown of the Fermi liquid picture leads
Eq. ~4.81! and therefore to the vanishing of the discontinu
of the distribution function at the Fermi surface. This is o
of the important results of this work.

This is clearly a consequence of the result that the w
function renormalization or residue at the quasiparticle p
vanishes as a power law at the Fermi surface. In Fermi liq

FIG. 2. r2( k̃/M ,ṽ/M ) for l50.01, k̃/M50.2.
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theory, the discontinuity at the Fermi surface enters in
thermodynamic response functions, for example, in the c
ficient of the linear power of temperature in the specific h
@41,42#; thus the vanishing of the jump discontinuity wi
likely result in an anomalous specific heat.

V. NONEQUILIBRIUM ASPECTS: SINGLE
QUASIPARTICLE RELAXATION

A. Dynamical renormalization group

The equation of motion~3.9! can be written in the form

S ig0

]

]t
2g•kW Dc~kW ,t !1E

2`

t

dt8 S r~kW ,t2t8! c~kW ,t8!

52h~kW ,t !, ~5.1!

with

S r~kW ,t2t8!5
i

pE dv Im S̃~v,kW !e2 iv(t2t8). ~5.2!

In order to study the initial value problem as a perturb
tive expansion, it proves convenient to write this self-ene
in the following form:

S r~kW ,t2t8!5
]

]t8
F~ t2t8,kW !,

F~ t2t8,kW !5
1

pE dv

v
Im S̃~v,kW !e2 iv(t2t8).

~5.3!

Using the form of the self-energy given by Eq.~3.17! we
see that the functionF can be written as

F~ t2t8,kW !5
1

2
@P1~kW !F2~ t2t8,kW !

1P2~kW !F1~ t2t8,kW !#,

F6~ t2t8,kW !5
1

pE dv

v
Im S̃6~v,kW !e2 iv(t2t8).

~5.4!

We now integrate by parts the nonlocal term in Eq.~5.1!
and use the fact that the adiabatic switching-on of the ex
nal Grassman current leads to a vanishing time derivative
the fermionic expectation value fort,0 @38#. Upon switch-
ing off the external current att50 the effective Dirac equa
tion of motion for the induced expectation value fort.0
becomes

S ig0

]

]t
2g•kW Dc~kW ,t !1F~0,kW !c~kW ,t !

2E
0

t

dt8 F~ t2t8,kW ! ċ~kW ,t8!50. ~5.5!
03401
ll
f-
t

-
y

r-
or

A perturbative expansion of this equation is obtained
writing

F~ t,kW !5g2F (2)~ t,kW !1g4F (4)~ t,kW !1•••,

c~kW ,t !5c (0)~kW ,t !1g2c (2)~kW ,t !1g4c (4)~kW ,t !1••• .
~5.6!

Replacing these expansions in Eq.~5.5! leads to a hierarchy
of equations, the first two terms of which are given by

S ig0

]

]t
2g•kW Dc (0)~kW ,t !50, ~5.7!

S ig0

]

]t
2g•kW Dc (2)~kW ,t !52F (2)~0,kW !c (0)~kW ,t !

1E
0

t

dt8 F (2)

3~ t2t8,kW ! ċ (0)~kW ,t8!.

~5.8!

The solution of the zeroth order equation~5.7! is given by

c (0)~kW ,t !5(
s

@BkW ,s
(0)

Us~kW !e2 ikt1DkW ,s
* (0)

Vs~2kW !eikt#,

~5.9!

while the second order equation~5.8! can be solved in terms
of the retarded free field Green’s function

S~kW ,t2t8!52
i

2
@P2~kW !e2 ik(t2t8)

1P1~kW !eik(t2t8)#Q~ t2t8! ~5.10!

by proposing the form

c (2)~kW ,t !5(
s

@BkW ,s
(2)

~ t !Us~kW !e2 ikt1DkW ,s
* (2)

~ t !Vs~2kW !eikt#,

~5.11!

with the coefficientsBkW ,s
(2)(t), DkW ,s

* (2)(t) beingslowly time de-
pendent. We focus on the time evolution of an initial state
particles near the Fermi surface; i.e., we setDkW ,s

* (0)
50 and

k'kF . A straightforward computation leads to the followin
result:

BkW ,s
(2)

~ t !5BkW ,s
(2,a)

~ t !1BkW ,s
(2,b)

~ t !,

BkW ,s
(2,a)

~ t !5 iBkW ,s
(0)F t

1

pE dv

v
Im S̃2~v,kW !

1
k

pE dv

v
Im S̃2~v,kW !

1

~v2k!

3S t2
sin@~v2k!t#

~v2k! D G , ~5.12!
6-14



e

f.
sis
m

th
ino

ion
h
r

e

s in
co-

lid

n

on,

-

a-

en-
ing
of
ns
n

of
tain
of

NON-FERMI-LIQUID ASPECTS OF COLD AND DENSE . . . PHYSICAL REVIEW D 63 034016
BkW ,s
(2,b)

~ t !5BkW ,s
(0)F2

k

pE dv

v

3Im S̃2~v,kW !
12cos@~v2k!t#

~v2k!2 G . ~5.13!

Using the formulas in the Appendix of Ref.@38#, we find
that in the limit t→` the two terms in Eq.~5.12! can be
combined to yield

BkW ,s
(2,a)

~ t !5 iBkW ,s
(0)

t Re S̃2~v5k,kW !. ~5.14!

The contributionBkW ,s
(2,b)(t) in the t→` and k'm can be

understood by writing the integral in Eq.~5.13! as follows:

I 52
1

pE2M

M

dṽ Im S̃2~ṽ,k̃!
12cos@~ṽ2 k̃!t#

~ṽ2 k̃!2
,

ṽ5v2m, k̃5k2m. ~5.15!

Using the formulas found in the Appendix of Ref.@38# we
find for k̃!M andMt@1 that

BkW ,s
(2,b)

~ t !5BkW ,s
(0)

@2Gkt22l ln~M̄ t !#, ~5.16!

Gk5pl uk̃u5Im S̃2~ṽ5 k̃!,
~5.17!

l5
g2

24p2
, M̄5Meg, ~5.18!

and combining the above results leads to the final low
order perturbative result:

BkW ,s
(2)

~ t !5BkW ,s
(0)

@2 idkt2Gkt22l ln~M̄ t !#, ~5.19!

dk52l k̃ lnU k̃

M
U52Re S̃2~ṽ5 k̃!,

~5.20!

with S̃2(ṽ) given by Eq. ~4.30! and g is the Euler-
Mascheroni constant. We note that the damping rateGk
given by Eq.~5.17! coincides with the result obtained in Re
@35#, but the logarithmic term is a novel result of our analy
and is the dominant contribution for particles at the Fer
surface.

Then up to second order we find that the coefficient of
positive energy spinors in the expectation value of the sp
field is given by

BkW ,s~ t !5BkW ,s
(0)

@12 idkt2Gkt22l ln~M̄ t !#. ~5.21!

The linear and logarithmic secular terms in the solut
invalidate the perturbative expansion at very long times. T
dynamical renormalization group introduces a systematic
summation of these secular terms as described in@38#. The
implementation of the dynamical renormalization group b
03401
st

i

e
r

e
e-

-

gins by recognizing that the terms in the square bracket
Eq. ~5.21! can be interpreted as a renormalization of the
efficientBkW ,s

(0) . Thus following the procedure detailed in@38#
we introduce the renormalization constantZ(t) in the form

BkW ,s
(0)

5BkW ,s~t!Z~t!, Z~t!511lz1~t!1•••,
~5.22!

with t an arbitrary time scale. The coefficientz1(t) is cho-
sen to cancel the secular terms at the time scalet5t. Choos-
ing this scale so that the perturbative expansion is still va
we find that the improved solution is given by

BkW ,s~ t !5BkW ,s~t!F12 idk~ t2t!2Gk~ t2t!22l lnS t

t D G .
~5.23!

Since the scalet is arbitrary, the invariance of the solutio
on the choice of this scale, i.e.,

dBkW ,s~ t !

dt
50, ~5.24!

leads to the dynamical renormalization group equati
which to orderl is given by

]BkW ,s~t!

]t
1BkW ,s~t!F idk1Gk1

2l

t G50. ~5.25!

Finally we choose the arbitrary scalet to coincide witht
in the solution of Eq.~5.25! @38#, leading to the renormaliza
tion group improved time-dependent amplitude

BkW ,s~ t !5BkW ,s~ t0!e2 idk(t2t0)e2Gk(t2t0)F t0

t G2l

. ~5.26!

Therefore the time evolution of the wave function of qu
siparticle states near the Fermi surface is given by

ck'kF
~ t !5ck'kF

~ t0!e2 i (k1dk)(t2t0)e2Gk(t2t0)F t0

t G2l

.

~5.27!

We see that the oscillation frequencyk1dk coincides
with the quasiparticle dispersion relation~4.68! to lowest or-
der in l while the ‘‘damping rate’’Gk coincides with the
quasiparticle width~4.72! to lowest order inl. The novel
aspect is the power law relaxation with anomalous dim
sion which cannot be extracted by computing the damp
rate in an equilibrium formulation. Thus we are led to one
the important results of this article: quasiparticle excitatio
with the Fermi momentum relax with a power law with a
anomalous dimension.

B. Time evolution from the resummed spectral density

1. k̃Ä0

We now use the renormalization group improved form
the propagator for particles near the Fermi surface to ob
the real time evolution from the inverse Fourier transform
6-15
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Eq. ~3.18!. An initial value problem is obtained by introduc
ing an adiabatically switched-on external Grassman sou
that vanishes att50 whose Fourier transform is given by

h̃~v,k!5
kg0

v2 i01 (
s

@BkW ,sU
s~kW !2DkW ,s

* Vs~2kW !#.

~5.28!

An initial particle state is prepared by choosingDkW ,s50
with P2(kW )h̃(v,k)52g0h̃(v,k). The Fourier transform is
obtained by writinge2 ivt5e2 imte2 i ṽt and performing the
analytic continuation~4.37!. For k5m the long time behav-
ior is dominated by the regionK'0 for which the analyti-
cally continued propagator is given by Eq.~4.47!; we find

c~kW ,t ! 5
kt@1

(
s

BkW ,s Us~kW ! e2 imt

3E
2 i`10

1 i`10 dK

2p iM
eKt S K

M D 2l21

5c~kW ,0!
e2 imt

2p

G~2l! sin~2pl!

~Mt !2l
. ~5.29!

The power law can be extracted by a simple scaling of
integration variableK5z/t and is clearly a consequence
the anomalous scaling behavior of the propagator. Thus
time evolution obtained directly from the Fourier transfor
of the ~Euclidean! renormalization group improved propag
tor confirms the result from the dynamical~real-time! renor-
malization group for excitations with Fermi momentumk̃
50) and relates the power law falloff to the anomalous sc
ing dimension.

2. k̃Å0

The Fourier transform with the improved propaga
~4.66! is more complicated because of the branch cut and
complex pole. Although obtaining an exact expression
the full integral is a complicated task, we can confirm t
exponential relaxation in the narrow width approximati
~weak coupling! from the contribution from the comple
pole ~4.75!, the real and imaginary parts of which are giv
by Eqs.~4.68! and ~4.72!, respectively, in the narrow width
approximation. Keeping only the contribution of the com
plex pole to the Fourier transform fork̃Þ0 we find

c~kW ,t ! '
kt@1

c~kW ,0!e2 imte2 i ṽp( k̃)te2G( k̃)t. ~5.30!

The exponential relaxation confirms the result of the d
namical renormalization group since the narrow width a
proximation impliesl!1 for which the power law arising
from the cut contribution is subleading.

Thus the study of both casesk̃50 andk̃Þ0 via the Fou-
rier transform of the renormalization group improved prop
gator confirms the results obtained directly in real time
the dynamical renormalization group. As was emphasi
03401
ce

e

he

l-

r
e
r

-
-

-

d

above, the most important novel feature is the power l
relaxation with anomalous dimension for quasiparticles w
Fermi momentum as well as the anomalous scaling dim
sion for the quasiparticle dispersion relation, width, and re
due.

VI. FROM QED TO QCD

Although we have focused our calculations on the case
QED, it is straightforward to extrapolate the results to QC
to the same order in the HDL approximation. The reason
that the polarization tensor for gluons~photons! to this order
is given by the quark loop. In the cold non-Abelian theo
the gluons give only the vacuum contribution while th
quarks dominate the polarization tensor for large dens
This is unlike the case at finite temperature where the gl
loops give a contribution of the same order as that of
quark loop. Furthermore, again unlike finite temperature
magnetic gluon mass isnot expected to arise because th
gluons do not have any infrared divergence. The import
changes that are required to extrapolate the results from Q
to QCD are the following:

~a! The gluon mass scale~4.27! that enters in the longitu-
dinal and transverse spectral densities~4.26! and ~4.25!, re-
spectively, now becomes

MQCD
2 5

g2m2

4p2 S NF

2 D ,

with NF the number of flavors of quarks in the fundamen
representation.

~b! The effective coupling in the self-energy of the qua
now includes the trace over the color matrices resulting
that, for QCD,

lQCD5
g2

24p2

Nc
221

2Nc
.

Thus the results obtained for QED to leading order in
HDL approximation can be extrapolated to QCD via the
placementM→MQCD , l→lQCD .

Vertex corrections:An important question that must b
addressed is that of vertex corrections. In leading orde
HDLs, QCD and QED are similar because the quark lo
gives the leading contribution to the vector boson polari
tion tensor; therefore the only relevant vertex is Abelia
Since the vertex is related to the self-energy by the W
identity, one would expect logarithmic corrections arisi
from the vertex. However, the results obtained from a
tailed study in@27# show that this is not the case. The bas
point of the argument is the following: the small momentu
limit of the vertex, which is the relevant limit for long wave
length gluons, is related to the quark self-energy as

Gm~q'0!5
]S~p!

]pm
. ~6.1!

Since the leading behavior near the Fermi surface is
6-16
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S~v,k!}~v2m!lnuv2mu, ~6.2!

only the time component of the vertex would in princip
lead to an infrared divergence; however, this vertex co
sponds to the exchange of a longitudinal gluon which is D
bye screened and does not lead to an infrared diverge
The spatial components of the vertex are infrared finite,
do not change the leading infrared divergence.

The main conclusion extracted from this argument a
based on the detailed analysis of reference@27# ~to which we
refer the reader! is that the infrared divergences in leadin
order in HDLsdo not receive vertex corrections. Hence we
expect that the resummation of the leading infrared div
gences provided by the renormalization group either Euc
ean or in real time do not receive vertex corrections.

VII. CONCLUSIONS AND CONJECTURES

Our goal in this article is a systematic study of the bre
down of the Fermi liquid description of thenormal state of
cold and dense QED and QCD. As was recognized bef
the exchange of magnetic gluons and photons that are
dynamically screened by Landau damping leads to infra
divergences in the quark self-energy for particles near
Fermi surface. The main aspect of this article is the recog
tion that these divergences are akin to those arising i
critical theory near its upper critical dimensionality. We th
implemented both the Euclidean and the dynamical ren
malization group to provide a nonperturbative resummat
of the leading infrared singularities to analyze equilibriu
and nonequilibrium aspects of the single~quasi!particle
states near the Fermi surface. The non-perturbative res
mation of the single particle propagator leads to a novel
scription of the spectrum of quasiparticle excitations w
momentum near the Fermi momentum summarized as
lows

~i! The quasiparticle pole, width, and residue~wave func-
tion renormalization! are given by

ṽp~ k̃!5sgn~ k̃!@ uk̃uM 22l cos~pl!#1/(122l),

G~ k̃!5Zp@ k̃#uk̃usin@pl#,

Zp@ k̃#5

Uṽp~ k̃!

M
U2l

~122l!
,

ṽ5v2kF , k̃5k2kF ,

respectively. Therefore the residue of the ‘‘quasiparti
pole’’ and the ‘‘quasiparticle width’’ vanishes near the Fer
surface as

Zp@ k̃#}uk2kFu2l/(122l), ~7.1!

G~ k̃!}uk2kFu1/(122l), ~7.2!

and the group velocity of quasiparticles with Fermi mome
tum vanishes, indicating a collective backflow.
03401
-
-

ce.
d

d

r-
-

-

e,
ly
d
e
i-
a

r-
n

m-
-

l-

e
i

-

The real-time evolution of the single quasiparticle wa
function for states near the Fermi momentum is given by

ck'kF
~ t !'ck'kF

~ t0!e2 i [kF1ṽp( k̃)]( t2t0)e2G( k̃)(t2t0)F t0

t G2l

.

~7.3!

Therefore quasiparticles with the Fermi momentum re
with a power law determined by the anomalous scaling
mension, revealing that the physics near the Fermi surfac
similar to that of a critical theory.

~ii ! The single quasiparticle distribution function iscon-
tinuousnear the Fermi momentum; i.e., the ‘‘jump’’ discon
tinuity in the Fermi-Dirac distribution vanishes as a cons
quence of the vanishing of the quasiparticle residue at
Fermi momentum. We find

nk'kF
5

sin@pl#

2pl
2

~k2kF!

pM ~124l!
1O~k2kF!2. ~7.4!

The vanishing of the discontinuity of the distributio
function at the Fermi surface is the hallmark of the brea
down of Fermi liquid theory.

There are some remarkable similarities between these
tures of cold dense QCD and QED and those of quasi-o
dimensional Fermi systems with marginal interactions t
lead to a description as Luttinger liquids@39,40#. These sys-
tems also feature spectral densities and correlation funct
with anomalous dimensions which are nonuniversal and
pend on the couplings@39,40#. The fermion propagator tha
results from one gluon exchange~dynamically screened! is
also similar to that conjectured to describe the normal ph
of high temperature superconductors in terms of marg
Fermi liquids@48,49#. Even if these similarities are just co
incidental, it is possible that a body of results in the co
densed matter literature could be useful to understand
fundamental aspects of the normal phase of QCD at h
density.

Potential impact of the results.As we mentioned in the
Introduction, the properties of the normal state not only d
termine the thermodynamics and transport properties but
influence those of the superconducting state, since super
ductivity appears as an instability of the normal state towa
pairing interactions. Therefore the results obtained in t
article that pertain solely to the normal phase could bear
characteristics of the superconducting state as well as tr
port in the normal~and possible in the superconductin!
phase.

~i! In Ref. @27# it was found that the same type of infrare
divergences that lead to the breakdown of Fermi liqu
theory are responsible for a substantial decrease of the su
conducting gap. In the calculation of Ref.@27#, these diver-
gences are manifest through the wave function renormal
tion in the equation for the gap. Furthermore, recen
lifetime effects ~of the normal state quasiparticles! were
shown to lead to a further decrease of the superconduc
gap @31#. In this article we have shown how the wave fun
tion renormalization logarithmic divergence sums up to p
duce anomalous dimensions, which change the quasipar
6-17
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description. The spectral density features anomalous dim
sions for frequency and momenta near the putative Fe
surface as well as important modifications in the quasipa
cle dispersion relations, lifetimes, and residues. It is there
a relevant question to assess the potential corrections o
resummed spectral densities for the normal quark propa
tors to the superconducting gap. This entails solving the
equation or alternatively the Dyson-Schwinger equation
with the normal quark propagators replaced by those
tained from the resummed spectral functions. We are c
rently studying this possibility and expect to report on o
findings in the near future.

~ii ! As mentioned in the Introduction the most releva
physical setting for cold and dense QCD is that of ast
physical compact objects, in particular protoneutron st
from type II supernova collapse or neutron stars~or pulsars!.
An important observational aspect that could yield inform
tion from the core of neutron stars is cooling, which is stu
ied through~soft! x-ray emmision@50#. The cooling equation

dE

dt
5C

dT

dt
52@Ln1Lg#

relates the neutrino and photon luminosities to the spec
heatC. For normal quark matter the neutrino emissivity
dominated by the direct quark Urca processesd→u e n̄, u
e→dn @51#. A normal weakly interacting degenerate Ferm
gas has a typical specific heat linear in temperatureC(T)
5C0T where the coefficientC0 depends on the Fermi liquid
properties. In particular the wave function renormalizati
~residue at the quasiparticle pole! renormalizes the free field
~free Fermi gas! value ofC0. Since the quasiparticle residu
vanishes, signaling the breakdown of Fermi liquid theory,
conjecturethat the linear law will be replaced in a mann
similar to that of Kondo-type systems@42#, C} ln(T). If a
superconducting instability introduces a gap for all quar
then the specific heat will have a typical behav
C1 e2D(T)/T ~for T,Tc) whereD(T) is the superconducting
gap andC1 depends on the density of quasiparticle sta
near the Fermi surface which again receives non-Fer
liquid renormalization corrections. If the neutrino and phot
emissivity of quarks is suppressed because of the presen
a superconducting gap, then the electronic specific heat
become relevant, in which case again the non-Fermi-liq
corrections to the specific heat will be important since th
are no superconducting pairing instabilities in QED. If som
of the quarks are ungapped, these arenormal and will re-
ceive renormalization of their Fermi liquid behavior.

Understanding the potential corrections of the breakdo
of Fermi liquid theory both for quarks and leptons cou
therefore lead to a deeper understanding of cooling in n
tron stars and therefore justifies further studies along th
lines.

Our analysis was based on a perturbative approach; th
fore its range of validity is restricted to asymptotically lar
densities so that the effective couplingas(m)/6p!1. Using
the running of the QCD coupling constant, the weak co
pling condition implies chemical potentials and baryon de
sities orders of magnitude larger than those available at
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core of neutron stars. Thus our studies for the propertie
the normal phase, along with those of color superconduc
ity, must be taken as indicative of novel and potentially r
evant phenomena, but must be carefully extrapolated to
realm of the baryochemical potential~baryon density! rel-
evant to quark matter in neutron stars, requiring alterna
nonperturbative techniques.
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APPENDIX: REAL-TIME PROPAGATORS

1. Dirac fields

In this appendix we summarize the various real-tim
propagators used in this article. The fermion propagators
defined by

^Ca~xW ,t !C̄b~xW8,t8!&5 i E d3k

~2p!3
SkW

ab
~ t,t8! eikW•(xW2xW8),

SkW
11

~ t,t8!5SkW
.

~ t,t8!u~ t2t8!

1SkW
,

~ t,t8!u~ t82t !,

SkW
22

~ t,t8!5SkW
.

~ t,t8!u~ t82t !

1SkW
,

~ t,t8!u~ t2t8!,

SkW
67

~ t,t8!5SkW
"

~ t,t8!, ~A1!

wherea, b56.
In an equilibrium situation the propagators can be writt

in terms of spectral densities as follows:

iSkW
.

~ t,t8!5E dq0 r.~q0 ,kW !e2 iq0(t2t8),

2 iSkW
,

~ t,t8!5E dq0 r,~q0 ,kW !e2 iq0(t2t8),

r.~q0 ,kW !5r~q0 ,kW !@12Nf~q0 ,k!#,

r,~q0 ,kW !5r~q0 ,kW !Nf~q0 ,k!, ~A2!

where the Fermi-Dirac distribution functions for particle
and antiparticles, for the case under consideration of fin
chemical potentialm and zero temperature, are given by

Nf~q0!5Q~m2q0!, ~A3!

N̄f~q0!5Q~2m2q0!. ~A4!
6-18
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For free fields the fermion Wightman functions are giv
by

SkW
.

~ t,t8!52
i

2vkW
$~K” 1m!@12NF~vkW !#e

2 ivkW(t2t8)

1g0~K” 2m!g0 N̄F~vkW ! eivkW(t2t8)%,

SkW
,

~ t,t8!5
i

2vkW
$~K” 1m! NF~vkW ! e2 ivkW(t2t8)

1g0~K” 2m!g0@12N̄F~vkW !#e
ivkW(t2t8)%,

~A5!

with K5(vkW ,kW ), K” 5g0vkW2gW •kW , and vkW5AkW21m2. For
massless fermions~the case under consideration!,

H ~K” 1m!

vkW
J

m50

5P2~kŴ !5g02gW •kŴ ,

H g0~K” 2m!g0

vkW
J

m50

5P1~kŴ !5g01gW •kŴ , ~A6!

with the properties

„P2~kŴ !…25„P1~kŴ !…250,

P2~kŴ !P1~kŴ !52g0P1~kŴ !,

P1~kŴ !P2~kŴ !52g0P2~kŴ !. ~A7!

2. Gauge fields

a. Spatial components

The transverse photon propagators are defined by

^AT
i ,a~xW ,t !AT

j ,b~xW8,t8!&52 i E d3q

~2p!3
GT,q

ab ~ t,t8!

3P T
i j ~qW ! eiqW •(xW2xW8),
03401
GT,q
11~ t,t8!5GT,q

. ~ t,t8!u~ t2t8!

1GT,q
, ~ t,t8!u~ t82t !,

GT,q
22~ t,t8!5GT,q

. ~ t,t8!u~ t82t !

1GT,q
, ~ t,t8!u~ t2t8!,

GT,q
67~ t,t8!5GT,q

" ~ t,t8!, ~A8!

whereP T
i j (qW )5d i j 2q̂i q̂ j is the transverse projector and th

photon Wightman functions can be written in terms of
spectral representation as follows:

GT,q
. ~ t,t8!5 i E dq0 r̃T~q0 ,q! @11nB~q0!# e2 iq0(t2t8),

GT,q
, ~ t,t8!5 i E dq0 r̃T~q0 ,q! nB~q0! e2 iq0(t2t8),

~A9!

where r̃T(q0 ,q) is the spectral density andnB(q0) is the
Bose-Einstein distribution function.

At zero temperature

nB~q0!52Q~2q0!, 11nB~q0!5Q~q0!. ~A10!

For free fields at zero temperature we find

GT,q
. ~ t,t8!5

i

2q
e2 iq(t2t8),

GT,q
, ~ t,t8!5

i

2q
eiq(t2t8). ~A11!

In the HDL approximation, the spectral densityr̃T(q0 ,q)
is given by
r̃T~q0 ,q!5sgn~q0! ZT~q! d@q0
22vT

2~q!#1bT~q0 ,q! u~q22q0
2!,

bT~v,k!5

g2m2

4p2

v

k S 12
v2

k2 D
H v22k22

g2m2

4p2 F2v2

k2
1

v

k S 12
v2

k2 D lnUk1v

k2vUG J 2

1Fg2m2

4p

v

k S 12
v2

k2 D G 2 ,

~A12!
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andZT(q) is the residue at the pole of the collective exci
tion @33#.

b. Time component of the photon propagator

The time-time component of the photon propagator
scribes the instantaneous Coulomb interaction includ
screening corrections and is given by

^A0
a~xW ,t !A0

b~xW8,t8!&5 i E d3q

~2p!3
GL,q

ab ~ t,t8!eiqW •(xW2xW8),

GL,q
11~ t,t8!5

1

q2
d~ t2t8!1GL,q

. ~ t,t8!u~ t2t8!

1GL,q
, ~ t,t8!u~ t82t !,

GL,q
22~ t,t8!52

1

q2
d~ t2t8!1GL,q

. ~ t,t8!u~ t82t !

1GL,q
, ~ t,t8!u~ t2t8!,

GL,q
67~ t,t8!5GL,q

" ~ t,t8!, ~A13!

with the Wightman functions expressed in terms of the sp
tral densityr̃L as

GL,q
. ~ t,t8!52 i E dq0 r̃L~q0 ,q! @11nB~q0!# e2 iq0(t2t8),

GL,q
, ~ t,t8!52 i E dq0 r̃L~q0 ,q! nB~q0! e2 iq0(t2t8).

~A14!
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For free fieldsr̃L(q0 ,q)50 and

GL,q
11~ t,t8!5

1

q2
d~ t2t8!,

GL,q
22~ t,t8!52

1

q2
d~ t2t8!,

GL,q
67~ t,t8!50. ~A15!

In the hard dense loop approximation the spectral den
r̃L(q0 ,q) is given by

r̃L~q0 ,q!5sgn~q0! ZL~q! d@q0
22vL

2~q!#

1bL~q0 ,q! u~q22q0
2!,

bL~q0 ,q!5

g2m2

2p2

q0

q

Fq21
g2m2

2p2 S 22
q0

q
lnUq1q0

q2q0
U D G 2

1Fg2m2

2p

q0

q G2
,

~A16!

wherevL(q) is the plasmon~longitudinal photon! pole and
ZL(q) is the corresponding residue@33#.
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