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Fractional fermion number in a (14 1)-dimensional Dirac equation with a scalar Coulomb field
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An elementary example of fermion number fractionalization is given. The model considered is a massive
Dirac fermion moving on the positive halfline in an external scalar Coulomb field. The theory is symmetric
under charge conjugation. We demonstrate the existence of a nondegenerate, normalizable, and self-charge-
conjugate zero energy solution in the theory. The vacuum thus has a fermion narif#®mdepending on
whether the lowest positive energy state without the external scalar field was filled or empty.
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The occurrence of a fractional fermion number of thewherem is the mass of the fermiomy, and 8 are the Dirac
vacuum is certainly one of the most interesting discoveries inmatrices, andJ andV are scalar and vector potentials, re-
the theory of quantum fields. It is a manifestation of thespectively. Such a model is of interest in both the theory of
effects of Dirac’s negative energy sgB2]. It was first ob-  the nuclear shell modgll0,11] and the mode[with V(x)
served by Jackiw and Rebf8] that, in a charge conjugation =0] of the self-compatible field of a quark systda®]. In
symmetric theory of one-dimensional massless Dirac fermithe presence of a vector potential, the Dirac Hamiltonian
ons interacting with a solitonic background figlithe kink),  does not exhibit a charge conjugation symmetry since a
the vacuum acquires a fractional chargd/2. In this case charge coupling treats particles and antiparticles differently.
the existence of a normalizable zero energy solution of th&o the existence of zero mode does not necessarily imply a
Dirac equation is rather essential, and the fermion numbefractional fermion number. On the other hand, owing to
fractionalization is closely related to the spectral asymmetrycharge-conjugation symmetry, a theory with only a scalar
of the theory considered. Later, Goldstone and Wilck potentialU generally has no spectral asymmetry, unless there
showed that for a general Dirac Hamiltonian without conju-exists a zero energy solutiga0].
gation symmetry, the fermion number can be a nontrivial We now consider a theory described by the Hamiltonian,
continuous function of the various parameters in the theoryEq. (2), on the positive halfline, i.ex=0. We takeV(x)
Soon after, examples of fermion number fractionalization in=0 and U(x)=—q/x(q>0). The Dirac matrices can be
various space-time dimensions were also considgsel.  represented in terms of the Pauli matrices as
Mathematically, the vacuum fermion numb¥y; is related to
the # invariant, 7, , [7] of the pertinent Dirac Hamiltonian ay=0,, P=o01. (©)

H defined in a classical background field ) . ) .
In this representation, the Dirac equatibny=E for the

two-component wave function

1 1
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E,>0 E, <0 (X)
0= o) @
whereE,, are the energy eigenvalues ldf Experimentally, 2
fermion number fractionalization was verified in certain one-tgkes the form
dimensional polymers such as polyacetyl¢8g It has also
found a place in such subjects as the fractional quantum Hall din q
effect[9] and the chiral bag model of nucleofi0]. Most of ax TIm= ] ¥=Ees, )
the cases of fractional fermion numbers considered in the
literature involved certain nontrivial solitonic background di, q
fields. ~ix +|{ m— ;) Pr=Ei;. (6)

In this Brief Report we would like to provide an elemen-
tary example in which a fractional fermion number could be
induced from the interaction of a massive fermion with a
scalar Coulomb potential.

Let us consider a (£ 1)-dimensional Dirac Hamiltonian
with special potentials of the kind

Here ¢/, and ¢, are, respectively, the upper and lower com-
ponent of the Dirac wave function, aifidis the eigenenergy.
The boundary conditions satisfied by the wave function are
Y1(x)=0 as x—0p. The system is symmetric under
charge conjugation. In fact, in the representation, (Bg.the
g charge-conjugation operator is given by. If ¥ is a solu-
o tion of Eqgs.(5) and (6) with energyE, then¥°=g3¥* is
H= Ia"d_><+ﬁ(m+ U00)+V(x), @ also a solution, but with energy E.
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Now it is easy to see that the Dirac equation has a solutiotowest-energy configuration with the zero energy state filled,
with zero energy which is normalizable, nondegenerate, anglielding fermion numbeN, = 1/2.
self-charge-conjugate. The wave function of this state is Finally, we note here that the solutions of E¢S.and(6)
may be expressed in terms of the Whittaker functions, and

xe™ ™ the discrete energy spectrum is given by
o(X)~ 0 (7
2
We must have the lower component of H@) set to zero E2=m2[1— g ) (8)
since the general solution of E¢), which is x~ %™ for (q+n)?
E=0, is divergent at botlx=0 andx=o. This ground state
is self-charge-conjugate, sineg ¥V ,=V,. From Eq.(1), we ACKNOWLEDGMENTS
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