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Chiral crystal in cold QCD matter at intermediate densities?
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The analogue of Overhausgrarticle-hole pairing in electronic systemspin-density waves with non-zero
total momentumQ) is analyzed in finite-density QCD for 3 colors and 2 flavors, and compared to the
color-superconducting BCS ground staparticle-particle pairingQ=0). The calculations are based on ef-
fective nonperturbative four-fermion interactions acting in both the scalar diquark as well as the scalar-
isoscalar quark-holé¢“ o) channel. Within the Nambu-Gorkov formalism we set up the coupled channel
problem, including multiple chiral density wave formation, and evaluate the resulting gaps and free energies.
Employing medium-modified instanton-induced 't Hooft interactions, as applicable agoyr0.4 GeV (or 4
times nuclear saturation dengityve find the “chiral crystal phase” to be competitive with the color super-
conductor.
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[. INTRODUCTION of coupled BCS-Overhauser equations using different argu-
ments [10]. One concludes that instabilities in the
The understanding of QCD under extreme conditions ig-h channel are not relevant for real QCD at asymptotic
among the main frontiers in strong interaction physics. Indensities.
particular, the finite-density and zero-temperature regime has The situation, however, can be very different if the inter-
reattracted considerable attention lately, after it was realizeglction strength between the quarks is substantially increased
that early perturbative estimates for color-superconductingio be referred to below as the strong coupling reginde
gaps at large chemical potential are exceeded by up to tW@el|l-known example is the Nambu—Jona-LasifiiIL) de-
orders of magnitude towards smaller densifigs4]. Such  scription of chiral symmetry breaking in the QCD vacuum
BCS-type pairing energies are in fact comparable to thg,ssociated with the constituent quark mass gap and the
(“constituent”) quark mass gap in the QCD vacuuM,,  y,iiq_up of the chiral condensatewhich requires amini-
=0.35-0.4 GeV, and have triggered new interest in the oby,5 critical coupling to occur. At finite density, the same
ig:\éag:engﬁ?rf)enqlsjteanr((;.?r?f(()):tl?#;rgl m?‘“if. fﬁrmatlon vr\]nthm th?attractive interaction is operative in the scalar-isoscadahn
y, In Nigh energy heavy- ponnel. Its coupling strength is in fact augmented by a fac-

ion collisions large entropy production renders the access t?or of (N,— 1) over the(most attractiviscalar diquark chan-
Cc

this regime unlikely. el. On the other hand, geometric factors act in its disfavor:

The focus on the occurrence of various superconducting . . s .
phases is motivated by the standard BCS instability of th nlike the BCS gap, which uniformly covers the entire Fermi
surface, the chiral density wave appears in the form of

Fermi surface for arbitrarily weak particle-particlp-p) in- > L s
teractions. Under certain conditions, however, the particle-Patches,” their number depending on the symmetry of the

hole (p-h) channel might also become competitive. Here, aPresumed crystal. The purpose of the present paper is to
kinematic singularity in the corresponding Greens functionStudy the interplay between Overhauser and BCS pairing,
only develops in(effectively) (1+1)-dimensional systems |n.clud|ng.d|fferent crystal_ structures, within the strong cou-
and at a total pair momentum &= 2pg (pe is the Fermi ~ Pling regime. The focus is thus on quark mattefraerme-
momentun), known as Peierls instabilit5]. In higher di- diate densities, i.e., large enough for the system to be in the
mensions it can nevertheless be relevant provided the intefiuark phase, but small enough to support nonperturbative
action is strong enough. One variant pfh instabilities is mteracuqns. This should roughly correspond to ch'emlc.al po-
“spin-density waves” as originally proposed by Overhausertentials in the rangeuq=0.4-0.6 GeV, translating into
[6] for specific electronic materialor a review seq7]).  baryon densities 0f3.5-12p, (where p=0.16 fm * de-

The analogue in the context of QCD, so-called “chiral den-Notes normal nuclear matter density

sity waves,” was first discussed by Deryagihal. [8]. Us- This gmcle is organized as follows. In Sec. Il we start by
ing perturbative one-gluon exchang®GE) at asymptoti- introducing the Nambu-Gorkov type matrix propagator for-
cally high densities it was shown that the Overhauser-typdnalism that will subsequently be applied to obtain the gap
pairing prevails over the BCS instability in thé.— oo limit

(N, is the number of colops This is due to the fact that the

BCS bound states, being color non-singlet, are dynamically 1The chiral crystal phase we are investigating is not to be con-
suppressed by B, as compared to thécolorless Over-  fused with another crystal phase discussed in 1980s related to
hauser ones. More recently, Shuster and [@dmeexamined p-wave pion condensatiofill] and later interacting Skyrmions
this mechanism for finité&; and including Debye screening [12]. Those works have addressed nuclear matter at lower densities,
in the gluon propagator. As a result, the chiral density waven which the chiral condensateq) is only slightly perturbed from
dominates only for a very large number of colons, its vacuum value and basically uniform in space, while the periodic
=((10%). These findings have been confirmed in an analysistructure is driven by pion fields.
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equations for the coupled BCS-Overhauser problem; speciare the free particle propagator and its conjugate at finite
attention is given to the single-quark spectra in the Overchemical potentia[with e,=wy—uq, and im‘initesimal&ek

hauser ground state. In Sec. Il we solve these equations |s|sgn(e,) according to the sign oé,]. Inserting the ex-

using the aforementioned variants of nonperturbative imerpression for the anomalous Greens function from @4,
actions, i.e., somewhat schematic NJL-type as well as micro-

scopic instanton-induced forces, for the slightly idealized - —A
case of two massless flavors and three colors. In Sec. IVwe  F(kg,k,A)= " - " ; X
summarize and discuss the relevance of our results for real ( 0_6k+|55k)( 0+Ek+'56k)_A
QCD.

)

into the definition ofA, Eq. (4), yields the gap equation.
Notice that the pole structure &f(k) always ensures a non-

Il. NAMBU-GORKOV FORMALISM AND COUPLED vanishing contour for the energy integration.

GAP EQUATIONS

A. BCS pairing B. Overhauser pairing

A standard framework to address multiple instabilities in  On the same footing one can analyze pairing in the
interacting many-body systems is provided by the Nambuparticle-hole channel at finite total pair moment@n(note
Gorkov formalism. Here, propagators are constructed as mahat the corresponding “chiral crystal” discussed in the fol-
trices combining all potential condensate channels via offlowing is different from the recently studied “crystalline
diagonal elementssee, e.g., Ref13]), which automatically  color superconductivity'T14], which refers to BCS pairing
incorporates the interplay or coexistence of the variousat finite 3-momentum In the mean-field approximation
phases. (MFA),? the full Greens function and Dyson equation in the

For the familiar BCS case one adopts the following ansatpresence of a single stationary wave take the form
for the full propagator: . .
<CkTCkT> <CkTCk+Qi> )

<Ck+QLCET> <Ck+QLCE+Q1>
G(ko,E,Q_),O') g(kOJZ!Q_):O-) )

A _ (CerlO (Ci1Ci)) Goun(Ko.K, Q.07 1) =
Giedko K, Ajug) =

tot t
(cly Cxp) <C—le—k1>

G(kOJZvA) E(kO,E,A)

= A _ @ S(ko,k,Q,0) G(ko,k+Q,Q,0)
F(ko.k,A)  G(ko,—k,A) . R
=[Gy '-a] ™, ®)
The gap equation is then derived by formulating the pertinent
Dyson equation which has the formal solution
Go' A\t - 4 o
- — A~ -1 A1— j— k vky 10- =
Gpes=[Go —A] = A oG (2 Stho k.Q.0) (ko—ek+i§qﬂk0—6k+Q+i5W+Q%—02
C)
which has the formal solution and gives the ensuing gap equation from the definition of the
— airing “self-energy,”
. 1 Gt —A o p g )%
BCST ~—1~~1 x| — R d4
- - G . p - =
Gy'Go~AM| -A Gp U:(_.)aphf — P Spp.p.G0). (10
(27)
where
Notice that here the energy contour integration receives non-
d*p . vanishing contributions only if
A=(=i)a f———Fw.uA) (4)
SONPYSTERL €p€ps o~ 02<0, (11)

represents théoff-diagona) “self-energy” contribution in-  which means that the two poles py have to be in distinct
duced byp-p pairing (with an appropriate 4-fermion cou- (upper and lower half-planes; i.e., one particl@bove the

pling constantw,,), and Fermi surfacg and one holgbelow the Fermi surfageare
required to participate in the interaction. This condition re-
G 1 5 flects on the particle-hole symmetry caused by the nesting of
O ko—ectid, ®
_ 1 2This approximation is equivalent to the weak coupling approxi-

(6) mation in band structure calculations where higher intra-band mix-

Go= —————
Kot €t Og, ing is suppressed.
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the Fermi surface in the presence of the induced wave. Wscription thus calls for the inclusion of additional wave

stress again that an important difference to the BCS gapectors. In general, the-h pairing gap can be written as

equation resides in the fact th@br 2 or more spatial dimen-

siong one is not guaranteed a solution for arbitrarily small e L

coupling constants since tlpeh Greens functiors does not U(F)zz E a,-,ne'”Qi'r, (12

develop a kinematic singularittas mentioned in the Intro- bon=me

duction this is very reminiscent to the QCD vacuum case of .

particle-antiparticle pairing across the Dirac sea where theQ; correspond to théfinite) number of fundamen-
At finite densities, the formation of a condensate carryingtal waves, and the summation ovém|>1 accounts for

nonzero total momentui® is associated with nontrivial spa- higher harmonics in the Fourier series. The matrix propaga-

tial structures, i.e., crystals, characterized by a “lattice spactor formalism allows for the treatment of multiple waves

ing” a=2#/Q. In three dimensions a more complete de-through an expansion of the basis states according to

T T
<CkTCIT> (CkiCriq,) <CkTCk+QyL>

t +
. <Ck+Qx1CET> <Ck+QXLCk+QX1> <Ck+QX1Ck+QyL>
G= t t T (13
<Ck+QyLCkT> <Ck+Qyick+Qxi> <Ck+QyLCk+Qy1>

In practice the expansion has to be kept finite. The possibility of additional BCS pairing is straightforwardly incorporated into
Eg. (13) by extending the latter with the off-diagonal states from &9.

In what follows we will consider up tm,,=6 waves in three orthogonal directions wi@,=Q,=Q, and n==*1,
characterizing a cubic crystal through three standing waves with the fundamental (favdg@mplicity we will also assume
the magnitude of the various Overhauser condensates to be equat;=er). The important new features that arise through
introducing additional states become already apparent in the simplest extension to 2 condensates. In this case one has for the

(coupled gap equatiofs)

0= (—)a f oL ~ G (P +Qy)
§ ') (2m)* Gy H(p)Go H(p+ Q)G H(p+Qy) — 02G, H(p+Qy) — 02Gy H(p+Qy)
. d*p — ,Go(p+Qy)
=(— _ - _ 14
( ')a"“J (2m)* Gg H(p) — 0%Go(P+ Q) — 0;Go(p+Qy) 19

(and an equivalent one far, by interchanging««y). For  the range of validity for our calculations to be roughly given
finite o, additional possibilities for the nonvanishing of the by 0.4 Ge\ks u,=0.6 GeV. This coincides with the regime
energy contour integration appear through an extra zero ofhere, for the physical current strange quark massngf
the third-order polynomial in the denominator of the full =0.14 GeV, the two-flavor superconductor might prevail
propagator in Eq(14). This enlarges the integration region over the color-flavor lockedCFL) state so that our restric-
and can be interpreted as interference effects between tfi@n to Ny=2 is supported.

patchegor wave$. Diagrammatically this can be understood

as an additional insertion of the, condensate on a particle C. Spectrum in the Overhauser case

(or holg line of energye,. Note thata priori it is not clear The poles of the mean-field propagators discussed above
whether such interferences are constructive or destructivgyrovide the quasiparticle excitations in both the BCS and
that is, give a positive or negative contribution to the right-Overhauser case. In the former, the spectrum consists of
hand-side(RHS) of Eq. (14). gapped particles and holes. In the latter case, the physical
In the propagatorsG, contributions from antiparticles interpretation is rendered more subtle by the presence of a
have been neglected. This should be a reasonable approxstanding wave. To keep the analysis transparent, we will dis-
mation in the quark matter phase at sufficiently lajgg, cuss analytic results in41 dimensions and proceed to a
i.e., after the usualnon-oscillating particle-antiparticlehi- numerical evaluation in 81 dimensions.
ral condensate has vanished. At the same time, since we baseln 1+1 dimensions, the quasi-particle excitations follow-
our analysis on nonperturbative forces, the applicable densing from the pole condition for the propagator in the Over-
ties are bounded from above. Taken together, we estimateauser case, E49), have energies
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K=0.4GeV, Q=0.8GeV (4 waves), 6=0 u,=0.4GeV, Q=0.8GeV (4 waves), 0=0.15GeV
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FIG. 1. Dispersion relations of the various particle and hole branches using 4 waves-ix thied =y directions with equal gaps and
wave vector modulQ=2pg. The solutions are displayed for 3 angles of the momentum with respect toakis in thex-y plane. By
symmetry, the solutions repeat themselves within each o6tantevery 45 °). The left panel shows the noninteracting caseQ), and the
right panel has been obtained by setting 0.15 GeV.

1 — are characterized by a standing waye (x)~sin(mx/a)
ex =5 (&t et V(e e+t (19 near the edge of the Brillouin zone. The energy is substan-
tially lowered by the standing wawg_(x) with a probability
with = k| —uq andQ=2m/a. This spectrum can be un- density in opposite phase to the potential. The standing wave
derstood if we note that the quarks are moving in a self-, (x) corresponds to a probability density in phase with the
induced potential/(x) = — 2o cos (Qx) through the station- potential, hence substantially more expensive energetically.
ary wave. Indeed, in the presence of such a potential that the edge of the zone, the two states are gapped dy 2
spectrum is banded witfk| < 7r/a representing the first Bril-  Clearly, the lowest energy state is reached by filling only
louin zone(BZ-1). In weak coupling the spectrum is mostly ,nse states correspondingBa , that is by setting the Fermi
free except ak=0,= v/a where band mixing is large. For energy at the gap. The ensuing state is an insulator.
Mq<Q we can ignore most of the band mixing except for the ,"nigher dimensions, the band mixing becomes more in-

lowest one near the edge of BZ-1. Degenerate perturbatiogjcate “However, in the weak-coupling approximation and

theory gives readily for Fermi momenta in the vicinity o®/2, higher intra-band
mixing is small and we may just use the extended band-

=0, (16) structure description which is equivalent to our mean-field
treatment. The quasiparticle speckg(j=0,...n,) fol-

. . low numerically from the poles of the propagatdfigure 1
in agreement with Eq15). The 2x2 character of Eq(16) shows an exar)rl1ple of 4 WF;ves in thex F;ngigy diregctions

follows from mixing between two bands. As footnoted for the canonical value of the wave vect@= 2 with
above, it is analogous to the MFA where the band mixing is = <Pr

treated in the extended description commonly used in weak-
coupling band-structure calculations.

The quasiparticles of energy_ are characterized by a  *again, n,, refers to the number of plane waves retained ()
standing wavey_(x)=~cos (rx/a), and those of energy. with n,/2 being typically the number of standing waves.

ko_Gk o

g kO_Ek*Q
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H,=0.4GeV, Q=0.4GeV (4 waves), 6=0.15GeV
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FIG. 2. Same as Fig. 1 but f@=pg.

(ox=0y>0) and without ¢y=0,=0) interactions. One mean-field treatment. Retaining only the particle contribution
clearly recognizes the formation of the gap close to the defti.e., neglecting antiparticlgsthe free energy simplifies to

Q(/-Lq ’Q’U):ont(lb(’q ’Q'U)+Qkin(Mq IQ!U)

generacy poin{level crossing in the non-interacting case,

which happens in the vicinity of the Fermi surface. Fpr
=pe (Fig. 2 energy gain arises from an appreciable pushing
down of the lowest level which lies rather deep within the
Fermi sea. This igpartially) counteracted by an upward push
of the upper branch which also corresponds to occupied
states. Thus one expects the most beneficial configuration to
be when the Fermi surface lies in between split levels.

D. Energy budget and periodicity

Solutions of the gap equations correspond to extrem

(minima) in the energy density with respect to the gap

However, solutions may exist for several values of the wav
vector Q. To determine the minimum in the latter quantity,
one has to take recourse to the explicit form of the freed!

energy density. In the MFA,

a?(x
2

Vsﬂ(uq,Q,oFfd3X(T)+<qT[ia-V—20(X)q]> :

17
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Ny
D [C(Nc,Nf)sz
1 A

J':

d3k
+ 2NN J
jZO “ez-1(2m)3

e{#@( — e{<)

(18

gvith color and flavor coefficient€(N.,Ns) which will de-

pend on the concrete form of the pairing interaction. To
é':lvoid double counting the integration for the kinetic energy
part is restricted to BZ-1 as defined by the momentum re-

ons[ —Q;/2,Q;/2] (as well agk|<kg). This amounts to a

folding of the various branches into BZ-1 and enforces the
explicit lattice periodicity onto the free energy. This point is
illustrated in Fig. 3 for the free caser&0) along one spatial
direction. For fixed chemical potential smaller wave vectors
require the inclusion of an increasing number of branches to
correctly saturate the available states within the Fermi sea
(through a multiple folding until the Fermi surface is
whereV; is the 3-volume. The first contribution removes the reachedl E.g., for u,<3Q/2 the lowest two harmonics with
double counting from the fermionic contribution in the k,* Q, suffice. Above, the next two higher harmonics with



RALF RAPP, EDWARD SHURYAK, AND ISMAIL ZAHED

PHYSICAL REVIEW D63 034008
IIIl. NONPERTURBATIVE FORCES AND RESULTS

For the actual calculations we need to specify the quan-
tum numbers of the pairing channels. To do so we take guid-
ance from low-(or zeroj density phenomenology encoded
in effective 4-point interactions. In the particle-hole channel
the strongest attraction is in thes™ channel given by(in-
cluding exchange termg])

o A N2
ﬁmes:8_N§(qq) ’ (21)

o Sy 7 whereas in the particle-particle channel it is believed to be
o L7 the scalar diquark in the color-antitriplet chaniehich, in
W T Q2 AN fact, arises from a Fierz transformation of Eg1)]:
S s AN
N // I \\\\é// EE ( TC )\a )(— )\a C_T)
T N T T
'Qx 'Qx/2 0 +Qx/2 +QX dig 8N§(Nc—1) q CysTaAaQ)(qT2A A Y50 Q

k (22

X

[C is the charge conjugation matrixi antisymmetric color
matrices,r, the SU2)-flavor matrixX. For practical use the
effective vertices have to be supplemented with ultraviolet
cutoffs. In the following we will consider two variants
thereof and discuss the pertinent results for the coupled
Overhauser-BCS equations.

FIG. 3. Free quasiparticle dispersion relations=£0) for mass-
less quarks in a crystal with periodicity in tlxedirection. The ver-
tical dotted lines indicate the boundaries of the fiBZ-1) and
second(BZ-2) Brillouin zones (corresponding tdk,|<Q,/2 and
Q,/2<|k,|<Q,, respectively. Plotted are the 5 branches}
=1Kk,|, |kexQ4l, and|k,*=2Q,| with the solid lines marking their
contributions to BZ-1.

A. NJL treatment

ky*2Q, are necessary to encompass the occupied energy |, 5 \idely used class of Nambu—Jona-Lasinio models

states within BZ-1 up tquq=<5Q/2, and so forth. When us- he itraviolet behavior of the pointlike vertices is regulated
ing additional waves in other spatial directions similar crlte-by 3- or 4-momentum multipole formfactotsr even sharp
ria hold (albeit more complicated due to nontrivial angular @ function. We here employ a dipole form

dependences

Solutions of the gap equations in general support different sA2 )Y
pairs of{o,Q}; the combination that minimizeQ (u,Q,0) FIP)=|—%— (23
is the thermodynamically favored one. Note that the gap vA+p

equations are not subject to explicit momentum restrictionivzz) for each in- and outgoing quark line witth

i:nﬁaeccg:]-tsrirgﬂlemomenta of arbitrary magnitude can in PN"_ 0.6 GeV as a typical “chiral” scaleg(variations within
P , i - such parametrizations do not affect our qualitative conclu-
As a simple example, E18) can be explicitly computed sions in this section The coupling constant =67 fi? is
141 di . . ; i_sior 1] = :
in 1+1 dimensions by recalling that the Fermi surface coin calibrated to a constituent quark massMf—0.4 GeV in

C|des. W't_h the gap, "eka__’U‘q_k_F_Q/z' Specifically, the vacuum. Note that there is no well-defined way of introduc-
contribution from the Fermi sea is ing density dependencies into the interaction. Since at finite
1q the relevant quark interactions occur at the Fermi surface,
a form factor of type(23) implies the loss of interaction
strength with increasingg .
(19 This schematic treatment has been shown to yield robust
. . ) results for 2-flavor BCS pairing with gaps=0.1 GeV at
with £=o/Q and a density =dkg /7 whered is the overall  quark chemical potentials around 0.5 G¢¥]. Including
degeneracy. In the MFA, the induced standing wave isyow thep-h pairing as outlined in the previous section we
o(x)=20cosQx), and the double counting in the Fermi fing only rather fragile evidence for the emergence of chiral
sea is removed by density waves(at u,=0.4 GeV): for wave vectorsQ,
) =<0.150 GeV the RHS of the Overhauser gap equation sup-
QO :EJ de () _9 (20) ports solutions with gaps around5 MeV. The smallness of
Pot 2\ . Q, in fact requires six wavevith k=nQ,, n=1,2,3) to fill
all states within the Fermi sphere. Somewhat more robust
The minimum value ofr can be obtained in this case ana- solutions are obtained when increasing the 4-fermion cou-
lytically by minimizing Q= Qn+Q ;- pling constant. E.g., with a vacuum constituent quark mass

Qyin=pee| 1— %[V1+ E+EIn(E+V1+ 6],

2

034008-6



CHIRAL CRYSTAL IN COLD QCD MATTER AT . .. PHYSICAL REVIEW D 63 034008

of Mq=0.5 GeV, which implies\ =73 fm?, the minimum  and an additional auxiliary integration over. has been in-
solution emerges fof,=0.2 GeV ando=20 MeV. How- troduced to exponentiate the effectiveNg-fermion verti-
ever, the gain in the total free energy is very sm&ll: cesY. . For two flavors the latter are given by
=-1.2973x10 % GeV * as compared to the free Fermi gas
value of Q= —1.2969< 10 2 GeV * [to be contrasted with
the BCS ground state for WhICI’QBCg(,uq 0.4 GeV) NoYo=A\.
=—1.375<10 3 GeV * at a pairing gap oA =0.13 Ge\}.

We also checked that the incorporation of waves in other
spatial directions does not lead to further energy gain.

d*k,d*k,d*p,d*
f 107K207Py P2(2W)4

(277_)16
X 8 (Ky+p1—ka—p2)

X T‘F‘T( y ) +T*‘7:(k 1 )
B. Instanton approach at finite chemical potential L P1. " Kol V=T 1:fa d
Tt _ -

A more microscopic origin of effective 4-fermion interac- X[ F (P2, = 1) Y= Ta F(Ka ) Y] (26)
tions is provided within the instanton framework. In the
finite-density context it has previously been employed to. . —(1+ . (2 . )
study the competition between the chiral condensate ang)'rt_]hfgﬁn f;:(L:t_cJ?,sS%i flavo)r rrzatﬂci:es;-)a_ ((T") a)nd T/ﬁi(lzraszg
two-flavor superconducting quark matter in Rgf5,4]. Let P.fq) =(PT1kg) @D, Mg

us briefly recall some elements of the approach. The startlnB1atrlces in Dlrac space, adopting the notation of ReS],
ie., X =x, 0' with a'*—( o,1). Since the fermionic de-

point is the QCD partition function in the instanton approxi-
mation, terminant has been approxmated by its zero-mode part, the
form factors are entirely determined by the Fourier-
1 transformed quark zero-mode wave functions,

Zinst(,uq)zm |1:[1 fdQIn(pl)

xe S Tdet(iD —iugya) M, (24 ¢|,A(p,uq)=J d*xe”"P Xy a(X, q) = @(P.g) “XR1L
where Q,={0,,p,,z} denote the collective coordinates @
(color, size and positigrof the instanton solutions and p,)
their individual weight. To extract effective quark interac- with ¢(x,u,) satisfying the Dirac equation in the back-
tions one reintroduces quark fields in a way that is compatground of an(anti-)instanton:
ible with the fermionic determinant of the previous equation

18] D) pdi a(x)=0. (28)

Zinst )= J waex;{ f d*x (10— pqya) N ,
The explicit form ofp ,(p,uq) can be found in Refd.15,4].

As before we preselect the potential condensation chan-
f—exp{)\ Y.++Ni|In - V } 1)} nels as the scalar-isoscalprh and p-p ones which, after
4 solving the(matrix) Dyson equation, yields the coupled gap
(25 equations
_'))‘ f A 29
(Ux+550'x)_ (2 )4A(p-Qx;Mq)Sx(p;A-O'ijj) (30)
(03— 1080, = 0 f o )4A(p,Qx;nq>sx<p;AEO.as,,- Q). (31)

Here, doj=0j—03; denotes the difference in the Over- ciple, the wave vectors in the color-1,2 and color-3 channels
hauser gaps for quarks of color 1,&;f or color 3 (o3;) could also be different when minimizing the free energy.
which, respectively, d¢Eq. (30)] or do not[Eq. (31)] par-  However, the actual solutions fer; and o3; turn out to be
ticipate in the diquark pairingonce A #0) [15,4]. In prin-  very close to each other even in the presence of large BCS
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1.5 T

the Q; should not cause appreciable deviations between the Vacg‘;”é v
two color sectors. Under our simplifying assumption that the AN T M GeV
1.0 \\ |.Lq=0.6 ev |

momentum moduliQ;| (as well as the associated gap pa-
rameterso;) of the Overhauser pairing are of equal magni-
tude, the additional (2,—2) gap equations for the other
p-h channels are equivalent to E480) and (31). The ex-

p4=0

plicit form of the propagators is given by g
=
Sx(plAvo-jle):_A(p!Qx;Mq)Ux(pan) %
(]
X Go(p+QD(p.A,07,Q)) (32) E
F(p.A.0;.Q)=—B(p;g) A(P)Go(P)D(P.A, 0} ,Q;) 2
(33 <
with
D(p.A,0;,Q))=| A(P)*Go(P) =Gy '(P) 0 [GeV]
-1 FIG. 4. In-medium instanton form factors as a function of three-
+ 2 (Tj(p,Qj)ZGO(p+ Qj) momentum. Upper panel: at fixed eneqmy=0 for chemical potet-
] nials uq,=0, 0.3 GeV, 0.6 GeV. Lower panel: for fixeg,
(34 =0.3 GeV and various energies.

The functionsA andB represent thésquare of theinstanton  indicating that the potentidlsecond term favors small val-
form factors(normalized to one in vacuunmacting on each ues fork, whereas the kinetifirst) term exhibits the usual
fermion line entering or exiting a vertex, and we have intro-decrease with increasing values for the gaps and condensates
duced the notationr;(p;Q;)=0;A(p;Q;), A(p)=AB(p). (and thus f(_)r)\). We should also point out 'Fha(t.(,uq) is.
The integration variabla =\ . plays the role of an effective only determined up to an overall constant which is associated
coupling constant, which, however, is natpriori fixed. ~With a nonperturbative vacuum energy of about
Rather, its value is found from minimization of the free en- —0.5 GeV/fn? (or, equivalently, bag pressufe>0). This
ergy via a saddle point condition, which redds$] term is encoded in the scale dependence of the argument in
the logarithm(note thatA and N/V have different dimen-
siong, which we have not assessed here since it is not rel-
evant for our analysigthis will be the origin of positive
values for{(u4) encountered belojv

Before we come to the numerical solutions of the gap
where(Y , +Y_) denotes the ground state expectation valueequations let us recall the specific density dependence of the
of the interaction vertices with potential condensates. Thugstanton form factors as following from the zero-mode so-
the magnitude of the gaps itself governs the effective coulutions of the in-medium Dirac equatid@8); cf. Fig. 4. At
pling to the instantons. In the present treatment the instantofixed energy(upper panelthe strength of the interaction is
densityN/V is assumed to be constdhThe final result for clearly concentrated at the Fermi surface: the falloff with

the free energy at the minimum then becomes three-mometum sets in only aboye=pr. On the other
hand, as a function ofEuclidean energy the strength is

reduced starting fronp,=0 (see lower pangl These fea-
tures reflect that the instanton zero modes, which mediate the
interaction, operate across the Fermi surface, i.e., at zero
energy but at 3-momenta equal to the Fermi momentum.
d L _ ) This behavior is quite distinct from the schemaitensity-

This assumption Is monyated by the observation t_hat the fre(?ndependerthJL forces employed in the previous section.
fnergy assouagedt W'.thtthe '{.‘Stamon Vat.cumkgr.o“na.“s trli"th?r 1o Already at this point one can anticipate the Overhauser pair-
arge compared to interaction corrections arising in the finite-, S :
density quark sector. It is corroborated by explicit calculations in'"9 to be more co_mpetltlve than n the NJL treatment.
the “cocktail model” of Ref.[4], where the grand potential has . For.the evaluation of t'he !(lneth part of the free energy as
been minimized explicitly over both the properties of the instantond'VEN N Eq.(18) a compllcatlon'arlse.S from .the fact that the

Hastanton form factors are defined in Euclidean space. We

ensemble and the quark Fermi sphere: the resulting variations in t ; o -
total N/V were found to be at the few percent level. However, thethermcore approximated the gaps entering into the integral for

assertion of constam/V can imply unphysical behavior when the («in by their zero-energy values retaining the 3-momentum
system is driven towards very large or very small pairing gaps. dependence, i.eA(p)=A(p)=AB(p,=0,p), and equiva-

N 1
voMYa Y )=+ 2N§$ o2+ 4Ng(N.—1)A%],
(35

. (30

Q __ 0 = Nl \
(pg)=— BV kin(#q)+v n NIV
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RUEE [EEERE RN R [REE ‘j 0-5 [ T T T
03:_ l’lq=0-4GeV . RHSBCS -1 _:
r QX=O.5GeV — RHS,,, =1 ]

e--9Ovh Gap
\ =—a Ovh Free Energy |
\ -- BCS Free Energy 1

\\

____________ vgmmmmmmmmmnmn]
u,=0.4Gev S
0=0.8GeV ety |

O 2 5 4 5 6
n
wave

FIG. 5. Solutions of the coupled Overhauser and BCS equations qu 6. Depen_o!ence of the free ener_g;pper solid ling and
with 2 waves atQ,=+0.5 GeV. The solid and dashed lines indi- associatetp-h pairing gap(dash-dotted lineon the number of

x— =Y. . ; w« ” ; : _
cate, respectively, the values fo(A) and o5,(A) which simul- macluded waves( patch.es) with fixed 3 momentum modu.|u3
taneously solve the two Overhauser gap equatidfsand(31) for  |Qj/=0-8 GeV for solutions of Eq430) and (35); the dashed line

a givenA. The dash-dotted line corresponds to the poingsA marks the value of the BCS ground state free energy that solves
which solve the BCS gap equati¢29). A nontrivial simultaneous ~ E9S- (2?2 and (35). The results are foluq=0.4 GeV andN/V
solution to all 3 gap equations would be signaled by a crossing off 1 fm™"

the solid and dash-dotted curves. The two independent pure BCS The situation is more involved for the Overhauser con-

and Overhauser solutions are marked by the squares onathey figurations. Let us start with the “canonical” case where the
axes, respectively. momentum vector of the chiral density waves is fixed at
twice the Fermi momentunQ=2pg. In Fig. 6 the resulting
lently for o. It turns out that this approximation is consistent minimized free energycorresponding to solutions of Eq.
in the sense that the resulting extremainare in line with  (30)] is displayed as a function of the number of included
the solutions of the gap equatiofwhich are solved in Eu- waves. The Overhauser solutions are not far above the BCS
clidean space with the full 4-momentum dependence of thground state, with a slight energy gain for an increased num-
form factorg. Other choices for fixingp, do not comply with  ber of waves.
this criterium. However, one can further economize the energy of the
If not otherwise stated, the subsequent calculations hav@verhauser state by exploiting the freedom associated with
been performed for a total instanton density BV ~ the wave vectoQ (or, equivalently, the periodicity of the
=1 fm~* which in vacuum translates into a constituentlattice). For Q>2p the free energy rapidly increases. On
quark mass oM ,=0.34 GeV. The search for simultaneous the other hand, foQ<2pr more favorable configurations
solutions to the gap equatiori29), (30) and (31) together are found. To correctly assess them one has to include the
with the self-consistency condition on the coupling, B8p),  waves in pairs [k=Q;| of standing waves(i.e. n,
is illustrated in Fig. 5. The upper two curves represent the=2,4,6 . ..) toensure that the occupied states in the Fermi
values foro and o3 that simultaneuosly solve the two Over- sea are saturated within the first Brillouin zofoé. Fig. 3.
hauser gap equation80) and (31) at a given BCS ga\  The lowest-lying state we could find at,=0.4 GeV occurs
(plotted on the abscisgaThe lower curve indicates the val- for one standing wave withQ,,;,=0.5 GeV and &
ues foro that solve the BCS gap equati@0) for a givenA ~ ~0.21 GeV with a free energ =2.3x 10~3 GeV?, practi-
(using the value fow; from the upper curve to fix the cou- cally degenerate with the BCS solution. In solid state physics
pling \). Thus a coexistence state of Overhauser and BC$he breaking of translational invariance in one spatial direc-
pairing would be signaled by the crossing of the two lowertion is typically associated with “liquid crystals,” i.e.,
lines. As mentioned above no such state is found; the onl2-dimensional layers ofuniform) liquid separated by peri-
physical solutions correspond to the crossing points of thedic spacings ofa=27/Q. In our case,a=2.5fm. The
upper (solid or dashedcurve with they axis (Overhauser minimum in the wave vector is in fact rather shallow, as seen
state withA=0, o=03 finite) and of the lower(dash- from the explicit momentum dependence of the free energy
dotted curve with thex axis[BCS state withr=03=0 and  displayed in Fig. 7. Finally we confront in Fig. 8 the density
A=0.225 GeV; the discrepancy of about 1%Bss at higher dependence of the free energi@mper panel and pairing
uq) With Refs.[15,4] reflects the accuracy when neglecting gaps (lower panel in the minimum of the BCS anah,,
antiparticle statds =2,6 Overhauser states. Again we see that over the appli-
The question then is which one is thermodynamically fa-cable u, range the solutions are close in energy, wih
vored. The BCS solution is uniqueAE0.225 GeV) and  mosh degenerate minima for thg, =2 “liquid crystal” and
gives a total free energy oflgcduq=0.4 GeV)=2.3 the BCS ground state at the lower densitiespgf=4p,.
% 1072 GeV* (up to a constant which is not relevant here, asTowards higher densities, where the gaps and thus the
discussed aboye strength of the effective instanton interactions decrease, the
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0.4

g < 02
0.3F o :
E B ¢ 00
02F 3 =
<k ] o -0.2F
> 0.1F W =0.4GeV ] -
o ! -~ kinetic (Ovh, n_=2) ] " 504
o, OF — total (Ovh,n,=2) 7 e
MR K | .t kinetic (BCS) 3
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02F E
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1 S N— 0840 0.45 0.50 0.55 0.60
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02T FIG. 8. Chemical potential dependence of the total free energies
= (upper panel and pairing gapglower panel for the BCS(long-
8 - dashed lines and Overhauser(solid and dashed-dotted lines
g 027 solutions.
<)

o1k - simultaneous nontrivial solutions. Needless to say, our cal-

culations might be further improved by including higher
] standing waves through a larger class of crystalline symme-
gliosalaiseloassianuuiasasiad tries (polyhedron structurgsAlso, our mean-field approxi-
03 0.4 0.5 0.6 0.7 0.8 mation may be extended to account for higher intra-band
Q. [G=Y] mixings when 2.4>Q.
This not withstanding, an important outcome of our cal-
FIG. 7. Left panel: wave-vector dependence of the Overhausegulation is that the individualseparate solutions for the
free energy for one standing waveolid line, Q24" short-dashed BCS and Overhauser ground states are quite close in energy,
line, 2" in comparison to the BCS solutiaffiong-dashed line, indicating the importance of particle-hole instabilities when
QHSS; dotted line, QP59 at u,=0.4 GeV[we note again that the Using interaction strengths as typical for low-energy hadronic
absolute values of the total free energies are only determined up finding. This becomes particularly evident when comparing
an overall (negativé constant(related to the “bag presssurg” schematic NJL interactions with microscopic instanton
which drops out in the relative comparison of the solutioRSght ~ forces: whereas the former are reduced in magnitude with
panel: wave-vector dependence of the Overhauser pairingsgi@  increasing densityentailing a relative suppression of the
line) compared to the BCS g&jong-dashed ling Overhauser pairing the density-dependent instanton form
factors essentially preserve their strength at the Fermi sur-

BCS solution becomes relatively more favorable. This conface, rendering the Overhauser pairing competitive. Indeed,
firms once more that in 81 dimensions the Overhauser with a somewhat larger instanton density dfi/V
pairing can only compete for sufficiently strong coupling. =1.4 fm*, corresponding to a vacuum constituent quark
We should also note that for both thg=2 andn,,=6 cases mass ofM,=0.41 GeV, the Overhauser solution reaches be-
as displayed the optimal momentum vector of the pertinenfow the BCS one. On the other hand, if we were to mini-
standing waves stays at approximate valueQp¥5pe/4  mally account for strange quarks, the instanton interaction

and S¢/3, respectively. (being a 6-quark vertgxn the ud sector would lose about
60% of its strength due to the reduced strange-quark mass
IV. CONCLUDING REMARKS (my=0.15 GeV as opposed td;=0.45 GeV in vacuumin

closing off the strange quark line. Some of this loss might be

Employing a standard Nambu-Gorkdmatrix) propaga- recovered once strange quarks themselves participate in the
tor approach we have performed an analysis of competin@verhauser pairing. Our findings are to be contrasted with
instabtilities in the particle-particle and particle-hole channelearlier calculations based on perturbative OGE at high den-
for three-color, two-flavor QCD at moderate quark densitiessities where an extremely large number of colors was re-
As an essential ingredient we used nonperturbative forceguired for the Overhauser pairirige., a chiral density waye
(strong coupling and preselected the potential condensatiorto overcome the BCS instability.
channels with guidance from low-energy hadron phenom- Finally, a remark about the relevance of our results for
enology; i.e., both the diquark as well as the quark-hole pairneutron stars is in order. Here, quark matter is believed to
ing were evaluated in their scalar-isoscalar channels. Theeside mostly in a mixed phase, with significant charge sepa-
corresponding coupled gap equations do not seem do suppadtion between quark and nuclear components. The quark-
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core also exhibits charge asymmetry due to the finite strangeéd !, which suggests that isopin asymmetric quark matter
quark mass. Consequently, the quark matter will be charagrovides additional favor to the chiral crystal.

terized by an appreciable difference in up- and down-quark

chemical potentials. If large enough, this difference might ACKNOWLEDGMENTS
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