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Chiral symmetry and the parity-violating NNp Yukawa coupling
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We construct the completeSU(2) parity-violating~PV! p,N,D interaction Lagrangian with one derivative,
and calculate the chiral corrections to the PV YukawaNNp coupling constanthp throughO(1/Lx

3) in the
leading order of heavy baryon expansion. We discuss the relationship between the renormalizedhp , the
measured value ofhp , and the corresponding quantity calculated microscopically from the standard model
four-quark PV interaction. We observe that the renormalizedhp depends strongly on a number ofa priori
unknown parameters in the PV effective Lagrangian.
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I. INTRODUCTION

The parity-violating~PV! nucleon-nucleon interaction ha
been a subject of interest in nuclear and particle physics
some time. To date, PV observables generated by this in
action remain the only experimental windows on theDS
50, nonleptonic weak interaction. Since the 1970s, the
NN interaction has been studied in a variety of process
including pW -p and pW -nucleus scattering,g decays of light
nuclei, the scattering of epithermal neutrons from heavy
clei, and atomic PV~for a review, see Refs.@1,2#!. The on-
going interest in the subject has spawned new PV exp
ments in few-body systems, including high-energypW -p
scattering at the Julich proton synchrotron COSY,nW 1p
→d1g at LANSCE @3#, g1d→n1p at JLab@4#, and the
rotation of polarized neutrons in helium at NIST.

The theoretical analysis of these PV observables is c
plicated by the short range of the low-energy weak inter
tion. The Compton wavelength of the weak gauge boso
(;0.002 fm! implies that directW6 and Z exchange be-
tween nucleons is highly suppressed by the short-range
pulsive core of the strongNN interaction. In the conven
tional framework, longer range PV effects arise from t
exchange of light mesons between nucleons. One requ
the exchange of thep, r andv in order to saturate the seve
spin-isospin channels associated with the quantum num
of the underlying four-quark strangeness-conserving PV
teraction,H W

PV(DS50) ~henceforth, theDS50 will be un-
derstood!. These exchanges are parametrized by PV mes
nucleon couplings,hM , whose values may be extracted fro
experiment. At present, there appear to be discrepancies
tween the values extracted from different experiments.
particular, the values of the isovectorpNN coupling, hp ,
and the isoscalarrNN coupling,hr

0—as extracted frompW -p
scattering and theg decay of 18F—do not appear to agre
with the corresponding values implied by the anapole m
ment of 133Cs as measured in atomic PV@5#.

The origin of this discrepancy is not understood. One p
sibility is that the use ofr and v exchange to describe th
short-range part of the PVNN interaction is inadequate. An
alternate approach, using effective field theory~EFT!, in-
volves an expansion of the short-range PVNN interaction in
0556-2821/2001/63~3!/033006~15!/$15.00 63 0330
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a series of four-nucleon contact interactions whose coe
cients area priori unknown but in principle could be deter
mined from experiment. The use ofr and v exchange
amounts to adoption of a model—rather than the use
experiment—to determine the coefficients of the high
derivative operators in this expansion. Whether or not
application of EFT to nuclear PV can yield a more se
consistent set of PV low-energy constants than the mes
exchange approach remains to be seen. A comprehen
analysis of nuclear PV observables using EFT has yet to
performed.

The least ambiguous element—shared by b
approaches—involves the long-rangep-exchange interac-
tion. At leading order in the derivative expansion, the P
pNN interaction is a purely isovector, Yukawa interactio
The strength of this interaction is characterized by the sa
constant—hp—in both the EFT and meson-exchange a
proaches. At the level of the standard model~SM!, hp is
particularly sensitive to the neutral current component
H W

PV . In this respect, the result of18F PV g-decay measure
ment is puzzling:

hp5~0.7362.3!gp , ~1!

wheregp53.831028 gives the scale of thehM in the ab-
sence of neutral currents@6#. This result is especially signifi-
cant, since the relevant two-body nuclear parity-mixing m
trix element can be obtained by isospin symmetry from theb
decay of 18Ne @2#. The result in Eq.~1! is, thus, relatively
insensitive to the nuclear model.

Theoretical calculations ofhp starting fromH W
PV have

been performed using SU~6! w symmetry and the quark
model@7,8#, the Skyrme model@9#, and QCD sum rules@10#.
As a benchmark for comparison with experiment, we re
the SU(6)w-quark model analysis of Desplanques, Don
ghue and Holstein~DDH! @7# and Feldman, Crawford, Du
bach and Holstein~FLDH! @8#.1 These authors quote a ‘‘bes
value’’ and ‘‘reasonable range’’ for thehM :

1Note that although the DDH analysis used the symmetry gr
SU(6)w in order to connect weak vector meson and pion couplin
the predictions relating pion couplings alone to hyperon decay d
rely only on SU~3!.
©2001 The American Physical Society06-1
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hp~best!57gp ~2!

hp~range!:~0→30!gp . ~3!

where here the ‘‘best value’’ is more aptly described as
educated guess, while the ‘‘reasonable range’’ indicates a
of numbers such that theory would be very hard-presse
explain were the experimental value not found to be wit
this band.

The DDH-FCDH analysis implicitly assumed th
^NpuH W

PVuN& is relatively insensitive to the breakdown o
chiral symmetry associated with the nonvanishing lig
quark masses. Indeed, the quark model calculations
formed in Refs.@7,8# reflect underlying relationships built o
unbroken SU~3! chiral symmetry. In what follows, we show
that this assumption of good chiral symmetry may not
justified and that the impact of chiral corrections
^NpuH W

PVuN& may be significant. Moreover, the size of the
corrections renderŝNpuH W

PVuN& strongly dependent no
simply on one but severala priori unknown parameters in
the appropriate effective Lagrangian. We also argue that
presence of these terms may signal the importance of ‘‘
connected’’ sea-quark contributions tohp , making a mea-
surement of this quantity a potentially interesting probe
hadron structure.

In general, the problem of relating the fundamental we
quark-quark interaction to the low-energy constants wh
parameterize hadronic matrix elements of that interactio
non-trivial. In the framework of EFT, one may define the
constants at the tree level in the hadronic effective theo
The quantities extracted from experiment in the conventio
analysis, however, are not the tree-level parameters,
rather renormalized couplings. Denoting the latter ashp

EFF ,
one has

hp
EFF5ZNAZphp

1 1Dhp , ~4!

wherehp
1 is the coefficient of the leading-order, PVNNp

Yukawa interaction in the effective theory,AZN and AZp

denote chiral loop renormalizations of the nucleon and p
wave functions, respectively, andDhp denotes contributions
from chiral loops and higher-dimension operators to
Yukawa interactions~only the finite parts of these coupling
are implied; loop divergences are canceled by the co
sponding pole terms inhp

1 and theZN,p). At leading order in
1/Lx , one hasZN,p51, Dhp50, andhp

EFF5hp
1 . The renor-

malized coupling appears as the coefficient in the one-p
exchange~OPE! PV NN potential

ĤPV
OPE5 i

gNNphp
EFF

A2
S t13t2

2 D
z

~sW 11sW 2!•FpW 12pW 2

2mN
, f p~r !G ,

~5!

where gNNp is the strong pNN coupling and f p(r )
5exp(2mpr)/4pr . Neglecting the effects of three-body P
forces and 2p-exchange interactions, it ishp

EFF to which the
result in Eq.~1! corresponds.
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The relationship betweenhp
EFF and the coupling obtained

by computing^NpuH W
PVuN& in a microscopic model is no

immediately transparent. In what follows, we make seve
observations about this relationship. We first show t
ZNAZp andDhp are substantial, so thathp

EFF differs signifi-
cantly from hp

1 . To that end, we compute all of the chira
corrections to the PV Yukawa interaction throughO(1/Lx

3),
where Lx54pFp . We work to leading order in 1/mN in
heavy baryon chiral perturbation theory~HBChPT!. Of par-
ticular significance is the dependence ofDhp on other low-
energy constants parametrizing PV 2p production and the
PV N→ppD transition. We subsequently reexamine t
SU(6)w-quark model calculation of Refs.@7,8# and argue
that most—if not all—of the chiral loop effects which reno
malize hp are not included in the microscopic calculatio
Thus, the relationship betweenhp

EFF and microscopic calcu-
lations remains ambiguous at best. This ambiguity is unlik
to be resolved until an unquenched lattice QCD calculat
of hp using light quarks becomes tenable.

Our discussion of these observations is organized as
lows. In Sec. II we summarize our conventions and notati
including the PV chiral Lagrangians relevant tohp renormal-
ization. Section III gives a discussion of the loop calcu
tions. In Sec. IV we comment on the scale of the loop c
rections and provide simple estimates of some of the new
low-energy constants appearing in the analysis. Sectio
gives our discussion of the relationship betweenhp

EFF and
the calculation of Refs.@7,8#. Section VI summarizes ou
conclusions. Some technical details are relegated to the
pendixes.

II. NOTATIONS AND CONVENTIONS

We follow standard HBChPT conventions@11,12# and in-
troduce

S5j2, j5expS ip

Fp
D , p5

1

2
pata ~6!

with Fp592.4 MeV being the pion decay constant. The c
ral vector and axial vector currents are given by

Dm5Dm1Vm

Am52
i

2
~jDmj†2j†Dmj!

52
Dmp

Fp
1O~p3! ~7!

Vm5
1

2
~jDmj†1j†Dmj!. ~8!

For theD, we use the isospurion formalism@13#, treating
theD field Tm

i (x) as a vector spinor in both spin and isosp
space with the constraintt iTm

i (x)50. The components o
this field are
6-2
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Tm
3 52A2

3S D1

D0 D
m

, Tm
15S D11

D1/A3
D

m

,

Tm
252S D0/A3

D2 D
m

. ~9!

The field Tm
i also satisfies the constraints for the ordina

Schwinger-Rarita spin-3
2 field:

gmTm
i 50 and pmTm

i 50. ~10!

We eventually convert to the heavy baryon expansion
which case the latter constraint becomesvmTm

i 50 with vm

the heavy baryon velocity.
The relativistic parity-conserving~PC! Lagrangian forp,

N, D interactions needed here is

L PC5
Fp

2

4
TrDmSDmS†1N̄~ iD mgm2mN!N

1gAN̄Amgmg5N2Ti
mF ~ iD a

i j ga2mDd i j !gmn

2
1

4
gmgl~ iD a

i j ga2mDd i j !glgn1
g1

2
gmnAa

i j gag5

1
g2

2
~gmAn

i j 1Am
i j gn!g51

g3

2
gmAa

i j gag5gnGTj
n

1gpND@ T̄i
m~gmn1z0gmgn!v i

nN1H.c.#, ~11!

wherevm
i 5tr@t iAm#/2 while Dm andDm are the gauge and

chiral covariant derivatives, respectively. Explicit expre
sions for the fields and the transformation properties can
found in@14#. Here,z0 is an off-shell parameter, which is no
relevant in the present work@13#.

In order to obtain proper chiral counting for the nucleo
we employ the conventional heavy baryon expansion
L PC, and in order to consistently include theD we follow
the small scale expansion proposed in@13#. In this approach
the energy and momentum and the delta and nucleon m
differenced are both treated as small expansion parame
in chiral power counting. The leading order vertices in th
framework can be obtained viaP1GP1 whereG is the origi-
nal vertex in the relativistic Lagrangian and

P65
16v”

2
~12!

are projection operators for the large, small components
the Dirac wave function respectively. We collect some of
relevant terms below:

L v
PC5N̄@ iv•D12gAS•A#N2 i T̄ i

m@ iv•Di j 2d i j d

1g1S•Ai j #Tm
j 1gpND@ T̄i

mvm
i N1N̄vm

i†Ti
m# ~13!

where Sm is the Pauli-Lubanski spin operator andd[mD

2mN .
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The PV analogue of Eq.~11! can be constructed using th
chiral fieldsXL,R

a defined as@15#

XL
a5j†taj, XR

a5jtaj†, X6
a 5XL

a6XR
a . ~14!

We find it convenient to follow the convention in Ref.@15#
and separate the PV Lagrangian into its various isospin c
ponents.

The hadronic weak interaction has the form

HW5
Gm

A2
JlJl †1H.c., ~15!

whereJl denotes either a charged or neutral weak curr
built out of quarks. In the standard model, the strangen
conserving charged currents are pure isovector, whereas
neutral currents contain both isovector and isoscalar com
nents. Consequently,HW contains DI 50,1,2 pieces and
these channels must all be accounted for in any realistic h
ronic effective theory.

We quote here the relativistic Lagrangians, but emp
the heavy baryon projections, as described above, in com
ing loops. It is straightforward to obtain the correspondi
heavy baryon Lagrangians from those listed below, so we
not list the PV heavy baryon terms below. For thepN sector
we have

L DI 50
pN 5hV

0N̄AmgmN ~16!

L DI 51
pN 5

hV
1

2
N̄gmNTr~AmX1

3 !2
hA

1

2
N̄gmg5NTr~AmX2

3 !

2
hp

1

2A2
FpN̄X2

3 N ~17!

L DI 52
pN 5hV

2I abN̄@XR
aAmXR

b1XL
aAmXL

b#gmN

2
hA

2

2
I abN̄@XR

aAmXR
b2XL

aAmXL
b#gmg5N, ~18!

whereI ab is a matrix coupling theXa,b to I 52, I 350. The
above Lagrangian was first given by Kaplan and Sav
~KS! @15#. However, the coefficients used in our work a
slightly different from those of Ref.@15# since our definition
of Am differs by an overall phase.

The term proportional tohp
1 contains no derivatives. A

leading order in 1/Fp , it yields the PVNNp Yukawa cou-
pling traditionally used in meson-exchange models for
PV NN interaction@7,2#. Unlike the PV Yukawa interaction
6-3
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the vector and axial vector terms in Eqs.~16!–~18! contain
derivative interactions. The terms containinghA

1 andhA
2 start

off with NNpp interactions, while all the other terms sta
off as NNp. Such derivative interactions have not been
cluded in conventional analyses of nuclear and hadronic
03300
-
V

experiments. Consequently, the experimental constraints
the low-energy constantshV

i , hA
i are unknown.

It is useful to list the first few terms obtained by expan
ing the Lagrangians in Eqs.~16!–~18! in 1/Fp . For the
present purposes, the following terms are needed:
plete

, the PV
L Yukawa
pNN 52 ihp

1 ~ p̄np12n̄pp2!F12
1

3Fp
2 S p1p21

1

2
p0p0D G ~19!

L V
pNN52

hV
014/3hV

2

A2Fp

@ p̄gmnDmp11n̄gmpDmp2# ~20!

L A
pNN5 i

hA
11hA

2

Fp
2 p̄gmg5p~p1Dmp22p2Dmp1!1 i

hA
12hA

2

Fp
2 n̄gmg5n~p1Dmp22p2Dmp1!

1 iA2hA
2

Fp
2 p̄gmg5np1Dmp02 iA2hA

2

Fp
2 p̄gmg5np1Dmp0. ~21!

For the PVpNN Yukawa coupling we have also kept terms with three pions.
The corresponding PV Lagrangians involving aN→D transition are somewhat more complicated. We relegate the com

expressions to Appendix A, and give here only the leading terms required for our calculation. As noted in Ref.@14#, the
one-pionpND PV Lagrangian vanishes at leading order in the heavy baryon expansion. The two-pion terms are

L A
pND52

ihA
pD11p2p0

Fp
2

p̄Dm
11Dmp2p02

ihA
pD11p0p2

Fp
2

p̄Dm
11Dmp0p22

ihA
pD1p0p0

Fp
2

p̄Dm
1Dmp0p02

ihA
pD1p1p2

Fp
2

p̄Dm
1Dmp1p2

2
ihA

pD1p2p1

Fp
2

p̄Dm
1Dmp2p12

ihA
pD0p1p0

Fp
2

p̄Dm
0 Dmp1p02

ihA
pD0p0p1

Fp
2

p̄Dm
0 Dmp0p12

ihA
pD2p1p1

Fp
2

p̄Dm
2Dmp1p1

2
ihA

nD11p2p2

Fp
2

n̄Dm
11Dmp2p22

ihA
nD1p2p0

Fp
2

n̄Dm
1Dmp2p02

ihA
nD1p0p2

Fp
2

n̄Dm
1Dmp0p22

ihA
nD0p0p0

Fp
2

n̄Dm
0 Dmp0p0

2
ihA

nD0p1p2

Fp
2

n̄Dm
0 Dmp1p22

ihA
nD0p2p1

Fp
2

n̄Dm
0 Dmp2p12

ihA
nD2p1p0

Fp
2

n̄Dm
2Dmp1p02

ihA
nD2p0p1

Fp
2

n̄Dm
2Dmp0p1

1H.c., ~22!

where the couplingshA
pD11p2p0

are defined in terms of the various SU~2! PV low-energy constants in Appendix A.
The PV pDD Lagrangians, also listed in Appendix A, contain terms analogous to the Yukawa,V, andA terms in Eqs.

~16!–~18!. Since we compute corrections up to one-loop order only, and since the initial and final states are nucleons
ppDD terms (A type! are not relevant here. The leading, single-p Yukawa andV-type interactions are

L Yukawa
pDD 52 i

hD

A3
~D̄11D1p12D̄1D11p2!2 i

hD

A3
~D̄0D2p12D̄2D0p2!2 i

2hD

3
~D̄1D0p12D̄0D1p2! ~23!

L V
pDD52

hV
D11D1

Fp
~D̄11gmD1Dmp11D̄1gmD11Dmp2!2

hV
D1D0

Fp
~D̄1gmD0Dmp11D̄0gmD1Dmp2!

2
hV

D0D2

Fp
~D̄0gmD2Dmp11D̄2gmD0Dmp2! ~24!
6-4
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FIG. 1. Meson-nucleon inter-
mediate state contributions to th
PV pNN vertex hp . The shaded
circle denotes the PV vertex. Th
solid and dashed lines correspon
to the nucleon and pion respec
tively.
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where the coefficients are given in Appendix A.
One may ask whether there exist additional PV effect

interactions that could contribute at the order to which
work. In the pionic sector there exists oneCP-conserving,
PV Lagrangian:

L p
PV5e i jkvm

i vn
j ~Dmvk

n2Dnvk
m!. ~25!

At leading order in 1/Fp , Lp contains five pions. Its lowes
order contribution appears at two-loop order at best, so
do not consider it here.

Similarly, one may consider possible contributions fro
two-derivative operators. There exists oneCP-conserving,
PV operator:

1

Lx
N̄smn@DmAn2DnAm#N. ~26!

There exist three independent PC, two-derivative opera
@16#. For example, one may choose the following three:

1

Lx
N̄ig5DmAmN, ~27!

1

Lx
N̄AmAmN, ~28!

1

Lx
N̄smn@Am ,An#N. ~29!
03300
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As we discuss in Appendix B, none of the two-derivati
operators in Eqs.~26!–~29! contribute to the renormalization
of hp at the order to which we work in the present analys

III. LOOP CORRECTIONS

The leading order loop corrections to the Yukawa int
action of Eq.~19! are generated by the diagrams of Figs
and 2. As we discuss in Appendix B, the contributions fro
many of the diagrams which nominally renormalizehp van-
ish at the order at which we truncate. In particular, none
the vector (V-type! pNN andpDD terms contribute to this
order. In what follows, we discuss only the nonvanishi
Yukawa andA-type contributions. Details regarding the va
ishing of the other contributions appear in Appendix B. F
lowing the conventional practice, we regulate the loop in
grals using dimensional regularization. The pole ter
proportional to 1/D24 are canceled by appropriate counte
terms. We identify only the terms nonanalytic in qua
masses with the loops. All other analytic terms are indist
guishable from finite parts of the corresponding count
terms.

The nonvanishing contribution from Fig. 1~a! arises from
the insertion of the 3p part of the Yukawa interaction of Eq
~17!. The nonanalytic term is

iM (a)5
5

6

mp
2

Lx
2 lnS m

mp
D 2

hp
1 t1, ~30!
6-5
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FIG. 2. The chiral corrections
from D intermediate state, which
is denoted by the double line.
d
re

th

l

t,

-

es
fo ds
whereLx54pFp andm is the subtraction scale introduce
in dimensional regularization. For simplicity, we show he
only the contributions forn→pp2. The terms forp→np1

are equal in magnitude and opposite in sign since it is
hermitian conjugate of then→pp2 piece. This property
holds to all orders of chiral expansion.

The nonvanishing contribution from Fig. 1~b! arises from
the strong vertex correction to the leading orderpNN
Yukawa interaction:

iM (b)5
3

4
gA

2
mp

2

Lx
2 lnS m

mp
D 2

hp
1 t1. ~31!

The terms in Figs. 1~c1!, 1~c2! are generated by the PV axia
ppNN couplings proportional to thehA

i . We have

iM (c1)1(c2)52A2pgA

mp
3

FpLx
2 hA

1t1. ~32!

The contribution fromhA
2 to these two diagrams cancels ou

leaving only the dependence onhA
1 . We note that although

this term is propotional tomq
3/2 and, thus, nominally sup

pressed, the coefficient ofhA
1 is fortuitously large (;1/4).

The two pion vertex in Figs. 1~d1!, 1~d2! comes from the
chiral connectionVm :

iM (d1)1(d2)52
1

2

mp
2

Lx
2 lnS m

mp
D 2

hp
1 t1. ~33!

The leading contribution involvingD intermediate states
arises from Fig. 2~a!. The corresponding amplitude receiv
contributions from three different isospin combinations
the D intermediate states. Their sum reads
03300
e

r

iM 2(a)52
20

9

gpND
2 hD

Lx
2 F ~2d22mp

2 !lnS m

mp
D 2

24dAd22mp
2 ln

d1Ad22mp
2

mp
Gt1. ~34!

The corrections generated by the PVppND vertices are

iM 2(b1)12(b2)5
2

3

gpND

FpLx
2 F S d22

3

2
mp

2 D d lnS m

mp
D 2

22~d22mp
2 !3/2 ln

d1Ad22mp
2

mp
GhA

Dt1,

~35!

wherehA
D is defined as

hA
D5

1

A3
~hA

nD0p1p2
1hA

pD1p2p1

!

1A2

3
~hA

nD1p0p2
2hA

pD0p0p1

!

2hA
nD11p2p2

2hA
pD2p1p1

. ~36!

Summing all the nonvanishing loop contributions yiel
the following expression forDhp :
6-6



ic

r

ig

r

o

.

on

2
t

y.
ne

on
is
e
se-
re-
f
e

ex-
ay
p-

ed.

n

s
ou-
g
of
-

e is
To

r
-

CHIRAL SYMMETRY AND THE PARITY-VIOLATING NNp . . . PHYSICAL REVIEW D 63 033006
Dhp5
1

3

mp
2

Lx
2 lnS m

mp
D 2

hp
1 1

3

4
gA

2
mp

2

Lx
2 lnS m

mp
D 2

hp
1

12A2pgA

mp
3

FpLx
2 hA

12
20

9

gpND
2 hD

Lx
2

3F ~2d22mp
2 !lnS m

mp
D 2

24dAd22mp
2 ln

d1Ad22mp
2

mp
G

1
2

3

gpND

FpLx
2 F S d22

3

2
mp

2 D d lnS m

mp
D 2

22~d22mp
2 !3/2 ln

d1Ad22mp
2

mp
GhA

D . ~37!

The final nonvanishing corrections arise fromN and p
wave function renormalization. These corrections, wh
have been computed previously@17#, generate deviations
from unity of ZN and AZp appearing in the expression fo
hp

EFF in Eq. ~4!. In the case ofZN , the nonvanishing contri-
butions arise from Figs. 1~e1!, 1~e2! and 2~c1!, 2~c2!:

ZN215
9

4
gA

2
mp

2

Lx
2 lnS m

mp
D 2

24gpND
2 F2d22mp

2

Lx
2 lnS m

mp
D 2

24
dAd22mp

2

Lx
2

ln
d1Ad22mp

2

mp
G . ~38!

The pion’s wave function renormalization arises from F
2~k! @18#:

AZp2152
1

3 S mp

Lx
D 2

lnS m

mp
D 2

. ~39!

Numerically, the loop contributions toAZp are small com-
pared to those enteringZN .

Note that the one loop renormalization ofhp from the PV
Yukawa pNN and pDD vertices is already at the orde
1/Lx

2 . An additional loop will introduce a factor of 1/Lx
2 .

Loops containing the axial vectorNNpp andNDpp verti-
ces and one strongNNp or NDp vertex are ofO(1/Lx

2Fp).
To obtain contributions ofO(1/Lx

3), one would require the
insertion of operators carrying explicit factors of 1/Lx into
one loop graphs. We find no such contributions.

IV. SCALE OF LOOP CORRECTIONS

We may estimate the numerical importance of the lo
corrections tohp

1 by takingd50.3 GeV,gA51.267@19# and
03300
h

.

p

gpND51.05@13# and by choosingm5Lx51.16 GeV.2 With
these inputs, the value ofZNAZp is completely determined
The vertex corrections, which appear asDhp in Eq. ~4!, de-
pend on the PV couplingshp

1 , hA
1 , hD , andhA

D . We obtain

hp
EFF50.5hp

1 10.25hA
120.24hD10.079hA

D . ~40!

Note that the effect of the wave function renormalizati
corrections is to reduce the dependence onhp

1 by roughly
50%. In addition, the dependence ofhp

EFF on hA
1 and hD is

non-negligible. Their coefficients are only a factor of
smaller than that ofhp

1 . Although these contributions arise a
O(p2, p3), they are fortuitously enhanced numericall
Thus, in a complete anaysis of the OPE PV interaction o
should not ignore these constants.

At present, one has no direct experimental constraints
the parametershA

1 , hD , andhA
D , as a comprehensive analys

of hadronic PV data including the full chiral structure of th
PV hadronic interaction has yet to be performed. Con
quently, one must rely on theoretical input for guidance
garding the scale of the unknown constants. Estimates ohA

1

are given by the authors of Ref.@15#. These authors observ
that the usual pole dominance approximation forP-wave
non-leptonic hyperon decays typically underpredicts the
perimental amplitudes by a factor of 2. The difference m
be resolved by the inclusion of local, parity-conserving o
erators having structures analogous to theA-type terms in
Eq. ~17!. The requisite size of theDS51 contact terms may
imply a scale for the analogousDI 51 PV terms. If so, one
might conclude thathA

1 should be on the order of 10gp . On
the other hand, a simple factorization estimate leads tohA

1

;0.2gp . While the sign ofhA
1 is fixed in the factorization

approximation, the sign of the larger value is undetermin
Thus, it is reasonable to conclude thathA

1 may be large
enough to significantly impacthp

EFF , though considerably
more analysis is needed to yield a firm conclusion.

The pDD Yukawa couplinghD has been estimated i
Ref. @8# using methods similar to those of Ref.@7#. The au-
thors quote a ‘‘best value’’ ofhD5220gp , with a ‘‘reason-
able range’’ of (251→0)3gp .3 Naively, subsitution of the
best value into Eq.~40! would increase the value ofhp

EFF ,
whereas the18F result would seem to require a reduction. A
we argue below, however, the relationship between the c
plings computed in Refs.@7,8# and the parameters appearin
in Eq. ~40! is somewhat ambiguous. Direct substitution
the theoretical value intohp

EFF may not be entirely appropri
ate.

To date, no theoretical estimate of theA-typeppND cou-
pling has been performed. A simple estimate of the scal
readily obtained using the factorization approximation.

2Since the dependence onm is logarithmic, one may choose othe
values, such asm5mr , without affecting the numerical results sig
nificantly.

3This coupling is denotedf DDp in Ref. @8#.
6-7
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that end, we work with the tree-level form ofH W
PV . Neglect-

ing short-distance QCD corrections and terms contain
strange quarks, one has

H W
PV~DS50!5

GF

A2
H cos2 ucūgl~12g5!dd̄gl~12g5!u

~41!

22~122 sin2uw!Vl
(3)A(3)l

1
4

3
sin2uwVl

(0)A(3)lJ , ~42!

whereVl
(3) andAl

(3) denote the third components of the oc
of vector and axial vector currents, respectively, and

Vl
(0)5

1

2
~ ūglu1d̄gld!. ~43!

Consider now the first term in the expression forhA
D given in

Eq. ~36!. In the factorization approximation,H W
PV contrib-

utes only to the antisymmetric combination

1

2
~hA

nD0p1p2
2hA

nD0p2p1

!. ~44!

The neutral current contribution to this combination, whi
arises only from the term containingVl

(3) , is

A2GFFp
2 ~122 sin2uw!C5

A~nD0!'2gpC5
A~nD0!, ~45!

whereC5
A(nD0);O(1) is the axial vectorn→D0 form fac-

tor at the photon point. After Fierz re-ordering, the charg
current component ofH W

PV contributes roughly

2~4gp/3!C5
A~nD0!, ~46!

yielding a total factorzation contribution of abou
(2gp/3)C5

A(nD0). Thus, one would expect the scale of t
axial vectorppND couplings to be on the order of a fe
3gp .

In the particular case of the combination appearing inhA
D ,

however, the sum of factorization contributions cancels id
tically. As one sees from the expressions for thehA

NDpp given
in Appendix A, isospin requires

hA
nD0p1p2

1hA
pD1p2p1

50. ~47!

The factorization contributions independently satisfy t
sum rule. The second combination of constants appearin
Eq. ~36!,

hA
nD1p0p2

2hA
pD0p0p1

, ~48!
03300
g

t

d

-

in

also vanishes in the factorization approximation, ev
though the individual couplings do not. The third pair
couplings received no factorization contributions. Thus, o
has hA

D50 in this approximation. In principle, non
factorization contributions yield a non-zero value forhA

D .
Although we have not evaluated these contributions, we
not expect the scale to be significantly larger than the fac
ization value for the individualhA

NDpp couplings. Conse-
quently, we estimate a reasonable range forhA

D of (0
→few)3gp .

These theoretical estimates suggest considerable amb
ity in the prediction forhp

EFF . In principle, some of this
ambiguity might be removed by performing the comprehe
sive analysis of hadronic PV suggested above, in which
various constants would be determined entirely by exp
ment. The viability of such a program remains to be see

V. COMPARING WITH MICROSCOPIC CALCULATIONS

The results in Eqs.~37!–~39! embody the full SU~2! chi-
ral structure atO(p3) of ^NpuH W

PVuN& at leading order in
the pion momentum. Any microscopic calculation of th
matrix element which respects the symmetries of QC
should display the dependence on light quark masses app
ing in hp

EFF . In principle, an unquenched lattice QCD calc
lation with light quarks would manifest this chiral structur
In practice, however, unquenched calculations remain d
cult, and even quenched calculations require the use of he
quarks. For a lattice determination of^NpuH W

PVuN&, the ex-
pressions in Eqs.~37!–~39! could be used to extrapolate t
the light quark limit, much as the chiral structure of bary
mass and magnetic moment can be used for similar extra
lations @20#.

In the absence of a first principles QCD calculation, o
must rely on symmetries and/or models to obtain the
NNp coupling. A variety of such approaches have been
dertaken, including the SU(6)w-quark model calculation of
Refs.@7,8#, the Skyrme model@9#, and QCD sum rules@10#.
To date, the DDH-FCDH analysis remains the most comp
hensive and has become the benchmark for comparison
tween experiment and theory. Consequently, we focus
this work as a ‘‘case study’’ in the problem of matchin
microscopic calculations onto hadronic effective theory.

The DDH-FCDH approach relies heavily on symmet
methods in order to relate the PVDS50 matrix elements to
experimentalDS51 nonleptonic hyperon decay amplitude
All the charged current~CC! contributions to theDS50,1
B→B8M amplitudes, whereM is a pseudoscalar meson, ca
be related using SU~3! arguments. Likewise, the neutral cu
rent ~NC! component of the effective weak Hamiltonian b
longing to the same multiplets as the CC components~i.e.
those arising from a product of purely left-handed curren!
can also be related via SU~3!. The remaining NC contribu-
tions to theDS50 PV amplitudes are computed using fa
torization and the MIT bag model. The DDH approach a
employs SU(6)w symmetry arguments in order to calcula
parity-violating vector meson couplings. Although one r
quires only SU~3! to determine the pseudoscalar coupling
6-8
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we refer below to the general SU(6)w formalism used in
Refs.@7,8#.

The general SU(6)w analysis employed by DDH an
FCDH introduces five reduced matrix elements:at,v , bt,v ,
andcv . These constants correspond to SU~6! w components
of the weak Hamiltonian:

@~B̄B!35^ M35#35;cv ~49!

@~B̄B!405^ M35#280,280;bt ,bv ~50!

@~B̄B!405^ M35#280,280;at ,av . ~51!

One may represent these different components ofH W
PV dia-

gramatically as in Figs. 3. The components shown in F
3~a! and 3~b! correspond tobt,v and cv , respectively. In
practice, these contributions are determined entirely fr
empirical hyperon decay data. The term in Fig. 3~a! corre-
sponds toat,v and is computed in Refs.@7,8# using factor-
ization.

The PV NNp Yukawa coupling can be expressed
terms of these SU~6! w reduced matrix elements plus an a
ditional factorization-quark model term. Temporarily n
glecting short-distance QCD corrections toH W

PV , one has

FIG. 3. Diagrammatic representation of the SU(6)w components
of ^B8M uH W

PV(DS50,1)uB&. ~a!–~c! correspond, respectively, t
bt,v , cv , andat,v . The wavy line denotes the action ofH W

PV .
03300
.

^pp2uH W
PVun&5

1

3A2
tanuccv2

2

9A2
csc2uc sin2uw

3~2cv2bt!1
1

3
sin2uwy, ~52!

whereuc anduW are the Cabibbo and Weinberg angles,
spectively, andy denotes a Fierz-factorization contributio
The first term on the right-hand side~RHS! of Eq. ~52! gives
the CC contribution, while the remaining terms arise fro
weak NC. Including short-distance QCD renormalization
H W

PV leads to a modification of Eq.~52!:

^pp2uH W
PVun&5$@122 sin2uw#g~K !1sin2 uc%

r

sin2 uc
gp

1sin2uc~B11B2!, ~53!

where

gp5
1

3A2
tanuccv ~54!

B15
4

9A2
hE~K !S 1

sinuc cosuc
D

3~bv/62bt/122cv/2! ~55!

B25
1

3
F~K !y, ~56!

andg(K), E(K) andF(K) are summed leading logarithmi
~renormalization group! factors dependent on

K512
as~m!

p F112
2

3
Nf G ln MW

2

m2
. ~57!

The overall scale factorr appearing in Eq.~53! was intro-
duced in Ref.@7# in order to account for various theoretic
uncertainties entering the analysis.

The appearance ofcv , bt , andbv in gp andB1 relies on
tree-level SU(6)w symmetry—long-distance chiral correc
tions of the types shown in Fig. 4 have not been explici
included. Inclusion of such corrections would necessitat
reanalysis of theDS51 amplitudes in much the same wa
that one treats the octet of baryon axial vector currents@11#
or magnetic moments@21#. For example, lettingA(L2

0 ) de-
note the amplitude forL→pp2 one has, at the tree level,

A~L2
0 !5

1

A3
~bv/62bt/122cv/2!. ~58!
6-9
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Including the leading chiral corrections would yield th
modification

A~L2
0 !5

1

A3
AZLZpZp~bv/62bt/122cv/2!1DA~L2

0 !,

~59!

whereDA(L2
0 ) denotes vertex corrections and possible c

tributions from higher-dimension operators. Similar corre
tions would appear in the SU(6)w symmetry terms in Eqs
~52!, ~53!. Given the absence of these corrections from
DDH-FCDH analysis, the symmetry componen
^pp2uH W

PVun& do not formally embody the subleading chir
structure ofhp

EFF . The numerical impact of applying chiral
corrections to the DDH-FCDH SU(6)w analysis is much less
clear, since some of the chiral modifications can be absor
into renormalized values of the chiral couplings, which a
determined empirically. Nevertheless, the potentially siza
effect of the SU~2! chiral corrections onhp

EFF should give
one pause.

A related issue is the degree to which ambiguities int
duced by kaon andh loops in SU~3! HBChPT could plague
an analysis of theDS51 amplitudes. Here recent work b
Donoghue and Holstein argues that finite nucleon size c
for long-distance regularization of such heavy meson loo
which substantially reduces their effects@22#. Results are
then similar to what arises from use of a cloudy bag
proach to such matrix elements@23#. A comprehensive study
of such issues—and their impact on the DDH-FCDH cal
lation of hp—goes beyond the scope of the present wo
Nevertheless, the potentially sizable impact of the chiral c
rections inhp

EFF and the use of tree-level symmetry arg
ments in Refs.@7,8# points to a possibly significant mismatc
betweenhp

EFF andhp
DDH .

The remaining terms in the DDH-FCDH analysis—
involving the parametersh and y—are determined by ex
plicit MIT bag model calculations. One may ask whether t
latter effectively includes any part of the subleading chi
structure ofhp

EFF . In order to address this question, we ma
three observations:

Sea quarks and gluons generate cv . The parametercv
vanishes identically in any quark model in which baryo

FIG. 4. Chiral corrections to theB→B8M nonleptonic weak
decay.
03300
-
-

e

ed
e
le

-

lls
s,

-

-
.
r-

e
l

consist solely of three constituent quarks. TheDS51 hy-
peron decay data, however, clearly imply thatcvÞ0. In or-
der to obtain a nonzero value in a quark model, one requ
the presence of sea quarks and gluons. It is shown in@24#, for
example, thatcvÞ0 when gluons are added to the MIT ba
model. Similarly, one would expect contributions from th
qq̄ pairs in the sea. Since relativistic quark models alrea
containqq̄ pairs in the form of ‘‘Z graphs’’@25#, it is likely
that disconnectedqq̄ insertions@see Fig. 5~b!# give the domi-
nant sea quark contribution tocv . In a chirally corrected
analysis of nonleptonic decays, the long-distance parts of
disconnectedqq̄ insertions appear explicitly in the guise o
pseudoscalar loops, while the short-distance contributi
are subsumed into the value ofcv and possible higher dimen
sion operators. ‘‘Quenched’’ quark models without explic
pionic degress of freedom generally do not include the lo
distance physics of disconnected insertions.

The mq dependence is different. In conventional HBChPT
analyses of hadronic observables, one only retains the
contributions non-analytic in the light quark mass. The co
stituent quark model~without explicit pions! has a difficult
time producing these non-analytic contributions. The si
plest, illustrative example is the nucleon isovector cha
radius, ^r 2&T51, which is singular in the chiral limit@26#.
This chiral singularity, of the form lnmp

2;ln mq , is produced
by p loops. Relativistic quark models, such as the MIT b
model, yield a finite value for̂r 2&T51 asmq→0. One cannot
produce the chiral singularity in a quark model without i
cluding disconnectedqq̄ insertions dressed as mesons.

The corresponding argument in the case ofhp
EFF is less

FIG. 5. Quark line diagrams for the renormalization ofhp due to
the axial PVppNN interaction. As in Fig. 3, the wavey line de
notes the action ofH W

PV . ~a! shows a typical contribution tohA
i .

~b!, ~c! denote the corresponding loop corrections tohp . ~b! con-

tains the disconnectedqq̄ insertions, while~c! gives a Z-graph con-
tribution.
6-10
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CHIRAL SYMMETRY AND THE PARITY-VIOLATING NNp . . . PHYSICAL REVIEW D 63 033006
direct, but still straightforward. In the limit of a degenerateN
andD, the non-analytic terms inhp

EFF have quark mass de
pendences of the formmqlnmq or mq

3/2. As we show in Ap-
pendix C, bag model matrix elements of the four quark o
erators appearing inH W

PV have a Taylor series expansio
aboutmq50. Thus, the parametersh and y cannot contain
the non-analytic structures generated by the diagram
Figs. 1 and 2.

Graphs are missing. This observation is simply a dia
grammatic summary of the previous two observations.
simplicity, consider a subset of the quark-level diagrams
sociated with the appearance ofhA

i in hp
EFF . Typical contri-

butions to the axialNNpp PV vertex are shown in Figs
5~a!. The corresponding loop contributions tohp

EFF appear in

Figs. 5~b!,~c!. Those in Fig. 5~b! involve disconnectedqq̄
insertions, which do not occur in the constituent qua
model. The contribution of Fig. 5~c! involves Z graphs,
which are produced in a relativistic quark model.4 In prin-
ciple, the 3q1qq̄ intermediate state could contain anNp
pair. As argued previously, however, the Z graphs implicit
the MIT bag model calculation ofhp do not produce the
nonanalytic structure of the correspondingp loop. Appar-
ently, only an unquenched quark model, which generates
disconnected insertions of Fig. 5~b!, could produce the req
uisite nonanalytic terms.

From this ‘‘case study’’ of the DDH-FCDH calculation o
hp , we conclude that the SU(6)w-quark model approach
used in Refs.@7,8# does not incorporate the chiral structure
hp

EFF . Were the numerical impact of the chiral correctio
negligible, this observation would not be bothersome. T
actual impact of the chiral corrections, however, may be s
nificant.

VI. CONCLUSIONS

With the confirmation of the electroweak sector of t
standard model at the 1% level or better in a variety of l
tonic and semi-leptonic processes, one has little reaso
doubt its validity in the purely hadronic domain. Similarl
the predictions of QCD in the perturbative regime have b
confirmed with a high degree of confidence. Thus, one m
justifiably considerH W

PV , the effective Hamiltonian includ-
ing its perturbative strong interaction correction, to be w
understood. Moreover, the precision available with pres
and future hadronic PV experiments is unlikely to match
levels achieved in leptonic and semileptonic processes. C
sequently, one has little hope of detecting small deviation
H W

PV from its SM structure due to ‘‘new physics.’’ On th
other hand, much about QCD in the non-perturbative reg
remains mysterious: the mechanism of confinement, the
namics of chiral symmetry breaking, the role of sea quark
the low-energy structure of the nucleon, and so forth. E
of these issues bears on one’s understanding ofmatrix ele-
mentsof H W

PV . In this sense, the low-energy, PV hadron

4E.g., as a correction to thebt,v terms of Fig. 3~b!.
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weak interaction constitutes a probe of the dynamics of lo
energy QCD, in a manner analogous to the probe provi
by the electromagnetic interaction.

From a phenomenological standpoint, the matrix elem
one may hope to extract from hadronic PV observables w
the least ambiguity iŝNpuH W

PVuN&. In this study, we have
argued that any theoretical interpretation of this matrix e
ment must take into account the consequences of chiral s
metry. Indeed the chiral corrections to the tree-level,
pNN Yukawa coupling are not small. AtO(1/Lx

3), the ef-
fective coupling measured in experiments,hp

EFF , depends
not only on the leading-order coupling,hp

1 , but also on new
~and experimentally undetermined! PV low-energy con-
stants,hA

1 , hA
D , and hD , as well. Furthermore, the coeffi

cients ofhp
1 , hA

1 , andhD are comparable in magnitude. A
present, one has only simple theoretical estimates of
magnitudes of thehA

1 and hA
D in addition to the FCDH cal-

culation of hD . These estimates suggest that the new
couplings appearing inhp

EFF could be as large ashp
1 . Since

no experimental constraints have been obtained for the
couplings, there exists considerable latitude in the theoret
expectation forhp

EFF .
For two decades now, the benchmark theoretical calc

tion of ^NpuH W
PVuN& has been the SU(6)w/quark model ap-

proach of Ref.@7#, updated in Ref.@8#. We have argued
however, that the DDH-FCDH calculation does not manif
the general strictures of broken chiral invariance obtained
the present analysis. At the quark level, this chiral struct
reflects the role played by the ‘‘disconnected’’qq̄ compo-
nents of the sea. While relativistic quark models containqq̄
sea quark effects in the guise of Z graphs or low
component wave functions, the most common ‘‘quenche
versions do not include explicit disconnected pairs.5 Given
the potential impact of the chiral corrections associated
part with the disconnected insertions, model calculatio
such as the DDH-FCDH calculation may bear reanalysis

Applying chiral corrections to the SU~3! analysis ofDS
51 hyperon decays may help to close the gap betweenhp

EFF

andhp
DDH . Presumably, similar corrections should be appl

in other approaches not containing explicit pionic degress
freedom. In the longer run, one may be able to use the ch
structure ofhp

EFF to extrapolate an unquenched lattice calc
lation with heavy quarks into the physical regime.
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APPENDIX A: PV LAGRANGIANS

Here we present the full expressions for some of the PV Lagrangians not included in the main body of the pap
analogues of Eqs.~16!–~18! are

L DI 50
pDN 5 f 1eabcN̄ig5@XL

aAmXL
b1XR

aAmXR
b #Tc

m1g1N̄@Am ,X2
a #1Ta

m1g2N̄@Am ,X2
a #2Ta

m1H.c. ~A1!

L DI 51
pDN 5 f 2eab3N̄ig5@Am ,X1

a #1Tb
m1 f 3eab3N̄ig5@Am ,X1

a #2Tb
m1

g3

2
N̄@~XL

aAmXL
32XL

3AmXL
a!2~XR

aAmXR
3

2XR
3AmXR

a !#Ta
m1

g4

2
$N̄@3XL

3Am~XL
1Tm

1 1XL
2Tm

2 !13~XL
1AmXL

3Tm
1 1XL

2AmXL
3Tm

2 !22~XL
1AmXL

1

1XL
2AmXL

222XL
3AmXL

3!Tm
3 #2~L↔R!%1H.c. ~A2!

L DI 52
pDN 5 f 4eabdI cdN̄ig5@XL

aAmXL
b1XR

aAmXR
b #Tc

m1 f 5eab3N̄ig5@XL
aAmXL

31XL
3AmXL

a1~L↔R!#Tb
m

1g5I abN̄@Am ,X2
a #1Tb

m1g6I abN̄@Am ,X2
a #2Tb

m1H.c., ~A3!

where the terms containingf i andgi start off with one- and two-pion vertices, respectively. In the heavy baryon expansio
terms containing thef i start to contribute atO(1/mN). The leading order term vanishes sinceP1• ig5•P150. Since we work
only to lowest order in the 1/mN expansion, we obtain no contribution from the terms containing thef i .

For the pvpDD effective Lagrangians we have

L DI 50
pD 5 j 0T̄iAmgmTi , ~A4!

L DI 51
pD 5

j 1

2
T̄igmTiTr~AmX1

3 !2
k1

2
T̄igmg5TiTr~AmX2

3 !2
hpD

1

2A2
f pT̄iX2

3 Ti2
hpD

2

2A2
f p$3T3~X2

1 T11X2
2 T2!13~ T̄1X2

1 1T̄2X2
2 !T3

22~ T̄1X2
3 T11T̄2X2

3 T222T̄3X2
3 T3!%1 j 2$3@~ T̄3gmT11T̄1gmT3!Tr~AmX1

1 !1~ T̄3gmT21T̄2gmT3!Tr~AmX1
2 !#

22~ T̄1gmT11T̄2gmT222T̄3gmT3!Tr~AmX1
3 !%1k2$3@~ T̄3gmg5T11T̄1gmg5T3!Tr~AmX2

1 !1~ T̄3gmg5T2

1T̄2gmg5T3!Tr~AmX2
2 !#22~ T̄1gmg5T11T̄2gmg5T222T̄3gmg5T3!Tr~AmX2

3 !%1 j 3$T̄
agm@Am ,X1

a #1T3

1T̄3gm@Am ,X1
a #1Ta%1 j 4$T̄

agm@Am ,X1
a #2T32T̄3gm@Am ,X1

a #2Ta%1k3$T̄
agmg5@Am ,X2

a #1T3

1T̄3gmg5@Am ,X1
a #1Ta%1k4$T̄

agmg5@Am ,X2
a #2T32T̄3gmg5@Am ,X1

a #2Ta%, ~A5!

L DI 52
pD 5 j 5I abT̄agmAmTb1 j 6I abT̄i@XR

aAmXR
b1XL

aAmXL
b#gmTi1k5I abT̄i@XR

aAmXR
b2XL

aAmXL
b#gmg5Ti1k6eab3@ T̄3ig5X1

b Ta

1T̄aig5X1
b T3#, ~A6!
th

i

n

er
where we have suppressed the Lorentz indices of theD field,

i.e., T̄n
•••Tn . The vertices withki ,hD contain two pions.

All other vertices contain one pion when expanded to
leading order. At first sight the leading order term withk6 in
~A6! has no pions. However, such a term cancels its Herm
ian conjugate exactly. The constantshpD

i are the PVpDD
Yukawa coupling constants.

In Sec. II, the leading terms in the above Lagrangia
were expressed in terms of effectiveppND andpDD cou-
pling constants. These constants may be expressed in t
of the f i , gi , ki , j i andhpD

i as follows:
03300
e
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ms

hA
pD11p2p0

522g112g22g323g42
2

3
g51

2

3
g6

hA
pD11p0p2

52g11g316g41
2

3
g5

hA
pD1p0p0

52A6

9
~6g219g412g6!

hA
pD1p1p2

52
A6

9
~26g129g414g516g6!
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hA
pD1p2p1

52A6

9
~6g126g224g514g6!

hA
pD0p1p0

52A3

9
~6g116g223g319g412g512g6!

hA
pD0p0p1

52A3

9

3~26g1112g213g3118g422g528g6!

hA
pD2p1p1

5A2

3
~6g229g412g6!

hA
nD11p2p2

5A2

3
~6g229g412g6!

hA
nD1p2p0

52A3

9
~6g116g213g329g412g512g6!

hA
nD1p0p2

52A3

9

3~26g1112g223g3218g422g528g6!

hA
nD0p0p0

52A6

9
~26g219g422g6!

hA
nD0p1p2

52
A6

9
~26g116g214g524g6!

hA
nD0p2p1

52A6

9
~6g129g424g526g6!

hA
nD2p1p0

52g122g21g313g41
2

3
g52

2

3
g6

hA
nD2p0p1

522g12g326g42
2

3
g5 ~A7!

hD5hpD
1 1hpD

2

hV
D11D1

5
1

A6
S j 01

4

3
j 6D22A6 j 22

2A6

3
~ j 31 j 4!1

j 5

3A6

hV
D1D0

5A2

3 S j 01
4

3
j 6D2

2A2

9
j 5

hV
D0D2

5
1

A6
S j 01

4

3
j 6D12A6 j 21

2A6

3
~ j 31 j 4!

1
j 5

3A6
. ~A8!
03300
It is interesting to note there is only one independent
Yukawa coupling constanthD for pDD interactions.

APPENDIX B: VANISHING LOOP CONTRIBUTIONS

As noted in Sec. III, a large number of graphs whi
nominally contribute tohp

EFF actually vanish up toO(1/Lx
3).

Here, we summarize the the reasons why.
Consider first the corrections due to the PV vectorpNN

vertices. For Fig. 1~b! we have

iM (b)5 i
gA

2

A2Fp
3

t1S hv
01

4

3
hV

2 D
3~v•q!E dDk

~2p!D

~S•k!2

v•kv•~k1q!~k22mp
2 !

;O~1/mNLx
3!, ~B1!

where we have usedv•q;O(1/mN). Since we are working
to leading order in the 1/mN expansion, this amplitude doe
not contribute. The PV vector interactions also appear
Figs. 1~j1!, 1~j2!. The corresponding amplitude is

iM ( j 1)1( j 2)52 i
gA

2

A2Fp
3

t1S hv
012hV

12
8

3
hV

2 D
3E dDk

~2p!D

@~S•k!,~S•q!#1

v•kv•~k1q!~k22mp
2 !

50. ~B2!

This integral vanishes because it is proportional
@(S•v),(S•q)#1 , which vanishes becauseS•v50. All other
possible insertions of PV vectorpNN vertices vanish for
similar reasons as either Eq.~B1! or ~B2!. In what follows,
we refer only to insertions involving the PVpNN Yukawa
andppNN axial couplings.

The propagator corrections in Figs. 1~g1!-1~h2! vanish af-
ter integration since their amplitude of Figs. 1~g1!,1~g2! goes
as

;hp
1 E dDk

~2p!D

v•k

k22mp
2 50 ~B3!

while the amplitude of Figs. 1~h1!, 1~h2! goes as

;hA
i E dDk

~2p!D

S•k

k22mp
2 50. ~B4!

The amplitude of Figs. 1~i1!–1~i4! contains a vanishing
integral

;hp
1 E dDk

~2p!D

S•k

v•k~k22mp
2 !

50. ~B5!

Figures 1~j1!, 1~j2! do not contribute for the PV Yukawa
couplinghp due to charge conservation. The remaining no
zero diagrams are Figs. 1~a!–1~f2! where the insertions in
6-13
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loops are of the Yukawa or axial interactions. Figures 1~f1!,
1~f2! arise from the insertion of the counter terms of ma
and wave function renormalization. Figures 1~e1!, 1~e2! and
Figs. 2~c1!, 2~c2! contribute to the wave function renorma
ization in Eq.~38!.

Because of the heavy baryon projectionP1• ig5•P150,
the one pion PVpND vertex does not contribute in th
leading order of heavy baryon expansion. Hence, the ch
loop corrections from Figs. 2~d1!–2~g4! are of higher order.
Figures 2~h1!–2~j2! vanish after integration for reasons sim
lar to Eq. ~B2!. The remaining, non-vanishing diagrams a
discussed explicitly in Sec. III.

As pointed out in Sec. II, both PC and PV two-derivati
operators which conserveCP do not contribute tohp renor-
malization. For example, there exists oneCP-conserving,
PV such operator:

1

Lx
N̄smn@DmAn2DnAm#N. ~B6!

After expansion, the leading term starts with three pions
contributes via Fig. 1~a!, at the order of 1/LxFp

3 . Moreover,
the loop integration yields a factorgmn and leads to zero afte
contraction withsmn.

Another possibility comes from insertions of PC tw
derivative nucleon pion operators. There are three PC op
tors which conserveCP:

1

Lx
N̄ig5DmAmN, ~B7!

1

Lx
N̄AmAmN, ~B8!

1

Lx
N̄smn@Am ,An#N. ~B9!

Note that the first two operators are symmetric in the Lore
indices. Only the last one arises from the antisymmetric
erators listed in Eq.~29!. The first one starts off with one
pion. The relevant Feynman diagrams are Figs. 1~c1!, 1~c2!,
where the PV vertex is associated withhA

i . Note that these
diagrams do not contribute at leading order of HBChPT d
to the presence of theig5. The remaining two operators sta
off with two pions. The relevant diagrams are Figs. 1~d1!,
1~d2!. After integration the contribution of the third operat
reads

;hpemnabvaSbvmqnmp
2 ln mp /LxFp

2 . ~B10!

So its contribution is zero. In contrast the second opera
yields

hp~v•q!mp
2 lnmp /~LxFp

2 !. ~B11!

Note that v•q;1/mN . So its contribution is of order
1/(Lx

3mN). In short, none of the two-derivative operato
contribute to the renormalization ofhp at the order to which
we work.
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APPENDIX C: BAG MODEL INTEGRALS

Here, we show that the four-quark bag model integr
relevant to the calculation of the DDH-FCDH parametersh
and y have a Taylor expansion in light quark mass arou
mq50. We write a bag model quark wave function
@28,18#

c~x!5S iu~r !x

l ~r !sW •rWx
D exp~2 iEt !, ~C1!

wherex denotes a two-component Pauli spinor and wh
wave function normalization yields

E d3r @u~r !21 l ~r !2#51, ~C2!

where the the radial integration runs from 0 to the bag rad
R. The four quark matrix elements of interest here can
pend three different integrals:

E d3ru~r !4, E d3r l ~r !4, E d3r u~r !2l ~r !2.

~C3!

The quark radial wave functions are

u~r !5N j0S pnr

R D ~C4!

l ~r !52NS vn2mqR

vn1mqRD 1/2

j 1S pnr

R D ,

~C5!

where

tanpn52
pn

vn1mqR21
~n51,2, . . .! ~C6!

pn5Avn
22mq

2R2 ~C7!

N5A pn
4

R3~2vn
222vn1mqR!sin2 pn

~C8!

R45
Nvn2Z0

4pB
. ~C9!

B is the bag constant andZ0 is a phenomenological param
eter involved with the center of mass motion of the bag.

For light quarks and lowest eigenmode,

v0'~2.04310.493mqR! ~C10!

N'2.27/A4pR3. ~C11!

It is straightforward to show that the bag model integr
in Eq. ~C3! have a Taylor expansion aboutmq50. The ar-
gument proceeds by noting that the quantitiesN, R, pn , vn
and the argument of the spherical Bessel functions all h
6-14
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Taylor series inmq aboutmq50. The existence of this ex
pansion can be seen to be an explicit, iterative construct
First, expandvn andR:

vn5 (
n50

`

vn,kmq
k ~C12!

R5 (
n50

`

Rkmq
k . ~C13!

Now let mq50 in Eqs.~C6!, ~C7!. Doing so eliminates all
dependence onR and determinesvn,0 . Next, setmq50 in
Eqs. ~C8!, ~C9! with vn→vn,0 . Doing so determinesR0.
Now expand Eqs.~C6!, ~C7! to first order inmq . This step
yieldsvn,1 in terms ofvn,0 andR0. Expanding Eqs.~C8, C9!
to first order inmq then determinesR1 in terms of vn,0 ,
-
.

rt

O

s-

nn

in

,

s.

in

03300
n.
vn,1 , andR0 and so forth. Note that at any step of the recu
sion, the argument of any transcendental function isvn,0 .
Hence, at any order, a solution for thevn,k andRk exists.

The expansion of the bag model integrals continues
computing their derivatives with respect tomq and using the
expansions ofN, R, etc. in terms ofmq as constructed above
Taking n derivatives of one of the integrals in Eq.~C3!
yields new intregrals involving powers ofr /R times products
of the Bessel functions and their derivatives. Using the st
dard Bessel function recursion relations, the derivatives
the j k can always be expressed in terms of other spher
Bessel functions. Since thej k and their derivatives are finite
at the origin, and since the radial bag integration is boun
above byR, thenth derivative of any of the integrals in Eq
~C3! is finite. Thus, each of the integrals in Eq.~C3! can be
expanded in a Taylor series aboutmq50.
ys.
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