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Fractional fermion number in a „1¿1…-dimensional Dirac equation with a scalar Coulomb field
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An elementary example of fermion number fractionalization is given. The model considered is a massive
Dirac fermion moving on the positive halfline in an external scalar Coulomb field. The theory is symmetric
under charge conjugation. We demonstrate the existence of a nondegenerate, normalizable, and self-charge-
conjugate zero energy solution in the theory. The vacuum thus has a fermion number61/2 depending on
whether the lowest positive energy state without the external scalar field was filled or empty.
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The occurrence of a fractional fermion number of t
vacuum is certainly one of the most interesting discoverie
the theory of quantum fields. It is a manifestation of t
effects of Dirac’s negative energy sea@1,2#. It was first ob-
served by Jackiw and Rebbi@3# that, in a charge conjugatio
symmetric theory of one-dimensional massless Dirac fer
ons interacting with a solitonic background field~the kink!,
the vacuum acquires a fractional charge61/2. In this case
the existence of a normalizable zero energy solution of
Dirac equation is rather essential, and the fermion num
fractionalization is closely related to the spectral asymme
of the theory considered. Later, Goldstone and Wilczek@4#
showed that for a general Dirac Hamiltonian without con
gation symmetry, the fermion number can be a nontriv
continuous function of the various parameters in the theo
Soon after, examples of fermion number fractionalization
various space-time dimensions were also considered@5,6#.
Mathematically, the vacuum fermion numberNV is related to
the h invariant,hH , @7# of the pertinent Dirac Hamiltonian
H defined in a classical background field
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whereEn are the energy eigenvalues ofH. Experimentally,
fermion number fractionalization was verified in certain on
dimensional polymers such as polyacetylene@8#. It has also
found a place in such subjects as the fractional quantum
effect @9# and the chiral bag model of nucleons@10#. Most of
the cases of fractional fermion numbers considered in
literature involved certain nontrivial solitonic backgroun
fields.

In this Brief Report we would like to provide an eleme
tary example in which a fractional fermion number could
induced from the interaction of a massive fermion with
scalar Coulomb potential.

Let us consider a (111)-dimensional Dirac Hamiltonian
with special potentials of the kind

H52 iax

d

dx
1b„m1U~x!…1V~x!, ~2!
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wherem is the mass of the fermion,ax andb are the Dirac
matrices, andU and V are scalar and vector potentials, r
spectively. Such a model is of interest in both the theory
the nuclear shell model@10,11# and the model@with V(x)
50# of the self-compatible field of a quark system@12#. In
the presence of a vector potential, the Dirac Hamilton
does not exhibit a charge conjugation symmetry since
charge coupling treats particles and antiparticles differen
So the existence of zero mode does not necessarily imp
fractional fermion number. On the other hand, owing
charge-conjugation symmetry, a theory with only a sca
potentialU generally has no spectral asymmetry, unless th
exists a zero energy solution@10#.

We now consider a theory described by the Hamiltoni
Eq. ~2!, on the positive halfline, i.e.,x>0. We takeV(x)
50 and U(x)52q/x(q.0). The Dirac matrices can b
represented in terms of the Pauli matrices as

ax5s2 , b5s1 . ~3!

In this representation, the Dirac equationHc5Ec for the
two-component wave function

c~x!5S c1~x!

c2~x!
D ~4!

takes the form

dc1

dx
1S m2

q

xDc15Ec2 , ~5!

2
dc2

dx
1S m2

q

xDc25Ec1 . ~6!

Herec1 andc2 are, respectively, the upper and lower com
ponent of the Dirac wave function, andE is the eigenenergy
The boundary conditions satisfied by the wave function
c1,2(x)50 as x→0,̀ . The system is symmetric unde
charge conjugation. In fact, in the representation, Eq.~3!, the
charge-conjugation operator is given bys3. If C is a solu-
tion of Eqs.~5! and ~6! with energyE, thenCc[s3C* is
also a solution, but with energy2E.
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Now it is easy to see that the Dirac equation has a solu
with zero energy which is normalizable, nondegenerate,
self-charge-conjugate. The wave function of this state is

c0~x!;S xqe2mx

0 D . ~7!

We must have the lower component of Eq.~7! set to zero
since the general solution of Eq.~6!, which is x2qemx for
E50, is divergent at bothx50 andx5`. This ground state
is self-charge-conjugate, sinces3C05C0. From Eq.~1!, we
conclude that the vacuum in the presence of the exte
scalar field, defined with the zero energy state empty, h
fermion numberNV521/2. Clearly, there is a degenera
tiv
o

,

c.
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lowest-energy configuration with the zero energy state fill
yielding fermion numberNV51/2.

Finally, we note here that the solutions of Eqs.~5! and~6!
may be expressed in terms of the Whittaker functions, a
the discrete energy spectrum is given by

E25m2F12
q2

~q1n!2G . ~8!
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