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Semileptonic form factors: A model-independent approach
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We demonstrate that tHg— D *)| v form factors can be accurately predicted given the slope parapreter
of the Isgur-Wise function. Only weak assumptions, consistent with lattice results, on the wave function for the
light degrees of freedom are required to establish this result. We observe that the QCDngrzbfrections
can be systematically represented by an effective Isgur-Wise function of shifted slope. This greatly simplifies
the analysis of semileptonB decay. We also investigate what the available semileptonic data can tell us about
lattice QCD and heavy quark effective theory. A rigorous identity relating the form factor slope difference
pzD*—pil to a combination of form factor intercepts is found. The identity provides a means of checking
theoretically evaluated intercepts with experiment.
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I. OUTLINE II. INTRODUCTION

. . o As the observed sample of semileptoadecays accu-
We obtain a nearly model-independent description of thEfnulates, the need for a rigorous method of analysis becomes

Isgur-Wise(IW) function[1] £(w) in terms of a single mea- o6 pressing. Even in the heavy quark limit, a universal

surable parameter—the slope at zero—reﬁll,QnIy modest  form factor is required for each light degree of freedom state

assumptions about the shape of the heavy-light wave funcsf the meson. To compute the Isgur-WigV) functions

tion are required, and these are consistent with an establishggy) wherew=v*v" , requires considerable knowledge of

lattice result. We obtain a simple functional form for the IW {he heavy-light meson dynamics. For this reason, the IW

function in terms ofp?: function is usually thought of as “model-dependent” and
not susceptible to reliable calculation. In the first portion of
this paper we seek a balance between rigorous constraints

2(w+1) and phenomenological usefulness. We will demonstrate,
&(w,p?)= 1 2 (1.1 from heavy quark symmetry and some qualitative lattice re-
w+1+| p%— —) (w— 1)} sults, that the IW function is accurately determined by speci-

2 fying only the slope parametep?.

Experimentalists commonly adopt the straightforward

o procedure of expanding form factors about the meson zero-
We also demonstrate that the effect of radiative QCD coryg il point (v=1):

rections and Ih corrections can be described as the product

of a term linear inw an_d the IW function. The result_lng EwW)=1—p2(W—1)+c(w—1)2+- - .. 2.9

function is also approximately an IW function of shifted

slope. Thus, fitting the above functional form to the mea- .

sured form factors provides an accurate description of th Burdma_m[8_] h‘f"fs pointed out that the eﬁ?Ct of the curvature
. : erm c is significant but that, for statistical reasons, much

extrapolation to zero-recoil. Over the range of expecte

| Itis i q ¢ with th K redictive power is lost when it is a free parameter. A
SIOpes, our result 1S in good agreement wi e wor 0“model—independent” relation betweemand the slope pa-

[2—5] which is based on dispersion relat|ons.* rameterp? has been proposed by Boyd, Grinstein and Lebed
Recent analysef5,7] of B—DIv andB—D*lv decays  [2] This method has been modified by Caprini and Neubert
extract two physical form factors and two ratios of phy5|cal[3] and by Caprini, Lellouch, and Neubert in expanded form
form factors. We show that this information can be directly[4]. This result has been criticized however by Boyd, Grin-
related to QCD predictions. stein, and Lebed5]. These latter authors propose a similar
In Sec. Il we provide some background formalism behindput weaker relation betweemand p2. In Sec. Ill, we pro-
form factors for semileptonid-decay and the Isgur-Wise pose a rigorous one-parameter expression for the IW func-
function. We present our description of the IW function in tion.
terms of the slope parametgr?, in Sec. lll. In Sec. IV we The second observation we make here concerns the rela-
discuss the effects of corrections to the heavy-quark limition of the IW function to the actug@physica) form factors
and their equivalence to slope-shifted IW functions. The rewith 1/mg and QCD radiative corrections. We show in Sec.
lationship of heavy quark effective theoflQET) and QCD IV that all of these corrections can be distilled into a new
lattice simulation to semileptonic data is explored in Sec. V.effective IW function with a shift in slope. The analysis of
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experimental data is thereby greatly simplified. The slopesiotation, we assume a single component wave function
appearing inB—D and B—D* will be different and this  (r)=R(r)Y"(6,¢). The expectation value is consequently
difference can be compared to the theoretical predictions. defined by

The decay rate foB—D®)| v can be writter{9] as

A(r))= “dr r2R2(r)A(r). (3.2
dI'  GE[Vey|® Jo
T ages Mo \WTIIFWR, 2.2
Using limy<1jo(y) =1—5y*+ - - -, we may expand Eq3.1)
where, forB—Dl v, about the zero recoil point=1 to yield
f=(w?—1)(1+r)? 1 4E? [w
Ew)~| 1= (w=1)+ -+ [(1)= | g D)+
m
r=-—>~0.35, 2.3 3.3
Mg
_ Ew)=1—p*(w—1)+--- (3.4
and forB—D*lv
where
f*=(w+D)[(W+1)(1—r*)%+4w(l—2wr* +r*?)],
1
Mp« :—+ —<r2> (35)

r*=——~0.38. (2.4)

B

We now use Eq(3.5) to eliminate the energi in the gen-

*
The two form factord=(w) andF* (w) can be expressed eral expressioi3.1) to obtain

[10] in terms of the fundamental form factors
hi, h_, hy, ha, ha, andh, . These form factors can

1
in turn be related to the Isgur-Wise function through 5 . 12(p2— E) (w—1)

hy(w) =L e+ B (W) + yi(W) JE(w), 2.5 §W =357 \ o\ 7 — Wil :
(3.6

wherea ; = ay= ap =ap, =1 anda,zaA =0. Theg;(w)

describe perturbatlve radlatlve correctlons and are in prinwherer ;= \(r?).

ciple predictable within the heavy quark effective theory. In the above Eq(3.6), if we know the slope 2) and the
The y;(w) represent the power (i) deviations from radial ground state heavy quark wave function, we can com-
heavy quark symmetry and require further theoretical aspute the IW function for allv. We can make the wave func-
sumptions[10]. In Sec. IV we will point out that, for those tion dependence more explicit by introducing the dimension-
form factors which do not vanish in the heavy quark limit, less quantities

the pre-factors in Eq(2.5 can nevertheless be approxi-

mately absorbed into an effective IW function which has a r
flavor and spin-dependent slope X= E’
hi(w)=hi(1)&(w,p?). (2.6 r
I1l. MODEL INDEPENDENT PARAMETRIZATION 0

OF THE ISGUR-WISE FUNCTION . . .
wherer, is a hadronic scale factor. We define th& mo-

The IW function appears to require detailed informationment off? as
on the nature of heavy-light dynamics. In this section, we
propose a method to distill most of this knowledge into a N t2eo
single parameter—the slopge?. Almost all model depen- Nn= fo dx X 5F5(x) 39
dence will be seen to vanish once the slope is specified.
In the heavy-light limit, heavy quark symmetry provides a

. . ) . so that wave function normalization agc?) become
unique prescriptiorf11,17 relating the IW function to the 4et)

wave function and light degrees of freedom energy E, 3:20 _
roRoNo=1,
fw)= < (ZE \/W_1> 3.
= j r\/——| ). . N
0 w1 (r3)=r3R2N,=r2 2 (3.9

= ro .
No

The expectation value may involve a multi-component wave

function such as from the Dirac equation. For simplicity of The IW function(3.6) is then
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FIG. 1. The lattice dat413] for the heavy-
light wave function along with curves corre-
sponding to the exponential parametrization
(3.11) with k=0.5, k=1.0, andk=2.0. It is
readily seen thak=1.0, which corresponds to a
simple exponential, provides a good fit.

01 |

Radial Wavefunction

0.01 . - ; . .%$ ird

o . lattice wave function closely resembles a simple exponential.
sw)=7 NoJo dx Xf%(x)jo We use this lattice result as a guide and parametrize the wave

function as[14]

1
12( pZ—E)(w—l)NO f(x)=e " (3.11)

X\ X Wr DN, . (3.10

When k=1 the wave function is a simple exponential and
the lattice simulation is closely reproduced. In Fig. 1, we also
It should be noted that both the normalization cons@ft show that by choosing=0.5 andk=2 we very conserva-
and the hadronic scale parametgrdo not appear in the- tively bracket the observed wave function. Assuming the
above expression for the IW function. The IW function thusheavy-light wave function is given by E¢3.11) with
depends only on the dimensionless slope parametemd
one dimensionless functiof(x) which is essentially the 0.5=k=2, (3.12
heavy-light wave function.

A few years ago, the heavy-light wave function wasthe IW function is determined for alv once the slope is
evaluated in quenched lattice simulatidr8]. The result for  specified. In Fig. 2 we show the predicted IW function with
the ground state is shown in Fig. 1. One may observe that the?=0.9. The central curve correspondskie 1 with a cor-

1 T T T T T T T T T
0.95 E
09 | g
0ss - . FIG. 2. Wave function sensitivity: The corri-
z dor for the Isgur-Wise function as determined us-
Z L k=1/2 ) ing k=0.5 andk=2.0. The solid line corresponds
: / to k=1.0. All curves have the same slope param-
k=1 eter,p2=0.9.
075 | .
07 k=2 Ry o
065 1 1 1 1 1 1 1 1 1
1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 14 145 1.5

w
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1 T T T T T T T T T
0.95 - 4
09 | 4
g 085 L ] FIG. 3. Equivalence of a “physical” form
5 ' factor to an Isgur-Wise function of a shifted
'-'E- slope. The “shifted” IW function&(w, p?=0.9)
5 081 Ry Ew,p’=1)[1+0.1(w—1)] . and the physical form factor approximation
- / £(w,p?=1.0)[1+0.1(w—1)] differ only about
2% atw=1.5.
078 R 4
o7y £00,p°=0.9)
065 1 1 1 1 1 1 1 1 1
1 1.05 11 1.15 1.2 1.25 1.3 1.35 1.4 1.45 15
w
ridor implied by the limits of Eq(3.12. We note that atv g(w,p2+ APZ):g(W,p2)[1_Ap2(W_ 1)]. (4.3

=1.5, which is approximately the largest allowed fBr
D™y decay, the corridor width is only about 0.02, or To illustrate the above approximation, we show in Fig. 3 a
3%. This small uncertainty shows that most of the IW shapesimple physical form factofwith x=0.1),
is well-determined by the slope alone.

A particularly important special case is whdo=1. h(w)=¢(w,1.0[1+0.1w—1)]. (4.4
Straightforward evaluation of Eq3.10 with k=1 in Eq.

(3.1 yields the IW function Also on Fig. 3 is a shifted IW functiog(w,0.9) with slope

chosen by the above prescription. We note that the two form
factors differ by less than 2% at=1.5. We now apply this

&(w,p?)= 2(w+1) 5. (3.13 result to the form factork;(w). Comparing Eq(4.3) to Eq.
w1+ p2— E) (w-1) (4.1) in the case where; =1 we see that
2
hi(w)=&(w,p?+Ap?) + N\ié(w,p?), (4.9
The above Isgur-Wise function will be accurate within the 5 5 5 5
corridor shown in Fig. 2. =&(W,p“+Ap%) +N\ié(wW,p+Ap%)
X[1+Ap?(w—1)]. (4.6)

IV. THE PHYSICAL FORM FACTORS

. . . ) We drop the small produdt;A p? to obtain
An important observation from specific theoretical models P P 2P

[15] is that the subleading Isgur-Wise form factors which hi(w)=h;(1)&(w,p?), 4.7
characterize the fil, corrections are to a good approxima-

tion linear inw. In addition, the radiative QCD corrections with

are monotonic and vary slowly witlv, so that they too can 2 2

be approximated linearly. Hence each of théw) form fac- Pi=pP T i,

tors (2.5 can be written as hi(1)= 14X, . 4.8

hi(W)=Lai+hi+ pi(w=1)1&w), @D e may therefore conclude that the physical form factors are

where both\; and x; are small, dimensionless constants. Néarly equivalent to IW form factors with shifted slopes and

The advantage of this observation is that an analysis of thBormalizations. .

experimental form factor can now be carried out withaut _ AS pointed out by Neubeit4,15], the sub-leading from

priori knowledge of the\; and u; coefficients. factor y, contributes identically to all of this; which remain
To take advantage of the above, we start with the expani-” the heavy quark limit. We therefore simplify the analysis

sion (3.3) and note that for smallw—1), IW functions of by absorbing thisy; contribution into a new IW type func-
slopesp?+ Ap? and p? are related by tion which maintains spin-symmetry, but now has flavor de-

pendence. It is this slopg? which we refer to as the IW
E(W,p%+ Ap?)=¢&(w,p?)— Ap?(w—1). (4.2 slope in the following.
The absorption ofy; into the IW function is allowed as
Over a wider range ofv a more accurate expansion is long asy; remains small. The evidence for this is ambigu-
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09 | -

g 085 8
:ﬁ FIG. 4. The form factorF(w)/F(1) from
£ 0s | . | CLN [4] along with an IW function(1.1) of the
£ same slope parametgr?=1.0.

0.75 Ewp’=1)

FCLN(W»P2=1)

065 1 1 1 1 1 1 1 1 1 =
1 1.05 1.1 1.15 1.2 1.25 13 1.35 1.4 1.45 1.5

w
ous. A QCD sum rule evaluatidri5] gives a wide range of p2=p— up. (5.5)

possible values fol;, some of which are large. Evidence

that y, is small comes, indirectly, from the dispersive analy-

sis of Caprini, Lellouch and Neubef€CLN) [4] where the The only measurable parameter here is the physical form
B—DIv is found for a given slope. In Fig. 4 we show the factor slope,pzD, which has been investigated at CLED.
CLN prediction forp?=1 compared to ouk=1 prediction If the data improves sufficiently, the difference betwex—%1
(3.13 for the same slope. The two curves are nearly identi-and the slope of a different physical form facteuch ad=*)

cal, which is expected i, and other corrections are small could provide information about QCD. To gain a rough idea

and can be absorbed into an effective IW function. of the sizes ofAp and up we compute the Wilson coeffi-
cients and substitute the QCD sum rule approximations for
V. WHAT CAN WE LEARN FROM EXPERIMENTAL the actual values of the subleading IW form factors. The
FORM FACTORS? results are included in Table Il of Appendix A.

) . . o o . There are some directly applicable tests of HQET pro-
The semileptonid decays yield definite but limited in-  yjged by QCD lattice simulations. Accurate lattice simula-

formation about QCD corrections. It is important to under-tions are currently possible at the zero recoil point(1).
stand exactly what in a theoretical framework is being tested\ recent calculatiorf16] obtains

by experiment. In this section, we examine each observable
guantity to see which aspect of QCD is being tested. We

consider the semileptonic decays separately. Ay, =0.01, (5.6
A. B—Dlv
_ _ A\, =—0.11. (5.7
For B—Dlv, the form factor id4] -
—r .. ..
F(w)=V,(w)=h_(w)+ l_h_(w) (5.1 In HQET, these coefficients are due to the radiative correc-
+r tions and Irh correctiong4]. These are enumerated in Ap-

pendix A. We observe that, has no Iih corrections as

required by Luke’s theoreffl7]. The result from the Wilson
coefficients alone of\h+=0.02 is consistent with the lattice

where result(5.6).
The comparison with, of Eq.(5.7) is more interesting.

_ The 1im correction here contains the subleading form factor
Ap=Ap + A (5.3 , \
o 1l4r - 7. This form factor has been estimated by QCD sum rules
[18], by the updated Isgur-Scora-Grinstein-Wid8GW2)
_ 1-r method[19], and by a Salpeter equation meth@@d]. While
MD=Hn, T+ 141 Mho (5.4 these various calculations yield reasonably consistent results
for the subleading form factoy,(w), the expectations for
and hence n(w) vary widely. From Appendix A we see that

= &w,pH)[ 1+ p+pup(W—1)+ -]
(5.2

032006-5



TODD COLEMAN, M. G. OLSSON, AND SINI®\ VESELI PHYSICAL REVIEW D 63 032006

A_=h_(1)=(C,—Cy)+ 2—mb+2—mC (2n—1)A.
(5.8
Using the calculated Wilson coefﬁcui]ts and the parameters Poe = pa, §)\v— - D‘A3+r*)‘A2_ r* )\Al]'
m,=4.80 GeV, m.;=1.45 GeV, and\=0.5 GeV we can 3(1—r™)
evaluate the previous expression to yield (5.19
Ay =—0.07+0.1227—1). (5.9 As in theB— DI v case, we can obtain rough approximations

of wpx, ANpx, KA, and Aa,- The results are included in
The lattice result in Eq(5.7) suggests that the second term 14pje || of Appendix A.

above is negative, i.en<<0.5. This prediction is not com- The above expressiofb.14 has a remarkable conse-
pletely rigorous as the size of the effect is of order a few

. >
percent and second-ordermi/corrections could be of that quence. The slope dlffe_renqé*ijl—MAl—u_D* can be
order. In addition, the lattice calculation for (1) has cur- related to the zero-recoil quantities, above. It is therefore
rently been calculated only to tree level, but a 1-loop calcu®ossible in the near future to teffor the first time the
lation is underway16]. However, the preliminary indication ‘“intercept” quantities \; by direct comparison to experi-
is that 7 is less than the central value of 0.62 which comesment. At this point onlyA, has been computed in lattice
from QCD sum rules. At the same time however, the muchsimulation[21], but the corresponding values Dfaz, Na,

smaller values ofy Wh'.Ch come from ISGW2 and the Sal- , dAy could be evaluated. At present the experimental situ-
peter model are also disfavored because they produce a resgﬁon [6] is also not precise enough:

for h_(1) which is too negative.

B. B—»D*Ilv

In this case, there is additional information provided by pZD*—pi =0.08+0.15, (5.19
the D* — D= decay distributior{6]. As suggested by CLN !
[4] and followed by CLEJ6] this decay can be analyzed in

terms of theh,, form factor and two ratios of form factors. 1, s result can also be considerably sharpened. We em-

The CLEO experiment, which to date has the best meapnasize that the above predictiaqb.14 is an important

surements of theB—D* form factor paramaters, has check of the values of the intercepks, which are in turn of
adopted the convention of fitting the slopefgf, pja, and  ciitical importance in the extraction of the Cabibbo-

two form factor ratios: Koboyashi-Maskawa(CKM) parameterV,,. We should
point out that the relatiorf5.14) is implicitly contained in

Ry(W) = hv(w) CLN's Eq. (35).
ha, (W) In the heavy quark limitR;=R,= 1. These ratios’ devia-
tion from unity, experimentally and theoretically, indicates
ha, (W) +1*hp (W) deviation from heavy quark symmetry and, consequently,
Ro(w) = e (W) : (5.10  can test theoretical predictions for the symmetry-breaking
1

corrections. The measurementsRyf andR, (currently with
wherer* =mp« /mg~0.38. These ratios are expected to pelarge error b_aujsagree wit_h 'Fheoretical predictions, apd thu_s
nearly independent afl so they are treated as constants in"oughly confirm the predictions of HQET. Here we investi-
the fit. The form factoF* can be expressed in terms of thesegate the exact nature of the predictions and their value as
parameters by combining E¢A3) from the Appendix and tests of HQET.

the definitions(5.10. We would also like to writd=* (w) as Treating the form factor ratios as constants, while reason-
a shifted IW function, able theoretically and necessary for the fit, makes the tests of
symmetry-breaking corrections less informati&(w) and
F*(W)=&W,p?)[1+Nps + pps(W—1)+ - - -], R,(w) are essentially reduced 8,(1) andR,(1), and be-

(5.11 cause many of the corrections vanishwat 1, they cannot
be tested. For example, the subleading Isgur-Wise function
and hence x3(w) which has only been calculated up to the errors inher-
) ent to QCD sum rules is completely lost in this procedure. If
F*(w)=F*(1)&wW,pps), (5.12 e apply the expressions given in Appendix A to the various
5 . _ _ form factors atw=1, eliminate those corrections which
wherepp. = p?— up«. Since|F*|? is the sum ofh; contri-  vanish at zero-recoil, and express the results in terms of
butions and kinematical factors, theyx and up+ are the  the Wilson coefficients and subleading IW form factors, we
result of an expansion about=1. The result is obtain
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1 1 —
C1(1)+ Z—rncA—z—rnb(Zn—l)A

Ri(1)= (5.16
Ci(1)
1 (1+r*)| 4xs(1) — r*
5 5 * ~5 _ - * -
Ci(H)+C3(1)+r*C3(1) nqmer T + 2m. (r*—1)+A my 2me
R,(1)= c . (5.17
Ci(1)
|
If we use the theoretical estimates as rough guides to the size hi(w)=[a;+ N+ ui(w—1)+---]1&w,p?), (6.2
of each term, we can determine what predictions are actually
being tested. where a; is 0 or 1 and\; and u; are small dimensionless
constants. We observe that by altering the IW slppeto
1. What do we learn from R? pZ=p?— u; the physical form factors can be expressed as
The subleading combinations2-1 is expected to be )
small on the basis of the, considerations and is further hi(w) = (a;+\)&(W,pp), (6.3

reduced by Inh,. Consequently, after evaluating the Wilson 2 ) . _
coefficientsC; (see Table | of Appendix A R, must be Wherépi=p“—u;. Thatthis works well is shown by Fig. 3.
greater than unity and provides a fairly direct probe of the From the above we conclude that semileptonic data are

HQET parameter\, which is the light degrees of freedom parametrized by an intercept valifey(1+ A;) and an effec-
energy to this ordér tive Isgur-Wise slope parametpf. To find the CKM ele-

mentV,, one must use a theoretical estimate\pf
For B—D*lv decay the parameters ard/.,(1
+)\A1), pil, R, andR,. In this case one has a consistency

quite small and 1y, —r*/2m ~0.03. Thus after calculat- condition (5.14) relating the\; and the difference between

* 2 . .
ing the Wilson coefficients, a measurementRyf provides actual D* slope andpAl‘ We further point out thaR, Is
an additional probe of the value of the subleading formnearly model-independent whilg, depends sensitively on
factor 5. Using the Wilson coefficients in the Appendix, various estimates of the subleading from facigd). Also,
as well asm,=4.8 GeV, m.=1.45 GeV, r*=0.38 and the value of the form factoh_(w) at zero-recoil\y, , ap-

2. What do we learn from R?

In the expression foR,, x, is generally agreed to be

A=0.5 GeV, the expression f&®, becomes pears to offer an additional probe of the valg€l).
Finally, one might ask, what is the essential advantage of
R,=1.00-0.347(1)—0.84y,(1). (5.18 the slope shift scheme described here? The answer is,

economy of parameters and a decoupling from theoretical
The term containingy is the dominant correction gg, is  assumptions. As seen in Fig. 3, one of the effective IW func-
small, so a precise measurementRyf effectively measures tion slopes is equivalent to afunknown IW slope with
7. subleading corrections. If these corrections were securely
known our scheme offers no advantage. On the other hand, if
VI. CONCLUSIONS one tried to fit both the IW slope and HQEXT parameters, a
hopeless parameter correlation would arise.

We have addressed the question of how to analyze semi- We believe that it is best to rely as little as possible on
leptonic B decay while minimizing both the amount of the- theory and to use a direct phenomenological approach. As
oretical assumption and the number of parameters. We firgiointed out previously8], one must have some theoretical
establish that specifying the slope paramegtéraccurately —constraint on the curvature term in EQ.1). We show here
determines the entire Isgur-Wise function. To do so, we neethat the shape of the form factor is specified once the slope
only an approximation to the light degrees of freedom waveparameter is given. Later, after the decay distributions have
function provided by a QCD simulation. Our res(tl) is been parametrized, the fitted parameters can be compared to

predictions.

2(w+1)

1 2
p*— 5)(W— 1)}

2\ —
&(w,p?)= (6.2) ACKNOWLEDGMENTS
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TABLE |. Wilson coefficient linear fits fora(u)=0.12: [15].

Ci Ci(1) Ci(1)
Cy 1.13 -0.08
C3 1.00 -0.04
C, —0.086 0.037
C3 -0.11 0.038
Cs -0.019 0.005
C3 0.040 -0.013
APPENDIX

The fundamental form factots; are defined4,10] by

(D(v")[cy*blB(v)) _

VMgMp

(v+v")*hi(w)
+(v—v")*h_(w),

(D*(v',e)[cy"b|B(v))

N =ie""Pesv v ghy(w),
B!iD*
(D*(v',€)[cy*y°b|B(v))
=(wW+1)e**h, (W
Jatos (W D a,(w)

- 6* 'U(UMhA2+U,MhA3).

(A1)

The matrix elements foB—DIv in Eqg. (2.4 can be ex-
pressed in terms dh;} as

1-r

1+r (A2)

h_(w)

F(w)=h_(w)-

and the squared matrix element B¢ D*| v in Eq. (2.4) as
P[P (w)[2=2(w+1)(1—2wr* +r*?)[(w+1)hg
+(W=1)hG]+(W+1)2[(W=r*)hy,

—(w=1)(r*ha,+hy)]% (A3)

The h; can, as indicated in Eq2.5), be expressed by the
short-range correctiong; and the Ihg correctionsy; to-
gether as
hy(w)=&W)[Cy+ec(Loa—Ls)+ep(Li—L4)]
ha,(W)=EW)[CT+C3+ec(Ly—Ls—Ls+Le)
+tep(li—La)]

ha,(W)=EW)[C3+ec(Ls+Le)]
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TABLE IlI. Estimates of thex andu coefficients for the various
relevant form factors using the Wilson coefficients of Table | and
QCD sum rules approximationig,18] as summarized in EqA5).

Form factor N Mi
hA1 0.004 0.050
F*=F 0.004 0.253

s w—1
ha,(W)=&(W)| Ci+ec| Lo o7 Ls
w—1
+8b Ll_ ml_4
w+1

hi(w)=&w)| Cyt ——(Co+ Ca) +(ectep)ly

w+1

h-(w)=&(wW)| ——(Co=Ca) +(ectep)ls

(A4)

wherescvb=(2mcyb)‘1, theC; are the Wilson coefficients—
which are discussed extensively[itb]—and thel; are com-
binations of the sub-leading Isgur Wise form factors and
have been approximated by QCD sum rJlék

X2

Li=—4w=1)7

+1Z§~0.72(w— 1A
L= —4%~ —0.16w—1)A

L3:4%~0.24K

3.24_

2 _
Lﬁz—m(nﬂ'l)/\%—m/\ (AS)

whereA~0.5 GeV is the “binding energy” of a heavy me-
son.

Using the detailed expressions given[# and[15] and
the expressions above, we can extractand u; for each
form factor h; which appears in Eq4.1). They appear in
Table II. We use the valuesn,=4.8 GeV and m,
=1.45 GeV and calculate the Wilson coefficients at the
scaleas(u)=0.127 (see Tables | and )l
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