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Subleading Sudakov logarithms in electroweak high energy processes to all orders
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In future collider experiments at the TeV scale, large logarithmic corrections originating from massive boson
exchange can lead to significant corrections to observable cross sections. Recently double logarithms of the
Sudakov type were resummed for broken gauge theories and found to exponentiate. In this paper we use the
virtual contributions to the Altarelli-Parisi splitting functions to obtain the next to leading order kernel of the
infrared evolution equation in the fixed angle scattering regime at high energies where particle masses can be
neglected. In this regime the virtual corrections can be described by a generalized renormalization group
equation with infrared singular anomalous dimensions. The results are valid for virtual electroweak corrections
to fermions and transversely polarized vector bosons with an arbitrary number of external lines. The subleading
terms are found to exponentiate as well and are related to external lines, allowing for a probabilistic interpre-
tation in the massless limit. F@-boson andy final states our approach leads to exponentiation with respect
to each amplitude containing the fields of the unbroken theory. For longitudinal degrees of freedom it is shown
that the equivalence theorem can be used to obtain the correct double logarithmic asymptotics. At the sub-
leading level, logarithmic corrections to the would-be Goldstone bosons contribute which should be considered
separately. Explicit comparisons with existing one loop calculations are made.
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I. INTRODUCTION mixing involved to make the mass eigenstates and the fact
that at high energies the longitudinal degrees of freedom are
Future high energy experiments at the CERN Large Hadnot suppressed. Furthermore, since the asymptotic states are
ron Collider (LHC) and possibly a linear collidefDESY Mot group smglets, it is expe_cted t_hat _fuIIy inclusive cross
TeV Energy, Superconducting Linear Acceleraf6ESLA) sections contain Bloch-Nordsieck violating electroweak cor-
or the Next Linear CollideNLC) for instancé will probe rect|0n$[3].
the full non-Abelian nature of the electroweak standard_ N this paper we extend the method of Ref] to the next

model(SM). Thus one has to view the photon in particular aséoné?gide'g%vﬁggrv\tgr :Qr? r?:;’l% c(:fp\gmjcellé (r:r?;rsescéls?nli Zt(jgilfcijcr)]n
a particle with non-Abelian character. At. Energies MUCh o show that the results of Rdfl] are also valid for longi-
larger than the weak scale, Sudakov logarithms, originating

A . Yudinal degrees of freedom, which, at first sight, is far from
from vector boson exchange, can lead to significant radiativ,ios. The connection between the calculation performed
corrections. The double logarithm®Ls) can be of order

: in the massless theory and the longitudinal degrees of free-
O(20%) at one loop in the TeV range and a few % at thejom is provided by the Goldstone boson equivalence theo-
two loop level. In addition, subleading corrections can alsqem. Another complication in comparison with the unbroken
be significant, especially if the experimental accuracy is ofon-Abelian case is the mixing of the mass eigenstates. Es-
the order ofO(1%). pecially for the externaZ-boson and the photon states, the
As of this writing, there is no complete two loop calcula- corresponding corrections in general do not factorize with
tion in the electroweak theory due to the complexity of therespect to the original amplitude. We indicate how the cor-
number and nature of processes involved. It is thus of conrections are given to the subleading level in terms of the
siderable interest to investigate terms which are potentiallfields of the unbroken theory.
large and which can be resummed to all orders. In REf. Finally we compare our results with existing one-loop
the leading DL corrections were calculated and found to excorrections in the high energy approximation f¥pair pro-
ponentiate. The results were obtained by using the infraregluction in electron-positron scattering. Although this com-
evolution equation methofR] calculated with the massless Parison constitutes a strong test of our approach, it should be
fields of the unbroken theory. The equation has a differenfl€ntioned that it would be extremely helpful to compare the
kernel depending on the value of the infrared cutoff. results obtained in th|§ approach_wnh a general method in
There are, however, some important differences of thd€rms of the physical fields. In this context a two loop DL
electroweak theory with respect to an unbroken gaugé:alculatlon would help clarify the situation with contradict-

theory. Since the physical cutoff of the massive gaugd"d results in the literaturg4] and a subleading one loop
bosons is the weak scaMd=M,,, pure virtual correction aPProachs] would give further support to the results pre-

lead to physical cross sections depending on the infraregented in this work.
“cutoff.” Only the photon needs to be treated in a semi- Il LOGARITHMIC CORRECTIONS
inclusive way. Additional complications arise due to the IN NON-ABELIAN THEORIES

In this section we are concerned with virtual double and
*Email address: Michael.Melles@psi.ch single logarithmic corrections to scattering amplitudes in
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massless non-Abelian theories at a fixed angle with all in=1,... N) acts on the color indices of the particle with
variants large with respect to an infrared cutpff i.e. x> momentump,. The non-Abelian gauge couplinggs In Eq.
<s;j,=2p;p,;~s. It must be emphasized that in high energy (2), and belowk, denotes the component of the gauge bo-
collider experiments there are also contributions dependingon momentumk transverse to the particle emitting
on angular variable§.e. u/t etc) which can be of genuine this boson. It can be expressed in invariant form kis
subleading naturg6]. The philosophy adopted here is that =min[2(kp)(kp)/(pp))] for all j #I.

terms of the type log(u?)log(u/t) etc. should be calculated  The above factorization is related to a non-Abelian gen-
exactly at least at the one loop level. For the higher ordeeralization of the Gribov theorenfor the amplitude of the
terms below, we are only concerned with the Bgf) be-  bremsstrahlung of a photon with small transverse momentum
havior with u?<s~|t|~|ul. All mass terms are neglected; k, in high energy hadron scatteririg].

i.e., we assumen; < u. The form in which we present E@2) corresponds to a
We begin by reviewing the general method for virtual covariant gauge for the gluon with momentumFormally
corrections in the DL approximation following the approachthis expression can be written in a gauge invariant way if we

of Ref. [1]. include in the sum the term with=1 (which does not give a
DL contribution. Indeed, in this case we can substitpte,
A. Double logarithmic corrections by —p{‘pjd,..(K), where the polarization matrices of the bo-
sond,,,(K) in the various gauges differ by the terms propor-

Sudakov effects have been widely discussed for "OMfional tok* or k”, giving a vanishing contribution due to the

Abelian gauge theories, such 84J(N), and can be calcu- . a
lated in various waygsee, for instance[7]). A general conservation qf't.he total co'Ior char@aT =0. Thus we
method of finding the DL asymptoti¢gaot only of the Suda- h_ave the p033|b_|llty of choosmg ap.propr-late gauges for each
kov type is based on the infrared evolution equations de_klnema'ucal region of the quasmollm_eanty bffand Pi- W?
scribing the dependence of the amplitudes on the infrare an, however, use E2) as well, noting that in this region

or j#1 we havep;p,/kp;=E,/w, whereE, is the energy of

cutoff o of the virtual particle transverse momefg. This . )
cutoff plays the same role as the fictitious photon meass the'partlcle with momenturp, and« the frequency of the
emitted gauge boson, so that

QED, but, unlike\, it is not necessary that it vanishes and it

may take an arbitrary value. It can be introduced in a gaug(;\/l(p P i)
invariant way by working, for instance, in a finite phase Lo P
space volume in the transverse direction with linear $ize 2N Lodqk2 1

. . . 295 dki dU
~1/u. Instead of calculating asymptotics of particular Feyn- = Mgo(P1, - - - Pn) — 5 > Z—ZJ —
man diagrams and summing these asymptotics for a process (4m)=1=1 Ju? ki Jlk |15 0
with n external lines it is convenient to extract the virtual

XCIM(py, - - . Pnikd), 3

particle with the smallest value ¢, | in such a way that the
transverse momentt| | of the other virtual particles are

. where C, is the eigenvalue of the Casimir operator
much bigger:

T2(1)T3(l) [C,=C, for gauge bosons in the adjoint repre-
K25 K2 1,2 (1) sentation of the gauge groU(N) andC,= C for fermi-
L TREA ons in the fundamental representafiolm this last step we
; o : 2y —
For the other particlek? plays the role of the initial infrared IS0 used the identity=_; T(j) M(py., - . . Pn;k()=0,
corresponding to the conservation of the total group charge.

cutoff u?. . . Lo
In particular, the Sudakov DL corrections are related to! N€ integral oved“k was written in terms of the Sudakov

the exchange of soft gauge bosons. For this case the imeg&cpmpqnents accor_ding to the discussipn in Sec. 1B upon
over the momenturk of the soft(i.e. |K%| < ys) virtual boson replacing the longitudinal componentwith the boson on-

. _ 2 2 .
with the smallesk, can be factored off, which leads to the sheI_I EXpressiorsu = u +Ki. Thus, in Sudakov DL cor-
following infrared evolution equation: rections there are no interference effects, so that we can talk

about the emissiofand absorptionof a gauge boson by a

M(Pys - Pript?) definite (external pa_rt|cle, namely by a particle with mo-
mentum almost collinear tk.
i g2 The differential form of the infrared evolution equation
=Mpom(P1s -+ P0)— 5 follows immediately from Eq(3):
2 (2m)*
n IM(Py, ... Pnip?
<3 d'k_ pp, Pooee PoibD) o) Mipy, . o), @)
115Ti#1 Js=is 2k +ie (Kpy)(Kpy) dlog(p%)
XTAHTHHM(Py, - - - paikD), (2  Wwhere

where the amplitudeV(py, . .. ,py;k?) on the right hand
side is to be taken on the mass shell, but with the substituted'The non-Abelian generalization of Gribov's theorem is given in
infrared  cutoff: u’— kf . The generator T?(l) (a  Ref.[1], together with a description of its essential content.
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FIG. 2. Feynman diagrams contributing to the infrared evolution
equation(2) for a process witm external legs. In a general covari-
ant gauge the virtual gluon with the smallest valud pfis attached
to different external lines. The inner scattering amplitude is as-
sumed to be on the mass shell.

FIG. 1. In an axial gauge, all collinear logarithms come from
corrections to a particular external lifdepending on the choice of B. Soft divergences in the massless theory
the four-vectom” satisfyingn”’A2=0) as illustrated in the figure. In
a covariant gauge, the sum over all possible insertions is reduced
a sum over alh external legs due to Ward identities. Overall, these
corrections factorize with respect to the Born amplitude.

In this section we briefly review the types of soft, i.e.
5?<°|<\/§, divergences in loop corrections with massless par-
ticles. In general, those contributions, unlike the collinear
logarithms, can be obtained by setting laliependent terms
N ) in the numerator of tensor integrals to zésince the terms
K(u?)=— 1 D W (s, 1) (5 leftare of the order of the hard scalp: Thus it is clear that

K 20 glog(u?) the tensor structure which emerges is that of the inner scat-

tering amplitude in Fig. 2, below, taken on the mass shell
times a scalar function of the given loop correction. In the
Feynman gauge, for instance, we find for the well-known
vertex corrections the familiar three-point functi@y and
for higher point functions we note that in the considered case
all infrared divergent scalar integrals reducespmultiplied
by factors of 1¢ etc. The only infrared divergent three point
function is given by

with

92

2 =
WI(Suu ) (477)2

s
Cjlog”—. (6)
s

W, is the probability to emit a soft and almost collinear

gauge boson from the partidiesubject to the infrared cutoff d%k

« on the transverse momentyrh]. Note again that the cut- Co(s/u?)= j , Z

off u is not taken to zero. To logarithmic accuracy, we ob- ki >u?(2m)

tain, directly from Eq.(6), 1

X .

IW(s, 1u2) g2 s . (K2+ig)(k?+2pjk+ie)(k*—2pk+ie)
—_— = Cilog—. 7
dlog(u?) gr? g; (10

' . ' . It is now convenient to use the Sudakov parametrization for
The infrared evolution equatia@) should be solved with an  the exchanged virtual boson:

appropriate initial condition. In the case of large scattering

angles, if we choose the cutoff to be the large scalken k=vp;+up+Kk, . (11
clearly there are no Sudakov corrections. The initial condi- ) ]
tion is therefore For the boson propagator we use the identity
[ i
M(Py, -+ Pn;S) = Meom(P1s - - - Pn), (8 =P S+m(sw—k?) (12

sw—k:+ie sw—k
and the solution of Eq4) is thus given by the product of the

Born amplitude and the Sudakov form factors: writing it in the form of the real and imaginary partthe

principle value is indicated b¥). The latter does not con-

5 tribute to the DL asymptotics and at higher orders gives sub-
M(p1, - - Pni )= Maorm(P1, - - - Pn) subleading contributions. Rewriting the measure dd&
IdzkldzkH with

1 n
xex;{—EI_ElWKS,MZ) -9 1
- dzkiz|kL|d|kL|d¢=§dkfdgb:rrdkf (13
Therefore we obtain an exactly analogous Sudakov exponen-
tiation for th N) to that for the Abeli S
ClgslgFg].or e gauge groupU(N) to that for the Abelian d2k||=|a(k°,kx)/&(u,v)|dudu%Edudv (14)
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where we turn the coordinate system such that ihey;  The functionCo(s/u?) is fastly converging for largé® and

plane corresponds to)0and they,z coordinates to thé,  we are interested here in the regipA<s in order to obtain

direction so that it is purely spacelike. The last equation fol-arge logarithms. Then logarithmic corrections come from

lows from p{=0, i.e. pf ~pf, and the regionk®<s|ul,s|lv|<s (the strong inequalities give

(pj,P1,— p'opjx)zm(pioplo_ Plxpjx)ZZ(Pijz:(S/Z)z- DLs, thg simple inequalities single oneand we can write,
(15) to logarithmic accuracy,

© © o) 1
Co(s/u?) = f duf dvf dk?
oS/ 22m4) - Joe w2 (s — K2 +ie) (s — k2 +sutie)(suw—k> —su+ie)

sim? J” du (= dv
~2(2W)4 —SUJ —xSU

i jldujldv(a( 2) I Jl duJ’1 dv i loc? S (16)
= — | —O(sw— = — —=——log"—.
(4mzslou o v “OT ams) s U s o 2(amps ) 2

Thus, no single soft logarithmic corrections are preser@ s/ 2). In order to see that this result is not just a consequence
of our regulator, we repeat the calculation for a fictitious gluon ridssthis case we have

F A2 O (I — 1) S5t —K2 )~ — fl dufl ey 2)
- sw—k)~——| — B (suv —
LT o 2(4m)?s)-1uJ-1v vR

d*k 1
(2m)* (K*=N2+ie)(K*+2pk+ie)(k®—2pk+ie)

ColSIN?)= f 17

It is clear thatCy(s/\?) contains soft and collinear diver- In conclusion, all leading soft corrections are contained in
gences Kk||p;;) and is regulated with the cutoff, which  double logarithmgsoft and collinearand subleading loga-
plays the role ofu in this case. Integrating over Feynman rithmic corrections in a massless theory, with all invariants
parameters we find large [sj ;=2p;p;~O(s)] compared to the infrared cutoff,
are of the collinear type or renormalization group logarithms.
2

Co(sIN?) = SlogP————+ -
ol (477)25(2 9 i 3

. (19 C. Virtual logarithmic corrections from the Altarelli-Parisi
splitting functions

We are only interested here in the real part of loop correc- In an axial gauge, collinear logarithms are related to cor-
y P P rections on a particular external leg depending on the choice

tions of scattering amplitudes since they are multiplied by, ye four-vectom, [11]. A typical diagram is depicted in
the Born e}mplltude and the imaginary pieces contribute t ig. 1. In a general covariant gauge this correspauging
cross sections at the next to next to leading level as menp/arq identities to a sum over insertions in ail external
tioned above. In fact, the minus sign inside the double logaregs(1]. We can therefore adopt the strategy to extract the
rithm corresponds precisely to the omitted principle valuegayuge invariant contribution from the external line correc-
contribution of Eq(12) in the previous calculation. Thus, no tions on the invariant matrix element at the subleading level.
single soft logarithmic correction is present in the case wherhe results of the previous section are thus important in that
particle masses can be neglected. they allow the use of the Altarelli-Parisi approach to calcu-
This feature prevails to higher orders as well since it hasate the subleading contribution to the evolution kernel of
been shown that also in non-Abelian gauge theories the ongsq. (4). We are here only concerned with virtual corrections
loop Sudakov form factor exponentiated. and use the universality of the splitting functions to calculate
In case we would keep mass terms, even two point functhe subleading terms. For this purpose we use the virtual
tions, which in our scheme can only yield collinear loga-quark and gluon contributions to the splitting functions
rithms, would contain a soft logarithm due to the mass renorpgq(z) and pgg(z) describing the probability to emit a soft
malization which introduces a derivative contributift0].  andjor collinear virtual particle with energy fractiarof the
original external line four-momentum. The infinite momen-
tum frame corresponds to the Sudakov parametrization with
Note that this regulator spoils gauge invariance and leads to podightlike vectors. In general, the splitting functiofg de-
sible inconsistencies at higher orders. Great care must be taken f&€ribe the probability of finding a partic® inside a particle
instance when a three gluon vertex is regulated inside a loop inteA with fraction z of the longitudinal momentum of with
gral. probability Pga to first order[12]:
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as corrections enter with a different sign compared to the con-
dPga(2) = 5 Paadt (19 ventional running coupling effects. The renormalizations
with respect to the Born amplitude as well as the ones be-
where the variablé=log(s/u?) for our purposes. It then fol- 10nging to the next to leading terms at higher orders will be
lows [12] that indicated below by writingas(u?)— a4(s). At higher or-
ders, the correct renormalization group corrections can be
as Z(l_z)_lvA—»B+C|2 ) implemented by inserting a running coupling,(kf) into
“on 2 S%S K2 dlogk? . (20) each loop correction. For fermion lines there is an additional
+ subleading correction from collinear terms which is not re-
lated to a change in the scale of the coupling.
Inserting the virtual probabilities of Eq$22) and (23)
2(1-2) IVa_gicl? o into Egs.(24) and (25) we find

dPga(2)

whereV,_ g c denotes the elementary vertices and

Pea(2)= _ > _
2 e K ads)Cr

q(1,t)=q0exp_ Ton

Iogzi -3 Iogi) 1 (26)
The upper bound on the integral omﬁrf in Eq.(20) issand n? %

it is thus directly related tdt. Regulating the virtual infrared )
divergences with the transverse momentum cutoff as de- ag(S)Ch s 4 ep. S
scribed above, we find the virtual contributions to the split- 9(1.)=goeXp — ——— | QZE— C_ABOQ |09E

ting functions for external quark and gluon lines:

(27)
S )
pgq(z)ch( ~2log— +3|8(1-2) (220 where 8§°P=13Ca—3Ten; with C,=3 andTe=3. These
M functions describe the total contribution for the emission of

virtual particles(i.e. z=1), with all invariants large com-
s pared to the cutoffc, to the densities|(z,t) andg(z,t). The
CD
—2log— + Ca 3 )5(1_2)- (23 nhormalization is on the level of the cross section. For the
. invariant matrix element we thus find, at the subleading

The functions can be calculated directly from loop correc-l€vel,
tions to the elementary procesdd8-15 and the logarith-
mic term corresponds to the leading kernel of Sec. Il A. We ~ M(P1, -+ - Pn.Gs, ) =M(P1, - .. Pn,9s(S))

\% —
ng(Z) - CA

n

introduce virtual distribution functions which include only 1 Mg
the effects of loop computations. These satisfy the Altarelli- xexp( — = Wi(s,u?)
Parisi equation’s 2=
n
aq(z,t)  as (idy v 13
LN et —= 2>, Wi(s,u? 28
- 27TL y a(z/y,H)Pyq(y) (24) 5 ;1 1(s,u) (28)

with ng+ngy=n, and

d9(z,t)  as (1dy y
p _EJ’Z VQ(Z/YJ)PQQ(Y)- (25)
W 2 _% | 2i_3| S (29
The splitting functions are related bPga=PRs+Pya, (s,u%)=—4—|log PERRE AT

where R denotes the contribution from real gauge boson
emissior’: Py, is free of double logarithmic corrections and

is positive definite. The subleading term in Eg3) indicates WI(s, u2) = &)CA Iogzi — i,BOQCDIogi ]
that the only subleading corrections in the pure glue sector 4 u? Ca w?
are related to a shift in the scale of the coupling. These (30

Again we note that the running coupling notation in the Born
3 . - . amplitude of Eq.(28) denotes the renormalization correc-
Note that the off diagonal splitting functio,, andPgq do not tions of the Born amplitude and higher order corrections.

contribute to the virtual probabilities to the order we are working iona/a . .
here. In fact, for virtual corrections there is no need to introduce-l.—he function ,W¥ correspond to the probability of emit-

off-diagonal terms as the corrections factorize with respect to thémg_a virtual _SOft and/o_r collinear gauge .bosor.] from the
Born amplitude. The normalization of Eq&2) and (23) corre- partlc_leq,_g subject to th_e infrared _cutoﬁ. Typical d|ag_rams_
sponds to calculations in two to two processes on the cross sectidiPntributing to Eq(28) in a covariant gauge are depicted in
level with the gluon symmetry factor of included. The results, Fig. 2. In massless QCD there is no need for the |atgEbr

properly normalized, are process independent. WY however, we write it for later convenience. The univer-
“P4q Was first calculated by Gribov and Lipatov in the context of sality of the splitting functions is crucial in obtaining the
QED [16]. above result.
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D. Renormalization group equation

The solution presented in Eq28) determines the
evolution of the virtual scattering amplitude
M(p1, .. .Pn.0s,u) for large energies at fixed angles and
subject to the infrared regulatgr. In the massless case there
is a one to one correspondence between the high energy limit
and the infrared limit as only the rat®/ u? enters as a di-
mensionless variablgl7,18. Thus, we can generalize the o - 2 . : >
Altarelli-Parisi equationg24) and (25) to the invariant ma- modified minimal subtraction MS) dlmen§|onal regularl_zatlon
trix element in the language of the renormalization group.mass pgramt_ater._Because_of divergences in loop corrections, there
For this purpose, we define the infrared singulagarith- are scaling violations also in the massless theory.
mic) anomalous dimensions

FIG. 3. The two counterterms contributing to the quark anoma-
lous dimensionyqq=(d/dlog ,uz)(_—b‘qg+52). Here u denotes the

gluon mass is protected by gauge invariance from loop cor-
rections. Thus, in the bosonic sector the subleading terms
(31)  correspond effectively to a scale change of the coupling. Fig-
ure 3 illustrates the corrections to the external quark-

Infrared divergent anomalous dimensions have been derive@ntiquark lines from loop effects. _ .

in the context of renormalization properties of gauge invari- _Except for the infrared singular anomalous dimension
ant Wilson loop functionalg19]. In this context they are [EQ. (31)], all other terms in Eq(32) are the standard con-
related to undifferentiable cusps of the path integration andributions to the renormalization group equation Samatrix

the cusp anglep;p, /2 gives rise to the logarithmic nature €lements(23]. In QCD, observables with infrared singular

of the anomalous dimension. In case we use off-shell ampli@nomalous dimensions, regulated with a fictitious gluon
tudes, one also has contributions from end points of the inMmass, are ill defined due to the masslessness of gluons. In the
tegration[19]. The leading terms in the equation below have€lectroweak theory, however, we can legitimately investigate
also been discussed in Reff20], [21] and[22] in the context only virtual cprrectlor)s since the gauge bogons will require a
of QCD. With this notation we find that E¢28) satisfies mass. Equatio32) will thus be very useful in the following

Chra
Ads
T

CFaS
Fq(t)E ?t, Fg(t)E 2

sections.

J d 1la

2 B0y Iy 5 2290

[(9'[ B d0s 9 g( ) 2 T Bg I1l. LOGARITHMIC CORRECTIONS IN BROKEN

1 GAUGE THEORIES

+ng[ Fa(H+ EVqE” In the following we will apply the results obtained in the

previous sections to the case of spontaneously broken gauge
XM(Pg, .- Pn,9s,u)=0 (32)  theories. It will be necessary, at least at the subleading level,

) to distinguish between transverse and longitudinal degrees of
to the order we are working here and wherefeedom. The physical motivation in this approach is that for
M(Ppa, - .. Pn,Gs,p) is taken on the mass shell. The differ- ery |arge energies>M2=M?2, the electroweak theory is

ence in the sign of the derivative term compared toBgis ; th brok h ith St (2)X Uo(1
due to the fact that instead of differentiating with respect toIn e unbroken phase, with an exailt (2)x Uy(1) gauge

| o | 2 1h k-anti K symmetry. We will calculate the corrections to this theory
og u” we use logdu”. The quark-antiquark operator anoma- 4q yse the high energy solution as a matching condition for

lous dimensionngz—CF%a/Tr enters even for massless the regime for values oft<M.

theories as the quark antiquark operator leads to scaling vio- We begin by considering some simple kinematic argu-
lations through loop effects since the quark masslessness iisents for massive vector bosons. A vector boson at rest has
not protected by gauge invariance and a dimensionful inframomentunmk”=(M,0,0,0) and a polarization vector that is a
red cutoff needs to be_introduced. Thus, although the Lalinear combination of the three orthogonal unit vectors:
grangian contains nmqgqterm, quantum corrections lead to

the anomalous scaling violations in the form gf;. The e;=(0,1,0,0, ,=(0,0,1,0, €;=(0,0,0,3. (33
factor of 3 occurs since we write Eq32) in terms of each

external line separateR/For the gluon, the scaling violation After boosting this particle along the 3-axis, its momentum
due to the infrared cutoff is manifest in terms of an anomaWwill be k”=(Ey,0,0k). The three possible polarization vec-
lous dimension proportional to th@ function since the tors are now still satisfying

k,e/=0, e’=0. (34)

5In case of a massive theory, we could, for instance, avoid theI.W0 of these vectors correspond ¢g ande, and describe
2

anomalous dimension term,q by adopting the pole mass defini- o . L
tion. In this case, however. we would obtain terms in the Wavethe transverse polarizations. The third vector satisfying Eqg.

function renormalization, and in any case, the one to one correspor{-34) is the longitudinal polarization vector

dence between UV and IR scaling, crucial for the validity of Eq. Y
(32), is violated. e/ (k)=(k/M,0,0E(/M), (39
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i.e.e/(k)=k"M+O(M/E,) for large energies. These con-
siderations illustrate that the transversely polarized degree:
of freedom at high energies are related to the massles
theory, while the longitudinal degrees of freedom need to be
considered separately.

Another manifestation of the different high energy nature
of the two polarization states is contained in the Goldstone
boson equivalence theorem. It states that the unphysica
Goldstone boson that is absorbed by a massive gauge bos
still controls its high energy asymptotics. A more precise
formulation is given below in Sec. Il B.

Thus we can legitimately use the results obtained in the
massless non-Abelian theory if we restrict ourselves to the
transverse degrees of freedom at high energies. We will,
however, show that to DL accuracy the results of Réf.
can be used in connection with the Goldstone boson equiva:
lence theorem.

Another difference to the situation in an unbroken non-
Abelian theory is the mixing of the physical fields with the
fields in the unbroken phase. These complications are espe
cially relevant for theZ boson and the photon.

A. Results for transverse degrees of freedom FIG. 4. The schematic corrections to external gauge boson emis-
The results we obtain in this section are generally valigsions in terms of the fields in the unbroken phase of the electroweak
for spontaneously broken gauge theories; however, for deftheory. There are no mixing terms betweenW%andBV fields for
niteness we discuss only the electroweak standard modéTiassless fermions. We denote ejsby c,, and sinf, by s,,. For
The physical gauge bosons are thus a massless pkdden W= final states, the corrections factorize with respect to the physi-

scribed by the field\,) and massivaV* andZ bosons(de- cal amplitude. In general, one has to sum over all fields of the
scribed corres ondirﬁ v by fieldd™ andz ): unbroken theory with each amplitude being multiplied by the re-
P gly by v v spective mixing coefficient.

The value for the infrared cutoff can be chosen in two
(WE+iw?) (36  different regimes(1) Js>u>M and(2) u<M. The second
V2 case is universal in the sense that it does not depend on the
details of the electroweak theory and will be discussed be-
_— low. In the first region we can neglect spontaneous symmetry
Z,=cosb,W,+sin6,B, (37 preaking effectgin particular gauge boson massesd con-
sider the theory with field8, andW2. One could of course
also calculate everything in terms of the physical fields; how-
ever, we emphasize again that in this case we need to con-
sider the photon also in regidd). The omission of the pho-
Thus, amplitudes containing physical fields will correspondion would lead to the violation of gauge invariance since the
to a linear combination of the massless fields in the U”bmkeBhoton contains a mixture of tH&, andW? fields.
phase. The situation is illustrated schematically for a single |, region(1), the renormalization grouS equatior gen-

gauge boson external leg in Fig. 4. In case ofWie bosons,  eralized infrared evolution equatipKi32) in the case of all
the corrections factorize with respect to the physical ampliy, <\ read§

tude.
To logarithmic accuracy, all masses can be set equal,

.1
W, =—

A,=—sin6,W3+cosé,B, . (39)

%We exclude here top-Yukawa couplings which couple propor-
Mz~My~M Higgs ™ M tional to mf/M2 since they do not have an analogue in QCD. It is,

d th idered b hi h however, not unlikely that those terms can also be included in the
and the energy considered to be much larg&sM. The g jiving functions fulfilling Altarelli-Parisi equations. Note also that

physical fields are given in terms of the unbroken fields acyhe amplitude on the right hand side is in general a linear combina-
cording to Eqs(36), (37) a_nd(38). The left and right handed o, of fields in the unbroken phase according to Eg8), (37) and
fermions are correspondingly double®= 1/2) and singlets  (3g). In addition, in the electroweak theory matching will be re-
(T=0) of the SU(2) weak isospin group and have hyper- quired at the scalévl and often on-shell renormalization of the
chargeY related to the electric chardg@, measured in units couplingse and sind,, is used. In this case one has additional com-
of the proton charge, by the Gell-Mann—Nishijima formula plications in the running coupling terms due to the different mass
Q=T3+Y/2. scales involved belowl. Details are presented in Sec. IV.

034003-7



MICHAEL MELLES PHYSICAL REVIEW D 63 034003

a a IS 1a 1a _11C 1 1 , 5 1
ﬁ*%”"a_g*; FoO=Nw3 Zho~ N5 ——Fo Bo=13CA 3Mgen™ 52 Bo= = gMgen ﬁ”hm)

where ng., denotes the number of fermion generations
[24,25 andny, the number of Higgs doublets. The infrared
singular anomalous dimensions read

n¢ 1 .
k Z
) (Ff<t>+ 5 yqq)

XM*E(pa, - .. Pn.0,9 1) =0 (39
) o . i o a' [Y;\?
where the index_ indicates that we consider onty, trans- fgO=7=Ti(Ti+H)+—| 5] [t (43
. 9 A 49\ 2
versely polarized external gauge bosons aggtng=n,.
The two 8 functions are given by whereT; andY; are the total weak isospin and hypercharge
() ) respectively of the particle emitting the soft and collinear
— a9(pm g (u auge boson. Analogously,
BO(u?)= ———=~—Bo— (49 99 Jousy
dlog u 8 _ o o Y2
' 3 T(T i
— e Yo~ 3 477T'(T'+1)+47-r 2) (44
B =) g S gy
g w)= log u? 0 g2 The initial condition for Eq(39) is given by the requirement
that for the infrared cutofiz>=s we obtain the Born ampli-
with the one-loop terms given by tude. The solution of Eq39) is thus given by

ME(Pyy - Pn 9,97 ) = Mpor(P1, - - - Pn,0(S),9'(S))

1.2 [a(s) a'(s)[Y;\? s
Xexp{—zzl {HTi(Ti‘Fl)ﬁ- - ( ) %092;

a(s) a'(s) 1< [a(s) "(8) [ Yy
*(”wwﬁﬁneﬁﬂo)bg;‘ 22 [WWTK““%(?) }

, S S
X | log —2—3Iog—2
M M

] (45)

where ny, and ng denote the number of extern#/ andB  the contributions of the diagrams without virtual photons
fields respectively. Th&U(2)X U (1) group factors in the with this expression for the particular caeé:O. This be-
exponential can be written in terms of the parameters of theomes evident when we note that if we were to omit photon
broken theory as follows: lines, then the result would depend on the choice of gauge,
2 and therefore be unphysical. Only faf,= 0, where the pho-
_|) =ei2+92[Ti(Ti+ 1)_(Ti3)2] tpn commdgs with t_heB gauge t_)05(_)n, would the |dent|f|c_a-
2 tion of thee” term with the contribution of the diagrams with
photons be correct.
9 (T3—sin6,,Q;)> We now need to discuss the solution in the general case.
cosg6,, ' e In region (1) we calculated the scattering amplitude for the
theory in the unbroken phase in the massless limit. Choosing
where the three terms on the right hand siB#S) corre-  the cutoffu in region(2), u<M, we have to only consider
spond to the contributions of the soft photdnteracting the photon contribution. In this region we cannot necessarily
with the electric charge;=Q;gsiné,), the W= and theZ  neglect all mass terms, so we need to discuss the subleading
bosons, respectively. Although we may rewrite soluti¢f)  terms for QED with mass effects. ;<< ., the results from
in terms of the parameters of the broken theory in the form othe massless QCD discussion of Sec. Il C can be used di-
a product of three exponents corresponding to the exchangesctly by using the Abelian limiCg=1. In caseu<m; we
of photons,W* andZ bosons, it would be wrong to identify must use the well-known next to leading order QED results,

9°Ti(Ti+1)+g'?

2
+
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e.g. [26], and the virtual probabilities take the following o2 s M2 s
. ; i
form for fermions: w"(s M2)=(4w)2 (IOQW_l) 2IogF+I092W . (47
(
el In addition we have collinear terms for external on-shell pho-
log? ——3 Iog— m; << . . ! X
(41)? u? IS ton lines from fermions with massn; and electromagnetic
) - chagee; up to scaleM:
e.
wi(s,u?)={ Iog— 12 Iog— e]2 2
(4m)?

(46)

Note that automaticallwviy(M ,M2)=0. At one loop order,
Note, that in the last equation the full subleading collinearthis contribution cancels against terms from the renormaliza-
logarithmic term[10] is used in distinction to Ref.26]. It  tion of the QED coupling up to scal®. For external
follows from Eg.(29) in the massless limit, i.em;~u for  Z-bosons, however, there are no such collinear terms since
small values of the infrared cutoff. In the explicit two loop the mass is large comapred to tme Thus, the correspond-
calculation presented in R4R27] it can be seen that the full ing RG logarithms up to scal® remain uncanceled. The
collinear term also exponentiates at the subleading level imppropriate initial condition is given by E¢5) evaluated at

massive QED. the matching pointu=M. Thus we find, for the general
For W* bosons we have, analogously, solution in region(2),

MEP1s - P 8.9 ) = Mgor(Pis - - - Pn.9(S),9' ()
’ N2
p{ Zg a(S)T(T+1) e (:)(%)
a(s) '(s)
w> Bot+ nBaz Bo

1< a' Y
3oy

+ Iog—

|

Ng
xexf{ T2 21 [wi(s, %) —w/(s,M?)]~ % 2, [Wi'(s,1®) ~wi'(s,M?)]

10
__2 Wy(Mz

2=
=M§om(|01, . ,pn,g(s),g’(S))

g a'(s)[Y;\? s
xexp{ Z [ TiTi+ )+ — (5) }Iogzm

2 S S
09z ~3log s

a(s) a'(s) S
Tl wo BotnNg—— o Bo|lo 9_
1 s Y s s
- > ol )Tk(Tk+1)+L(—k) Iogz——3log—
21 2 M2 2
X 12 ei(s) 2 log— g—+2| S log m
expl— = 0 lo og—lo
22 | ame| 2 %% 92 g—
131 € M?
_-N = j
2243 24 4n? %%z (48)

"I thank the authors of Ref5] for clarifying this point.
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The last equality holds for<m;<M and we have absorbed Semi-inclusive cross sections

all B-function termsnot related to external lines into redefi- In order to make predictions for observable cross sections,

nitions of the scales of the couplings. It is important to notey,q unphysical infrared cutoff? has to be replaced with a

again that, unlike the situation in QCD, in the eIectroweakcutoﬁ ngpt, related to the lower bound drﬁ of those gauge

theory we have in general different mass scales determiningosons emitted in the process which are not included in the

the running of the couplings of the physical on-shell renor-. s section. We assume thaixpt<M21 so that the non-

malization scheme quantities. We have written the above re;, " : .
: . ; . .~ _“Abelian component of the photon is not essential. The case
sult in such a way that it holds for arbitrary chiral fermions” 5 5 . S .
=M< is much more complicated and is discussed in

and transversely polarized gauge bosons. In order to includéexp
physical external photon states in the on-shell scheme, th ef. [1] thrqugh two I_oops at the DL level. _
renormalization condition is given by the requirement that We again _onIy discuss transversely polar_|zed external
the physical photon does not mix with ttboson. This gauge boson in .the Bo_r N process an.d c.an write the expres-
leads to the condition that the Weinberg rotations in Fig. 4 at'on for the semi-inclusive cross section:

one loop receive no RG corrections. Thus, above the #dale

the subleading collinear and RG corrections cancel for physi- do(P1, -+ .Pn. 9,9 Mexpd
cal photon and@-boson states. For physical observables, soft N ,
real photon emission must be taken into account in an inclu- =d0gasidP1 - - - Pn.9(S),9" (), 1)
sive (or semi-inclusivé way and the parametes? in Eq. y _
(48) will be replaced by parameters depending on the experi- XX Wep S:My 14, Hexpi) ] - (49)
mental requirements. This will be briefly discussed in the
following section. In the soft photon approximation we have
|
e? , S , S s
2 5| —log”——+log®— —3log— |, m<u,
y =1 (4) Mexpt M M
Wexp{Svmi uU“’/J*expt): n 5 5 (50
€ s m s , S
log——1]| 2log— —2log—— | +log— |, w<m
=1 (477)2 m; 1“2 Mexp m;

where the upper case applies only to fermions sincaMorwe haveu<M in region 2.
Since the upper bound dif of the photons which are allowed to be radiated is less t1&nwe must use the cutoff
w?><M? and, consequently, E@48) for the matrix element of the non-radiative process. Therefore, we 8btain

, B , 29 [a(s) a'(s)[Y;\? s
d(TL(plv -+ -.Pn,9,9 -MeXpT)_do'éorn(pl’ -~ sPn ,g(S),g (S))eXp{ _i:El [HTi(Ti—’_l)_'— ?(5) }IogzM_

a(S) a'(s) | S
+(anﬁo+ Ng ﬂo) |09W

a
N¢ a(S) a,(S) Yk 2 s S
-2, [HTK(T“”*W(?) } log? > ~3 log }
nf nW ny

Xexr{ ) [w!(s,u?)—w!(s,M?)] _;1 [W"(s, 12)— W(s,M2)] _;1 W?(szmjz)}
- m2

Xex"( 2 — log— —1 || 2log % — 2 log—— | +log?— 5
=1 (4m)? mi2 :“2 I“gxp mi2 ,

8The notation here is again simplified in the sense thaZfboson andy final states one has to include the mixing correctly as described
above.
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where we useu<<m; . The u dependence in this expression M

cancels and the semi-inclusive cross section depends only on k” M(Z,(K), $pnyd =1C M M(p(K), hphyd + O —Z)

the parameters of the experimental requirements. Vs
Equation(51) contains all leading double and single loga- (55

rithms to cross sectiofigontaining arbitrary numbers of ex-

ternal fermions and transversely polarized gauge bosons. Wehere the multiplicative factor€,, andC, depend only on

have only assumed that all masses are not larger than thweave function renormalization constants and mass counter-

electroweak scal® and impose a cut on the allowed values terms. Thus, using the form of the longitudinal polarization

of emitted real gauge bosok$ =< uZ,,<M?; i.e., up to the vector of Eq.(35) we can write

weak scale we only need to consider real QED effects.

+ + IVIW
B. Longitudinal degrees of freedom MWL (K), pnyd = CuM (b (k)’wphys)JrO( E)

In this section we discuss if results obtained from the (56)
massless unbroken phase of tB&J (2)XUy(1) theory,
where due to gauge invariance we have only transverse M
physical degrees of freedom, can be extended to the full M(Z(K), pnyd =1CM(P(K), phyd + O —Z>
theory including longitudinal vector bosons. This point of Vs
discussion is necessary and important since the longitudinal (57)
degrees of freedom do not decouple at high energies and
could give crucial clues to potentially strong dynamical ef-Thus we see that, in principle, there are logarithmic loop
fects for large Higgs massesy~1 TeV [24]. corrections to the tree level equivalence theot@im addi-

The connection between the strategy pursued for th&on, for longitudinal guage bosons we also have logarithmic
transverse degrees of freedom and the corrections to longgorrections with Yukawa termgs]. On the one hand, this
tudinally polarized vector bosons at high energies is promeans that the method of Sec. Ill A should be used with
vided by the Goldstone boson equivalence theof2@j. It  caution to obtain all relevant subleading terms. Thus we
states that at the tree level fBmatrix elements for longitu- must consider these corrections separately for each process
dinal bosons at the high energy limi#?/s—0 can be ex- to the given order in perturbation theory. On the other hand,
pressed through matrix elements involving their associatedince the corrections are logarithmic, it means that the results
would-be Goldstone bosons. We write schematically, in theof Ref.[1] can be extended to the longitudinal sector as well.
case of a single gauge boson, Thus we find* for pep<M,

M(Wf 1¢'phys) :M((ﬁt ' lpphys) +0

%) (52 dol(py, ... Pn+9,9", Hexp)
S !
=dodom(P1, - - - Pn.9.9")

M, coxpl - S L T
—_— . =14 no 4

Yi)z 5 S
M(ZLv‘//phys):iM(ﬁbv’pphys)"'O 2 log W

Callel

(53

n
xexr{ = 2, LW (5,1%) — WPt (s, M2) ]+ W
The problem with this statement of the equivalence theorem .

is that it holds only at the tree levg29,30]. For calculations (58)
at higher orders, additional terms enter which change Egs.
(52) and(53). where the indey| indicates the cross section for longitudi-

Because of the gauge invariance of the physical theoryaly polarized gauge bosons, while the fieddndicates that
and the associated Becchi-Rouet-Stora-TydBRST) in-  the appropriate fields and quantum numbers on the RHS in

variance, a modified version of Eq&2) and (53) can be  Eq. (58) are those of the associated would-be Goldstone
derived[29] which reads bosons.

+ + w
kvM(Wv(k)"/’phys):CwaM(d’(k)’wphys)JrO( E) 1%An exception is the background field gauge where the Ward
(54) identities guarantee that the fact@g=1 andC,=1 to all orders
[31]. It should thus be investigated if subleading corrections can
also be obtained from the Goldstone boson equivalence theorem.
ror longitudinally polarizedZ-boson final states there are no
®We emphasize again that we did not consider angular logarithmmixing terms since the photon has only transverse polarization
which can be sizable and should be calculated at least to one loggiates. Thus one needs to only include the associated Goldstone
order. bosong at the DL level.

034003-11



MICHAEL MELLES PHYSICAL REVIEW D 63 034003

Thus, we have shown that all DL corrections can be TABLE |. The quantum numbers of various particles in the
summed to all orders by employing the evolution equatiorelectroweak theory. The indices indicate the helicity of the elec-

approach of Refl1] in connection with the Goldstone boson trons. We neglect all mass terms. For longitudinally polarized
equivalence theorem. gauge bosons, the associated scalar Goldstone bosons describe the

DL asymptotics.

IV. COMPARISON WITH EXPLICIT RESULTS

T Y Q

In this section we compare our results obtained in the — 1/2 1 1

previous sections with known results in special cases and one 0 5 1
loop calculations. In Ref.32], QCD results for the Sudakov ~*

form factor were generalized to the high energy eIectroweaI?+ 12 L L

theory?? Since the general strategy pursued is the same as ﬁ‘r 0 2 1

Ref.[1], we of course agree with their result for Ieadlng and"V 1}2 +01 fi

subleading universal electroweak correctionsete™ —ff
to all orders.

A very important check is provided by the explicit one-
loop corrections of Ref.6] for high energy on-sheNV-pair
production in the soft photon approximation. In the follow- where the last line in E59) corresponds to a sum over all
ing, the lower index on the cross section indicates the helicfermions contributing to the coupling renormalizatiomith
ity of the electron, wher@~ denotes the left handed elec- multiplicity Nc=3 for quarks andNc=1 for leptong. This-
tron. We summarize the relevant results fa"e~  contribution can be included in the scale of the running on-
—W,/ W, ejej—>W”*WH* andefe1—>W”+WHf for conve- shell chargeass(M?) [33]. For f[he Iongitudingl Cross sec-
nience as follows: tions we are only concerned with DL corrections. The Born

cross sections are given by

do do | Bom e? | 1+2c2+8cy s
w0l “laal (Yaz|T T gae 0v s
_ -1 8m 4cy sy, M
do Born e4 1 U2+t2
1—2c2+4ch, (—) =—— — ——sifg (62)
+3—Iog—+3|og— dQ) _ 64r’s4s], t
4CWSW e

4AE S
+2Iog— Iog—+|og— 2

( dO‘) Born e4 1
— ———sintg (63)
4 2 dQ)_, 64m®s 16s,cy,
-z E Q?N! Iog— (59)
do_ Born e4
o) (e ]y 2] ke, s 5., s 2 o
dQ i dQ iy 872 2c2s2, 2
AAE? where we keep the angular dependence. In(Eg8. a sum
S S over the two transverse polarizations of #& (+ + and
+2log—— + o :
2 log—3 ( Iogm—g Iogw) H ®) —) is implicit. These expressions demonstrate that the lon-

gitudinal cross sections in Eq&3) and (64) are not sup-
pressed with respect to Eq62). On the other hand,

Born 5 an2 4 (do/dQ)Born is mass suppresséd].
(d_g) %(d_a) 1+ | m gZi Equat|ons(59) (60) and(61) were of course calculated in
df) +| d€ + 87’ 4ciss, M2 terms of the physical fields of the broken theory and in the
on-shell scheme. We denotg,= cosé,, and s,=siné§, re-
4AE? S S spectively. In order to compare with the results of Sec. Il we
+2 |°9T '09? + '09W (61)  Jisted the relevant quantum numbers in Table I. For compari-
e

son with Eq.(59) and to logarithmic accuracy, we can absorb
the running coupling effects from our massless scheme to the
on-shell scheme as follows. The Born cross section in our

2In addition, angular terms at the one loop level were calculatecapproach is proportional tg* [see Eq.(62)]. The coupling
which we do not consider in this work. renormalization above the scdl#is given by
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2

20\ 2 Nt 2
g (M9) (11 1 1 es 1 M
20— a2(M2y| 1 — e = 2 (M2)— a2 - el i
6%(8)=g*(M?)| 1= = —~| T5Ca= 53Mn ea(M?) =€ 13— 3 2 Nclog—mjz . (68
ngen S . .
-3 )Iog—2 (65  We therefore observe that the running coupling terms pro-
portional to log&/M?) cancel for this process with the sub-

leading contributions from the virtual splitting functiofsee
Below the scale where non-Abelian effects enter, the runningq. (48)] and what remains are just the Abelian terms up to
is only due to the electromagnetic coupling and we writescaleM. Thus for Eq.(59) we obtain, from Eq(51) at the

g?(M?) =eZ2((M?)/s2, with one loop level,
|
do do | Bom 92 9’2 Y4 s
. — = = 2
(dQ) (dﬂ)_’L[l 8m? g2 Wt D 82 4 o9 M?2
gz g'2 Y s
—5Te (Te- +1)+—— log? ——3Iog—
¢ log—> 121 m§+|ZS 3log— — log? — + 3 log—
——| | log— — ) 0g°— — 3 log— —log*— )
82| | mZ T S VERR e VT
M?2 s m2
Iog— 1 Iog— Iog—2—1) 2log——2Iog—
Me Iu“exp
s 2 s s s s| 2 e -~ M?2
IogW—l Iog—z—logT —log —2—Iog —+—Iog— + = 3 4 anjNCIog—l2
M Mexp me 7’ m;
(dU)BO”‘ L 1+1OCV2”| , S 31+2c5VI s
== - —| —5—-log*— —3———-lo
do) |7 ea?| a2l O M2 asic2 0wz
o2 m2
+— 2logz——3log—+log— 4Iog—<|og— l)
8’7T expt
2 € M?
+ - —— > niQ?Nclo : 6
3 4.2 2 MQNe g?f} (67)

Equation(67) agrees with Eq(59), which are both valid in  mation, it is straightforward to check the validity of our re-

the soft photon approximation. Here and below we assumsults for Egs.(60) and (61), emphasizing again that in this

that AE<M and uex,<<M. Analogously in the DL approxi- case we need to use the quantum numbers of the associated
Goldstone bosons; see Fig. 5 and Table |I.

e L Thus we have verified that our results, calculated in terms
e of the unbroken massless fields, give the correct leading and
- subleading logarithms in transversely polaria&tpair pro-
s 0 duction at the one loop level. For longitudinally polari2zéd
# ; pairs the correct DL asymptotics is reproduced.
FIG. 5. The pictorial Goldstone boson equivalence theorem for V. CONCLUSIONS

W-pair production ine*e™ collisions. The correct DL asymptotics

for longitudinally polarized bosons are obtained by using the quan- In this paper we considered the calculation of virtual next
tum numbers of the charged would be Goldstone scalars at higto leading electroweak corrections at energies much larger
energies. than the electroweak scale when all particle masses can be
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neglected. We follow the same approach as in Rdfwhich  duce the leading and subleading terms for transversely polar-
consists of using the fields of the unbroken theory to obtairized W-pair production ine*e~ collisions and the DL
logarithmic corrections with the infrared evolution equation corrections for the longitudinal degrees of freedom.
method in different regions of the infrared cutoff. When par-  Finally we note that there are of course terms which we
ticle masses can be neglected there is a one to one corresp@xve neglected in this analysis. As mentioned above, there
dence between the high and low energy scaling behavior angte angular logarithms of the form Iag{19)log(t/u), which
the evolution equation can be formulated in terms of then general could be significant and should be computed sepa-
renormalization group with infrared singular anomalous di'rately. We also omitted all mass logarithms of the form
mension. The next to leading kernel can then be obtaineghg(gM?3)log(M,/M,,) and top-Yukawa terms. For the latter,
from the virtual contribution to the Altarelli-Parisi splitting it might be possible to include them consistently into the
functions. virtual splitting functions. For longitudinal degrees of free-
For external gauge boson emission one can use the abowgm it would also be very helpful to have subleading correc-
approach for transverse degrees of freedom. For fermiongons at the one loop level.
andW= external states, the next to leading corrections expo- |n conclusion, for future high energy experiments in the
nentiate with respect to the physical Born amplitudes. Zor mylti-TeV energy regime, the leading high energy behavior
boson andy final states, one needs to include the effect ofof general scattering amplitudes can be an important ingre-

mixing appropriately. For these final states we have expodient to study the effect of new physics expected in precisely
nentiation with respect to the amplitudes containing therijs range.

fields of the unbroken theory butot with respect to the
physical Born amplitude.
For longitudinal degrees of freedom, one can use the ACKNOWLEDGMENTS
Goldstone-boson equivalence theorem to obtain the correct
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