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Subleading Sudakov logarithms in electroweak high energy processes to all orders
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In future collider experiments at the TeV scale, large logarithmic corrections originating from massive boson
exchange can lead to significant corrections to observable cross sections. Recently double logarithms of the
Sudakov type were resummed for broken gauge theories and found to exponentiate. In this paper we use the
virtual contributions to the Altarelli-Parisi splitting functions to obtain the next to leading order kernel of the
infrared evolution equation in the fixed angle scattering regime at high energies where particle masses can be
neglected. In this regime the virtual corrections can be described by a generalized renormalization group
equation with infrared singular anomalous dimensions. The results are valid for virtual electroweak corrections
to fermions and transversely polarized vector bosons with an arbitrary number of external lines. The subleading
terms are found to exponentiate as well and are related to external lines, allowing for a probabilistic interpre-
tation in the massless limit. ForZ-boson andg final states our approach leads to exponentiation with respect
to each amplitude containing the fields of the unbroken theory. For longitudinal degrees of freedom it is shown
that the equivalence theorem can be used to obtain the correct double logarithmic asymptotics. At the sub-
leading level, logarithmic corrections to the would-be Goldstone bosons contribute which should be considered
separately. Explicit comparisons with existing one loop calculations are made.
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I. INTRODUCTION

Future high energy experiments at the CERN Large H
ron Collider ~LHC! and possibly a linear collider@DESY
TeV Energy, Superconducting Linear Accelerator~TESLA!
or the Next Linear Collider~NLC! for instance# will probe
the full non-Abelian nature of the electroweak standa
model~SM!. Thus one has to view the photon in particular
a particle with non-Abelian character. At energies mu
larger than the weak scale, Sudakov logarithms, origina
from vector boson exchange, can lead to significant radia
corrections. The double logarithms~DLs! can be of order
O(20%) at one loop in the TeV range and a few % at
two loop level. In addition, subleading corrections can a
be significant, especially if the experimental accuracy is
the order ofO(1%).

As of this writing, there is no complete two loop calcul
tion in the electroweak theory due to the complexity of t
number and nature of processes involved. It is thus of c
siderable interest to investigate terms which are potenti
large and which can be resummed to all orders. In Ref.@1#
the leading DL corrections were calculated and found to
ponentiate. The results were obtained by using the infra
evolution equation method@2# calculated with the massles
fields of the unbroken theory. The equation has a differ
kernel depending on the value of the infrared cutoff.

There are, however, some important differences of
electroweak theory with respect to an unbroken ga
theory. Since the physical cutoff of the massive gau
bosons is the weak scaleM[Mw , pure virtual correction
lead to physical cross sections depending on the infra
‘‘cutoff.’’ Only the photon needs to be treated in a sem
inclusive way. Additional complications arise due to t
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mixing involved to make the mass eigenstates and the
that at high energies the longitudinal degrees of freedom
not suppressed. Furthermore, since the asymptotic state
not group singlets, it is expected that fully inclusive cro
sections contain Bloch-Nordsieck violating electroweak c
rections@3#.

In this paper we extend the method of Ref.@1# to the next
to leading order for the case of virtual corrections at hi
energies where we can neglect particle masses. In addi
we show that the results of Ref.@1# are also valid for longi-
tudinal degrees of freedom, which, at first sight, is far fro
obvious. The connection between the calculation perform
in the massless theory and the longitudinal degrees of f
dom is provided by the Goldstone boson equivalence th
rem. Another complication in comparison with the unbrok
non-Abelian case is the mixing of the mass eigenstates.
pecially for the externalZ-boson and the photon states, th
corresponding corrections in general do not factorize w
respect to the original amplitude. We indicate how the c
rections are given to the subleading level in terms of
fields of the unbroken theory.

Finally we compare our results with existing one-loo
corrections in the high energy approximation forW-pair pro-
duction in electron-positron scattering. Although this co
parison constitutes a strong test of our approach, it should
mentioned that it would be extremely helpful to compare
results obtained in this approach with a general method
terms of the physical fields. In this context a two loop D
calculation would help clarify the situation with contradic
ing results in the literature@4# and a subleading one loo
approach@5# would give further support to the results pr
sented in this work.

II. LOGARITHMIC CORRECTIONS
IN NON-ABELIAN THEORIES

In this section we are concerned with virtual double a
single logarithmic corrections to scattering amplitudes
©2001 The American Physical Society03-1
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MICHAEL MELLES PHYSICAL REVIEW D 63 034003
massless non-Abelian theories at a fixed angle with all
variants large with respect to an infrared cutoffm, i.e. m2

!sj ,l[2pj pl;s. It must be emphasized that in high ener
collider experiments there are also contributions depend
on angular variables~i.e. u/t etc.! which can be of genuine
subleading nature@6#. The philosophy adopted here is th
terms of the type log(s/m2)log(u/t) etc. should be calculate
exactly at least at the one loop level. For the higher or
terms below, we are only concerned with the log(s/m2) be-
havior with m2!s;utu;uuu. All mass terms are neglected
i.e., we assumemi,m.

We begin by reviewing the general method for virtu
corrections in the DL approximation following the approa
of Ref. @1#.

A. Double logarithmic corrections

Sudakov effects have been widely discussed for n
Abelian gauge theories, such asSU(N), and can be calcu
lated in various ways~see, for instance,@7#!. A general
method of finding the DL asymptotics~not only of the Suda-
kov type! is based on the infrared evolution equations d
scribing the dependence of the amplitudes on the infra
cutoff m of the virtual particle transverse momenta@2#. This
cutoff plays the same role as the fictitious photon massl in
QED, but, unlikel, it is not necessary that it vanishes and
may take an arbitrary value. It can be introduced in a ga
invariant way by working, for instance, in a finite pha
space volume in the transverse direction with linear sizl
;1/m. Instead of calculating asymptotics of particular Fey
man diagrams and summing these asymptotics for a pro
with n external lines it is convenient to extract the virtu
particle with the smallest value ofuk'u in such a way that the
transverse momentauk'8 u of the other virtual particles are
much bigger:

k'8
2@k'

2 @m2. ~1!

For the other particlesk'
2 plays the role of the initial infrared

cutoff m2.
In particular, the Sudakov DL corrections are related

the exchange of soft gauge bosons. For this case the inte
over the momentumk of the soft~i.e. uk0u!As) virtual boson
with the smallestk' can be factored off, which leads to th
following infrared evolution equation:

M~p1 , . . . ,pn ;m2!

5MBorn~p1 , . . . ,pn!2
i

2

gs
2

~2p!4

3 (
j ,l 51,j Þ l

n E
s@k'

2
@m2

d4k

k21 i e

pj pl

~kpj !~kpl !

3Ta~ j !Ta~ l !M~p1 , . . . ,pn ;k'
2 !, ~2!

where the amplitudeM(p1 , . . . ,pn ;k'
2 ) on the right hand

side is to be taken on the mass shell, but with the substitu
infrared cutoff: m2→k'

2 . The generator Ta( l ) (a
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51, . . . ,N) acts on the color indices of the particle wit
momentumpl . The non-Abelian gauge coupling isg. In Eq.
~2!, and below,k' denotes the component of the gauge b
son momentum k transverse to the particle emittin
this boson. It can be expressed in invariant form ask'

2

[min@2(kpl)(kpj)/(plpj)# for all j Þ l .
The above factorization is related to a non-Abelian ge

eralization of the Gribov theorem1 for the amplitude of the
bremsstrahlung of a photon with small transverse momen
k' in high energy hadron scattering@8#.

The form in which we present Eq.~2! corresponds to a
covariant gauge for the gluon with momentumk. Formally
this expression can be written in a gauge invariant way if
include in the sum the term withj 5 l ~which does not give a
DL contribution!. Indeed, in this case we can substitutepipj

by 2pi
mpj

ndmn(k), where the polarization matrices of the b
sondmn(k) in the various gauges differ by the terms propo
tional tokm or kn, giving a vanishing contribution due to th
conservation of the total color charge(aTa50. Thus we
have the possibility of choosing appropriate gauges for e
kinematical region of the quasicollinearity ofk and pl . We
can, however, use Eq.~2! as well, noting that in this region
for j Þ l we havepj pl /kpj.El /v, whereEl is the energy of
the particle with momentumpl and v the frequency of the
emitted gauge boson, so that

M~p1 , . . . ,pn ;m2!

5MBorn~p1 , . . . ,pn!2
2gs

2

~4p!2 (
l 51

n E
m2

s dk'
2

k'
2 E

uk'u/As

1 dv
v

3ClM~p1 , . . . ,pn ;k'
2 !, ~3!

where Cl is the eigenvalue of the Casimir operat
Ta( l )Ta( l ) @Cl5CA for gauge bosons in the adjoint repr
sentation of the gauge groupSU(N) andCl5CF for fermi-
ons in the fundamental representation#. In this last step we
also used the identity( j 51

n Ta( j )M(p1 , . . . ,pn ;k'
2 )50,

corresponding to the conservation of the total group cha
The integral overd4k was written in terms of the Sudako
components according to the discussion in Sec. II B up
replacing the longitudinal componentu with the boson on-
shell expressionsuv5m21k'

2 . Thus, in Sudakov DL cor-
rections there are no interference effects, so that we can
about the emission~and absorption! of a gauge boson by a
definite ~external! particle, namely by a particle with mo
mentum almost collinear tok.

The differential form of the infrared evolution equatio
follows immediately from Eq.~3!:

]M~p1 , . . . ,pn ;m2!

] log~m2!
5K~m2!M~p1 , . . . ,pn ;m2!, ~4!

where

1The non-Abelian generalization of Gribov’s theorem is given
Ref. @1#, together with a description of its essential content.
3-2
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SUBLEADING SUDAKOV LOGARITHMS IN . . . PHYSICAL REVIEW D63 034003
K~m2![2
1

2 (
l 51

n
]Wl~s,m2!

] log~m2!
~5!

with

Wl~s,m2!5
gs

2

~4p!2
Cl log2

s

m2
. ~6!

Wl is the probability to emit a soft and almost colline
gauge boson from the particlel, subject to the infrared cutof
m on the transverse momentum@1#. Note again that the cut
off m is not taken to zero. To logarithmic accuracy, we o
tain, directly from Eq.~6!,

]Wl~s,m2!

] log~m2!
52

gs
2

8p2
Cl log

s

m2
. ~7!

The infrared evolution equation~4! should be solved with an
appropriate initial condition. In the case of large scatter
angles, if we choose the cutoff to be the large scales then
clearly there are no Sudakov corrections. The initial con
tion is therefore

M~p1 , . . . ,pn ;s!5MBorn~p1 , . . . ,pn!, ~8!

and the solution of Eq.~4! is thus given by the product of th
Born amplitude and the Sudakov form factors:

M~p1 , . . . ,pn ;m2!5MBorn~p1 , . . . ,pn!

3expS 2
1

2 (
l 51

n

Wl~s,m2!D . ~9!

Therefore we obtain an exactly analogous Sudakov expo
tiation for the gauge groupSU(N) to that for the Abelian
case@9#.

FIG. 1. In an axial gauge, all collinear logarithms come fro
corrections to a particular external line~depending on the choice o
the four-vectornn satisfyingnnAn

a50) as illustrated in the figure. In
a covariant gauge, the sum over all possible insertions is reduce
a sum over alln external legs due to Ward identities. Overall, the
corrections factorize with respect to the Born amplitude.
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B. Soft divergences in the massless theory

In this section we briefly review the types of soft, i.
uk0u!As, divergences in loop corrections with massless p
ticles. In general, those contributions, unlike the colline
logarithms, can be obtained by setting allk dependent terms
in the numerator of tensor integrals to zero~since the terms
left are of the order of the hard scales). Thus it is clear that
the tensor structure which emerges is that of the inner s
tering amplitude in Fig. 2, below, taken on the mass sh
times a scalar function of the given loop correction. In t
Feynman gauge, for instance, we find for the well-kno
vertex corrections the familiar three-point functionC0 and
for higher point functions we note that in the considered c
all infrared divergent scalar integrals reduce toC0 multiplied
by factors of 1/s etc. The only infrared divergent three poin
function is given by

C0~s/m2![E
k'

2
.m2

d4k

~2p!4

3
1

~k21 i«!~k212pjk1 i«!~k222plk1 i«!
.

~10!

It is now convenient to use the Sudakov parametrization
the exchanged virtual boson:

k5vpj1upl1k' . ~11!

For the boson propagator we use the identity

i

suv2k'
2 1 i«

5P i

suv2k'
2

1pd~suv2k'
2 ! ~12!

writing it in the form of the real and imaginary parts~the
principle value is indicated byP). The latter does not con
tribute to the DL asymptotics and at higher orders gives s
subleading contributions. Rewriting the measure asd4k
5d2k'd2ki with

d2k'5uk'uduk'udf5
1

2
dk'

2 df5pdk'
2 ~13!

d2ki5u]~k0,kx!/]~u,v !ududv'
s

2
dudv ~14!

to

FIG. 2. Feynman diagrams contributing to the infrared evolut
equation~2! for a process withn external legs. In a general covar
ant gauge the virtual gluon with the smallest value ofk' is attached
to different external lines. The inner scattering amplitude is
sumed to be on the mass shell.
3-3
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where we turn the coordinate system such that thepj ,pl
plane corresponds to 0,x and they,z coordinates to thek'

direction so that it is purely spacelike. The last equation f
lows from pl

250, i.e. pl x
2 'pl 0

2 and

~pj 0
pl x

2pl 0
pj x

!2'~pj 0
pl 0

2pl x
pj x

!25~pj pl !
25~s/2!2.

~15!
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The functionC0(s/m2) is fastly converging for largek'
2 and

we are interested here in the regionm2!s in order to obtain
large logarithms. Then logarithmic corrections come fro
the region k'

2 !suuu,suvu!s ~the strong inequalities give
DLs, the simple inequalities single ones! and we can write,
to logarithmic accuracy,
nce
C0~s/m2!5
sp

2~2p!4E2`

`

duE
2`

`

dvE
m2

`

dk'
2 1

~suv2k'
2 1 i«!~suv2k'

2 1su1 i«!~suv2k'
2 2sv1 i«!

'
sip2

2~2p!4E2`

` du

suE2`

` dv
sv E2`

`

dk'
2 Q~k'

2 2m2!d~suv2k'
2 !'

i

2~4p!2s
E

21

1 du

u E
21

1 dv
v

Q~suv2m2!

5
i

~4p!2s
E

0

1du

u E
0

1dv
v

Q~suv2m2!5
i

~4p!2s
E

m2/s

1 du

u E
m2/su

1 dv
v

5
i

2~4p!2s
log2

s

m2
. ~16!

Thus, no single soft logarithmic corrections are present inC0(s/m2). In order to see that this result is not just a conseque
of our regulator, we repeat the calculation for a fictitious gluon mass.2 In this case we have

C0~s/l2![E d4k

~2p!4

1

~k22l21 i«!~k212pjk1 i«!~k222plk1 i«!
. ~17!
in
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It is clear thatC0(s/l2) contains soft and collinear diver
gences (kipj ,l) and is regulated with the cutoffl, which
plays the role ofm in this case. Integrating over Feynma
parameters we find

C0~s/l2!5
i

~4p!2s
S 1

2
log2

s

2l21 i«
1

p2

3 D . ~18!

We are only interested here in the real part of loop corr
tions of scattering amplitudes since they are multiplied
the Born amplitude and the imaginary pieces contribute
cross sections at the next to next to leading level as m
tioned above. In fact, the minus sign inside the double lo
rithm corresponds precisely to the omitted principle va
contribution of Eq.~12! in the previous calculation. Thus, n
single soft logarithmic correction is present in the case w
particle masses can be neglected.

This feature prevails to higher orders as well since it h
been shown that also in non-Abelian gauge theories the
loop Sudakov form factor exponentiates@7#.

In case we would keep mass terms, even two point fu
tions, which in our scheme can only yield collinear log
rithms, would contain a soft logarithm due to the mass ren
malization which introduces a derivative contribution@10#.

2Note that this regulator spoils gauge invariance and leads to
sible inconsistencies at higher orders. Great care must be take
instance when a three gluon vertex is regulated inside a loop
gral.
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In conclusion, all leading soft corrections are contained
double logarithms~soft and collinear! and subleading loga
rithmic corrections in a massless theory, with all invarian
large @sj ,l52pj pl;O(s)# compared to the infrared cutoff
are of the collinear type or renormalization group logarithm

C. Virtual logarithmic corrections from the Altarelli-Parisi
splitting functions

In an axial gauge, collinear logarithms are related to c
rections on a particular external leg depending on the cho
of the four-vectornn @11#. A typical diagram is depicted in
Fig. 1. In a general covariant gauge this corresponds~using
Ward identities! to a sum over insertions in alln external
legs @1#. We can therefore adopt the strategy to extract
gauge invariant contribution from the external line corre
tions on the invariant matrix element at the subleading lev
The results of the previous section are thus important in
they allow the use of the Altarelli-Parisi approach to calc
late the subleading contribution to the evolution kernel
Eq. ~4!. We are here only concerned with virtual correctio
and use the universality of the splitting functions to calcul
the subleading terms. For this purpose we use the vir
quark and gluon contributions to the splitting functio
Pqq

V (z) and Pgg
V (z) describing the probability to emit a so

and/or collinear virtual particle with energy fractionz of the
original external line four-momentum. The infinite mome
tum frame corresponds to the Sudakov parametrization w
lightlike vectors. In general, the splitting functionsPBA de-
scribe the probability of finding a particleB inside a particle
A with fraction z of the longitudinal momentum ofA with
probability PBA to first order@12#:

s-
for
e-
3-4
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SUBLEADING SUDAKOV LOGARITHMS IN . . . PHYSICAL REVIEW D63 034003
dPBA~z!5
as

2p
PBAdt ~19!

where the variablet5 log(s/m2) for our purposes. It then fol-
lows @12# that

dPBA~z!5
as

2p

z~12z!

2 (
spins

uVA→B1Cu2

k'
2

d logk'
2 . ~20!

whereVA→B1C denotes the elementary vertices and

PBA~z!5
z~12z!

2 (
spins

uVA→B1Cu2

k'
2

. ~21!

The upper bound on the integral overdk'
2 in Eq. ~20! is s and

it is thus directly related todt. Regulating the virtual infrared
divergences with the transverse momentum cutoff as
scribed above, we find the virtual contributions to the sp
ting functions for external quark and gluon lines:

Pqq
V ~z!5CFS 22 log

s

m2
13D d~12z! ~22!

Pgg
V ~z!5CAS 22 log

s

m2
1

4

CA
b0

QCDD d~12z!. ~23!

The functions can be calculated directly from loop corre
tions to the elementary processes@13–15# and the logarith-
mic term corresponds to the leading kernel of Sec. II A. W
introduce virtual distribution functions which include on
the effects of loop computations. These satisfy the Altare
Parisi equations3

]q~z,t !

]t
5

as

2pEz

1dy

y
q~z/y,t !Pqq

V ~y! ~24!

]g~z,t !

]t
5

as

2pEz

1dy

y
g~z/y,t !Pgg

V ~y!. ~25!

The splitting functions are related byPBA5PBA
R 1PBA

V ,
where R denotes the contribution from real gauge bos
emission.4 PBA is free of double logarithmic corrections an
is positive definite. The subleading term in Eq.~23! indicates
that the only subleading corrections in the pure glue se
are related to a shift in the scale of the coupling. The

3Note that the off diagonal splitting functionsPqg andPgq do not
contribute to the virtual probabilities to the order we are worki
here. In fact, for virtual corrections there is no need to introdu
off-diagonal terms as the corrections factorize with respect to
Born amplitude. The normalization of Eqs.~22! and ~23! corre-
sponds to calculations in two to two processes on the cross se
level with the gluon symmetry factor of12 included. The results
properly normalized, are process independent.

4Pqq was first calculated by Gribov and Lipatov in the context
QED @16#.
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corrections enter with a different sign compared to the c
ventional running coupling effects. The renormalizatio
with respect to the Born amplitude as well as the ones
longing to the next to leading terms at higher orders will
indicated below by writingas(m̄

2)→as(s). At higher or-
ders, the correct renormalization group corrections can
implemented by inserting a running couplingas(k'

2 ) into
each loop correction. For fermion lines there is an additio
subleading correction from collinear terms which is not
lated to a change in the scale of the coupling.

Inserting the virtual probabilities of Eqs.~22! and ~23!
into Eqs.~24! and ~25! we find

q~1,t !5q0expF2
as~s!CF

2p S log2
s

m2
23 log

s

m2D G ~26!

g~1,t !5g0expF2
as~s!CA

2p S log2
s

m2
2

4

CA
b0

QCDlog
s

m2D G
~27!

whereb0
QCD5 11

12 CA2 1
3 TFnf with CA53 andTF5 1

2 . These
functions describe the total contribution for the emission
virtual particles~i.e. z51), with all invariants large com-
pared to the cutoffm, to the densitiesq(z,t) andg(z,t). The
normalization is on the level of the cross section. For
invariant matrix element we thus find, at the sublead
level,

M~p1 , . . . ,pn ,gs ,m!5M„p1 , . . . ,pn ,gs~s!…

3expS 2
1

2 (
j 51

nq

Wj
q~s,m2!

2
1

2 (
l 51

ng

Wl
g~s,m2!D ~28!

with nq1ng5n, and

Wq~s,m2!5
as~s!CF

4p S log2
s

m2
23 log

s

m2D ~29!

Wg~s,m2!5
as~s!CA

4p S log2
s

m2
2

4

CA
b0

QCDlog
s

m2D .

~30!

Again we note that the running coupling notation in the Bo
amplitude of Eq.~28! denotes the renormalization corre
tions of the Born amplitude and higher order correctio
The functionsWq,Wg correspond to the probability of emit
ting a virtual soft and/or collinear gauge boson from t
particleq,g subject to the infrared cutoffm. Typical diagrams
contributing to Eq.~28! in a covariant gauge are depicted
Fig. 2. In massless QCD there is no need for the labelWj

q or
Wl

g ; however, we write it for later convenience. The unive
sality of the splitting functions is crucial in obtaining th
above result.
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MICHAEL MELLES PHYSICAL REVIEW D 63 034003
D. Renormalization group equation

The solution presented in Eq.~28! determines the
evolution of the virtual scattering amplitud
M(p1 , . . . ,pn ,gs ,m) for large energies at fixed angles an
subject to the infrared regulatorm. In the massless case the
is a one to one correspondence between the high energy
and the infrared limit as only the ratios/m2 enters as a di-
mensionless variable@17,18#. Thus, we can generalize th
Altarelli-Parisi equations~24! and ~25! to the invariant ma-
trix element in the language of the renormalization gro
For this purpose, we define the infrared singular~logarith-
mic! anomalous dimensions

Gq~ t ![
CFas

4p
t, Gg~ t ![

CAas

4p
t. ~31!

Infrared divergent anomalous dimensions have been der
in the context of renormalization properties of gauge inva
ant Wilson loop functionals@19#. In this context they are
related to undifferentiable cusps of the path integration
the cusp anglepj pl /m2 gives rise to the logarithmic natur
of the anomalous dimension. In case we use off-shell am
tudes, one also has contributions from end points of the
tegration@19#. The leading terms in the equation below ha
also been discussed in Refs.@20#, @21# and@22# in the context
of QCD. With this notation we find that Eq.~28! satisfies

F ]

]t
1bQCD

]

]gs
1ngS Gg~ t !2

1

2

as

p
b0

QCDD
1nqS Gq~ t !1

1

2
gqq̄D G

3M~p1 , . . . ,pn ,gs ,m!50 ~32!

to the order we are working here and whe
M(p1 , . . . ,pn ,gs ,m) is taken on the mass shell. The diffe
ence in the sign of the derivative term compared to Eq.~4! is
due to the fact that instead of differentiating with respect
logm2 we use logs/m2. The quark-antiquark operator anom

lous dimensiongqq̄52CF
3
4 a/p enters even for massles

theories as the quark antiquark operator leads to scaling
lations through loop effects since the quark masslessne
not protected by gauge invariance and a dimensionful in
red cutoff needs to be introduced. Thus, although the
grangian contains nomqq̄ term, quantum corrections lead t
the anomalous scaling violations in the form ofgqq̄ . The
factor of 1

2 occurs since we write Eq.~32! in terms of each
external line separately.5 For the gluon, the scaling violation
due to the infrared cutoff is manifest in terms of an anom
lous dimension proportional to theb function since the

5In case of a massive theory, we could, for instance, avoid
anomalous dimension termgqq̄ by adopting the pole mass defin
tion. In this case, however, we would obtain terms in the wa
function renormalization, and in any case, the one to one corres
dence between UV and IR scaling, crucial for the validity of E
~32!, is violated.
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gluon mass is protected by gauge invariance from loop c
rections. Thus, in the bosonic sector the subleading te
correspond effectively to a scale change of the coupling. F
ure 3 illustrates the corrections to the external qua
antiquark lines from loop effects.

Except for the infrared singular anomalous dimens
@Eq. ~31!#, all other terms in Eq.~32! are the standard con
tributions to the renormalization group equation forS-matrix
elements@23#. In QCD, observables with infrared singula
anomalous dimensions, regulated with a fictitious glu
mass, are ill defined due to the masslessness of gluons. I
electroweak theory, however, we can legitimately investig
only virtual corrections since the gauge bosons will requir
mass. Equation~32! will thus be very useful in the following
sections.

III. LOGARITHMIC CORRECTIONS IN BROKEN
GAUGE THEORIES

In the following we will apply the results obtained in th
previous sections to the case of spontaneously broken g
theories. It will be necessary, at least at the subleading le
to distinguish between transverse and longitudinal degree
freedom. The physical motivation in this approach is that
very large energies,s@MW

2 [M2, the electroweak theory is
in the unbroken phase, with an exactSUL(2)3UY(1) gauge
symmetry. We will calculate the corrections to this theo
and use the high energy solution as a matching condition
the regime for values ofm,M .

We begin by considering some simple kinematic arg
ments for massive vector bosons. A vector boson at rest
momentumkn5(M ,0,0,0) and a polarization vector that is
linear combination of the three orthogonal unit vectors:

e1[~0,1,0,0!, e1[~0,0,1,0!, e3[~0,0,0,1!. ~33!

After boosting this particle along the 3-axis, its momentu
will be kn5(Ek,0,0,k). The three possible polarization vec
tors are now still satisfying

knej
n50, ej

250. ~34!

Two of these vectors correspond toe1 and e2 and describe
the transverse polarizations. The third vector satisfying
~34! is the longitudinal polarization vector

eL
n~k!5~k/M ,0,0,Ek /M !, ~35!

e

e
n-

.

FIG. 3. The two counterterms contributing to the quark anom

lous dimensiongqq̄5(]/] log m̄2)(2dqq̄1d2). Here m̄ denotes the
modified minimal subtraction (MS) dimensional regularization
mass parameter. Because of divergences in loop corrections,
are scaling violations also in the massless theory.
3-6
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SUBLEADING SUDAKOV LOGARITHMS IN . . . PHYSICAL REVIEW D63 034003
i.e. eL
n(k)5kn/M1O(M /Ek) for large energies. These con

siderations illustrate that the transversely polarized deg
of freedom at high energies are related to the mass
theory, while the longitudinal degrees of freedom need to
considered separately.

Another manifestation of the different high energy natu
of the two polarization states is contained in the Goldsto
boson equivalence theorem. It states that the unphys
Goldstone boson that is absorbed by a massive gauge b
still controls its high energy asymptotics. A more prec
formulation is given below in Sec. III B.

Thus we can legitimately use the results obtained in
massless non-Abelian theory if we restrict ourselves to
transverse degrees of freedom at high energies. We
however, show that to DL accuracy the results of Ref.@1#
can be used in connection with the Goldstone boson equ
lence theorem.

Another difference to the situation in an unbroken no
Abelian theory is the mixing of the physical fields with th
fields in the unbroken phase. These complications are e
cially relevant for theZ boson and the photon.

A. Results for transverse degrees of freedom

The results we obtain in this section are generally va
for spontaneously broken gauge theories; however, for d
niteness we discuss only the electroweak standard mo
The physical gauge bosons are thus a massless photon~de-
scribed by the fieldAn) and massiveW6 andZ bosons~de-
scribed correspondingly by fieldsWn

6 andZn):

Wn
65

1

A2
~Wn

16 iWn
2! ~36!

Zn5cosuwWn
31sinuwBn ~37!

An52sinuwWn
31cosuwBn . ~38!

Thus, amplitudes containing physical fields will correspo
to a linear combination of the massless fields in the unbro
phase. The situation is illustrated schematically for a sin
gauge boson external leg in Fig. 4. In case of theW6 bosons,
the corrections factorize with respect to the physical am
tude.

To logarithmic accuracy, all masses can be set equal,

MZ;MW;MHiggs;M

and the energy considered to be much larger,As@M . The
physical fields are given in terms of the unbroken fields
cording to Eqs.~36!, ~37! and~38!. The left and right handed
fermions are correspondingly doublets (T51/2) and singlets
(T50) of the SU~2! weak isospin group and have hype
chargeY related to the electric chargeQ, measured in units
of the proton charge, by the Gell-Mann–Nishijima formu
Q5T31Y/2.
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The value for the infrared cutoffm can be chosen in two
different regimes:~1! As@m@M and~2! m!M . The second
case is universal in the sense that it does not depend on
details of the electroweak theory and will be discussed
low. In the first region we can neglect spontaneous symm
breaking effects~in particular gauge boson masses! and con-
sider the theory with fieldsBn andWn

a . One could of course
also calculate everything in terms of the physical fields; ho
ever, we emphasize again that in this case we need to
sider the photon also in region~1!. The omission of the pho-
ton would lead to the violation of gauge invariance since
photon contains a mixture of theBn andWn

3 fields.
In region~1!, the renormalization group equation~or gen-

eralized infrared evolution equation! ~32! in the case of all
mi,M reads6

6We exclude here top-Yukawa couplings which couple prop
tional to mt

2/M2 since they do not have an analogue in QCD. It
however, not unlikely that those terms can also be included in
splitting functions fulfilling Altarelli-Parisi equations. Note also th
the amplitude on the right hand side is in general a linear comb
tion of fields in the unbroken phase according to Eqs.~36!, ~37! and
~38!. In addition, in the electroweak theory matching will be r
quired at the scaleM and often on-shell renormalization of th
couplingse and sinuw is used. In this case one has additional co
plications in the running coupling terms due to the different m
scales involved belowM. Details are presented in Sec. IV.

FIG. 4. The schematic corrections to external gauge boson e
sions in terms of the fields in the unbroken phase of the electrow
theory. There are no mixing terms between theWn

3 andBn fields for
massless fermions. We denote cosuw by cw and sinuw by sw . For
W6 final states, the corrections factorize with respect to the ph
cal amplitude. In general, one has to sum over all fields of
unbroken theory with each amplitude being multiplied by the
spective mixing coefficient.
3-7
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F ]

]t
1b

]

]g
1b8

]

]g8
1(

i 51

ng

Gg
i ~ t !2nW

1

2

a

p
b02nB

1

2

a8

p
b08

1 (
k51

nf S G f
k~ t !1

1

2
gqq̄

k D G
3M'~p1 , . . . ,pn ,g,g8,m!50 ~39!

where the index' indicates that we consider onlyng trans-
versely polarized external gauge bosons andnW1nB5ng .
The twob functions are given by

b„g~m̄2!…5
]g~m̄2!

] log m̄2
'2b0

g3~m̄2!

8p2
~40!

b8„g8~m̄2!…5
]g8~m̄2!

] log m̄2
'2b08

g83~m̄2!

8p2
~41!

with the one-loop terms given by
th

o
ng

03400
b05
11

12
CA2

1

3
ngen2

1

24
nh , b0852

5

9
ngen2

1

24
nh

~42!

where ngen denotes the number of fermion generatio
@24,25# and nh the number of Higgs doublets. The infrare
singular anomalous dimensions read

G f ,g
i ~ t !5F a

4p
Ti~Ti11!1

a8

4p S Yi

2 D 2G t ~43!

whereTi andYi are the total weak isospin and hyperchar
respectively of the particle emitting the soft and colline
gauge boson. Analogously,

gqq̄
i

523F a

4p
Ti~Ti11!1

a8

4p S Yi

2 D 2G ~44!

The initial condition for Eq.~39! is given by the requiremen
that for the infrared cutoffm25s we obtain the Born ampli-
tude. The solution of Eq.~39! is thus given by
M'~p1 , . . . ,pn ,g,g8,m!5M Born
'

„p1 , . . . ,pn ,g~s!,g8~s!…

3expH 2
1

2 (
i 51

ng Fa~s!

4p
Ti~Ti11!1

a8~s!

4p S Yi

2 D 2G log2
s

m2

1S nW

a~s!

2p
b01nB

a8~s!

2p
b08D log

s

m2
2

1

2 (
k51

nf Fa~s!

4p
Tk~Tk11!1

a8~s!

4p S Yk

2 D 2G
3F log2

s

m2
23 log

s

m2G J ~45!
ns

ton
ge,

-
h

se.
he
ing

r
rily
ding

di-

lts,
wherenW and nB denote the number of externalW and B
fields respectively. TheSU(2)3U(1) group factors in the
exponential can be written in terms of the parameters of
broken theory as follows:

g2Ti~Ti11!1g82S Yi

2 D 2

5ei
21g2@Ti~Ti11!2~Ti

3!2#

1
g2

cos2uw

~Ti
32sin2uwQi !

2,

where the three terms on the right hand side~RHS! corre-
spond to the contributions of the soft photon~interacting
with the electric chargeei5Qigsinuw), the W6 and theZ
bosons, respectively. Although we may rewrite solution~45!
in terms of the parameters of the broken theory in the form
a product of three exponents corresponding to the excha
of photons,W6 andZ bosons, it would be wrong to identify
e

f
es

the contributions of the diagrams without virtual photo
with this expression for the particular caseei

250. This be-
comes evident when we note that if we were to omit pho
lines, then the result would depend on the choice of gau
and therefore be unphysical. Only foruw50, where the pho-
ton coincides with theB gauge boson, would the identifica
tion of theei

2 term with the contribution of the diagrams wit
photons be correct.

We now need to discuss the solution in the general ca
In region ~1! we calculated the scattering amplitude for t
theory in the unbroken phase in the massless limit. Choos
the cutoffm in region ~2!, m!M , we have to only conside
the photon contribution. In this region we cannot necessa
neglect all mass terms, so we need to discuss the sublea
terms for QED with mass effects. Ifmi!m, the results from
the massless QCD discussion of Sec. II C can be used
rectly by using the Abelian limitCF51. In casem!mi we
must use the well-known next to leading order QED resu
3-8
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e.g. @26#, and the virtual probabilities take the followin
form for fermions:

wi
f~s,m2!55

ei
2

(4p)2 S log2
s

m2
23 log

s

m2D , mi!m,

ei
2

(4p)2 F S log
s

mi
2

21D 2 log
mi

2

m2

1 log2
s

mi
2

23 log
s

mi
2G , m!mi .

~46!

Note, that in the last equation the full subleading colline
logarithmic term@10# is used in distinction to Ref.@26#. It
follows from Eq. ~29! in the massless limit, i.e.mi;m for
small values of the infrared cutoff. In the explicit two loo
calculation presented in Ref.@27# it can be seen that the fu
collinear term also exponentiates at the subleading leve
massive QED.

For W6 bosons we have, analogously,
03400
r

in

wi
w~s,m2!5

ei
2

~4p!2 F S log
s

M2
21D 2log

M2

m2
1 log2

s

M2 G . ~47!

In addition we have collinear terms for external on-shell ph
ton lines7 from fermions with massmj and electromagnetic
chageei up to scaleM:

wi
g~M2,m2!55

1

3 (
j 51

nf ej
2

4p2 NC
j log

M2

m2 , mj!m

1

3 (
j 51

nf ej
2

4p2 NC
j log

M2

mj
2, m!mj

.

Note that automatically,wi
g(M2,M2)50. At one loop order,

this contribution cancels against terms from the renormal
tion of the QED coupling up to scaleM. For external
Z-bosons, however, there are no such collinear terms s
the mass is large comapred to themi . Thus, the correspond
ing RG logarithms up to scaleM remain uncanceled. The
appropriate initial condition is given by Eq.~45! evaluated at
the matching pointm5M . Thus we find, for the genera
solution in region~2!,
M'~p1 , . . . ,pn ,g,g8,m!5M Born
'

„p1 , . . . ,pn ,g~s!,g8~s!…

3expH 2
1

2 (
i 51

ng Fa~s!

4p
Ti~Ti11!1

a8~s!

4p S Yi

2 D 2G log2
s

M2

1S nW

a~s!

2p
b01nB

a8~s!

2p
b08D log

s

M2

2
1

2 (
k51

nf Fa~s!

4p
Tk~Tk11!1

a8~s!

4p S Yk

2 D 2GF log2
s

M2
23 log

s

M2G J
3expF2

1

2 (
i 51

nf

@wi
f~s,m2!2wi

f~s,M2!#2
1

2 (
i 51

ng

@wi
w~s,m2!2wi

w~s,M2!#

2
1

2 (
i 51

ng

wi
g~M2,m2!G

5M Born
'

„p1 , . . . ,pn ,g~s!,g8~s!…

3expH 2
1

2 (
i 51

ng Fa~s!

4p
Ti~Ti11!1

a8~s!

4p S Yi

2 D 2G log2
s

M2

1S nW

a~s!

2p
b01nB

a8~s!

2p
b08D log

s

M2

2
1

2 (
k51

nf Fa~s!

4p
Tk~Tk11!1

a8~s!

4p S Yk

2 D 2GF log2
s

M2
23 log

s

M2G J
3expX2

1

2 (
i 51

n H ei
2~s!

~4p!2 F2 log
s

miM
log

M2

mi
2

12 log
s

mi
2
log

mi
2

m2

2
1

2 (
i 51

ng 1

3 (
j 51

nf ej
2

4p2 NC
j log

M2

mj
2,G J D . ~48!

7I thank the authors of Ref.@5# for clarifying this point.
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The last equality holds form!mi!M and we have absorbe
all b-function termsnot related to external lines into redefi
nitions of the scales of the couplings. It is important to no
again that, unlike the situation in QCD, in the electrowe
theory we have in general different mass scales determi
the running of the couplings of the physical on-shell ren
malization scheme quantities. We have written the above
sult in such a way that it holds for arbitrary chiral fermio
and transversely polarized gauge bosons. In order to inc
physical external photon states in the on-shell scheme,
renormalization condition is given by the requirement th
the physical photon does not mix with theZ boson. This
leads to the condition that the Weinberg rotations in Fig. 4
one loop receive no RG corrections. Thus, above the scaM
the subleading collinear and RG corrections cancel for ph
cal photon andZ-boson states. For physical observables, s
real photon emission must be taken into account in an in
sive ~or semi-inclusive! way and the parameterm2 in Eq.
~48! will be replaced by parameters depending on the exp
mental requirements. This will be briefly discussed in t
following section.
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Semi-inclusive cross sections

In order to make predictions for observable cross sectio
the unphysical infrared cutoffm2 has to be replaced with a
cutoff mexpt

2 , related to the lower bound ofk'
2 of those gauge

bosons emitted in the process which are not included in
cross section. We assume thatmexpt

2 ,M2, so that the non-
Abelian component of the photon is not essential. The c
mexpt

2 .M2 is much more complicated and is discussed
Ref. @1# through two loops at the DL level.

We again only discuss transversely polarized exter
gauge boson in the Born process and can write the exp
sion for the semi-inclusive cross section:

ds'~p1 , . . . ,pn ,g,g8,mexpt!

5dselastic
'

„p1 , . . . ,pn ,g~s!,g8~s!,m…

3exp@wexpt
g ~s,mi ,m,mexpt!# . ~49!

In the soft photon approximation we have
f

bed
wexpt
g ~s,mi ,m,mexpt!55 (

i 51

n ei
2

~4p!2 F2 log2
s

mexpt
2

1 log2
s

m2
23 log

s

m2 G , mi!m,

(
i 51

n ei
2

~4p!2 F S log
s

mi
2

21D S 2 log
mi

2

m2
22 log

s

mexpt
2 D 1 log2

s

mi
2 G , m!mi

~50!

where the upper case applies only to fermions since forW6 we havem,M in region 2.
Since the upper bound onk'

2 of the photons which are allowed to be radiated is less thanM2, we must use the cutof
m2,M2 and, consequently, Eq.~48! for the matrix element of the non-radiative process. Therefore, we obtain8

ds'~p1 , . . . ,pn ,g,g8,mexpt!5dsBorn
'

„p1 , . . . ,pn ,g~s!,g8~s!…expH 2(
i 51

ng Fa~s!

4p
Ti~Ti11!1

a8~s!

4p S Yi

2 D 2G log2
s

M2

1S nW

a~s!

p
b01nB

a8~s!

p
b08D log

s

M2

2 (
k51

nf Fa~s!

4p
Tk~Tk11!1

a8~s!

4p S Yk

2 D 2GF log2
s

M2
23 log

s

M2G J
3expF2(

i 51

nf

[wi
f~s,m2!2wi

f~s,M2!] 2(
i 51

nw

[wi
w~s,m2!2wi

w~s,M2!] 2(
i 51

ng

wi
g~M2,mj

2!G
3expS (

i 51

n ei
2

~4p!2 F S log
s

mi
2

21 D S 2 log
mi

2

m2
22 log

s

mexpt
2 D 1 log2

s

mi
2 G D , ~51!

8The notation here is again simplified in the sense that forZ-boson andg final states one has to include the mixing correctly as descri
above.
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SUBLEADING SUDAKOV LOGARITHMS IN . . . PHYSICAL REVIEW D63 034003
where we usem!mi . Them dependence in this expressio
cancels and the semi-inclusive cross section depends on
the parameters of the experimental requirements.

Equation~51! contains all leading double and single log
rithms to cross sections9 containing arbitrary numbers of ex
ternal fermions and transversely polarized gauge bosons
have only assumed that all masses are not larger than
electroweak scaleM and impose a cut on the allowed valu
of emitted real gauge bosonsk'

2 <mexpt
2 ,M2; i.e., up to the

weak scale we only need to consider real QED effects.

B. Longitudinal degrees of freedom

In this section we discuss if results obtained from t
massless unbroken phase of theSUL(2)3UY(1) theory,
where due to gauge invariance we have only transve
physical degrees of freedom, can be extended to the
theory including longitudinal vector bosons. This point
discussion is necessary and important since the longitud
degrees of freedom do not decouple at high energies
could give crucial clues to potentially strong dynamical
fects for large Higgs massesmH;1 TeV @24#.

The connection between the strategy pursued for
transverse degrees of freedom and the corrections to lo
tudinally polarized vector bosons at high energies is p
vided by the Goldstone boson equivalence theorem@28#. It
states that at the tree level forS-matrix elements for longitu-
dinal bosons at the high energy limitM2/s→0 can be ex-
pressed through matrix elements involving their associa
would-be Goldstone bosons. We write schematically, in
case of a single gauge boson,

M~WL
6 ,cphys!5M~f6,cphys!1OS Mw

As
D ~52!

M~ZL ,cphys!5 iM~f,cphys!1OS M z

As
D .

~53!

The problem with this statement of the equivalence theo
is that it holds only at the tree level@29,30#. For calculations
at higher orders, additional terms enter which change E
~52! and ~53!.

Because of the gauge invariance of the physical the
and the associated Becchi-Rouet-Stora-Tyutin~BRST! in-
variance, a modified version of Eqs.~52! and ~53! can be
derived@29# which reads

knM„Wn
6~k!,cphys…5CwMwM„f6~k!,cphys…1OS Mw

As
D

~54!

9We emphasize again that we did not consider angular logarit
which can be sizable and should be calculated at least to one
order.
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knM„Zn~k!,cphys…5 iCzM zM„f~k!,cphys…1OS M z

As
D
~55!

where the multiplicative factorsCw andCz depend only on
wave function renormalization constants and mass coun
terms. Thus, using the form of the longitudinal polarizati
vector of Eq.~35! we can write

M~WL
6~k!,cphys!5CwM„f6~k!,cphys…1OS Mw

As
D

~56!

M~ZL~k!,cphys!5 iCzM„f~k!,cphys…1OS M z

As
D .

~57!

Thus we see that, in principle, there are logarithmic lo
corrections to the tree level equivalence theorem.10 In addi-
tion, for longitudinal guage bosons we also have logarithm
corrections with Yukawa terms@6#. On the one hand, this
means that the method of Sec. III A should be used w
caution to obtain all relevant subleading terms. Thus
must consider these corrections separately for each pro
to the given order in perturbation theory. On the other ha
since the corrections are logarithmic, it means that the res
of Ref. @1# can be extended to the longitudinal sector as w
Thus we find,11 for mexpt,M ,

ds i~p1 , . . . ,pn ,g,g8,mexpt!

5dsBorn
f ~p1 , . . . ,pn ,g,g8!

3expH 2(
i 51

n F a

4p
Ti~Ti11!1

a8

4p S Yi

2 D 2G log2
s

M2J
3expF2(

i 51

n

@wi
DL~s,m2!2wi

DL~s,M2!#1wexpt
DL G

~58!

where the indexi indicates the cross section for longitud
nally polarized gauge bosons, while the fieldf indicates that
the appropriate fields and quantum numbers on the RHS
Eq. ~58! are those of the associated would-be Goldsto
bosons.

s
op

10An exception is the background field gauge where the W
identities guarantee that the factorsCw51 andCz51 to all orders
@31#. It should thus be investigated if subleading corrections c
also be obtained from the Goldstone boson equivalence theore

11For longitudinally polarizedZ-boson final states there are n
mixing terms since the photon has only transverse polariza
states. Thus one needs to only include the associated Golds
bosonf at the DL level.
3-11
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Thus, we have shown that all DL corrections can
summed to all orders by employing the evolution equat
approach of Ref.@1# in connection with the Goldstone boso
equivalence theorem.

IV. COMPARISON WITH EXPLICIT RESULTS

In this section we compare our results obtained in
previous sections with known results in special cases and
loop calculations. In Ref.@32#, QCD results for the Sudako
form factor were generalized to the high energy electrow
theory.12 Since the general strategy pursued is the same a
Ref. @1#, we of course agree with their result for leading a
subleading universal electroweak corrections toe1e2→ f f̄
to all orders.

A very important check is provided by the explicit on
loop corrections of Ref.@6# for high energy on-shellW-pair
production in the soft photon approximation. In the follow
ing, the lower index on the cross section indicates the he
ity of the electron, wheree2

2 denotes the left handed ele
tron. We summarize the relevant results fore1

1e2
2

→W'
1W'

2 , e1
1e2

2→Wi
1Wi

2 ande2
1e1

2→Wi
1Wi

2 for conve-
nience as follows:

S ds

dV D
2,'

'S ds

dV D
2,'

BornH 11
e2

8p2 F2
112cw

2 18cw
4

4cw
2sw

2
log2

s

M2

13
122cw

2 14cw
4

4cw
2sw

2
log

s

M2
13 log

s

me
2

12 log
4DE2

s S log
s

me
2

1 log
s

M2
22D

2
4

3 (
j 51

nf

Qj
2NC

j log
mj

2

M2G J ~59!

S ds

dV D
2,i

'S ds

dV D
2,i

BornH 11
e2

8p2 F2
122cw

2 14cw
4

2cw
2sw

2
log2

s

M2

12 log
4DE2

s S log
s

me
2

1 log
s

M2D G J ~60!

S ds

dV D
1,i

'S ds

dV D
1,i

BornH 11
e2

8p2 F2
5210cw

2 18cw
4

4cw
2sw

2
log2

s

M2

12 log
4DE2

s S log
s

me
2

1 log
s

M2D G J ~61!

12In addition, angular terms at the one loop level were calcula
which we do not consider in this work.
03400
e
n

e
ne

k
in

c-
where the last line in Eq.~59! corresponds to a sum over a
fermions contributing to the coupling renormalization~with
multiplicity NC53 for quarks andNC51 for leptons!. This-
contribution can be included in the scale of the running o
shell chargeaeff(M2) @33#. For the longitudinal cross sec
tions we are only concerned with DL corrections. The Bo
cross sections are given by

S ds

dV D
2,'

Born

5
e4

64p2s

1

4sw
4

u21t2

t2
sin2u ~62!

S ds

dV D
2,i

Born

5
e4

64p2s

1

16sw
4cw

4
sin2u ~63!

S ds

dV D
1,i

Born

5
e4

64p2s

1

4cw
4
sin2u ~64!

where we keep the angular dependence. In Eq.~62! a sum
over the two transverse polarizations of theW6 (11 and
22) is implicit. These expressions demonstrate that the l
gitudinal cross sections in Eqs.~63! and ~64! are not sup-
pressed with respect to Eq.~62!. On the other hand
(ds/dV)1,'

Born is mass suppressed@6#.
Equations~59!, ~60! and~61! were of course calculated in

terms of the physical fields of the broken theory and in
on-shell scheme. We denotecw5cosuw and sw5sinuw re-
spectively. In order to compare with the results of Sec. III
listed the relevant quantum numbers in Table I. For comp
son with Eq.~59! and to logarithmic accuracy, we can abso
the running coupling effects from our massless scheme to
on-shell scheme as follows. The Born cross section in
approach is proportional tog4 @see Eq.~62!#. The coupling
renormalization above the scaleM is given by

d

TABLE I. The quantum numbers of various particles in th
electroweak theory. The indices indicate the helicity of the el
trons. We neglect all mass terms. For longitudinally polariz
gauge bosons, the associated scalar Goldstone bosons descri
DL asymptotics.

T Y Q

e2
2 1/2 21 21

e1
2 0 22 21

e1
1 1/2 1 1

e2
1 0 2 1

W6 1 0 61
f6 1/2 61 61
3-12
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g2~s!5g2~M2!F12
g2~M2!

4p2 S 11

12
CA2

1

24
nh

2
ngen

3 D log
s

M2G . ~65!

Below the scale where non-Abelian effects enter, the runn
is only due to the electromagnetic coupling and we wr
g2(M2)5eeff

2 (M2)/sw
2 with
m

fo
s
an
hi

03400
g

eeff
2 ~M2!5e2S 11

1

3

e2

4p2

1

3 (
j 51

nf

Qj
2NC

j log
M2

mj
2 D . ~66!

We therefore observe that the running coupling terms p
portional to log(s/M2) cancel for this process with the sub
leading contributions from the virtual splitting functions@see
Eq. ~48!# and what remains are just the Abelian terms up
scaleM. Thus for Eq.~59! we obtain, from Eq.~51! at the
one loop level,
S ds

dV D
2,'

5S ds

dV D
2,'

BornH 12S g2

8p2
Tw~Tw11!1

g82

8p2

Yw
2

4 D log2
s

M2

2S g2

8p2
Te

2
2~Te

2
211!1

g82

8p2

Ye
2
2

2

4
D S log2

s

M2
23 log

s

M2D
2

e2

8p2 F S log
s

me
2

21D 2 log
me

2

m2
1 log2

s

me
2

23 log
s

me
2

2 log2
s

M2
13 log

s

M2

12 S log
s

M2
21D log

M2

m2
2S log

s

me
2

21D S 2 log
me

2

m2
22 log

s

mexpt
2 D

22 S log
s

M2
21D S log

M2

m2
2 log

s

mexpt
2 D 2 log2

s

me
2

2 log2
s

M2
1

3

2
log

s

me
2G1

2

3

e2

4p2 (
j 51

nfQj
2NC

j log
M2

mj
2J

5S ds

dV D
2,'

BornH 12
e2

8p2 S 1110cw
2

4sw
2cw

2
log2

s

M2
23

112cw
2

4sw
2cw

2
log

s

M2D
1

e2

8p2 F2 log2
s

M2
23 log

me
2

M2
1 log

s

me
2

24 log
s

mexpt
2 S log

s

meM
21D G

1
2

3

e2

4p2 (
j 51

nfQj
2NClog

M2

mj
2J . ~67!
-
s
iated

ms
and

xt
rger
n be
Equation~67! agrees with Eq.~59!, which are both valid in
the soft photon approximation. Here and below we assu
thatDE,M andmexpt,M . Analogously in the DL approxi-

FIG. 5. The pictorial Goldstone boson equivalence theorem
W-pair production ine1e2 collisions. The correct DL asymptotic
for longitudinally polarized bosons are obtained by using the qu
tum numbers of the charged would be Goldstone scalars at
energies.
e
mation, it is straightforward to check the validity of our re
sults for Eqs.~60! and ~61!, emphasizing again that in thi
case we need to use the quantum numbers of the assoc
Goldstone bosons; see Fig. 5 and Table I.

Thus we have verified that our results, calculated in ter
of the unbroken massless fields, give the correct leading
subleading logarithms in transversely polarizedW-pair pro-
duction at the one loop level. For longitudinally polarizedW
pairs the correct DL asymptotics is reproduced.

V. CONCLUSIONS

In this paper we considered the calculation of virtual ne
to leading electroweak corrections at energies much la
than the electroweak scale when all particle masses ca

r

-
gh
3-13



ai
on
r

sp
a

th
di
ne
g

bo
io
po
r
o

po
th

th
re
t
b

lcu
ro

lar-

we
ere

pa-
m
r,
he
e-
ec-

he
ior
re-
ely

or
cts
rem.
nd

MICHAEL MELLES PHYSICAL REVIEW D 63 034003
neglected. We follow the same approach as in Ref.@1# which
consists of using the fields of the unbroken theory to obt
logarithmic corrections with the infrared evolution equati
method in different regions of the infrared cutoff. When pa
ticle masses can be neglected there is a one to one corre
dence between the high and low energy scaling behavior
the evolution equation can be formulated in terms of
renormalization group with infrared singular anomalous
mension. The next to leading kernel can then be obtai
from the virtual contribution to the Altarelli-Parisi splittin
functions.

For external gauge boson emission one can use the a
approach for transverse degrees of freedom. For ferm
andW6 external states, the next to leading corrections ex
nentiate with respect to the physical Born amplitudes. FoZ
boson andg final states, one needs to include the effect
mixing appropriately. For these final states we have ex
nentiation with respect to the amplitudes containing
fields of the unbroken theory butnot with respect to the
physical Born amplitude.

For longitudinal degrees of freedom, one can use
Goldstone-boson equivalence theorem to obtain the cor
DL asymptotic behavior. Loop corrections, however, lead
additional corrections including Yukawa terms at the su
leading level and should be considered separately.

We also compared our results with exact one loop ca
lations in the high energy approximation and could rep
.

tt.

T.

v.
.

03400
n

-
on-
nd
e
-
d

ve
ns
-

f
-

e

e
ct

o
-

-
-

duce the leading and subleading terms for transversely po
ized W-pair production in e1e2 collisions and the DL
corrections for the longitudinal degrees of freedom.

Finally we note that there are of course terms which
have neglected in this analysis. As mentioned above, th
are angular logarithms of the form log(s/M2)log(t/u), which
in general could be significant and should be computed se
rately. We also omitted all mass logarithms of the for
log(s/M2)log(MZ /MW) and top-Yukawa terms. For the latte
it might be possible to include them consistently into t
virtual splitting functions. For longitudinal degrees of fre
dom it would also be very helpful to have subleading corr
tions at the one loop level.

In conclusion, for future high energy experiments in t
multi-TeV energy regime, the leading high energy behav
of general scattering amplitudes can be an important ing
dient to study the effect of new physics expected in precis
this range.
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