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Chiral crystal in cold QCD matter at intermediate densities?

Ralf Rapp, Edward Shuryak, and Ismail Zahed
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~Received 22 August 2000; published 8 January 2001!

The analogue of Overhauser~particle-hole! pairing in electronic systems~spin-density waves with non-zero
total momentumQ) is analyzed in finite-density QCD for 3 colors and 2 flavors, and compared to the
color-superconducting BCS ground state~particle-particle pairing,Q50). The calculations are based on ef-
fective nonperturbative four-fermion interactions acting in both the scalar diquark as well as the scalar-
isoscalar quark-hole~‘‘ s ’’ ! channel. Within the Nambu-Gorkov formalism we set up the coupled channel
problem, including multiple chiral density wave formation, and evaluate the resulting gaps and free energies.
Employing medium-modified instanton-induced ’t Hooft interactions, as applicable aroundmq.0.4 GeV~or 4
times nuclear saturation density!, we find the ‘‘chiral crystal phase’’ to be competitive with the color super-
conductor.
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I. INTRODUCTION

The understanding of QCD under extreme conditions
among the main frontiers in strong interaction physics.
particular, the finite-density and zero-temperature regime
reattracted considerable attention lately, after it was reali
that early perturbative estimates for color-superconduc
gaps at large chemical potential are exceeded by up to
orders of magnitude towards smaller densities@1–4#. Such
BCS-type pairing energies are in fact comparable to
~‘‘constituent’’! quark mass gap in the QCD vacuum,Mq
.0.35–0.4 GeV, and have triggered new interest in the
servable consequences of quark matter formation within
core of neutron stars~unfortunately, in high energy heavy
ion collisions large entropy production renders the acces
this regime unlikely!.

The focus on the occurrence of various superconduc
phases is motivated by the standard BCS instability of
Fermi surface for arbitrarily weak particle-particle (p-p) in-
teractions. Under certain conditions, however, the partic
hole (p-h) channel might also become competitive. Here
kinematic singularity in the corresponding Greens funct
only develops in~effectively! ~111!-dimensional systems
and at a total pair momentum ofQ52pF (pF is the Fermi
momentum!, known as Peierls instability@5#. In higher di-
mensions it can nevertheless be relevant provided the in
action is strong enough. One variant ofp-h instabilities is
‘‘spin-density waves’’ as originally proposed by Overhaus
@6# for specific electronic materials~for a review see@7#!.
The analogue in the context of QCD, so-called ‘‘chiral de
sity waves,’’ was first discussed by Deryaginet al. @8#. Us-
ing perturbative one-gluon exchange~OGE! at asymptoti-
cally high densities it was shown that the Overhauser-t
pairing prevails over the BCS instability in theNc→` limit
(Nc is the number of colors!. This is due to the fact that th
BCS bound states, being color non-singlet, are dynamic
suppressed by 1/Nc as compared to the~colorless! Over-
hauser ones. More recently, Shuster and Son@9# reexamined
this mechanism for finiteNc and including Debye screenin
in the gluon propagator. As a result, the chiral density wa
dominates only for a very large number of colors,Nc
5O(103). These findings have been confirmed in an analy
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of coupled BCS-Overhauser equations using different ar
ments @10#. One concludes that instabilities in th
p-h channel are not relevant for real QCD at asympto
densities.

The situation, however, can be very different if the inte
action strength between the quarks is substantially increa
~to be referred to below as the strong coupling regime!. A
well-known example is the Nambu–Jona-Lasinio~NJL! de-
scription of chiral symmetry breaking in the QCD vacuu
~associated with the constituent quark mass gap and
build-up of the chiral condensate!, which requires a~mini-
mal! critical coupling to occur. At finite density, the sam
~attractive! interaction is operative in the scalar-isoscalarp-h
channel. Its coupling strength is in fact augmented by a f
tor of (Nc21) over the~most attractive! scalar diquark chan-
nel. On the other hand, geometric factors act in its disfav
unlike the BCS gap, which uniformly covers the entire Fer
surface, the chiral density wave appears in the form
‘‘patches,’’ their number depending on the symmetry of t
presumed crystal. The purpose of the present paper i
study the interplay between Overhauser and BCS pair
including different crystal structures, within the strong co
pling regime. The focus is thus on quark matter atinterme-
diate densities, i.e., large enough for the system to be in
quark phase, but small enough to support nonperturba
interactions. This should roughly correspond to chemical
tentials in the rangemq.0.4–0.6 GeV, translating into
baryon densities of~3.5–12)r0 ~where r050.16 fm23 de-
notes normal nuclear matter density!.1

This article is organized as follows. In Sec. II we start
introducing the Nambu-Gorkov type matrix propagator fo
malism that will subsequently be applied to obtain the g

1The chiral crystal phase we are investigating is not to be c
fused with another crystal phase discussed in 1980s relate
p-wave pion condensation@11# and later interacting Skyrmions
@12#. Those works have addressed nuclear matter at lower dens

in which the chiral condensate^q̄q& is only slightly perturbed from
its vacuum value and basically uniform in space, while the perio
structure is driven by pion fields.
©2001 The American Physical Society08-1
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equations for the coupled BCS-Overhauser problem; spe
attention is given to the single-quark spectra in the Ov
hauser ground state. In Sec. III we solve these equat
using the aforementioned variants of nonperturbative in
actions, i.e., somewhat schematic NJL-type as well as mi
scopic instanton-induced forces, for the slightly idealiz
case of two massless flavors and three colors. In Sec. IV
summarize and discuss the relevance of our results for
QCD.

II. NAMBU-GORKOV FORMALISM AND COUPLED
GAP EQUATIONS

A. BCS pairing

A standard framework to address multiple instabilities
interacting many-body systems is provided by the Nam
Gorkov formalism. Here, propagators are constructed as
trices combining all potential condensate channels via
diagonal elements~see, e.g., Ref.@13#!, which automatically
incorporates the interplay or coexistence of the vario
phases.

For the familiar BCS case one adopts the following ans
for the full propagator:

ĜBCS~k0 ,kW ,D;mq!5S ^ck↑ck↑
† & ^ck↑c2k↓&

^c2k↓
† ck↑

† & ^c2k↓
† c2k↓&

D
[S G~k0 ,kW ,D! F̄~k0 ,kW ,D!

F~k0 ,kW ,D! Ḡ~k0 ,2kW ,D!
D . ~1!

The gap equation is then derived by formulating the pertin
Dyson equation

ĜBCS5@Ĝ0
212D̂#215S G0

21
D̄

D Ḡ0
21D 21

, ~2!

which has the formal solution

ĜBCS5
1

G0
21Ḡ0

212DD̄
S Ḡ0

21 2D

2D̄ G0
21D , ~3!

where

D5~2 i !appE d4p

~2p!4
F~p0 ,pW ,D! ~4!

represents the~off-diagonal! ‘‘self-energy’’ contribution in-
duced byp-p pairing ~with an appropriate 4-fermion cou
pling constantapp), and

G05
1

k02ek1 idek

~5!

Ḡ05
1

k01ek1 idek

~6!
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are the free particle propagator and its conjugate at fi
chemical potential@with ek5vk2mq and infinitesimaldek

5udusgn(ek) according to the sign ofek#. Inserting the ex-
pression for the anomalous Greens function from Eq.~3!,

F~k0 ,kW ,D!5
2D

~k02ek1 idek
!~k01ek1 idek

!2D2
, ~7!

into the definition ofD, Eq. ~4!, yields the gap equation
Notice that the pole structure ofF(k) always ensures a non
vanishing contour for the energy integration.

B. Overhauser pairing

On the same footing one can analyze pairing in
particle-hole channel at finite total pair momentumQ ~note
that the corresponding ‘‘chiral crystal’’ discussed in the fo
lowing is different from the recently studied ‘‘crystallin
color superconductivity’’@14#, which refers to BCS pairing
at finite 3-momentum!. In the mean-field approximation
~MFA!,2 the full Greens function and Dyson equation in t
presence of a single stationary wave take the form

ĜOvh~k0,kW ,QW ,s;mq!5S ^ck↑ck↑
† & ^ck↑ck1Q↓

† &

^ck1Q↓ck↑
† & ^ck1Q↓ck1Q↓

† &
D

[S G~k0 ,kW ,QW ,s! S̄~k0 ,kW ,QW ,s!

S~k0 ,kW ,QW ,s! G~k0,kW1QW ,QW ,s!
D

5@Ĝ0
212ŝ#21, ~8!

which has the formal solution

S~k0 ,kW ,QW ,s!5
2s

~k02ek1 idek
!~k02ek1Q1 idek1Q

!2s2

~9!

and gives the ensuing gap equation from the definition of
pairing ‘‘self-energy,’’

s5~2 i !aphE d4p

~2p!4
S~p0 ,pW ,QW ,s!. ~10!

Notice that here the energy contour integration receives n
vanishing contributions only if

epep1Q2s2,0, ~11!

which means that the two poles inp0 have to be in distinct
~upper and lower! half-planes; i.e., one particle~above the
Fermi surface! and one hole~below the Fermi surface! are
required to participate in the interaction. This condition r
flects on the particle-hole symmetry caused by the nestin

2This approximation is equivalent to the weak coupling appro
mation in band structure calculations where higher intra-band m
ing is suppressed.
8-2
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the Fermi surface in the presence of the induced wave.
stress again that an important difference to the BCS
equation resides in the fact that~for 2 or more spatial dimen
sions! one is not guaranteed a solution for arbitrarily sm
coupling constants since thep-h Greens functionSdoes not
develop a kinematic singularity~as mentioned in the Intro
duction this is very reminiscent to the QCD vacuum case
particle-antiparticle pairing across the Dirac sea!.

At finite densities, the formation of a condensate carry
nonzero total momentumQ is associated with nontrivial spa
tial structures, i.e., crystals, characterized by a ‘‘lattice sp
ing’’ a52p/Q. In three dimensions a more complete d
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scription thus calls for the inclusion of additional wav
vectors. In general, thep-h pairing gap can be written as

s~rW !5(
j

(
n52`

1`

s j ,neinQW j •rW, ~12!

where theQW j correspond to the~finite! number of fundamen-
tal waves, and the summation overunu.1 accounts for
higher harmonics in the Fourier series. The matrix propa
tor formalism allows for the treatment of multiple wave
through an expansion of the basis states according to
ed into

gh
has for the
Ĝ5S ^ck↑ck↑
† & ^ck↑ck1Qx↓

† & ^ck↑ck1Qy↓
† & •••

^ck1Qx↓ck↑
† & ^ck1Qx↓ck1Qx↓

† & ^ck1Qx↓ck1Qy↓
† & •••

^ck1Qy↓ck↑
† & ^ck1Qy↓ck1Qx↓

† & ^ck1Qy↓ck1Qy↓
† & •••

A A A �

D . ~13!

In practice the expansion has to be kept finite. The possibility of additional BCS pairing is straightforwardly incorporat
Eq. ~13! by extending the latter with the off-diagonal states from Eq.~1!.

In what follows we will consider up tonw56 waves in three orthogonal directions withQx5Qy5Qz and n561,
characterizing a cubic crystal through three standing waves with the fundamental modes~for simplicity we will also assume
the magnitude of the various Overhauser condensates to be equal, i.e.,s j[s). The important new features that arise throu
introducing additional states become already apparent in the simplest extension to 2 condensates. In this case one
~coupled! gap equation~s!

sx5~2 i !aphE d4p

~2p!4

2sxG0
21~pW 1Qy!

G0
21~pW !G0

21~pW 1Qx!G0
21~pW 1Qy!2sx

2G0
21~pW 1Qy!2sy

2G0
21~pW 1Qx!

5~2 i !aphE d4p

~2p!4

2sxG0~pW 1Qx!

G0
21~pW !2sx

2G0~pW 1Qx!2sy
2G0~pW 1Qy!

~14!
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~and an equivalent one forsy by interchangingx↔y). For
finite sy additional possibilities for the nonvanishing of th
energy contour integration appear through an extra zer
the third-order polynomial in the denominator of the fu
propagator in Eq.~14!. This enlarges the integration regio
and can be interpreted as interference effects between
patches~or waves!. Diagrammatically this can be understoo
as an additional insertion of thesy condensate on a particl
~or hole! line of energyep . Note thata priori it is not clear
whether such interferences are constructive or destruc
that is, give a positive or negative contribution to the rig
hand-side~RHS! of Eq. ~14!.

In the propagatorsG0 contributions from antiparticles
have been neglected. This should be a reasonable app
mation in the quark matter phase at sufficiently largemq ,
i.e., after the usual~non-oscillating particle-antiparticle! chi-
ral condensate has vanished. At the same time, since we
our analysis on nonperturbative forces, the applicable de
ties are bounded from above. Taken together, we estim
of

the

e,
-

xi-

ase
si-
te

the range of validity for our calculations to be roughly give
by 0.4 GeV&mq&0.6 GeV. This coincides with the regim
where, for the physical current strange quark mass ofms
.0.14 GeV, the two-flavor superconductor might prev
over the color-flavor locked~CFL! state so that our restric
tion to Nf52 is supported.

C. Spectrum in the Overhauser case

The poles of the mean-field propagators discussed ab
provide the quasiparticle excitations in both the BCS a
Overhauser case. In the former, the spectrum consist
gapped particles and holes. In the latter case, the phys
interpretation is rendered more subtle by the presence
standing wave. To keep the analysis transparent, we will
cuss analytic results in 111 dimensions and proceed to
numerical evaluation in 311 dimensions.

In 111 dimensions, the quasi-particle excitations follow
ing from the pole condition for the propagator in the Ove
hauser case, Eq.~9!, have energies
8-3
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FIG. 1. Dispersion relations of the various particle and hole branches using 4 waves in the6x and6y directions with equal gaps an
wave vector moduliQ52pF . The solutions are displayed for 3 angles of the momentum with respect to thex axis in thex-y plane. By
symmetry, the solutions repeat themselves within each octant~i.e., every 45 °). The left panel shows the noninteracting case (s50), and the
right panel has been obtained by settings50.15 GeV.
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~ek1ek2Q!6A~ek2ek2Q!21s2 ~15!

with ek5uku2mq and Q52p/a. This spectrum can be un
derstood if we note that the quarks are moving in a s
induced potentialV(x)522s cos (Qx) through the station-
ary wave. Indeed, in the presence of such a potential
spectrum is banded withuku<p/a representing the first Bril-
louin zone~BZ-1!. In weak coupling the spectrum is most
free except atk50,6p/a where band mixing is large. Fo
mq,Q we can ignore most of the band mixing except for t
lowest one near the edge of BZ-1. Degenerate perturba
theory gives readily

Uk02ek s

s k02ek2Q
U50, ~16!

in agreement with Eq.~15!. The 232 character of Eq.~16!
follows from mixing between two bands. As footnote
above, it is analogous to the MFA where the band mixing
treated in the extended description commonly used in we
coupling band-structure calculations.

The quasiparticles of energye2 are characterized by
standing wavec2(x)'cos (px/a), and those of energye1
03400
f-

e

on

s
k-

are characterized by a standing wavec1(x)'sin(px/a)
near the edge of the Brillouin zone. The energy is subst
tially lowered by the standing wavec2(x) with a probability
density in opposite phase to the potential. The standing w
c1(x) corresponds to a probability density in phase with t
potential, hence substantially more expensive energetic
At the edge of the zone, the two states are gapped bys.
Clearly, the lowest energy state is reached by filling on
those states corresponding toE2 , that is by setting the Ferm
energy at the gap. The ensuing state is an insulator.

In higher dimensions, the band mixing becomes more
tricate. However, in the weak-coupling approximation a
for Fermi momenta in the vicinity ofQ/2, higher intra-band
mixing is small and we may just use the extended ba
structure description which is equivalent to our mean-fi
treatment. The quasiparticle spectraek

j ( j 50, . . . ,nw) fol-
low numerically from the poles of the propagator.3 Figure 1
shows an example of 4 waves in the6x and6y directions
for the canonical value of the wave vector,Q52pF , with

3Again, nw refers to the number of plane waves retained ins(xW )
with nw/2 being typically the number of standing waves.
8-4
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FIG. 2. Same as Fig. 1 but forQ5pF .
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(sx5sy.0) and without (sx5sy50) interactions. One
clearly recognizes the formation of the gap close to the
generacy point~level crossing! in the non-interacting case
which happens in the vicinity of the Fermi surface. ForQ
5pF ~Fig. 2! energy gain arises from an appreciable push
down of the lowest level which lies rather deep within t
Fermi sea. This is~partially! counteracted by an upward pus
of the upper branch which also corresponds to occup
states. Thus one expects the most beneficial configuratio
be when the Fermi surface lies in between split levels.

D. Energy budget and periodicity

Solutions of the gap equations correspond to extre
~minima! in the energy density with respect to the gaps.
However, solutions may exist for several values of the wa
vector Q. To determine the minimum in the latter quantit
one has to take recourse to the explicit form of the f
energy density. In the MFA,

V3V~mq ,Q,s!5E d3xS s2~x!

2l
1^q†@ ia•¹22s~x!q#& D ,

~17!

whereV3 is the 3-volume. The first contribution removes t
double counting from the fermionic contribution in th
03400
-

g

d
to

a

e

e

mean-field treatment. Retaining only the particle contribut
~i.e., neglecting antiparticles!, the free energy simplifies to

V~mq ,Q,s!5Vpot~mq ,Q,s!1Vkin~mq ,Q,s!

5(
j 51

nw FC~Nc ,Nf !

l
s j

2G
1(

j 50

nw

2NcNfE
BZ21

d3k

~2p!3
ek

j Q~2ek
j !

~18!

with color and flavor coefficientsC(Nc ,Nf) which will de-
pend on the concrete form of the pairing interaction.
avoid double counting the integration for the kinetic ener
part is restricted to BZ-1 as defined by the momentum
gions@2QW j /2,QW j /2# ~as well asukW u<kF). This amounts to a
folding of the various branches into BZ-1 and enforces
explicit lattice periodicity onto the free energy. This point
illustrated in Fig. 3 for the free case (s[0) along one spatia
direction. For fixed chemical potential smaller wave vecto
require the inclusion of an increasing number of branche
correctly saturate the available states within the Fermi
~through a multiple folding until the Fermi surface
reached!. E.g., formq<3Q/2 the lowest two harmonics with
kx6Qx suffice. Above, the next two higher harmonics wi
8-5
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kx62Qx are necessary to encompass the occupied en
states within BZ-1 up tomq<5Q/2, and so forth. When us
ing additional waves in other spatial directions similar cri
ria hold ~albeit more complicated due to nontrivial angul
dependences!.

Solutions of the gap equations in general support differ
pairs of$s,Q%; the combination that minimizesV(mq ,Q,s)
is the thermodynamically favored one. Note that the g
equations are not subject to explicit momentum restricti
since off-shell momenta of arbitrary magnitude can in pr
ciple contribute.

As a simple example, Eq.~18! can be explicitly computed
in 111 dimensions by recalling that the Fermi surface co
cides with the gap, i.e.,vkF

5mq5kF5Q/2. Specifically, the
contribution from the Fermi sea is

Vkin5reFS 12
1

2
@A11j21j2 ln ~j1A11j2!# D ,

~19!

with j5s/Q and a densityr5dkF /p whered is the overall
degeneracy. In the MFA, the induced standing wave
s(x)52s cos(Qx), and the double counting in the Ferm
sea is removed by

Vpot5
1

LE dx
s2~x!

2l
5

s2

l
. ~20!

The minimum value ofs can be obtained in this case an
lytically by minimizing V5Vkin1Vpot .

FIG. 3. Free quasiparticle dispersion relations (s j[0) for mass-
less quarks in a crystal with periodicity in thex-direction. The ver-
tical dotted lines indicate the boundaries of the first~BZ-1! and
second~BZ-2! Brillouin zones ~corresponding toukxu<Qx/2 and
Qx/2<ukxu<Qx , respectively!. Plotted are the 5 branchesvk

j

5ukxu, ukx6Qxu, and ukx62Qxu with the solid lines marking their
contributions to BZ-1.
03400
gy
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III. NONPERTURBATIVE FORCES AND RESULTS

For the actual calculations we need to specify the qu
tum numbers of the pairing channels. To do so we take gu
ance from low-~or zero-! density phenomenology encode
in effective 4-point interactions. In the particle-hole chann
the strongest attraction is in the ‘‘s ’’ channel given by~in-
cluding exchange terms@4#!

L mes
s 5

l

8Nc
2 ~qq̄!2, ~21!

whereas in the particle-particle channel it is believed to
the scalar diquark in the color-antitriplet channel@which, in
fact, arises from a Fierz transformation of Eq.~21!#:

L diq
3̄ 5

l

8Nc
2~Nc21!

~qTCg5t2lA
aq!~ q̄t2lA

ag5Cq̄T!

~22!

@C is the charge conjugation matrix,lA
a antisymmetric color

matrices,t2 the SU~2!-flavor matrix#. For practical use the
effective vertices have to be supplemented with ultravio
cutoffs. In the following we will consider two variant
thereof and discuss the pertinent results for the coup
Overhauser-BCS equations.

A. NJL treatment

In a widely used class of Nambu–Jona-Lasinio mod
the ultraviolet behavior of the pointlike vertices is regulat
by 3- or 4-momentum multipole formfactors~or even sharp
Q functions!. We here employ a dipole form

F~p!5S nL2

nL21p2D n

~23!

(n52) for each in- and outgoing quark line withL
50.6 GeV as a typical ‘‘chiral’’ scale~variations within
such parametrizations do not affect our qualitative conc
sions in this section!. The coupling constantl567 fm2 is
calibrated to a constituent quark mass ofMq50.4 GeV in
vacuum. Note that there is no well-defined way of introdu
ing density dependencies into the interaction. Since at fi
mq the relevant quark interactions occur at the Fermi surfa
a form factor of type~23! implies the loss of interaction
strength with increasingpF .

This schematic treatment has been shown to yield rob
results for 2-flavor BCS pairing with gapsD.0.1 GeV at
quark chemical potentials around 0.5 GeV@1#. Including
now thep-h pairing as outlined in the previous section w
find only rather fragile evidence for the emergence of ch
density waves~at mq50.4 GeV): for wave vectorsQx
<0.150 GeV the RHS of the Overhauser gap equation s
ports solutions with gaps around;5 MeV. The smallness of
Qx in fact requires six waves~with k6nQx , n51,2,3) to fill
all states within the Fermi sphere. Somewhat more rob
solutions are obtained when increasing the 4-fermion c
pling constant. E.g., with a vacuum constituent quark m
8-6
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of Mq50.5 GeV, which impliesl573 fm2, the minimum
solution emerges forQx.0.2 GeV ands.20 MeV. How-
ever, the gain in the total free energy is very small:V
521.297331023 GeV24 as compared to the free Fermi g
value ofV521.296931023 GeV24 @to be contrasted with
the BCS ground state for whichVBCS(mq50.4 GeV)
.21.37531023 GeV24 at a pairing gap ofD.0.13 GeV#.

We also checked that the incorporation of waves in ot
spatial directions does not lead to further energy gain.

B. Instanton approach at finite chemical potential

A more microscopic origin of effective 4-fermion intera
tions is provided within the instanton framework. In th
finite-density context it has previously been employed
study the competition between the chiral condensate
two-flavor superconducting quark matter in Refs.@15,4#. Let
us briefly recall some elements of the approach. The star
point is the QCD partition function in the instanton appro
mation,

Zinst~mq!5
1

N1!N2! )
I 51

N1 ,N2 E dV In~r I !

3e2Sint
gluon

@det~ iD” 2 imqg4!#Nf , ~24!

where V I5$Q I ,r I ,zI% denote the collective coordinate
~color, size and position! of the instanton solutions andn(r I)
their individual weight. To extract effective quark intera
tions one reintroduces quark fields in a way that is comp
ible with the fermionic determinant of the previous equati
@16#,

Zinst~mq!5E DcDc†expF E d4xc†~ i ]”2 imqg4!c G
3E dl6

2p
expH l6Y61N6S lnF N6

l6V4
G21D J ,

~25!
r-
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and an additional auxiliary integration overl6 has been in-
troduced to exponentiate the effective (2Nf)-fermion verti-
cesY6 . For two flavors the latter are given by

l6Y65l6E d4k1d4k2d4p1d4p2

~2p!16
~2p!4

3d (4)~k11p12k22p2!

3@c†F †~p1 ,2mq!g6ta
2F~k1 ,mq!c#

3@c†F †~p2 ,2mq!g6ta
2F~k2 ,mq!c# ~26!

with g65(16g5), flavor matricesta5(tW ,i ) and the instan-
ton form factorsF(p,mq)5(p1 imq)2w(p,mq)1, which are
matrices in Dirac space, adopting the notation of Ref.@15#,
i.e., x6[xmsm

6 with sm
6[(6sW ,1). Since the fermionic de

terminant has been approximated by its zero-mode part,
form factors are entirely determined by the Fourie
transformed quark zero-mode wave functions,

f I ,A~p,mq!5E d4xe2 ip•xf I ,A~x,mq!5w~p,mq!6xR,L

~27!

with f(x,mq) satisfying the Dirac equation in the back
ground of an~anti-!instanton:

D” I ,Af I ,A~x!50. ~28!

The explicit form ofwm(p,mq) can be found in Refs.@15,4#.
As before we preselect the potential condensation ch

nels as the scalar-isoscalarp-h and p-p ones which, after
solving the~matrix! Dyson equation, yields the coupled ga
equations
D5
~2 i !l

Nc~Nc21!
E d4p

~2p!4
B~p;mq!F~p;D,s j ,Qj ! ~29!

~sx15dsx!5
~2 i !l

Nc
E d4p

~2p!4
A~p,Qx ;mq!Sx~p;D,s j ,Qj ! ~30!

~s3,x210dsx!5
~2 i !l

Nc
E d4p

~2p!4
A~p,Qx ;mq!Sx~p;D[0,s3,j ,Qj !. ~31!
els
y.

CS
Here, ds j5s j2s3,j denotes the difference in the Ove
hauser gaps for quarks of color 1,2 (s j ) or color 3 (s3,j )
which, respectively, do@Eq. ~30!# or do not@Eq. ~31!# par-
ticipate in the diquark pairing~onceDÞ0) @15,4#. In prin-
ciple, the wave vectors in the color-1,2 and color-3 chann
could also be different when minimizing the free energ
However, the actual solutions fors j ands3,j turn out to be
very close to each other even in the presence of large B
8-7
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gapsD so that the generically very smooth dependence
the Qj should not cause appreciable deviations between
two color sectors. Under our simplifying assumption that
momentum moduliuQj u ~as well as the associated gap p
rameterss j ) of the Overhauser pairing are of equal mag
tude, the additional (2nw22) gap equations for the othe
p-h channels are equivalent to Eqs.~30! and ~31!. The ex-
plicit form of the propagators is given by

Sx~p,D,s j ,Qj !52A~p,Qx ;mq!sx~p,Qx!

3G0~p1Qx!D~p,D,s j ,Qj ! ~32!

F~p,D,s j ,Qj !52B~p;mq!D~p!Ḡ0~p!D~p,D,s j ,Qj !

~33!

with

D~p,D,s j ,Qj !5FD~p!2Ḡ0~p!2G0
21~p!

1(
j

s j~p,Qj !
2G0~p1Qj !G21

.

~34!

The functionsA andB represent the~square of the! instanton
form factors~normalized to one in vacuum! acting on each
fermion line entering or exiting a vertex, and we have int
duced the notations j (p;Qj )[s jA(p;Qj ), D(p)5DB(p).
The integration variablel[l6 plays the role of an effective
coupling constant, which, however, is nota priori fixed.
Rather, its value is found from minimization of the free e
ergy via a saddle point condition, which reads@15#

N

V
5l^Y11Y2&5

1

l F2Nc
2(

j
s j

214Nc~Nc21!D2G ,
~35!

where^Y11Y2& denotes the ground state expectation va
of the interaction vertices with potential condensates. T
the magnitude of the gaps itself governs the effective c
pling to the instantons. In the present treatment the instan
densityN/V is assumed to be constant.4 The final result for
the free energy at the minimum then becomes

V~mq!52
ln Z
V

5Vkin~mq!1
N

V
lnF l

~N/V!G , ~36!

4This assumption is motivated by the observation that the
energy associated with the instanton vacuum~background! is rather
large compared to interaction corrections arising in the fin
density quark sector. It is corroborated by explicit calculations
the ‘‘cocktail model’’ of Ref. @4#, where the grand potential ha
been minimized explicitly over both the properties of the instan
ensemble and the quark Fermi sphere: the resulting variations in
total N/V were found to be at the few percent level. However,
assertion of constantN/V can imply unphysical behavior when th
system is driven towards very large or very small pairing gaps.
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indicating that the potential~second! term favors small val-
ues forl, whereas the kinetic~first! term exhibits the usua
decrease with increasing values for the gaps and conden
~and thus forl). We should also point out thatV(mq) is
only determined up to an overall constant which is associa
with a nonperturbative vacuum energy of abo
20.5 GeV/fm3 ~or, equivalently, bag pressureP.0). This
term is encoded in the scale dependence of the argume
the logarithm~note thatl and N/V have different dimen-
sions!, which we have not assessed here since it is not
evant for our analysis@this will be the origin of positive
values forV(mq) encountered below#.

Before we come to the numerical solutions of the g
equations let us recall the specific density dependence o
instanton form factors as following from the zero-mode s
lutions of the in-medium Dirac equation~28!; cf. Fig. 4. At
fixed energy~upper panel! the strength of the interaction i
clearly concentrated at the Fermi surface: the falloff w
three-mometum sets in only abovep.pF . On the other
hand, as a function of~Euclidean! energy the strength is
reduced starting fromp450 ~see lower panel!. These fea-
tures reflect that the instanton zero modes, which mediate
interaction, operate across the Fermi surface, i.e., at z
energy but at 3-momenta equal to the Fermi momentu
This behavior is quite distinct from the schematic~density-
independent! NJL forces employed in the previous sectio
Already at this point one can anticipate the Overhauser p
ing to be more competitive than in the NJL treatment.

For the evaluation of the kinetic part of the free energy
given in Eq.~18! a complication arises from the fact that th
instanton form factors are defined in Euclidean space.
therefore approximated the gaps entering into the integra
Vkin by their zero-energy values retaining the 3-moment
dependence, i.e.D(p).D(pW )5DB(p450,pW ), and equiva-

e

-

n
he

FIG. 4. In-medium instanton form factors as a function of thre
momentum. Upper panel: at fixed energyp450 for chemical potet-
nials mq50, 0.3 GeV, 0.6 GeV. Lower panel: for fixedmq

50.3 GeV and various energies.
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CHIRAL CRYSTAL IN COLD QCD MATTER AT . . . PHYSICAL REVIEW D 63 034008
lently for s. It turns out that this approximation is consiste
in the sense that the resulting extrema inV are in line with
the solutions of the gap equations~which are solved in Eu-
clidean space with the full 4-momentum dependence of
form factors!. Other choices for fixingp4 do not comply with
this criterium.

If not otherwise stated, the subsequent calculations h
been performed for a total instanton density ofN/V
51 fm24 which in vacuum translates into a constitue
quark mass ofMq50.34 GeV. The search for simultaneo
solutions to the gap equations~29!, ~30! and ~31! together
with the self-consistency condition on the coupling, Eq.~35!,
is illustrated in Fig. 5. The upper two curves represent
values fors ands3 that simultaneuosly solve the two Ove
hauser gap equations~30! and ~31! at a given BCS gapD
~plotted on the abscissa!. The lower curve indicates the va
ues fors that solve the BCS gap equation~29! for a givenD
~using the value fors3 from the upper curve to fix the cou
pling l). Thus a coexistence state of Overhauser and B
pairing would be signaled by the crossing of the two low
lines. As mentioned above no such state is found; the o
physical solutions correspond to the crossing points of
upper ~solid or dashed! curve with they axis ~Overhauser
state with D50, s5s3 finite! and of the lower~dash-
dotted! curve with thex axis @BCS state withs5s350 and
D50.225 GeV; the discrepancy of about 15%~less at higher
mq) with Refs.@15,4# reflects the accuracy when neglectin
antiparticle states#.

The question then is which one is thermodynamically
vored. The BCS solution is unique (D50.225 GeV) and
gives a total free energy ofVBCS(mq50.4 GeV)52.3
31023 GeV4 ~up to a constant which is not relevant here,
discussed above!.

FIG. 5. Solutions of the coupled Overhauser and BCS equat
with 2 waves atQx560.5 GeV. The solid and dashed lines ind
cate, respectively, the values forsx(D) ands3,x(D) which simul-
taneously solve the two Overhauser gap equations~30! and~31! for
a givenD. The dash-dotted line corresponds to the pointssx ,D,
which solve the BCS gap equation~29!. A nontrivial simultaneous
solution to all 3 gap equations would be signaled by a crossin
the solid and dash-dotted curves. The two independent pure
and Overhauser solutions are marked by the squares on thex andy
axes, respectively.
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The situation is more involved for the Overhauser co
figurations. Let us start with the ‘‘canonical’’ case where t
momentum vector of the chiral density waves is fixed
twice the Fermi momentum,Q52pF . In Fig. 6 the resulting
minimized free energy@corresponding to solutions of Eq
~30!# is displayed as a function of the number of includ
waves. The Overhauser solutions are not far above the B
ground state, with a slight energy gain for an increased nu
ber of waves.

However, one can further economize the energy of
Overhauser state by exploiting the freedom associated
the wave vectorQ ~or, equivalently, the periodicity of the
lattice!. For Q.2pF the free energy rapidly increases. O
the other hand, forQ,2pF more favorable configuration
are found. To correctly assess them one has to include
waves in pairs uk6Qj u of standing waves ~i.e. nw
52,4,6, . . . ) to ensure that the occupied states in the Fe
sea are saturated within the first Brillouin zone~cf. Fig. 3!.
The lowest-lying state we could find atmq50.4 GeV occurs
for one standing wave withQmin.0.5 GeV and s
.0.21 GeV with a free energyV.2.331023 GeV4, practi-
cally degenerate with the BCS solution. In solid state phys
the breaking of translational invariance in one spatial dir
tion is typically associated with ‘‘liquid crystals,’’ i.e.
2-dimensional layers of~uniform! liquid separated by peri-
odic spacings ofa52p/Q. In our case,a.2.5 fm. The
minimum in the wave vector is in fact rather shallow, as se
from the explicit momentum dependence of the free ene
displayed in Fig. 7. Finally we confront in Fig. 8 the densi
dependence of the free energies~upper panel! and pairing
gaps ~lower panel! in the minimum of the BCS andnw
52,6 Overhauser states. Again we see that over the ap
cablemq range the solutions are close in energy, with~al-
most! degenerate minima for thenw52 ‘‘liquid crystal’’ and
the BCS ground state at the lower densities ofrB.4r0.
Towards higher densities, where the gaps and thus
strength of the effective instanton interactions decrease,

ns

of
S

FIG. 6. Dependence of the free energy~upper solid line! and
associatedp-h pairing gap~dash-dotted line! on the number of
included waves~‘‘patches’’! with fixed 3-momentum modulus

uQW j u50.8 GeV for solutions of Eqs.~30! and ~35!; the dashed line
marks the value of the BCS ground state free energy that so
Eqs. ~29! and ~35!. The results are formq50.4 GeV andN/V
51 fm24.
8-9
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RALF RAPP, EDWARD SHURYAK, AND ISMAIL ZAHED PHYSICAL REVIEW D63 034008
BCS solution becomes relatively more favorable. This c
firms once more that in 311 dimensions the Overhause
pairing can only compete for sufficiently strong couplin
We should also note that for both thenw52 andnw56 cases
as displayed the optimal momentum vector of the pertin
standing waves stays at approximate values ofQj.5pF/4
and 5pF/3, respectively.

IV. CONCLUDING REMARKS

Employing a standard Nambu-Gorkov~matrix! propaga-
tor approach we have performed an analysis of compe
instabtilities in the particle-particle and particle-hole chan
for three-color, two-flavor QCD at moderate quark densiti
As an essential ingredient we used nonperturbative fo
~strong coupling! and preselected the potential condensat
channels with guidance from low-energy hadron pheno
enology; i.e., both the diquark as well as the quark-hole p
ing were evaluated in their scalar-isoscalar channels.
corresponding coupled gap equations do not seem do sup

FIG. 7. Left panel: wave-vector dependence of the Overhau
free energy for one standing wave~solid line, V tot

Ovh ; short-dashed
line, Vkin

Ovh) in comparison to the BCS solution~long-dashed line,
V tot

BCS; dotted line,Vkin
BCS) at mq50.4 GeV@we note again that the

absolute values of the total free energies are only determined u
an overall ~negative! constant~related to the ‘‘bag presssure’’!
which drops out in the relative comparison of the solutions#. Right
panel: wave-vector dependence of the Overhauser pairing gap~solid
line! compared to the BCS gap~long-dashed line!.
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simultaneous nontrivial solutions. Needless to say, our
culations might be further improved by including high
standing waves through a larger class of crystalline sym
tries ~polyhedron structures!. Also, our mean-field approxi-
mation may be extended to account for higher intra-ba
mixings when 2mq.Q.

This not withstanding, an important outcome of our c
culation is that the individual~separate! solutions for the
BCS and Overhauser ground states are quite close in ene
indicating the importance of particle-hole instabilities wh
using interaction strengths as typical for low-energy hadro
binding. This becomes particularly evident when compar
schematic NJL interactions with microscopic instant
forces: whereas the former are reduced in magnitude w
increasing density~entailing a relative suppression of th
Overhauser pairing!, the density-dependent instanton for
factors essentially preserve their strength at the Fermi
face, rendering the Overhauser pairing competitive. Inde
with a somewhat larger instanton density ofN/V
51.4 fm24, corresponding to a vacuum constituent qua
mass ofMq50.41 GeV, the Overhauser solution reaches
low the BCS one. On the other hand, if we were to mi
mally account for strange quarks, the instanton interact
~being a 6-quark vertex! in the ud sector would lose abou
60% of its strength due to the reduced strange-quark m
(ms.0.15 GeV as opposed toMs.0.45 GeV in vacuum! in
closing off the strange quark line. Some of this loss might
recovered once strange quarks themselves participate in
Overhauser pairing. Our findings are to be contrasted w
earlier calculations based on perturbative OGE at high d
sities where an extremely large number of colors was
quired for the Overhauser pairing~i.e., a chiral density wave!
to overcome the BCS instability.

Finally, a remark about the relevance of our results
neutron stars is in order. Here, quark matter is believed
reside mostly in a mixed phase, with significant charge se
ration between quark and nuclear components. The qu

er

to

FIG. 8. Chemical potential dependence of the total free ener
~upper panel! and pairing gaps~lower panel! for the BCS~long-
dashed lines! and Overhauser~solid and dashed-dotted lines!
solutions.
8-10
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core also exhibits charge asymmetry due to the finite stra
quark mass. Consequently, the quark matter will be cha
terized by an appreciable difference in up- and down-qu
chemical potentials. If large enough, this difference mig
enforce the flavor-singlet diquark (ud) pairing to disappear
@17#. On the other hand, such a suppression does not app
the ~flavor-singlet! particle-hole channels of typeuu21,
.

.

.

03400
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dd21, which suggests that isopin asymmetric quark ma
provides additional favor to the chiral crystal.
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