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Chiral symmetry and the parity-violating NN Yukawa coupling
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We construct the complet®U(2) parity-violating(PV) ,N,A interaction Lagrangian with one derivative,
and calculate the chiral corrections to the PV YukaMil7 coupling constanh . through O(l/Ai) in the
leading order of heavy baryon expansion. We discuss the relationship between the renorimalizbe
measured value dfi_., and the corresponding quantity calculated microscopically from the standard model
four-quark PV interaction. We observe that the renormalizeddepends strongly on a number afpriori
unknown parameters in the PV effective Lagrangian.
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[. INTRODUCTION a series of four-nucleon contact interactions whose coeffi-
cients area priori unknown but in principle could be deter-
The parity-violating(PV) nucleon-nucleon interaction has mined from experiment. The use @f and w exchange
been a subject of interest in nuclear and particle physics foamounts to adoption of a model—rather than the use of
some time. To date, PV observables generated by this inteexperiment—to determine the coefficients of the higher-
action remain the only experimental windows on th&  derivative operators in this expansion. Whether or not the
=0, nonleptonic weak interaction. Since the 1970s, the P\aPplication of EFT to nuclear PV can yield a more self-

NN interaction has been studied in a variety of processe<onsistent set of PV low-energy constants than the meson-
including p-p and p-nucleus scatteringy decays of light exchange approach remains to be seen. A comprehensive

nuclei, the scattering of epithermal neutrons from heavy nu@nalysis of nuclear PV observables using EFT has yet to be
clei, and atomic P\(for a review, see Ref§1,2]). The on-  Performed. _

going interest in the subject has spawned new PV experi- 1he least ambiguous element—shared by both
ments in few-body systems, including high-energyp approaches—involves the long-rangeexchange interac-

) ) - tion. At leading order in the derivative expansion, the PV
scattering at the Julich proton synchrotron COS¥4p NN interaction is a purely isovector, Yukawa interaction.
—d+y at LANSCE([3], y+d—n+p at JLab[4], and the  The strength of this interaction is characterized by the same
rotation of polarized neutrons in helium at NIST. _ constant—h_—in both the EFT and meson-exchange ap-

_The theoretical analysis of these PV observables is COM5roaches. At the level of the standard mod8M), h.. is
plicated by the short range of the low-energy weak interacyaticylarly sensitive to the neutral current component of

tion. The Compton wavelength of the weak gauge bosonsH PV 11 this respect. the result 36F PV v-decay measure-
(~0.002 fm implies that directW™ and Z exchange be- mévnt. i puzzlingF') ' Y y

tween nucleons is highly suppressed by the short-range re-
pulsive core of the strongNN interaction. In the conven- h,=(0.73£2.39,, (1)
tional framework, longer range PV effects arise from thewhereg,=3.8x10 @ gives the scale of thay in the ab-
exchange of light mesons between nucleons. One requirggnce of neutral currenfs]. This result is especially signifi-
the exchange of the, p andw in order to saturate the seven cant, since the relevant two-body nuclear parity-mixing ma-
spin-isospin channels associated with the quantum numbetgx element can be obtained by isospin symmetry fromghe
of the underlying four-quark strangeness-conserving PV indecay of ®Ne [2]. The result in Eq(1) is, thus, relatively
teraction,H {,’(AS=0) (henceforth, theAS=0 will be un-  insensitive to the nuclear model.
derstoogl. These exchanges are parametrized by PV meson- Theoretical calculations ofi,, starting from H&,V have
nucleon couplingshy, , whose values may be extracted from been performed using $8),, symmetry and the quark
experiment. At present, there appear to be discrepancies berodel[7,8], the Skyrme mod€l9], and QCD sum rulegL0].
tween the values extracted from different experiments. ImMs a benchmark for comparison with experiment, we refer
particular, the values of the isovectatNN coupling, h ., the SU(6),-quark model analysis of Desplanques, Dono-
and the isoscalgsNN coupling,h%—as extracted fronp-p ~ ghue and HolsteiDDH) [7] and Feldman, Crawford, Du-
scattering and thes decay of *F—do not appear to agree bach and HolsteifFLDH) [8].* These authors quote a “best
with the corresponding values implied by the anapole movalue” and “reasonable range” for thiey, :
ment of 13Cs as measured in atomic Y.

The origin of this discrepancy is not understood. One pos-
sibility is that the use op and w exchange to describe the  INote that although the DDH analysis used the symmetry group
short-range part of the PMN interaction is inadequate. An  sy(6), in order to connect weak vector meson and pion couplings
alternate approach, using effective field thedBFT), in-  the predictions relating pion couplings alone to hyperon decay data
volves an expansion of the short-range RW interaction in  rely only on SU3).
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h, (best=7g,, ) The relationship between-"" and the coupling obtained
by computing(N|H{’|N) in a microscopic model is not
h.(range:(0—30)g,, . 3 immediately transparent. In what follows, we make several

observations about this relationship. We first show that

where here the “best value” is more aptly described as arZnVZ- andAh, are substantial, so thaf™ differs signifi-
educated guess, while the “reasonable range” indicates a segntly fromh’. To that end, we compute all of the chiral
of numbers such that theory would be very hard-pressed toorrections to the PV Yukawa interaction throu@l(lllAf‘(),
explain were the experimental value not found to be withinwhere A, =47F .. We work to leading order in fiy in
this band. heavy baryon chiral perturbation theatyBChPT). Of par-
The DDH-FCDH analysis implicity assumed that ticular significance is the dependenceAdi,. on other low-
(Na|H{)IN) is relatively insensitive to the breakdown of energy constants parametrizing P\fr Zroduction and the
chiral symmetry associated with the nonvanishing lightPV N—amA transition. We subsequently reexamine the
quark masses. Indeed, the quark model calculations peBU(6),-quark model calculation of Ref$7,8] and argue
formed in Refs[7,8] reflect underlying relationships built on that most—if not all—of the chiral loop effects which renor-
unbroken SB) chiral symmetry. In what follows, we show malize h,. are not included in the microscopic calculation.
that this assumption of good chiral symmetry may not beThus, the relationship betweéry™™ and microscopic calcu-
justified and that the impact of chiral corrections onlations remains ambiguous at best. This ambiguity is unlikely
(N7r|H{,’IN) may be significant. Moreover, the size of theseto be resolved until an unquenched lattice QCD calculation
corrections rendergN|H{'|N) strongly dependent not of h, using light quarks becomes tenable.
simply on one but severa priori unknown parameters in Our discussion of these observations is organized as fol-
the appropriate effective Lagrangian. We also argue that thews. In Sec. Il we summarize our conventions and notation,
presence of these terms may signal the importance of “disincluding the PV chiral Lagrangians relevanttg renormal-
connected” sea-quark contributions g, making a mea- ization. Section Ill gives a discussion of the loop calcula-
surement of this quantity a potentially interesting probe oftions. In Sec. IV we comment on the scale of the loop cor-
hadron structure. rections and provide simple estimates of some of the new PV
In general, the problem of relating the fundamental weakow-energy constants appearing in the analysis. Section V
guark-quark interaction to the low-energy constants whichgives our discussion of the relationship betwelréfF and
parameterize hadronic matrix elements of that interaction ishe calculation of Refs[7,8]. Section VI summarizes our
non-trivial. In the framework of EFT, one may define theseconclusions. Some technical details are relegated to the Ap-
constants at the tree level in the hadronic effective theorypendixes.
The quantities extracted from experiment in the conventional

analysis, howeyer, are n_ot the tree_—level parameteFrs, but Il NOTATIONS AND CONVENTIONS
rather renormalized couplings. Denoting the latteh55™,
one has We follow standard HBChPT conventiofi1,12 and in-
troduce
hEFF=Z7VZ, h1+Ah,, (4) _ .
i

. - _ S =¢2 =exp<—), =2 6

where h}, is the coefficient of the leading-order, PN ¢ ¢ F. T ©

Yukawa interaction in the effective theoryZy and \Z,

denote chiral loop renormalizations of the nucleon and piorwith F . =92.4 MeV being the pion decay constant. The chi-
wave functions, respectively, arth_ denotes contributions ral vector and axial vector currents are given by

from chiral loops and higher-dimension operators to the

Yukawa interactiongonly the finite parts of these couplings D,=D,+V,

are implied; loop divergences are canceled by the corre-

sponding pole terms it and theZy ). At leading order in

i
1/A,, one haZy ,=1, Ah,=0, andh5 " =hZ. The renor- Ap=— §(§DM§T—§TDM§)
malized coupling appears as the coefficient in the one-pion-
i D
exchanggOPE) PV NN potential _ F,ﬂr L O(d) @
~ Onnah5 T (X1 - L[ PP
S\F;EZI \/E 2 (0-1+0-2)' T’fﬂ(r) ’ 1
2 § V=5 (£D,£"+¢'D 8). ®)
©) 2
where gyn, 1S the strong #NN coupling and f_(r) For theA, we use the isospurion formalisf3], treating

=exp(—m,r)/4xr. Neglecting the effects of three-body PV the A field Tiﬂ(x) as a vector spinor in both spin and isospin
forces and Zr-exchange interactions, it hffF to which the  space with the constrairvt'T'M(x)zo. The components of
result in Eq.(1) corresponds. this field are
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2[AT AT The PV analogue of Eq11) can be constructed using the
TiI ~ N3l a0 ) , TZZ A\ B) chiral fieldsXf  defined ag15]
)2 m
o AR . Xi=e'e, Xg=erodl, Xi=xEEXd. (14
M A—
M
The field T), also satisfies the constraints for the ordinaryWe find it convenient to follow the convention in R¢15]
Schwinger-Rarita spig-field: and separate the PV Lagrangian into its various isospin com-
_ _ ponents.
y*T,=0 and p*“T,=0. (10 The hadronic weak interaction has the form

We eventually convert to the heavy baryon expansion, in

which case the latter constraint becomﬂ@'LzO with v, G

the heavy baryon velocity. Hyw=——2=J,J" T+H.c., (15)
The relativistic parity-conservinPC) Lagrangian forr, V2

N, A interactions needed here is

2 where J, denotes either a charged or neutral weak current

EPC:foD“EDMETﬂL N@D ,y*—myN built out of quarks. In the standard model, the strangeness
conserving charged currents are pure isovector, whereas the
neutral currents contain both isovector and isoscalar compo-
nents. ConsequentlyH,, contains AlI=0,1,2 pieces and
these channels must all be accounted for in any realistic had-
ronic effective theory.

We quote here the relativistic Lagrangians, but employ
the heavy baryon projections, as described above, in comput-
ing loops. It is straightforward to obtain the corresponding
heavy baryon Lagrangians from those listed below, so we do
o not list the PV heavy baryon terms below. For th sector
TNl TGt 20y, v 0N+ H.C, (11 we have

+gANA,u’y 75N TM (IDay _mAéij)g,u.v
1 , O .
IR YNiDYy - M8 Y S 9 AY Y s

92, il ai 95 i . ,
S (VAT ALY Vst S VALY Y5y, | T

wherew'ﬂ=tr[ TiAM]/Z while D, andD,, are the gauge and
chiral covariant derivatives, respectively. Explicit expres- ONIA
sions for the fields and the transformation properties can be EA' o= VNA, YN 18
found in[14]. Here,z, is an off-shell parameter, which is not
relevant in the present wofld.3]. 1 hl

In order to obtain proper chiral counting for the nucleon, L= N,),I-LNTr(A x3)— N), ysNTr(A, x3)
we employ the conventional heavy baryon expansion of
LP€, and in order to consistently include tie we follow 1
the small scale expansion proposed8]. In this approach T E N3N (17)
the energy and momentum and the delta and nucleon mass 22 T
difference s are both treated as small expansion parameters
in chiral power counting. The leading order vertices in this
framework can be obtained vR.I'P . wherel is the origi-
nal vertex in the relativistic Lagrangian and

2

LT, =hZT2ON[ XA, XB+X2A, X 1y*N
1+ h'%‘ abnirya b a b
* — ST°NIXRALXR—XEA,XP] 778N, (18)

Po=—— 12)

are projection operators for the large, small components of o ab | heab h
the Dirac wave function respectively. We collect some of theVNeréZ*” is a matrix coupling th&*® to | =2, 13=0. The

relevant terms below: above Lagrangian was first given by Kaplan and Savage
(KS) [15]. However, the coefficients used in our work are
LPC=N[iv-D+2gaS-AJN—iT#[iv-Dii— &5 slightly different from those of Ref.15] since our definition
v A ! of A, differs by an overall phase.
+918'A”]TL+gﬂNA[?{‘wLN+WwiJT{‘] (13 The term proportional th contains no derivatives. At

leading order in ¥, it y|elds the PVNN# Yukawa cou-
where S, is the Pauli-Lubanski spin operator ardg=m, pling traditionally used in meson-exchange models for the
—my. PV NN interaction[7,2]. Unlike the PV Yukawa interaction,
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the vector and axial vector terms in Eq$6)—(18) contain  experiments. Consequently, the experimental constraints on
derivative interactions. The terms containimgandh; start  the low-energy constants,, h, are unknown.

off with NN#a interactions, while all the other terms start It is useful to list the first few terms obtained by expand-
off as NNr. Such derivative interactions have not been in-ing the Lagrangians in Eq916)—(18) in 1/F .. For the
cluded in conventional analyses of nuclear and hadronic P\resent purposes, the following terms are needed:

L 0w —1h%(pnm* —npm™) 1‘F(w+w+ 5770770) (19)
hd+4/3n2 _ - i
L= == g pynD,m Ny pD, T ] 20
LRN=i AF2 ApyMySp(W+Dﬂ7T7_7TiDM7T+)+i A|:2 A“V“st(w+D,ﬂr’—7r’D,,,7T+)

~[2hi— . . 2hs_ . .
+1 ?p'y“%m'r DM7T =1 ?py"%nfr DM7T . (21

For the PV#NN Yukawa coupling we have also kept terms with three pions.

The corresponding PV Lagrangians involvinla- A transition are somewhat more complicated. We relegate the complete
expressions to Appendix A, and give here only the leading terms required for our calculation. As noted [ib4Rehe
one-pion7NA PV Lagrangian vanishes at leading order in the heavy baryon expansion. The two-pion terms are

ihpA++777ﬂ'0 ihpAJrJrﬂ'Oﬂf ihpA+7TO'rrO SWpAT T T
A —_ _ A —_ _ A —_ —_ _
EZNAZ——Z pA;JrD“ﬂ' w0 > pA;+D'U'7TO7T - DAZD’U‘WOWO— > pA;D"ﬂ'+ﬂ'
F2 F2 F F2
ihpAJWTfﬂ'Jr ihpA07T+7TO i pAo'n'OvT+ pAT T
A DATDEr gt 2 PAODHgt 70— 2 PAODHZOt — — A A DEgt gt
2 Pou 2z Pou 2z Pou 2 PR
T m T
S nAT T T g At A0 AT A0 0 nA07070
iha TA G+ ~_ih At -0 ih A 0, — h A0 0.0
- nA" "DFT T — nA ' Dt7 7 — nA D*m m — nA>D*m
F2 M FZ M F2 M FZ M
T T T T
ihnAOw+7r_ ihnAow_77+ ihnA_11'+7TO nA T 707t
A Iy _ A —_ _ A - A -
- 5 nAgD"‘TrJrTr - > nA?LD'“ﬂ' 7T+——2nA’uD’u’JT+7TO— > I’]AMD"‘WOW+
F F F F
T T T T
+Hec., (22)

where the coupIingia,ﬂAH’T_”(J are defined in terms of the various @Y PV low-energy constants in Appendix A.
The PV 7wAA Lagrangians, also listed in Appendix A, contain terms analogous to the YukgvemdA terms in Egs.
(16)—(18). Since we compute corrections up to one-loop order only, and since the initial and final states are nucleons, the PV

7wAA terms A type) are not relevant here. The leading, singlefukawa andV-type interactions are

hy — _ hy — _ 2h, — _
,C;Tﬁléwa:—i\/—%(A”A*w*—A*A**w’)—i—g(AOA’w*—A’AOTr’)—iTA(A+A°7T*—A°A+7T’) (23)

J3

A++A+ o o hA+A0 o o
E{,TM=—VF—(A++yMA+D”7T++A+yMA++D”7T_)— ‘I’: (A" y,ADH 7" + A%, A D 7")
T —
TF (Aoy#AfD“ﬂ'Jr-i—A*y#AoD“ﬂ'*) (24
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where the coefficients are given in Appendix A. As we discuss in Appendix B, none of the two-derivative

One may ask whether there exist additional PV effectiveoperators in Eq926)—(29) contribute to the renormalization
interactions that could contribute at the order to which weof h, at the order to which we work in the present analysis.
work. In the pionic sector there exists o@&P-conserving,

PV Lagrangian:
Ill. LOOP CORRECTIONS
PV_ i n,oV_ v, M
L7 €ijkw, 0, (Do =D w). 25 The leading order loop corrections to the Yukawa inter-
At leading order in ¥ ., £ contains five pions. Its lowest action of Eq.(lQ) are g_enerated _by the diagrar_ns (.)f Figs. 1
order contribution appears at two-loop order at best, so W@nd 2. As we _d|scuss n Appe”d'x B, the contributions from
do not consider it here. many of the dlagrams_whlch nominally renormalh,e van-
Similarly, one may consider possible contributions fromlsh at the order at which we truncate. In particular, none of

two-derivative operators. There exists o@8é>-conserving, the vector ¥-type) 7NN and 7T,AA terms contribute to 'this'
PV operator: order. In what follows, we discuss only the nonvanishing

Yukawa andA-type contributions. Details regarding the van-

o ishing of the other contributions appear in Appendix B. Fol-

. No*’[D,A,—D,A,IN. (26) lowing the conventional practice, we regulate the loop inte-

X grals using dimensional regularization. The pole terms

There exist three independent PC, two-derivative operator@roportional to 1D —4 are canceled by appropriate counter-

[16]. For example, one may choose the following three:  €rms. We identify only the terms nonanalytic in quark
masses with the loops. All other analytic terms are indistin-

1 _ guishable from finite parts of the corresponding counter-
< NiysD, AN, 27 terms.
X The nonvanishing contribution from Fig(a arises from
1 _ the insertion of the @& part of the Yukawa interaction of Eq.
. ARAN, (28) (17). The nonanalytic term is
X
1 _ 5m; (w2
A_X Na“"[A, ,A,IN. (29 IM(a)ZgA—)Z( In(m—ﬂ) hEI['T7'+, (30
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whereA  =4mF . andu is the subtraction scale introduced 20 92 waha 2
in dimensional regularization. For simplicity, we show here iM e = -5 m SraTs (282—m )In( )
only the contributions fon—ps . The terms fop—nz" Ay Ma
are equal in magnitude and opposite in sign since it is the 54 \/527
hermitian conjugate of the—p#~ piece. This property —4s /—52 e——— 7|+ (34)
holds to all orders of chiral expansion. m,

The nonvanishing contribution from Fig(k) arises from

the strong vertex correction to the leading ordeNN . i
Yukawa interaction: The corrections generated by the BMrNA vertices are

3 2
(52— —mi) 5|n<i)
2 m,,
The terms in Figs. (t1), 1(c2) are generated by the PV axial

. . 2_
mamNN couplings proportional to thk), . We have —2(52—mf,)3’zln o+\6°—mZ

2

IM(b) In

4gAA2

) hizt, (31 2 g.na

iMZ(bl)+2(b2):§m
X

7T

hA+

AT
m2 "
iM (c1)+ (c2)= 2270 F A2 har™. (32 (35
X
The contribution fromh to these two diagrams cancels out, whereh} is defined as
leaving only the dependence &ri. We note that although
this term is propotional ton3” and, thus, nominally sup-
pressed, the coefficient ctn‘1 is fortuitously large ¢ 1/4). P PTGy
The two pion vertex in Figs. (1), 1(d2) comes from the ha= \/—(h +hi )
chiral connectiorV/,, :
1m? 2 \[h”A mom gt
M (a1)+ (0=~ 5 AZ In( Mﬂ) hort. (33 3 :
—hp T A (36)

The leading contribution involving\ intermediate states
arises from Fig. @). The corresponding amplitude receives
contributions from three different isospin combinations for Summing all the nonvanishing loop contributions yields
the A intermediate states. Their sum reads the following expression foAh . :
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1m )2 L 3, 22 ) 9-na=1.05[13] and by choosing.= A, =1.16 GeV? With
Ahz=z 3z Inj | hat 295z In[ (| hz these inputs, the value &y+Z, is completely determined.
X i X i The vertex corrections, which appear/k ., in Eq. (4), de-
H 1 1 A H
v m? . 20 g2 sha pend on the PV couplings,., hy, hy, andh, . We obtain
WgAm AT g A—)g(

hEFF=0.51 +0.25hx— 0.2, +0.07h5. (40

X

2
2 ~
(262—m17)ln(m )

m

5+\/82—m?2
—45F—mz i N

m7T

Note that the effect of the wave function renormalization
corrections is to reduce the dependenceh@nby roughly
50%. In addition, the dependence ™" on h} andh, is
non-negligible. Their coefficients are only a factor of 2
3 2 smaller than that diil. . Although these contributions arise at
(52_ _mZ) 5|n<i) O(p?, p?), they are fortuitously enhanced numerically.
27 Thus, in a complete anaysis of the OPE PV interaction one
should not ignore these constants.
A At present, one has no direct experimental constraints on
A @D the parameteris,ﬁ, hy, andhﬁ, as a comprehensive analysis
of hadronic PV data including the full chiral structure of the
PV hadronic interaction has yet to be performed. Conse-

The final nonvanishing comections arise frdihand o uently, one must rely on theoretical input for guidance re
wave function renormalization. These corrections, whichq Y, y P 9

have been computed previousl§7], generate deviations garding the scale of the unknown constants. Estimatés; of
from unity of Zy and \Z, appearing in the expression for &¢ 9IVen by the authors of R¢lL5]. These authors observe
hEFF in Eq. (4). In the cage oZ,,, the nonvanishing contri- that the usual pole dominance approximation Rxwvave

. . . : non-leptonic hyperon decays typically underpredicts the ex-
butions arise from Figs.(&1), 1(€2) and 2c1), 2(c2): perimental amplitudes by a factor of 2. The difference may

be resolved by the inclusion of local, parity-conserving op-
282—m2 9 erators having structures analogous to fg/pe terms in
- In( H ) Eq. (17). The requisite size of thAS=1 contact terms may
A% imply a scale for the analogousl =1 PV terms. If so, one
might conclude thah}\ should be on the order of §Q. On

w

52_ m2

m

w

9  m? w2
2T 2
ZN— 1:ZgAA_§ |n(m—w) —497NA

S8 —m- 5+ \/52—m2,, the other hand, a simple factorization estimate Ieadls}\to
—4 A2 In m,, : (38) ~0.29,,. While the sign ofh; is fixed in the factorization
X

approximation, the sign of the larger value is undetermined.
Thus, it is reasonable to conclude thmi may be large
enough to significantly impadh="", though considerably
more analysis is needed to yield a firm conclusion.
The wAA Yukawa couplingh, has been estimated in
1(m\2 [ w2 Ref.[8] using methods similar to those of RET]. The au-
\/Z_w— 1=— §<A_) In(m—) . (39)  thors quote a “best value” ofiy=—20g,., with a “reason-
X g able range” of (-51—0)xg.,.> Naively, subsitution of the
_ o best value into Eq(40) would increase the value ¢,
Numerically, the loop contributions t9Z, are small com-  \hereas thé®F result would seem to require a reduction. As
pared to those enteringy, . we argue below, however, the relationship between the cou-
Note that the one |00p I’enormalizationm,]f from the PV p||ngs Computed in Ref$7,8] and the parameters appearing
Yukzawa 7NN and 7AA vertices is already at the order in Eq. (40) is somewhat ambiguous. Direct substitution of
1/AX . An a.d.dlltlonal |OOP will introduce a factor of A/)z( the theoretical value inthFF may not be entire|y appropri-
Loops containing the axial vectbdN7m andNA 77 verti-  gte.
ces and one stronyN or NA 7 vertex are ofO(1/A%F ). To date, no theoretical estimate of thaype 7NA cou-
To obtain contributions oD(l/Af(), one would require the pling has been performed. A simple estimate of the scale is
insertion of operators carrying explicit factors ofAl/into  readily obtained using the factorization approximation. To
one loop graphs. We find no such contributions.

The pion’s wave function renormalization arises from Fig.
2(k) [18]:

IV. SCALE OF LOOP CORRECTIONS %Since the dependence @nis logarithmic, one may choose other
) ) ) values, such ag=m,, without affecting the numerical results sig-
We may estimate the numerical importance of the loomificantly.

corrections td‘l}, by taking§=0.3 GeV,g,=1.267[19] and 3This coupling is denoted, ,, in Ref. [8].
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that end, we work with the tree-level form ﬁsvleengt_ also vanishes in the factorization approximation, even

ing short-distance QCD corrections and terms containinghough the individual couplings do not. The third pair of
strange quarks, one has couplings received no factorization contributions. Thus, one

has hﬁ=0 in this approximation. In principle, non-
factorization contributions yield a non-zero value fof .
& 02 Oy (1— 5)ddy (1— ye)u Although we have not evaluated these contributions, we do
V2 i Ys)HaY Vs not expect the scale to be significantly larger than the factor-
(41) ization value for the individuahﬁ“” couplings. Conse-
quently, we estimate a reasonable range Iidr of (0
—few)xg,.
These theoretical estimates suggest considerable ambigu-
4 ity in the prediction forhE™F. In principle, some of this
+3 sinzawv(ho)A(m] , (42 ambiguity might be removed by performing the comprehen-
sive analysis of hadronic PV suggested above, in which the
various constants would be determined entirely by experi-
ment. The viability of such a program remains to be seen.

H{ (AS=0)=

—2(1—2 sirt,) VI AGH

whereV{®) andA{®) denote the third components of the octet
of vector and axial vector currents, respectively, and

V. COMPARING WITH MICROSCOPIC CALCULATIONS

The results in Eq937)—(39) embody the full SU2) chi-
ral structure atO(p®) of (N#|H}’IN) at leading order in
the pion momentum. Any microscopic calculation of this
matrix element which respects the symmetries of QCD
should display the dependence on light quark masses appear-
ing in hEFF . In principle, an unquenched lattice QCD calcu-
nAO+ AAO; = o lation with light quarks would manifest this chiral structure.
E(hA —ha ). (44) In practice, however, unquenched calculations remain diffi-
cult, and even quenched calculations require the use of heavy
The neutral current contribution to this combination, whichquarks. For a lattice determination @i ,'|N), the ex-
arises only from the term containir\g‘f), is pressions in Eqs(37)—(39) could be used to extrapolate to
the light quark limit, much as the chiral structure of baryon
mass and magnetic moment can be used for similar extrapo-
V2GF2(1-2 80, CANAY) ~2g,CANAY), (45) i o P
In the absence of a first principles QCD calculation, one
ust rely on symmetries and/or models to obtain the PV
N7 coupling. A variety of such approaches have been un-
dertaken, including the SU(gjquark model calculation of
Refs.[7,8], the Skyrme modd19], and QCD sum rulegl0].
—(49,/3)CA(NAY), (46)  Todate, the DDH-FCDH analysis remains the most compre-
hensive and has become the benchmark for comparison be-
yielding a total factorzation contribution of about tween experiment and theory. Consequently, we focus on
(2g9./3)C2(nA%). Thus, one would expect the scale of thethis work as a “case study” in the problem of matching

axial vectormmNA Coup"ngs to be on the order of a few microscopic calculations onto hadronic effective theory.
Xg.,. The DDH-FCDH approach relies heavily on symmetry

however, the sum of factorization contributions cancels iden€XperimentalA S=1 nonleptonic hyperon decay amplitudes.
tically. As one sees from the expressions forhﬁ ™ given All the charged currentCC) contributions to theAS=0,1
in Appendix A, isospin requires B—B’M amplitudes, wher# is a pseudoscalar meson, can

be related using S@3) arguments. Likewise, the neutral cur-
rent (NC) component of the effective weak Hamiltonian be-
hpA®r T ppate Tt g (47)  longing to the same multiplets as the CC componéies
those arising from a product of purely left-handed currents
The factorization contributions independently satisfy thiscan also be related via $8). The remaining NC contribu-
sum rule. The second combination of constants appearing itions to theAS=0 PV amplitudes are computed using fac-
Eq. (36), torization and the MIT bag model. The DDH approach also
employs SU(6), symmetry arguments in order to calculate
parity-violating vector meson couplings. Although one re-
, (48) quires only SUW3) to determine the pseudoscalar couplings,

1 _
V=3 (unu+dyd). (43

Consider now the first term in the expression Iﬁérgiven in
Eq. (36). In the factorization approximatior(,’ contrib-
utes only to the antisymmetric combination

whereCE(nA%)~O(1) is the axial vecton— A° form fac-
tor at the photon point. After Fierz re-ordering, the chargecﬂ
current component OHC’VV contributes roughly

AT 707~ pAOﬂOﬂ'+
hi, —h
A A
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M
B j \ B'
(a)
M
) [
s () s
®)
M
B \ \/ B

(c)

FIG. 3. Diagrammatic representation of the SU{@&pmponents
of (B'M|H {/(AS=0,1)|B). (a—(c) correspond, respectively, to
b, C,, anda,, . The wavy line denotes the action #fy,’ .

we refer below to the general SU( Y¥ormalism used in
Refs.[7,8].

The general SU(§) analysis employed by DDH and
FCDH introduces five reduced matrix elemerds; , by, ,
andc, . These constants correspond to(6)\), components
of the weak Hamiltonian:

[(BB)35® Mas]as~C, (49
[(BB) 405® M 5] 80785~ by b, (50
[(BB) 4052 M 35] 280786~ ¢+, - (51

One may represent these different Componenti%(ﬁ)v dia-
gramatically as in Figs. 3. The components shown in Fig
3(a) and 3b) correspond tob;, and c,, respectively. In
practice, these contributions are determined entirely fro
empirical hyperon decay data. The term in Figa)3orre-
sponds toa, , and is computed in Ref$7,8] using factor-
ization.

The PV NN# Yukawa coupling can be expressed in
terms of these S(®),, reduced matrix elements plus an ad-
ditional factorization-quark model term. Temporarily ne-
glecting short-distance QCD correctionsmﬁ,\’, one has

PHYSICAL REVIEW D 63 033006

(pm|H Q) |ny= csc2d, sirf 6,

3\2

92

tand.c, —

1
X (2¢c,—by)+ 3 Sirfé,y, (52

where 6. and 6,y are the Cabibbo and Weinberg angles, re-
spectively, andy denotes a Fierz-factorization contribution.
The first term on the right-hand sidBHS) of Eq. (52) gives
the CC contribution, while the remaining terms arise from
weak NC. Including short-distance QCD renormalization of
H ) leads to a modification of Ed52):

(P [HGY Iy ={[1-2 5ir?6,] Y (K) + Sir? 6}z 9,

+5sirf0.(B;+B,), (53
where

= —=tanf.c, 54
9-=3 T B (54)

B,= 4 E(K)| =———

Fﬁ” (K) sind, cosé,
X (b,/6—b/12—c,/2) (55

1

B,= 5F(K)Y, (56

and y(K), E(K) andF(K) are summed leading logarithmic
(renormalization groupfactors dependent on

2
n —v
>
"

2

11- 3

1 ag(u)
aa

K (57)

o

The overall scale factop appearing in Eq(53) was intro-
duced in Ref[7] in order to account for various theoretical
uncertainties entering the analysis.

The appearance df,, b;, andb, in g, andB; relies on
tree-level SU(6),, symmetry—long-distance chiral correc-
tions of the types shown in Fig. 4 have not been explicitly
included. Inclusion of such corrections would necessitate a

nfeanalysis of theAS=1 amplitudes in much the same way

that one treats the octet of baryon axial vector currg¢his
or magnetic momentg21]. For example, lettingA(A%) de-
note the amplitude foA —p#~ one has, at the tree level,

1

V3

A(A%)=—=(b,/6—b/12—C,/2). (58)
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FIG. 4. Chiral corrections to th8—B’M nonleptonic weak IN7><Nx] ®

decay.

Including the leading chiral corrections would yield the
modification

N / ‘\ N
(©

1
A(A%)= N VZ,Z,Z (b, /6—Db/12—c,/2)+ AA(A?),

(59) FIG. 5. Quark line diagrams for the renormalizatiorhgfdue to
the axial PV7#NN interaction. As in Fig. 3, the wavey line de-

> PV f PR i
0 . . notes the action of{y,” . (@) shows a typical contribution tb}, .
whereAA(AZ) denotes vertex corrections and possible CONp). () denote the corresponding loop correctionshto. (b) con-

trlbutlons from hlghgr-d|men3|on operators. S|m|I6}r COITEC- 1 ins the disconnecteqiy insertions, whilgc) gives a Z-graph con-
tions would appear in the SU(§)symmetry terms in EQS. tipution.
(52), (53). Given the absence of these corrections from the

DDH'FCR/H analysis, ~the symmetry cOmPpoONents consist solely of three constituent quarks. Th&=1 hy-
(p7~|Hy,'|n) do not formally embody the subleading chiral peron decay data, however, clearly imply tigat- 0. In or-
structure ofhZ"F. The numericalimpact of applying chiral  der to obtain a nonzero value in a quark model, one requires
corrections to the DDH-FCDH SU(§)analysis is much less  the presence of sea quarks and gluons. It is sho@4h for
clear, since some of the chiral modifications can be absorbegkample, that,+0 when gluons are added to the MIT bag
into renormalized values of the chiral couplings, which aremodel. Similarly, one would expect contributions from the
determined empirically. Nevertheless, the potentially sizableqa pairs in the sea. Since relativistic quark models already

; ; EFF - o
effect of the SW2) chiral corrections orh-"" should give containgq pairs in the form of “Z graphs'{25], it is likely
one pause. : iy _ , : ,

A related issue is the degree to which ambiguities intro-that disconnectedq insertiongsee Fig. &)] give the domi-

duced by kaon andy loops in SU3) HBChPT could plague nant sea quark contribution to,. In a chirally corrected
an analysis of the\S=1 amplitudes. Here recent work by analysis of nonleptonic decays, the long-distance parts of the
Donoghue and Holstein argues that finite nucleon size callgisconnectedyq insertions appear explicitly in the guise of
for long-distance regularization of such heavy meson loopspseudoscalar loops, while the short-distance contributions
which substantially reduces their effedtd2]. Results are are subsumed into the value@f and possible higher dimen-
then similar to what arises from use of a cloudy bag ap-sion operators. “Quenched” quark models without explicit
proach to such matrix elemer3]. A comprehensive study pionic degress of freedom generally do not include the long-
of such issues—and their impact on the DDH-FCDH calcu-distance physics of disconnected insertions.
lation of h,—goes beyond the scope of the present work. The m, dependence is differerin conventional HBChPT
Nevertheless, the potentially sizable impact of the chiral coranalyses of hadronic observables, one only retains the loop
rections inhEFF and the use of tree-level symmetry argu- contributions non-analytic in the light quark mass. The con-
ments in Refs[7,8] points to a possibly significant mismatch stituent quark modefwithout explicit piong has a difficult
betweenhEFF andhPPH . time producing these non-analytic contributions. The sim-
The reﬂmaining terms in the DDH-FCDH analysis— Plest, illustrative example is the nucleon isovector charge
involving the parameters; and y—are determined by ex- radius,(r)r_,, which is singular in the chiral limif26].
plicit MIT bag model calculations. One may ask whether theThis chiral singularity, of the form InZ~Inmy, is produced
latter effectively includes any part of the subleading chiralby 7 loops. Relativistic quark models, such as the MIT bag
structure ohEFF . In order to address this question, we makemodel, yield a finite value fofr?);_, asm,— 0. One cannot
three observations: produce the chiral singularity in a quark model without in-
Sea quarks and gluons generatg.cThe parametec, cluding disconnectedq insertions dressed as mesons.
vanishes identically in any quark model in which baryons The corresponding argument in the casehﬁ’?F is less
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direct, but still straightforward. In the limit of a degenerdite weak interaction constitutes a probe of the dynamics of low-
and A, the non-analytic terms ihiFF have quark mass de- energy QCD, in a manner analogous to the probe provided
pendences of the formyInm, or m3?. As we show in Ap- by the electromagnetic interaction.
pendix C, bag model matrix elements of the four quark op- From a phenomenological standpoint, the matrix element
erators appearing it have a Taylor series expansion one may hope to extract from hadronic PV observables with
aboutm,=0. Thus, the parameterg andy cannot contain the least ambiguity i$N7r|H5\,V|N>. In this study, we have
the non-analytic structures generated by the diagrams iargued that any theoretical interpretation of this matrix ele-
Figs. 1 and 2. ment must take into account the consequences of chiral sym-
Graphs are missingThis observation is simply a dia- metry. Indeed the chiral corrections to the tree-level, PV
grammatic summary of the previous two observations. ForNN Yukawa coupling are not small. AD(1/A?), the ef-

simplicity, gonsider a subset of_the ntiggk-leve_l diagrams 3Sfective coupling measured in experimentE™" | depends
sociated with the appearancelgf in h,™ . Typical contri- not only on the leading-order coupling}T, but also on new

butions to the axiaNNz7 PV vertex are shown in Figs. . .
5(a). The corresponding loop contributionsh§™ appear in (and experimentally undetermined®V low-energy con-
' P g'oop ppear stants,hk, ha, andh,, as well. Furthermore, the coeffi-

Figs. 5b),(c). Those in Fig. ) involve disconnected|d  cients ofhl, hi, andh, are comparable in magnitude. At

insertions, which do not occur in the constituent quarky eqent one has only simple theoretical estimates of the
mo.del. The contribufuon of F.'g.' (.5) involves Z graphs, magnitudes of thé} andh3 in addition to the FCDH cal-
which are produced in a relativistic quark modieh prin- culation of h, . Thgse est?mates suggest that the new PV
cip_Ie, the 3+qq int_ermediate state could contair_i aiw _ couplings appearing ihEFF could be as large a$717 Since
pair. As argued previously, however, the Z graphs implicit Mo experimental constraints have been obtained for the new

the MIT bag model calculation ofi. do not produce the ¢, njings, there exists considerable latitude in the theoretical
nonanalytic structure of the correspondingloop. Appar- ; EFF
expectation foh_ .

eptly, only an iinqugnched qgark model, which generates the For two decades now, the benchmark theoretical calcula-
disconnected insertions of Fig(l®, could produce the req- tion 0f<N7-r|H\'7\,V|N> has been the SU(§Jquark model ap-

uisite nonanalytic terms. proach of Ref[7], updated in Ref[8]. We have argued,

From this “case study" of the DDH-FCDH calculation of however, that the DDH-FCDH calculation does not manifest
h., we conclude that the SU(§)quark model approach : A . i ;
77 the general strictures of broken chiral invariance obtained in

UEEE in Refs|7,8] does H.Ot |ricorporate the chiral structur_e of the present analysis. At the quark level, this chiral structure
h. ™. Were the numerical impact of the chiral corrections o —
negligible, this observation would not be bothersome. Thdeflects the role played by the "disconnectedy compo-
actual impact of the chiral corrections, however, may be sighents of the sea. While relativistic quark models contgin
nificant. sea quark effects in the guise of Z graphs or lower-
component wave functions, the most common “quenched”
versions do not include explicit disconnected paiGiven
VI. CONCLUSIONS the potential impact of the chiral corrections associated in
part with the disconnected insertions, model calculations
With the confirmation of the electroweak sector of thesuch as the DDH-FCDH calculation may bear reanalysis.
standard model at the 1% level or better in a variety of lep-  Applying chiral corrections to the SB) analysis ofAS
tonic and semi-leptonic processes, one has little reason te 1 hyperon decays may help to close the gap betwégﬁ
doubt its validity in the purely hadronic domain. Similarly, andhP°H  presumably, similar corrections should be applied
the predictions of QCD in the perturbative regime have beery, gther approaches not containing explicit pionic degress of
confirmed with a high degree of confidence. Thus, one mayeeqom. In the longer run, one may be able to use the chiral
justifiably considert{y,”, the effective Hamiltonian includ-  gyrycrure ohEFF to extrapolate an unquenched lattice calcu-
ing its perturbative strong interaction correction, to be well|ztion with heavy quarks into the physical regime.
understood. Moreover, the precision available with present
and future hadronic PV experiments is unlikely to match the
levels achieved in leptonic and semileptonic processes. Con-
sequently, one has little hope of detecting small deviations in
HS’VV from its SM structure due to “new physics.” On the It is a pleasure to thank J.L. Goity and N. Isgur for useful
other hand, much about QCD in the non-perturbative regimeliscussions. This work was supported in part under U.S. De-
remains mysterious: the mechanism of confinement, the dypartment of Energy contract DE-AC05-84ER40150, the Na-
namics of chiral symmetry breaking, the role of sea quarks irtional Science Foundation, and the National Science Foun-
the low-energy structure of the nucleon, and so forth. Eacldation Young Investigator program.
of these issues bears on one’s understandingatfix ele-
mentsof H\';VV. In this sense, the low-energy, PV hadronic
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SSome effects of disconnecteﬁpairs may, however, hide in the
effective parameters of the quark model, such as the string tension
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APPENDIX A: PV LAGRANGIANS

Here we present the full expressions for some of the PV Lagrangians not included in the main body of the paper. The
analogues of Eq$16)—(18) are

LTEN=11€%Ni ys[ X2A, XD+ X3A XRITA+g;N[A, X2 ], TA+g,N[A, X2 ]_TE+H.c. (A1)
LTN =1,e%Niys[ A, X3 ], T+ f3e2®Niys[A, X3 ] T“+—N[(XaA X3—X3A,X2) — (XBA,XE

— X3A, X TE+ %{WBXEA”(XtT}L—i- XET2) + B(XLARXET L+ XEARXPT2) — 2(XLA#X]
+XEARXE = 2XPARXE) TS 1= (L—R)}+H.c. (A2)
L TN, = 1,227 [ X2A, XD + XEA  XR]ITA + f5€22Ni y5[ X2A, XE+ XA X2+ (L R) ] TE
+09sZ°N[A, X2 1, TE+gsZ2N[A,, X*]_T{+H.c., (A3)
where the terms containinfg andg; start off with one- and two-pion vertices, respectively. In the heavy baryon expansion, the
terms containing thé; start to contribute a®’(1/my). The leading order term vanishes siRe-iys- P, =0. Since we work

only to lowest order in the iy expansion, we obtain no contribution from the terms containingf the
For the pvmrAA effective Lagrangians we have

LT o=]oT'A YT, (A4)
J1= Ki— l 2A — —
| ' 3\ _ Tosn T _ 3T m 3yl Tl 272 1y1 232 \ T3
[,A, 1= 2T YETTr(ALXT) 2T YysTiTr(A,X %) \/_f TX 2\/§f77{3T (XZTHHXETE)+3(T X+ TX)T

—2(TXE T T2XE T2 23X T9) )+ o B[ (TR AT+ THyA T TH(A LX) + (TE A T2+ T2yA T3 Tr(A X3 ]

—2(THyr T T2yrT2— 2Ty T3 Tr(A X))+ Ko B (T3  ys TH Tyt ys T Tr(A XD ) + (T3 T2

T2y s T)THAXE ) = 2(TH y ysTH T2y ys T2 = 2Ty s T TH(A LX)+ 5{ T2y A, X3 1. TP

T AL XL T TRy (AL XE ] T3 TRy A, X3] To kel T2 sl A, X2 ], T

Ty [ AL XA T+ Ka{ T2y  ye[ A, X2 ] T2 =Ty yg[ A, X3 T4, (A5)
LT = 5T T2y A TP+ [ e T3P XBA XE+ XA, XPTy#Ti+ KsZ 2T X3A , XB— X2A XD ]y 5T, + kee®[ T3 y5X2 T2

+ T2 ysX2 T3], (A6)

where we have suppressed the Lorentz indices oAtfield, DA+ 0 2 2

i.e., T”---T,. The vertices withk; ,h, contain two pions. hi =7201+20,7 03304~ 3951 3%

All other vertices contain one pion when expanded to the

leading order. At first sight the leading order term within

(A6) has no pions. However, such a term cancels its Hermit-'A

ian conjugate exactly. The constarhf;;:A are the PV7AA

Yukawa coupling constants. oA 70 \/>
In Sec. I, the leading terms in the above Lagrangians ha (692994 +295)

were expressed in terms of effectiverNA and wAA cou-

pling constants. These constants may be expressed in terms,a++,~ _ _ _6 _ _

of thef;, g;, ki, j; andh'_, as follows: "}1 g (~6917994+ 495+ 69e)

hDA+ Om™ _ 3
20, + 093+ 69,4+ 39
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6
- \[5(691_692_495+496)

pA+7777T+_
hi =

pA0w+7TO 3
ha =~V g(691+ 692393+ 994+ 205+ 20e)

hXAOWow+ - _ \/g

X (—69;+129,+ 395+ 1894~

pA-wt gt 2
hi = 5(692_994+296)
A++
(692 994+ 29e)

hﬂA+7T 0

hRA+7TO7T_ - _ \/g

X(—6911129,— 393~ 189,

6
0,.0,_0
hpA ™ = — \[5(—692+ 994—29e)

295—80ds)

\[(691+ 692+ 393~ 994+ 205+ 20e)

295—80e)

o+ - 6
hRA T :_?(_691+692+495_496)

nAC7~mt _
hA -

6
- \[5(691_ 99,—495—60s)

nA~ 7t 70 2 2
ha :291_292+93+394+§gs_ 39%

hp* ™7 =—29;—0g3—60,— 39 (A7)
hy=hly+hZ,
T T . . is
INRTS co _4\No s
v _\/6 Jo+316) 2\6j, 3 (13+J4)+3\/€
AtAO 2 . 4 2\/E
hy ° = 3 Jo"‘gle ~g s
0 1 26
hy & = \/— jot 3 16 +2\/—Jz+ (Jat]a)
is
+ —. A8
376 (A8)
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It is interesting to note there is only one independent PV
Yukawa coupling constarit, for wAA interactions.

APPENDIX B: VANISHING LOOP CONTRIBUTIONS

As noted in Sec. Ill, a large number of graphs which
nominally contribute t>™" actually vanish up t@(1/A%).
Here, we summarize the the reasons why.

Consider first the corrections due to the PV vectdtN
vertices. For Fig. (b) we have

2
4
i—é’l’;5 T+(h2+§h$>
dPk (S-k)?
(2m° v-kv-(k+q)(k2—m?)

iM(b):

X(v-q)

~O(1myA3), (B1)

where we have used- g~ O(1/my). Since we are working
to leading order in the tiy expansion, this amplitude does
not contribute. The PV vector interactions also appear in
Figs. 1j1), 1(j2). The corresponding amplitude is
_ A
MG+~ "1 53 2F
dk [(S-k).,(S-a)]+
(2mP v -kv-(k+q)(k2—m?)

=0. (B2)

0 1 2
h,+2hy— Sh)

This integral vanishes because it is proportional to
[(S-v),(S-9)]+, which vanishes becausv =0. All other
possible insertions of PV vectorNN vertices vanish for
similar reasons as either E(@B1) or (B2). In what follows,
we refer only to insertions involving the P¥NN Yukawa
and wNN axial couplings.

The propagator corrections in Figggl)-1(h2) vanish af-
ter integration since their amplitude of Figsgl),1(g2) goes
as

[ 4%k vk
| p e "9

while the amplitude of Figs.(h1), 1(h2) goes as

 [2K Sk B4
M) e o

The amplitude of Figs. (i1)—1(i4) contains a vanishing
integral
dPk Sk
(2m)° v-k(k®—m?)

~ht =0. (B5)
Figures 1j1), 1(j2) do not contribute for the PV Yukawa

couplingh . due to charge conservation. The remaining non-
zero diagrams are Figs(a—1(f2) where the insertions in
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loops are of the Yukawa or axial interactions. Figuréd )1 APPENDIX C: BAG MODEL INTEGRALS
1(f2) arise from the insertion of the counter terms of mass
and wave function renormalization. Figure®1), 1(e2 and
Figs. 2cl), 2(c2) contribute to the wave function renormal-
ization in Eq.(38).

Here, we show that the four-quark bag model integrals

relevant to the calculation of the DDH-FCDH parametgrs

andy have a Taylor expansion in light quark mass around
Because of the heavy baryon projectin -iys: P, =0, rg%—lo. We write a bag model quark wave function as

the one pion PV#NA vertex does not contribute in the [28.19

leading order of heavy baryon expansion. Hence, the chiral iu(r)y

loop corrections from Figs.(@1)—2(g4) are of higher order. ¢(x)=< o )exq—iEt), (C1)

Figures 2h1)—2(j2) vanish after integration for reasons simi- I(r)o-rx

lar to Eq.(B2). The remaining, non-vanishing diagrams are .

discussed explicitly in Sec. III. where y de_notes a two-component Pauli spinor and where
As pointed out in Sec. II, both PC and PV two-derivative WaVe function normalization yields

operators which consern@P do not contribute td,. renor-

malization. For example, there exists ofid>-conserving, f d3r[u(r)®+1(r)?]=1, (C2)

PV such operator:

where the the radial integration runs from 0 to the bag radius,

1 No**[D ,A,—D,A,]IN. (B6) R The four quark matrix elements of interest here can de-
A mi vl . . .
X pend three different integrals:
After expansion, the leading term starts with three pions. It
contributes via Fig. ), at the order of 1% F3 . Moreover, J d®ru(r)?, J d3/(r)*, J d® u(r)?(r)?
the loop integration yields a factgr,, and leads to zero after (C3)

contraction witha*”.
Another possibility comes from insertions of PC two- The quark radial wave functions are
derivative nucleon pion operators. There are three PC opera-

tors which conserv€ P: [Pl

: u(r)—NJo( 3 ) (C4)

. Ni 5D, AN, (B7) oa—MgR\ Y2 (pyr
X —— R R, il ——
| - s{2n " o).
— NA*A N, (B8) (€9
A I
X where
1 —
— No*“' A, ,A,IN. (B9) P
A, w tamp, onFMgR—1 (n=1,2,...) (Co)

Note that the first two operators are symmetric in the Lorentz ———2=>
indices. Only the last one arises from the antisymmetric op- Pn= Vo, —mgR (€7
erators listed in Eq(29). The first one starts off with one .
pion. The relevant Feynman diagrams are Fige1)1 1(c2), N= \/ Pn
where the PV vertex is associated whily. Note that these R (2w)— 2w, +myR)sir? p,,
diagrams do not contribute at leading order of HBChPT due (C8
to the presence of thieys. The remaining two operators start
off with two pions. The relevant diagrams are Figéd1, 4 Noy—2Z,
1(d2). After integration the contribution of the third operator R'= A7B (C9)

reads
) X B is the bag constant and, is a phenomenological param-
~h,e""*Fy Sgurq'mZInm, /A FZ. (B10)  eter involved with the center of mass motion of the bag.

. S For light quarks and lowest eigenmode,
So its contribution is zero. In contrast the second operator

yields wo~(2.043+0.493n;R) (C10
h(v-q)mZInm_/(A,F2). (B11) N~2.27N47Re, (C11)
Note thatv-gq~1/my. So its contribution is of order It is straightforward to show that the bag model integrals

1/(Af’(mN). In short, none of the two-derivative operatorsin Eq. (C3) have a Taylor expansion abomi,=0. The ar-
contribute to the renormalization bf, at the order to which gument proceeds by noting that the quantifesR, p,,, o,
we work. and the argument of the spherical Bessel functions all have

033006-14



CHIRAL SYMMETRY AND THE PARITY-VIOLATING NN ... PHYSICAL REVIEW D 63 033006

Taylor series inm, aboutmy=0. The existence of this ex- ,,, andR, and so forth. Note that at any step of the recur-
pansion can be seen to be an explicit, iterative constructiorsion, the argument of any transcendental functiomjg,.

First, expandw, andR: Hence, at any order, a solution for thg , and R, exists.
" The expansion of the bag model integrals continues by
- D wn’kmg (€12 comput_lng their derlvat_lves with respectrg, and using the
n=0 expansions oN, R, etc. in terms ofn, as constructed above.

Taking n derivatives of one of the integrals in EQC3)
yields new intregrals involving powers ofR times products

of the Bessel functions and their derivatives. Using the stan-
dard Bessel function recursion relations, the derivatives of
Now let mq=0 in Egs.(C6), (C7). Doing so eliminates all the j, can always be expressed in terms of other spherical
dependence oR and determineso, . Next, setm;=0 in Bessel functions. Since thjg and their derivatives are finite
Egs. (C8), (CY with w,—w,o. Doing so determine®R,.  at the origin, and since the radial bag integration is bounded
Now expand Egs(C6), (C7) to first order inm,. This step  above byR, thenth derivative of any of the integrals in Eq.
yields w, ; in terms ofw,, o andR,. Expanding Eqs(C8, C9  (C3) is finite. Thus, each of the integrals in E§3) can be

to first order inm, then determinesR, in terms of w, g, expanded in a Taylor series abaut=0.

R= 2> Rym. (C13
n=0
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